1 /*
2  * Copyright 2008-2015 Freescale Semiconductor Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *     * Redistributions of source code must retain the above copyright
7  *       notice, this list of conditions and the following disclaimer.
8  *     * Redistributions in binary form must reproduce the above copyright
9  *       notice, this list of conditions and the following disclaimer in the
10  *       documentation and/or other materials provided with the distribution.
11  *     * Neither the name of Freescale Semiconductor nor the
12  *       names of its contributors may be used to endorse or promote products
13  *       derived from this software without specific prior written permission.
14  *
15  *
16  * ALTERNATIVELY, this software may be distributed under the terms of the
17  * GNU General Public License ("GPL") as published by the Free Software
18  * Foundation, either version 2 of that License or (at your option) any
19  * later version.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
22  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
25  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include "fman.h"
36 #include "fman_muram.h"
37 
38 #include <linux/slab.h>
39 #include <linux/delay.h>
40 #include <linux/module.h>
41 #include <linux/of_platform.h>
42 #include <linux/clk.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/interrupt.h>
46 #include <linux/libfdt_env.h>
47 
48 /* General defines */
49 #define FMAN_LIODN_TBL			64	/* size of LIODN table */
50 #define MAX_NUM_OF_MACS			10
51 #define FM_NUM_OF_FMAN_CTRL_EVENT_REGS	4
52 #define BASE_RX_PORTID			0x08
53 #define BASE_TX_PORTID			0x28
54 
55 /* Modules registers offsets */
56 #define BMI_OFFSET		0x00080000
57 #define QMI_OFFSET		0x00080400
58 #define DMA_OFFSET		0x000C2000
59 #define FPM_OFFSET		0x000C3000
60 #define IMEM_OFFSET		0x000C4000
61 #define CGP_OFFSET		0x000DB000
62 
63 /* Exceptions bit map */
64 #define EX_DMA_BUS_ERROR		0x80000000
65 #define EX_DMA_READ_ECC			0x40000000
66 #define EX_DMA_SYSTEM_WRITE_ECC	0x20000000
67 #define EX_DMA_FM_WRITE_ECC		0x10000000
68 #define EX_FPM_STALL_ON_TASKS		0x08000000
69 #define EX_FPM_SINGLE_ECC		0x04000000
70 #define EX_FPM_DOUBLE_ECC		0x02000000
71 #define EX_QMI_SINGLE_ECC		0x01000000
72 #define EX_QMI_DEQ_FROM_UNKNOWN_PORTID	0x00800000
73 #define EX_QMI_DOUBLE_ECC		0x00400000
74 #define EX_BMI_LIST_RAM_ECC		0x00200000
75 #define EX_BMI_STORAGE_PROFILE_ECC	0x00100000
76 #define EX_BMI_STATISTICS_RAM_ECC	0x00080000
77 #define EX_IRAM_ECC			0x00040000
78 #define EX_MURAM_ECC			0x00020000
79 #define EX_BMI_DISPATCH_RAM_ECC	0x00010000
80 #define EX_DMA_SINGLE_PORT_ECC		0x00008000
81 
82 /* DMA defines */
83 /* masks */
84 #define DMA_MODE_BER			0x00200000
85 #define DMA_MODE_ECC			0x00000020
86 #define DMA_MODE_SECURE_PROT		0x00000800
87 #define DMA_MODE_AXI_DBG_MASK		0x0F000000
88 
89 #define DMA_TRANSFER_PORTID_MASK	0xFF000000
90 #define DMA_TRANSFER_TNUM_MASK		0x00FF0000
91 #define DMA_TRANSFER_LIODN_MASK	0x00000FFF
92 
93 #define DMA_STATUS_BUS_ERR		0x08000000
94 #define DMA_STATUS_READ_ECC		0x04000000
95 #define DMA_STATUS_SYSTEM_WRITE_ECC	0x02000000
96 #define DMA_STATUS_FM_WRITE_ECC	0x01000000
97 #define DMA_STATUS_FM_SPDAT_ECC	0x00080000
98 
99 #define DMA_MODE_CACHE_OR_SHIFT		30
100 #define DMA_MODE_AXI_DBG_SHIFT			24
101 #define DMA_MODE_CEN_SHIFT			13
102 #define DMA_MODE_CEN_MASK			0x00000007
103 #define DMA_MODE_DBG_SHIFT			7
104 #define DMA_MODE_AID_MODE_SHIFT		4
105 
106 #define DMA_THRESH_COMMQ_SHIFT			24
107 #define DMA_THRESH_READ_INT_BUF_SHIFT		16
108 #define DMA_THRESH_READ_INT_BUF_MASK		0x0000003f
109 #define DMA_THRESH_WRITE_INT_BUF_MASK		0x0000003f
110 
111 #define DMA_TRANSFER_PORTID_SHIFT		24
112 #define DMA_TRANSFER_TNUM_SHIFT		16
113 
114 #define DMA_CAM_SIZEOF_ENTRY			0x40
115 #define DMA_CAM_UNITS				8
116 
117 #define DMA_LIODN_SHIFT		16
118 #define DMA_LIODN_BASE_MASK	0x00000FFF
119 
120 /* FPM defines */
121 #define FPM_EV_MASK_DOUBLE_ECC		0x80000000
122 #define FPM_EV_MASK_STALL		0x40000000
123 #define FPM_EV_MASK_SINGLE_ECC		0x20000000
124 #define FPM_EV_MASK_RELEASE_FM		0x00010000
125 #define FPM_EV_MASK_DOUBLE_ECC_EN	0x00008000
126 #define FPM_EV_MASK_STALL_EN		0x00004000
127 #define FPM_EV_MASK_SINGLE_ECC_EN	0x00002000
128 #define FPM_EV_MASK_EXTERNAL_HALT	0x00000008
129 #define FPM_EV_MASK_ECC_ERR_HALT	0x00000004
130 
131 #define FPM_RAM_MURAM_ECC		0x00008000
132 #define FPM_RAM_IRAM_ECC		0x00004000
133 #define FPM_IRAM_ECC_ERR_EX_EN		0x00020000
134 #define FPM_MURAM_ECC_ERR_EX_EN	0x00040000
135 #define FPM_RAM_IRAM_ECC_EN		0x40000000
136 #define FPM_RAM_RAMS_ECC_EN		0x80000000
137 #define FPM_RAM_RAMS_ECC_EN_SRC_SEL	0x08000000
138 
139 #define FPM_REV1_MAJOR_MASK		0x0000FF00
140 #define FPM_REV1_MINOR_MASK		0x000000FF
141 
142 #define FPM_DISP_LIMIT_SHIFT		24
143 
144 #define FPM_PRT_FM_CTL1			0x00000001
145 #define FPM_PRT_FM_CTL2			0x00000002
146 #define FPM_PORT_FM_CTL_PORTID_SHIFT	24
147 #define FPM_PRC_ORA_FM_CTL_SEL_SHIFT	16
148 
149 #define FPM_THR1_PRS_SHIFT		24
150 #define FPM_THR1_KG_SHIFT		16
151 #define FPM_THR1_PLCR_SHIFT		8
152 #define FPM_THR1_BMI_SHIFT		0
153 
154 #define FPM_THR2_QMI_ENQ_SHIFT		24
155 #define FPM_THR2_QMI_DEQ_SHIFT		0
156 #define FPM_THR2_FM_CTL1_SHIFT		16
157 #define FPM_THR2_FM_CTL2_SHIFT		8
158 
159 #define FPM_EV_MASK_CAT_ERR_SHIFT	1
160 #define FPM_EV_MASK_DMA_ERR_SHIFT	0
161 
162 #define FPM_REV1_MAJOR_SHIFT		8
163 
164 #define FPM_RSTC_FM_RESET		0x80000000
165 #define FPM_RSTC_MAC0_RESET		0x40000000
166 #define FPM_RSTC_MAC1_RESET		0x20000000
167 #define FPM_RSTC_MAC2_RESET		0x10000000
168 #define FPM_RSTC_MAC3_RESET		0x08000000
169 #define FPM_RSTC_MAC8_RESET		0x04000000
170 #define FPM_RSTC_MAC4_RESET		0x02000000
171 #define FPM_RSTC_MAC5_RESET		0x01000000
172 #define FPM_RSTC_MAC6_RESET		0x00800000
173 #define FPM_RSTC_MAC7_RESET		0x00400000
174 #define FPM_RSTC_MAC9_RESET		0x00200000
175 
176 #define FPM_TS_INT_SHIFT		16
177 #define FPM_TS_CTL_EN			0x80000000
178 
179 /* BMI defines */
180 #define BMI_INIT_START				0x80000000
181 #define BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC	0x80000000
182 #define BMI_ERR_INTR_EN_LIST_RAM_ECC		0x40000000
183 #define BMI_ERR_INTR_EN_STATISTICS_RAM_ECC	0x20000000
184 #define BMI_ERR_INTR_EN_DISPATCH_RAM_ECC	0x10000000
185 #define BMI_NUM_OF_TASKS_MASK			0x3F000000
186 #define BMI_NUM_OF_EXTRA_TASKS_MASK		0x000F0000
187 #define BMI_NUM_OF_DMAS_MASK			0x00000F00
188 #define BMI_NUM_OF_EXTRA_DMAS_MASK		0x0000000F
189 #define BMI_FIFO_SIZE_MASK			0x000003FF
190 #define BMI_EXTRA_FIFO_SIZE_MASK		0x03FF0000
191 #define BMI_CFG2_DMAS_MASK			0x0000003F
192 #define BMI_CFG2_TASKS_MASK			0x0000003F
193 
194 #define BMI_CFG2_TASKS_SHIFT		16
195 #define BMI_CFG2_DMAS_SHIFT		0
196 #define BMI_CFG1_FIFO_SIZE_SHIFT	16
197 #define BMI_NUM_OF_TASKS_SHIFT		24
198 #define BMI_EXTRA_NUM_OF_TASKS_SHIFT	16
199 #define BMI_NUM_OF_DMAS_SHIFT		8
200 #define BMI_EXTRA_NUM_OF_DMAS_SHIFT	0
201 
202 #define BMI_FIFO_ALIGN			0x100
203 
204 #define BMI_EXTRA_FIFO_SIZE_SHIFT	16
205 
206 /* QMI defines */
207 #define QMI_CFG_ENQ_EN			0x80000000
208 #define QMI_CFG_DEQ_EN			0x40000000
209 #define QMI_CFG_EN_COUNTERS		0x10000000
210 #define QMI_CFG_DEQ_MASK		0x0000003F
211 #define QMI_CFG_ENQ_MASK		0x00003F00
212 #define QMI_CFG_ENQ_SHIFT		8
213 
214 #define QMI_ERR_INTR_EN_DOUBLE_ECC	0x80000000
215 #define QMI_ERR_INTR_EN_DEQ_FROM_DEF	0x40000000
216 #define QMI_INTR_EN_SINGLE_ECC		0x80000000
217 
218 #define QMI_GS_HALT_NOT_BUSY		0x00000002
219 
220 /* IRAM defines */
221 #define IRAM_IADD_AIE			0x80000000
222 #define IRAM_READY			0x80000000
223 
224 /* Default values */
225 #define DEFAULT_CATASTROPHIC_ERR		0
226 #define DEFAULT_DMA_ERR				0
227 #define DEFAULT_AID_MODE			FMAN_DMA_AID_OUT_TNUM
228 #define DEFAULT_DMA_COMM_Q_LOW			0x2A
229 #define DEFAULT_DMA_COMM_Q_HIGH		0x3F
230 #define DEFAULT_CACHE_OVERRIDE			0
231 #define DEFAULT_DMA_CAM_NUM_OF_ENTRIES		64
232 #define DEFAULT_DMA_DBG_CNT_MODE		0
233 #define DEFAULT_DMA_SOS_EMERGENCY		0
234 #define DEFAULT_DMA_WATCHDOG			0
235 #define DEFAULT_DISP_LIMIT			0
236 #define DEFAULT_PRS_DISP_TH			16
237 #define DEFAULT_PLCR_DISP_TH			16
238 #define DEFAULT_KG_DISP_TH			16
239 #define DEFAULT_BMI_DISP_TH			16
240 #define DEFAULT_QMI_ENQ_DISP_TH		16
241 #define DEFAULT_QMI_DEQ_DISP_TH		16
242 #define DEFAULT_FM_CTL1_DISP_TH		16
243 #define DEFAULT_FM_CTL2_DISP_TH		16
244 
245 #define DFLT_AXI_DBG_NUM_OF_BEATS		1
246 
247 #define DFLT_DMA_READ_INT_BUF_LOW(dma_thresh_max_buf)	\
248 	((dma_thresh_max_buf + 1) / 2)
249 #define DFLT_DMA_READ_INT_BUF_HIGH(dma_thresh_max_buf)	\
250 	((dma_thresh_max_buf + 1) * 3 / 4)
251 #define DFLT_DMA_WRITE_INT_BUF_LOW(dma_thresh_max_buf)	\
252 	((dma_thresh_max_buf + 1) / 2)
253 #define DFLT_DMA_WRITE_INT_BUF_HIGH(dma_thresh_max_buf)\
254 	((dma_thresh_max_buf + 1) * 3 / 4)
255 
256 #define DMA_COMM_Q_LOW_FMAN_V3		0x2A
257 #define DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq)		\
258 	((dma_thresh_max_commq + 1) / 2)
259 #define DFLT_DMA_COMM_Q_LOW(major, dma_thresh_max_commq)	\
260 	((major == 6) ? DMA_COMM_Q_LOW_FMAN_V3 :		\
261 	DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq))
262 
263 #define DMA_COMM_Q_HIGH_FMAN_V3	0x3f
264 #define DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq)		\
265 	((dma_thresh_max_commq + 1) * 3 / 4)
266 #define DFLT_DMA_COMM_Q_HIGH(major, dma_thresh_max_commq)	\
267 	((major == 6) ? DMA_COMM_Q_HIGH_FMAN_V3 :		\
268 	DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq))
269 
270 #define TOTAL_NUM_OF_TASKS_FMAN_V3L	59
271 #define TOTAL_NUM_OF_TASKS_FMAN_V3H	124
272 #define DFLT_TOTAL_NUM_OF_TASKS(major, minor, bmi_max_num_of_tasks)	\
273 	((major == 6) ? ((minor == 1 || minor == 4) ?			\
274 	TOTAL_NUM_OF_TASKS_FMAN_V3L : TOTAL_NUM_OF_TASKS_FMAN_V3H) :	\
275 	bmi_max_num_of_tasks)
276 
277 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V3		64
278 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V2		32
279 #define DFLT_DMA_CAM_NUM_OF_ENTRIES(major)			\
280 	(major == 6 ? DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 :		\
281 	DMA_CAM_NUM_OF_ENTRIES_FMAN_V2)
282 
283 #define FM_TIMESTAMP_1_USEC_BIT             8
284 
285 /* Defines used for enabling/disabling FMan interrupts */
286 #define ERR_INTR_EN_DMA         0x00010000
287 #define ERR_INTR_EN_FPM         0x80000000
288 #define ERR_INTR_EN_BMI         0x00800000
289 #define ERR_INTR_EN_QMI         0x00400000
290 #define ERR_INTR_EN_MURAM       0x00040000
291 #define ERR_INTR_EN_MAC0        0x00004000
292 #define ERR_INTR_EN_MAC1        0x00002000
293 #define ERR_INTR_EN_MAC2        0x00001000
294 #define ERR_INTR_EN_MAC3        0x00000800
295 #define ERR_INTR_EN_MAC4        0x00000400
296 #define ERR_INTR_EN_MAC5        0x00000200
297 #define ERR_INTR_EN_MAC6        0x00000100
298 #define ERR_INTR_EN_MAC7        0x00000080
299 #define ERR_INTR_EN_MAC8        0x00008000
300 #define ERR_INTR_EN_MAC9        0x00000040
301 
302 #define INTR_EN_QMI             0x40000000
303 #define INTR_EN_MAC0            0x00080000
304 #define INTR_EN_MAC1            0x00040000
305 #define INTR_EN_MAC2            0x00020000
306 #define INTR_EN_MAC3            0x00010000
307 #define INTR_EN_MAC4            0x00000040
308 #define INTR_EN_MAC5            0x00000020
309 #define INTR_EN_MAC6            0x00000008
310 #define INTR_EN_MAC7            0x00000002
311 #define INTR_EN_MAC8            0x00200000
312 #define INTR_EN_MAC9            0x00100000
313 #define INTR_EN_REV0            0x00008000
314 #define INTR_EN_REV1            0x00004000
315 #define INTR_EN_REV2            0x00002000
316 #define INTR_EN_REV3            0x00001000
317 #define INTR_EN_TMR             0x01000000
318 
319 enum fman_dma_aid_mode {
320 	FMAN_DMA_AID_OUT_PORT_ID = 0,		  /* 4 LSB of PORT_ID */
321 	FMAN_DMA_AID_OUT_TNUM			  /* 4 LSB of TNUM */
322 };
323 
324 struct fman_iram_regs {
325 	u32 iadd;	/* FM IRAM instruction address register */
326 	u32 idata;	/* FM IRAM instruction data register */
327 	u32 itcfg;	/* FM IRAM timing config register */
328 	u32 iready;	/* FM IRAM ready register */
329 };
330 
331 struct fman_fpm_regs {
332 	u32 fmfp_tnc;		/* FPM TNUM Control 0x00 */
333 	u32 fmfp_prc;		/* FPM Port_ID FmCtl Association 0x04 */
334 	u32 fmfp_brkc;		/* FPM Breakpoint Control 0x08 */
335 	u32 fmfp_mxd;		/* FPM Flush Control 0x0c */
336 	u32 fmfp_dist1;		/* FPM Dispatch Thresholds1 0x10 */
337 	u32 fmfp_dist2;		/* FPM Dispatch Thresholds2 0x14 */
338 	u32 fm_epi;		/* FM Error Pending Interrupts 0x18 */
339 	u32 fm_rie;		/* FM Error Interrupt Enable 0x1c */
340 	u32 fmfp_fcev[4];	/* FPM FMan-Controller Event 1-4 0x20-0x2f */
341 	u32 res0030[4];		/* res 0x30 - 0x3f */
342 	u32 fmfp_cee[4];	/* PM FMan-Controller Event 1-4 0x40-0x4f */
343 	u32 res0050[4];		/* res 0x50-0x5f */
344 	u32 fmfp_tsc1;		/* FPM TimeStamp Control1 0x60 */
345 	u32 fmfp_tsc2;		/* FPM TimeStamp Control2 0x64 */
346 	u32 fmfp_tsp;		/* FPM Time Stamp 0x68 */
347 	u32 fmfp_tsf;		/* FPM Time Stamp Fraction 0x6c */
348 	u32 fm_rcr;		/* FM Rams Control 0x70 */
349 	u32 fmfp_extc;		/* FPM External Requests Control 0x74 */
350 	u32 fmfp_ext1;		/* FPM External Requests Config1 0x78 */
351 	u32 fmfp_ext2;		/* FPM External Requests Config2 0x7c */
352 	u32 fmfp_drd[16];	/* FPM Data_Ram Data 0-15 0x80 - 0xbf */
353 	u32 fmfp_dra;		/* FPM Data Ram Access 0xc0 */
354 	u32 fm_ip_rev_1;	/* FM IP Block Revision 1 0xc4 */
355 	u32 fm_ip_rev_2;	/* FM IP Block Revision 2 0xc8 */
356 	u32 fm_rstc;		/* FM Reset Command 0xcc */
357 	u32 fm_cld;		/* FM Classifier Debug 0xd0 */
358 	u32 fm_npi;		/* FM Normal Pending Interrupts 0xd4 */
359 	u32 fmfp_exte;		/* FPM External Requests Enable 0xd8 */
360 	u32 fmfp_ee;		/* FPM Event&Mask 0xdc */
361 	u32 fmfp_cev[4];	/* FPM CPU Event 1-4 0xe0-0xef */
362 	u32 res00f0[4];		/* res 0xf0-0xff */
363 	u32 fmfp_ps[50];	/* FPM Port Status 0x100-0x1c7 */
364 	u32 res01c8[14];	/* res 0x1c8-0x1ff */
365 	u32 fmfp_clfabc;	/* FPM CLFABC 0x200 */
366 	u32 fmfp_clfcc;		/* FPM CLFCC 0x204 */
367 	u32 fmfp_clfaval;	/* FPM CLFAVAL 0x208 */
368 	u32 fmfp_clfbval;	/* FPM CLFBVAL 0x20c */
369 	u32 fmfp_clfcval;	/* FPM CLFCVAL 0x210 */
370 	u32 fmfp_clfamsk;	/* FPM CLFAMSK 0x214 */
371 	u32 fmfp_clfbmsk;	/* FPM CLFBMSK 0x218 */
372 	u32 fmfp_clfcmsk;	/* FPM CLFCMSK 0x21c */
373 	u32 fmfp_clfamc;	/* FPM CLFAMC 0x220 */
374 	u32 fmfp_clfbmc;	/* FPM CLFBMC 0x224 */
375 	u32 fmfp_clfcmc;	/* FPM CLFCMC 0x228 */
376 	u32 fmfp_decceh;	/* FPM DECCEH 0x22c */
377 	u32 res0230[116];	/* res 0x230 - 0x3ff */
378 	u32 fmfp_ts[128];	/* 0x400: FPM Task Status 0x400 - 0x5ff */
379 	u32 res0600[0x400 - 384];
380 };
381 
382 struct fman_bmi_regs {
383 	u32 fmbm_init;		/* BMI Initialization 0x00 */
384 	u32 fmbm_cfg1;		/* BMI Configuration 1 0x04 */
385 	u32 fmbm_cfg2;		/* BMI Configuration 2 0x08 */
386 	u32 res000c[5];		/* 0x0c - 0x1f */
387 	u32 fmbm_ievr;		/* Interrupt Event Register 0x20 */
388 	u32 fmbm_ier;		/* Interrupt Enable Register 0x24 */
389 	u32 fmbm_ifr;		/* Interrupt Force Register 0x28 */
390 	u32 res002c[5];		/* 0x2c - 0x3f */
391 	u32 fmbm_arb[8];	/* BMI Arbitration 0x40 - 0x5f */
392 	u32 res0060[12];	/* 0x60 - 0x8f */
393 	u32 fmbm_dtc[3];	/* Debug Trap Counter 0x90 - 0x9b */
394 	u32 res009c;		/* 0x9c */
395 	u32 fmbm_dcv[3][4];	/* Debug Compare val 0xa0-0xcf */
396 	u32 fmbm_dcm[3][4];	/* Debug Compare Mask 0xd0-0xff */
397 	u32 fmbm_gde;		/* BMI Global Debug Enable 0x100 */
398 	u32 fmbm_pp[63];	/* BMI Port Parameters 0x104 - 0x1ff */
399 	u32 res0200;		/* 0x200 */
400 	u32 fmbm_pfs[63];	/* BMI Port FIFO Size 0x204 - 0x2ff */
401 	u32 res0300;		/* 0x300 */
402 	u32 fmbm_spliodn[63];	/* Port Partition ID 0x304 - 0x3ff */
403 };
404 
405 struct fman_qmi_regs {
406 	u32 fmqm_gc;		/* General Configuration Register 0x00 */
407 	u32 res0004;		/* 0x04 */
408 	u32 fmqm_eie;		/* Error Interrupt Event Register 0x08 */
409 	u32 fmqm_eien;		/* Error Interrupt Enable Register 0x0c */
410 	u32 fmqm_eif;		/* Error Interrupt Force Register 0x10 */
411 	u32 fmqm_ie;		/* Interrupt Event Register 0x14 */
412 	u32 fmqm_ien;		/* Interrupt Enable Register 0x18 */
413 	u32 fmqm_if;		/* Interrupt Force Register 0x1c */
414 	u32 fmqm_gs;		/* Global Status Register 0x20 */
415 	u32 fmqm_ts;		/* Task Status Register 0x24 */
416 	u32 fmqm_etfc;		/* Enqueue Total Frame Counter 0x28 */
417 	u32 fmqm_dtfc;		/* Dequeue Total Frame Counter 0x2c */
418 	u32 fmqm_dc0;		/* Dequeue Counter 0 0x30 */
419 	u32 fmqm_dc1;		/* Dequeue Counter 1 0x34 */
420 	u32 fmqm_dc2;		/* Dequeue Counter 2 0x38 */
421 	u32 fmqm_dc3;		/* Dequeue Counter 3 0x3c */
422 	u32 fmqm_dfdc;		/* Dequeue FQID from Default Counter 0x40 */
423 	u32 fmqm_dfcc;		/* Dequeue FQID from Context Counter 0x44 */
424 	u32 fmqm_dffc;		/* Dequeue FQID from FD Counter 0x48 */
425 	u32 fmqm_dcc;		/* Dequeue Confirm Counter 0x4c */
426 	u32 res0050[7];		/* 0x50 - 0x6b */
427 	u32 fmqm_tapc;		/* Tnum Aging Period Control 0x6c */
428 	u32 fmqm_dmcvc;		/* Dequeue MAC Command Valid Counter 0x70 */
429 	u32 fmqm_difdcc;	/* Dequeue Invalid FD Command Counter 0x74 */
430 	u32 fmqm_da1v;		/* Dequeue A1 Valid Counter 0x78 */
431 	u32 res007c;		/* 0x7c */
432 	u32 fmqm_dtc;		/* 0x80 Debug Trap Counter 0x80 */
433 	u32 fmqm_efddd;		/* 0x84 Enqueue Frame desc Dynamic dbg 0x84 */
434 	u32 res0088[2];		/* 0x88 - 0x8f */
435 	struct {
436 		u32 fmqm_dtcfg1;	/* 0x90 dbg trap cfg 1 Register 0x00 */
437 		u32 fmqm_dtval1;	/* Debug Trap Value 1 Register 0x04 */
438 		u32 fmqm_dtm1;		/* Debug Trap Mask 1 Register 0x08 */
439 		u32 fmqm_dtc1;		/* Debug Trap Counter 1 Register 0x0c */
440 		u32 fmqm_dtcfg2;	/* dbg Trap cfg 2 Register 0x10 */
441 		u32 fmqm_dtval2;	/* Debug Trap Value 2 Register 0x14 */
442 		u32 fmqm_dtm2;		/* Debug Trap Mask 2 Register 0x18 */
443 		u32 res001c;		/* 0x1c */
444 	} dbg_traps[3];			/* 0x90 - 0xef */
445 	u8 res00f0[0x400 - 0xf0];	/* 0xf0 - 0x3ff */
446 };
447 
448 struct fman_dma_regs {
449 	u32 fmdmsr;	/* FM DMA status register 0x00 */
450 	u32 fmdmmr;	/* FM DMA mode register 0x04 */
451 	u32 fmdmtr;	/* FM DMA bus threshold register 0x08 */
452 	u32 fmdmhy;	/* FM DMA bus hysteresis register 0x0c */
453 	u32 fmdmsetr;	/* FM DMA SOS emergency Threshold Register 0x10 */
454 	u32 fmdmtah;	/* FM DMA transfer bus address high reg 0x14 */
455 	u32 fmdmtal;	/* FM DMA transfer bus address low reg 0x18 */
456 	u32 fmdmtcid;	/* FM DMA transfer bus communication ID reg 0x1c */
457 	u32 fmdmra;	/* FM DMA bus internal ram address register 0x20 */
458 	u32 fmdmrd;	/* FM DMA bus internal ram data register 0x24 */
459 	u32 fmdmwcr;	/* FM DMA CAM watchdog counter value 0x28 */
460 	u32 fmdmebcr;	/* FM DMA CAM base in MURAM register 0x2c */
461 	u32 fmdmccqdr;	/* FM DMA CAM and CMD Queue Debug reg 0x30 */
462 	u32 fmdmccqvr1;	/* FM DMA CAM and CMD Queue Value reg #1 0x34 */
463 	u32 fmdmccqvr2;	/* FM DMA CAM and CMD Queue Value reg #2 0x38 */
464 	u32 fmdmcqvr3;	/* FM DMA CMD Queue Value register #3 0x3c */
465 	u32 fmdmcqvr4;	/* FM DMA CMD Queue Value register #4 0x40 */
466 	u32 fmdmcqvr5;	/* FM DMA CMD Queue Value register #5 0x44 */
467 	u32 fmdmsefrc;	/* FM DMA Semaphore Entry Full Reject Cntr 0x48 */
468 	u32 fmdmsqfrc;	/* FM DMA Semaphore Queue Full Reject Cntr 0x4c */
469 	u32 fmdmssrc;	/* FM DMA Semaphore SYNC Reject Counter 0x50 */
470 	u32 fmdmdcr;	/* FM DMA Debug Counter 0x54 */
471 	u32 fmdmemsr;	/* FM DMA Emergency Smoother Register 0x58 */
472 	u32 res005c;	/* 0x5c */
473 	u32 fmdmplr[FMAN_LIODN_TBL / 2];	/* DMA LIODN regs 0x60-0xdf */
474 	u32 res00e0[0x400 - 56];
475 };
476 
477 /* Structure that holds current FMan state.
478  * Used for saving run time information.
479  */
480 struct fman_state_struct {
481 	u8 fm_id;
482 	u16 fm_clk_freq;
483 	struct fman_rev_info rev_info;
484 	bool enabled_time_stamp;
485 	u8 count1_micro_bit;
486 	u8 total_num_of_tasks;
487 	u8 accumulated_num_of_tasks;
488 	u32 accumulated_fifo_size;
489 	u8 accumulated_num_of_open_dmas;
490 	u8 accumulated_num_of_deq_tnums;
491 	u32 exceptions;
492 	u32 extra_fifo_pool_size;
493 	u8 extra_tasks_pool_size;
494 	u8 extra_open_dmas_pool_size;
495 	u16 port_mfl[MAX_NUM_OF_MACS];
496 	u16 mac_mfl[MAX_NUM_OF_MACS];
497 
498 	/* SOC specific */
499 	u32 fm_iram_size;
500 	/* DMA */
501 	u32 dma_thresh_max_commq;
502 	u32 dma_thresh_max_buf;
503 	u32 max_num_of_open_dmas;
504 	/* QMI */
505 	u32 qmi_max_num_of_tnums;
506 	u32 qmi_def_tnums_thresh;
507 	/* BMI */
508 	u32 bmi_max_num_of_tasks;
509 	u32 bmi_max_fifo_size;
510 	/* General */
511 	u32 fm_port_num_of_cg;
512 	u32 num_of_rx_ports;
513 	u32 total_fifo_size;
514 
515 	u32 qman_channel_base;
516 	u32 num_of_qman_channels;
517 
518 	struct resource *res;
519 };
520 
521 /* Structure that holds FMan initial configuration */
522 struct fman_cfg {
523 	u8 disp_limit_tsh;
524 	u8 prs_disp_tsh;
525 	u8 plcr_disp_tsh;
526 	u8 kg_disp_tsh;
527 	u8 bmi_disp_tsh;
528 	u8 qmi_enq_disp_tsh;
529 	u8 qmi_deq_disp_tsh;
530 	u8 fm_ctl1_disp_tsh;
531 	u8 fm_ctl2_disp_tsh;
532 	int dma_cache_override;
533 	enum fman_dma_aid_mode dma_aid_mode;
534 	u32 dma_axi_dbg_num_of_beats;
535 	u32 dma_cam_num_of_entries;
536 	u32 dma_watchdog;
537 	u8 dma_comm_qtsh_asrt_emer;
538 	u32 dma_write_buf_tsh_asrt_emer;
539 	u32 dma_read_buf_tsh_asrt_emer;
540 	u8 dma_comm_qtsh_clr_emer;
541 	u32 dma_write_buf_tsh_clr_emer;
542 	u32 dma_read_buf_tsh_clr_emer;
543 	u32 dma_sos_emergency;
544 	int dma_dbg_cnt_mode;
545 	int catastrophic_err;
546 	int dma_err;
547 	u32 exceptions;
548 	u16 clk_freq;
549 	u32 cam_base_addr;
550 	u32 fifo_base_addr;
551 	u32 total_fifo_size;
552 	u32 total_num_of_tasks;
553 	u32 qmi_def_tnums_thresh;
554 };
555 
556 /* Structure that holds information received from device tree */
557 struct fman_dts_params {
558 	void __iomem *base_addr;		/* FMan virtual address */
559 	struct resource *res;			/* FMan memory resource */
560 	u8 id;					/* FMan ID */
561 
562 	int err_irq;				/* FMan Error IRQ */
563 
564 	u16 clk_freq;				/* FMan clock freq (In Mhz) */
565 
566 	u32 qman_channel_base;			/* QMan channels base */
567 	u32 num_of_qman_channels;		/* Number of QMan channels */
568 
569 	struct resource muram_res;		/* MURAM resource */
570 };
571 
572 /** fman_exceptions_cb
573  * fman		- Pointer to FMan
574  * exception	- The exception.
575  *
576  * Exceptions user callback routine, will be called upon an exception
577  * passing the exception identification.
578  *
579  * Return: irq status
580  */
581 typedef irqreturn_t (fman_exceptions_cb)(struct fman *fman,
582 					 enum fman_exceptions exception);
583 
584 /** fman_bus_error_cb
585  * fman		- Pointer to FMan
586  * port_id	- Port id
587  * addr		- Address that caused the error
588  * tnum		- Owner of error
589  * liodn	- Logical IO device number
590  *
591  * Bus error user callback routine, will be called upon bus error,
592  * passing parameters describing the errors and the owner.
593  *
594  * Return: IRQ status
595  */
596 typedef irqreturn_t (fman_bus_error_cb)(struct fman *fman, u8 port_id,
597 					u64 addr, u8 tnum, u16 liodn);
598 
599 struct fman {
600 	struct device *dev;
601 	void __iomem *base_addr;
602 	struct fman_intr_src intr_mng[FMAN_EV_CNT];
603 
604 	struct fman_fpm_regs __iomem *fpm_regs;
605 	struct fman_bmi_regs __iomem *bmi_regs;
606 	struct fman_qmi_regs __iomem *qmi_regs;
607 	struct fman_dma_regs __iomem *dma_regs;
608 	fman_exceptions_cb *exception_cb;
609 	fman_bus_error_cb *bus_error_cb;
610 	/* Spinlock for FMan use */
611 	spinlock_t spinlock;
612 	struct fman_state_struct *state;
613 
614 	struct fman_cfg *cfg;
615 	struct muram_info *muram;
616 	/* cam section in muram */
617 	int cam_offset;
618 	size_t cam_size;
619 	/* Fifo in MURAM */
620 	int fifo_offset;
621 	size_t fifo_size;
622 
623 	u32 liodn_base[64];
624 	u32 liodn_offset[64];
625 
626 	struct fman_dts_params dts_params;
627 };
628 
629 static irqreturn_t fman_exceptions(struct fman *fman,
630 				   enum fman_exceptions exception)
631 {
632 	dev_dbg(fman->dev, "%s: FMan[%d] exception %d\n",
633 		__func__, fman->state->fm_id, exception);
634 
635 	return IRQ_HANDLED;
636 }
637 
638 static irqreturn_t fman_bus_error(struct fman *fman, u8 __maybe_unused port_id,
639 				  u64 __maybe_unused addr,
640 				  u8 __maybe_unused tnum,
641 				  u16 __maybe_unused liodn)
642 {
643 	dev_dbg(fman->dev, "%s: FMan[%d] bus error: port_id[%d]\n",
644 		__func__, fman->state->fm_id, port_id);
645 
646 	return IRQ_HANDLED;
647 }
648 
649 static inline irqreturn_t call_mac_isr(struct fman *fman, u8 id)
650 {
651 	if (fman->intr_mng[id].isr_cb) {
652 		fman->intr_mng[id].isr_cb(fman->intr_mng[id].src_handle);
653 
654 		return IRQ_HANDLED;
655 	}
656 
657 	return IRQ_NONE;
658 }
659 
660 static inline u8 hw_port_id_to_sw_port_id(u8 major, u8 hw_port_id)
661 {
662 	u8 sw_port_id = 0;
663 
664 	if (hw_port_id >= BASE_TX_PORTID)
665 		sw_port_id = hw_port_id - BASE_TX_PORTID;
666 	else if (hw_port_id >= BASE_RX_PORTID)
667 		sw_port_id = hw_port_id - BASE_RX_PORTID;
668 	else
669 		sw_port_id = 0;
670 
671 	return sw_port_id;
672 }
673 
674 static void set_port_order_restoration(struct fman_fpm_regs __iomem *fpm_rg,
675 				       u8 port_id)
676 {
677 	u32 tmp = 0;
678 
679 	tmp = port_id << FPM_PORT_FM_CTL_PORTID_SHIFT;
680 
681 	tmp |= FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1;
682 
683 	/* order restoration */
684 	if (port_id % 2)
685 		tmp |= FPM_PRT_FM_CTL1 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
686 	else
687 		tmp |= FPM_PRT_FM_CTL2 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
688 
689 	iowrite32be(tmp, &fpm_rg->fmfp_prc);
690 }
691 
692 static void set_port_liodn(struct fman *fman, u8 port_id,
693 			   u32 liodn_base, u32 liodn_ofst)
694 {
695 	u32 tmp;
696 
697 	/* set LIODN base for this port */
698 	tmp = ioread32be(&fman->dma_regs->fmdmplr[port_id / 2]);
699 	if (port_id % 2) {
700 		tmp &= ~DMA_LIODN_BASE_MASK;
701 		tmp |= liodn_base;
702 	} else {
703 		tmp &= ~(DMA_LIODN_BASE_MASK << DMA_LIODN_SHIFT);
704 		tmp |= liodn_base << DMA_LIODN_SHIFT;
705 	}
706 	iowrite32be(tmp, &fman->dma_regs->fmdmplr[port_id / 2]);
707 	iowrite32be(liodn_ofst, &fman->bmi_regs->fmbm_spliodn[port_id - 1]);
708 }
709 
710 static void enable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
711 {
712 	u32 tmp;
713 
714 	tmp = ioread32be(&fpm_rg->fm_rcr);
715 	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
716 		iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
717 	else
718 		iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN |
719 			    FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
720 }
721 
722 static void disable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
723 {
724 	u32 tmp;
725 
726 	tmp = ioread32be(&fpm_rg->fm_rcr);
727 	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
728 		iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
729 	else
730 		iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN),
731 			    &fpm_rg->fm_rcr);
732 }
733 
734 static void fman_defconfig(struct fman_cfg *cfg)
735 {
736 	memset(cfg, 0, sizeof(struct fman_cfg));
737 
738 	cfg->catastrophic_err = DEFAULT_CATASTROPHIC_ERR;
739 	cfg->dma_err = DEFAULT_DMA_ERR;
740 	cfg->dma_aid_mode = DEFAULT_AID_MODE;
741 	cfg->dma_comm_qtsh_clr_emer = DEFAULT_DMA_COMM_Q_LOW;
742 	cfg->dma_comm_qtsh_asrt_emer = DEFAULT_DMA_COMM_Q_HIGH;
743 	cfg->dma_cache_override = DEFAULT_CACHE_OVERRIDE;
744 	cfg->dma_cam_num_of_entries = DEFAULT_DMA_CAM_NUM_OF_ENTRIES;
745 	cfg->dma_dbg_cnt_mode = DEFAULT_DMA_DBG_CNT_MODE;
746 	cfg->dma_sos_emergency = DEFAULT_DMA_SOS_EMERGENCY;
747 	cfg->dma_watchdog = DEFAULT_DMA_WATCHDOG;
748 	cfg->disp_limit_tsh = DEFAULT_DISP_LIMIT;
749 	cfg->prs_disp_tsh = DEFAULT_PRS_DISP_TH;
750 	cfg->plcr_disp_tsh = DEFAULT_PLCR_DISP_TH;
751 	cfg->kg_disp_tsh = DEFAULT_KG_DISP_TH;
752 	cfg->bmi_disp_tsh = DEFAULT_BMI_DISP_TH;
753 	cfg->qmi_enq_disp_tsh = DEFAULT_QMI_ENQ_DISP_TH;
754 	cfg->qmi_deq_disp_tsh = DEFAULT_QMI_DEQ_DISP_TH;
755 	cfg->fm_ctl1_disp_tsh = DEFAULT_FM_CTL1_DISP_TH;
756 	cfg->fm_ctl2_disp_tsh = DEFAULT_FM_CTL2_DISP_TH;
757 }
758 
759 static int dma_init(struct fman *fman)
760 {
761 	struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
762 	struct fman_cfg *cfg = fman->cfg;
763 	u32 tmp_reg;
764 
765 	/* Init DMA Registers */
766 
767 	/* clear status reg events */
768 	tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC |
769 		   DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC);
770 	iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg, &dma_rg->fmdmsr);
771 
772 	/* configure mode register */
773 	tmp_reg = 0;
774 	tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT;
775 	if (cfg->exceptions & EX_DMA_BUS_ERROR)
776 		tmp_reg |= DMA_MODE_BER;
777 	if ((cfg->exceptions & EX_DMA_SYSTEM_WRITE_ECC) |
778 	    (cfg->exceptions & EX_DMA_READ_ECC) |
779 	    (cfg->exceptions & EX_DMA_FM_WRITE_ECC))
780 		tmp_reg |= DMA_MODE_ECC;
781 	if (cfg->dma_axi_dbg_num_of_beats)
782 		tmp_reg |= (DMA_MODE_AXI_DBG_MASK &
783 			((cfg->dma_axi_dbg_num_of_beats - 1)
784 			<< DMA_MODE_AXI_DBG_SHIFT));
785 
786 	tmp_reg |= (((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) &
787 		DMA_MODE_CEN_MASK) << DMA_MODE_CEN_SHIFT;
788 	tmp_reg |= DMA_MODE_SECURE_PROT;
789 	tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT;
790 	tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT;
791 
792 	iowrite32be(tmp_reg, &dma_rg->fmdmmr);
793 
794 	/* configure thresholds register */
795 	tmp_reg = ((u32)cfg->dma_comm_qtsh_asrt_emer <<
796 		DMA_THRESH_COMMQ_SHIFT);
797 	tmp_reg |= (cfg->dma_read_buf_tsh_asrt_emer &
798 		DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
799 	tmp_reg |= cfg->dma_write_buf_tsh_asrt_emer &
800 		DMA_THRESH_WRITE_INT_BUF_MASK;
801 
802 	iowrite32be(tmp_reg, &dma_rg->fmdmtr);
803 
804 	/* configure hysteresis register */
805 	tmp_reg = ((u32)cfg->dma_comm_qtsh_clr_emer <<
806 		DMA_THRESH_COMMQ_SHIFT);
807 	tmp_reg |= (cfg->dma_read_buf_tsh_clr_emer &
808 		DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
809 	tmp_reg |= cfg->dma_write_buf_tsh_clr_emer &
810 		DMA_THRESH_WRITE_INT_BUF_MASK;
811 
812 	iowrite32be(tmp_reg, &dma_rg->fmdmhy);
813 
814 	/* configure emergency threshold */
815 	iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr);
816 
817 	/* configure Watchdog */
818 	iowrite32be((cfg->dma_watchdog * cfg->clk_freq), &dma_rg->fmdmwcr);
819 
820 	iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr);
821 
822 	/* Allocate MURAM for CAM */
823 	fman->cam_size =
824 		(u32)(fman->cfg->dma_cam_num_of_entries * DMA_CAM_SIZEOF_ENTRY);
825 	fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size);
826 	if (IS_ERR_VALUE(fman->cam_offset)) {
827 		dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
828 			__func__);
829 		return -ENOMEM;
830 	}
831 
832 	if (fman->state->rev_info.major == 2) {
833 		u32 __iomem *cam_base_addr;
834 
835 		fman_muram_free_mem(fman->muram, fman->cam_offset,
836 				    fman->cam_size);
837 
838 		fman->cam_size = fman->cfg->dma_cam_num_of_entries * 72 + 128;
839 		fman->cam_offset = fman_muram_alloc(fman->muram,
840 						    fman->cam_size);
841 		if (IS_ERR_VALUE(fman->cam_offset)) {
842 			dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
843 				__func__);
844 			return -ENOMEM;
845 		}
846 
847 		if (fman->cfg->dma_cam_num_of_entries % 8 ||
848 		    fman->cfg->dma_cam_num_of_entries > 32) {
849 			dev_err(fman->dev, "%s: wrong dma_cam_num_of_entries\n",
850 				__func__);
851 			return -EINVAL;
852 		}
853 
854 		cam_base_addr = (u32 __iomem *)
855 			fman_muram_offset_to_vbase(fman->muram,
856 						   fman->cam_offset);
857 		iowrite32be(~((1 <<
858 			    (32 - fman->cfg->dma_cam_num_of_entries)) - 1),
859 			    cam_base_addr);
860 	}
861 
862 	fman->cfg->cam_base_addr = fman->cam_offset;
863 
864 	return 0;
865 }
866 
867 static void fpm_init(struct fman_fpm_regs __iomem *fpm_rg, struct fman_cfg *cfg)
868 {
869 	u32 tmp_reg;
870 	int i;
871 
872 	/* Init FPM Registers */
873 
874 	tmp_reg = (u32)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT);
875 	iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd);
876 
877 	tmp_reg = (((u32)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) |
878 		   ((u32)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) |
879 		   ((u32)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) |
880 		   ((u32)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT));
881 	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1);
882 
883 	tmp_reg =
884 		(((u32)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) |
885 		 ((u32)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) |
886 		 ((u32)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) |
887 		 ((u32)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT));
888 	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2);
889 
890 	/* define exceptions and error behavior */
891 	tmp_reg = 0;
892 	/* Clear events */
893 	tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC |
894 		    FPM_EV_MASK_SINGLE_ECC);
895 	/* enable interrupts */
896 	if (cfg->exceptions & EX_FPM_STALL_ON_TASKS)
897 		tmp_reg |= FPM_EV_MASK_STALL_EN;
898 	if (cfg->exceptions & EX_FPM_SINGLE_ECC)
899 		tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN;
900 	if (cfg->exceptions & EX_FPM_DOUBLE_ECC)
901 		tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN;
902 	tmp_reg |= (cfg->catastrophic_err << FPM_EV_MASK_CAT_ERR_SHIFT);
903 	tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT);
904 	/* FMan is not halted upon external halt activation */
905 	tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT;
906 	/* Man is not halted upon  Unrecoverable ECC error behavior */
907 	tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT;
908 	iowrite32be(tmp_reg, &fpm_rg->fmfp_ee);
909 
910 	/* clear all fmCtls event registers */
911 	for (i = 0; i < FM_NUM_OF_FMAN_CTRL_EVENT_REGS; i++)
912 		iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]);
913 
914 	/* RAM ECC -  enable and clear events */
915 	/* first we need to clear all parser memory,
916 	 * as it is uninitialized and may cause ECC errors
917 	 */
918 	/* event bits */
919 	tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC);
920 
921 	iowrite32be(tmp_reg, &fpm_rg->fm_rcr);
922 
923 	tmp_reg = 0;
924 	if (cfg->exceptions & EX_IRAM_ECC) {
925 		tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN;
926 		enable_rams_ecc(fpm_rg);
927 	}
928 	if (cfg->exceptions & EX_MURAM_ECC) {
929 		tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN;
930 		enable_rams_ecc(fpm_rg);
931 	}
932 	iowrite32be(tmp_reg, &fpm_rg->fm_rie);
933 }
934 
935 static void bmi_init(struct fman_bmi_regs __iomem *bmi_rg,
936 		     struct fman_cfg *cfg)
937 {
938 	u32 tmp_reg;
939 
940 	/* Init BMI Registers */
941 
942 	/* define common resources */
943 	tmp_reg = cfg->fifo_base_addr;
944 	tmp_reg = tmp_reg / BMI_FIFO_ALIGN;
945 
946 	tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) <<
947 		    BMI_CFG1_FIFO_SIZE_SHIFT);
948 	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1);
949 
950 	tmp_reg = ((cfg->total_num_of_tasks - 1) & BMI_CFG2_TASKS_MASK) <<
951 		   BMI_CFG2_TASKS_SHIFT;
952 	/* num of DMA's will be dynamically updated when each port is set */
953 	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2);
954 
955 	/* define unmaskable exceptions, enable and clear events */
956 	tmp_reg = 0;
957 	iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC |
958 		    BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC |
959 		    BMI_ERR_INTR_EN_STATISTICS_RAM_ECC |
960 		    BMI_ERR_INTR_EN_DISPATCH_RAM_ECC, &bmi_rg->fmbm_ievr);
961 
962 	if (cfg->exceptions & EX_BMI_LIST_RAM_ECC)
963 		tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
964 	if (cfg->exceptions & EX_BMI_STORAGE_PROFILE_ECC)
965 		tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
966 	if (cfg->exceptions & EX_BMI_STATISTICS_RAM_ECC)
967 		tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
968 	if (cfg->exceptions & EX_BMI_DISPATCH_RAM_ECC)
969 		tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
970 	iowrite32be(tmp_reg, &bmi_rg->fmbm_ier);
971 }
972 
973 static void qmi_init(struct fman_qmi_regs __iomem *qmi_rg,
974 		     struct fman_cfg *cfg)
975 {
976 	u32 tmp_reg;
977 
978 	/* Init QMI Registers */
979 
980 	/* Clear error interrupt events */
981 
982 	iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF,
983 		    &qmi_rg->fmqm_eie);
984 	tmp_reg = 0;
985 	if (cfg->exceptions & EX_QMI_DEQ_FROM_UNKNOWN_PORTID)
986 		tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
987 	if (cfg->exceptions & EX_QMI_DOUBLE_ECC)
988 		tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC;
989 	/* enable events */
990 	iowrite32be(tmp_reg, &qmi_rg->fmqm_eien);
991 
992 	tmp_reg = 0;
993 	/* Clear interrupt events */
994 	iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie);
995 	if (cfg->exceptions & EX_QMI_SINGLE_ECC)
996 		tmp_reg |= QMI_INTR_EN_SINGLE_ECC;
997 	/* enable events */
998 	iowrite32be(tmp_reg, &qmi_rg->fmqm_ien);
999 }
1000 
1001 static int enable(struct fman *fman, struct fman_cfg *cfg)
1002 {
1003 	u32 cfg_reg = 0;
1004 
1005 	/* Enable all modules */
1006 
1007 	/* clear&enable global counters - calculate reg and save for later,
1008 	 * because it's the same reg for QMI enable
1009 	 */
1010 	cfg_reg = QMI_CFG_EN_COUNTERS;
1011 
1012 	/* Set enqueue and dequeue thresholds */
1013 	cfg_reg |= (cfg->qmi_def_tnums_thresh << 8) | cfg->qmi_def_tnums_thresh;
1014 
1015 	iowrite32be(BMI_INIT_START, &fman->bmi_regs->fmbm_init);
1016 	iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN,
1017 		    &fman->qmi_regs->fmqm_gc);
1018 
1019 	return 0;
1020 }
1021 
1022 static int set_exception(struct fman *fman,
1023 			 enum fman_exceptions exception, bool enable)
1024 {
1025 	u32 tmp;
1026 
1027 	switch (exception) {
1028 	case FMAN_EX_DMA_BUS_ERROR:
1029 		tmp = ioread32be(&fman->dma_regs->fmdmmr);
1030 		if (enable)
1031 			tmp |= DMA_MODE_BER;
1032 		else
1033 			tmp &= ~DMA_MODE_BER;
1034 		/* disable bus error */
1035 		iowrite32be(tmp, &fman->dma_regs->fmdmmr);
1036 		break;
1037 	case FMAN_EX_DMA_READ_ECC:
1038 	case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
1039 	case FMAN_EX_DMA_FM_WRITE_ECC:
1040 		tmp = ioread32be(&fman->dma_regs->fmdmmr);
1041 		if (enable)
1042 			tmp |= DMA_MODE_ECC;
1043 		else
1044 			tmp &= ~DMA_MODE_ECC;
1045 		iowrite32be(tmp, &fman->dma_regs->fmdmmr);
1046 		break;
1047 	case FMAN_EX_FPM_STALL_ON_TASKS:
1048 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1049 		if (enable)
1050 			tmp |= FPM_EV_MASK_STALL_EN;
1051 		else
1052 			tmp &= ~FPM_EV_MASK_STALL_EN;
1053 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1054 		break;
1055 	case FMAN_EX_FPM_SINGLE_ECC:
1056 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1057 		if (enable)
1058 			tmp |= FPM_EV_MASK_SINGLE_ECC_EN;
1059 		else
1060 			tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN;
1061 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1062 		break;
1063 	case FMAN_EX_FPM_DOUBLE_ECC:
1064 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1065 		if (enable)
1066 			tmp |= FPM_EV_MASK_DOUBLE_ECC_EN;
1067 		else
1068 			tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN;
1069 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1070 		break;
1071 	case FMAN_EX_QMI_SINGLE_ECC:
1072 		tmp = ioread32be(&fman->qmi_regs->fmqm_ien);
1073 		if (enable)
1074 			tmp |= QMI_INTR_EN_SINGLE_ECC;
1075 		else
1076 			tmp &= ~QMI_INTR_EN_SINGLE_ECC;
1077 		iowrite32be(tmp, &fman->qmi_regs->fmqm_ien);
1078 		break;
1079 	case FMAN_EX_QMI_DOUBLE_ECC:
1080 		tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1081 		if (enable)
1082 			tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC;
1083 		else
1084 			tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC;
1085 		iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1086 		break;
1087 	case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1088 		tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1089 		if (enable)
1090 			tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1091 		else
1092 			tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1093 		iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1094 		break;
1095 	case FMAN_EX_BMI_LIST_RAM_ECC:
1096 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1097 		if (enable)
1098 			tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
1099 		else
1100 			tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC;
1101 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1102 		break;
1103 	case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1104 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1105 		if (enable)
1106 			tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1107 		else
1108 			tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1109 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1110 		break;
1111 	case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1112 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1113 		if (enable)
1114 			tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1115 		else
1116 			tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1117 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1118 		break;
1119 	case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1120 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1121 		if (enable)
1122 			tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1123 		else
1124 			tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1125 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1126 		break;
1127 	case FMAN_EX_IRAM_ECC:
1128 		tmp = ioread32be(&fman->fpm_regs->fm_rie);
1129 		if (enable) {
1130 			/* enable ECC if not enabled */
1131 			enable_rams_ecc(fman->fpm_regs);
1132 			/* enable ECC interrupts */
1133 			tmp |= FPM_IRAM_ECC_ERR_EX_EN;
1134 		} else {
1135 			/* ECC mechanism may be disabled,
1136 			 * depending on driver status
1137 			 */
1138 			disable_rams_ecc(fman->fpm_regs);
1139 			tmp &= ~FPM_IRAM_ECC_ERR_EX_EN;
1140 		}
1141 		iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1142 		break;
1143 	case FMAN_EX_MURAM_ECC:
1144 		tmp = ioread32be(&fman->fpm_regs->fm_rie);
1145 		if (enable) {
1146 			/* enable ECC if not enabled */
1147 			enable_rams_ecc(fman->fpm_regs);
1148 			/* enable ECC interrupts */
1149 			tmp |= FPM_MURAM_ECC_ERR_EX_EN;
1150 		} else {
1151 			/* ECC mechanism may be disabled,
1152 			 * depending on driver status
1153 			 */
1154 			disable_rams_ecc(fman->fpm_regs);
1155 			tmp &= ~FPM_MURAM_ECC_ERR_EX_EN;
1156 		}
1157 		iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1158 		break;
1159 	default:
1160 		return -EINVAL;
1161 	}
1162 	return 0;
1163 }
1164 
1165 static void resume(struct fman_fpm_regs __iomem *fpm_rg)
1166 {
1167 	u32 tmp;
1168 
1169 	tmp = ioread32be(&fpm_rg->fmfp_ee);
1170 	/* clear tmp_reg event bits in order not to clear standing events */
1171 	tmp &= ~(FPM_EV_MASK_DOUBLE_ECC |
1172 		 FPM_EV_MASK_STALL | FPM_EV_MASK_SINGLE_ECC);
1173 	tmp |= FPM_EV_MASK_RELEASE_FM;
1174 
1175 	iowrite32be(tmp, &fpm_rg->fmfp_ee);
1176 }
1177 
1178 static int fill_soc_specific_params(struct fman_state_struct *state)
1179 {
1180 	u8 minor = state->rev_info.minor;
1181 	/* P4080 - Major 2
1182 	 * P2041/P3041/P5020/P5040 - Major 3
1183 	 * Tx/Bx - Major 6
1184 	 */
1185 	switch (state->rev_info.major) {
1186 	case 3:
1187 		state->bmi_max_fifo_size	= 160 * 1024;
1188 		state->fm_iram_size		= 64 * 1024;
1189 		state->dma_thresh_max_commq	= 31;
1190 		state->dma_thresh_max_buf	= 127;
1191 		state->qmi_max_num_of_tnums	= 64;
1192 		state->qmi_def_tnums_thresh	= 48;
1193 		state->bmi_max_num_of_tasks	= 128;
1194 		state->max_num_of_open_dmas	= 32;
1195 		state->fm_port_num_of_cg	= 256;
1196 		state->num_of_rx_ports	= 6;
1197 		state->total_fifo_size	= 122 * 1024;
1198 		break;
1199 
1200 	case 2:
1201 		state->bmi_max_fifo_size	= 160 * 1024;
1202 		state->fm_iram_size		= 64 * 1024;
1203 		state->dma_thresh_max_commq	= 31;
1204 		state->dma_thresh_max_buf	= 127;
1205 		state->qmi_max_num_of_tnums	= 64;
1206 		state->qmi_def_tnums_thresh	= 48;
1207 		state->bmi_max_num_of_tasks	= 128;
1208 		state->max_num_of_open_dmas	= 32;
1209 		state->fm_port_num_of_cg	= 256;
1210 		state->num_of_rx_ports	= 5;
1211 		state->total_fifo_size	= 100 * 1024;
1212 		break;
1213 
1214 	case 6:
1215 		state->dma_thresh_max_commq	= 83;
1216 		state->dma_thresh_max_buf	= 127;
1217 		state->qmi_max_num_of_tnums	= 64;
1218 		state->qmi_def_tnums_thresh	= 32;
1219 		state->fm_port_num_of_cg	= 256;
1220 
1221 		/* FManV3L */
1222 		if (minor == 1 || minor == 4) {
1223 			state->bmi_max_fifo_size	= 192 * 1024;
1224 			state->bmi_max_num_of_tasks	= 64;
1225 			state->max_num_of_open_dmas	= 32;
1226 			state->num_of_rx_ports		= 5;
1227 			if (minor == 1)
1228 				state->fm_iram_size	= 32 * 1024;
1229 			else
1230 				state->fm_iram_size	= 64 * 1024;
1231 			state->total_fifo_size		= 156 * 1024;
1232 		}
1233 		/* FManV3H */
1234 		else if (minor == 0 || minor == 2 || minor == 3) {
1235 			state->bmi_max_fifo_size	= 384 * 1024;
1236 			state->fm_iram_size		= 64 * 1024;
1237 			state->bmi_max_num_of_tasks	= 128;
1238 			state->max_num_of_open_dmas	= 84;
1239 			state->num_of_rx_ports		= 8;
1240 			state->total_fifo_size		= 295 * 1024;
1241 		} else {
1242 			pr_err("Unsupported FManv3 version\n");
1243 			return -EINVAL;
1244 		}
1245 
1246 		break;
1247 	default:
1248 		pr_err("Unsupported FMan version\n");
1249 		return -EINVAL;
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static bool is_init_done(struct fman_cfg *cfg)
1256 {
1257 	/* Checks if FMan driver parameters were initialized */
1258 	if (!cfg)
1259 		return true;
1260 
1261 	return false;
1262 }
1263 
1264 static void free_init_resources(struct fman *fman)
1265 {
1266 	if (fman->cam_offset)
1267 		fman_muram_free_mem(fman->muram, fman->cam_offset,
1268 				    fman->cam_size);
1269 	if (fman->fifo_offset)
1270 		fman_muram_free_mem(fman->muram, fman->fifo_offset,
1271 				    fman->fifo_size);
1272 }
1273 
1274 static irqreturn_t bmi_err_event(struct fman *fman)
1275 {
1276 	u32 event, mask, force;
1277 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1278 	irqreturn_t ret = IRQ_NONE;
1279 
1280 	event = ioread32be(&bmi_rg->fmbm_ievr);
1281 	mask = ioread32be(&bmi_rg->fmbm_ier);
1282 	event &= mask;
1283 	/* clear the forced events */
1284 	force = ioread32be(&bmi_rg->fmbm_ifr);
1285 	if (force & event)
1286 		iowrite32be(force & ~event, &bmi_rg->fmbm_ifr);
1287 	/* clear the acknowledged events */
1288 	iowrite32be(event, &bmi_rg->fmbm_ievr);
1289 
1290 	if (event & BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC)
1291 		ret = fman->exception_cb(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC);
1292 	if (event & BMI_ERR_INTR_EN_LIST_RAM_ECC)
1293 		ret = fman->exception_cb(fman, FMAN_EX_BMI_LIST_RAM_ECC);
1294 	if (event & BMI_ERR_INTR_EN_STATISTICS_RAM_ECC)
1295 		ret = fman->exception_cb(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC);
1296 	if (event & BMI_ERR_INTR_EN_DISPATCH_RAM_ECC)
1297 		ret = fman->exception_cb(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC);
1298 
1299 	return ret;
1300 }
1301 
1302 static irqreturn_t qmi_err_event(struct fman *fman)
1303 {
1304 	u32 event, mask, force;
1305 	struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1306 	irqreturn_t ret = IRQ_NONE;
1307 
1308 	event = ioread32be(&qmi_rg->fmqm_eie);
1309 	mask = ioread32be(&qmi_rg->fmqm_eien);
1310 	event &= mask;
1311 
1312 	/* clear the forced events */
1313 	force = ioread32be(&qmi_rg->fmqm_eif);
1314 	if (force & event)
1315 		iowrite32be(force & ~event, &qmi_rg->fmqm_eif);
1316 	/* clear the acknowledged events */
1317 	iowrite32be(event, &qmi_rg->fmqm_eie);
1318 
1319 	if (event & QMI_ERR_INTR_EN_DOUBLE_ECC)
1320 		ret = fman->exception_cb(fman, FMAN_EX_QMI_DOUBLE_ECC);
1321 	if (event & QMI_ERR_INTR_EN_DEQ_FROM_DEF)
1322 		ret = fman->exception_cb(fman,
1323 					 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID);
1324 
1325 	return ret;
1326 }
1327 
1328 static irqreturn_t dma_err_event(struct fman *fman)
1329 {
1330 	u32 status, mask, com_id;
1331 	u8 tnum, port_id, relative_port_id;
1332 	u16 liodn;
1333 	struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
1334 	irqreturn_t ret = IRQ_NONE;
1335 
1336 	status = ioread32be(&dma_rg->fmdmsr);
1337 	mask = ioread32be(&dma_rg->fmdmmr);
1338 
1339 	/* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */
1340 	if ((mask & DMA_MODE_BER) != DMA_MODE_BER)
1341 		status &= ~DMA_STATUS_BUS_ERR;
1342 
1343 	/* clear relevant bits if mask has no DMA_MODE_ECC */
1344 	if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC)
1345 		status &= ~(DMA_STATUS_FM_SPDAT_ECC |
1346 			    DMA_STATUS_READ_ECC |
1347 			    DMA_STATUS_SYSTEM_WRITE_ECC |
1348 			    DMA_STATUS_FM_WRITE_ECC);
1349 
1350 	/* clear set events */
1351 	iowrite32be(status, &dma_rg->fmdmsr);
1352 
1353 	if (status & DMA_STATUS_BUS_ERR) {
1354 		u64 addr;
1355 
1356 		addr = (u64)ioread32be(&dma_rg->fmdmtal);
1357 		addr |= ((u64)(ioread32be(&dma_rg->fmdmtah)) << 32);
1358 
1359 		com_id = ioread32be(&dma_rg->fmdmtcid);
1360 		port_id = (u8)(((com_id & DMA_TRANSFER_PORTID_MASK) >>
1361 			       DMA_TRANSFER_PORTID_SHIFT));
1362 		relative_port_id =
1363 		hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
1364 		tnum = (u8)((com_id & DMA_TRANSFER_TNUM_MASK) >>
1365 			    DMA_TRANSFER_TNUM_SHIFT);
1366 		liodn = (u16)(com_id & DMA_TRANSFER_LIODN_MASK);
1367 		ret = fman->bus_error_cb(fman, relative_port_id, addr, tnum,
1368 					 liodn);
1369 	}
1370 	if (status & DMA_STATUS_FM_SPDAT_ECC)
1371 		ret = fman->exception_cb(fman, FMAN_EX_DMA_SINGLE_PORT_ECC);
1372 	if (status & DMA_STATUS_READ_ECC)
1373 		ret = fman->exception_cb(fman, FMAN_EX_DMA_READ_ECC);
1374 	if (status & DMA_STATUS_SYSTEM_WRITE_ECC)
1375 		ret = fman->exception_cb(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC);
1376 	if (status & DMA_STATUS_FM_WRITE_ECC)
1377 		ret = fman->exception_cb(fman, FMAN_EX_DMA_FM_WRITE_ECC);
1378 
1379 	return ret;
1380 }
1381 
1382 static irqreturn_t fpm_err_event(struct fman *fman)
1383 {
1384 	u32 event;
1385 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1386 	irqreturn_t ret = IRQ_NONE;
1387 
1388 	event = ioread32be(&fpm_rg->fmfp_ee);
1389 	/* clear the all occurred events */
1390 	iowrite32be(event, &fpm_rg->fmfp_ee);
1391 
1392 	if ((event & FPM_EV_MASK_DOUBLE_ECC) &&
1393 	    (event & FPM_EV_MASK_DOUBLE_ECC_EN))
1394 		ret = fman->exception_cb(fman, FMAN_EX_FPM_DOUBLE_ECC);
1395 	if ((event & FPM_EV_MASK_STALL) && (event & FPM_EV_MASK_STALL_EN))
1396 		ret = fman->exception_cb(fman, FMAN_EX_FPM_STALL_ON_TASKS);
1397 	if ((event & FPM_EV_MASK_SINGLE_ECC) &&
1398 	    (event & FPM_EV_MASK_SINGLE_ECC_EN))
1399 		ret = fman->exception_cb(fman, FMAN_EX_FPM_SINGLE_ECC);
1400 
1401 	return ret;
1402 }
1403 
1404 static irqreturn_t muram_err_intr(struct fman *fman)
1405 {
1406 	u32 event, mask;
1407 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1408 	irqreturn_t ret = IRQ_NONE;
1409 
1410 	event = ioread32be(&fpm_rg->fm_rcr);
1411 	mask = ioread32be(&fpm_rg->fm_rie);
1412 
1413 	/* clear MURAM event bit (do not clear IRAM event) */
1414 	iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr);
1415 
1416 	if ((mask & FPM_MURAM_ECC_ERR_EX_EN) && (event & FPM_RAM_MURAM_ECC))
1417 		ret = fman->exception_cb(fman, FMAN_EX_MURAM_ECC);
1418 
1419 	return ret;
1420 }
1421 
1422 static irqreturn_t qmi_event(struct fman *fman)
1423 {
1424 	u32 event, mask, force;
1425 	struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1426 	irqreturn_t ret = IRQ_NONE;
1427 
1428 	event = ioread32be(&qmi_rg->fmqm_ie);
1429 	mask = ioread32be(&qmi_rg->fmqm_ien);
1430 	event &= mask;
1431 	/* clear the forced events */
1432 	force = ioread32be(&qmi_rg->fmqm_if);
1433 	if (force & event)
1434 		iowrite32be(force & ~event, &qmi_rg->fmqm_if);
1435 	/* clear the acknowledged events */
1436 	iowrite32be(event, &qmi_rg->fmqm_ie);
1437 
1438 	if (event & QMI_INTR_EN_SINGLE_ECC)
1439 		ret = fman->exception_cb(fman, FMAN_EX_QMI_SINGLE_ECC);
1440 
1441 	return ret;
1442 }
1443 
1444 static void enable_time_stamp(struct fman *fman)
1445 {
1446 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1447 	u16 fm_clk_freq = fman->state->fm_clk_freq;
1448 	u32 tmp, intgr, ts_freq;
1449 	u64 frac;
1450 
1451 	ts_freq = (u32)(1 << fman->state->count1_micro_bit);
1452 	/* configure timestamp so that bit 8 will count 1 microsecond
1453 	 * Find effective count rate at TIMESTAMP least significant bits:
1454 	 * Effective_Count_Rate = 1MHz x 2^8 = 256MHz
1455 	 * Find frequency ratio between effective count rate and the clock:
1456 	 * Effective_Count_Rate / CLK e.g. for 600 MHz clock:
1457 	 * 256/600 = 0.4266666...
1458 	 */
1459 
1460 	intgr = ts_freq / fm_clk_freq;
1461 	/* we multiply by 2^16 to keep the fraction of the division
1462 	 * we do not div back, since we write this value as a fraction
1463 	 * see spec
1464 	 */
1465 
1466 	frac = ((ts_freq << 16) - (intgr << 16) * fm_clk_freq) / fm_clk_freq;
1467 	/* we check remainder of the division in order to round up if not int */
1468 	if (((ts_freq << 16) - (intgr << 16) * fm_clk_freq) % fm_clk_freq)
1469 		frac++;
1470 
1471 	tmp = (intgr << FPM_TS_INT_SHIFT) | (u16)frac;
1472 	iowrite32be(tmp, &fpm_rg->fmfp_tsc2);
1473 
1474 	/* enable timestamp with original clock */
1475 	iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1);
1476 	fman->state->enabled_time_stamp = true;
1477 }
1478 
1479 static int clear_iram(struct fman *fman)
1480 {
1481 	struct fman_iram_regs __iomem *iram;
1482 	int i, count;
1483 
1484 	iram = fman->base_addr + IMEM_OFFSET;
1485 
1486 	/* Enable the auto-increment */
1487 	iowrite32be(IRAM_IADD_AIE, &iram->iadd);
1488 	count = 100;
1489 	do {
1490 		udelay(1);
1491 	} while ((ioread32be(&iram->iadd) != IRAM_IADD_AIE) && --count);
1492 	if (count == 0)
1493 		return -EBUSY;
1494 
1495 	for (i = 0; i < (fman->state->fm_iram_size / 4); i++)
1496 		iowrite32be(0xffffffff, &iram->idata);
1497 
1498 	iowrite32be(fman->state->fm_iram_size - 4, &iram->iadd);
1499 	count = 100;
1500 	do {
1501 		udelay(1);
1502 	} while ((ioread32be(&iram->idata) != 0xffffffff) && --count);
1503 	if (count == 0)
1504 		return -EBUSY;
1505 
1506 	return 0;
1507 }
1508 
1509 static u32 get_exception_flag(enum fman_exceptions exception)
1510 {
1511 	u32 bit_mask;
1512 
1513 	switch (exception) {
1514 	case FMAN_EX_DMA_BUS_ERROR:
1515 		bit_mask = EX_DMA_BUS_ERROR;
1516 		break;
1517 	case FMAN_EX_DMA_SINGLE_PORT_ECC:
1518 		bit_mask = EX_DMA_SINGLE_PORT_ECC;
1519 		break;
1520 	case FMAN_EX_DMA_READ_ECC:
1521 		bit_mask = EX_DMA_READ_ECC;
1522 		break;
1523 	case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
1524 		bit_mask = EX_DMA_SYSTEM_WRITE_ECC;
1525 		break;
1526 	case FMAN_EX_DMA_FM_WRITE_ECC:
1527 		bit_mask = EX_DMA_FM_WRITE_ECC;
1528 		break;
1529 	case FMAN_EX_FPM_STALL_ON_TASKS:
1530 		bit_mask = EX_FPM_STALL_ON_TASKS;
1531 		break;
1532 	case FMAN_EX_FPM_SINGLE_ECC:
1533 		bit_mask = EX_FPM_SINGLE_ECC;
1534 		break;
1535 	case FMAN_EX_FPM_DOUBLE_ECC:
1536 		bit_mask = EX_FPM_DOUBLE_ECC;
1537 		break;
1538 	case FMAN_EX_QMI_SINGLE_ECC:
1539 		bit_mask = EX_QMI_SINGLE_ECC;
1540 		break;
1541 	case FMAN_EX_QMI_DOUBLE_ECC:
1542 		bit_mask = EX_QMI_DOUBLE_ECC;
1543 		break;
1544 	case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1545 		bit_mask = EX_QMI_DEQ_FROM_UNKNOWN_PORTID;
1546 		break;
1547 	case FMAN_EX_BMI_LIST_RAM_ECC:
1548 		bit_mask = EX_BMI_LIST_RAM_ECC;
1549 		break;
1550 	case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1551 		bit_mask = EX_BMI_STORAGE_PROFILE_ECC;
1552 		break;
1553 	case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1554 		bit_mask = EX_BMI_STATISTICS_RAM_ECC;
1555 		break;
1556 	case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1557 		bit_mask = EX_BMI_DISPATCH_RAM_ECC;
1558 		break;
1559 	case FMAN_EX_MURAM_ECC:
1560 		bit_mask = EX_MURAM_ECC;
1561 		break;
1562 	default:
1563 		bit_mask = 0;
1564 		break;
1565 	}
1566 
1567 	return bit_mask;
1568 }
1569 
1570 static int get_module_event(enum fman_event_modules module, u8 mod_id,
1571 			    enum fman_intr_type intr_type)
1572 {
1573 	int event;
1574 
1575 	switch (module) {
1576 	case FMAN_MOD_MAC:
1577 		if (intr_type == FMAN_INTR_TYPE_ERR)
1578 			event = FMAN_EV_ERR_MAC0 + mod_id;
1579 		else
1580 			event = FMAN_EV_MAC0 + mod_id;
1581 		break;
1582 	case FMAN_MOD_FMAN_CTRL:
1583 		if (intr_type == FMAN_INTR_TYPE_ERR)
1584 			event = FMAN_EV_CNT;
1585 		else
1586 			event = (FMAN_EV_FMAN_CTRL_0 + mod_id);
1587 		break;
1588 	case FMAN_MOD_DUMMY_LAST:
1589 		event = FMAN_EV_CNT;
1590 		break;
1591 	default:
1592 		event = FMAN_EV_CNT;
1593 		break;
1594 	}
1595 
1596 	return event;
1597 }
1598 
1599 static int set_size_of_fifo(struct fman *fman, u8 port_id, u32 *size_of_fifo,
1600 			    u32 *extra_size_of_fifo)
1601 {
1602 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1603 	u32 fifo = *size_of_fifo;
1604 	u32 extra_fifo = *extra_size_of_fifo;
1605 	u32 tmp;
1606 
1607 	/* if this is the first time a port requires extra_fifo_pool_size,
1608 	 * the total extra_fifo_pool_size must be initialized to 1 buffer per
1609 	 * port
1610 	 */
1611 	if (extra_fifo && !fman->state->extra_fifo_pool_size)
1612 		fman->state->extra_fifo_pool_size =
1613 			fman->state->num_of_rx_ports * FMAN_BMI_FIFO_UNITS;
1614 
1615 	fman->state->extra_fifo_pool_size =
1616 		max(fman->state->extra_fifo_pool_size, extra_fifo);
1617 
1618 	/* check that there are enough uncommitted fifo size */
1619 	if ((fman->state->accumulated_fifo_size + fifo) >
1620 	    (fman->state->total_fifo_size -
1621 	    fman->state->extra_fifo_pool_size)) {
1622 		dev_err(fman->dev, "%s: Requested fifo size and extra size exceed total FIFO size.\n",
1623 			__func__);
1624 		return -EAGAIN;
1625 	}
1626 
1627 	/* Read, modify and write to HW */
1628 	tmp = (fifo / FMAN_BMI_FIFO_UNITS - 1) |
1629 	       ((extra_fifo / FMAN_BMI_FIFO_UNITS) <<
1630 	       BMI_EXTRA_FIFO_SIZE_SHIFT);
1631 	iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]);
1632 
1633 	/* update accumulated */
1634 	fman->state->accumulated_fifo_size += fifo;
1635 
1636 	return 0;
1637 }
1638 
1639 static int set_num_of_tasks(struct fman *fman, u8 port_id, u8 *num_of_tasks,
1640 			    u8 *num_of_extra_tasks)
1641 {
1642 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1643 	u8 tasks = *num_of_tasks;
1644 	u8 extra_tasks = *num_of_extra_tasks;
1645 	u32 tmp;
1646 
1647 	if (extra_tasks)
1648 		fman->state->extra_tasks_pool_size =
1649 		max(fman->state->extra_tasks_pool_size, extra_tasks);
1650 
1651 	/* check that there are enough uncommitted tasks */
1652 	if ((fman->state->accumulated_num_of_tasks + tasks) >
1653 	    (fman->state->total_num_of_tasks -
1654 	     fman->state->extra_tasks_pool_size)) {
1655 		dev_err(fman->dev, "%s: Requested num_of_tasks and extra tasks pool for fm%d exceed total num_of_tasks.\n",
1656 			__func__, fman->state->fm_id);
1657 		return -EAGAIN;
1658 	}
1659 	/* update accumulated */
1660 	fman->state->accumulated_num_of_tasks += tasks;
1661 
1662 	/* Write to HW */
1663 	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1664 	    ~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK);
1665 	tmp |= ((u32)((tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) |
1666 		(u32)(extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT));
1667 	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1668 
1669 	return 0;
1670 }
1671 
1672 static int set_num_of_open_dmas(struct fman *fman, u8 port_id,
1673 				u8 *num_of_open_dmas,
1674 				u8 *num_of_extra_open_dmas)
1675 {
1676 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1677 	u8 open_dmas = *num_of_open_dmas;
1678 	u8 extra_open_dmas = *num_of_extra_open_dmas;
1679 	u8 total_num_dmas = 0, current_val = 0, current_extra_val = 0;
1680 	u32 tmp;
1681 
1682 	if (!open_dmas) {
1683 		/* Configuration according to values in the HW.
1684 		 * read the current number of open Dma's
1685 		 */
1686 		tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1687 		current_extra_val = (u8)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >>
1688 					 BMI_EXTRA_NUM_OF_DMAS_SHIFT);
1689 
1690 		tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1691 		current_val = (u8)(((tmp & BMI_NUM_OF_DMAS_MASK) >>
1692 				   BMI_NUM_OF_DMAS_SHIFT) + 1);
1693 
1694 		/* This is the first configuration and user did not
1695 		 * specify value (!open_dmas), reset values will be used
1696 		 * and we just save these values for resource management
1697 		 */
1698 		fman->state->extra_open_dmas_pool_size =
1699 			(u8)max(fman->state->extra_open_dmas_pool_size,
1700 				current_extra_val);
1701 		fman->state->accumulated_num_of_open_dmas += current_val;
1702 		*num_of_open_dmas = current_val;
1703 		*num_of_extra_open_dmas = current_extra_val;
1704 		return 0;
1705 	}
1706 
1707 	if (extra_open_dmas > current_extra_val)
1708 		fman->state->extra_open_dmas_pool_size =
1709 		    (u8)max(fman->state->extra_open_dmas_pool_size,
1710 			    extra_open_dmas);
1711 
1712 	if ((fman->state->rev_info.major < 6) &&
1713 	    (fman->state->accumulated_num_of_open_dmas - current_val +
1714 	     open_dmas > fman->state->max_num_of_open_dmas)) {
1715 		dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds total num_of_open_dmas.\n",
1716 			__func__, fman->state->fm_id);
1717 		return -EAGAIN;
1718 	} else if ((fman->state->rev_info.major >= 6) &&
1719 		   !((fman->state->rev_info.major == 6) &&
1720 		   (fman->state->rev_info.minor == 0)) &&
1721 		   (fman->state->accumulated_num_of_open_dmas -
1722 		   current_val + open_dmas >
1723 		   fman->state->dma_thresh_max_commq + 1)) {
1724 		dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds DMA Command queue (%d)\n",
1725 			__func__, fman->state->fm_id,
1726 		       fman->state->dma_thresh_max_commq + 1);
1727 		return -EAGAIN;
1728 	}
1729 
1730 	WARN_ON(fman->state->accumulated_num_of_open_dmas < current_val);
1731 	/* update acummulated */
1732 	fman->state->accumulated_num_of_open_dmas -= current_val;
1733 	fman->state->accumulated_num_of_open_dmas += open_dmas;
1734 
1735 	if (fman->state->rev_info.major < 6)
1736 		total_num_dmas =
1737 		    (u8)(fman->state->accumulated_num_of_open_dmas +
1738 		    fman->state->extra_open_dmas_pool_size);
1739 
1740 	/* calculate reg */
1741 	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1742 	    ~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK);
1743 	tmp |= (u32)(((open_dmas - 1) << BMI_NUM_OF_DMAS_SHIFT) |
1744 			   (extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT));
1745 	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1746 
1747 	/* update total num of DMA's with committed number of open DMAS,
1748 	 * and max uncommitted pool.
1749 	 */
1750 	if (total_num_dmas) {
1751 		tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK;
1752 		tmp |= (u32)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT;
1753 		iowrite32be(tmp, &bmi_rg->fmbm_cfg2);
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 static int fman_config(struct fman *fman)
1760 {
1761 	void __iomem *base_addr;
1762 	int err;
1763 
1764 	base_addr = fman->dts_params.base_addr;
1765 
1766 	fman->state = kzalloc(sizeof(*fman->state), GFP_KERNEL);
1767 	if (!fman->state)
1768 		goto err_fm_state;
1769 
1770 	/* Allocate the FM driver's parameters structure */
1771 	fman->cfg = kzalloc(sizeof(*fman->cfg), GFP_KERNEL);
1772 	if (!fman->cfg)
1773 		goto err_fm_drv;
1774 
1775 	/* Initialize MURAM block */
1776 	fman->muram =
1777 		fman_muram_init(fman->dts_params.muram_res.start,
1778 				resource_size(&fman->dts_params.muram_res));
1779 	if (!fman->muram)
1780 		goto err_fm_soc_specific;
1781 
1782 	/* Initialize FM parameters which will be kept by the driver */
1783 	fman->state->fm_id = fman->dts_params.id;
1784 	fman->state->fm_clk_freq = fman->dts_params.clk_freq;
1785 	fman->state->qman_channel_base = fman->dts_params.qman_channel_base;
1786 	fman->state->num_of_qman_channels =
1787 		fman->dts_params.num_of_qman_channels;
1788 	fman->state->res = fman->dts_params.res;
1789 	fman->exception_cb = fman_exceptions;
1790 	fman->bus_error_cb = fman_bus_error;
1791 	fman->fpm_regs = base_addr + FPM_OFFSET;
1792 	fman->bmi_regs = base_addr + BMI_OFFSET;
1793 	fman->qmi_regs = base_addr + QMI_OFFSET;
1794 	fman->dma_regs = base_addr + DMA_OFFSET;
1795 	fman->base_addr = base_addr;
1796 
1797 	spin_lock_init(&fman->spinlock);
1798 	fman_defconfig(fman->cfg);
1799 
1800 	fman->state->extra_fifo_pool_size = 0;
1801 	fman->state->exceptions = (EX_DMA_BUS_ERROR                 |
1802 					EX_DMA_READ_ECC              |
1803 					EX_DMA_SYSTEM_WRITE_ECC      |
1804 					EX_DMA_FM_WRITE_ECC          |
1805 					EX_FPM_STALL_ON_TASKS        |
1806 					EX_FPM_SINGLE_ECC            |
1807 					EX_FPM_DOUBLE_ECC            |
1808 					EX_QMI_DEQ_FROM_UNKNOWN_PORTID |
1809 					EX_BMI_LIST_RAM_ECC          |
1810 					EX_BMI_STORAGE_PROFILE_ECC   |
1811 					EX_BMI_STATISTICS_RAM_ECC    |
1812 					EX_MURAM_ECC                 |
1813 					EX_BMI_DISPATCH_RAM_ECC      |
1814 					EX_QMI_DOUBLE_ECC            |
1815 					EX_QMI_SINGLE_ECC);
1816 
1817 	/* Read FMan revision for future use*/
1818 	fman_get_revision(fman, &fman->state->rev_info);
1819 
1820 	err = fill_soc_specific_params(fman->state);
1821 	if (err)
1822 		goto err_fm_soc_specific;
1823 
1824 	/* FM_AID_MODE_NO_TNUM_SW005 Errata workaround */
1825 	if (fman->state->rev_info.major >= 6)
1826 		fman->cfg->dma_aid_mode = FMAN_DMA_AID_OUT_PORT_ID;
1827 
1828 	fman->cfg->qmi_def_tnums_thresh = fman->state->qmi_def_tnums_thresh;
1829 
1830 	fman->state->total_num_of_tasks =
1831 	(u8)DFLT_TOTAL_NUM_OF_TASKS(fman->state->rev_info.major,
1832 				    fman->state->rev_info.minor,
1833 				    fman->state->bmi_max_num_of_tasks);
1834 
1835 	if (fman->state->rev_info.major < 6) {
1836 		fman->cfg->dma_comm_qtsh_clr_emer =
1837 		(u8)DFLT_DMA_COMM_Q_LOW(fman->state->rev_info.major,
1838 					fman->state->dma_thresh_max_commq);
1839 
1840 		fman->cfg->dma_comm_qtsh_asrt_emer =
1841 		(u8)DFLT_DMA_COMM_Q_HIGH(fman->state->rev_info.major,
1842 					 fman->state->dma_thresh_max_commq);
1843 
1844 		fman->cfg->dma_cam_num_of_entries =
1845 		DFLT_DMA_CAM_NUM_OF_ENTRIES(fman->state->rev_info.major);
1846 
1847 		fman->cfg->dma_read_buf_tsh_clr_emer =
1848 		DFLT_DMA_READ_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1849 
1850 		fman->cfg->dma_read_buf_tsh_asrt_emer =
1851 		DFLT_DMA_READ_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1852 
1853 		fman->cfg->dma_write_buf_tsh_clr_emer =
1854 		DFLT_DMA_WRITE_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1855 
1856 		fman->cfg->dma_write_buf_tsh_asrt_emer =
1857 		DFLT_DMA_WRITE_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1858 
1859 		fman->cfg->dma_axi_dbg_num_of_beats =
1860 		DFLT_AXI_DBG_NUM_OF_BEATS;
1861 	}
1862 
1863 	return 0;
1864 
1865 err_fm_soc_specific:
1866 	kfree(fman->cfg);
1867 err_fm_drv:
1868 	kfree(fman->state);
1869 err_fm_state:
1870 	kfree(fman);
1871 	return -EINVAL;
1872 }
1873 
1874 static int fman_init(struct fman *fman)
1875 {
1876 	struct fman_cfg *cfg = NULL;
1877 	int err = 0, i, count;
1878 
1879 	if (is_init_done(fman->cfg))
1880 		return -EINVAL;
1881 
1882 	fman->state->count1_micro_bit = FM_TIMESTAMP_1_USEC_BIT;
1883 
1884 	cfg = fman->cfg;
1885 
1886 	/* clear revision-dependent non existing exception */
1887 	if (fman->state->rev_info.major < 6)
1888 		fman->state->exceptions &= ~FMAN_EX_BMI_DISPATCH_RAM_ECC;
1889 
1890 	if (fman->state->rev_info.major >= 6)
1891 		fman->state->exceptions &= ~FMAN_EX_QMI_SINGLE_ECC;
1892 
1893 	/* clear CPG */
1894 	memset_io((void __iomem *)(fman->base_addr + CGP_OFFSET), 0,
1895 		  fman->state->fm_port_num_of_cg);
1896 
1897 	/* Save LIODN info before FMan reset
1898 	 * Skipping non-existent port 0 (i = 1)
1899 	 */
1900 	for (i = 1; i < FMAN_LIODN_TBL; i++) {
1901 		u32 liodn_base;
1902 
1903 		fman->liodn_offset[i] =
1904 			ioread32be(&fman->bmi_regs->fmbm_spliodn[i - 1]);
1905 		liodn_base = ioread32be(&fman->dma_regs->fmdmplr[i / 2]);
1906 		if (i % 2) {
1907 			/* FMDM_PLR LSB holds LIODN base for odd ports */
1908 			liodn_base &= DMA_LIODN_BASE_MASK;
1909 		} else {
1910 			/* FMDM_PLR MSB holds LIODN base for even ports */
1911 			liodn_base >>= DMA_LIODN_SHIFT;
1912 			liodn_base &= DMA_LIODN_BASE_MASK;
1913 		}
1914 		fman->liodn_base[i] = liodn_base;
1915 	}
1916 
1917 	/* FMan Reset (supported only for FMan V2) */
1918 	if (fman->state->rev_info.major >= 6) {
1919 		/* Errata A007273 */
1920 		dev_dbg(fman->dev, "%s: FManV3 reset is not supported!\n",
1921 			__func__);
1922 	} else {
1923 		iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc);
1924 		/* Wait for reset completion */
1925 		count = 100;
1926 		do {
1927 			udelay(1);
1928 		} while (((ioread32be(&fman->fpm_regs->fm_rstc)) &
1929 			 FPM_RSTC_FM_RESET) && --count);
1930 		if (count == 0)
1931 			return -EBUSY;
1932 	}
1933 
1934 	if (ioread32be(&fman->qmi_regs->fmqm_gs) & QMI_GS_HALT_NOT_BUSY) {
1935 		resume(fman->fpm_regs);
1936 		/* Wait until QMI is not in halt not busy state */
1937 		count = 100;
1938 		do {
1939 			udelay(1);
1940 		} while (((ioread32be(&fman->qmi_regs->fmqm_gs)) &
1941 			 QMI_GS_HALT_NOT_BUSY) && --count);
1942 		if (count == 0)
1943 			dev_warn(fman->dev, "%s: QMI is in halt not busy state\n",
1944 				 __func__);
1945 	}
1946 
1947 	if (clear_iram(fman) != 0)
1948 		return -EINVAL;
1949 
1950 	cfg->exceptions = fman->state->exceptions;
1951 
1952 	/* Init DMA Registers */
1953 
1954 	err = dma_init(fman);
1955 	if (err != 0) {
1956 		free_init_resources(fman);
1957 		return err;
1958 	}
1959 
1960 	/* Init FPM Registers */
1961 	fpm_init(fman->fpm_regs, fman->cfg);
1962 
1963 	/* define common resources */
1964 	/* allocate MURAM for FIFO according to total size */
1965 	fman->fifo_offset = fman_muram_alloc(fman->muram,
1966 					     fman->state->total_fifo_size);
1967 	if (IS_ERR_VALUE(fman->cam_offset)) {
1968 		free_init_resources(fman);
1969 		dev_err(fman->dev, "%s: MURAM alloc for BMI FIFO failed\n",
1970 			__func__);
1971 		return -ENOMEM;
1972 	}
1973 
1974 	cfg->fifo_base_addr = fman->fifo_offset;
1975 	cfg->total_fifo_size = fman->state->total_fifo_size;
1976 	cfg->total_num_of_tasks = fman->state->total_num_of_tasks;
1977 	cfg->clk_freq = fman->state->fm_clk_freq;
1978 
1979 	/* Init BMI Registers */
1980 	bmi_init(fman->bmi_regs, fman->cfg);
1981 
1982 	/* Init QMI Registers */
1983 	qmi_init(fman->qmi_regs, fman->cfg);
1984 
1985 	err = enable(fman, cfg);
1986 	if (err != 0)
1987 		return err;
1988 
1989 	enable_time_stamp(fman);
1990 
1991 	kfree(fman->cfg);
1992 	fman->cfg = NULL;
1993 
1994 	return 0;
1995 }
1996 
1997 static int fman_set_exception(struct fman *fman,
1998 			      enum fman_exceptions exception, bool enable)
1999 {
2000 	u32 bit_mask = 0;
2001 
2002 	if (!is_init_done(fman->cfg))
2003 		return -EINVAL;
2004 
2005 	bit_mask = get_exception_flag(exception);
2006 	if (bit_mask) {
2007 		if (enable)
2008 			fman->state->exceptions |= bit_mask;
2009 		else
2010 			fman->state->exceptions &= ~bit_mask;
2011 	} else {
2012 		dev_err(fman->dev, "%s: Undefined exception (%d)\n",
2013 			__func__, exception);
2014 		return -EINVAL;
2015 	}
2016 
2017 	return set_exception(fman, exception, enable);
2018 }
2019 
2020 /**
2021  * fman_register_intr
2022  * @fman:	A Pointer to FMan device
2023  * @mod:	Calling module
2024  * @mod_id:	Module id (if more than 1 exists, '0' if not)
2025  * @intr_type:	Interrupt type (error/normal) selection.
2026  * @f_isr:	The interrupt service routine.
2027  * @h_src_arg:	Argument to be passed to f_isr.
2028  *
2029  * Used to register an event handler to be processed by FMan
2030  *
2031  * Return: 0 on success; Error code otherwise.
2032  */
2033 void fman_register_intr(struct fman *fman, enum fman_event_modules module,
2034 			u8 mod_id, enum fman_intr_type intr_type,
2035 			void (*isr_cb)(void *src_arg), void *src_arg)
2036 {
2037 	int event = 0;
2038 
2039 	event = get_module_event(module, mod_id, intr_type);
2040 	WARN_ON(event >= FMAN_EV_CNT);
2041 
2042 	/* register in local FM structure */
2043 	fman->intr_mng[event].isr_cb = isr_cb;
2044 	fman->intr_mng[event].src_handle = src_arg;
2045 }
2046 
2047 /**
2048  * fman_unregister_intr
2049  * @fman:	A Pointer to FMan device
2050  * @mod:	Calling module
2051  * @mod_id:	Module id (if more than 1 exists, '0' if not)
2052  * @intr_type:	Interrupt type (error/normal) selection.
2053  *
2054  * Used to unregister an event handler to be processed by FMan
2055  *
2056  * Return: 0 on success; Error code otherwise.
2057  */
2058 void fman_unregister_intr(struct fman *fman, enum fman_event_modules module,
2059 			  u8 mod_id, enum fman_intr_type intr_type)
2060 {
2061 	int event = 0;
2062 
2063 	event = get_module_event(module, mod_id, intr_type);
2064 	WARN_ON(event >= FMAN_EV_CNT);
2065 
2066 	fman->intr_mng[event].isr_cb = NULL;
2067 	fman->intr_mng[event].src_handle = NULL;
2068 }
2069 
2070 /**
2071  * fman_set_port_params
2072  * @fman:		A Pointer to FMan device
2073  * @port_params:	Port parameters
2074  *
2075  * Used by FMan Port to pass parameters to the FMan
2076  *
2077  * Return: 0 on success; Error code otherwise.
2078  */
2079 int fman_set_port_params(struct fman *fman,
2080 			 struct fman_port_init_params *port_params)
2081 {
2082 	int err;
2083 	unsigned long flags;
2084 	u8 port_id = port_params->port_id, mac_id;
2085 
2086 	spin_lock_irqsave(&fman->spinlock, flags);
2087 
2088 	err = set_num_of_tasks(fman, port_params->port_id,
2089 			       &port_params->num_of_tasks,
2090 			       &port_params->num_of_extra_tasks);
2091 	if (err)
2092 		goto return_err;
2093 
2094 	/* TX Ports */
2095 	if (port_params->port_type != FMAN_PORT_TYPE_RX) {
2096 		u32 enq_th, deq_th, reg;
2097 
2098 		/* update qmi ENQ/DEQ threshold */
2099 		fman->state->accumulated_num_of_deq_tnums +=
2100 			port_params->deq_pipeline_depth;
2101 		enq_th = (ioread32be(&fman->qmi_regs->fmqm_gc) &
2102 			  QMI_CFG_ENQ_MASK) >> QMI_CFG_ENQ_SHIFT;
2103 		/* if enq_th is too big, we reduce it to the max value
2104 		 * that is still 0
2105 		 */
2106 		if (enq_th >= (fman->state->qmi_max_num_of_tnums -
2107 		    fman->state->accumulated_num_of_deq_tnums)) {
2108 			enq_th =
2109 			fman->state->qmi_max_num_of_tnums -
2110 			fman->state->accumulated_num_of_deq_tnums - 1;
2111 
2112 			reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2113 			reg &= ~QMI_CFG_ENQ_MASK;
2114 			reg |= (enq_th << QMI_CFG_ENQ_SHIFT);
2115 			iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2116 		}
2117 
2118 		deq_th = ioread32be(&fman->qmi_regs->fmqm_gc) &
2119 				    QMI_CFG_DEQ_MASK;
2120 		/* if deq_th is too small, we enlarge it to the min
2121 		 * value that is still 0.
2122 		 * depTh may not be larger than 63
2123 		 * (fman->state->qmi_max_num_of_tnums-1).
2124 		 */
2125 		if ((deq_th <= fman->state->accumulated_num_of_deq_tnums) &&
2126 		    (deq_th < fman->state->qmi_max_num_of_tnums - 1)) {
2127 			deq_th = fman->state->accumulated_num_of_deq_tnums + 1;
2128 			reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2129 			reg &= ~QMI_CFG_DEQ_MASK;
2130 			reg |= deq_th;
2131 			iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2132 		}
2133 	}
2134 
2135 	err = set_size_of_fifo(fman, port_params->port_id,
2136 			       &port_params->size_of_fifo,
2137 			       &port_params->extra_size_of_fifo);
2138 	if (err)
2139 		goto return_err;
2140 
2141 	err = set_num_of_open_dmas(fman, port_params->port_id,
2142 				   &port_params->num_of_open_dmas,
2143 				   &port_params->num_of_extra_open_dmas);
2144 	if (err)
2145 		goto return_err;
2146 
2147 	set_port_liodn(fman, port_id, fman->liodn_base[port_id],
2148 		       fman->liodn_offset[port_id]);
2149 
2150 	if (fman->state->rev_info.major < 6)
2151 		set_port_order_restoration(fman->fpm_regs, port_id);
2152 
2153 	mac_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
2154 
2155 	if (port_params->max_frame_length >= fman->state->mac_mfl[mac_id]) {
2156 		fman->state->port_mfl[mac_id] = port_params->max_frame_length;
2157 	} else {
2158 		dev_warn(fman->dev, "%s: Port (%d) max_frame_length is smaller than MAC (%d) current MTU\n",
2159 			 __func__, port_id, mac_id);
2160 		err = -EINVAL;
2161 		goto return_err;
2162 	}
2163 
2164 	spin_unlock_irqrestore(&fman->spinlock, flags);
2165 
2166 	return 0;
2167 
2168 return_err:
2169 	spin_unlock_irqrestore(&fman->spinlock, flags);
2170 	return err;
2171 }
2172 
2173 /**
2174  * fman_reset_mac
2175  * @fman:	A Pointer to FMan device
2176  * @mac_id:	MAC id to be reset
2177  *
2178  * Reset a specific MAC
2179  *
2180  * Return: 0 on success; Error code otherwise.
2181  */
2182 int fman_reset_mac(struct fman *fman, u8 mac_id)
2183 {
2184 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
2185 	u32 msk, timeout = 100;
2186 
2187 	if (fman->state->rev_info.major >= 6) {
2188 		dev_err(fman->dev, "%s: FMan MAC reset no available for FMan V3!\n",
2189 			__func__);
2190 		return -EINVAL;
2191 	}
2192 
2193 	/* Get the relevant bit mask */
2194 	switch (mac_id) {
2195 	case 0:
2196 		msk = FPM_RSTC_MAC0_RESET;
2197 		break;
2198 	case 1:
2199 		msk = FPM_RSTC_MAC1_RESET;
2200 		break;
2201 	case 2:
2202 		msk = FPM_RSTC_MAC2_RESET;
2203 		break;
2204 	case 3:
2205 		msk = FPM_RSTC_MAC3_RESET;
2206 		break;
2207 	case 4:
2208 		msk = FPM_RSTC_MAC4_RESET;
2209 		break;
2210 	case 5:
2211 		msk = FPM_RSTC_MAC5_RESET;
2212 		break;
2213 	case 6:
2214 		msk = FPM_RSTC_MAC6_RESET;
2215 		break;
2216 	case 7:
2217 		msk = FPM_RSTC_MAC7_RESET;
2218 		break;
2219 	case 8:
2220 		msk = FPM_RSTC_MAC8_RESET;
2221 		break;
2222 	case 9:
2223 		msk = FPM_RSTC_MAC9_RESET;
2224 		break;
2225 	default:
2226 		dev_warn(fman->dev, "%s: Illegal MAC Id [%d]\n",
2227 			 __func__, mac_id);
2228 		return -EINVAL;
2229 	}
2230 
2231 	/* reset */
2232 	iowrite32be(msk, &fpm_rg->fm_rstc);
2233 	while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout)
2234 		udelay(10);
2235 
2236 	if (!timeout)
2237 		return -EIO;
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  * fman_set_mac_max_frame
2244  * @fman:	A Pointer to FMan device
2245  * @mac_id:	MAC id
2246  * @mfl:	Maximum frame length
2247  *
2248  * Set maximum frame length of specific MAC in FMan driver
2249  *
2250  * Return: 0 on success; Error code otherwise.
2251  */
2252 int fman_set_mac_max_frame(struct fman *fman, u8 mac_id, u16 mfl)
2253 {
2254 	/* if port is already initialized, check that MaxFrameLength is smaller
2255 	 * or equal to the port's max
2256 	 */
2257 	if ((!fman->state->port_mfl[mac_id]) ||
2258 	    (fman->state->port_mfl[mac_id] &&
2259 	    (mfl <= fman->state->port_mfl[mac_id]))) {
2260 		fman->state->mac_mfl[mac_id] = mfl;
2261 	} else {
2262 		dev_warn(fman->dev, "%s: MAC max_frame_length is larger than Port max_frame_length\n",
2263 			 __func__);
2264 		return -EINVAL;
2265 	}
2266 	return 0;
2267 }
2268 
2269 /**
2270  * fman_get_clock_freq
2271  * @fman:	A Pointer to FMan device
2272  *
2273  * Get FMan clock frequency
2274  *
2275  * Return: FMan clock frequency
2276  */
2277 u16 fman_get_clock_freq(struct fman *fman)
2278 {
2279 	return fman->state->fm_clk_freq;
2280 }
2281 
2282 /**
2283  * fman_get_bmi_max_fifo_size
2284  * @fman:	A Pointer to FMan device
2285  *
2286  * Get FMan maximum FIFO size
2287  *
2288  * Return: FMan Maximum FIFO size
2289  */
2290 u32 fman_get_bmi_max_fifo_size(struct fman *fman)
2291 {
2292 	return fman->state->bmi_max_fifo_size;
2293 }
2294 
2295 /**
2296  * fman_get_revision
2297  * @fman		- Pointer to the FMan module
2298  * @rev_info		- A structure of revision information parameters.
2299  *
2300  * Returns the FM revision
2301  *
2302  * Allowed only following fman_init().
2303  *
2304  * Return: 0 on success; Error code otherwise.
2305  */
2306 void fman_get_revision(struct fman *fman, struct fman_rev_info *rev_info)
2307 {
2308 	u32 tmp;
2309 
2310 	tmp = ioread32be(&fman->fpm_regs->fm_ip_rev_1);
2311 	rev_info->major = (u8)((tmp & FPM_REV1_MAJOR_MASK) >>
2312 				FPM_REV1_MAJOR_SHIFT);
2313 	rev_info->minor = tmp & FPM_REV1_MINOR_MASK;
2314 }
2315 
2316 /**
2317  * fman_get_qman_channel_id
2318  * @fman:	A Pointer to FMan device
2319  * @port_id:	Port id
2320  *
2321  * Get QMan channel ID associated to the Port id
2322  *
2323  * Return: QMan channel ID
2324  */
2325 u32 fman_get_qman_channel_id(struct fman *fman, u32 port_id)
2326 {
2327 	int i;
2328 
2329 	if (fman->state->rev_info.major >= 6) {
2330 		u32 port_ids[] = {0x30, 0x31, 0x28, 0x29, 0x2a, 0x2b,
2331 				  0x2c, 0x2d, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7};
2332 		for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2333 			if (port_ids[i] == port_id)
2334 				break;
2335 		}
2336 	} else {
2337 		u32 port_ids[] = {0x30, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x1,
2338 				  0x2, 0x3, 0x4, 0x5, 0x7, 0x7};
2339 		for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2340 			if (port_ids[i] == port_id)
2341 				break;
2342 		}
2343 	}
2344 
2345 	if (i == fman->state->num_of_qman_channels)
2346 		return 0;
2347 
2348 	return fman->state->qman_channel_base + i;
2349 }
2350 
2351 /**
2352  * fman_get_mem_region
2353  * @fman:	A Pointer to FMan device
2354  *
2355  * Get FMan memory region
2356  *
2357  * Return: A structure with FMan memory region information
2358  */
2359 struct resource *fman_get_mem_region(struct fman *fman)
2360 {
2361 	return fman->state->res;
2362 }
2363 
2364 /* Bootargs defines */
2365 /* Extra headroom for RX buffers - Default, min and max */
2366 #define FSL_FM_RX_EXTRA_HEADROOM	64
2367 #define FSL_FM_RX_EXTRA_HEADROOM_MIN	16
2368 #define FSL_FM_RX_EXTRA_HEADROOM_MAX	384
2369 
2370 /* Maximum frame length */
2371 #define FSL_FM_MAX_FRAME_SIZE			1522
2372 #define FSL_FM_MAX_POSSIBLE_FRAME_SIZE		9600
2373 #define FSL_FM_MIN_POSSIBLE_FRAME_SIZE		64
2374 
2375 /* Extra headroom for Rx buffers.
2376  * FMan is instructed to allocate, on the Rx path, this amount of
2377  * space at the beginning of a data buffer, beside the DPA private
2378  * data area and the IC fields.
2379  * Does not impact Tx buffer layout.
2380  * Configurable from bootargs. 64 by default, it's needed on
2381  * particular forwarding scenarios that add extra headers to the
2382  * forwarded frame.
2383  */
2384 int fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2385 module_param(fsl_fm_rx_extra_headroom, int, 0);
2386 MODULE_PARM_DESC(fsl_fm_rx_extra_headroom, "Extra headroom for Rx buffers");
2387 
2388 /* Max frame size, across all interfaces.
2389  * Configurable from bootargs, to avoid allocating oversized (socket)
2390  * buffers when not using jumbo frames.
2391  * Must be large enough to accommodate the network MTU, but small enough
2392  * to avoid wasting skb memory.
2393  *
2394  * Could be overridden once, at boot-time, via the
2395  * fm_set_max_frm() callback.
2396  */
2397 int fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2398 module_param(fsl_fm_max_frm, int, 0);
2399 MODULE_PARM_DESC(fsl_fm_max_frm, "Maximum frame size, across all interfaces");
2400 
2401 /**
2402  * fman_get_max_frm
2403  *
2404  * Return: Max frame length configured in the FM driver
2405  */
2406 u16 fman_get_max_frm(void)
2407 {
2408 	static bool fm_check_mfl;
2409 
2410 	if (!fm_check_mfl) {
2411 		if (fsl_fm_max_frm > FSL_FM_MAX_POSSIBLE_FRAME_SIZE ||
2412 		    fsl_fm_max_frm < FSL_FM_MIN_POSSIBLE_FRAME_SIZE) {
2413 			pr_warn("Invalid fsl_fm_max_frm value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2414 				fsl_fm_max_frm,
2415 				FSL_FM_MIN_POSSIBLE_FRAME_SIZE,
2416 				FSL_FM_MAX_POSSIBLE_FRAME_SIZE,
2417 				FSL_FM_MAX_FRAME_SIZE);
2418 			fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2419 		}
2420 		fm_check_mfl = true;
2421 	}
2422 
2423 	return fsl_fm_max_frm;
2424 }
2425 EXPORT_SYMBOL(fman_get_max_frm);
2426 
2427 /**
2428  * fman_get_rx_extra_headroom
2429  *
2430  * Return: Extra headroom size configured in the FM driver
2431  */
2432 int fman_get_rx_extra_headroom(void)
2433 {
2434 	static bool fm_check_rx_extra_headroom;
2435 
2436 	if (!fm_check_rx_extra_headroom) {
2437 		if (fsl_fm_rx_extra_headroom > FSL_FM_RX_EXTRA_HEADROOM_MAX ||
2438 		    fsl_fm_rx_extra_headroom < FSL_FM_RX_EXTRA_HEADROOM_MIN) {
2439 			pr_warn("Invalid fsl_fm_rx_extra_headroom value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2440 				fsl_fm_rx_extra_headroom,
2441 				FSL_FM_RX_EXTRA_HEADROOM_MIN,
2442 				FSL_FM_RX_EXTRA_HEADROOM_MAX,
2443 				FSL_FM_RX_EXTRA_HEADROOM);
2444 			fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2445 		}
2446 
2447 		fm_check_rx_extra_headroom = true;
2448 		fsl_fm_rx_extra_headroom = ALIGN(fsl_fm_rx_extra_headroom, 16);
2449 	}
2450 
2451 	return fsl_fm_rx_extra_headroom;
2452 }
2453 EXPORT_SYMBOL(fman_get_rx_extra_headroom);
2454 
2455 /**
2456  * fman_bind
2457  * @dev:	FMan OF device pointer
2458  *
2459  * Bind to a specific FMan device.
2460  *
2461  * Allowed only after the port was created.
2462  *
2463  * Return: A pointer to the FMan device
2464  */
2465 struct fman *fman_bind(struct device *fm_dev)
2466 {
2467 	return (struct fman *)(dev_get_drvdata(get_device(fm_dev)));
2468 }
2469 
2470 static irqreturn_t fman_err_irq(int irq, void *handle)
2471 {
2472 	struct fman *fman = (struct fman *)handle;
2473 	u32 pending;
2474 	struct fman_fpm_regs __iomem *fpm_rg;
2475 	irqreturn_t single_ret, ret = IRQ_NONE;
2476 
2477 	if (!is_init_done(fman->cfg))
2478 		return IRQ_NONE;
2479 
2480 	fpm_rg = fman->fpm_regs;
2481 
2482 	/* error interrupts */
2483 	pending = ioread32be(&fpm_rg->fm_epi);
2484 	if (!pending)
2485 		return IRQ_NONE;
2486 
2487 	if (pending & ERR_INTR_EN_BMI) {
2488 		single_ret = bmi_err_event(fman);
2489 		if (single_ret == IRQ_HANDLED)
2490 			ret = IRQ_HANDLED;
2491 	}
2492 	if (pending & ERR_INTR_EN_QMI) {
2493 		single_ret = qmi_err_event(fman);
2494 		if (single_ret == IRQ_HANDLED)
2495 			ret = IRQ_HANDLED;
2496 	}
2497 	if (pending & ERR_INTR_EN_FPM) {
2498 		single_ret = fpm_err_event(fman);
2499 		if (single_ret == IRQ_HANDLED)
2500 			ret = IRQ_HANDLED;
2501 	}
2502 	if (pending & ERR_INTR_EN_DMA) {
2503 		single_ret = dma_err_event(fman);
2504 		if (single_ret == IRQ_HANDLED)
2505 			ret = IRQ_HANDLED;
2506 	}
2507 	if (pending & ERR_INTR_EN_MURAM) {
2508 		single_ret = muram_err_intr(fman);
2509 		if (single_ret == IRQ_HANDLED)
2510 			ret = IRQ_HANDLED;
2511 	}
2512 
2513 	/* MAC error interrupts */
2514 	if (pending & ERR_INTR_EN_MAC0) {
2515 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 0);
2516 		if (single_ret == IRQ_HANDLED)
2517 			ret = IRQ_HANDLED;
2518 	}
2519 	if (pending & ERR_INTR_EN_MAC1) {
2520 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 1);
2521 		if (single_ret == IRQ_HANDLED)
2522 			ret = IRQ_HANDLED;
2523 	}
2524 	if (pending & ERR_INTR_EN_MAC2) {
2525 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 2);
2526 		if (single_ret == IRQ_HANDLED)
2527 			ret = IRQ_HANDLED;
2528 	}
2529 	if (pending & ERR_INTR_EN_MAC3) {
2530 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 3);
2531 		if (single_ret == IRQ_HANDLED)
2532 			ret = IRQ_HANDLED;
2533 	}
2534 	if (pending & ERR_INTR_EN_MAC4) {
2535 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 4);
2536 		if (single_ret == IRQ_HANDLED)
2537 			ret = IRQ_HANDLED;
2538 	}
2539 	if (pending & ERR_INTR_EN_MAC5) {
2540 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 5);
2541 		if (single_ret == IRQ_HANDLED)
2542 			ret = IRQ_HANDLED;
2543 	}
2544 	if (pending & ERR_INTR_EN_MAC6) {
2545 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 6);
2546 		if (single_ret == IRQ_HANDLED)
2547 			ret = IRQ_HANDLED;
2548 	}
2549 	if (pending & ERR_INTR_EN_MAC7) {
2550 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 7);
2551 		if (single_ret == IRQ_HANDLED)
2552 			ret = IRQ_HANDLED;
2553 	}
2554 	if (pending & ERR_INTR_EN_MAC8) {
2555 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 8);
2556 		if (single_ret == IRQ_HANDLED)
2557 			ret = IRQ_HANDLED;
2558 	}
2559 	if (pending & ERR_INTR_EN_MAC9) {
2560 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 9);
2561 		if (single_ret == IRQ_HANDLED)
2562 			ret = IRQ_HANDLED;
2563 	}
2564 
2565 	return ret;
2566 }
2567 
2568 static irqreturn_t fman_irq(int irq, void *handle)
2569 {
2570 	struct fman *fman = (struct fman *)handle;
2571 	u32 pending;
2572 	struct fman_fpm_regs __iomem *fpm_rg;
2573 	irqreturn_t single_ret, ret = IRQ_NONE;
2574 
2575 	if (!is_init_done(fman->cfg))
2576 		return IRQ_NONE;
2577 
2578 	fpm_rg = fman->fpm_regs;
2579 
2580 	/* normal interrupts */
2581 	pending = ioread32be(&fpm_rg->fm_npi);
2582 	if (!pending)
2583 		return IRQ_NONE;
2584 
2585 	if (pending & INTR_EN_QMI) {
2586 		single_ret = qmi_event(fman);
2587 		if (single_ret == IRQ_HANDLED)
2588 			ret = IRQ_HANDLED;
2589 	}
2590 
2591 	/* MAC interrupts */
2592 	if (pending & INTR_EN_MAC0) {
2593 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 0);
2594 		if (single_ret == IRQ_HANDLED)
2595 			ret = IRQ_HANDLED;
2596 	}
2597 	if (pending & INTR_EN_MAC1) {
2598 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 1);
2599 		if (single_ret == IRQ_HANDLED)
2600 			ret = IRQ_HANDLED;
2601 	}
2602 	if (pending & INTR_EN_MAC2) {
2603 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 2);
2604 		if (single_ret == IRQ_HANDLED)
2605 			ret = IRQ_HANDLED;
2606 	}
2607 	if (pending & INTR_EN_MAC3) {
2608 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 3);
2609 		if (single_ret == IRQ_HANDLED)
2610 			ret = IRQ_HANDLED;
2611 	}
2612 	if (pending & INTR_EN_MAC4) {
2613 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 4);
2614 		if (single_ret == IRQ_HANDLED)
2615 			ret = IRQ_HANDLED;
2616 	}
2617 	if (pending & INTR_EN_MAC5) {
2618 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 5);
2619 		if (single_ret == IRQ_HANDLED)
2620 			ret = IRQ_HANDLED;
2621 	}
2622 	if (pending & INTR_EN_MAC6) {
2623 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 6);
2624 		if (single_ret == IRQ_HANDLED)
2625 			ret = IRQ_HANDLED;
2626 	}
2627 	if (pending & INTR_EN_MAC7) {
2628 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 7);
2629 		if (single_ret == IRQ_HANDLED)
2630 			ret = IRQ_HANDLED;
2631 	}
2632 	if (pending & INTR_EN_MAC8) {
2633 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 8);
2634 		if (single_ret == IRQ_HANDLED)
2635 			ret = IRQ_HANDLED;
2636 	}
2637 	if (pending & INTR_EN_MAC9) {
2638 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 9);
2639 		if (single_ret == IRQ_HANDLED)
2640 			ret = IRQ_HANDLED;
2641 	}
2642 
2643 	return ret;
2644 }
2645 
2646 static const struct of_device_id fman_muram_match[] = {
2647 	{
2648 		.compatible = "fsl,fman-muram"},
2649 	{}
2650 };
2651 MODULE_DEVICE_TABLE(of, fman_muram_match);
2652 
2653 static struct fman *read_dts_node(struct platform_device *of_dev)
2654 {
2655 	struct fman *fman;
2656 	struct device_node *fm_node, *muram_node;
2657 	struct resource *res;
2658 	const u32 *u32_prop;
2659 	int lenp, err, irq;
2660 	struct clk *clk;
2661 	u32 clk_rate;
2662 	phys_addr_t phys_base_addr;
2663 	resource_size_t mem_size;
2664 
2665 	fman = kzalloc(sizeof(*fman), GFP_KERNEL);
2666 	if (!fman)
2667 		return NULL;
2668 
2669 	fm_node = of_node_get(of_dev->dev.of_node);
2670 
2671 	u32_prop = (const u32 *)of_get_property(fm_node, "cell-index", &lenp);
2672 	if (!u32_prop) {
2673 		dev_err(&of_dev->dev, "%s: of_get_property(%s, cell-index) failed\n",
2674 			__func__, fm_node->full_name);
2675 		goto fman_node_put;
2676 	}
2677 	if (WARN_ON(lenp != sizeof(u32)))
2678 		goto fman_node_put;
2679 
2680 	fman->dts_params.id = (u8)fdt32_to_cpu(u32_prop[0]);
2681 
2682 	/* Get the FM interrupt */
2683 	res = platform_get_resource(of_dev, IORESOURCE_IRQ, 0);
2684 	if (!res) {
2685 		dev_err(&of_dev->dev, "%s: Can't get FMan IRQ resource\n",
2686 			__func__);
2687 		goto fman_node_put;
2688 	}
2689 	irq = res->start;
2690 
2691 	/* Get the FM error interrupt */
2692 	res = platform_get_resource(of_dev, IORESOURCE_IRQ, 1);
2693 	if (!res) {
2694 		dev_err(&of_dev->dev, "%s: Can't get FMan Error IRQ resource\n",
2695 			__func__);
2696 		goto fman_node_put;
2697 	}
2698 	fman->dts_params.err_irq = res->start;
2699 
2700 	/* Get the FM address */
2701 	res = platform_get_resource(of_dev, IORESOURCE_MEM, 0);
2702 	if (!res) {
2703 		dev_err(&of_dev->dev, "%s: Can't get FMan memory resouce\n",
2704 			__func__);
2705 		goto fman_node_put;
2706 	}
2707 
2708 	phys_base_addr = res->start;
2709 	mem_size = resource_size(res);
2710 
2711 	clk = of_clk_get(fm_node, 0);
2712 	if (IS_ERR(clk)) {
2713 		dev_err(&of_dev->dev, "%s: Failed to get FM%d clock structure\n",
2714 			__func__, fman->dts_params.id);
2715 		goto fman_node_put;
2716 	}
2717 
2718 	clk_rate = clk_get_rate(clk);
2719 	if (!clk_rate) {
2720 		dev_err(&of_dev->dev, "%s: Failed to determine FM%d clock rate\n",
2721 			__func__, fman->dts_params.id);
2722 		goto fman_node_put;
2723 	}
2724 	/* Rounding to MHz */
2725 	fman->dts_params.clk_freq = DIV_ROUND_UP(clk_rate, 1000000);
2726 
2727 	u32_prop = (const u32 *)of_get_property(fm_node,
2728 						"fsl,qman-channel-range",
2729 						&lenp);
2730 	if (!u32_prop) {
2731 		dev_err(&of_dev->dev, "%s: of_get_property(%s, fsl,qman-channel-range) failed\n",
2732 			__func__, fm_node->full_name);
2733 		goto fman_node_put;
2734 	}
2735 	if (WARN_ON(lenp != sizeof(u32) * 2))
2736 		goto fman_node_put;
2737 	fman->dts_params.qman_channel_base = fdt32_to_cpu(u32_prop[0]);
2738 	fman->dts_params.num_of_qman_channels = fdt32_to_cpu(u32_prop[1]);
2739 
2740 	/* Get the MURAM base address and size */
2741 	muram_node = of_find_matching_node(fm_node, fman_muram_match);
2742 	if (!muram_node) {
2743 		dev_err(&of_dev->dev, "%s: could not find MURAM node\n",
2744 			__func__);
2745 		goto fman_node_put;
2746 	}
2747 
2748 	err = of_address_to_resource(muram_node, 0,
2749 				     &fman->dts_params.muram_res);
2750 	if (err) {
2751 		of_node_put(muram_node);
2752 		dev_err(&of_dev->dev, "%s: of_address_to_resource() = %d\n",
2753 			__func__, err);
2754 		goto fman_node_put;
2755 	}
2756 
2757 	of_node_put(muram_node);
2758 	of_node_put(fm_node);
2759 
2760 	err = devm_request_irq(&of_dev->dev, irq, fman_irq, 0, "fman", fman);
2761 	if (err < 0) {
2762 		dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2763 			__func__, irq, err);
2764 		goto fman_free;
2765 	}
2766 
2767 	if (fman->dts_params.err_irq != 0) {
2768 		err = devm_request_irq(&of_dev->dev, fman->dts_params.err_irq,
2769 				       fman_err_irq, IRQF_SHARED,
2770 				       "fman-err", fman);
2771 		if (err < 0) {
2772 			dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2773 				__func__, fman->dts_params.err_irq, err);
2774 			goto fman_free;
2775 		}
2776 	}
2777 
2778 	fman->dts_params.res =
2779 		devm_request_mem_region(&of_dev->dev, phys_base_addr,
2780 					mem_size, "fman");
2781 	if (!fman->dts_params.res) {
2782 		dev_err(&of_dev->dev, "%s: request_mem_region() failed\n",
2783 			__func__);
2784 		goto fman_free;
2785 	}
2786 
2787 	fman->dts_params.base_addr =
2788 		devm_ioremap(&of_dev->dev, phys_base_addr, mem_size);
2789 	if (fman->dts_params.base_addr == 0) {
2790 		dev_err(&of_dev->dev, "%s: devm_ioremap() failed\n", __func__);
2791 		goto fman_free;
2792 	}
2793 
2794 	return fman;
2795 
2796 fman_node_put:
2797 	of_node_put(fm_node);
2798 fman_free:
2799 	kfree(fman);
2800 	return NULL;
2801 }
2802 
2803 static int fman_probe(struct platform_device *of_dev)
2804 {
2805 	struct fman *fman;
2806 	struct device *dev;
2807 	int err;
2808 
2809 	dev = &of_dev->dev;
2810 
2811 	fman = read_dts_node(of_dev);
2812 	if (!fman)
2813 		return -EIO;
2814 
2815 	err = fman_config(fman);
2816 	if (err) {
2817 		dev_err(dev, "%s: FMan config failed\n", __func__);
2818 		return -EINVAL;
2819 	}
2820 
2821 	if (fman_init(fman) != 0) {
2822 		dev_err(dev, "%s: FMan init failed\n", __func__);
2823 		return -EINVAL;
2824 	}
2825 
2826 	if (fman->dts_params.err_irq == 0) {
2827 		fman_set_exception(fman, FMAN_EX_DMA_BUS_ERROR, false);
2828 		fman_set_exception(fman, FMAN_EX_DMA_READ_ECC, false);
2829 		fman_set_exception(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC, false);
2830 		fman_set_exception(fman, FMAN_EX_DMA_FM_WRITE_ECC, false);
2831 		fman_set_exception(fman, FMAN_EX_DMA_SINGLE_PORT_ECC, false);
2832 		fman_set_exception(fman, FMAN_EX_FPM_STALL_ON_TASKS, false);
2833 		fman_set_exception(fman, FMAN_EX_FPM_SINGLE_ECC, false);
2834 		fman_set_exception(fman, FMAN_EX_FPM_DOUBLE_ECC, false);
2835 		fman_set_exception(fman, FMAN_EX_QMI_SINGLE_ECC, false);
2836 		fman_set_exception(fman, FMAN_EX_QMI_DOUBLE_ECC, false);
2837 		fman_set_exception(fman,
2838 				   FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID, false);
2839 		fman_set_exception(fman, FMAN_EX_BMI_LIST_RAM_ECC, false);
2840 		fman_set_exception(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC,
2841 				   false);
2842 		fman_set_exception(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC, false);
2843 		fman_set_exception(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC, false);
2844 	}
2845 
2846 	dev_set_drvdata(dev, fman);
2847 
2848 	fman->dev = dev;
2849 
2850 	dev_dbg(dev, "FMan%d probed\n", fman->dts_params.id);
2851 
2852 	return 0;
2853 }
2854 
2855 static const struct of_device_id fman_match[] = {
2856 	{
2857 		.compatible = "fsl,fman"},
2858 	{}
2859 };
2860 
2861 MODULE_DEVICE_TABLE(of, fm_match);
2862 
2863 static struct platform_driver fman_driver = {
2864 	.driver = {
2865 		.name = "fsl-fman",
2866 		.of_match_table = fman_match,
2867 	},
2868 	.probe = fman_probe,
2869 };
2870 
2871 builtin_platform_driver(fman_driver);
2872