1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Fast Ethernet Controller (ENET) PTP driver for MX6x. 4 * 5 * Copyright (C) 2012 Freescale Semiconductor, Inc. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/ptrace.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/skbuff.h> 23 #include <linux/spinlock.h> 24 #include <linux/workqueue.h> 25 #include <linux/bitops.h> 26 #include <linux/io.h> 27 #include <linux/irq.h> 28 #include <linux/clk.h> 29 #include <linux/platform_device.h> 30 #include <linux/phy.h> 31 #include <linux/fec.h> 32 #include <linux/of.h> 33 #include <linux/of_device.h> 34 #include <linux/of_gpio.h> 35 #include <linux/of_net.h> 36 37 #include "fec.h" 38 39 /* FEC 1588 register bits */ 40 #define FEC_T_CTRL_SLAVE 0x00002000 41 #define FEC_T_CTRL_CAPTURE 0x00000800 42 #define FEC_T_CTRL_RESTART 0x00000200 43 #define FEC_T_CTRL_PERIOD_RST 0x00000030 44 #define FEC_T_CTRL_PERIOD_EN 0x00000010 45 #define FEC_T_CTRL_ENABLE 0x00000001 46 47 #define FEC_T_INC_MASK 0x0000007f 48 #define FEC_T_INC_OFFSET 0 49 #define FEC_T_INC_CORR_MASK 0x00007f00 50 #define FEC_T_INC_CORR_OFFSET 8 51 52 #define FEC_T_CTRL_PINPER 0x00000080 53 #define FEC_T_TF0_MASK 0x00000001 54 #define FEC_T_TF0_OFFSET 0 55 #define FEC_T_TF1_MASK 0x00000002 56 #define FEC_T_TF1_OFFSET 1 57 #define FEC_T_TF2_MASK 0x00000004 58 #define FEC_T_TF2_OFFSET 2 59 #define FEC_T_TF3_MASK 0x00000008 60 #define FEC_T_TF3_OFFSET 3 61 #define FEC_T_TDRE_MASK 0x00000001 62 #define FEC_T_TDRE_OFFSET 0 63 #define FEC_T_TMODE_MASK 0x0000003C 64 #define FEC_T_TMODE_OFFSET 2 65 #define FEC_T_TIE_MASK 0x00000040 66 #define FEC_T_TIE_OFFSET 6 67 #define FEC_T_TF_MASK 0x00000080 68 #define FEC_T_TF_OFFSET 7 69 70 #define FEC_ATIME_CTRL 0x400 71 #define FEC_ATIME 0x404 72 #define FEC_ATIME_EVT_OFFSET 0x408 73 #define FEC_ATIME_EVT_PERIOD 0x40c 74 #define FEC_ATIME_CORR 0x410 75 #define FEC_ATIME_INC 0x414 76 #define FEC_TS_TIMESTAMP 0x418 77 78 #define FEC_TGSR 0x604 79 #define FEC_TCSR(n) (0x608 + n * 0x08) 80 #define FEC_TCCR(n) (0x60C + n * 0x08) 81 #define MAX_TIMER_CHANNEL 3 82 #define FEC_TMODE_TOGGLE 0x05 83 #define FEC_HIGH_PULSE 0x0F 84 85 #define FEC_CC_MULT (1 << 31) 86 #define FEC_COUNTER_PERIOD (1 << 31) 87 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC 88 #define FEC_CHANNLE_0 0 89 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0 90 91 /** 92 * fec_ptp_enable_pps 93 * @fep: the fec_enet_private structure handle 94 * @enable: enable the channel pps output 95 * 96 * This function enble the PPS ouput on the timer channel. 97 */ 98 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) 99 { 100 unsigned long flags; 101 u32 val, tempval; 102 struct timespec64 ts; 103 u64 ns; 104 val = 0; 105 106 if (fep->pps_enable == enable) 107 return 0; 108 109 fep->pps_channel = DEFAULT_PPS_CHANNEL; 110 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; 111 112 spin_lock_irqsave(&fep->tmreg_lock, flags); 113 114 if (enable) { 115 /* clear capture or output compare interrupt status if have. 116 */ 117 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); 118 119 /* It is recommended to double check the TMODE field in the 120 * TCSR register to be cleared before the first compare counter 121 * is written into TCCR register. Just add a double check. 122 */ 123 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 124 do { 125 val &= ~(FEC_T_TMODE_MASK); 126 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 127 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 128 } while (val & FEC_T_TMODE_MASK); 129 130 /* Dummy read counter to update the counter */ 131 timecounter_read(&fep->tc); 132 /* We want to find the first compare event in the next 133 * second point. So we need to know what the ptp time 134 * is now and how many nanoseconds is ahead to get next second. 135 * The remaining nanosecond ahead before the next second would be 136 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds 137 * to current timer would be next second. 138 */ 139 tempval = readl(fep->hwp + FEC_ATIME_CTRL); 140 tempval |= FEC_T_CTRL_CAPTURE; 141 writel(tempval, fep->hwp + FEC_ATIME_CTRL); 142 143 tempval = readl(fep->hwp + FEC_ATIME); 144 /* Convert the ptp local counter to 1588 timestamp */ 145 ns = timecounter_cyc2time(&fep->tc, tempval); 146 ts = ns_to_timespec64(ns); 147 148 /* The tempval is less than 3 seconds, and so val is less than 149 * 4 seconds. No overflow for 32bit calculation. 150 */ 151 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; 152 153 /* Need to consider the situation that the current time is 154 * very close to the second point, which means NSEC_PER_SEC 155 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer 156 * is still running when we calculate the first compare event, it is 157 * possible that the remaining nanoseonds run out before the compare 158 * counter is calculated and written into TCCR register. To avoid 159 * this possibility, we will set the compare event to be the next 160 * of next second. The current setting is 31-bit timer and wrap 161 * around over 2 seconds. So it is okay to set the next of next 162 * seond for the timer. 163 */ 164 val += NSEC_PER_SEC; 165 166 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current 167 * ptp counter, which maybe cause 32-bit wrap. Since the 168 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. 169 * We can ensure the wrap will not cause issue. If the offset 170 * is bigger than fep->cc.mask would be a error. 171 */ 172 val &= fep->cc.mask; 173 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); 174 175 /* Calculate the second the compare event timestamp */ 176 fep->next_counter = (val + fep->reload_period) & fep->cc.mask; 177 178 /* * Enable compare event when overflow */ 179 val = readl(fep->hwp + FEC_ATIME_CTRL); 180 val |= FEC_T_CTRL_PINPER; 181 writel(val, fep->hwp + FEC_ATIME_CTRL); 182 183 /* Compare channel setting. */ 184 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 185 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); 186 val &= ~(1 << FEC_T_TDRE_OFFSET); 187 val &= ~(FEC_T_TMODE_MASK); 188 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); 189 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 190 191 /* Write the second compare event timestamp and calculate 192 * the third timestamp. Refer the TCCR register detail in the spec. 193 */ 194 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); 195 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; 196 } else { 197 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); 198 } 199 200 fep->pps_enable = enable; 201 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 202 203 return 0; 204 } 205 206 /** 207 * fec_ptp_read - read raw cycle counter (to be used by time counter) 208 * @cc: the cyclecounter structure 209 * 210 * this function reads the cyclecounter registers and is called by the 211 * cyclecounter structure used to construct a ns counter from the 212 * arbitrary fixed point registers 213 */ 214 static u64 fec_ptp_read(const struct cyclecounter *cc) 215 { 216 struct fec_enet_private *fep = 217 container_of(cc, struct fec_enet_private, cc); 218 const struct platform_device_id *id_entry = 219 platform_get_device_id(fep->pdev); 220 u32 tempval; 221 222 tempval = readl(fep->hwp + FEC_ATIME_CTRL); 223 tempval |= FEC_T_CTRL_CAPTURE; 224 writel(tempval, fep->hwp + FEC_ATIME_CTRL); 225 226 if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE) 227 udelay(1); 228 229 return readl(fep->hwp + FEC_ATIME); 230 } 231 232 /** 233 * fec_ptp_start_cyclecounter - create the cycle counter from hw 234 * @ndev: network device 235 * 236 * this function initializes the timecounter and cyclecounter 237 * structures for use in generated a ns counter from the arbitrary 238 * fixed point cycles registers in the hardware. 239 */ 240 void fec_ptp_start_cyclecounter(struct net_device *ndev) 241 { 242 struct fec_enet_private *fep = netdev_priv(ndev); 243 unsigned long flags; 244 int inc; 245 246 inc = 1000000000 / fep->cycle_speed; 247 248 /* grab the ptp lock */ 249 spin_lock_irqsave(&fep->tmreg_lock, flags); 250 251 /* 1ns counter */ 252 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); 253 254 /* use 31-bit timer counter */ 255 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); 256 257 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, 258 fep->hwp + FEC_ATIME_CTRL); 259 260 memset(&fep->cc, 0, sizeof(fep->cc)); 261 fep->cc.read = fec_ptp_read; 262 fep->cc.mask = CLOCKSOURCE_MASK(31); 263 fep->cc.shift = 31; 264 fep->cc.mult = FEC_CC_MULT; 265 266 /* reset the ns time counter */ 267 timecounter_init(&fep->tc, &fep->cc, 0); 268 269 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 270 } 271 272 /** 273 * fec_ptp_adjfreq - adjust ptp cycle frequency 274 * @ptp: the ptp clock structure 275 * @ppb: parts per billion adjustment from base 276 * 277 * Adjust the frequency of the ptp cycle counter by the 278 * indicated ppb from the base frequency. 279 * 280 * Because ENET hardware frequency adjust is complex, 281 * using software method to do that. 282 */ 283 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 284 { 285 unsigned long flags; 286 int neg_adj = 0; 287 u32 i, tmp; 288 u32 corr_inc, corr_period; 289 u32 corr_ns; 290 u64 lhs, rhs; 291 292 struct fec_enet_private *fep = 293 container_of(ptp, struct fec_enet_private, ptp_caps); 294 295 if (ppb == 0) 296 return 0; 297 298 if (ppb < 0) { 299 ppb = -ppb; 300 neg_adj = 1; 301 } 302 303 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; 304 * Try to find the corr_inc between 1 to fep->ptp_inc to 305 * meet adjustment requirement. 306 */ 307 lhs = NSEC_PER_SEC; 308 rhs = (u64)ppb * (u64)fep->ptp_inc; 309 for (i = 1; i <= fep->ptp_inc; i++) { 310 if (lhs >= rhs) { 311 corr_inc = i; 312 corr_period = div_u64(lhs, rhs); 313 break; 314 } 315 lhs += NSEC_PER_SEC; 316 } 317 /* Not found? Set it to high value - double speed 318 * correct in every clock step. 319 */ 320 if (i > fep->ptp_inc) { 321 corr_inc = fep->ptp_inc; 322 corr_period = 1; 323 } 324 325 if (neg_adj) 326 corr_ns = fep->ptp_inc - corr_inc; 327 else 328 corr_ns = fep->ptp_inc + corr_inc; 329 330 spin_lock_irqsave(&fep->tmreg_lock, flags); 331 332 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; 333 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; 334 writel(tmp, fep->hwp + FEC_ATIME_INC); 335 corr_period = corr_period > 1 ? corr_period - 1 : corr_period; 336 writel(corr_period, fep->hwp + FEC_ATIME_CORR); 337 /* dummy read to update the timer. */ 338 timecounter_read(&fep->tc); 339 340 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 341 342 return 0; 343 } 344 345 /** 346 * fec_ptp_adjtime 347 * @ptp: the ptp clock structure 348 * @delta: offset to adjust the cycle counter by 349 * 350 * adjust the timer by resetting the timecounter structure. 351 */ 352 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 353 { 354 struct fec_enet_private *fep = 355 container_of(ptp, struct fec_enet_private, ptp_caps); 356 unsigned long flags; 357 358 spin_lock_irqsave(&fep->tmreg_lock, flags); 359 timecounter_adjtime(&fep->tc, delta); 360 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 361 362 return 0; 363 } 364 365 /** 366 * fec_ptp_gettime 367 * @ptp: the ptp clock structure 368 * @ts: timespec structure to hold the current time value 369 * 370 * read the timecounter and return the correct value on ns, 371 * after converting it into a struct timespec. 372 */ 373 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 374 { 375 struct fec_enet_private *adapter = 376 container_of(ptp, struct fec_enet_private, ptp_caps); 377 u64 ns; 378 unsigned long flags; 379 380 mutex_lock(&adapter->ptp_clk_mutex); 381 /* Check the ptp clock */ 382 if (!adapter->ptp_clk_on) { 383 mutex_unlock(&adapter->ptp_clk_mutex); 384 return -EINVAL; 385 } 386 spin_lock_irqsave(&adapter->tmreg_lock, flags); 387 ns = timecounter_read(&adapter->tc); 388 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 389 mutex_unlock(&adapter->ptp_clk_mutex); 390 391 *ts = ns_to_timespec64(ns); 392 393 return 0; 394 } 395 396 /** 397 * fec_ptp_settime 398 * @ptp: the ptp clock structure 399 * @ts: the timespec containing the new time for the cycle counter 400 * 401 * reset the timecounter to use a new base value instead of the kernel 402 * wall timer value. 403 */ 404 static int fec_ptp_settime(struct ptp_clock_info *ptp, 405 const struct timespec64 *ts) 406 { 407 struct fec_enet_private *fep = 408 container_of(ptp, struct fec_enet_private, ptp_caps); 409 410 u64 ns; 411 unsigned long flags; 412 u32 counter; 413 414 mutex_lock(&fep->ptp_clk_mutex); 415 /* Check the ptp clock */ 416 if (!fep->ptp_clk_on) { 417 mutex_unlock(&fep->ptp_clk_mutex); 418 return -EINVAL; 419 } 420 421 ns = timespec64_to_ns(ts); 422 /* Get the timer value based on timestamp. 423 * Update the counter with the masked value. 424 */ 425 counter = ns & fep->cc.mask; 426 427 spin_lock_irqsave(&fep->tmreg_lock, flags); 428 writel(counter, fep->hwp + FEC_ATIME); 429 timecounter_init(&fep->tc, &fep->cc, ns); 430 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 431 mutex_unlock(&fep->ptp_clk_mutex); 432 return 0; 433 } 434 435 /** 436 * fec_ptp_enable 437 * @ptp: the ptp clock structure 438 * @rq: the requested feature to change 439 * @on: whether to enable or disable the feature 440 * 441 */ 442 static int fec_ptp_enable(struct ptp_clock_info *ptp, 443 struct ptp_clock_request *rq, int on) 444 { 445 struct fec_enet_private *fep = 446 container_of(ptp, struct fec_enet_private, ptp_caps); 447 int ret = 0; 448 449 if (rq->type == PTP_CLK_REQ_PPS) { 450 ret = fec_ptp_enable_pps(fep, on); 451 452 return ret; 453 } 454 return -EOPNOTSUPP; 455 } 456 457 /** 458 * fec_ptp_disable_hwts - disable hardware time stamping 459 * @ndev: pointer to net_device 460 */ 461 void fec_ptp_disable_hwts(struct net_device *ndev) 462 { 463 struct fec_enet_private *fep = netdev_priv(ndev); 464 465 fep->hwts_tx_en = 0; 466 fep->hwts_rx_en = 0; 467 } 468 469 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr) 470 { 471 struct fec_enet_private *fep = netdev_priv(ndev); 472 473 struct hwtstamp_config config; 474 475 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 476 return -EFAULT; 477 478 /* reserved for future extensions */ 479 if (config.flags) 480 return -EINVAL; 481 482 switch (config.tx_type) { 483 case HWTSTAMP_TX_OFF: 484 fep->hwts_tx_en = 0; 485 break; 486 case HWTSTAMP_TX_ON: 487 fep->hwts_tx_en = 1; 488 break; 489 default: 490 return -ERANGE; 491 } 492 493 switch (config.rx_filter) { 494 case HWTSTAMP_FILTER_NONE: 495 fep->hwts_rx_en = 0; 496 break; 497 498 default: 499 fep->hwts_rx_en = 1; 500 config.rx_filter = HWTSTAMP_FILTER_ALL; 501 break; 502 } 503 504 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 505 -EFAULT : 0; 506 } 507 508 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr) 509 { 510 struct fec_enet_private *fep = netdev_priv(ndev); 511 struct hwtstamp_config config; 512 513 config.flags = 0; 514 config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 515 config.rx_filter = (fep->hwts_rx_en ? 516 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 517 518 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 519 -EFAULT : 0; 520 } 521 522 /* 523 * fec_time_keep - call timecounter_read every second to avoid timer overrun 524 * because ENET just support 32bit counter, will timeout in 4s 525 */ 526 static void fec_time_keep(struct work_struct *work) 527 { 528 struct delayed_work *dwork = to_delayed_work(work); 529 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); 530 unsigned long flags; 531 532 mutex_lock(&fep->ptp_clk_mutex); 533 if (fep->ptp_clk_on) { 534 spin_lock_irqsave(&fep->tmreg_lock, flags); 535 timecounter_read(&fep->tc); 536 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 537 } 538 mutex_unlock(&fep->ptp_clk_mutex); 539 540 schedule_delayed_work(&fep->time_keep, HZ); 541 } 542 543 /* This function checks the pps event and reloads the timer compare counter. */ 544 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id) 545 { 546 struct net_device *ndev = dev_id; 547 struct fec_enet_private *fep = netdev_priv(ndev); 548 u32 val; 549 u8 channel = fep->pps_channel; 550 struct ptp_clock_event event; 551 552 val = readl(fep->hwp + FEC_TCSR(channel)); 553 if (val & FEC_T_TF_MASK) { 554 /* Write the next next compare(not the next according the spec) 555 * value to the register 556 */ 557 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); 558 do { 559 writel(val, fep->hwp + FEC_TCSR(channel)); 560 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); 561 562 /* Update the counter; */ 563 fep->next_counter = (fep->next_counter + fep->reload_period) & 564 fep->cc.mask; 565 566 event.type = PTP_CLOCK_PPS; 567 ptp_clock_event(fep->ptp_clock, &event); 568 return IRQ_HANDLED; 569 } 570 571 return IRQ_NONE; 572 } 573 574 /** 575 * fec_ptp_init 576 * @pdev: The FEC network adapter 577 * @irq_idx: the interrupt index 578 * 579 * This function performs the required steps for enabling ptp 580 * support. If ptp support has already been loaded it simply calls the 581 * cyclecounter init routine and exits. 582 */ 583 584 void fec_ptp_init(struct platform_device *pdev, int irq_idx) 585 { 586 struct net_device *ndev = platform_get_drvdata(pdev); 587 struct fec_enet_private *fep = netdev_priv(ndev); 588 int irq; 589 int ret; 590 591 fep->ptp_caps.owner = THIS_MODULE; 592 strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name)); 593 594 fep->ptp_caps.max_adj = 250000000; 595 fep->ptp_caps.n_alarm = 0; 596 fep->ptp_caps.n_ext_ts = 0; 597 fep->ptp_caps.n_per_out = 0; 598 fep->ptp_caps.n_pins = 0; 599 fep->ptp_caps.pps = 1; 600 fep->ptp_caps.adjfreq = fec_ptp_adjfreq; 601 fep->ptp_caps.adjtime = fec_ptp_adjtime; 602 fep->ptp_caps.gettime64 = fec_ptp_gettime; 603 fep->ptp_caps.settime64 = fec_ptp_settime; 604 fep->ptp_caps.enable = fec_ptp_enable; 605 606 fep->cycle_speed = clk_get_rate(fep->clk_ptp); 607 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; 608 609 spin_lock_init(&fep->tmreg_lock); 610 611 fec_ptp_start_cyclecounter(ndev); 612 613 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); 614 615 irq = platform_get_irq_byname_optional(pdev, "pps"); 616 if (irq < 0) 617 irq = platform_get_irq_optional(pdev, irq_idx); 618 /* Failure to get an irq is not fatal, 619 * only the PTP_CLOCK_PPS clock events should stop 620 */ 621 if (irq >= 0) { 622 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt, 623 0, pdev->name, ndev); 624 if (ret < 0) 625 dev_warn(&pdev->dev, "request for pps irq failed(%d)\n", 626 ret); 627 } 628 629 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); 630 if (IS_ERR(fep->ptp_clock)) { 631 fep->ptp_clock = NULL; 632 dev_err(&pdev->dev, "ptp_clock_register failed\n"); 633 } 634 635 schedule_delayed_work(&fep->time_keep, HZ); 636 } 637 638 void fec_ptp_stop(struct platform_device *pdev) 639 { 640 struct net_device *ndev = platform_get_drvdata(pdev); 641 struct fec_enet_private *fep = netdev_priv(ndev); 642 643 cancel_delayed_work_sync(&fep->time_keep); 644 if (fep->ptp_clock) 645 ptp_clock_unregister(fep->ptp_clock); 646 } 647