1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Fast Ethernet Controller (ENET) PTP driver for MX6x. 4 * 5 * Copyright (C) 2012 Freescale Semiconductor, Inc. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/ptrace.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/skbuff.h> 23 #include <linux/spinlock.h> 24 #include <linux/workqueue.h> 25 #include <linux/bitops.h> 26 #include <linux/io.h> 27 #include <linux/irq.h> 28 #include <linux/clk.h> 29 #include <linux/platform_device.h> 30 #include <linux/phy.h> 31 #include <linux/fec.h> 32 #include <linux/of.h> 33 #include <linux/of_device.h> 34 #include <linux/of_gpio.h> 35 #include <linux/of_net.h> 36 37 #include "fec.h" 38 39 /* FEC 1588 register bits */ 40 #define FEC_T_CTRL_SLAVE 0x00002000 41 #define FEC_T_CTRL_CAPTURE 0x00000800 42 #define FEC_T_CTRL_RESTART 0x00000200 43 #define FEC_T_CTRL_PERIOD_RST 0x00000030 44 #define FEC_T_CTRL_PERIOD_EN 0x00000010 45 #define FEC_T_CTRL_ENABLE 0x00000001 46 47 #define FEC_T_INC_MASK 0x0000007f 48 #define FEC_T_INC_OFFSET 0 49 #define FEC_T_INC_CORR_MASK 0x00007f00 50 #define FEC_T_INC_CORR_OFFSET 8 51 52 #define FEC_T_CTRL_PINPER 0x00000080 53 #define FEC_T_TF0_MASK 0x00000001 54 #define FEC_T_TF0_OFFSET 0 55 #define FEC_T_TF1_MASK 0x00000002 56 #define FEC_T_TF1_OFFSET 1 57 #define FEC_T_TF2_MASK 0x00000004 58 #define FEC_T_TF2_OFFSET 2 59 #define FEC_T_TF3_MASK 0x00000008 60 #define FEC_T_TF3_OFFSET 3 61 #define FEC_T_TDRE_MASK 0x00000001 62 #define FEC_T_TDRE_OFFSET 0 63 #define FEC_T_TMODE_MASK 0x0000003C 64 #define FEC_T_TMODE_OFFSET 2 65 #define FEC_T_TIE_MASK 0x00000040 66 #define FEC_T_TIE_OFFSET 6 67 #define FEC_T_TF_MASK 0x00000080 68 #define FEC_T_TF_OFFSET 7 69 70 #define FEC_ATIME_CTRL 0x400 71 #define FEC_ATIME 0x404 72 #define FEC_ATIME_EVT_OFFSET 0x408 73 #define FEC_ATIME_EVT_PERIOD 0x40c 74 #define FEC_ATIME_CORR 0x410 75 #define FEC_ATIME_INC 0x414 76 #define FEC_TS_TIMESTAMP 0x418 77 78 #define FEC_TGSR 0x604 79 #define FEC_TCSR(n) (0x608 + n * 0x08) 80 #define FEC_TCCR(n) (0x60C + n * 0x08) 81 #define MAX_TIMER_CHANNEL 3 82 #define FEC_TMODE_TOGGLE 0x05 83 #define FEC_HIGH_PULSE 0x0F 84 85 #define FEC_CC_MULT (1 << 31) 86 #define FEC_COUNTER_PERIOD (1 << 31) 87 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC 88 #define FEC_CHANNLE_0 0 89 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0 90 91 /** 92 * fec_ptp_enable_pps 93 * @fep: the fec_enet_private structure handle 94 * @enable: enable the channel pps output 95 * 96 * This function enble the PPS ouput on the timer channel. 97 */ 98 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) 99 { 100 unsigned long flags; 101 u32 val, tempval; 102 struct timespec64 ts; 103 u64 ns; 104 105 if (fep->pps_enable == enable) 106 return 0; 107 108 fep->pps_channel = DEFAULT_PPS_CHANNEL; 109 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; 110 111 spin_lock_irqsave(&fep->tmreg_lock, flags); 112 113 if (enable) { 114 /* clear capture or output compare interrupt status if have. 115 */ 116 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); 117 118 /* It is recommended to double check the TMODE field in the 119 * TCSR register to be cleared before the first compare counter 120 * is written into TCCR register. Just add a double check. 121 */ 122 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 123 do { 124 val &= ~(FEC_T_TMODE_MASK); 125 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 126 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 127 } while (val & FEC_T_TMODE_MASK); 128 129 /* Dummy read counter to update the counter */ 130 timecounter_read(&fep->tc); 131 /* We want to find the first compare event in the next 132 * second point. So we need to know what the ptp time 133 * is now and how many nanoseconds is ahead to get next second. 134 * The remaining nanosecond ahead before the next second would be 135 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds 136 * to current timer would be next second. 137 */ 138 tempval = fep->cc.read(&fep->cc); 139 /* Convert the ptp local counter to 1588 timestamp */ 140 ns = timecounter_cyc2time(&fep->tc, tempval); 141 ts = ns_to_timespec64(ns); 142 143 /* The tempval is less than 3 seconds, and so val is less than 144 * 4 seconds. No overflow for 32bit calculation. 145 */ 146 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; 147 148 /* Need to consider the situation that the current time is 149 * very close to the second point, which means NSEC_PER_SEC 150 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer 151 * is still running when we calculate the first compare event, it is 152 * possible that the remaining nanoseonds run out before the compare 153 * counter is calculated and written into TCCR register. To avoid 154 * this possibility, we will set the compare event to be the next 155 * of next second. The current setting is 31-bit timer and wrap 156 * around over 2 seconds. So it is okay to set the next of next 157 * seond for the timer. 158 */ 159 val += NSEC_PER_SEC; 160 161 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current 162 * ptp counter, which maybe cause 32-bit wrap. Since the 163 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. 164 * We can ensure the wrap will not cause issue. If the offset 165 * is bigger than fep->cc.mask would be a error. 166 */ 167 val &= fep->cc.mask; 168 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); 169 170 /* Calculate the second the compare event timestamp */ 171 fep->next_counter = (val + fep->reload_period) & fep->cc.mask; 172 173 /* * Enable compare event when overflow */ 174 val = readl(fep->hwp + FEC_ATIME_CTRL); 175 val |= FEC_T_CTRL_PINPER; 176 writel(val, fep->hwp + FEC_ATIME_CTRL); 177 178 /* Compare channel setting. */ 179 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 180 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); 181 val &= ~(1 << FEC_T_TDRE_OFFSET); 182 val &= ~(FEC_T_TMODE_MASK); 183 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); 184 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 185 186 /* Write the second compare event timestamp and calculate 187 * the third timestamp. Refer the TCCR register detail in the spec. 188 */ 189 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); 190 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; 191 } else { 192 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); 193 } 194 195 fep->pps_enable = enable; 196 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 197 198 return 0; 199 } 200 201 /** 202 * fec_ptp_read - read raw cycle counter (to be used by time counter) 203 * @cc: the cyclecounter structure 204 * 205 * this function reads the cyclecounter registers and is called by the 206 * cyclecounter structure used to construct a ns counter from the 207 * arbitrary fixed point registers 208 */ 209 static u64 fec_ptp_read(const struct cyclecounter *cc) 210 { 211 struct fec_enet_private *fep = 212 container_of(cc, struct fec_enet_private, cc); 213 u32 tempval; 214 215 tempval = readl(fep->hwp + FEC_ATIME_CTRL); 216 tempval |= FEC_T_CTRL_CAPTURE; 217 writel(tempval, fep->hwp + FEC_ATIME_CTRL); 218 219 if (fep->quirks & FEC_QUIRK_BUG_CAPTURE) 220 udelay(1); 221 222 return readl(fep->hwp + FEC_ATIME); 223 } 224 225 /** 226 * fec_ptp_start_cyclecounter - create the cycle counter from hw 227 * @ndev: network device 228 * 229 * this function initializes the timecounter and cyclecounter 230 * structures for use in generated a ns counter from the arbitrary 231 * fixed point cycles registers in the hardware. 232 */ 233 void fec_ptp_start_cyclecounter(struct net_device *ndev) 234 { 235 struct fec_enet_private *fep = netdev_priv(ndev); 236 unsigned long flags; 237 int inc; 238 239 inc = 1000000000 / fep->cycle_speed; 240 241 /* grab the ptp lock */ 242 spin_lock_irqsave(&fep->tmreg_lock, flags); 243 244 /* 1ns counter */ 245 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); 246 247 /* use 31-bit timer counter */ 248 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); 249 250 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, 251 fep->hwp + FEC_ATIME_CTRL); 252 253 memset(&fep->cc, 0, sizeof(fep->cc)); 254 fep->cc.read = fec_ptp_read; 255 fep->cc.mask = CLOCKSOURCE_MASK(31); 256 fep->cc.shift = 31; 257 fep->cc.mult = FEC_CC_MULT; 258 259 /* reset the ns time counter */ 260 timecounter_init(&fep->tc, &fep->cc, 0); 261 262 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 263 } 264 265 /** 266 * fec_ptp_adjfreq - adjust ptp cycle frequency 267 * @ptp: the ptp clock structure 268 * @ppb: parts per billion adjustment from base 269 * 270 * Adjust the frequency of the ptp cycle counter by the 271 * indicated ppb from the base frequency. 272 * 273 * Because ENET hardware frequency adjust is complex, 274 * using software method to do that. 275 */ 276 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 277 { 278 unsigned long flags; 279 int neg_adj = 0; 280 u32 i, tmp; 281 u32 corr_inc, corr_period; 282 u32 corr_ns; 283 u64 lhs, rhs; 284 285 struct fec_enet_private *fep = 286 container_of(ptp, struct fec_enet_private, ptp_caps); 287 288 if (ppb == 0) 289 return 0; 290 291 if (ppb < 0) { 292 ppb = -ppb; 293 neg_adj = 1; 294 } 295 296 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; 297 * Try to find the corr_inc between 1 to fep->ptp_inc to 298 * meet adjustment requirement. 299 */ 300 lhs = NSEC_PER_SEC; 301 rhs = (u64)ppb * (u64)fep->ptp_inc; 302 for (i = 1; i <= fep->ptp_inc; i++) { 303 if (lhs >= rhs) { 304 corr_inc = i; 305 corr_period = div_u64(lhs, rhs); 306 break; 307 } 308 lhs += NSEC_PER_SEC; 309 } 310 /* Not found? Set it to high value - double speed 311 * correct in every clock step. 312 */ 313 if (i > fep->ptp_inc) { 314 corr_inc = fep->ptp_inc; 315 corr_period = 1; 316 } 317 318 if (neg_adj) 319 corr_ns = fep->ptp_inc - corr_inc; 320 else 321 corr_ns = fep->ptp_inc + corr_inc; 322 323 spin_lock_irqsave(&fep->tmreg_lock, flags); 324 325 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; 326 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; 327 writel(tmp, fep->hwp + FEC_ATIME_INC); 328 corr_period = corr_period > 1 ? corr_period - 1 : corr_period; 329 writel(corr_period, fep->hwp + FEC_ATIME_CORR); 330 /* dummy read to update the timer. */ 331 timecounter_read(&fep->tc); 332 333 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 334 335 return 0; 336 } 337 338 /** 339 * fec_ptp_adjtime 340 * @ptp: the ptp clock structure 341 * @delta: offset to adjust the cycle counter by 342 * 343 * adjust the timer by resetting the timecounter structure. 344 */ 345 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 346 { 347 struct fec_enet_private *fep = 348 container_of(ptp, struct fec_enet_private, ptp_caps); 349 unsigned long flags; 350 351 spin_lock_irqsave(&fep->tmreg_lock, flags); 352 timecounter_adjtime(&fep->tc, delta); 353 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 354 355 return 0; 356 } 357 358 /** 359 * fec_ptp_gettime 360 * @ptp: the ptp clock structure 361 * @ts: timespec structure to hold the current time value 362 * 363 * read the timecounter and return the correct value on ns, 364 * after converting it into a struct timespec. 365 */ 366 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 367 { 368 struct fec_enet_private *adapter = 369 container_of(ptp, struct fec_enet_private, ptp_caps); 370 u64 ns; 371 unsigned long flags; 372 373 mutex_lock(&adapter->ptp_clk_mutex); 374 /* Check the ptp clock */ 375 if (!adapter->ptp_clk_on) { 376 mutex_unlock(&adapter->ptp_clk_mutex); 377 return -EINVAL; 378 } 379 spin_lock_irqsave(&adapter->tmreg_lock, flags); 380 ns = timecounter_read(&adapter->tc); 381 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 382 mutex_unlock(&adapter->ptp_clk_mutex); 383 384 *ts = ns_to_timespec64(ns); 385 386 return 0; 387 } 388 389 /** 390 * fec_ptp_settime 391 * @ptp: the ptp clock structure 392 * @ts: the timespec containing the new time for the cycle counter 393 * 394 * reset the timecounter to use a new base value instead of the kernel 395 * wall timer value. 396 */ 397 static int fec_ptp_settime(struct ptp_clock_info *ptp, 398 const struct timespec64 *ts) 399 { 400 struct fec_enet_private *fep = 401 container_of(ptp, struct fec_enet_private, ptp_caps); 402 403 u64 ns; 404 unsigned long flags; 405 u32 counter; 406 407 mutex_lock(&fep->ptp_clk_mutex); 408 /* Check the ptp clock */ 409 if (!fep->ptp_clk_on) { 410 mutex_unlock(&fep->ptp_clk_mutex); 411 return -EINVAL; 412 } 413 414 ns = timespec64_to_ns(ts); 415 /* Get the timer value based on timestamp. 416 * Update the counter with the masked value. 417 */ 418 counter = ns & fep->cc.mask; 419 420 spin_lock_irqsave(&fep->tmreg_lock, flags); 421 writel(counter, fep->hwp + FEC_ATIME); 422 timecounter_init(&fep->tc, &fep->cc, ns); 423 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 424 mutex_unlock(&fep->ptp_clk_mutex); 425 return 0; 426 } 427 428 /** 429 * fec_ptp_enable 430 * @ptp: the ptp clock structure 431 * @rq: the requested feature to change 432 * @on: whether to enable or disable the feature 433 * 434 */ 435 static int fec_ptp_enable(struct ptp_clock_info *ptp, 436 struct ptp_clock_request *rq, int on) 437 { 438 struct fec_enet_private *fep = 439 container_of(ptp, struct fec_enet_private, ptp_caps); 440 int ret = 0; 441 442 if (rq->type == PTP_CLK_REQ_PPS) { 443 ret = fec_ptp_enable_pps(fep, on); 444 445 return ret; 446 } 447 return -EOPNOTSUPP; 448 } 449 450 /** 451 * fec_ptp_disable_hwts - disable hardware time stamping 452 * @ndev: pointer to net_device 453 */ 454 void fec_ptp_disable_hwts(struct net_device *ndev) 455 { 456 struct fec_enet_private *fep = netdev_priv(ndev); 457 458 fep->hwts_tx_en = 0; 459 fep->hwts_rx_en = 0; 460 } 461 462 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr) 463 { 464 struct fec_enet_private *fep = netdev_priv(ndev); 465 466 struct hwtstamp_config config; 467 468 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 469 return -EFAULT; 470 471 switch (config.tx_type) { 472 case HWTSTAMP_TX_OFF: 473 fep->hwts_tx_en = 0; 474 break; 475 case HWTSTAMP_TX_ON: 476 fep->hwts_tx_en = 1; 477 break; 478 default: 479 return -ERANGE; 480 } 481 482 switch (config.rx_filter) { 483 case HWTSTAMP_FILTER_NONE: 484 fep->hwts_rx_en = 0; 485 break; 486 487 default: 488 fep->hwts_rx_en = 1; 489 config.rx_filter = HWTSTAMP_FILTER_ALL; 490 break; 491 } 492 493 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 494 -EFAULT : 0; 495 } 496 497 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr) 498 { 499 struct fec_enet_private *fep = netdev_priv(ndev); 500 struct hwtstamp_config config; 501 502 config.flags = 0; 503 config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 504 config.rx_filter = (fep->hwts_rx_en ? 505 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 506 507 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 508 -EFAULT : 0; 509 } 510 511 /* 512 * fec_time_keep - call timecounter_read every second to avoid timer overrun 513 * because ENET just support 32bit counter, will timeout in 4s 514 */ 515 static void fec_time_keep(struct work_struct *work) 516 { 517 struct delayed_work *dwork = to_delayed_work(work); 518 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); 519 unsigned long flags; 520 521 mutex_lock(&fep->ptp_clk_mutex); 522 if (fep->ptp_clk_on) { 523 spin_lock_irqsave(&fep->tmreg_lock, flags); 524 timecounter_read(&fep->tc); 525 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 526 } 527 mutex_unlock(&fep->ptp_clk_mutex); 528 529 schedule_delayed_work(&fep->time_keep, HZ); 530 } 531 532 /* This function checks the pps event and reloads the timer compare counter. */ 533 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id) 534 { 535 struct net_device *ndev = dev_id; 536 struct fec_enet_private *fep = netdev_priv(ndev); 537 u32 val; 538 u8 channel = fep->pps_channel; 539 struct ptp_clock_event event; 540 541 val = readl(fep->hwp + FEC_TCSR(channel)); 542 if (val & FEC_T_TF_MASK) { 543 /* Write the next next compare(not the next according the spec) 544 * value to the register 545 */ 546 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); 547 do { 548 writel(val, fep->hwp + FEC_TCSR(channel)); 549 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); 550 551 /* Update the counter; */ 552 fep->next_counter = (fep->next_counter + fep->reload_period) & 553 fep->cc.mask; 554 555 event.type = PTP_CLOCK_PPS; 556 ptp_clock_event(fep->ptp_clock, &event); 557 return IRQ_HANDLED; 558 } 559 560 return IRQ_NONE; 561 } 562 563 /** 564 * fec_ptp_init 565 * @pdev: The FEC network adapter 566 * @irq_idx: the interrupt index 567 * 568 * This function performs the required steps for enabling ptp 569 * support. If ptp support has already been loaded it simply calls the 570 * cyclecounter init routine and exits. 571 */ 572 573 void fec_ptp_init(struct platform_device *pdev, int irq_idx) 574 { 575 struct net_device *ndev = platform_get_drvdata(pdev); 576 struct fec_enet_private *fep = netdev_priv(ndev); 577 int irq; 578 int ret; 579 580 fep->ptp_caps.owner = THIS_MODULE; 581 strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name)); 582 583 fep->ptp_caps.max_adj = 250000000; 584 fep->ptp_caps.n_alarm = 0; 585 fep->ptp_caps.n_ext_ts = 0; 586 fep->ptp_caps.n_per_out = 0; 587 fep->ptp_caps.n_pins = 0; 588 fep->ptp_caps.pps = 1; 589 fep->ptp_caps.adjfreq = fec_ptp_adjfreq; 590 fep->ptp_caps.adjtime = fec_ptp_adjtime; 591 fep->ptp_caps.gettime64 = fec_ptp_gettime; 592 fep->ptp_caps.settime64 = fec_ptp_settime; 593 fep->ptp_caps.enable = fec_ptp_enable; 594 595 fep->cycle_speed = clk_get_rate(fep->clk_ptp); 596 if (!fep->cycle_speed) { 597 fep->cycle_speed = NSEC_PER_SEC; 598 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n"); 599 } 600 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; 601 602 spin_lock_init(&fep->tmreg_lock); 603 604 fec_ptp_start_cyclecounter(ndev); 605 606 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); 607 608 irq = platform_get_irq_byname_optional(pdev, "pps"); 609 if (irq < 0) 610 irq = platform_get_irq_optional(pdev, irq_idx); 611 /* Failure to get an irq is not fatal, 612 * only the PTP_CLOCK_PPS clock events should stop 613 */ 614 if (irq >= 0) { 615 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt, 616 0, pdev->name, ndev); 617 if (ret < 0) 618 dev_warn(&pdev->dev, "request for pps irq failed(%d)\n", 619 ret); 620 } 621 622 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); 623 if (IS_ERR(fep->ptp_clock)) { 624 fep->ptp_clock = NULL; 625 dev_err(&pdev->dev, "ptp_clock_register failed\n"); 626 } 627 628 schedule_delayed_work(&fep->time_keep, HZ); 629 } 630 631 void fec_ptp_stop(struct platform_device *pdev) 632 { 633 struct net_device *ndev = platform_get_drvdata(pdev); 634 struct fec_enet_private *fep = netdev_priv(ndev); 635 636 cancel_delayed_work_sync(&fep->time_keep); 637 if (fep->ptp_clock) 638 ptp_clock_unregister(fep->ptp_clock); 639 } 640