1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4  *
5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_net.h>
36 
37 #include "fec.h"
38 
39 /* FEC 1588 register bits */
40 #define FEC_T_CTRL_SLAVE                0x00002000
41 #define FEC_T_CTRL_CAPTURE              0x00000800
42 #define FEC_T_CTRL_RESTART              0x00000200
43 #define FEC_T_CTRL_PERIOD_RST           0x00000030
44 #define FEC_T_CTRL_PERIOD_EN		0x00000010
45 #define FEC_T_CTRL_ENABLE               0x00000001
46 
47 #define FEC_T_INC_MASK                  0x0000007f
48 #define FEC_T_INC_OFFSET                0
49 #define FEC_T_INC_CORR_MASK             0x00007f00
50 #define FEC_T_INC_CORR_OFFSET           8
51 
52 #define FEC_T_CTRL_PINPER		0x00000080
53 #define FEC_T_TF0_MASK			0x00000001
54 #define FEC_T_TF0_OFFSET		0
55 #define FEC_T_TF1_MASK			0x00000002
56 #define FEC_T_TF1_OFFSET		1
57 #define FEC_T_TF2_MASK			0x00000004
58 #define FEC_T_TF2_OFFSET		2
59 #define FEC_T_TF3_MASK			0x00000008
60 #define FEC_T_TF3_OFFSET		3
61 #define FEC_T_TDRE_MASK			0x00000001
62 #define FEC_T_TDRE_OFFSET		0
63 #define FEC_T_TMODE_MASK		0x0000003C
64 #define FEC_T_TMODE_OFFSET		2
65 #define FEC_T_TIE_MASK			0x00000040
66 #define FEC_T_TIE_OFFSET		6
67 #define FEC_T_TF_MASK			0x00000080
68 #define FEC_T_TF_OFFSET			7
69 
70 #define FEC_ATIME_CTRL		0x400
71 #define FEC_ATIME		0x404
72 #define FEC_ATIME_EVT_OFFSET	0x408
73 #define FEC_ATIME_EVT_PERIOD	0x40c
74 #define FEC_ATIME_CORR		0x410
75 #define FEC_ATIME_INC		0x414
76 #define FEC_TS_TIMESTAMP	0x418
77 
78 #define FEC_TGSR		0x604
79 #define FEC_TCSR(n)		(0x608 + n * 0x08)
80 #define FEC_TCCR(n)		(0x60C + n * 0x08)
81 #define MAX_TIMER_CHANNEL	3
82 #define FEC_TMODE_TOGGLE	0x05
83 #define FEC_HIGH_PULSE		0x0F
84 
85 #define FEC_CC_MULT	(1 << 31)
86 #define FEC_COUNTER_PERIOD	(1 << 31)
87 #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
88 #define FEC_CHANNLE_0		0
89 #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
90 
91 /**
92  * fec_ptp_enable_pps
93  * @fep: the fec_enet_private structure handle
94  * @enable: enable the channel pps output
95  *
96  * This function enble the PPS ouput on the timer channel.
97  */
98 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
99 {
100 	unsigned long flags;
101 	u32 val, tempval;
102 	struct timespec64 ts;
103 	u64 ns;
104 	val = 0;
105 
106 	if (fep->pps_enable == enable)
107 		return 0;
108 
109 	fep->pps_channel = DEFAULT_PPS_CHANNEL;
110 	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
111 
112 	spin_lock_irqsave(&fep->tmreg_lock, flags);
113 
114 	if (enable) {
115 		/* clear capture or output compare interrupt status if have.
116 		 */
117 		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
118 
119 		/* It is recommended to double check the TMODE field in the
120 		 * TCSR register to be cleared before the first compare counter
121 		 * is written into TCCR register. Just add a double check.
122 		 */
123 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
124 		do {
125 			val &= ~(FEC_T_TMODE_MASK);
126 			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
127 			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
128 		} while (val & FEC_T_TMODE_MASK);
129 
130 		/* Dummy read counter to update the counter */
131 		timecounter_read(&fep->tc);
132 		/* We want to find the first compare event in the next
133 		 * second point. So we need to know what the ptp time
134 		 * is now and how many nanoseconds is ahead to get next second.
135 		 * The remaining nanosecond ahead before the next second would be
136 		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
137 		 * to current timer would be next second.
138 		 */
139 		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
140 		tempval |= FEC_T_CTRL_CAPTURE;
141 		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
142 
143 		tempval = readl(fep->hwp + FEC_ATIME);
144 		/* Convert the ptp local counter to 1588 timestamp */
145 		ns = timecounter_cyc2time(&fep->tc, tempval);
146 		ts = ns_to_timespec64(ns);
147 
148 		/* The tempval is  less than 3 seconds, and  so val is less than
149 		 * 4 seconds. No overflow for 32bit calculation.
150 		 */
151 		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
152 
153 		/* Need to consider the situation that the current time is
154 		 * very close to the second point, which means NSEC_PER_SEC
155 		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
156 		 * is still running when we calculate the first compare event, it is
157 		 * possible that the remaining nanoseonds run out before the compare
158 		 * counter is calculated and written into TCCR register. To avoid
159 		 * this possibility, we will set the compare event to be the next
160 		 * of next second. The current setting is 31-bit timer and wrap
161 		 * around over 2 seconds. So it is okay to set the next of next
162 		 * seond for the timer.
163 		 */
164 		val += NSEC_PER_SEC;
165 
166 		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
167 		 * ptp counter, which maybe cause 32-bit wrap. Since the
168 		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
169 		 * We can ensure the wrap will not cause issue. If the offset
170 		 * is bigger than fep->cc.mask would be a error.
171 		 */
172 		val &= fep->cc.mask;
173 		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
174 
175 		/* Calculate the second the compare event timestamp */
176 		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
177 
178 		/* * Enable compare event when overflow */
179 		val = readl(fep->hwp + FEC_ATIME_CTRL);
180 		val |= FEC_T_CTRL_PINPER;
181 		writel(val, fep->hwp + FEC_ATIME_CTRL);
182 
183 		/* Compare channel setting. */
184 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
185 		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
186 		val &= ~(1 << FEC_T_TDRE_OFFSET);
187 		val &= ~(FEC_T_TMODE_MASK);
188 		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
189 		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
190 
191 		/* Write the second compare event timestamp and calculate
192 		 * the third timestamp. Refer the TCCR register detail in the spec.
193 		 */
194 		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
195 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
196 	} else {
197 		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
198 	}
199 
200 	fep->pps_enable = enable;
201 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
202 
203 	return 0;
204 }
205 
206 /**
207  * fec_ptp_read - read raw cycle counter (to be used by time counter)
208  * @cc: the cyclecounter structure
209  *
210  * this function reads the cyclecounter registers and is called by the
211  * cyclecounter structure used to construct a ns counter from the
212  * arbitrary fixed point registers
213  */
214 static u64 fec_ptp_read(const struct cyclecounter *cc)
215 {
216 	struct fec_enet_private *fep =
217 		container_of(cc, struct fec_enet_private, cc);
218 	const struct platform_device_id *id_entry =
219 		platform_get_device_id(fep->pdev);
220 	u32 tempval;
221 
222 	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
223 	tempval |= FEC_T_CTRL_CAPTURE;
224 	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
225 
226 	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
227 		udelay(1);
228 
229 	return readl(fep->hwp + FEC_ATIME);
230 }
231 
232 /**
233  * fec_ptp_start_cyclecounter - create the cycle counter from hw
234  * @ndev: network device
235  *
236  * this function initializes the timecounter and cyclecounter
237  * structures for use in generated a ns counter from the arbitrary
238  * fixed point cycles registers in the hardware.
239  */
240 void fec_ptp_start_cyclecounter(struct net_device *ndev)
241 {
242 	struct fec_enet_private *fep = netdev_priv(ndev);
243 	unsigned long flags;
244 	int inc;
245 
246 	inc = 1000000000 / fep->cycle_speed;
247 
248 	/* grab the ptp lock */
249 	spin_lock_irqsave(&fep->tmreg_lock, flags);
250 
251 	/* 1ns counter */
252 	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
253 
254 	/* use 31-bit timer counter */
255 	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
256 
257 	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
258 		fep->hwp + FEC_ATIME_CTRL);
259 
260 	memset(&fep->cc, 0, sizeof(fep->cc));
261 	fep->cc.read = fec_ptp_read;
262 	fep->cc.mask = CLOCKSOURCE_MASK(31);
263 	fep->cc.shift = 31;
264 	fep->cc.mult = FEC_CC_MULT;
265 
266 	/* reset the ns time counter */
267 	timecounter_init(&fep->tc, &fep->cc, 0);
268 
269 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
270 }
271 
272 /**
273  * fec_ptp_adjfreq - adjust ptp cycle frequency
274  * @ptp: the ptp clock structure
275  * @ppb: parts per billion adjustment from base
276  *
277  * Adjust the frequency of the ptp cycle counter by the
278  * indicated ppb from the base frequency.
279  *
280  * Because ENET hardware frequency adjust is complex,
281  * using software method to do that.
282  */
283 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
284 {
285 	unsigned long flags;
286 	int neg_adj = 0;
287 	u32 i, tmp;
288 	u32 corr_inc, corr_period;
289 	u32 corr_ns;
290 	u64 lhs, rhs;
291 
292 	struct fec_enet_private *fep =
293 	    container_of(ptp, struct fec_enet_private, ptp_caps);
294 
295 	if (ppb == 0)
296 		return 0;
297 
298 	if (ppb < 0) {
299 		ppb = -ppb;
300 		neg_adj = 1;
301 	}
302 
303 	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
304 	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
305 	 * meet adjustment requirement.
306 	 */
307 	lhs = NSEC_PER_SEC;
308 	rhs = (u64)ppb * (u64)fep->ptp_inc;
309 	for (i = 1; i <= fep->ptp_inc; i++) {
310 		if (lhs >= rhs) {
311 			corr_inc = i;
312 			corr_period = div_u64(lhs, rhs);
313 			break;
314 		}
315 		lhs += NSEC_PER_SEC;
316 	}
317 	/* Not found? Set it to high value - double speed
318 	 * correct in every clock step.
319 	 */
320 	if (i > fep->ptp_inc) {
321 		corr_inc = fep->ptp_inc;
322 		corr_period = 1;
323 	}
324 
325 	if (neg_adj)
326 		corr_ns = fep->ptp_inc - corr_inc;
327 	else
328 		corr_ns = fep->ptp_inc + corr_inc;
329 
330 	spin_lock_irqsave(&fep->tmreg_lock, flags);
331 
332 	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
333 	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
334 	writel(tmp, fep->hwp + FEC_ATIME_INC);
335 	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
336 	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
337 	/* dummy read to update the timer. */
338 	timecounter_read(&fep->tc);
339 
340 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
341 
342 	return 0;
343 }
344 
345 /**
346  * fec_ptp_adjtime
347  * @ptp: the ptp clock structure
348  * @delta: offset to adjust the cycle counter by
349  *
350  * adjust the timer by resetting the timecounter structure.
351  */
352 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
353 {
354 	struct fec_enet_private *fep =
355 	    container_of(ptp, struct fec_enet_private, ptp_caps);
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&fep->tmreg_lock, flags);
359 	timecounter_adjtime(&fep->tc, delta);
360 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
361 
362 	return 0;
363 }
364 
365 /**
366  * fec_ptp_gettime
367  * @ptp: the ptp clock structure
368  * @ts: timespec structure to hold the current time value
369  *
370  * read the timecounter and return the correct value on ns,
371  * after converting it into a struct timespec.
372  */
373 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
374 {
375 	struct fec_enet_private *adapter =
376 	    container_of(ptp, struct fec_enet_private, ptp_caps);
377 	u64 ns;
378 	unsigned long flags;
379 
380 	mutex_lock(&adapter->ptp_clk_mutex);
381 	/* Check the ptp clock */
382 	if (!adapter->ptp_clk_on) {
383 		mutex_unlock(&adapter->ptp_clk_mutex);
384 		return -EINVAL;
385 	}
386 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
387 	ns = timecounter_read(&adapter->tc);
388 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
389 	mutex_unlock(&adapter->ptp_clk_mutex);
390 
391 	*ts = ns_to_timespec64(ns);
392 
393 	return 0;
394 }
395 
396 /**
397  * fec_ptp_settime
398  * @ptp: the ptp clock structure
399  * @ts: the timespec containing the new time for the cycle counter
400  *
401  * reset the timecounter to use a new base value instead of the kernel
402  * wall timer value.
403  */
404 static int fec_ptp_settime(struct ptp_clock_info *ptp,
405 			   const struct timespec64 *ts)
406 {
407 	struct fec_enet_private *fep =
408 	    container_of(ptp, struct fec_enet_private, ptp_caps);
409 
410 	u64 ns;
411 	unsigned long flags;
412 	u32 counter;
413 
414 	mutex_lock(&fep->ptp_clk_mutex);
415 	/* Check the ptp clock */
416 	if (!fep->ptp_clk_on) {
417 		mutex_unlock(&fep->ptp_clk_mutex);
418 		return -EINVAL;
419 	}
420 
421 	ns = timespec64_to_ns(ts);
422 	/* Get the timer value based on timestamp.
423 	 * Update the counter with the masked value.
424 	 */
425 	counter = ns & fep->cc.mask;
426 
427 	spin_lock_irqsave(&fep->tmreg_lock, flags);
428 	writel(counter, fep->hwp + FEC_ATIME);
429 	timecounter_init(&fep->tc, &fep->cc, ns);
430 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
431 	mutex_unlock(&fep->ptp_clk_mutex);
432 	return 0;
433 }
434 
435 /**
436  * fec_ptp_enable
437  * @ptp: the ptp clock structure
438  * @rq: the requested feature to change
439  * @on: whether to enable or disable the feature
440  *
441  */
442 static int fec_ptp_enable(struct ptp_clock_info *ptp,
443 			  struct ptp_clock_request *rq, int on)
444 {
445 	struct fec_enet_private *fep =
446 	    container_of(ptp, struct fec_enet_private, ptp_caps);
447 	int ret = 0;
448 
449 	if (rq->type == PTP_CLK_REQ_PPS) {
450 		ret = fec_ptp_enable_pps(fep, on);
451 
452 		return ret;
453 	}
454 	return -EOPNOTSUPP;
455 }
456 
457 /**
458  * fec_ptp_disable_hwts - disable hardware time stamping
459  * @ndev: pointer to net_device
460  */
461 void fec_ptp_disable_hwts(struct net_device *ndev)
462 {
463 	struct fec_enet_private *fep = netdev_priv(ndev);
464 
465 	fep->hwts_tx_en = 0;
466 	fep->hwts_rx_en = 0;
467 }
468 
469 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
470 {
471 	struct fec_enet_private *fep = netdev_priv(ndev);
472 
473 	struct hwtstamp_config config;
474 
475 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
476 		return -EFAULT;
477 
478 	/* reserved for future extensions */
479 	if (config.flags)
480 		return -EINVAL;
481 
482 	switch (config.tx_type) {
483 	case HWTSTAMP_TX_OFF:
484 		fep->hwts_tx_en = 0;
485 		break;
486 	case HWTSTAMP_TX_ON:
487 		fep->hwts_tx_en = 1;
488 		break;
489 	default:
490 		return -ERANGE;
491 	}
492 
493 	switch (config.rx_filter) {
494 	case HWTSTAMP_FILTER_NONE:
495 		fep->hwts_rx_en = 0;
496 		break;
497 
498 	default:
499 		fep->hwts_rx_en = 1;
500 		config.rx_filter = HWTSTAMP_FILTER_ALL;
501 		break;
502 	}
503 
504 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
505 	    -EFAULT : 0;
506 }
507 
508 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
509 {
510 	struct fec_enet_private *fep = netdev_priv(ndev);
511 	struct hwtstamp_config config;
512 
513 	config.flags = 0;
514 	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
515 	config.rx_filter = (fep->hwts_rx_en ?
516 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
517 
518 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
519 		-EFAULT : 0;
520 }
521 
522 /*
523  * fec_time_keep - call timecounter_read every second to avoid timer overrun
524  *                 because ENET just support 32bit counter, will timeout in 4s
525  */
526 static void fec_time_keep(struct work_struct *work)
527 {
528 	struct delayed_work *dwork = to_delayed_work(work);
529 	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
530 	unsigned long flags;
531 
532 	mutex_lock(&fep->ptp_clk_mutex);
533 	if (fep->ptp_clk_on) {
534 		spin_lock_irqsave(&fep->tmreg_lock, flags);
535 		timecounter_read(&fep->tc);
536 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
537 	}
538 	mutex_unlock(&fep->ptp_clk_mutex);
539 
540 	schedule_delayed_work(&fep->time_keep, HZ);
541 }
542 
543 /* This function checks the pps event and reloads the timer compare counter. */
544 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
545 {
546 	struct net_device *ndev = dev_id;
547 	struct fec_enet_private *fep = netdev_priv(ndev);
548 	u32 val;
549 	u8 channel = fep->pps_channel;
550 	struct ptp_clock_event event;
551 
552 	val = readl(fep->hwp + FEC_TCSR(channel));
553 	if (val & FEC_T_TF_MASK) {
554 		/* Write the next next compare(not the next according the spec)
555 		 * value to the register
556 		 */
557 		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
558 		do {
559 			writel(val, fep->hwp + FEC_TCSR(channel));
560 		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
561 
562 		/* Update the counter; */
563 		fep->next_counter = (fep->next_counter + fep->reload_period) &
564 				fep->cc.mask;
565 
566 		event.type = PTP_CLOCK_PPS;
567 		ptp_clock_event(fep->ptp_clock, &event);
568 		return IRQ_HANDLED;
569 	}
570 
571 	return IRQ_NONE;
572 }
573 
574 /**
575  * fec_ptp_init
576  * @pdev: The FEC network adapter
577  * @irq_idx: the interrupt index
578  *
579  * This function performs the required steps for enabling ptp
580  * support. If ptp support has already been loaded it simply calls the
581  * cyclecounter init routine and exits.
582  */
583 
584 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
585 {
586 	struct net_device *ndev = platform_get_drvdata(pdev);
587 	struct fec_enet_private *fep = netdev_priv(ndev);
588 	int irq;
589 	int ret;
590 
591 	fep->ptp_caps.owner = THIS_MODULE;
592 	strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
593 
594 	fep->ptp_caps.max_adj = 250000000;
595 	fep->ptp_caps.n_alarm = 0;
596 	fep->ptp_caps.n_ext_ts = 0;
597 	fep->ptp_caps.n_per_out = 0;
598 	fep->ptp_caps.n_pins = 0;
599 	fep->ptp_caps.pps = 1;
600 	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
601 	fep->ptp_caps.adjtime = fec_ptp_adjtime;
602 	fep->ptp_caps.gettime64 = fec_ptp_gettime;
603 	fep->ptp_caps.settime64 = fec_ptp_settime;
604 	fep->ptp_caps.enable = fec_ptp_enable;
605 
606 	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
607 	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
608 
609 	spin_lock_init(&fep->tmreg_lock);
610 
611 	fec_ptp_start_cyclecounter(ndev);
612 
613 	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
614 
615 	irq = platform_get_irq_byname_optional(pdev, "pps");
616 	if (irq < 0)
617 		irq = platform_get_irq_optional(pdev, irq_idx);
618 	/* Failure to get an irq is not fatal,
619 	 * only the PTP_CLOCK_PPS clock events should stop
620 	 */
621 	if (irq >= 0) {
622 		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
623 				       0, pdev->name, ndev);
624 		if (ret < 0)
625 			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
626 				 ret);
627 	}
628 
629 	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
630 	if (IS_ERR(fep->ptp_clock)) {
631 		fep->ptp_clock = NULL;
632 		dev_err(&pdev->dev, "ptp_clock_register failed\n");
633 	}
634 
635 	schedule_delayed_work(&fep->time_keep, HZ);
636 }
637 
638 void fec_ptp_stop(struct platform_device *pdev)
639 {
640 	struct net_device *ndev = platform_get_drvdata(pdev);
641 	struct fec_enet_private *fep = netdev_priv(ndev);
642 
643 	cancel_delayed_work_sync(&fep->time_keep);
644 	if (fep->ptp_clock)
645 		ptp_clock_unregister(fep->ptp_clock);
646 }
647