1 /*
2  * Copyright 2008-2015 Freescale Semiconductor Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *     * Redistributions of source code must retain the above copyright
7  *       notice, this list of conditions and the following disclaimer.
8  *     * Redistributions in binary form must reproduce the above copyright
9  *       notice, this list of conditions and the following disclaimer in the
10  *       documentation and/or other materials provided with the distribution.
11  *     * Neither the name of Freescale Semiconductor nor the
12  *       names of its contributors may be used to endorse or promote products
13  *       derived from this software without specific prior written permission.
14  *
15  *
16  * ALTERNATIVELY, this software may be distributed under the terms of the
17  * GNU General Public License ("GPL") as published by the Free Software
18  * Foundation, either version 2 of that License or (at your option) any
19  * later version.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
22  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
25  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/fsl/guts.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38 #include <linux/module.h>
39 #include <linux/of_platform.h>
40 #include <linux/clk.h>
41 #include <linux/of_address.h>
42 #include <linux/of_irq.h>
43 #include <linux/interrupt.h>
44 #include <linux/libfdt_env.h>
45 
46 #include "fman.h"
47 #include "fman_muram.h"
48 #include "fman_keygen.h"
49 
50 /* General defines */
51 #define FMAN_LIODN_TBL			64	/* size of LIODN table */
52 #define MAX_NUM_OF_MACS			10
53 #define FM_NUM_OF_FMAN_CTRL_EVENT_REGS	4
54 #define BASE_RX_PORTID			0x08
55 #define BASE_TX_PORTID			0x28
56 
57 /* Modules registers offsets */
58 #define BMI_OFFSET		0x00080000
59 #define QMI_OFFSET		0x00080400
60 #define KG_OFFSET		0x000C1000
61 #define DMA_OFFSET		0x000C2000
62 #define FPM_OFFSET		0x000C3000
63 #define IMEM_OFFSET		0x000C4000
64 #define HWP_OFFSET		0x000C7000
65 #define CGP_OFFSET		0x000DB000
66 
67 /* Exceptions bit map */
68 #define EX_DMA_BUS_ERROR		0x80000000
69 #define EX_DMA_READ_ECC			0x40000000
70 #define EX_DMA_SYSTEM_WRITE_ECC	0x20000000
71 #define EX_DMA_FM_WRITE_ECC		0x10000000
72 #define EX_FPM_STALL_ON_TASKS		0x08000000
73 #define EX_FPM_SINGLE_ECC		0x04000000
74 #define EX_FPM_DOUBLE_ECC		0x02000000
75 #define EX_QMI_SINGLE_ECC		0x01000000
76 #define EX_QMI_DEQ_FROM_UNKNOWN_PORTID	0x00800000
77 #define EX_QMI_DOUBLE_ECC		0x00400000
78 #define EX_BMI_LIST_RAM_ECC		0x00200000
79 #define EX_BMI_STORAGE_PROFILE_ECC	0x00100000
80 #define EX_BMI_STATISTICS_RAM_ECC	0x00080000
81 #define EX_IRAM_ECC			0x00040000
82 #define EX_MURAM_ECC			0x00020000
83 #define EX_BMI_DISPATCH_RAM_ECC	0x00010000
84 #define EX_DMA_SINGLE_PORT_ECC		0x00008000
85 
86 /* DMA defines */
87 /* masks */
88 #define DMA_MODE_BER			0x00200000
89 #define DMA_MODE_ECC			0x00000020
90 #define DMA_MODE_SECURE_PROT		0x00000800
91 #define DMA_MODE_AXI_DBG_MASK		0x0F000000
92 
93 #define DMA_TRANSFER_PORTID_MASK	0xFF000000
94 #define DMA_TRANSFER_TNUM_MASK		0x00FF0000
95 #define DMA_TRANSFER_LIODN_MASK	0x00000FFF
96 
97 #define DMA_STATUS_BUS_ERR		0x08000000
98 #define DMA_STATUS_READ_ECC		0x04000000
99 #define DMA_STATUS_SYSTEM_WRITE_ECC	0x02000000
100 #define DMA_STATUS_FM_WRITE_ECC	0x01000000
101 #define DMA_STATUS_FM_SPDAT_ECC	0x00080000
102 
103 #define DMA_MODE_CACHE_OR_SHIFT		30
104 #define DMA_MODE_AXI_DBG_SHIFT			24
105 #define DMA_MODE_CEN_SHIFT			13
106 #define DMA_MODE_CEN_MASK			0x00000007
107 #define DMA_MODE_DBG_SHIFT			7
108 #define DMA_MODE_AID_MODE_SHIFT		4
109 
110 #define DMA_THRESH_COMMQ_SHIFT			24
111 #define DMA_THRESH_READ_INT_BUF_SHIFT		16
112 #define DMA_THRESH_READ_INT_BUF_MASK		0x0000003f
113 #define DMA_THRESH_WRITE_INT_BUF_MASK		0x0000003f
114 
115 #define DMA_TRANSFER_PORTID_SHIFT		24
116 #define DMA_TRANSFER_TNUM_SHIFT		16
117 
118 #define DMA_CAM_SIZEOF_ENTRY			0x40
119 #define DMA_CAM_UNITS				8
120 
121 #define DMA_LIODN_SHIFT		16
122 #define DMA_LIODN_BASE_MASK	0x00000FFF
123 
124 /* FPM defines */
125 #define FPM_EV_MASK_DOUBLE_ECC		0x80000000
126 #define FPM_EV_MASK_STALL		0x40000000
127 #define FPM_EV_MASK_SINGLE_ECC		0x20000000
128 #define FPM_EV_MASK_RELEASE_FM		0x00010000
129 #define FPM_EV_MASK_DOUBLE_ECC_EN	0x00008000
130 #define FPM_EV_MASK_STALL_EN		0x00004000
131 #define FPM_EV_MASK_SINGLE_ECC_EN	0x00002000
132 #define FPM_EV_MASK_EXTERNAL_HALT	0x00000008
133 #define FPM_EV_MASK_ECC_ERR_HALT	0x00000004
134 
135 #define FPM_RAM_MURAM_ECC		0x00008000
136 #define FPM_RAM_IRAM_ECC		0x00004000
137 #define FPM_IRAM_ECC_ERR_EX_EN		0x00020000
138 #define FPM_MURAM_ECC_ERR_EX_EN	0x00040000
139 #define FPM_RAM_IRAM_ECC_EN		0x40000000
140 #define FPM_RAM_RAMS_ECC_EN		0x80000000
141 #define FPM_RAM_RAMS_ECC_EN_SRC_SEL	0x08000000
142 
143 #define FPM_REV1_MAJOR_MASK		0x0000FF00
144 #define FPM_REV1_MINOR_MASK		0x000000FF
145 
146 #define FPM_DISP_LIMIT_SHIFT		24
147 
148 #define FPM_PRT_FM_CTL1			0x00000001
149 #define FPM_PRT_FM_CTL2			0x00000002
150 #define FPM_PORT_FM_CTL_PORTID_SHIFT	24
151 #define FPM_PRC_ORA_FM_CTL_SEL_SHIFT	16
152 
153 #define FPM_THR1_PRS_SHIFT		24
154 #define FPM_THR1_KG_SHIFT		16
155 #define FPM_THR1_PLCR_SHIFT		8
156 #define FPM_THR1_BMI_SHIFT		0
157 
158 #define FPM_THR2_QMI_ENQ_SHIFT		24
159 #define FPM_THR2_QMI_DEQ_SHIFT		0
160 #define FPM_THR2_FM_CTL1_SHIFT		16
161 #define FPM_THR2_FM_CTL2_SHIFT		8
162 
163 #define FPM_EV_MASK_CAT_ERR_SHIFT	1
164 #define FPM_EV_MASK_DMA_ERR_SHIFT	0
165 
166 #define FPM_REV1_MAJOR_SHIFT		8
167 
168 #define FPM_RSTC_FM_RESET		0x80000000
169 #define FPM_RSTC_MAC0_RESET		0x40000000
170 #define FPM_RSTC_MAC1_RESET		0x20000000
171 #define FPM_RSTC_MAC2_RESET		0x10000000
172 #define FPM_RSTC_MAC3_RESET		0x08000000
173 #define FPM_RSTC_MAC8_RESET		0x04000000
174 #define FPM_RSTC_MAC4_RESET		0x02000000
175 #define FPM_RSTC_MAC5_RESET		0x01000000
176 #define FPM_RSTC_MAC6_RESET		0x00800000
177 #define FPM_RSTC_MAC7_RESET		0x00400000
178 #define FPM_RSTC_MAC9_RESET		0x00200000
179 
180 #define FPM_TS_INT_SHIFT		16
181 #define FPM_TS_CTL_EN			0x80000000
182 
183 /* BMI defines */
184 #define BMI_INIT_START				0x80000000
185 #define BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC	0x80000000
186 #define BMI_ERR_INTR_EN_LIST_RAM_ECC		0x40000000
187 #define BMI_ERR_INTR_EN_STATISTICS_RAM_ECC	0x20000000
188 #define BMI_ERR_INTR_EN_DISPATCH_RAM_ECC	0x10000000
189 #define BMI_NUM_OF_TASKS_MASK			0x3F000000
190 #define BMI_NUM_OF_EXTRA_TASKS_MASK		0x000F0000
191 #define BMI_NUM_OF_DMAS_MASK			0x00000F00
192 #define BMI_NUM_OF_EXTRA_DMAS_MASK		0x0000000F
193 #define BMI_FIFO_SIZE_MASK			0x000003FF
194 #define BMI_EXTRA_FIFO_SIZE_MASK		0x03FF0000
195 #define BMI_CFG2_DMAS_MASK			0x0000003F
196 #define BMI_CFG2_TASKS_MASK			0x0000003F
197 
198 #define BMI_CFG2_TASKS_SHIFT		16
199 #define BMI_CFG2_DMAS_SHIFT		0
200 #define BMI_CFG1_FIFO_SIZE_SHIFT	16
201 #define BMI_NUM_OF_TASKS_SHIFT		24
202 #define BMI_EXTRA_NUM_OF_TASKS_SHIFT	16
203 #define BMI_NUM_OF_DMAS_SHIFT		8
204 #define BMI_EXTRA_NUM_OF_DMAS_SHIFT	0
205 
206 #define BMI_FIFO_ALIGN			0x100
207 
208 #define BMI_EXTRA_FIFO_SIZE_SHIFT	16
209 
210 /* QMI defines */
211 #define QMI_CFG_ENQ_EN			0x80000000
212 #define QMI_CFG_DEQ_EN			0x40000000
213 #define QMI_CFG_EN_COUNTERS		0x10000000
214 #define QMI_CFG_DEQ_MASK		0x0000003F
215 #define QMI_CFG_ENQ_MASK		0x00003F00
216 #define QMI_CFG_ENQ_SHIFT		8
217 
218 #define QMI_ERR_INTR_EN_DOUBLE_ECC	0x80000000
219 #define QMI_ERR_INTR_EN_DEQ_FROM_DEF	0x40000000
220 #define QMI_INTR_EN_SINGLE_ECC		0x80000000
221 
222 #define QMI_GS_HALT_NOT_BUSY		0x00000002
223 
224 /* HWP defines */
225 #define HWP_RPIMAC_PEN			0x00000001
226 
227 /* IRAM defines */
228 #define IRAM_IADD_AIE			0x80000000
229 #define IRAM_READY			0x80000000
230 
231 /* Default values */
232 #define DEFAULT_CATASTROPHIC_ERR		0
233 #define DEFAULT_DMA_ERR				0
234 #define DEFAULT_AID_MODE			FMAN_DMA_AID_OUT_TNUM
235 #define DEFAULT_DMA_COMM_Q_LOW			0x2A
236 #define DEFAULT_DMA_COMM_Q_HIGH		0x3F
237 #define DEFAULT_CACHE_OVERRIDE			0
238 #define DEFAULT_DMA_CAM_NUM_OF_ENTRIES		64
239 #define DEFAULT_DMA_DBG_CNT_MODE		0
240 #define DEFAULT_DMA_SOS_EMERGENCY		0
241 #define DEFAULT_DMA_WATCHDOG			0
242 #define DEFAULT_DISP_LIMIT			0
243 #define DEFAULT_PRS_DISP_TH			16
244 #define DEFAULT_PLCR_DISP_TH			16
245 #define DEFAULT_KG_DISP_TH			16
246 #define DEFAULT_BMI_DISP_TH			16
247 #define DEFAULT_QMI_ENQ_DISP_TH		16
248 #define DEFAULT_QMI_DEQ_DISP_TH		16
249 #define DEFAULT_FM_CTL1_DISP_TH		16
250 #define DEFAULT_FM_CTL2_DISP_TH		16
251 
252 #define DFLT_AXI_DBG_NUM_OF_BEATS		1
253 
254 #define DFLT_DMA_READ_INT_BUF_LOW(dma_thresh_max_buf)	\
255 	((dma_thresh_max_buf + 1) / 2)
256 #define DFLT_DMA_READ_INT_BUF_HIGH(dma_thresh_max_buf)	\
257 	((dma_thresh_max_buf + 1) * 3 / 4)
258 #define DFLT_DMA_WRITE_INT_BUF_LOW(dma_thresh_max_buf)	\
259 	((dma_thresh_max_buf + 1) / 2)
260 #define DFLT_DMA_WRITE_INT_BUF_HIGH(dma_thresh_max_buf)\
261 	((dma_thresh_max_buf + 1) * 3 / 4)
262 
263 #define DMA_COMM_Q_LOW_FMAN_V3		0x2A
264 #define DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq)		\
265 	((dma_thresh_max_commq + 1) / 2)
266 #define DFLT_DMA_COMM_Q_LOW(major, dma_thresh_max_commq)	\
267 	((major == 6) ? DMA_COMM_Q_LOW_FMAN_V3 :		\
268 	DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq))
269 
270 #define DMA_COMM_Q_HIGH_FMAN_V3	0x3f
271 #define DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq)		\
272 	((dma_thresh_max_commq + 1) * 3 / 4)
273 #define DFLT_DMA_COMM_Q_HIGH(major, dma_thresh_max_commq)	\
274 	((major == 6) ? DMA_COMM_Q_HIGH_FMAN_V3 :		\
275 	DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq))
276 
277 #define TOTAL_NUM_OF_TASKS_FMAN_V3L	59
278 #define TOTAL_NUM_OF_TASKS_FMAN_V3H	124
279 #define DFLT_TOTAL_NUM_OF_TASKS(major, minor, bmi_max_num_of_tasks)	\
280 	((major == 6) ? ((minor == 1 || minor == 4) ?			\
281 	TOTAL_NUM_OF_TASKS_FMAN_V3L : TOTAL_NUM_OF_TASKS_FMAN_V3H) :	\
282 	bmi_max_num_of_tasks)
283 
284 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V3		64
285 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V2		32
286 #define DFLT_DMA_CAM_NUM_OF_ENTRIES(major)			\
287 	(major == 6 ? DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 :		\
288 	DMA_CAM_NUM_OF_ENTRIES_FMAN_V2)
289 
290 #define FM_TIMESTAMP_1_USEC_BIT             8
291 
292 /* Defines used for enabling/disabling FMan interrupts */
293 #define ERR_INTR_EN_DMA         0x00010000
294 #define ERR_INTR_EN_FPM         0x80000000
295 #define ERR_INTR_EN_BMI         0x00800000
296 #define ERR_INTR_EN_QMI         0x00400000
297 #define ERR_INTR_EN_MURAM       0x00040000
298 #define ERR_INTR_EN_MAC0        0x00004000
299 #define ERR_INTR_EN_MAC1        0x00002000
300 #define ERR_INTR_EN_MAC2        0x00001000
301 #define ERR_INTR_EN_MAC3        0x00000800
302 #define ERR_INTR_EN_MAC4        0x00000400
303 #define ERR_INTR_EN_MAC5        0x00000200
304 #define ERR_INTR_EN_MAC6        0x00000100
305 #define ERR_INTR_EN_MAC7        0x00000080
306 #define ERR_INTR_EN_MAC8        0x00008000
307 #define ERR_INTR_EN_MAC9        0x00000040
308 
309 #define INTR_EN_QMI             0x40000000
310 #define INTR_EN_MAC0            0x00080000
311 #define INTR_EN_MAC1            0x00040000
312 #define INTR_EN_MAC2            0x00020000
313 #define INTR_EN_MAC3            0x00010000
314 #define INTR_EN_MAC4            0x00000040
315 #define INTR_EN_MAC5            0x00000020
316 #define INTR_EN_MAC6            0x00000008
317 #define INTR_EN_MAC7            0x00000002
318 #define INTR_EN_MAC8            0x00200000
319 #define INTR_EN_MAC9            0x00100000
320 #define INTR_EN_REV0            0x00008000
321 #define INTR_EN_REV1            0x00004000
322 #define INTR_EN_REV2            0x00002000
323 #define INTR_EN_REV3            0x00001000
324 #define INTR_EN_TMR             0x01000000
325 
326 enum fman_dma_aid_mode {
327 	FMAN_DMA_AID_OUT_PORT_ID = 0,		  /* 4 LSB of PORT_ID */
328 	FMAN_DMA_AID_OUT_TNUM			  /* 4 LSB of TNUM */
329 };
330 
331 struct fman_iram_regs {
332 	u32 iadd;	/* FM IRAM instruction address register */
333 	u32 idata;	/* FM IRAM instruction data register */
334 	u32 itcfg;	/* FM IRAM timing config register */
335 	u32 iready;	/* FM IRAM ready register */
336 };
337 
338 struct fman_fpm_regs {
339 	u32 fmfp_tnc;		/* FPM TNUM Control 0x00 */
340 	u32 fmfp_prc;		/* FPM Port_ID FmCtl Association 0x04 */
341 	u32 fmfp_brkc;		/* FPM Breakpoint Control 0x08 */
342 	u32 fmfp_mxd;		/* FPM Flush Control 0x0c */
343 	u32 fmfp_dist1;		/* FPM Dispatch Thresholds1 0x10 */
344 	u32 fmfp_dist2;		/* FPM Dispatch Thresholds2 0x14 */
345 	u32 fm_epi;		/* FM Error Pending Interrupts 0x18 */
346 	u32 fm_rie;		/* FM Error Interrupt Enable 0x1c */
347 	u32 fmfp_fcev[4];	/* FPM FMan-Controller Event 1-4 0x20-0x2f */
348 	u32 res0030[4];		/* res 0x30 - 0x3f */
349 	u32 fmfp_cee[4];	/* PM FMan-Controller Event 1-4 0x40-0x4f */
350 	u32 res0050[4];		/* res 0x50-0x5f */
351 	u32 fmfp_tsc1;		/* FPM TimeStamp Control1 0x60 */
352 	u32 fmfp_tsc2;		/* FPM TimeStamp Control2 0x64 */
353 	u32 fmfp_tsp;		/* FPM Time Stamp 0x68 */
354 	u32 fmfp_tsf;		/* FPM Time Stamp Fraction 0x6c */
355 	u32 fm_rcr;		/* FM Rams Control 0x70 */
356 	u32 fmfp_extc;		/* FPM External Requests Control 0x74 */
357 	u32 fmfp_ext1;		/* FPM External Requests Config1 0x78 */
358 	u32 fmfp_ext2;		/* FPM External Requests Config2 0x7c */
359 	u32 fmfp_drd[16];	/* FPM Data_Ram Data 0-15 0x80 - 0xbf */
360 	u32 fmfp_dra;		/* FPM Data Ram Access 0xc0 */
361 	u32 fm_ip_rev_1;	/* FM IP Block Revision 1 0xc4 */
362 	u32 fm_ip_rev_2;	/* FM IP Block Revision 2 0xc8 */
363 	u32 fm_rstc;		/* FM Reset Command 0xcc */
364 	u32 fm_cld;		/* FM Classifier Debug 0xd0 */
365 	u32 fm_npi;		/* FM Normal Pending Interrupts 0xd4 */
366 	u32 fmfp_exte;		/* FPM External Requests Enable 0xd8 */
367 	u32 fmfp_ee;		/* FPM Event&Mask 0xdc */
368 	u32 fmfp_cev[4];	/* FPM CPU Event 1-4 0xe0-0xef */
369 	u32 res00f0[4];		/* res 0xf0-0xff */
370 	u32 fmfp_ps[50];	/* FPM Port Status 0x100-0x1c7 */
371 	u32 res01c8[14];	/* res 0x1c8-0x1ff */
372 	u32 fmfp_clfabc;	/* FPM CLFABC 0x200 */
373 	u32 fmfp_clfcc;		/* FPM CLFCC 0x204 */
374 	u32 fmfp_clfaval;	/* FPM CLFAVAL 0x208 */
375 	u32 fmfp_clfbval;	/* FPM CLFBVAL 0x20c */
376 	u32 fmfp_clfcval;	/* FPM CLFCVAL 0x210 */
377 	u32 fmfp_clfamsk;	/* FPM CLFAMSK 0x214 */
378 	u32 fmfp_clfbmsk;	/* FPM CLFBMSK 0x218 */
379 	u32 fmfp_clfcmsk;	/* FPM CLFCMSK 0x21c */
380 	u32 fmfp_clfamc;	/* FPM CLFAMC 0x220 */
381 	u32 fmfp_clfbmc;	/* FPM CLFBMC 0x224 */
382 	u32 fmfp_clfcmc;	/* FPM CLFCMC 0x228 */
383 	u32 fmfp_decceh;	/* FPM DECCEH 0x22c */
384 	u32 res0230[116];	/* res 0x230 - 0x3ff */
385 	u32 fmfp_ts[128];	/* 0x400: FPM Task Status 0x400 - 0x5ff */
386 	u32 res0600[0x400 - 384];
387 };
388 
389 struct fman_bmi_regs {
390 	u32 fmbm_init;		/* BMI Initialization 0x00 */
391 	u32 fmbm_cfg1;		/* BMI Configuration 1 0x04 */
392 	u32 fmbm_cfg2;		/* BMI Configuration 2 0x08 */
393 	u32 res000c[5];		/* 0x0c - 0x1f */
394 	u32 fmbm_ievr;		/* Interrupt Event Register 0x20 */
395 	u32 fmbm_ier;		/* Interrupt Enable Register 0x24 */
396 	u32 fmbm_ifr;		/* Interrupt Force Register 0x28 */
397 	u32 res002c[5];		/* 0x2c - 0x3f */
398 	u32 fmbm_arb[8];	/* BMI Arbitration 0x40 - 0x5f */
399 	u32 res0060[12];	/* 0x60 - 0x8f */
400 	u32 fmbm_dtc[3];	/* Debug Trap Counter 0x90 - 0x9b */
401 	u32 res009c;		/* 0x9c */
402 	u32 fmbm_dcv[3][4];	/* Debug Compare val 0xa0-0xcf */
403 	u32 fmbm_dcm[3][4];	/* Debug Compare Mask 0xd0-0xff */
404 	u32 fmbm_gde;		/* BMI Global Debug Enable 0x100 */
405 	u32 fmbm_pp[63];	/* BMI Port Parameters 0x104 - 0x1ff */
406 	u32 res0200;		/* 0x200 */
407 	u32 fmbm_pfs[63];	/* BMI Port FIFO Size 0x204 - 0x2ff */
408 	u32 res0300;		/* 0x300 */
409 	u32 fmbm_spliodn[63];	/* Port Partition ID 0x304 - 0x3ff */
410 };
411 
412 struct fman_qmi_regs {
413 	u32 fmqm_gc;		/* General Configuration Register 0x00 */
414 	u32 res0004;		/* 0x04 */
415 	u32 fmqm_eie;		/* Error Interrupt Event Register 0x08 */
416 	u32 fmqm_eien;		/* Error Interrupt Enable Register 0x0c */
417 	u32 fmqm_eif;		/* Error Interrupt Force Register 0x10 */
418 	u32 fmqm_ie;		/* Interrupt Event Register 0x14 */
419 	u32 fmqm_ien;		/* Interrupt Enable Register 0x18 */
420 	u32 fmqm_if;		/* Interrupt Force Register 0x1c */
421 	u32 fmqm_gs;		/* Global Status Register 0x20 */
422 	u32 fmqm_ts;		/* Task Status Register 0x24 */
423 	u32 fmqm_etfc;		/* Enqueue Total Frame Counter 0x28 */
424 	u32 fmqm_dtfc;		/* Dequeue Total Frame Counter 0x2c */
425 	u32 fmqm_dc0;		/* Dequeue Counter 0 0x30 */
426 	u32 fmqm_dc1;		/* Dequeue Counter 1 0x34 */
427 	u32 fmqm_dc2;		/* Dequeue Counter 2 0x38 */
428 	u32 fmqm_dc3;		/* Dequeue Counter 3 0x3c */
429 	u32 fmqm_dfdc;		/* Dequeue FQID from Default Counter 0x40 */
430 	u32 fmqm_dfcc;		/* Dequeue FQID from Context Counter 0x44 */
431 	u32 fmqm_dffc;		/* Dequeue FQID from FD Counter 0x48 */
432 	u32 fmqm_dcc;		/* Dequeue Confirm Counter 0x4c */
433 	u32 res0050[7];		/* 0x50 - 0x6b */
434 	u32 fmqm_tapc;		/* Tnum Aging Period Control 0x6c */
435 	u32 fmqm_dmcvc;		/* Dequeue MAC Command Valid Counter 0x70 */
436 	u32 fmqm_difdcc;	/* Dequeue Invalid FD Command Counter 0x74 */
437 	u32 fmqm_da1v;		/* Dequeue A1 Valid Counter 0x78 */
438 	u32 res007c;		/* 0x7c */
439 	u32 fmqm_dtc;		/* 0x80 Debug Trap Counter 0x80 */
440 	u32 fmqm_efddd;		/* 0x84 Enqueue Frame desc Dynamic dbg 0x84 */
441 	u32 res0088[2];		/* 0x88 - 0x8f */
442 	struct {
443 		u32 fmqm_dtcfg1;	/* 0x90 dbg trap cfg 1 Register 0x00 */
444 		u32 fmqm_dtval1;	/* Debug Trap Value 1 Register 0x04 */
445 		u32 fmqm_dtm1;		/* Debug Trap Mask 1 Register 0x08 */
446 		u32 fmqm_dtc1;		/* Debug Trap Counter 1 Register 0x0c */
447 		u32 fmqm_dtcfg2;	/* dbg Trap cfg 2 Register 0x10 */
448 		u32 fmqm_dtval2;	/* Debug Trap Value 2 Register 0x14 */
449 		u32 fmqm_dtm2;		/* Debug Trap Mask 2 Register 0x18 */
450 		u32 res001c;		/* 0x1c */
451 	} dbg_traps[3];			/* 0x90 - 0xef */
452 	u8 res00f0[0x400 - 0xf0];	/* 0xf0 - 0x3ff */
453 };
454 
455 struct fman_dma_regs {
456 	u32 fmdmsr;	/* FM DMA status register 0x00 */
457 	u32 fmdmmr;	/* FM DMA mode register 0x04 */
458 	u32 fmdmtr;	/* FM DMA bus threshold register 0x08 */
459 	u32 fmdmhy;	/* FM DMA bus hysteresis register 0x0c */
460 	u32 fmdmsetr;	/* FM DMA SOS emergency Threshold Register 0x10 */
461 	u32 fmdmtah;	/* FM DMA transfer bus address high reg 0x14 */
462 	u32 fmdmtal;	/* FM DMA transfer bus address low reg 0x18 */
463 	u32 fmdmtcid;	/* FM DMA transfer bus communication ID reg 0x1c */
464 	u32 fmdmra;	/* FM DMA bus internal ram address register 0x20 */
465 	u32 fmdmrd;	/* FM DMA bus internal ram data register 0x24 */
466 	u32 fmdmwcr;	/* FM DMA CAM watchdog counter value 0x28 */
467 	u32 fmdmebcr;	/* FM DMA CAM base in MURAM register 0x2c */
468 	u32 fmdmccqdr;	/* FM DMA CAM and CMD Queue Debug reg 0x30 */
469 	u32 fmdmccqvr1;	/* FM DMA CAM and CMD Queue Value reg #1 0x34 */
470 	u32 fmdmccqvr2;	/* FM DMA CAM and CMD Queue Value reg #2 0x38 */
471 	u32 fmdmcqvr3;	/* FM DMA CMD Queue Value register #3 0x3c */
472 	u32 fmdmcqvr4;	/* FM DMA CMD Queue Value register #4 0x40 */
473 	u32 fmdmcqvr5;	/* FM DMA CMD Queue Value register #5 0x44 */
474 	u32 fmdmsefrc;	/* FM DMA Semaphore Entry Full Reject Cntr 0x48 */
475 	u32 fmdmsqfrc;	/* FM DMA Semaphore Queue Full Reject Cntr 0x4c */
476 	u32 fmdmssrc;	/* FM DMA Semaphore SYNC Reject Counter 0x50 */
477 	u32 fmdmdcr;	/* FM DMA Debug Counter 0x54 */
478 	u32 fmdmemsr;	/* FM DMA Emergency Smoother Register 0x58 */
479 	u32 res005c;	/* 0x5c */
480 	u32 fmdmplr[FMAN_LIODN_TBL / 2];	/* DMA LIODN regs 0x60-0xdf */
481 	u32 res00e0[0x400 - 56];
482 };
483 
484 struct fman_hwp_regs {
485 	u32 res0000[0x844 / 4];		/* 0x000..0x843 */
486 	u32 fmprrpimac;	/* FM Parser Internal memory access control */
487 	u32 res[(0x1000 - 0x848) / 4];	/* 0x848..0xFFF */
488 };
489 
490 /* Structure that holds current FMan state.
491  * Used for saving run time information.
492  */
493 struct fman_state_struct {
494 	u8 fm_id;
495 	u16 fm_clk_freq;
496 	struct fman_rev_info rev_info;
497 	bool enabled_time_stamp;
498 	u8 count1_micro_bit;
499 	u8 total_num_of_tasks;
500 	u8 accumulated_num_of_tasks;
501 	u32 accumulated_fifo_size;
502 	u8 accumulated_num_of_open_dmas;
503 	u8 accumulated_num_of_deq_tnums;
504 	u32 exceptions;
505 	u32 extra_fifo_pool_size;
506 	u8 extra_tasks_pool_size;
507 	u8 extra_open_dmas_pool_size;
508 	u16 port_mfl[MAX_NUM_OF_MACS];
509 	u16 mac_mfl[MAX_NUM_OF_MACS];
510 
511 	/* SOC specific */
512 	u32 fm_iram_size;
513 	/* DMA */
514 	u32 dma_thresh_max_commq;
515 	u32 dma_thresh_max_buf;
516 	u32 max_num_of_open_dmas;
517 	/* QMI */
518 	u32 qmi_max_num_of_tnums;
519 	u32 qmi_def_tnums_thresh;
520 	/* BMI */
521 	u32 bmi_max_num_of_tasks;
522 	u32 bmi_max_fifo_size;
523 	/* General */
524 	u32 fm_port_num_of_cg;
525 	u32 num_of_rx_ports;
526 	u32 total_fifo_size;
527 
528 	u32 qman_channel_base;
529 	u32 num_of_qman_channels;
530 
531 	struct resource *res;
532 };
533 
534 /* Structure that holds FMan initial configuration */
535 struct fman_cfg {
536 	u8 disp_limit_tsh;
537 	u8 prs_disp_tsh;
538 	u8 plcr_disp_tsh;
539 	u8 kg_disp_tsh;
540 	u8 bmi_disp_tsh;
541 	u8 qmi_enq_disp_tsh;
542 	u8 qmi_deq_disp_tsh;
543 	u8 fm_ctl1_disp_tsh;
544 	u8 fm_ctl2_disp_tsh;
545 	int dma_cache_override;
546 	enum fman_dma_aid_mode dma_aid_mode;
547 	u32 dma_axi_dbg_num_of_beats;
548 	u32 dma_cam_num_of_entries;
549 	u32 dma_watchdog;
550 	u8 dma_comm_qtsh_asrt_emer;
551 	u32 dma_write_buf_tsh_asrt_emer;
552 	u32 dma_read_buf_tsh_asrt_emer;
553 	u8 dma_comm_qtsh_clr_emer;
554 	u32 dma_write_buf_tsh_clr_emer;
555 	u32 dma_read_buf_tsh_clr_emer;
556 	u32 dma_sos_emergency;
557 	int dma_dbg_cnt_mode;
558 	int catastrophic_err;
559 	int dma_err;
560 	u32 exceptions;
561 	u16 clk_freq;
562 	u32 cam_base_addr;
563 	u32 fifo_base_addr;
564 	u32 total_fifo_size;
565 	u32 total_num_of_tasks;
566 	u32 qmi_def_tnums_thresh;
567 };
568 
569 static irqreturn_t fman_exceptions(struct fman *fman,
570 				   enum fman_exceptions exception)
571 {
572 	dev_dbg(fman->dev, "%s: FMan[%d] exception %d\n",
573 		__func__, fman->state->fm_id, exception);
574 
575 	return IRQ_HANDLED;
576 }
577 
578 static irqreturn_t fman_bus_error(struct fman *fman, u8 __maybe_unused port_id,
579 				  u64 __maybe_unused addr,
580 				  u8 __maybe_unused tnum,
581 				  u16 __maybe_unused liodn)
582 {
583 	dev_dbg(fman->dev, "%s: FMan[%d] bus error: port_id[%d]\n",
584 		__func__, fman->state->fm_id, port_id);
585 
586 	return IRQ_HANDLED;
587 }
588 
589 static inline irqreturn_t call_mac_isr(struct fman *fman, u8 id)
590 {
591 	if (fman->intr_mng[id].isr_cb) {
592 		fman->intr_mng[id].isr_cb(fman->intr_mng[id].src_handle);
593 
594 		return IRQ_HANDLED;
595 	}
596 
597 	return IRQ_NONE;
598 }
599 
600 static inline u8 hw_port_id_to_sw_port_id(u8 major, u8 hw_port_id)
601 {
602 	u8 sw_port_id = 0;
603 
604 	if (hw_port_id >= BASE_TX_PORTID)
605 		sw_port_id = hw_port_id - BASE_TX_PORTID;
606 	else if (hw_port_id >= BASE_RX_PORTID)
607 		sw_port_id = hw_port_id - BASE_RX_PORTID;
608 	else
609 		sw_port_id = 0;
610 
611 	return sw_port_id;
612 }
613 
614 static void set_port_order_restoration(struct fman_fpm_regs __iomem *fpm_rg,
615 				       u8 port_id)
616 {
617 	u32 tmp = 0;
618 
619 	tmp = port_id << FPM_PORT_FM_CTL_PORTID_SHIFT;
620 
621 	tmp |= FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1;
622 
623 	/* order restoration */
624 	if (port_id % 2)
625 		tmp |= FPM_PRT_FM_CTL1 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
626 	else
627 		tmp |= FPM_PRT_FM_CTL2 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
628 
629 	iowrite32be(tmp, &fpm_rg->fmfp_prc);
630 }
631 
632 static void set_port_liodn(struct fman *fman, u8 port_id,
633 			   u32 liodn_base, u32 liodn_ofst)
634 {
635 	u32 tmp;
636 
637 	/* set LIODN base for this port */
638 	tmp = ioread32be(&fman->dma_regs->fmdmplr[port_id / 2]);
639 	if (port_id % 2) {
640 		tmp &= ~DMA_LIODN_BASE_MASK;
641 		tmp |= liodn_base;
642 	} else {
643 		tmp &= ~(DMA_LIODN_BASE_MASK << DMA_LIODN_SHIFT);
644 		tmp |= liodn_base << DMA_LIODN_SHIFT;
645 	}
646 	iowrite32be(tmp, &fman->dma_regs->fmdmplr[port_id / 2]);
647 	iowrite32be(liodn_ofst, &fman->bmi_regs->fmbm_spliodn[port_id - 1]);
648 }
649 
650 static void enable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
651 {
652 	u32 tmp;
653 
654 	tmp = ioread32be(&fpm_rg->fm_rcr);
655 	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
656 		iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
657 	else
658 		iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN |
659 			    FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
660 }
661 
662 static void disable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
663 {
664 	u32 tmp;
665 
666 	tmp = ioread32be(&fpm_rg->fm_rcr);
667 	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
668 		iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
669 	else
670 		iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN),
671 			    &fpm_rg->fm_rcr);
672 }
673 
674 static void fman_defconfig(struct fman_cfg *cfg)
675 {
676 	memset(cfg, 0, sizeof(struct fman_cfg));
677 
678 	cfg->catastrophic_err = DEFAULT_CATASTROPHIC_ERR;
679 	cfg->dma_err = DEFAULT_DMA_ERR;
680 	cfg->dma_aid_mode = DEFAULT_AID_MODE;
681 	cfg->dma_comm_qtsh_clr_emer = DEFAULT_DMA_COMM_Q_LOW;
682 	cfg->dma_comm_qtsh_asrt_emer = DEFAULT_DMA_COMM_Q_HIGH;
683 	cfg->dma_cache_override = DEFAULT_CACHE_OVERRIDE;
684 	cfg->dma_cam_num_of_entries = DEFAULT_DMA_CAM_NUM_OF_ENTRIES;
685 	cfg->dma_dbg_cnt_mode = DEFAULT_DMA_DBG_CNT_MODE;
686 	cfg->dma_sos_emergency = DEFAULT_DMA_SOS_EMERGENCY;
687 	cfg->dma_watchdog = DEFAULT_DMA_WATCHDOG;
688 	cfg->disp_limit_tsh = DEFAULT_DISP_LIMIT;
689 	cfg->prs_disp_tsh = DEFAULT_PRS_DISP_TH;
690 	cfg->plcr_disp_tsh = DEFAULT_PLCR_DISP_TH;
691 	cfg->kg_disp_tsh = DEFAULT_KG_DISP_TH;
692 	cfg->bmi_disp_tsh = DEFAULT_BMI_DISP_TH;
693 	cfg->qmi_enq_disp_tsh = DEFAULT_QMI_ENQ_DISP_TH;
694 	cfg->qmi_deq_disp_tsh = DEFAULT_QMI_DEQ_DISP_TH;
695 	cfg->fm_ctl1_disp_tsh = DEFAULT_FM_CTL1_DISP_TH;
696 	cfg->fm_ctl2_disp_tsh = DEFAULT_FM_CTL2_DISP_TH;
697 }
698 
699 static int dma_init(struct fman *fman)
700 {
701 	struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
702 	struct fman_cfg *cfg = fman->cfg;
703 	u32 tmp_reg;
704 
705 	/* Init DMA Registers */
706 
707 	/* clear status reg events */
708 	tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC |
709 		   DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC);
710 	iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg, &dma_rg->fmdmsr);
711 
712 	/* configure mode register */
713 	tmp_reg = 0;
714 	tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT;
715 	if (cfg->exceptions & EX_DMA_BUS_ERROR)
716 		tmp_reg |= DMA_MODE_BER;
717 	if ((cfg->exceptions & EX_DMA_SYSTEM_WRITE_ECC) |
718 	    (cfg->exceptions & EX_DMA_READ_ECC) |
719 	    (cfg->exceptions & EX_DMA_FM_WRITE_ECC))
720 		tmp_reg |= DMA_MODE_ECC;
721 	if (cfg->dma_axi_dbg_num_of_beats)
722 		tmp_reg |= (DMA_MODE_AXI_DBG_MASK &
723 			((cfg->dma_axi_dbg_num_of_beats - 1)
724 			<< DMA_MODE_AXI_DBG_SHIFT));
725 
726 	tmp_reg |= (((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) &
727 		DMA_MODE_CEN_MASK) << DMA_MODE_CEN_SHIFT;
728 	tmp_reg |= DMA_MODE_SECURE_PROT;
729 	tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT;
730 	tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT;
731 
732 	iowrite32be(tmp_reg, &dma_rg->fmdmmr);
733 
734 	/* configure thresholds register */
735 	tmp_reg = ((u32)cfg->dma_comm_qtsh_asrt_emer <<
736 		DMA_THRESH_COMMQ_SHIFT);
737 	tmp_reg |= (cfg->dma_read_buf_tsh_asrt_emer &
738 		DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
739 	tmp_reg |= cfg->dma_write_buf_tsh_asrt_emer &
740 		DMA_THRESH_WRITE_INT_BUF_MASK;
741 
742 	iowrite32be(tmp_reg, &dma_rg->fmdmtr);
743 
744 	/* configure hysteresis register */
745 	tmp_reg = ((u32)cfg->dma_comm_qtsh_clr_emer <<
746 		DMA_THRESH_COMMQ_SHIFT);
747 	tmp_reg |= (cfg->dma_read_buf_tsh_clr_emer &
748 		DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
749 	tmp_reg |= cfg->dma_write_buf_tsh_clr_emer &
750 		DMA_THRESH_WRITE_INT_BUF_MASK;
751 
752 	iowrite32be(tmp_reg, &dma_rg->fmdmhy);
753 
754 	/* configure emergency threshold */
755 	iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr);
756 
757 	/* configure Watchdog */
758 	iowrite32be((cfg->dma_watchdog * cfg->clk_freq), &dma_rg->fmdmwcr);
759 
760 	iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr);
761 
762 	/* Allocate MURAM for CAM */
763 	fman->cam_size =
764 		(u32)(fman->cfg->dma_cam_num_of_entries * DMA_CAM_SIZEOF_ENTRY);
765 	fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size);
766 	if (IS_ERR_VALUE(fman->cam_offset)) {
767 		dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
768 			__func__);
769 		return -ENOMEM;
770 	}
771 
772 	if (fman->state->rev_info.major == 2) {
773 		u32 __iomem *cam_base_addr;
774 
775 		fman_muram_free_mem(fman->muram, fman->cam_offset,
776 				    fman->cam_size);
777 
778 		fman->cam_size = fman->cfg->dma_cam_num_of_entries * 72 + 128;
779 		fman->cam_offset = fman_muram_alloc(fman->muram,
780 						    fman->cam_size);
781 		if (IS_ERR_VALUE(fman->cam_offset)) {
782 			dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
783 				__func__);
784 			return -ENOMEM;
785 		}
786 
787 		if (fman->cfg->dma_cam_num_of_entries % 8 ||
788 		    fman->cfg->dma_cam_num_of_entries > 32) {
789 			dev_err(fman->dev, "%s: wrong dma_cam_num_of_entries\n",
790 				__func__);
791 			return -EINVAL;
792 		}
793 
794 		cam_base_addr = (u32 __iomem *)
795 			fman_muram_offset_to_vbase(fman->muram,
796 						   fman->cam_offset);
797 		iowrite32be(~((1 <<
798 			    (32 - fman->cfg->dma_cam_num_of_entries)) - 1),
799 			    cam_base_addr);
800 	}
801 
802 	fman->cfg->cam_base_addr = fman->cam_offset;
803 
804 	return 0;
805 }
806 
807 static void fpm_init(struct fman_fpm_regs __iomem *fpm_rg, struct fman_cfg *cfg)
808 {
809 	u32 tmp_reg;
810 	int i;
811 
812 	/* Init FPM Registers */
813 
814 	tmp_reg = (u32)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT);
815 	iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd);
816 
817 	tmp_reg = (((u32)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) |
818 		   ((u32)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) |
819 		   ((u32)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) |
820 		   ((u32)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT));
821 	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1);
822 
823 	tmp_reg =
824 		(((u32)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) |
825 		 ((u32)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) |
826 		 ((u32)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) |
827 		 ((u32)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT));
828 	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2);
829 
830 	/* define exceptions and error behavior */
831 	tmp_reg = 0;
832 	/* Clear events */
833 	tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC |
834 		    FPM_EV_MASK_SINGLE_ECC);
835 	/* enable interrupts */
836 	if (cfg->exceptions & EX_FPM_STALL_ON_TASKS)
837 		tmp_reg |= FPM_EV_MASK_STALL_EN;
838 	if (cfg->exceptions & EX_FPM_SINGLE_ECC)
839 		tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN;
840 	if (cfg->exceptions & EX_FPM_DOUBLE_ECC)
841 		tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN;
842 	tmp_reg |= (cfg->catastrophic_err << FPM_EV_MASK_CAT_ERR_SHIFT);
843 	tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT);
844 	/* FMan is not halted upon external halt activation */
845 	tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT;
846 	/* Man is not halted upon  Unrecoverable ECC error behavior */
847 	tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT;
848 	iowrite32be(tmp_reg, &fpm_rg->fmfp_ee);
849 
850 	/* clear all fmCtls event registers */
851 	for (i = 0; i < FM_NUM_OF_FMAN_CTRL_EVENT_REGS; i++)
852 		iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]);
853 
854 	/* RAM ECC -  enable and clear events */
855 	/* first we need to clear all parser memory,
856 	 * as it is uninitialized and may cause ECC errors
857 	 */
858 	/* event bits */
859 	tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC);
860 
861 	iowrite32be(tmp_reg, &fpm_rg->fm_rcr);
862 
863 	tmp_reg = 0;
864 	if (cfg->exceptions & EX_IRAM_ECC) {
865 		tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN;
866 		enable_rams_ecc(fpm_rg);
867 	}
868 	if (cfg->exceptions & EX_MURAM_ECC) {
869 		tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN;
870 		enable_rams_ecc(fpm_rg);
871 	}
872 	iowrite32be(tmp_reg, &fpm_rg->fm_rie);
873 }
874 
875 static void bmi_init(struct fman_bmi_regs __iomem *bmi_rg,
876 		     struct fman_cfg *cfg)
877 {
878 	u32 tmp_reg;
879 
880 	/* Init BMI Registers */
881 
882 	/* define common resources */
883 	tmp_reg = cfg->fifo_base_addr;
884 	tmp_reg = tmp_reg / BMI_FIFO_ALIGN;
885 
886 	tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) <<
887 		    BMI_CFG1_FIFO_SIZE_SHIFT);
888 	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1);
889 
890 	tmp_reg = ((cfg->total_num_of_tasks - 1) & BMI_CFG2_TASKS_MASK) <<
891 		   BMI_CFG2_TASKS_SHIFT;
892 	/* num of DMA's will be dynamically updated when each port is set */
893 	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2);
894 
895 	/* define unmaskable exceptions, enable and clear events */
896 	tmp_reg = 0;
897 	iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC |
898 		    BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC |
899 		    BMI_ERR_INTR_EN_STATISTICS_RAM_ECC |
900 		    BMI_ERR_INTR_EN_DISPATCH_RAM_ECC, &bmi_rg->fmbm_ievr);
901 
902 	if (cfg->exceptions & EX_BMI_LIST_RAM_ECC)
903 		tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
904 	if (cfg->exceptions & EX_BMI_STORAGE_PROFILE_ECC)
905 		tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
906 	if (cfg->exceptions & EX_BMI_STATISTICS_RAM_ECC)
907 		tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
908 	if (cfg->exceptions & EX_BMI_DISPATCH_RAM_ECC)
909 		tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
910 	iowrite32be(tmp_reg, &bmi_rg->fmbm_ier);
911 }
912 
913 static void qmi_init(struct fman_qmi_regs __iomem *qmi_rg,
914 		     struct fman_cfg *cfg)
915 {
916 	u32 tmp_reg;
917 
918 	/* Init QMI Registers */
919 
920 	/* Clear error interrupt events */
921 
922 	iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF,
923 		    &qmi_rg->fmqm_eie);
924 	tmp_reg = 0;
925 	if (cfg->exceptions & EX_QMI_DEQ_FROM_UNKNOWN_PORTID)
926 		tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
927 	if (cfg->exceptions & EX_QMI_DOUBLE_ECC)
928 		tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC;
929 	/* enable events */
930 	iowrite32be(tmp_reg, &qmi_rg->fmqm_eien);
931 
932 	tmp_reg = 0;
933 	/* Clear interrupt events */
934 	iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie);
935 	if (cfg->exceptions & EX_QMI_SINGLE_ECC)
936 		tmp_reg |= QMI_INTR_EN_SINGLE_ECC;
937 	/* enable events */
938 	iowrite32be(tmp_reg, &qmi_rg->fmqm_ien);
939 }
940 
941 static void hwp_init(struct fman_hwp_regs __iomem *hwp_rg)
942 {
943 	/* enable HW Parser */
944 	iowrite32be(HWP_RPIMAC_PEN, &hwp_rg->fmprrpimac);
945 }
946 
947 static int enable(struct fman *fman, struct fman_cfg *cfg)
948 {
949 	u32 cfg_reg = 0;
950 
951 	/* Enable all modules */
952 
953 	/* clear&enable global counters - calculate reg and save for later,
954 	 * because it's the same reg for QMI enable
955 	 */
956 	cfg_reg = QMI_CFG_EN_COUNTERS;
957 
958 	/* Set enqueue and dequeue thresholds */
959 	cfg_reg |= (cfg->qmi_def_tnums_thresh << 8) | cfg->qmi_def_tnums_thresh;
960 
961 	iowrite32be(BMI_INIT_START, &fman->bmi_regs->fmbm_init);
962 	iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN,
963 		    &fman->qmi_regs->fmqm_gc);
964 
965 	return 0;
966 }
967 
968 static int set_exception(struct fman *fman,
969 			 enum fman_exceptions exception, bool enable)
970 {
971 	u32 tmp;
972 
973 	switch (exception) {
974 	case FMAN_EX_DMA_BUS_ERROR:
975 		tmp = ioread32be(&fman->dma_regs->fmdmmr);
976 		if (enable)
977 			tmp |= DMA_MODE_BER;
978 		else
979 			tmp &= ~DMA_MODE_BER;
980 		/* disable bus error */
981 		iowrite32be(tmp, &fman->dma_regs->fmdmmr);
982 		break;
983 	case FMAN_EX_DMA_READ_ECC:
984 	case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
985 	case FMAN_EX_DMA_FM_WRITE_ECC:
986 		tmp = ioread32be(&fman->dma_regs->fmdmmr);
987 		if (enable)
988 			tmp |= DMA_MODE_ECC;
989 		else
990 			tmp &= ~DMA_MODE_ECC;
991 		iowrite32be(tmp, &fman->dma_regs->fmdmmr);
992 		break;
993 	case FMAN_EX_FPM_STALL_ON_TASKS:
994 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
995 		if (enable)
996 			tmp |= FPM_EV_MASK_STALL_EN;
997 		else
998 			tmp &= ~FPM_EV_MASK_STALL_EN;
999 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1000 		break;
1001 	case FMAN_EX_FPM_SINGLE_ECC:
1002 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1003 		if (enable)
1004 			tmp |= FPM_EV_MASK_SINGLE_ECC_EN;
1005 		else
1006 			tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN;
1007 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1008 		break;
1009 	case FMAN_EX_FPM_DOUBLE_ECC:
1010 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1011 		if (enable)
1012 			tmp |= FPM_EV_MASK_DOUBLE_ECC_EN;
1013 		else
1014 			tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN;
1015 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1016 		break;
1017 	case FMAN_EX_QMI_SINGLE_ECC:
1018 		tmp = ioread32be(&fman->qmi_regs->fmqm_ien);
1019 		if (enable)
1020 			tmp |= QMI_INTR_EN_SINGLE_ECC;
1021 		else
1022 			tmp &= ~QMI_INTR_EN_SINGLE_ECC;
1023 		iowrite32be(tmp, &fman->qmi_regs->fmqm_ien);
1024 		break;
1025 	case FMAN_EX_QMI_DOUBLE_ECC:
1026 		tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1027 		if (enable)
1028 			tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC;
1029 		else
1030 			tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC;
1031 		iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1032 		break;
1033 	case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1034 		tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1035 		if (enable)
1036 			tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1037 		else
1038 			tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1039 		iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1040 		break;
1041 	case FMAN_EX_BMI_LIST_RAM_ECC:
1042 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1043 		if (enable)
1044 			tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
1045 		else
1046 			tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC;
1047 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1048 		break;
1049 	case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1050 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1051 		if (enable)
1052 			tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1053 		else
1054 			tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1055 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1056 		break;
1057 	case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1058 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1059 		if (enable)
1060 			tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1061 		else
1062 			tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1063 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1064 		break;
1065 	case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1066 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1067 		if (enable)
1068 			tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1069 		else
1070 			tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1071 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1072 		break;
1073 	case FMAN_EX_IRAM_ECC:
1074 		tmp = ioread32be(&fman->fpm_regs->fm_rie);
1075 		if (enable) {
1076 			/* enable ECC if not enabled */
1077 			enable_rams_ecc(fman->fpm_regs);
1078 			/* enable ECC interrupts */
1079 			tmp |= FPM_IRAM_ECC_ERR_EX_EN;
1080 		} else {
1081 			/* ECC mechanism may be disabled,
1082 			 * depending on driver status
1083 			 */
1084 			disable_rams_ecc(fman->fpm_regs);
1085 			tmp &= ~FPM_IRAM_ECC_ERR_EX_EN;
1086 		}
1087 		iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1088 		break;
1089 	case FMAN_EX_MURAM_ECC:
1090 		tmp = ioread32be(&fman->fpm_regs->fm_rie);
1091 		if (enable) {
1092 			/* enable ECC if not enabled */
1093 			enable_rams_ecc(fman->fpm_regs);
1094 			/* enable ECC interrupts */
1095 			tmp |= FPM_MURAM_ECC_ERR_EX_EN;
1096 		} else {
1097 			/* ECC mechanism may be disabled,
1098 			 * depending on driver status
1099 			 */
1100 			disable_rams_ecc(fman->fpm_regs);
1101 			tmp &= ~FPM_MURAM_ECC_ERR_EX_EN;
1102 		}
1103 		iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1104 		break;
1105 	default:
1106 		return -EINVAL;
1107 	}
1108 	return 0;
1109 }
1110 
1111 static void resume(struct fman_fpm_regs __iomem *fpm_rg)
1112 {
1113 	u32 tmp;
1114 
1115 	tmp = ioread32be(&fpm_rg->fmfp_ee);
1116 	/* clear tmp_reg event bits in order not to clear standing events */
1117 	tmp &= ~(FPM_EV_MASK_DOUBLE_ECC |
1118 		 FPM_EV_MASK_STALL | FPM_EV_MASK_SINGLE_ECC);
1119 	tmp |= FPM_EV_MASK_RELEASE_FM;
1120 
1121 	iowrite32be(tmp, &fpm_rg->fmfp_ee);
1122 }
1123 
1124 static int fill_soc_specific_params(struct fman_state_struct *state)
1125 {
1126 	u8 minor = state->rev_info.minor;
1127 	/* P4080 - Major 2
1128 	 * P2041/P3041/P5020/P5040 - Major 3
1129 	 * Tx/Bx - Major 6
1130 	 */
1131 	switch (state->rev_info.major) {
1132 	case 3:
1133 		state->bmi_max_fifo_size	= 160 * 1024;
1134 		state->fm_iram_size		= 64 * 1024;
1135 		state->dma_thresh_max_commq	= 31;
1136 		state->dma_thresh_max_buf	= 127;
1137 		state->qmi_max_num_of_tnums	= 64;
1138 		state->qmi_def_tnums_thresh	= 48;
1139 		state->bmi_max_num_of_tasks	= 128;
1140 		state->max_num_of_open_dmas	= 32;
1141 		state->fm_port_num_of_cg	= 256;
1142 		state->num_of_rx_ports	= 6;
1143 		state->total_fifo_size	= 136 * 1024;
1144 		break;
1145 
1146 	case 2:
1147 		state->bmi_max_fifo_size	= 160 * 1024;
1148 		state->fm_iram_size		= 64 * 1024;
1149 		state->dma_thresh_max_commq	= 31;
1150 		state->dma_thresh_max_buf	= 127;
1151 		state->qmi_max_num_of_tnums	= 64;
1152 		state->qmi_def_tnums_thresh	= 48;
1153 		state->bmi_max_num_of_tasks	= 128;
1154 		state->max_num_of_open_dmas	= 32;
1155 		state->fm_port_num_of_cg	= 256;
1156 		state->num_of_rx_ports	= 5;
1157 		state->total_fifo_size	= 100 * 1024;
1158 		break;
1159 
1160 	case 6:
1161 		state->dma_thresh_max_commq	= 83;
1162 		state->dma_thresh_max_buf	= 127;
1163 		state->qmi_max_num_of_tnums	= 64;
1164 		state->qmi_def_tnums_thresh	= 32;
1165 		state->fm_port_num_of_cg	= 256;
1166 
1167 		/* FManV3L */
1168 		if (minor == 1 || minor == 4) {
1169 			state->bmi_max_fifo_size	= 192 * 1024;
1170 			state->bmi_max_num_of_tasks	= 64;
1171 			state->max_num_of_open_dmas	= 32;
1172 			state->num_of_rx_ports		= 5;
1173 			if (minor == 1)
1174 				state->fm_iram_size	= 32 * 1024;
1175 			else
1176 				state->fm_iram_size	= 64 * 1024;
1177 			state->total_fifo_size		= 156 * 1024;
1178 		}
1179 		/* FManV3H */
1180 		else if (minor == 0 || minor == 2 || minor == 3) {
1181 			state->bmi_max_fifo_size	= 384 * 1024;
1182 			state->fm_iram_size		= 64 * 1024;
1183 			state->bmi_max_num_of_tasks	= 128;
1184 			state->max_num_of_open_dmas	= 84;
1185 			state->num_of_rx_ports		= 8;
1186 			state->total_fifo_size		= 295 * 1024;
1187 		} else {
1188 			pr_err("Unsupported FManv3 version\n");
1189 			return -EINVAL;
1190 		}
1191 
1192 		break;
1193 	default:
1194 		pr_err("Unsupported FMan version\n");
1195 		return -EINVAL;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static bool is_init_done(struct fman_cfg *cfg)
1202 {
1203 	/* Checks if FMan driver parameters were initialized */
1204 	if (!cfg)
1205 		return true;
1206 
1207 	return false;
1208 }
1209 
1210 static void free_init_resources(struct fman *fman)
1211 {
1212 	if (fman->cam_offset)
1213 		fman_muram_free_mem(fman->muram, fman->cam_offset,
1214 				    fman->cam_size);
1215 	if (fman->fifo_offset)
1216 		fman_muram_free_mem(fman->muram, fman->fifo_offset,
1217 				    fman->fifo_size);
1218 }
1219 
1220 static irqreturn_t bmi_err_event(struct fman *fman)
1221 {
1222 	u32 event, mask, force;
1223 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1224 	irqreturn_t ret = IRQ_NONE;
1225 
1226 	event = ioread32be(&bmi_rg->fmbm_ievr);
1227 	mask = ioread32be(&bmi_rg->fmbm_ier);
1228 	event &= mask;
1229 	/* clear the forced events */
1230 	force = ioread32be(&bmi_rg->fmbm_ifr);
1231 	if (force & event)
1232 		iowrite32be(force & ~event, &bmi_rg->fmbm_ifr);
1233 	/* clear the acknowledged events */
1234 	iowrite32be(event, &bmi_rg->fmbm_ievr);
1235 
1236 	if (event & BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC)
1237 		ret = fman->exception_cb(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC);
1238 	if (event & BMI_ERR_INTR_EN_LIST_RAM_ECC)
1239 		ret = fman->exception_cb(fman, FMAN_EX_BMI_LIST_RAM_ECC);
1240 	if (event & BMI_ERR_INTR_EN_STATISTICS_RAM_ECC)
1241 		ret = fman->exception_cb(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC);
1242 	if (event & BMI_ERR_INTR_EN_DISPATCH_RAM_ECC)
1243 		ret = fman->exception_cb(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC);
1244 
1245 	return ret;
1246 }
1247 
1248 static irqreturn_t qmi_err_event(struct fman *fman)
1249 {
1250 	u32 event, mask, force;
1251 	struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1252 	irqreturn_t ret = IRQ_NONE;
1253 
1254 	event = ioread32be(&qmi_rg->fmqm_eie);
1255 	mask = ioread32be(&qmi_rg->fmqm_eien);
1256 	event &= mask;
1257 
1258 	/* clear the forced events */
1259 	force = ioread32be(&qmi_rg->fmqm_eif);
1260 	if (force & event)
1261 		iowrite32be(force & ~event, &qmi_rg->fmqm_eif);
1262 	/* clear the acknowledged events */
1263 	iowrite32be(event, &qmi_rg->fmqm_eie);
1264 
1265 	if (event & QMI_ERR_INTR_EN_DOUBLE_ECC)
1266 		ret = fman->exception_cb(fman, FMAN_EX_QMI_DOUBLE_ECC);
1267 	if (event & QMI_ERR_INTR_EN_DEQ_FROM_DEF)
1268 		ret = fman->exception_cb(fman,
1269 					 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID);
1270 
1271 	return ret;
1272 }
1273 
1274 static irqreturn_t dma_err_event(struct fman *fman)
1275 {
1276 	u32 status, mask, com_id;
1277 	u8 tnum, port_id, relative_port_id;
1278 	u16 liodn;
1279 	struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
1280 	irqreturn_t ret = IRQ_NONE;
1281 
1282 	status = ioread32be(&dma_rg->fmdmsr);
1283 	mask = ioread32be(&dma_rg->fmdmmr);
1284 
1285 	/* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */
1286 	if ((mask & DMA_MODE_BER) != DMA_MODE_BER)
1287 		status &= ~DMA_STATUS_BUS_ERR;
1288 
1289 	/* clear relevant bits if mask has no DMA_MODE_ECC */
1290 	if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC)
1291 		status &= ~(DMA_STATUS_FM_SPDAT_ECC |
1292 			    DMA_STATUS_READ_ECC |
1293 			    DMA_STATUS_SYSTEM_WRITE_ECC |
1294 			    DMA_STATUS_FM_WRITE_ECC);
1295 
1296 	/* clear set events */
1297 	iowrite32be(status, &dma_rg->fmdmsr);
1298 
1299 	if (status & DMA_STATUS_BUS_ERR) {
1300 		u64 addr;
1301 
1302 		addr = (u64)ioread32be(&dma_rg->fmdmtal);
1303 		addr |= ((u64)(ioread32be(&dma_rg->fmdmtah)) << 32);
1304 
1305 		com_id = ioread32be(&dma_rg->fmdmtcid);
1306 		port_id = (u8)(((com_id & DMA_TRANSFER_PORTID_MASK) >>
1307 			       DMA_TRANSFER_PORTID_SHIFT));
1308 		relative_port_id =
1309 		hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
1310 		tnum = (u8)((com_id & DMA_TRANSFER_TNUM_MASK) >>
1311 			    DMA_TRANSFER_TNUM_SHIFT);
1312 		liodn = (u16)(com_id & DMA_TRANSFER_LIODN_MASK);
1313 		ret = fman->bus_error_cb(fman, relative_port_id, addr, tnum,
1314 					 liodn);
1315 	}
1316 	if (status & DMA_STATUS_FM_SPDAT_ECC)
1317 		ret = fman->exception_cb(fman, FMAN_EX_DMA_SINGLE_PORT_ECC);
1318 	if (status & DMA_STATUS_READ_ECC)
1319 		ret = fman->exception_cb(fman, FMAN_EX_DMA_READ_ECC);
1320 	if (status & DMA_STATUS_SYSTEM_WRITE_ECC)
1321 		ret = fman->exception_cb(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC);
1322 	if (status & DMA_STATUS_FM_WRITE_ECC)
1323 		ret = fman->exception_cb(fman, FMAN_EX_DMA_FM_WRITE_ECC);
1324 
1325 	return ret;
1326 }
1327 
1328 static irqreturn_t fpm_err_event(struct fman *fman)
1329 {
1330 	u32 event;
1331 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1332 	irqreturn_t ret = IRQ_NONE;
1333 
1334 	event = ioread32be(&fpm_rg->fmfp_ee);
1335 	/* clear the all occurred events */
1336 	iowrite32be(event, &fpm_rg->fmfp_ee);
1337 
1338 	if ((event & FPM_EV_MASK_DOUBLE_ECC) &&
1339 	    (event & FPM_EV_MASK_DOUBLE_ECC_EN))
1340 		ret = fman->exception_cb(fman, FMAN_EX_FPM_DOUBLE_ECC);
1341 	if ((event & FPM_EV_MASK_STALL) && (event & FPM_EV_MASK_STALL_EN))
1342 		ret = fman->exception_cb(fman, FMAN_EX_FPM_STALL_ON_TASKS);
1343 	if ((event & FPM_EV_MASK_SINGLE_ECC) &&
1344 	    (event & FPM_EV_MASK_SINGLE_ECC_EN))
1345 		ret = fman->exception_cb(fman, FMAN_EX_FPM_SINGLE_ECC);
1346 
1347 	return ret;
1348 }
1349 
1350 static irqreturn_t muram_err_intr(struct fman *fman)
1351 {
1352 	u32 event, mask;
1353 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1354 	irqreturn_t ret = IRQ_NONE;
1355 
1356 	event = ioread32be(&fpm_rg->fm_rcr);
1357 	mask = ioread32be(&fpm_rg->fm_rie);
1358 
1359 	/* clear MURAM event bit (do not clear IRAM event) */
1360 	iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr);
1361 
1362 	if ((mask & FPM_MURAM_ECC_ERR_EX_EN) && (event & FPM_RAM_MURAM_ECC))
1363 		ret = fman->exception_cb(fman, FMAN_EX_MURAM_ECC);
1364 
1365 	return ret;
1366 }
1367 
1368 static irqreturn_t qmi_event(struct fman *fman)
1369 {
1370 	u32 event, mask, force;
1371 	struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1372 	irqreturn_t ret = IRQ_NONE;
1373 
1374 	event = ioread32be(&qmi_rg->fmqm_ie);
1375 	mask = ioread32be(&qmi_rg->fmqm_ien);
1376 	event &= mask;
1377 	/* clear the forced events */
1378 	force = ioread32be(&qmi_rg->fmqm_if);
1379 	if (force & event)
1380 		iowrite32be(force & ~event, &qmi_rg->fmqm_if);
1381 	/* clear the acknowledged events */
1382 	iowrite32be(event, &qmi_rg->fmqm_ie);
1383 
1384 	if (event & QMI_INTR_EN_SINGLE_ECC)
1385 		ret = fman->exception_cb(fman, FMAN_EX_QMI_SINGLE_ECC);
1386 
1387 	return ret;
1388 }
1389 
1390 static void enable_time_stamp(struct fman *fman)
1391 {
1392 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1393 	u16 fm_clk_freq = fman->state->fm_clk_freq;
1394 	u32 tmp, intgr, ts_freq;
1395 	u64 frac;
1396 
1397 	ts_freq = (u32)(1 << fman->state->count1_micro_bit);
1398 	/* configure timestamp so that bit 8 will count 1 microsecond
1399 	 * Find effective count rate at TIMESTAMP least significant bits:
1400 	 * Effective_Count_Rate = 1MHz x 2^8 = 256MHz
1401 	 * Find frequency ratio between effective count rate and the clock:
1402 	 * Effective_Count_Rate / CLK e.g. for 600 MHz clock:
1403 	 * 256/600 = 0.4266666...
1404 	 */
1405 
1406 	intgr = ts_freq / fm_clk_freq;
1407 	/* we multiply by 2^16 to keep the fraction of the division
1408 	 * we do not div back, since we write this value as a fraction
1409 	 * see spec
1410 	 */
1411 
1412 	frac = ((ts_freq << 16) - (intgr << 16) * fm_clk_freq) / fm_clk_freq;
1413 	/* we check remainder of the division in order to round up if not int */
1414 	if (((ts_freq << 16) - (intgr << 16) * fm_clk_freq) % fm_clk_freq)
1415 		frac++;
1416 
1417 	tmp = (intgr << FPM_TS_INT_SHIFT) | (u16)frac;
1418 	iowrite32be(tmp, &fpm_rg->fmfp_tsc2);
1419 
1420 	/* enable timestamp with original clock */
1421 	iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1);
1422 	fman->state->enabled_time_stamp = true;
1423 }
1424 
1425 static int clear_iram(struct fman *fman)
1426 {
1427 	struct fman_iram_regs __iomem *iram;
1428 	int i, count;
1429 
1430 	iram = fman->base_addr + IMEM_OFFSET;
1431 
1432 	/* Enable the auto-increment */
1433 	iowrite32be(IRAM_IADD_AIE, &iram->iadd);
1434 	count = 100;
1435 	do {
1436 		udelay(1);
1437 	} while ((ioread32be(&iram->iadd) != IRAM_IADD_AIE) && --count);
1438 	if (count == 0)
1439 		return -EBUSY;
1440 
1441 	for (i = 0; i < (fman->state->fm_iram_size / 4); i++)
1442 		iowrite32be(0xffffffff, &iram->idata);
1443 
1444 	iowrite32be(fman->state->fm_iram_size - 4, &iram->iadd);
1445 	count = 100;
1446 	do {
1447 		udelay(1);
1448 	} while ((ioread32be(&iram->idata) != 0xffffffff) && --count);
1449 	if (count == 0)
1450 		return -EBUSY;
1451 
1452 	return 0;
1453 }
1454 
1455 static u32 get_exception_flag(enum fman_exceptions exception)
1456 {
1457 	u32 bit_mask;
1458 
1459 	switch (exception) {
1460 	case FMAN_EX_DMA_BUS_ERROR:
1461 		bit_mask = EX_DMA_BUS_ERROR;
1462 		break;
1463 	case FMAN_EX_DMA_SINGLE_PORT_ECC:
1464 		bit_mask = EX_DMA_SINGLE_PORT_ECC;
1465 		break;
1466 	case FMAN_EX_DMA_READ_ECC:
1467 		bit_mask = EX_DMA_READ_ECC;
1468 		break;
1469 	case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
1470 		bit_mask = EX_DMA_SYSTEM_WRITE_ECC;
1471 		break;
1472 	case FMAN_EX_DMA_FM_WRITE_ECC:
1473 		bit_mask = EX_DMA_FM_WRITE_ECC;
1474 		break;
1475 	case FMAN_EX_FPM_STALL_ON_TASKS:
1476 		bit_mask = EX_FPM_STALL_ON_TASKS;
1477 		break;
1478 	case FMAN_EX_FPM_SINGLE_ECC:
1479 		bit_mask = EX_FPM_SINGLE_ECC;
1480 		break;
1481 	case FMAN_EX_FPM_DOUBLE_ECC:
1482 		bit_mask = EX_FPM_DOUBLE_ECC;
1483 		break;
1484 	case FMAN_EX_QMI_SINGLE_ECC:
1485 		bit_mask = EX_QMI_SINGLE_ECC;
1486 		break;
1487 	case FMAN_EX_QMI_DOUBLE_ECC:
1488 		bit_mask = EX_QMI_DOUBLE_ECC;
1489 		break;
1490 	case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1491 		bit_mask = EX_QMI_DEQ_FROM_UNKNOWN_PORTID;
1492 		break;
1493 	case FMAN_EX_BMI_LIST_RAM_ECC:
1494 		bit_mask = EX_BMI_LIST_RAM_ECC;
1495 		break;
1496 	case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1497 		bit_mask = EX_BMI_STORAGE_PROFILE_ECC;
1498 		break;
1499 	case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1500 		bit_mask = EX_BMI_STATISTICS_RAM_ECC;
1501 		break;
1502 	case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1503 		bit_mask = EX_BMI_DISPATCH_RAM_ECC;
1504 		break;
1505 	case FMAN_EX_MURAM_ECC:
1506 		bit_mask = EX_MURAM_ECC;
1507 		break;
1508 	default:
1509 		bit_mask = 0;
1510 		break;
1511 	}
1512 
1513 	return bit_mask;
1514 }
1515 
1516 static int get_module_event(enum fman_event_modules module, u8 mod_id,
1517 			    enum fman_intr_type intr_type)
1518 {
1519 	int event;
1520 
1521 	switch (module) {
1522 	case FMAN_MOD_MAC:
1523 		if (intr_type == FMAN_INTR_TYPE_ERR)
1524 			event = FMAN_EV_ERR_MAC0 + mod_id;
1525 		else
1526 			event = FMAN_EV_MAC0 + mod_id;
1527 		break;
1528 	case FMAN_MOD_FMAN_CTRL:
1529 		if (intr_type == FMAN_INTR_TYPE_ERR)
1530 			event = FMAN_EV_CNT;
1531 		else
1532 			event = (FMAN_EV_FMAN_CTRL_0 + mod_id);
1533 		break;
1534 	case FMAN_MOD_DUMMY_LAST:
1535 		event = FMAN_EV_CNT;
1536 		break;
1537 	default:
1538 		event = FMAN_EV_CNT;
1539 		break;
1540 	}
1541 
1542 	return event;
1543 }
1544 
1545 static int set_size_of_fifo(struct fman *fman, u8 port_id, u32 *size_of_fifo,
1546 			    u32 *extra_size_of_fifo)
1547 {
1548 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1549 	u32 fifo = *size_of_fifo;
1550 	u32 extra_fifo = *extra_size_of_fifo;
1551 	u32 tmp;
1552 
1553 	/* if this is the first time a port requires extra_fifo_pool_size,
1554 	 * the total extra_fifo_pool_size must be initialized to 1 buffer per
1555 	 * port
1556 	 */
1557 	if (extra_fifo && !fman->state->extra_fifo_pool_size)
1558 		fman->state->extra_fifo_pool_size =
1559 			fman->state->num_of_rx_ports * FMAN_BMI_FIFO_UNITS;
1560 
1561 	fman->state->extra_fifo_pool_size =
1562 		max(fman->state->extra_fifo_pool_size, extra_fifo);
1563 
1564 	/* check that there are enough uncommitted fifo size */
1565 	if ((fman->state->accumulated_fifo_size + fifo) >
1566 	    (fman->state->total_fifo_size -
1567 	    fman->state->extra_fifo_pool_size)) {
1568 		dev_err(fman->dev, "%s: Requested fifo size and extra size exceed total FIFO size.\n",
1569 			__func__);
1570 		return -EAGAIN;
1571 	}
1572 
1573 	/* Read, modify and write to HW */
1574 	tmp = (fifo / FMAN_BMI_FIFO_UNITS - 1) |
1575 	       ((extra_fifo / FMAN_BMI_FIFO_UNITS) <<
1576 	       BMI_EXTRA_FIFO_SIZE_SHIFT);
1577 	iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]);
1578 
1579 	/* update accumulated */
1580 	fman->state->accumulated_fifo_size += fifo;
1581 
1582 	return 0;
1583 }
1584 
1585 static int set_num_of_tasks(struct fman *fman, u8 port_id, u8 *num_of_tasks,
1586 			    u8 *num_of_extra_tasks)
1587 {
1588 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1589 	u8 tasks = *num_of_tasks;
1590 	u8 extra_tasks = *num_of_extra_tasks;
1591 	u32 tmp;
1592 
1593 	if (extra_tasks)
1594 		fman->state->extra_tasks_pool_size =
1595 		max(fman->state->extra_tasks_pool_size, extra_tasks);
1596 
1597 	/* check that there are enough uncommitted tasks */
1598 	if ((fman->state->accumulated_num_of_tasks + tasks) >
1599 	    (fman->state->total_num_of_tasks -
1600 	     fman->state->extra_tasks_pool_size)) {
1601 		dev_err(fman->dev, "%s: Requested num_of_tasks and extra tasks pool for fm%d exceed total num_of_tasks.\n",
1602 			__func__, fman->state->fm_id);
1603 		return -EAGAIN;
1604 	}
1605 	/* update accumulated */
1606 	fman->state->accumulated_num_of_tasks += tasks;
1607 
1608 	/* Write to HW */
1609 	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1610 	    ~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK);
1611 	tmp |= ((u32)((tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) |
1612 		(u32)(extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT));
1613 	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1614 
1615 	return 0;
1616 }
1617 
1618 static int set_num_of_open_dmas(struct fman *fman, u8 port_id,
1619 				u8 *num_of_open_dmas,
1620 				u8 *num_of_extra_open_dmas)
1621 {
1622 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1623 	u8 open_dmas = *num_of_open_dmas;
1624 	u8 extra_open_dmas = *num_of_extra_open_dmas;
1625 	u8 total_num_dmas = 0, current_val = 0, current_extra_val = 0;
1626 	u32 tmp;
1627 
1628 	if (!open_dmas) {
1629 		/* Configuration according to values in the HW.
1630 		 * read the current number of open Dma's
1631 		 */
1632 		tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1633 		current_extra_val = (u8)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >>
1634 					 BMI_EXTRA_NUM_OF_DMAS_SHIFT);
1635 
1636 		tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1637 		current_val = (u8)(((tmp & BMI_NUM_OF_DMAS_MASK) >>
1638 				   BMI_NUM_OF_DMAS_SHIFT) + 1);
1639 
1640 		/* This is the first configuration and user did not
1641 		 * specify value (!open_dmas), reset values will be used
1642 		 * and we just save these values for resource management
1643 		 */
1644 		fman->state->extra_open_dmas_pool_size =
1645 			(u8)max(fman->state->extra_open_dmas_pool_size,
1646 				current_extra_val);
1647 		fman->state->accumulated_num_of_open_dmas += current_val;
1648 		*num_of_open_dmas = current_val;
1649 		*num_of_extra_open_dmas = current_extra_val;
1650 		return 0;
1651 	}
1652 
1653 	if (extra_open_dmas > current_extra_val)
1654 		fman->state->extra_open_dmas_pool_size =
1655 		    (u8)max(fman->state->extra_open_dmas_pool_size,
1656 			    extra_open_dmas);
1657 
1658 	if ((fman->state->rev_info.major < 6) &&
1659 	    (fman->state->accumulated_num_of_open_dmas - current_val +
1660 	     open_dmas > fman->state->max_num_of_open_dmas)) {
1661 		dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds total num_of_open_dmas.\n",
1662 			__func__, fman->state->fm_id);
1663 		return -EAGAIN;
1664 	} else if ((fman->state->rev_info.major >= 6) &&
1665 		   !((fman->state->rev_info.major == 6) &&
1666 		   (fman->state->rev_info.minor == 0)) &&
1667 		   (fman->state->accumulated_num_of_open_dmas -
1668 		   current_val + open_dmas >
1669 		   fman->state->dma_thresh_max_commq + 1)) {
1670 		dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds DMA Command queue (%d)\n",
1671 			__func__, fman->state->fm_id,
1672 		       fman->state->dma_thresh_max_commq + 1);
1673 		return -EAGAIN;
1674 	}
1675 
1676 	WARN_ON(fman->state->accumulated_num_of_open_dmas < current_val);
1677 	/* update acummulated */
1678 	fman->state->accumulated_num_of_open_dmas -= current_val;
1679 	fman->state->accumulated_num_of_open_dmas += open_dmas;
1680 
1681 	if (fman->state->rev_info.major < 6)
1682 		total_num_dmas =
1683 		    (u8)(fman->state->accumulated_num_of_open_dmas +
1684 		    fman->state->extra_open_dmas_pool_size);
1685 
1686 	/* calculate reg */
1687 	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1688 	    ~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK);
1689 	tmp |= (u32)(((open_dmas - 1) << BMI_NUM_OF_DMAS_SHIFT) |
1690 			   (extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT));
1691 	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1692 
1693 	/* update total num of DMA's with committed number of open DMAS,
1694 	 * and max uncommitted pool.
1695 	 */
1696 	if (total_num_dmas) {
1697 		tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK;
1698 		tmp |= (u32)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT;
1699 		iowrite32be(tmp, &bmi_rg->fmbm_cfg2);
1700 	}
1701 
1702 	return 0;
1703 }
1704 
1705 static int fman_config(struct fman *fman)
1706 {
1707 	void __iomem *base_addr;
1708 	int err;
1709 
1710 	base_addr = fman->dts_params.base_addr;
1711 
1712 	fman->state = kzalloc(sizeof(*fman->state), GFP_KERNEL);
1713 	if (!fman->state)
1714 		goto err_fm_state;
1715 
1716 	/* Allocate the FM driver's parameters structure */
1717 	fman->cfg = kzalloc(sizeof(*fman->cfg), GFP_KERNEL);
1718 	if (!fman->cfg)
1719 		goto err_fm_drv;
1720 
1721 	/* Initialize MURAM block */
1722 	fman->muram =
1723 		fman_muram_init(fman->dts_params.muram_res.start,
1724 				resource_size(&fman->dts_params.muram_res));
1725 	if (!fman->muram)
1726 		goto err_fm_soc_specific;
1727 
1728 	/* Initialize FM parameters which will be kept by the driver */
1729 	fman->state->fm_id = fman->dts_params.id;
1730 	fman->state->fm_clk_freq = fman->dts_params.clk_freq;
1731 	fman->state->qman_channel_base = fman->dts_params.qman_channel_base;
1732 	fman->state->num_of_qman_channels =
1733 		fman->dts_params.num_of_qman_channels;
1734 	fman->state->res = fman->dts_params.res;
1735 	fman->exception_cb = fman_exceptions;
1736 	fman->bus_error_cb = fman_bus_error;
1737 	fman->fpm_regs = base_addr + FPM_OFFSET;
1738 	fman->bmi_regs = base_addr + BMI_OFFSET;
1739 	fman->qmi_regs = base_addr + QMI_OFFSET;
1740 	fman->dma_regs = base_addr + DMA_OFFSET;
1741 	fman->hwp_regs = base_addr + HWP_OFFSET;
1742 	fman->kg_regs = base_addr + KG_OFFSET;
1743 	fman->base_addr = base_addr;
1744 
1745 	spin_lock_init(&fman->spinlock);
1746 	fman_defconfig(fman->cfg);
1747 
1748 	fman->state->extra_fifo_pool_size = 0;
1749 	fman->state->exceptions = (EX_DMA_BUS_ERROR                 |
1750 					EX_DMA_READ_ECC              |
1751 					EX_DMA_SYSTEM_WRITE_ECC      |
1752 					EX_DMA_FM_WRITE_ECC          |
1753 					EX_FPM_STALL_ON_TASKS        |
1754 					EX_FPM_SINGLE_ECC            |
1755 					EX_FPM_DOUBLE_ECC            |
1756 					EX_QMI_DEQ_FROM_UNKNOWN_PORTID |
1757 					EX_BMI_LIST_RAM_ECC          |
1758 					EX_BMI_STORAGE_PROFILE_ECC   |
1759 					EX_BMI_STATISTICS_RAM_ECC    |
1760 					EX_MURAM_ECC                 |
1761 					EX_BMI_DISPATCH_RAM_ECC      |
1762 					EX_QMI_DOUBLE_ECC            |
1763 					EX_QMI_SINGLE_ECC);
1764 
1765 	/* Read FMan revision for future use*/
1766 	fman_get_revision(fman, &fman->state->rev_info);
1767 
1768 	err = fill_soc_specific_params(fman->state);
1769 	if (err)
1770 		goto err_fm_soc_specific;
1771 
1772 	/* FM_AID_MODE_NO_TNUM_SW005 Errata workaround */
1773 	if (fman->state->rev_info.major >= 6)
1774 		fman->cfg->dma_aid_mode = FMAN_DMA_AID_OUT_PORT_ID;
1775 
1776 	fman->cfg->qmi_def_tnums_thresh = fman->state->qmi_def_tnums_thresh;
1777 
1778 	fman->state->total_num_of_tasks =
1779 	(u8)DFLT_TOTAL_NUM_OF_TASKS(fman->state->rev_info.major,
1780 				    fman->state->rev_info.minor,
1781 				    fman->state->bmi_max_num_of_tasks);
1782 
1783 	if (fman->state->rev_info.major < 6) {
1784 		fman->cfg->dma_comm_qtsh_clr_emer =
1785 		(u8)DFLT_DMA_COMM_Q_LOW(fman->state->rev_info.major,
1786 					fman->state->dma_thresh_max_commq);
1787 
1788 		fman->cfg->dma_comm_qtsh_asrt_emer =
1789 		(u8)DFLT_DMA_COMM_Q_HIGH(fman->state->rev_info.major,
1790 					 fman->state->dma_thresh_max_commq);
1791 
1792 		fman->cfg->dma_cam_num_of_entries =
1793 		DFLT_DMA_CAM_NUM_OF_ENTRIES(fman->state->rev_info.major);
1794 
1795 		fman->cfg->dma_read_buf_tsh_clr_emer =
1796 		DFLT_DMA_READ_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1797 
1798 		fman->cfg->dma_read_buf_tsh_asrt_emer =
1799 		DFLT_DMA_READ_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1800 
1801 		fman->cfg->dma_write_buf_tsh_clr_emer =
1802 		DFLT_DMA_WRITE_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1803 
1804 		fman->cfg->dma_write_buf_tsh_asrt_emer =
1805 		DFLT_DMA_WRITE_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1806 
1807 		fman->cfg->dma_axi_dbg_num_of_beats =
1808 		DFLT_AXI_DBG_NUM_OF_BEATS;
1809 	}
1810 
1811 	return 0;
1812 
1813 err_fm_soc_specific:
1814 	kfree(fman->cfg);
1815 err_fm_drv:
1816 	kfree(fman->state);
1817 err_fm_state:
1818 	kfree(fman);
1819 	return -EINVAL;
1820 }
1821 
1822 static int fman_reset(struct fman *fman)
1823 {
1824 	u32 count;
1825 	int err = 0;
1826 
1827 	if (fman->state->rev_info.major < 6) {
1828 		iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc);
1829 		/* Wait for reset completion */
1830 		count = 100;
1831 		do {
1832 			udelay(1);
1833 		} while (((ioread32be(&fman->fpm_regs->fm_rstc)) &
1834 			 FPM_RSTC_FM_RESET) && --count);
1835 		if (count == 0)
1836 			err = -EBUSY;
1837 
1838 		goto _return;
1839 	} else {
1840 #ifdef CONFIG_PPC
1841 		struct device_node *guts_node;
1842 		struct ccsr_guts __iomem *guts_regs;
1843 		u32 devdisr2, reg;
1844 
1845 		/* Errata A007273 */
1846 		guts_node =
1847 			of_find_compatible_node(NULL, NULL,
1848 						"fsl,qoriq-device-config-2.0");
1849 		if (!guts_node) {
1850 			dev_err(fman->dev, "%s: Couldn't find guts node\n",
1851 				__func__);
1852 			goto guts_node;
1853 		}
1854 
1855 		guts_regs = of_iomap(guts_node, 0);
1856 		if (!guts_regs) {
1857 			dev_err(fman->dev, "%s: Couldn't map %pOF regs\n",
1858 				__func__, guts_node);
1859 			goto guts_regs;
1860 		}
1861 #define FMAN1_ALL_MACS_MASK	0xFCC00000
1862 #define FMAN2_ALL_MACS_MASK	0x000FCC00
1863 		/* Read current state */
1864 		devdisr2 = ioread32be(&guts_regs->devdisr2);
1865 		if (fman->dts_params.id == 0)
1866 			reg = devdisr2 & ~FMAN1_ALL_MACS_MASK;
1867 		else
1868 			reg = devdisr2 & ~FMAN2_ALL_MACS_MASK;
1869 
1870 		/* Enable all MACs */
1871 		iowrite32be(reg, &guts_regs->devdisr2);
1872 #endif
1873 
1874 		/* Perform FMan reset */
1875 		iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc);
1876 
1877 		/* Wait for reset completion */
1878 		count = 100;
1879 		do {
1880 			udelay(1);
1881 		} while (((ioread32be(&fman->fpm_regs->fm_rstc)) &
1882 			 FPM_RSTC_FM_RESET) && --count);
1883 		if (count == 0) {
1884 #ifdef CONFIG_PPC
1885 			iounmap(guts_regs);
1886 			of_node_put(guts_node);
1887 #endif
1888 			err = -EBUSY;
1889 			goto _return;
1890 		}
1891 #ifdef CONFIG_PPC
1892 
1893 		/* Restore devdisr2 value */
1894 		iowrite32be(devdisr2, &guts_regs->devdisr2);
1895 
1896 		iounmap(guts_regs);
1897 		of_node_put(guts_node);
1898 #endif
1899 
1900 		goto _return;
1901 
1902 #ifdef CONFIG_PPC
1903 guts_regs:
1904 		of_node_put(guts_node);
1905 guts_node:
1906 		dev_dbg(fman->dev, "%s: Didn't perform FManV3 reset due to Errata A007273!\n",
1907 			__func__);
1908 #endif
1909 	}
1910 _return:
1911 	return err;
1912 }
1913 
1914 static int fman_init(struct fman *fman)
1915 {
1916 	struct fman_cfg *cfg = NULL;
1917 	int err = 0, i, count;
1918 
1919 	if (is_init_done(fman->cfg))
1920 		return -EINVAL;
1921 
1922 	fman->state->count1_micro_bit = FM_TIMESTAMP_1_USEC_BIT;
1923 
1924 	cfg = fman->cfg;
1925 
1926 	/* clear revision-dependent non existing exception */
1927 	if (fman->state->rev_info.major < 6)
1928 		fman->state->exceptions &= ~FMAN_EX_BMI_DISPATCH_RAM_ECC;
1929 
1930 	if (fman->state->rev_info.major >= 6)
1931 		fman->state->exceptions &= ~FMAN_EX_QMI_SINGLE_ECC;
1932 
1933 	/* clear CPG */
1934 	memset_io((void __iomem *)(fman->base_addr + CGP_OFFSET), 0,
1935 		  fman->state->fm_port_num_of_cg);
1936 
1937 	/* Save LIODN info before FMan reset
1938 	 * Skipping non-existent port 0 (i = 1)
1939 	 */
1940 	for (i = 1; i < FMAN_LIODN_TBL; i++) {
1941 		u32 liodn_base;
1942 
1943 		fman->liodn_offset[i] =
1944 			ioread32be(&fman->bmi_regs->fmbm_spliodn[i - 1]);
1945 		liodn_base = ioread32be(&fman->dma_regs->fmdmplr[i / 2]);
1946 		if (i % 2) {
1947 			/* FMDM_PLR LSB holds LIODN base for odd ports */
1948 			liodn_base &= DMA_LIODN_BASE_MASK;
1949 		} else {
1950 			/* FMDM_PLR MSB holds LIODN base for even ports */
1951 			liodn_base >>= DMA_LIODN_SHIFT;
1952 			liodn_base &= DMA_LIODN_BASE_MASK;
1953 		}
1954 		fman->liodn_base[i] = liodn_base;
1955 	}
1956 
1957 	err = fman_reset(fman);
1958 	if (err)
1959 		return err;
1960 
1961 	if (ioread32be(&fman->qmi_regs->fmqm_gs) & QMI_GS_HALT_NOT_BUSY) {
1962 		resume(fman->fpm_regs);
1963 		/* Wait until QMI is not in halt not busy state */
1964 		count = 100;
1965 		do {
1966 			udelay(1);
1967 		} while (((ioread32be(&fman->qmi_regs->fmqm_gs)) &
1968 			 QMI_GS_HALT_NOT_BUSY) && --count);
1969 		if (count == 0)
1970 			dev_warn(fman->dev, "%s: QMI is in halt not busy state\n",
1971 				 __func__);
1972 	}
1973 
1974 	if (clear_iram(fman) != 0)
1975 		return -EINVAL;
1976 
1977 	cfg->exceptions = fman->state->exceptions;
1978 
1979 	/* Init DMA Registers */
1980 
1981 	err = dma_init(fman);
1982 	if (err != 0) {
1983 		free_init_resources(fman);
1984 		return err;
1985 	}
1986 
1987 	/* Init FPM Registers */
1988 	fpm_init(fman->fpm_regs, fman->cfg);
1989 
1990 	/* define common resources */
1991 	/* allocate MURAM for FIFO according to total size */
1992 	fman->fifo_offset = fman_muram_alloc(fman->muram,
1993 					     fman->state->total_fifo_size);
1994 	if (IS_ERR_VALUE(fman->fifo_offset)) {
1995 		free_init_resources(fman);
1996 		dev_err(fman->dev, "%s: MURAM alloc for BMI FIFO failed\n",
1997 			__func__);
1998 		return -ENOMEM;
1999 	}
2000 
2001 	cfg->fifo_base_addr = fman->fifo_offset;
2002 	cfg->total_fifo_size = fman->state->total_fifo_size;
2003 	cfg->total_num_of_tasks = fman->state->total_num_of_tasks;
2004 	cfg->clk_freq = fman->state->fm_clk_freq;
2005 
2006 	/* Init BMI Registers */
2007 	bmi_init(fman->bmi_regs, fman->cfg);
2008 
2009 	/* Init QMI Registers */
2010 	qmi_init(fman->qmi_regs, fman->cfg);
2011 
2012 	/* Init HW Parser */
2013 	hwp_init(fman->hwp_regs);
2014 
2015 	/* Init KeyGen */
2016 	fman->keygen = keygen_init(fman->kg_regs);
2017 	if (!fman->keygen)
2018 		return -EINVAL;
2019 
2020 	err = enable(fman, cfg);
2021 	if (err != 0)
2022 		return err;
2023 
2024 	enable_time_stamp(fman);
2025 
2026 	kfree(fman->cfg);
2027 	fman->cfg = NULL;
2028 
2029 	return 0;
2030 }
2031 
2032 static int fman_set_exception(struct fman *fman,
2033 			      enum fman_exceptions exception, bool enable)
2034 {
2035 	u32 bit_mask = 0;
2036 
2037 	if (!is_init_done(fman->cfg))
2038 		return -EINVAL;
2039 
2040 	bit_mask = get_exception_flag(exception);
2041 	if (bit_mask) {
2042 		if (enable)
2043 			fman->state->exceptions |= bit_mask;
2044 		else
2045 			fman->state->exceptions &= ~bit_mask;
2046 	} else {
2047 		dev_err(fman->dev, "%s: Undefined exception (%d)\n",
2048 			__func__, exception);
2049 		return -EINVAL;
2050 	}
2051 
2052 	return set_exception(fman, exception, enable);
2053 }
2054 
2055 /**
2056  * fman_register_intr
2057  * @fman:	A Pointer to FMan device
2058  * @mod:	Calling module
2059  * @mod_id:	Module id (if more than 1 exists, '0' if not)
2060  * @intr_type:	Interrupt type (error/normal) selection.
2061  * @f_isr:	The interrupt service routine.
2062  * @h_src_arg:	Argument to be passed to f_isr.
2063  *
2064  * Used to register an event handler to be processed by FMan
2065  *
2066  * Return: 0 on success; Error code otherwise.
2067  */
2068 void fman_register_intr(struct fman *fman, enum fman_event_modules module,
2069 			u8 mod_id, enum fman_intr_type intr_type,
2070 			void (*isr_cb)(void *src_arg), void *src_arg)
2071 {
2072 	int event = 0;
2073 
2074 	event = get_module_event(module, mod_id, intr_type);
2075 	WARN_ON(event >= FMAN_EV_CNT);
2076 
2077 	/* register in local FM structure */
2078 	fman->intr_mng[event].isr_cb = isr_cb;
2079 	fman->intr_mng[event].src_handle = src_arg;
2080 }
2081 EXPORT_SYMBOL(fman_register_intr);
2082 
2083 /**
2084  * fman_unregister_intr
2085  * @fman:	A Pointer to FMan device
2086  * @mod:	Calling module
2087  * @mod_id:	Module id (if more than 1 exists, '0' if not)
2088  * @intr_type:	Interrupt type (error/normal) selection.
2089  *
2090  * Used to unregister an event handler to be processed by FMan
2091  *
2092  * Return: 0 on success; Error code otherwise.
2093  */
2094 void fman_unregister_intr(struct fman *fman, enum fman_event_modules module,
2095 			  u8 mod_id, enum fman_intr_type intr_type)
2096 {
2097 	int event = 0;
2098 
2099 	event = get_module_event(module, mod_id, intr_type);
2100 	WARN_ON(event >= FMAN_EV_CNT);
2101 
2102 	fman->intr_mng[event].isr_cb = NULL;
2103 	fman->intr_mng[event].src_handle = NULL;
2104 }
2105 EXPORT_SYMBOL(fman_unregister_intr);
2106 
2107 /**
2108  * fman_set_port_params
2109  * @fman:		A Pointer to FMan device
2110  * @port_params:	Port parameters
2111  *
2112  * Used by FMan Port to pass parameters to the FMan
2113  *
2114  * Return: 0 on success; Error code otherwise.
2115  */
2116 int fman_set_port_params(struct fman *fman,
2117 			 struct fman_port_init_params *port_params)
2118 {
2119 	int err;
2120 	unsigned long flags;
2121 	u8 port_id = port_params->port_id, mac_id;
2122 
2123 	spin_lock_irqsave(&fman->spinlock, flags);
2124 
2125 	err = set_num_of_tasks(fman, port_params->port_id,
2126 			       &port_params->num_of_tasks,
2127 			       &port_params->num_of_extra_tasks);
2128 	if (err)
2129 		goto return_err;
2130 
2131 	/* TX Ports */
2132 	if (port_params->port_type != FMAN_PORT_TYPE_RX) {
2133 		u32 enq_th, deq_th, reg;
2134 
2135 		/* update qmi ENQ/DEQ threshold */
2136 		fman->state->accumulated_num_of_deq_tnums +=
2137 			port_params->deq_pipeline_depth;
2138 		enq_th = (ioread32be(&fman->qmi_regs->fmqm_gc) &
2139 			  QMI_CFG_ENQ_MASK) >> QMI_CFG_ENQ_SHIFT;
2140 		/* if enq_th is too big, we reduce it to the max value
2141 		 * that is still 0
2142 		 */
2143 		if (enq_th >= (fman->state->qmi_max_num_of_tnums -
2144 		    fman->state->accumulated_num_of_deq_tnums)) {
2145 			enq_th =
2146 			fman->state->qmi_max_num_of_tnums -
2147 			fman->state->accumulated_num_of_deq_tnums - 1;
2148 
2149 			reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2150 			reg &= ~QMI_CFG_ENQ_MASK;
2151 			reg |= (enq_th << QMI_CFG_ENQ_SHIFT);
2152 			iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2153 		}
2154 
2155 		deq_th = ioread32be(&fman->qmi_regs->fmqm_gc) &
2156 				    QMI_CFG_DEQ_MASK;
2157 		/* if deq_th is too small, we enlarge it to the min
2158 		 * value that is still 0.
2159 		 * depTh may not be larger than 63
2160 		 * (fman->state->qmi_max_num_of_tnums-1).
2161 		 */
2162 		if ((deq_th <= fman->state->accumulated_num_of_deq_tnums) &&
2163 		    (deq_th < fman->state->qmi_max_num_of_tnums - 1)) {
2164 			deq_th = fman->state->accumulated_num_of_deq_tnums + 1;
2165 			reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2166 			reg &= ~QMI_CFG_DEQ_MASK;
2167 			reg |= deq_th;
2168 			iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2169 		}
2170 	}
2171 
2172 	err = set_size_of_fifo(fman, port_params->port_id,
2173 			       &port_params->size_of_fifo,
2174 			       &port_params->extra_size_of_fifo);
2175 	if (err)
2176 		goto return_err;
2177 
2178 	err = set_num_of_open_dmas(fman, port_params->port_id,
2179 				   &port_params->num_of_open_dmas,
2180 				   &port_params->num_of_extra_open_dmas);
2181 	if (err)
2182 		goto return_err;
2183 
2184 	set_port_liodn(fman, port_id, fman->liodn_base[port_id],
2185 		       fman->liodn_offset[port_id]);
2186 
2187 	if (fman->state->rev_info.major < 6)
2188 		set_port_order_restoration(fman->fpm_regs, port_id);
2189 
2190 	mac_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
2191 
2192 	if (port_params->max_frame_length >= fman->state->mac_mfl[mac_id]) {
2193 		fman->state->port_mfl[mac_id] = port_params->max_frame_length;
2194 	} else {
2195 		dev_warn(fman->dev, "%s: Port (%d) max_frame_length is smaller than MAC (%d) current MTU\n",
2196 			 __func__, port_id, mac_id);
2197 		err = -EINVAL;
2198 		goto return_err;
2199 	}
2200 
2201 	spin_unlock_irqrestore(&fman->spinlock, flags);
2202 
2203 	return 0;
2204 
2205 return_err:
2206 	spin_unlock_irqrestore(&fman->spinlock, flags);
2207 	return err;
2208 }
2209 EXPORT_SYMBOL(fman_set_port_params);
2210 
2211 /**
2212  * fman_reset_mac
2213  * @fman:	A Pointer to FMan device
2214  * @mac_id:	MAC id to be reset
2215  *
2216  * Reset a specific MAC
2217  *
2218  * Return: 0 on success; Error code otherwise.
2219  */
2220 int fman_reset_mac(struct fman *fman, u8 mac_id)
2221 {
2222 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
2223 	u32 msk, timeout = 100;
2224 
2225 	if (fman->state->rev_info.major >= 6) {
2226 		dev_err(fman->dev, "%s: FMan MAC reset no available for FMan V3!\n",
2227 			__func__);
2228 		return -EINVAL;
2229 	}
2230 
2231 	/* Get the relevant bit mask */
2232 	switch (mac_id) {
2233 	case 0:
2234 		msk = FPM_RSTC_MAC0_RESET;
2235 		break;
2236 	case 1:
2237 		msk = FPM_RSTC_MAC1_RESET;
2238 		break;
2239 	case 2:
2240 		msk = FPM_RSTC_MAC2_RESET;
2241 		break;
2242 	case 3:
2243 		msk = FPM_RSTC_MAC3_RESET;
2244 		break;
2245 	case 4:
2246 		msk = FPM_RSTC_MAC4_RESET;
2247 		break;
2248 	case 5:
2249 		msk = FPM_RSTC_MAC5_RESET;
2250 		break;
2251 	case 6:
2252 		msk = FPM_RSTC_MAC6_RESET;
2253 		break;
2254 	case 7:
2255 		msk = FPM_RSTC_MAC7_RESET;
2256 		break;
2257 	case 8:
2258 		msk = FPM_RSTC_MAC8_RESET;
2259 		break;
2260 	case 9:
2261 		msk = FPM_RSTC_MAC9_RESET;
2262 		break;
2263 	default:
2264 		dev_warn(fman->dev, "%s: Illegal MAC Id [%d]\n",
2265 			 __func__, mac_id);
2266 		return -EINVAL;
2267 	}
2268 
2269 	/* reset */
2270 	iowrite32be(msk, &fpm_rg->fm_rstc);
2271 	while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout)
2272 		udelay(10);
2273 
2274 	if (!timeout)
2275 		return -EIO;
2276 
2277 	return 0;
2278 }
2279 EXPORT_SYMBOL(fman_reset_mac);
2280 
2281 /**
2282  * fman_set_mac_max_frame
2283  * @fman:	A Pointer to FMan device
2284  * @mac_id:	MAC id
2285  * @mfl:	Maximum frame length
2286  *
2287  * Set maximum frame length of specific MAC in FMan driver
2288  *
2289  * Return: 0 on success; Error code otherwise.
2290  */
2291 int fman_set_mac_max_frame(struct fman *fman, u8 mac_id, u16 mfl)
2292 {
2293 	/* if port is already initialized, check that MaxFrameLength is smaller
2294 	 * or equal to the port's max
2295 	 */
2296 	if ((!fman->state->port_mfl[mac_id]) ||
2297 	    (mfl <= fman->state->port_mfl[mac_id])) {
2298 		fman->state->mac_mfl[mac_id] = mfl;
2299 	} else {
2300 		dev_warn(fman->dev, "%s: MAC max_frame_length is larger than Port max_frame_length\n",
2301 			 __func__);
2302 		return -EINVAL;
2303 	}
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL(fman_set_mac_max_frame);
2307 
2308 /**
2309  * fman_get_clock_freq
2310  * @fman:	A Pointer to FMan device
2311  *
2312  * Get FMan clock frequency
2313  *
2314  * Return: FMan clock frequency
2315  */
2316 u16 fman_get_clock_freq(struct fman *fman)
2317 {
2318 	return fman->state->fm_clk_freq;
2319 }
2320 
2321 /**
2322  * fman_get_bmi_max_fifo_size
2323  * @fman:	A Pointer to FMan device
2324  *
2325  * Get FMan maximum FIFO size
2326  *
2327  * Return: FMan Maximum FIFO size
2328  */
2329 u32 fman_get_bmi_max_fifo_size(struct fman *fman)
2330 {
2331 	return fman->state->bmi_max_fifo_size;
2332 }
2333 EXPORT_SYMBOL(fman_get_bmi_max_fifo_size);
2334 
2335 /**
2336  * fman_get_revision
2337  * @fman		- Pointer to the FMan module
2338  * @rev_info		- A structure of revision information parameters.
2339  *
2340  * Returns the FM revision
2341  *
2342  * Allowed only following fman_init().
2343  *
2344  * Return: 0 on success; Error code otherwise.
2345  */
2346 void fman_get_revision(struct fman *fman, struct fman_rev_info *rev_info)
2347 {
2348 	u32 tmp;
2349 
2350 	tmp = ioread32be(&fman->fpm_regs->fm_ip_rev_1);
2351 	rev_info->major = (u8)((tmp & FPM_REV1_MAJOR_MASK) >>
2352 				FPM_REV1_MAJOR_SHIFT);
2353 	rev_info->minor = tmp & FPM_REV1_MINOR_MASK;
2354 }
2355 EXPORT_SYMBOL(fman_get_revision);
2356 
2357 /**
2358  * fman_get_qman_channel_id
2359  * @fman:	A Pointer to FMan device
2360  * @port_id:	Port id
2361  *
2362  * Get QMan channel ID associated to the Port id
2363  *
2364  * Return: QMan channel ID
2365  */
2366 u32 fman_get_qman_channel_id(struct fman *fman, u32 port_id)
2367 {
2368 	int i;
2369 
2370 	if (fman->state->rev_info.major >= 6) {
2371 		static const u32 port_ids[] = {
2372 			0x30, 0x31, 0x28, 0x29, 0x2a, 0x2b,
2373 			0x2c, 0x2d, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7
2374 		};
2375 
2376 		for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2377 			if (port_ids[i] == port_id)
2378 				break;
2379 		}
2380 	} else {
2381 		static const u32 port_ids[] = {
2382 			0x30, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x1,
2383 			0x2, 0x3, 0x4, 0x5, 0x7, 0x7
2384 		};
2385 
2386 		for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2387 			if (port_ids[i] == port_id)
2388 				break;
2389 		}
2390 	}
2391 
2392 	if (i == fman->state->num_of_qman_channels)
2393 		return 0;
2394 
2395 	return fman->state->qman_channel_base + i;
2396 }
2397 EXPORT_SYMBOL(fman_get_qman_channel_id);
2398 
2399 /**
2400  * fman_get_mem_region
2401  * @fman:	A Pointer to FMan device
2402  *
2403  * Get FMan memory region
2404  *
2405  * Return: A structure with FMan memory region information
2406  */
2407 struct resource *fman_get_mem_region(struct fman *fman)
2408 {
2409 	return fman->state->res;
2410 }
2411 EXPORT_SYMBOL(fman_get_mem_region);
2412 
2413 /* Bootargs defines */
2414 /* Extra headroom for RX buffers - Default, min and max */
2415 #define FSL_FM_RX_EXTRA_HEADROOM	64
2416 #define FSL_FM_RX_EXTRA_HEADROOM_MIN	16
2417 #define FSL_FM_RX_EXTRA_HEADROOM_MAX	384
2418 
2419 /* Maximum frame length */
2420 #define FSL_FM_MAX_FRAME_SIZE			1522
2421 #define FSL_FM_MAX_POSSIBLE_FRAME_SIZE		9600
2422 #define FSL_FM_MIN_POSSIBLE_FRAME_SIZE		64
2423 
2424 /* Extra headroom for Rx buffers.
2425  * FMan is instructed to allocate, on the Rx path, this amount of
2426  * space at the beginning of a data buffer, beside the DPA private
2427  * data area and the IC fields.
2428  * Does not impact Tx buffer layout.
2429  * Configurable from bootargs. 64 by default, it's needed on
2430  * particular forwarding scenarios that add extra headers to the
2431  * forwarded frame.
2432  */
2433 static int fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2434 module_param(fsl_fm_rx_extra_headroom, int, 0);
2435 MODULE_PARM_DESC(fsl_fm_rx_extra_headroom, "Extra headroom for Rx buffers");
2436 
2437 /* Max frame size, across all interfaces.
2438  * Configurable from bootargs, to avoid allocating oversized (socket)
2439  * buffers when not using jumbo frames.
2440  * Must be large enough to accommodate the network MTU, but small enough
2441  * to avoid wasting skb memory.
2442  *
2443  * Could be overridden once, at boot-time, via the
2444  * fm_set_max_frm() callback.
2445  */
2446 static int fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2447 module_param(fsl_fm_max_frm, int, 0);
2448 MODULE_PARM_DESC(fsl_fm_max_frm, "Maximum frame size, across all interfaces");
2449 
2450 /**
2451  * fman_get_max_frm
2452  *
2453  * Return: Max frame length configured in the FM driver
2454  */
2455 u16 fman_get_max_frm(void)
2456 {
2457 	static bool fm_check_mfl;
2458 
2459 	if (!fm_check_mfl) {
2460 		if (fsl_fm_max_frm > FSL_FM_MAX_POSSIBLE_FRAME_SIZE ||
2461 		    fsl_fm_max_frm < FSL_FM_MIN_POSSIBLE_FRAME_SIZE) {
2462 			pr_warn("Invalid fsl_fm_max_frm value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2463 				fsl_fm_max_frm,
2464 				FSL_FM_MIN_POSSIBLE_FRAME_SIZE,
2465 				FSL_FM_MAX_POSSIBLE_FRAME_SIZE,
2466 				FSL_FM_MAX_FRAME_SIZE);
2467 			fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2468 		}
2469 		fm_check_mfl = true;
2470 	}
2471 
2472 	return fsl_fm_max_frm;
2473 }
2474 EXPORT_SYMBOL(fman_get_max_frm);
2475 
2476 /**
2477  * fman_get_rx_extra_headroom
2478  *
2479  * Return: Extra headroom size configured in the FM driver
2480  */
2481 int fman_get_rx_extra_headroom(void)
2482 {
2483 	static bool fm_check_rx_extra_headroom;
2484 
2485 	if (!fm_check_rx_extra_headroom) {
2486 		if (fsl_fm_rx_extra_headroom > FSL_FM_RX_EXTRA_HEADROOM_MAX ||
2487 		    fsl_fm_rx_extra_headroom < FSL_FM_RX_EXTRA_HEADROOM_MIN) {
2488 			pr_warn("Invalid fsl_fm_rx_extra_headroom value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2489 				fsl_fm_rx_extra_headroom,
2490 				FSL_FM_RX_EXTRA_HEADROOM_MIN,
2491 				FSL_FM_RX_EXTRA_HEADROOM_MAX,
2492 				FSL_FM_RX_EXTRA_HEADROOM);
2493 			fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2494 		}
2495 
2496 		fm_check_rx_extra_headroom = true;
2497 		fsl_fm_rx_extra_headroom = ALIGN(fsl_fm_rx_extra_headroom, 16);
2498 	}
2499 
2500 	return fsl_fm_rx_extra_headroom;
2501 }
2502 EXPORT_SYMBOL(fman_get_rx_extra_headroom);
2503 
2504 /**
2505  * fman_bind
2506  * @dev:	FMan OF device pointer
2507  *
2508  * Bind to a specific FMan device.
2509  *
2510  * Allowed only after the port was created.
2511  *
2512  * Return: A pointer to the FMan device
2513  */
2514 struct fman *fman_bind(struct device *fm_dev)
2515 {
2516 	return (struct fman *)(dev_get_drvdata(get_device(fm_dev)));
2517 }
2518 EXPORT_SYMBOL(fman_bind);
2519 
2520 static irqreturn_t fman_err_irq(int irq, void *handle)
2521 {
2522 	struct fman *fman = (struct fman *)handle;
2523 	u32 pending;
2524 	struct fman_fpm_regs __iomem *fpm_rg;
2525 	irqreturn_t single_ret, ret = IRQ_NONE;
2526 
2527 	if (!is_init_done(fman->cfg))
2528 		return IRQ_NONE;
2529 
2530 	fpm_rg = fman->fpm_regs;
2531 
2532 	/* error interrupts */
2533 	pending = ioread32be(&fpm_rg->fm_epi);
2534 	if (!pending)
2535 		return IRQ_NONE;
2536 
2537 	if (pending & ERR_INTR_EN_BMI) {
2538 		single_ret = bmi_err_event(fman);
2539 		if (single_ret == IRQ_HANDLED)
2540 			ret = IRQ_HANDLED;
2541 	}
2542 	if (pending & ERR_INTR_EN_QMI) {
2543 		single_ret = qmi_err_event(fman);
2544 		if (single_ret == IRQ_HANDLED)
2545 			ret = IRQ_HANDLED;
2546 	}
2547 	if (pending & ERR_INTR_EN_FPM) {
2548 		single_ret = fpm_err_event(fman);
2549 		if (single_ret == IRQ_HANDLED)
2550 			ret = IRQ_HANDLED;
2551 	}
2552 	if (pending & ERR_INTR_EN_DMA) {
2553 		single_ret = dma_err_event(fman);
2554 		if (single_ret == IRQ_HANDLED)
2555 			ret = IRQ_HANDLED;
2556 	}
2557 	if (pending & ERR_INTR_EN_MURAM) {
2558 		single_ret = muram_err_intr(fman);
2559 		if (single_ret == IRQ_HANDLED)
2560 			ret = IRQ_HANDLED;
2561 	}
2562 
2563 	/* MAC error interrupts */
2564 	if (pending & ERR_INTR_EN_MAC0) {
2565 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 0);
2566 		if (single_ret == IRQ_HANDLED)
2567 			ret = IRQ_HANDLED;
2568 	}
2569 	if (pending & ERR_INTR_EN_MAC1) {
2570 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 1);
2571 		if (single_ret == IRQ_HANDLED)
2572 			ret = IRQ_HANDLED;
2573 	}
2574 	if (pending & ERR_INTR_EN_MAC2) {
2575 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 2);
2576 		if (single_ret == IRQ_HANDLED)
2577 			ret = IRQ_HANDLED;
2578 	}
2579 	if (pending & ERR_INTR_EN_MAC3) {
2580 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 3);
2581 		if (single_ret == IRQ_HANDLED)
2582 			ret = IRQ_HANDLED;
2583 	}
2584 	if (pending & ERR_INTR_EN_MAC4) {
2585 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 4);
2586 		if (single_ret == IRQ_HANDLED)
2587 			ret = IRQ_HANDLED;
2588 	}
2589 	if (pending & ERR_INTR_EN_MAC5) {
2590 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 5);
2591 		if (single_ret == IRQ_HANDLED)
2592 			ret = IRQ_HANDLED;
2593 	}
2594 	if (pending & ERR_INTR_EN_MAC6) {
2595 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 6);
2596 		if (single_ret == IRQ_HANDLED)
2597 			ret = IRQ_HANDLED;
2598 	}
2599 	if (pending & ERR_INTR_EN_MAC7) {
2600 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 7);
2601 		if (single_ret == IRQ_HANDLED)
2602 			ret = IRQ_HANDLED;
2603 	}
2604 	if (pending & ERR_INTR_EN_MAC8) {
2605 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 8);
2606 		if (single_ret == IRQ_HANDLED)
2607 			ret = IRQ_HANDLED;
2608 	}
2609 	if (pending & ERR_INTR_EN_MAC9) {
2610 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 9);
2611 		if (single_ret == IRQ_HANDLED)
2612 			ret = IRQ_HANDLED;
2613 	}
2614 
2615 	return ret;
2616 }
2617 
2618 static irqreturn_t fman_irq(int irq, void *handle)
2619 {
2620 	struct fman *fman = (struct fman *)handle;
2621 	u32 pending;
2622 	struct fman_fpm_regs __iomem *fpm_rg;
2623 	irqreturn_t single_ret, ret = IRQ_NONE;
2624 
2625 	if (!is_init_done(fman->cfg))
2626 		return IRQ_NONE;
2627 
2628 	fpm_rg = fman->fpm_regs;
2629 
2630 	/* normal interrupts */
2631 	pending = ioread32be(&fpm_rg->fm_npi);
2632 	if (!pending)
2633 		return IRQ_NONE;
2634 
2635 	if (pending & INTR_EN_QMI) {
2636 		single_ret = qmi_event(fman);
2637 		if (single_ret == IRQ_HANDLED)
2638 			ret = IRQ_HANDLED;
2639 	}
2640 
2641 	/* MAC interrupts */
2642 	if (pending & INTR_EN_MAC0) {
2643 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 0);
2644 		if (single_ret == IRQ_HANDLED)
2645 			ret = IRQ_HANDLED;
2646 	}
2647 	if (pending & INTR_EN_MAC1) {
2648 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 1);
2649 		if (single_ret == IRQ_HANDLED)
2650 			ret = IRQ_HANDLED;
2651 	}
2652 	if (pending & INTR_EN_MAC2) {
2653 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 2);
2654 		if (single_ret == IRQ_HANDLED)
2655 			ret = IRQ_HANDLED;
2656 	}
2657 	if (pending & INTR_EN_MAC3) {
2658 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 3);
2659 		if (single_ret == IRQ_HANDLED)
2660 			ret = IRQ_HANDLED;
2661 	}
2662 	if (pending & INTR_EN_MAC4) {
2663 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 4);
2664 		if (single_ret == IRQ_HANDLED)
2665 			ret = IRQ_HANDLED;
2666 	}
2667 	if (pending & INTR_EN_MAC5) {
2668 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 5);
2669 		if (single_ret == IRQ_HANDLED)
2670 			ret = IRQ_HANDLED;
2671 	}
2672 	if (pending & INTR_EN_MAC6) {
2673 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 6);
2674 		if (single_ret == IRQ_HANDLED)
2675 			ret = IRQ_HANDLED;
2676 	}
2677 	if (pending & INTR_EN_MAC7) {
2678 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 7);
2679 		if (single_ret == IRQ_HANDLED)
2680 			ret = IRQ_HANDLED;
2681 	}
2682 	if (pending & INTR_EN_MAC8) {
2683 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 8);
2684 		if (single_ret == IRQ_HANDLED)
2685 			ret = IRQ_HANDLED;
2686 	}
2687 	if (pending & INTR_EN_MAC9) {
2688 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 9);
2689 		if (single_ret == IRQ_HANDLED)
2690 			ret = IRQ_HANDLED;
2691 	}
2692 
2693 	return ret;
2694 }
2695 
2696 static const struct of_device_id fman_muram_match[] = {
2697 	{
2698 		.compatible = "fsl,fman-muram"},
2699 	{}
2700 };
2701 MODULE_DEVICE_TABLE(of, fman_muram_match);
2702 
2703 static struct fman *read_dts_node(struct platform_device *of_dev)
2704 {
2705 	struct fman *fman;
2706 	struct device_node *fm_node, *muram_node;
2707 	struct resource *res;
2708 	u32 val, range[2];
2709 	int err, irq;
2710 	struct clk *clk;
2711 	u32 clk_rate;
2712 	phys_addr_t phys_base_addr;
2713 	resource_size_t mem_size;
2714 
2715 	fman = kzalloc(sizeof(*fman), GFP_KERNEL);
2716 	if (!fman)
2717 		return NULL;
2718 
2719 	fm_node = of_node_get(of_dev->dev.of_node);
2720 
2721 	err = of_property_read_u32(fm_node, "cell-index", &val);
2722 	if (err) {
2723 		dev_err(&of_dev->dev, "%s: failed to read cell-index for %pOF\n",
2724 			__func__, fm_node);
2725 		goto fman_node_put;
2726 	}
2727 	fman->dts_params.id = (u8)val;
2728 
2729 	/* Get the FM interrupt */
2730 	res = platform_get_resource(of_dev, IORESOURCE_IRQ, 0);
2731 	if (!res) {
2732 		dev_err(&of_dev->dev, "%s: Can't get FMan IRQ resource\n",
2733 			__func__);
2734 		goto fman_node_put;
2735 	}
2736 	irq = res->start;
2737 
2738 	/* Get the FM error interrupt */
2739 	res = platform_get_resource(of_dev, IORESOURCE_IRQ, 1);
2740 	if (!res) {
2741 		dev_err(&of_dev->dev, "%s: Can't get FMan Error IRQ resource\n",
2742 			__func__);
2743 		goto fman_node_put;
2744 	}
2745 	fman->dts_params.err_irq = res->start;
2746 
2747 	/* Get the FM address */
2748 	res = platform_get_resource(of_dev, IORESOURCE_MEM, 0);
2749 	if (!res) {
2750 		dev_err(&of_dev->dev, "%s: Can't get FMan memory resource\n",
2751 			__func__);
2752 		goto fman_node_put;
2753 	}
2754 
2755 	phys_base_addr = res->start;
2756 	mem_size = resource_size(res);
2757 
2758 	clk = of_clk_get(fm_node, 0);
2759 	if (IS_ERR(clk)) {
2760 		dev_err(&of_dev->dev, "%s: Failed to get FM%d clock structure\n",
2761 			__func__, fman->dts_params.id);
2762 		goto fman_node_put;
2763 	}
2764 
2765 	clk_rate = clk_get_rate(clk);
2766 	if (!clk_rate) {
2767 		dev_err(&of_dev->dev, "%s: Failed to determine FM%d clock rate\n",
2768 			__func__, fman->dts_params.id);
2769 		goto fman_node_put;
2770 	}
2771 	/* Rounding to MHz */
2772 	fman->dts_params.clk_freq = DIV_ROUND_UP(clk_rate, 1000000);
2773 
2774 	err = of_property_read_u32_array(fm_node, "fsl,qman-channel-range",
2775 					 &range[0], 2);
2776 	if (err) {
2777 		dev_err(&of_dev->dev, "%s: failed to read fsl,qman-channel-range for %pOF\n",
2778 			__func__, fm_node);
2779 		goto fman_node_put;
2780 	}
2781 	fman->dts_params.qman_channel_base = range[0];
2782 	fman->dts_params.num_of_qman_channels = range[1];
2783 
2784 	/* Get the MURAM base address and size */
2785 	muram_node = of_find_matching_node(fm_node, fman_muram_match);
2786 	if (!muram_node) {
2787 		dev_err(&of_dev->dev, "%s: could not find MURAM node\n",
2788 			__func__);
2789 		goto fman_node_put;
2790 	}
2791 
2792 	err = of_address_to_resource(muram_node, 0,
2793 				     &fman->dts_params.muram_res);
2794 	if (err) {
2795 		of_node_put(muram_node);
2796 		dev_err(&of_dev->dev, "%s: of_address_to_resource() = %d\n",
2797 			__func__, err);
2798 		goto fman_node_put;
2799 	}
2800 
2801 	of_node_put(muram_node);
2802 	of_node_put(fm_node);
2803 
2804 	err = devm_request_irq(&of_dev->dev, irq, fman_irq, IRQF_SHARED,
2805 			       "fman", fman);
2806 	if (err < 0) {
2807 		dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2808 			__func__, irq, err);
2809 		goto fman_free;
2810 	}
2811 
2812 	if (fman->dts_params.err_irq != 0) {
2813 		err = devm_request_irq(&of_dev->dev, fman->dts_params.err_irq,
2814 				       fman_err_irq, IRQF_SHARED,
2815 				       "fman-err", fman);
2816 		if (err < 0) {
2817 			dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2818 				__func__, fman->dts_params.err_irq, err);
2819 			goto fman_free;
2820 		}
2821 	}
2822 
2823 	fman->dts_params.res =
2824 		devm_request_mem_region(&of_dev->dev, phys_base_addr,
2825 					mem_size, "fman");
2826 	if (!fman->dts_params.res) {
2827 		dev_err(&of_dev->dev, "%s: request_mem_region() failed\n",
2828 			__func__);
2829 		goto fman_free;
2830 	}
2831 
2832 	fman->dts_params.base_addr =
2833 		devm_ioremap(&of_dev->dev, phys_base_addr, mem_size);
2834 	if (!fman->dts_params.base_addr) {
2835 		dev_err(&of_dev->dev, "%s: devm_ioremap() failed\n", __func__);
2836 		goto fman_free;
2837 	}
2838 
2839 	fman->dev = &of_dev->dev;
2840 
2841 	err = of_platform_populate(fm_node, NULL, NULL, &of_dev->dev);
2842 	if (err) {
2843 		dev_err(&of_dev->dev, "%s: of_platform_populate() failed\n",
2844 			__func__);
2845 		goto fman_free;
2846 	}
2847 
2848 	return fman;
2849 
2850 fman_node_put:
2851 	of_node_put(fm_node);
2852 fman_free:
2853 	kfree(fman);
2854 	return NULL;
2855 }
2856 
2857 static int fman_probe(struct platform_device *of_dev)
2858 {
2859 	struct fman *fman;
2860 	struct device *dev;
2861 	int err;
2862 
2863 	dev = &of_dev->dev;
2864 
2865 	fman = read_dts_node(of_dev);
2866 	if (!fman)
2867 		return -EIO;
2868 
2869 	err = fman_config(fman);
2870 	if (err) {
2871 		dev_err(dev, "%s: FMan config failed\n", __func__);
2872 		return -EINVAL;
2873 	}
2874 
2875 	if (fman_init(fman) != 0) {
2876 		dev_err(dev, "%s: FMan init failed\n", __func__);
2877 		return -EINVAL;
2878 	}
2879 
2880 	if (fman->dts_params.err_irq == 0) {
2881 		fman_set_exception(fman, FMAN_EX_DMA_BUS_ERROR, false);
2882 		fman_set_exception(fman, FMAN_EX_DMA_READ_ECC, false);
2883 		fman_set_exception(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC, false);
2884 		fman_set_exception(fman, FMAN_EX_DMA_FM_WRITE_ECC, false);
2885 		fman_set_exception(fman, FMAN_EX_DMA_SINGLE_PORT_ECC, false);
2886 		fman_set_exception(fman, FMAN_EX_FPM_STALL_ON_TASKS, false);
2887 		fman_set_exception(fman, FMAN_EX_FPM_SINGLE_ECC, false);
2888 		fman_set_exception(fman, FMAN_EX_FPM_DOUBLE_ECC, false);
2889 		fman_set_exception(fman, FMAN_EX_QMI_SINGLE_ECC, false);
2890 		fman_set_exception(fman, FMAN_EX_QMI_DOUBLE_ECC, false);
2891 		fman_set_exception(fman,
2892 				   FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID, false);
2893 		fman_set_exception(fman, FMAN_EX_BMI_LIST_RAM_ECC, false);
2894 		fman_set_exception(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC,
2895 				   false);
2896 		fman_set_exception(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC, false);
2897 		fman_set_exception(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC, false);
2898 	}
2899 
2900 	dev_set_drvdata(dev, fman);
2901 
2902 	dev_dbg(dev, "FMan%d probed\n", fman->dts_params.id);
2903 
2904 	return 0;
2905 }
2906 
2907 static const struct of_device_id fman_match[] = {
2908 	{
2909 		.compatible = "fsl,fman"},
2910 	{}
2911 };
2912 
2913 MODULE_DEVICE_TABLE(of, fman_match);
2914 
2915 static struct platform_driver fman_driver = {
2916 	.driver = {
2917 		.name = "fsl-fman",
2918 		.of_match_table = fman_match,
2919 	},
2920 	.probe = fman_probe,
2921 };
2922 
2923 static int __init fman_load(void)
2924 {
2925 	int err;
2926 
2927 	pr_debug("FSL DPAA FMan driver\n");
2928 
2929 	err = platform_driver_register(&fman_driver);
2930 	if (err < 0)
2931 		pr_err("Error, platform_driver_register() = %d\n", err);
2932 
2933 	return err;
2934 }
2935 module_init(fman_load);
2936 
2937 static void __exit fman_unload(void)
2938 {
2939 	platform_driver_unregister(&fman_driver);
2940 }
2941 module_exit(fman_unload);
2942 
2943 MODULE_LICENSE("Dual BSD/GPL");
2944 MODULE_DESCRIPTION("Freescale DPAA Frame Manager driver");
2945