1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Fast Ethernet Controller (ENET) PTP driver for MX6x. 4 * 5 * Copyright (C) 2012 Freescale Semiconductor, Inc. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/ptrace.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/skbuff.h> 23 #include <linux/spinlock.h> 24 #include <linux/workqueue.h> 25 #include <linux/bitops.h> 26 #include <linux/io.h> 27 #include <linux/irq.h> 28 #include <linux/clk.h> 29 #include <linux/platform_device.h> 30 #include <linux/phy.h> 31 #include <linux/fec.h> 32 #include <linux/of.h> 33 #include <linux/of_device.h> 34 #include <linux/of_gpio.h> 35 #include <linux/of_net.h> 36 37 #include "fec.h" 38 39 /* FEC 1588 register bits */ 40 #define FEC_T_CTRL_SLAVE 0x00002000 41 #define FEC_T_CTRL_CAPTURE 0x00000800 42 #define FEC_T_CTRL_RESTART 0x00000200 43 #define FEC_T_CTRL_PERIOD_RST 0x00000030 44 #define FEC_T_CTRL_PERIOD_EN 0x00000010 45 #define FEC_T_CTRL_ENABLE 0x00000001 46 47 #define FEC_T_INC_MASK 0x0000007f 48 #define FEC_T_INC_OFFSET 0 49 #define FEC_T_INC_CORR_MASK 0x00007f00 50 #define FEC_T_INC_CORR_OFFSET 8 51 52 #define FEC_T_CTRL_PINPER 0x00000080 53 #define FEC_T_TF0_MASK 0x00000001 54 #define FEC_T_TF0_OFFSET 0 55 #define FEC_T_TF1_MASK 0x00000002 56 #define FEC_T_TF1_OFFSET 1 57 #define FEC_T_TF2_MASK 0x00000004 58 #define FEC_T_TF2_OFFSET 2 59 #define FEC_T_TF3_MASK 0x00000008 60 #define FEC_T_TF3_OFFSET 3 61 #define FEC_T_TDRE_MASK 0x00000001 62 #define FEC_T_TDRE_OFFSET 0 63 #define FEC_T_TMODE_MASK 0x0000003C 64 #define FEC_T_TMODE_OFFSET 2 65 #define FEC_T_TIE_MASK 0x00000040 66 #define FEC_T_TIE_OFFSET 6 67 #define FEC_T_TF_MASK 0x00000080 68 #define FEC_T_TF_OFFSET 7 69 70 #define FEC_ATIME_CTRL 0x400 71 #define FEC_ATIME 0x404 72 #define FEC_ATIME_EVT_OFFSET 0x408 73 #define FEC_ATIME_EVT_PERIOD 0x40c 74 #define FEC_ATIME_CORR 0x410 75 #define FEC_ATIME_INC 0x414 76 #define FEC_TS_TIMESTAMP 0x418 77 78 #define FEC_TGSR 0x604 79 #define FEC_TCSR(n) (0x608 + n * 0x08) 80 #define FEC_TCCR(n) (0x60C + n * 0x08) 81 #define MAX_TIMER_CHANNEL 3 82 #define FEC_TMODE_TOGGLE 0x05 83 #define FEC_HIGH_PULSE 0x0F 84 85 #define FEC_CC_MULT (1 << 31) 86 #define FEC_COUNTER_PERIOD (1 << 31) 87 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC 88 #define FEC_CHANNLE_0 0 89 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0 90 91 /** 92 * fec_ptp_enable_pps 93 * @fep: the fec_enet_private structure handle 94 * @enable: enable the channel pps output 95 * 96 * This function enble the PPS ouput on the timer channel. 97 */ 98 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) 99 { 100 unsigned long flags; 101 u32 val, tempval; 102 struct timespec64 ts; 103 u64 ns; 104 105 if (fep->pps_enable == enable) 106 return 0; 107 108 fep->pps_channel = DEFAULT_PPS_CHANNEL; 109 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; 110 111 spin_lock_irqsave(&fep->tmreg_lock, flags); 112 113 if (enable) { 114 /* clear capture or output compare interrupt status if have. 115 */ 116 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); 117 118 /* It is recommended to double check the TMODE field in the 119 * TCSR register to be cleared before the first compare counter 120 * is written into TCCR register. Just add a double check. 121 */ 122 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 123 do { 124 val &= ~(FEC_T_TMODE_MASK); 125 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 126 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 127 } while (val & FEC_T_TMODE_MASK); 128 129 /* Dummy read counter to update the counter */ 130 timecounter_read(&fep->tc); 131 /* We want to find the first compare event in the next 132 * second point. So we need to know what the ptp time 133 * is now and how many nanoseconds is ahead to get next second. 134 * The remaining nanosecond ahead before the next second would be 135 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds 136 * to current timer would be next second. 137 */ 138 tempval = readl(fep->hwp + FEC_ATIME_CTRL); 139 tempval |= FEC_T_CTRL_CAPTURE; 140 writel(tempval, fep->hwp + FEC_ATIME_CTRL); 141 142 tempval = readl(fep->hwp + FEC_ATIME); 143 /* Convert the ptp local counter to 1588 timestamp */ 144 ns = timecounter_cyc2time(&fep->tc, tempval); 145 ts = ns_to_timespec64(ns); 146 147 /* The tempval is less than 3 seconds, and so val is less than 148 * 4 seconds. No overflow for 32bit calculation. 149 */ 150 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; 151 152 /* Need to consider the situation that the current time is 153 * very close to the second point, which means NSEC_PER_SEC 154 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer 155 * is still running when we calculate the first compare event, it is 156 * possible that the remaining nanoseonds run out before the compare 157 * counter is calculated and written into TCCR register. To avoid 158 * this possibility, we will set the compare event to be the next 159 * of next second. The current setting is 31-bit timer and wrap 160 * around over 2 seconds. So it is okay to set the next of next 161 * seond for the timer. 162 */ 163 val += NSEC_PER_SEC; 164 165 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current 166 * ptp counter, which maybe cause 32-bit wrap. Since the 167 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. 168 * We can ensure the wrap will not cause issue. If the offset 169 * is bigger than fep->cc.mask would be a error. 170 */ 171 val &= fep->cc.mask; 172 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); 173 174 /* Calculate the second the compare event timestamp */ 175 fep->next_counter = (val + fep->reload_period) & fep->cc.mask; 176 177 /* * Enable compare event when overflow */ 178 val = readl(fep->hwp + FEC_ATIME_CTRL); 179 val |= FEC_T_CTRL_PINPER; 180 writel(val, fep->hwp + FEC_ATIME_CTRL); 181 182 /* Compare channel setting. */ 183 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 184 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); 185 val &= ~(1 << FEC_T_TDRE_OFFSET); 186 val &= ~(FEC_T_TMODE_MASK); 187 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); 188 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 189 190 /* Write the second compare event timestamp and calculate 191 * the third timestamp. Refer the TCCR register detail in the spec. 192 */ 193 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); 194 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; 195 } else { 196 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); 197 } 198 199 fep->pps_enable = enable; 200 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 201 202 return 0; 203 } 204 205 /** 206 * fec_ptp_read - read raw cycle counter (to be used by time counter) 207 * @cc: the cyclecounter structure 208 * 209 * this function reads the cyclecounter registers and is called by the 210 * cyclecounter structure used to construct a ns counter from the 211 * arbitrary fixed point registers 212 */ 213 static u64 fec_ptp_read(const struct cyclecounter *cc) 214 { 215 struct fec_enet_private *fep = 216 container_of(cc, struct fec_enet_private, cc); 217 u32 tempval; 218 219 tempval = readl(fep->hwp + FEC_ATIME_CTRL); 220 tempval |= FEC_T_CTRL_CAPTURE; 221 writel(tempval, fep->hwp + FEC_ATIME_CTRL); 222 223 if (fep->quirks & FEC_QUIRK_BUG_CAPTURE) 224 udelay(1); 225 226 return readl(fep->hwp + FEC_ATIME); 227 } 228 229 /** 230 * fec_ptp_start_cyclecounter - create the cycle counter from hw 231 * @ndev: network device 232 * 233 * this function initializes the timecounter and cyclecounter 234 * structures for use in generated a ns counter from the arbitrary 235 * fixed point cycles registers in the hardware. 236 */ 237 void fec_ptp_start_cyclecounter(struct net_device *ndev) 238 { 239 struct fec_enet_private *fep = netdev_priv(ndev); 240 unsigned long flags; 241 int inc; 242 243 inc = 1000000000 / fep->cycle_speed; 244 245 /* grab the ptp lock */ 246 spin_lock_irqsave(&fep->tmreg_lock, flags); 247 248 /* 1ns counter */ 249 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); 250 251 /* use 31-bit timer counter */ 252 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); 253 254 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, 255 fep->hwp + FEC_ATIME_CTRL); 256 257 memset(&fep->cc, 0, sizeof(fep->cc)); 258 fep->cc.read = fec_ptp_read; 259 fep->cc.mask = CLOCKSOURCE_MASK(31); 260 fep->cc.shift = 31; 261 fep->cc.mult = FEC_CC_MULT; 262 263 /* reset the ns time counter */ 264 timecounter_init(&fep->tc, &fep->cc, 0); 265 266 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 267 } 268 269 /** 270 * fec_ptp_adjfreq - adjust ptp cycle frequency 271 * @ptp: the ptp clock structure 272 * @ppb: parts per billion adjustment from base 273 * 274 * Adjust the frequency of the ptp cycle counter by the 275 * indicated ppb from the base frequency. 276 * 277 * Because ENET hardware frequency adjust is complex, 278 * using software method to do that. 279 */ 280 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 281 { 282 unsigned long flags; 283 int neg_adj = 0; 284 u32 i, tmp; 285 u32 corr_inc, corr_period; 286 u32 corr_ns; 287 u64 lhs, rhs; 288 289 struct fec_enet_private *fep = 290 container_of(ptp, struct fec_enet_private, ptp_caps); 291 292 if (ppb == 0) 293 return 0; 294 295 if (ppb < 0) { 296 ppb = -ppb; 297 neg_adj = 1; 298 } 299 300 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; 301 * Try to find the corr_inc between 1 to fep->ptp_inc to 302 * meet adjustment requirement. 303 */ 304 lhs = NSEC_PER_SEC; 305 rhs = (u64)ppb * (u64)fep->ptp_inc; 306 for (i = 1; i <= fep->ptp_inc; i++) { 307 if (lhs >= rhs) { 308 corr_inc = i; 309 corr_period = div_u64(lhs, rhs); 310 break; 311 } 312 lhs += NSEC_PER_SEC; 313 } 314 /* Not found? Set it to high value - double speed 315 * correct in every clock step. 316 */ 317 if (i > fep->ptp_inc) { 318 corr_inc = fep->ptp_inc; 319 corr_period = 1; 320 } 321 322 if (neg_adj) 323 corr_ns = fep->ptp_inc - corr_inc; 324 else 325 corr_ns = fep->ptp_inc + corr_inc; 326 327 spin_lock_irqsave(&fep->tmreg_lock, flags); 328 329 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; 330 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; 331 writel(tmp, fep->hwp + FEC_ATIME_INC); 332 corr_period = corr_period > 1 ? corr_period - 1 : corr_period; 333 writel(corr_period, fep->hwp + FEC_ATIME_CORR); 334 /* dummy read to update the timer. */ 335 timecounter_read(&fep->tc); 336 337 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 338 339 return 0; 340 } 341 342 /** 343 * fec_ptp_adjtime 344 * @ptp: the ptp clock structure 345 * @delta: offset to adjust the cycle counter by 346 * 347 * adjust the timer by resetting the timecounter structure. 348 */ 349 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 350 { 351 struct fec_enet_private *fep = 352 container_of(ptp, struct fec_enet_private, ptp_caps); 353 unsigned long flags; 354 355 spin_lock_irqsave(&fep->tmreg_lock, flags); 356 timecounter_adjtime(&fep->tc, delta); 357 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 358 359 return 0; 360 } 361 362 /** 363 * fec_ptp_gettime 364 * @ptp: the ptp clock structure 365 * @ts: timespec structure to hold the current time value 366 * 367 * read the timecounter and return the correct value on ns, 368 * after converting it into a struct timespec. 369 */ 370 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 371 { 372 struct fec_enet_private *adapter = 373 container_of(ptp, struct fec_enet_private, ptp_caps); 374 u64 ns; 375 unsigned long flags; 376 377 mutex_lock(&adapter->ptp_clk_mutex); 378 /* Check the ptp clock */ 379 if (!adapter->ptp_clk_on) { 380 mutex_unlock(&adapter->ptp_clk_mutex); 381 return -EINVAL; 382 } 383 spin_lock_irqsave(&adapter->tmreg_lock, flags); 384 ns = timecounter_read(&adapter->tc); 385 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 386 mutex_unlock(&adapter->ptp_clk_mutex); 387 388 *ts = ns_to_timespec64(ns); 389 390 return 0; 391 } 392 393 /** 394 * fec_ptp_settime 395 * @ptp: the ptp clock structure 396 * @ts: the timespec containing the new time for the cycle counter 397 * 398 * reset the timecounter to use a new base value instead of the kernel 399 * wall timer value. 400 */ 401 static int fec_ptp_settime(struct ptp_clock_info *ptp, 402 const struct timespec64 *ts) 403 { 404 struct fec_enet_private *fep = 405 container_of(ptp, struct fec_enet_private, ptp_caps); 406 407 u64 ns; 408 unsigned long flags; 409 u32 counter; 410 411 mutex_lock(&fep->ptp_clk_mutex); 412 /* Check the ptp clock */ 413 if (!fep->ptp_clk_on) { 414 mutex_unlock(&fep->ptp_clk_mutex); 415 return -EINVAL; 416 } 417 418 ns = timespec64_to_ns(ts); 419 /* Get the timer value based on timestamp. 420 * Update the counter with the masked value. 421 */ 422 counter = ns & fep->cc.mask; 423 424 spin_lock_irqsave(&fep->tmreg_lock, flags); 425 writel(counter, fep->hwp + FEC_ATIME); 426 timecounter_init(&fep->tc, &fep->cc, ns); 427 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 428 mutex_unlock(&fep->ptp_clk_mutex); 429 return 0; 430 } 431 432 /** 433 * fec_ptp_enable 434 * @ptp: the ptp clock structure 435 * @rq: the requested feature to change 436 * @on: whether to enable or disable the feature 437 * 438 */ 439 static int fec_ptp_enable(struct ptp_clock_info *ptp, 440 struct ptp_clock_request *rq, int on) 441 { 442 struct fec_enet_private *fep = 443 container_of(ptp, struct fec_enet_private, ptp_caps); 444 int ret = 0; 445 446 if (rq->type == PTP_CLK_REQ_PPS) { 447 ret = fec_ptp_enable_pps(fep, on); 448 449 return ret; 450 } 451 return -EOPNOTSUPP; 452 } 453 454 /** 455 * fec_ptp_disable_hwts - disable hardware time stamping 456 * @ndev: pointer to net_device 457 */ 458 void fec_ptp_disable_hwts(struct net_device *ndev) 459 { 460 struct fec_enet_private *fep = netdev_priv(ndev); 461 462 fep->hwts_tx_en = 0; 463 fep->hwts_rx_en = 0; 464 } 465 466 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr) 467 { 468 struct fec_enet_private *fep = netdev_priv(ndev); 469 470 struct hwtstamp_config config; 471 472 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 473 return -EFAULT; 474 475 switch (config.tx_type) { 476 case HWTSTAMP_TX_OFF: 477 fep->hwts_tx_en = 0; 478 break; 479 case HWTSTAMP_TX_ON: 480 fep->hwts_tx_en = 1; 481 break; 482 default: 483 return -ERANGE; 484 } 485 486 switch (config.rx_filter) { 487 case HWTSTAMP_FILTER_NONE: 488 fep->hwts_rx_en = 0; 489 break; 490 491 default: 492 fep->hwts_rx_en = 1; 493 config.rx_filter = HWTSTAMP_FILTER_ALL; 494 break; 495 } 496 497 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 498 -EFAULT : 0; 499 } 500 501 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr) 502 { 503 struct fec_enet_private *fep = netdev_priv(ndev); 504 struct hwtstamp_config config; 505 506 config.flags = 0; 507 config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 508 config.rx_filter = (fep->hwts_rx_en ? 509 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 510 511 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 512 -EFAULT : 0; 513 } 514 515 /* 516 * fec_time_keep - call timecounter_read every second to avoid timer overrun 517 * because ENET just support 32bit counter, will timeout in 4s 518 */ 519 static void fec_time_keep(struct work_struct *work) 520 { 521 struct delayed_work *dwork = to_delayed_work(work); 522 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); 523 unsigned long flags; 524 525 mutex_lock(&fep->ptp_clk_mutex); 526 if (fep->ptp_clk_on) { 527 spin_lock_irqsave(&fep->tmreg_lock, flags); 528 timecounter_read(&fep->tc); 529 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 530 } 531 mutex_unlock(&fep->ptp_clk_mutex); 532 533 schedule_delayed_work(&fep->time_keep, HZ); 534 } 535 536 /* This function checks the pps event and reloads the timer compare counter. */ 537 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id) 538 { 539 struct net_device *ndev = dev_id; 540 struct fec_enet_private *fep = netdev_priv(ndev); 541 u32 val; 542 u8 channel = fep->pps_channel; 543 struct ptp_clock_event event; 544 545 val = readl(fep->hwp + FEC_TCSR(channel)); 546 if (val & FEC_T_TF_MASK) { 547 /* Write the next next compare(not the next according the spec) 548 * value to the register 549 */ 550 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); 551 do { 552 writel(val, fep->hwp + FEC_TCSR(channel)); 553 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); 554 555 /* Update the counter; */ 556 fep->next_counter = (fep->next_counter + fep->reload_period) & 557 fep->cc.mask; 558 559 event.type = PTP_CLOCK_PPS; 560 ptp_clock_event(fep->ptp_clock, &event); 561 return IRQ_HANDLED; 562 } 563 564 return IRQ_NONE; 565 } 566 567 /** 568 * fec_ptp_init 569 * @pdev: The FEC network adapter 570 * @irq_idx: the interrupt index 571 * 572 * This function performs the required steps for enabling ptp 573 * support. If ptp support has already been loaded it simply calls the 574 * cyclecounter init routine and exits. 575 */ 576 577 void fec_ptp_init(struct platform_device *pdev, int irq_idx) 578 { 579 struct net_device *ndev = platform_get_drvdata(pdev); 580 struct fec_enet_private *fep = netdev_priv(ndev); 581 int irq; 582 int ret; 583 584 fep->ptp_caps.owner = THIS_MODULE; 585 strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name)); 586 587 fep->ptp_caps.max_adj = 250000000; 588 fep->ptp_caps.n_alarm = 0; 589 fep->ptp_caps.n_ext_ts = 0; 590 fep->ptp_caps.n_per_out = 0; 591 fep->ptp_caps.n_pins = 0; 592 fep->ptp_caps.pps = 1; 593 fep->ptp_caps.adjfreq = fec_ptp_adjfreq; 594 fep->ptp_caps.adjtime = fec_ptp_adjtime; 595 fep->ptp_caps.gettime64 = fec_ptp_gettime; 596 fep->ptp_caps.settime64 = fec_ptp_settime; 597 fep->ptp_caps.enable = fec_ptp_enable; 598 599 fep->cycle_speed = clk_get_rate(fep->clk_ptp); 600 if (!fep->cycle_speed) { 601 fep->cycle_speed = NSEC_PER_SEC; 602 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n"); 603 } 604 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; 605 606 spin_lock_init(&fep->tmreg_lock); 607 608 fec_ptp_start_cyclecounter(ndev); 609 610 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); 611 612 irq = platform_get_irq_byname_optional(pdev, "pps"); 613 if (irq < 0) 614 irq = platform_get_irq_optional(pdev, irq_idx); 615 /* Failure to get an irq is not fatal, 616 * only the PTP_CLOCK_PPS clock events should stop 617 */ 618 if (irq >= 0) { 619 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt, 620 0, pdev->name, ndev); 621 if (ret < 0) 622 dev_warn(&pdev->dev, "request for pps irq failed(%d)\n", 623 ret); 624 } 625 626 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); 627 if (IS_ERR(fep->ptp_clock)) { 628 fep->ptp_clock = NULL; 629 dev_err(&pdev->dev, "ptp_clock_register failed\n"); 630 } 631 632 schedule_delayed_work(&fep->time_keep, HZ); 633 } 634 635 void fec_ptp_stop(struct platform_device *pdev) 636 { 637 struct net_device *ndev = platform_get_drvdata(pdev); 638 struct fec_enet_private *fep = netdev_priv(ndev); 639 640 cancel_delayed_work_sync(&fep->time_keep); 641 if (fep->ptp_clock) 642 ptp_clock_unregister(fep->ptp_clock); 643 } 644