1 /*
2  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
3  *
4  * Copyright (C) 2012 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/spinlock.h>
36 #include <linux/workqueue.h>
37 #include <linux/bitops.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/clk.h>
41 #include <linux/platform_device.h>
42 #include <linux/phy.h>
43 #include <linux/fec.h>
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <linux/of_gpio.h>
47 #include <linux/of_net.h>
48 
49 #include "fec.h"
50 
51 /* FEC 1588 register bits */
52 #define FEC_T_CTRL_SLAVE                0x00002000
53 #define FEC_T_CTRL_CAPTURE              0x00000800
54 #define FEC_T_CTRL_RESTART              0x00000200
55 #define FEC_T_CTRL_PERIOD_RST           0x00000030
56 #define FEC_T_CTRL_PERIOD_EN		0x00000010
57 #define FEC_T_CTRL_ENABLE               0x00000001
58 
59 #define FEC_T_INC_MASK                  0x0000007f
60 #define FEC_T_INC_OFFSET                0
61 #define FEC_T_INC_CORR_MASK             0x00007f00
62 #define FEC_T_INC_CORR_OFFSET           8
63 
64 #define FEC_T_CTRL_PINPER		0x00000080
65 #define FEC_T_TF0_MASK			0x00000001
66 #define FEC_T_TF0_OFFSET		0
67 #define FEC_T_TF1_MASK			0x00000002
68 #define FEC_T_TF1_OFFSET		1
69 #define FEC_T_TF2_MASK			0x00000004
70 #define FEC_T_TF2_OFFSET		2
71 #define FEC_T_TF3_MASK			0x00000008
72 #define FEC_T_TF3_OFFSET		3
73 #define FEC_T_TDRE_MASK			0x00000001
74 #define FEC_T_TDRE_OFFSET		0
75 #define FEC_T_TMODE_MASK		0x0000003C
76 #define FEC_T_TMODE_OFFSET		2
77 #define FEC_T_TIE_MASK			0x00000040
78 #define FEC_T_TIE_OFFSET		6
79 #define FEC_T_TF_MASK			0x00000080
80 #define FEC_T_TF_OFFSET			7
81 
82 #define FEC_ATIME_CTRL		0x400
83 #define FEC_ATIME		0x404
84 #define FEC_ATIME_EVT_OFFSET	0x408
85 #define FEC_ATIME_EVT_PERIOD	0x40c
86 #define FEC_ATIME_CORR		0x410
87 #define FEC_ATIME_INC		0x414
88 #define FEC_TS_TIMESTAMP	0x418
89 
90 #define FEC_TGSR		0x604
91 #define FEC_TCSR(n)		(0x608 + n * 0x08)
92 #define FEC_TCCR(n)		(0x60C + n * 0x08)
93 #define MAX_TIMER_CHANNEL	3
94 #define FEC_TMODE_TOGGLE	0x05
95 #define FEC_HIGH_PULSE		0x0F
96 
97 #define FEC_CC_MULT	(1 << 31)
98 #define FEC_COUNTER_PERIOD	(1 << 31)
99 #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
100 #define FEC_CHANNLE_0		0
101 #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
102 
103 /**
104  * fec_ptp_enable_pps
105  * @fep: the fec_enet_private structure handle
106  * @enable: enable the channel pps output
107  *
108  * This function enble the PPS ouput on the timer channel.
109  */
110 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
111 {
112 	unsigned long flags;
113 	u32 val, tempval;
114 	int inc;
115 	struct timespec ts;
116 	u64 ns;
117 	u32 remainder;
118 	val = 0;
119 
120 	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
121 		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
122 		return -EINVAL;
123 	}
124 
125 	if (fep->pps_enable == enable)
126 		return 0;
127 
128 	fep->pps_channel = DEFAULT_PPS_CHANNEL;
129 	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
130 	inc = fep->ptp_inc;
131 
132 	spin_lock_irqsave(&fep->tmreg_lock, flags);
133 
134 	if (enable) {
135 		/* clear capture or output compare interrupt status if have.
136 		 */
137 		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
138 
139 		/* It is recommended to double check the TMODE field in the
140 		 * TCSR register to be cleared before the first compare counter
141 		 * is written into TCCR register. Just add a double check.
142 		 */
143 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
144 		do {
145 			val &= ~(FEC_T_TMODE_MASK);
146 			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
147 			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
148 		} while (val & FEC_T_TMODE_MASK);
149 
150 		/* Dummy read counter to update the counter */
151 		timecounter_read(&fep->tc);
152 		/* We want to find the first compare event in the next
153 		 * second point. So we need to know what the ptp time
154 		 * is now and how many nanoseconds is ahead to get next second.
155 		 * The remaining nanosecond ahead before the next second would be
156 		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
157 		 * to current timer would be next second.
158 		 */
159 		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
160 		tempval |= FEC_T_CTRL_CAPTURE;
161 		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
162 
163 		tempval = readl(fep->hwp + FEC_ATIME);
164 		/* Convert the ptp local counter to 1588 timestamp */
165 		ns = timecounter_cyc2time(&fep->tc, tempval);
166 		ts.tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
167 		ts.tv_nsec = remainder;
168 
169 		/* The tempval is  less than 3 seconds, and  so val is less than
170 		 * 4 seconds. No overflow for 32bit calculation.
171 		 */
172 		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
173 
174 		/* Need to consider the situation that the current time is
175 		 * very close to the second point, which means NSEC_PER_SEC
176 		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
177 		 * is still running when we calculate the first compare event, it is
178 		 * possible that the remaining nanoseonds run out before the compare
179 		 * counter is calculated and written into TCCR register. To avoid
180 		 * this possibility, we will set the compare event to be the next
181 		 * of next second. The current setting is 31-bit timer and wrap
182 		 * around over 2 seconds. So it is okay to set the next of next
183 		 * seond for the timer.
184 		 */
185 		val += NSEC_PER_SEC;
186 
187 		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
188 		 * ptp counter, which maybe cause 32-bit wrap. Since the
189 		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
190 		 * We can ensure the wrap will not cause issue. If the offset
191 		 * is bigger than fep->cc.mask would be a error.
192 		 */
193 		val &= fep->cc.mask;
194 		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
195 
196 		/* Calculate the second the compare event timestamp */
197 		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
198 
199 		/* * Enable compare event when overflow */
200 		val = readl(fep->hwp + FEC_ATIME_CTRL);
201 		val |= FEC_T_CTRL_PINPER;
202 		writel(val, fep->hwp + FEC_ATIME_CTRL);
203 
204 		/* Compare channel setting. */
205 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
206 		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
207 		val &= ~(1 << FEC_T_TDRE_OFFSET);
208 		val &= ~(FEC_T_TMODE_MASK);
209 		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
210 		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
211 
212 		/* Write the second compare event timestamp and calculate
213 		 * the third timestamp. Refer the TCCR register detail in the spec.
214 		 */
215 		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
216 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
217 	} else {
218 		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
219 	}
220 
221 	fep->pps_enable = enable;
222 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
223 
224 	return 0;
225 }
226 
227 /**
228  * fec_ptp_read - read raw cycle counter (to be used by time counter)
229  * @cc: the cyclecounter structure
230  *
231  * this function reads the cyclecounter registers and is called by the
232  * cyclecounter structure used to construct a ns counter from the
233  * arbitrary fixed point registers
234  */
235 static cycle_t fec_ptp_read(const struct cyclecounter *cc)
236 {
237 	struct fec_enet_private *fep =
238 		container_of(cc, struct fec_enet_private, cc);
239 	const struct platform_device_id *id_entry =
240 		platform_get_device_id(fep->pdev);
241 	u32 tempval;
242 
243 	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
244 	tempval |= FEC_T_CTRL_CAPTURE;
245 	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
246 
247 	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
248 		udelay(1);
249 
250 	return readl(fep->hwp + FEC_ATIME);
251 }
252 
253 /**
254  * fec_ptp_start_cyclecounter - create the cycle counter from hw
255  * @ndev: network device
256  *
257  * this function initializes the timecounter and cyclecounter
258  * structures for use in generated a ns counter from the arbitrary
259  * fixed point cycles registers in the hardware.
260  */
261 void fec_ptp_start_cyclecounter(struct net_device *ndev)
262 {
263 	struct fec_enet_private *fep = netdev_priv(ndev);
264 	unsigned long flags;
265 	int inc;
266 
267 	inc = 1000000000 / fep->cycle_speed;
268 
269 	/* grab the ptp lock */
270 	spin_lock_irqsave(&fep->tmreg_lock, flags);
271 
272 	/* 1ns counter */
273 	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
274 
275 	/* use 31-bit timer counter */
276 	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
277 
278 	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
279 		fep->hwp + FEC_ATIME_CTRL);
280 
281 	memset(&fep->cc, 0, sizeof(fep->cc));
282 	fep->cc.read = fec_ptp_read;
283 	fep->cc.mask = CLOCKSOURCE_MASK(31);
284 	fep->cc.shift = 31;
285 	fep->cc.mult = FEC_CC_MULT;
286 
287 	/* reset the ns time counter */
288 	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
289 
290 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
291 }
292 
293 /**
294  * fec_ptp_adjfreq - adjust ptp cycle frequency
295  * @ptp: the ptp clock structure
296  * @ppb: parts per billion adjustment from base
297  *
298  * Adjust the frequency of the ptp cycle counter by the
299  * indicated ppb from the base frequency.
300  *
301  * Because ENET hardware frequency adjust is complex,
302  * using software method to do that.
303  */
304 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
305 {
306 	unsigned long flags;
307 	int neg_adj = 0;
308 	u32 i, tmp;
309 	u32 corr_inc, corr_period;
310 	u32 corr_ns;
311 	u64 lhs, rhs;
312 
313 	struct fec_enet_private *fep =
314 	    container_of(ptp, struct fec_enet_private, ptp_caps);
315 
316 	if (ppb == 0)
317 		return 0;
318 
319 	if (ppb < 0) {
320 		ppb = -ppb;
321 		neg_adj = 1;
322 	}
323 
324 	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
325 	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
326 	 * meet adjustment requirement.
327 	 */
328 	lhs = NSEC_PER_SEC;
329 	rhs = (u64)ppb * (u64)fep->ptp_inc;
330 	for (i = 1; i <= fep->ptp_inc; i++) {
331 		if (lhs >= rhs) {
332 			corr_inc = i;
333 			corr_period = div_u64(lhs, rhs);
334 			break;
335 		}
336 		lhs += NSEC_PER_SEC;
337 	}
338 	/* Not found? Set it to high value - double speed
339 	 * correct in every clock step.
340 	 */
341 	if (i > fep->ptp_inc) {
342 		corr_inc = fep->ptp_inc;
343 		corr_period = 1;
344 	}
345 
346 	if (neg_adj)
347 		corr_ns = fep->ptp_inc - corr_inc;
348 	else
349 		corr_ns = fep->ptp_inc + corr_inc;
350 
351 	spin_lock_irqsave(&fep->tmreg_lock, flags);
352 
353 	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
354 	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
355 	writel(tmp, fep->hwp + FEC_ATIME_INC);
356 	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
357 	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
358 	/* dummy read to update the timer. */
359 	timecounter_read(&fep->tc);
360 
361 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
362 
363 	return 0;
364 }
365 
366 /**
367  * fec_ptp_adjtime
368  * @ptp: the ptp clock structure
369  * @delta: offset to adjust the cycle counter by
370  *
371  * adjust the timer by resetting the timecounter structure.
372  */
373 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
374 {
375 	struct fec_enet_private *fep =
376 	    container_of(ptp, struct fec_enet_private, ptp_caps);
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(&fep->tmreg_lock, flags);
380 	timecounter_adjtime(&fep->tc, delta);
381 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
382 
383 	return 0;
384 }
385 
386 /**
387  * fec_ptp_gettime
388  * @ptp: the ptp clock structure
389  * @ts: timespec structure to hold the current time value
390  *
391  * read the timecounter and return the correct value on ns,
392  * after converting it into a struct timespec.
393  */
394 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
395 {
396 	struct fec_enet_private *adapter =
397 	    container_of(ptp, struct fec_enet_private, ptp_caps);
398 	u64 ns;
399 	unsigned long flags;
400 
401 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
402 	ns = timecounter_read(&adapter->tc);
403 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
404 
405 	*ts = ns_to_timespec64(ns);
406 
407 	return 0;
408 }
409 
410 /**
411  * fec_ptp_settime
412  * @ptp: the ptp clock structure
413  * @ts: the timespec containing the new time for the cycle counter
414  *
415  * reset the timecounter to use a new base value instead of the kernel
416  * wall timer value.
417  */
418 static int fec_ptp_settime(struct ptp_clock_info *ptp,
419 			   const struct timespec64 *ts)
420 {
421 	struct fec_enet_private *fep =
422 	    container_of(ptp, struct fec_enet_private, ptp_caps);
423 
424 	u64 ns;
425 	unsigned long flags;
426 	u32 counter;
427 
428 	mutex_lock(&fep->ptp_clk_mutex);
429 	/* Check the ptp clock */
430 	if (!fep->ptp_clk_on) {
431 		mutex_unlock(&fep->ptp_clk_mutex);
432 		return -EINVAL;
433 	}
434 
435 	ns = timespec64_to_ns(ts);
436 	/* Get the timer value based on timestamp.
437 	 * Update the counter with the masked value.
438 	 */
439 	counter = ns & fep->cc.mask;
440 
441 	spin_lock_irqsave(&fep->tmreg_lock, flags);
442 	writel(counter, fep->hwp + FEC_ATIME);
443 	timecounter_init(&fep->tc, &fep->cc, ns);
444 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
445 	mutex_unlock(&fep->ptp_clk_mutex);
446 	return 0;
447 }
448 
449 /**
450  * fec_ptp_enable
451  * @ptp: the ptp clock structure
452  * @rq: the requested feature to change
453  * @on: whether to enable or disable the feature
454  *
455  */
456 static int fec_ptp_enable(struct ptp_clock_info *ptp,
457 			  struct ptp_clock_request *rq, int on)
458 {
459 	struct fec_enet_private *fep =
460 	    container_of(ptp, struct fec_enet_private, ptp_caps);
461 	int ret = 0;
462 
463 	if (rq->type == PTP_CLK_REQ_PPS) {
464 		ret = fec_ptp_enable_pps(fep, on);
465 
466 		return ret;
467 	}
468 	return -EOPNOTSUPP;
469 }
470 
471 /**
472  * fec_ptp_hwtstamp_ioctl - control hardware time stamping
473  * @ndev: pointer to net_device
474  * @ifreq: ioctl data
475  * @cmd: particular ioctl requested
476  */
477 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
478 {
479 	struct fec_enet_private *fep = netdev_priv(ndev);
480 
481 	struct hwtstamp_config config;
482 
483 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
484 		return -EFAULT;
485 
486 	/* reserved for future extensions */
487 	if (config.flags)
488 		return -EINVAL;
489 
490 	switch (config.tx_type) {
491 	case HWTSTAMP_TX_OFF:
492 		fep->hwts_tx_en = 0;
493 		break;
494 	case HWTSTAMP_TX_ON:
495 		fep->hwts_tx_en = 1;
496 		break;
497 	default:
498 		return -ERANGE;
499 	}
500 
501 	switch (config.rx_filter) {
502 	case HWTSTAMP_FILTER_NONE:
503 		if (fep->hwts_rx_en)
504 			fep->hwts_rx_en = 0;
505 		config.rx_filter = HWTSTAMP_FILTER_NONE;
506 		break;
507 
508 	default:
509 		fep->hwts_rx_en = 1;
510 		config.rx_filter = HWTSTAMP_FILTER_ALL;
511 		break;
512 	}
513 
514 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
515 	    -EFAULT : 0;
516 }
517 
518 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
519 {
520 	struct fec_enet_private *fep = netdev_priv(ndev);
521 	struct hwtstamp_config config;
522 
523 	config.flags = 0;
524 	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
525 	config.rx_filter = (fep->hwts_rx_en ?
526 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
527 
528 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
529 		-EFAULT : 0;
530 }
531 
532 /**
533  * fec_time_keep - call timecounter_read every second to avoid timer overrun
534  *                 because ENET just support 32bit counter, will timeout in 4s
535  */
536 static void fec_time_keep(struct work_struct *work)
537 {
538 	struct delayed_work *dwork = to_delayed_work(work);
539 	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
540 	u64 ns;
541 	unsigned long flags;
542 
543 	mutex_lock(&fep->ptp_clk_mutex);
544 	if (fep->ptp_clk_on) {
545 		spin_lock_irqsave(&fep->tmreg_lock, flags);
546 		ns = timecounter_read(&fep->tc);
547 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
548 	}
549 	mutex_unlock(&fep->ptp_clk_mutex);
550 
551 	schedule_delayed_work(&fep->time_keep, HZ);
552 }
553 
554 /**
555  * fec_ptp_init
556  * @ndev: The FEC network adapter
557  *
558  * This function performs the required steps for enabling ptp
559  * support. If ptp support has already been loaded it simply calls the
560  * cyclecounter init routine and exits.
561  */
562 
563 void fec_ptp_init(struct platform_device *pdev)
564 {
565 	struct net_device *ndev = platform_get_drvdata(pdev);
566 	struct fec_enet_private *fep = netdev_priv(ndev);
567 
568 	fep->ptp_caps.owner = THIS_MODULE;
569 	snprintf(fep->ptp_caps.name, 16, "fec ptp");
570 
571 	fep->ptp_caps.max_adj = 250000000;
572 	fep->ptp_caps.n_alarm = 0;
573 	fep->ptp_caps.n_ext_ts = 0;
574 	fep->ptp_caps.n_per_out = 0;
575 	fep->ptp_caps.n_pins = 0;
576 	fep->ptp_caps.pps = 1;
577 	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
578 	fep->ptp_caps.adjtime = fec_ptp_adjtime;
579 	fep->ptp_caps.gettime64 = fec_ptp_gettime;
580 	fep->ptp_caps.settime64 = fec_ptp_settime;
581 	fep->ptp_caps.enable = fec_ptp_enable;
582 
583 	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
584 	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
585 
586 	spin_lock_init(&fep->tmreg_lock);
587 
588 	fec_ptp_start_cyclecounter(ndev);
589 
590 	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
591 
592 	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
593 	if (IS_ERR(fep->ptp_clock)) {
594 		fep->ptp_clock = NULL;
595 		pr_err("ptp_clock_register failed\n");
596 	}
597 
598 	schedule_delayed_work(&fep->time_keep, HZ);
599 }
600 
601 void fec_ptp_stop(struct platform_device *pdev)
602 {
603 	struct net_device *ndev = platform_get_drvdata(pdev);
604 	struct fec_enet_private *fep = netdev_priv(ndev);
605 
606 	cancel_delayed_work_sync(&fep->time_keep);
607 	if (fep->ptp_clock)
608 		ptp_clock_unregister(fep->ptp_clock);
609 }
610 
611 /**
612  * fec_ptp_check_pps_event
613  * @fep: the fec_enet_private structure handle
614  *
615  * This function check the pps event and reload the timer compare counter.
616  */
617 uint fec_ptp_check_pps_event(struct fec_enet_private *fep)
618 {
619 	u32 val;
620 	u8 channel = fep->pps_channel;
621 	struct ptp_clock_event event;
622 
623 	val = readl(fep->hwp + FEC_TCSR(channel));
624 	if (val & FEC_T_TF_MASK) {
625 		/* Write the next next compare(not the next according the spec)
626 		 * value to the register
627 		 */
628 		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
629 		do {
630 			writel(val, fep->hwp + FEC_TCSR(channel));
631 		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
632 
633 		/* Update the counter; */
634 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
635 
636 		event.type = PTP_CLOCK_PPS;
637 		ptp_clock_event(fep->ptp_clock, &event);
638 		return 1;
639 	}
640 
641 	return 0;
642 }
643