1 /* 2 * Fast Ethernet Controller (ENET) PTP driver for MX6x. 3 * 4 * Copyright (C) 2012 Freescale Semiconductor, Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/string.h> 25 #include <linux/ptrace.h> 26 #include <linux/errno.h> 27 #include <linux/ioport.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> 30 #include <linux/pci.h> 31 #include <linux/delay.h> 32 #include <linux/netdevice.h> 33 #include <linux/etherdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/spinlock.h> 36 #include <linux/workqueue.h> 37 #include <linux/bitops.h> 38 #include <linux/io.h> 39 #include <linux/irq.h> 40 #include <linux/clk.h> 41 #include <linux/platform_device.h> 42 #include <linux/phy.h> 43 #include <linux/fec.h> 44 #include <linux/of.h> 45 #include <linux/of_device.h> 46 #include <linux/of_gpio.h> 47 #include <linux/of_net.h> 48 49 #include "fec.h" 50 51 /* FEC 1588 register bits */ 52 #define FEC_T_CTRL_SLAVE 0x00002000 53 #define FEC_T_CTRL_CAPTURE 0x00000800 54 #define FEC_T_CTRL_RESTART 0x00000200 55 #define FEC_T_CTRL_PERIOD_RST 0x00000030 56 #define FEC_T_CTRL_PERIOD_EN 0x00000010 57 #define FEC_T_CTRL_ENABLE 0x00000001 58 59 #define FEC_T_INC_MASK 0x0000007f 60 #define FEC_T_INC_OFFSET 0 61 #define FEC_T_INC_CORR_MASK 0x00007f00 62 #define FEC_T_INC_CORR_OFFSET 8 63 64 #define FEC_T_CTRL_PINPER 0x00000080 65 #define FEC_T_TF0_MASK 0x00000001 66 #define FEC_T_TF0_OFFSET 0 67 #define FEC_T_TF1_MASK 0x00000002 68 #define FEC_T_TF1_OFFSET 1 69 #define FEC_T_TF2_MASK 0x00000004 70 #define FEC_T_TF2_OFFSET 2 71 #define FEC_T_TF3_MASK 0x00000008 72 #define FEC_T_TF3_OFFSET 3 73 #define FEC_T_TDRE_MASK 0x00000001 74 #define FEC_T_TDRE_OFFSET 0 75 #define FEC_T_TMODE_MASK 0x0000003C 76 #define FEC_T_TMODE_OFFSET 2 77 #define FEC_T_TIE_MASK 0x00000040 78 #define FEC_T_TIE_OFFSET 6 79 #define FEC_T_TF_MASK 0x00000080 80 #define FEC_T_TF_OFFSET 7 81 82 #define FEC_ATIME_CTRL 0x400 83 #define FEC_ATIME 0x404 84 #define FEC_ATIME_EVT_OFFSET 0x408 85 #define FEC_ATIME_EVT_PERIOD 0x40c 86 #define FEC_ATIME_CORR 0x410 87 #define FEC_ATIME_INC 0x414 88 #define FEC_TS_TIMESTAMP 0x418 89 90 #define FEC_TGSR 0x604 91 #define FEC_TCSR(n) (0x608 + n * 0x08) 92 #define FEC_TCCR(n) (0x60C + n * 0x08) 93 #define MAX_TIMER_CHANNEL 3 94 #define FEC_TMODE_TOGGLE 0x05 95 #define FEC_HIGH_PULSE 0x0F 96 97 #define FEC_CC_MULT (1 << 31) 98 #define FEC_COUNTER_PERIOD (1 << 31) 99 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC 100 #define FEC_CHANNLE_0 0 101 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0 102 103 /** 104 * fec_ptp_enable_pps 105 * @fep: the fec_enet_private structure handle 106 * @enable: enable the channel pps output 107 * 108 * This function enble the PPS ouput on the timer channel. 109 */ 110 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) 111 { 112 unsigned long flags; 113 u32 val, tempval; 114 int inc; 115 struct timespec ts; 116 u64 ns; 117 u32 remainder; 118 val = 0; 119 120 if (!(fep->hwts_tx_en || fep->hwts_rx_en)) { 121 dev_err(&fep->pdev->dev, "No ptp stack is running\n"); 122 return -EINVAL; 123 } 124 125 if (fep->pps_enable == enable) 126 return 0; 127 128 fep->pps_channel = DEFAULT_PPS_CHANNEL; 129 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; 130 inc = fep->ptp_inc; 131 132 spin_lock_irqsave(&fep->tmreg_lock, flags); 133 134 if (enable) { 135 /* clear capture or output compare interrupt status if have. 136 */ 137 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); 138 139 /* It is recommended to doulbe check the TMODE field in the 140 * TCSR register to be cleared before the first compare counter 141 * is written into TCCR register. Just add a double check. 142 */ 143 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 144 do { 145 val &= ~(FEC_T_TMODE_MASK); 146 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 147 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 148 } while (val & FEC_T_TMODE_MASK); 149 150 /* Dummy read counter to update the counter */ 151 timecounter_read(&fep->tc); 152 /* We want to find the first compare event in the next 153 * second point. So we need to know what the ptp time 154 * is now and how many nanoseconds is ahead to get next second. 155 * The remaining nanosecond ahead before the next second would be 156 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds 157 * to current timer would be next second. 158 */ 159 tempval = readl(fep->hwp + FEC_ATIME_CTRL); 160 tempval |= FEC_T_CTRL_CAPTURE; 161 writel(tempval, fep->hwp + FEC_ATIME_CTRL); 162 163 tempval = readl(fep->hwp + FEC_ATIME); 164 /* Convert the ptp local counter to 1588 timestamp */ 165 ns = timecounter_cyc2time(&fep->tc, tempval); 166 ts.tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder); 167 ts.tv_nsec = remainder; 168 169 /* The tempval is less than 3 seconds, and so val is less than 170 * 4 seconds. No overflow for 32bit calculation. 171 */ 172 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; 173 174 /* Need to consider the situation that the current time is 175 * very close to the second point, which means NSEC_PER_SEC 176 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer 177 * is still running when we calculate the first compare event, it is 178 * possible that the remaining nanoseonds run out before the compare 179 * counter is calculated and written into TCCR register. To avoid 180 * this possibility, we will set the compare event to be the next 181 * of next second. The current setting is 31-bit timer and wrap 182 * around over 2 seconds. So it is okay to set the next of next 183 * seond for the timer. 184 */ 185 val += NSEC_PER_SEC; 186 187 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current 188 * ptp counter, which maybe cause 32-bit wrap. Since the 189 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. 190 * We can ensure the wrap will not cause issue. If the offset 191 * is bigger than fep->cc.mask would be a error. 192 */ 193 val &= fep->cc.mask; 194 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); 195 196 /* Calculate the second the compare event timestamp */ 197 fep->next_counter = (val + fep->reload_period) & fep->cc.mask; 198 199 /* * Enable compare event when overflow */ 200 val = readl(fep->hwp + FEC_ATIME_CTRL); 201 val |= FEC_T_CTRL_PINPER; 202 writel(val, fep->hwp + FEC_ATIME_CTRL); 203 204 /* Compare channel setting. */ 205 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); 206 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); 207 val &= ~(1 << FEC_T_TDRE_OFFSET); 208 val &= ~(FEC_T_TMODE_MASK); 209 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); 210 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); 211 212 /* Write the second compare event timestamp and calculate 213 * the third timestamp. Refer the TCCR register detail in the spec. 214 */ 215 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); 216 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; 217 } else { 218 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); 219 } 220 221 fep->pps_enable = enable; 222 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 223 224 return 0; 225 } 226 227 /** 228 * fec_ptp_read - read raw cycle counter (to be used by time counter) 229 * @cc: the cyclecounter structure 230 * 231 * this function reads the cyclecounter registers and is called by the 232 * cyclecounter structure used to construct a ns counter from the 233 * arbitrary fixed point registers 234 */ 235 static cycle_t fec_ptp_read(const struct cyclecounter *cc) 236 { 237 struct fec_enet_private *fep = 238 container_of(cc, struct fec_enet_private, cc); 239 const struct platform_device_id *id_entry = 240 platform_get_device_id(fep->pdev); 241 u32 tempval; 242 243 tempval = readl(fep->hwp + FEC_ATIME_CTRL); 244 tempval |= FEC_T_CTRL_CAPTURE; 245 writel(tempval, fep->hwp + FEC_ATIME_CTRL); 246 247 if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE) 248 udelay(1); 249 250 return readl(fep->hwp + FEC_ATIME); 251 } 252 253 /** 254 * fec_ptp_start_cyclecounter - create the cycle counter from hw 255 * @ndev: network device 256 * 257 * this function initializes the timecounter and cyclecounter 258 * structures for use in generated a ns counter from the arbitrary 259 * fixed point cycles registers in the hardware. 260 */ 261 void fec_ptp_start_cyclecounter(struct net_device *ndev) 262 { 263 struct fec_enet_private *fep = netdev_priv(ndev); 264 unsigned long flags; 265 int inc; 266 267 inc = 1000000000 / fep->cycle_speed; 268 269 /* grab the ptp lock */ 270 spin_lock_irqsave(&fep->tmreg_lock, flags); 271 272 /* 1ns counter */ 273 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); 274 275 /* use 31-bit timer counter */ 276 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); 277 278 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, 279 fep->hwp + FEC_ATIME_CTRL); 280 281 memset(&fep->cc, 0, sizeof(fep->cc)); 282 fep->cc.read = fec_ptp_read; 283 fep->cc.mask = CLOCKSOURCE_MASK(31); 284 fep->cc.shift = 31; 285 fep->cc.mult = FEC_CC_MULT; 286 287 /* reset the ns time counter */ 288 timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real())); 289 290 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 291 } 292 293 /** 294 * fec_ptp_adjfreq - adjust ptp cycle frequency 295 * @ptp: the ptp clock structure 296 * @ppb: parts per billion adjustment from base 297 * 298 * Adjust the frequency of the ptp cycle counter by the 299 * indicated ppb from the base frequency. 300 * 301 * Because ENET hardware frequency adjust is complex, 302 * using software method to do that. 303 */ 304 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 305 { 306 unsigned long flags; 307 int neg_adj = 0; 308 u32 i, tmp; 309 u32 corr_inc, corr_period; 310 u32 corr_ns; 311 u64 lhs, rhs; 312 313 struct fec_enet_private *fep = 314 container_of(ptp, struct fec_enet_private, ptp_caps); 315 316 if (ppb == 0) 317 return 0; 318 319 if (ppb < 0) { 320 ppb = -ppb; 321 neg_adj = 1; 322 } 323 324 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; 325 * Try to find the corr_inc between 1 to fep->ptp_inc to 326 * meet adjustment requirement. 327 */ 328 lhs = NSEC_PER_SEC; 329 rhs = (u64)ppb * (u64)fep->ptp_inc; 330 for (i = 1; i <= fep->ptp_inc; i++) { 331 if (lhs >= rhs) { 332 corr_inc = i; 333 corr_period = div_u64(lhs, rhs); 334 break; 335 } 336 lhs += NSEC_PER_SEC; 337 } 338 /* Not found? Set it to high value - double speed 339 * correct in every clock step. 340 */ 341 if (i > fep->ptp_inc) { 342 corr_inc = fep->ptp_inc; 343 corr_period = 1; 344 } 345 346 if (neg_adj) 347 corr_ns = fep->ptp_inc - corr_inc; 348 else 349 corr_ns = fep->ptp_inc + corr_inc; 350 351 spin_lock_irqsave(&fep->tmreg_lock, flags); 352 353 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; 354 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; 355 writel(tmp, fep->hwp + FEC_ATIME_INC); 356 writel(corr_period, fep->hwp + FEC_ATIME_CORR); 357 /* dummy read to update the timer. */ 358 timecounter_read(&fep->tc); 359 360 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 361 362 return 0; 363 } 364 365 /** 366 * fec_ptp_adjtime 367 * @ptp: the ptp clock structure 368 * @delta: offset to adjust the cycle counter by 369 * 370 * adjust the timer by resetting the timecounter structure. 371 */ 372 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 373 { 374 struct fec_enet_private *fep = 375 container_of(ptp, struct fec_enet_private, ptp_caps); 376 unsigned long flags; 377 u64 now; 378 u32 counter; 379 380 spin_lock_irqsave(&fep->tmreg_lock, flags); 381 382 now = timecounter_read(&fep->tc); 383 now += delta; 384 385 /* Get the timer value based on adjusted timestamp. 386 * Update the counter with the masked value. 387 */ 388 counter = now & fep->cc.mask; 389 writel(counter, fep->hwp + FEC_ATIME); 390 391 /* reset the timecounter */ 392 timecounter_init(&fep->tc, &fep->cc, now); 393 394 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 395 396 return 0; 397 } 398 399 /** 400 * fec_ptp_gettime 401 * @ptp: the ptp clock structure 402 * @ts: timespec structure to hold the current time value 403 * 404 * read the timecounter and return the correct value on ns, 405 * after converting it into a struct timespec. 406 */ 407 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) 408 { 409 struct fec_enet_private *adapter = 410 container_of(ptp, struct fec_enet_private, ptp_caps); 411 u64 ns; 412 u32 remainder; 413 unsigned long flags; 414 415 spin_lock_irqsave(&adapter->tmreg_lock, flags); 416 ns = timecounter_read(&adapter->tc); 417 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 418 419 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder); 420 ts->tv_nsec = remainder; 421 422 return 0; 423 } 424 425 /** 426 * fec_ptp_settime 427 * @ptp: the ptp clock structure 428 * @ts: the timespec containing the new time for the cycle counter 429 * 430 * reset the timecounter to use a new base value instead of the kernel 431 * wall timer value. 432 */ 433 static int fec_ptp_settime(struct ptp_clock_info *ptp, 434 const struct timespec *ts) 435 { 436 struct fec_enet_private *fep = 437 container_of(ptp, struct fec_enet_private, ptp_caps); 438 439 u64 ns; 440 unsigned long flags; 441 u32 counter; 442 443 mutex_lock(&fep->ptp_clk_mutex); 444 /* Check the ptp clock */ 445 if (!fep->ptp_clk_on) { 446 mutex_unlock(&fep->ptp_clk_mutex); 447 return -EINVAL; 448 } 449 450 ns = ts->tv_sec * 1000000000ULL; 451 ns += ts->tv_nsec; 452 /* Get the timer value based on timestamp. 453 * Update the counter with the masked value. 454 */ 455 counter = ns & fep->cc.mask; 456 457 spin_lock_irqsave(&fep->tmreg_lock, flags); 458 writel(counter, fep->hwp + FEC_ATIME); 459 timecounter_init(&fep->tc, &fep->cc, ns); 460 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 461 mutex_unlock(&fep->ptp_clk_mutex); 462 return 0; 463 } 464 465 /** 466 * fec_ptp_enable 467 * @ptp: the ptp clock structure 468 * @rq: the requested feature to change 469 * @on: whether to enable or disable the feature 470 * 471 */ 472 static int fec_ptp_enable(struct ptp_clock_info *ptp, 473 struct ptp_clock_request *rq, int on) 474 { 475 struct fec_enet_private *fep = 476 container_of(ptp, struct fec_enet_private, ptp_caps); 477 int ret = 0; 478 479 if (rq->type == PTP_CLK_REQ_PPS) { 480 ret = fec_ptp_enable_pps(fep, on); 481 482 return ret; 483 } 484 return -EOPNOTSUPP; 485 } 486 487 /** 488 * fec_ptp_hwtstamp_ioctl - control hardware time stamping 489 * @ndev: pointer to net_device 490 * @ifreq: ioctl data 491 * @cmd: particular ioctl requested 492 */ 493 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr) 494 { 495 struct fec_enet_private *fep = netdev_priv(ndev); 496 497 struct hwtstamp_config config; 498 499 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 500 return -EFAULT; 501 502 /* reserved for future extensions */ 503 if (config.flags) 504 return -EINVAL; 505 506 switch (config.tx_type) { 507 case HWTSTAMP_TX_OFF: 508 fep->hwts_tx_en = 0; 509 break; 510 case HWTSTAMP_TX_ON: 511 fep->hwts_tx_en = 1; 512 break; 513 default: 514 return -ERANGE; 515 } 516 517 switch (config.rx_filter) { 518 case HWTSTAMP_FILTER_NONE: 519 if (fep->hwts_rx_en) 520 fep->hwts_rx_en = 0; 521 config.rx_filter = HWTSTAMP_FILTER_NONE; 522 break; 523 524 default: 525 /* 526 * register RXMTRL must be set in order to do V1 packets, 527 * therefore it is not possible to time stamp both V1 Sync and 528 * Delay_Req messages and hardware does not support 529 * timestamping all packets => return error 530 */ 531 fep->hwts_rx_en = 1; 532 config.rx_filter = HWTSTAMP_FILTER_ALL; 533 break; 534 } 535 536 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 537 -EFAULT : 0; 538 } 539 540 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr) 541 { 542 struct fec_enet_private *fep = netdev_priv(ndev); 543 struct hwtstamp_config config; 544 545 config.flags = 0; 546 config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 547 config.rx_filter = (fep->hwts_rx_en ? 548 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 549 550 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 551 -EFAULT : 0; 552 } 553 554 /** 555 * fec_time_keep - call timecounter_read every second to avoid timer overrun 556 * because ENET just support 32bit counter, will timeout in 4s 557 */ 558 static void fec_time_keep(struct work_struct *work) 559 { 560 struct delayed_work *dwork = to_delayed_work(work); 561 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); 562 u64 ns; 563 unsigned long flags; 564 565 mutex_lock(&fep->ptp_clk_mutex); 566 if (fep->ptp_clk_on) { 567 spin_lock_irqsave(&fep->tmreg_lock, flags); 568 ns = timecounter_read(&fep->tc); 569 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 570 } 571 mutex_unlock(&fep->ptp_clk_mutex); 572 573 schedule_delayed_work(&fep->time_keep, HZ); 574 } 575 576 /** 577 * fec_ptp_init 578 * @ndev: The FEC network adapter 579 * 580 * This function performs the required steps for enabling ptp 581 * support. If ptp support has already been loaded it simply calls the 582 * cyclecounter init routine and exits. 583 */ 584 585 void fec_ptp_init(struct platform_device *pdev) 586 { 587 struct net_device *ndev = platform_get_drvdata(pdev); 588 struct fec_enet_private *fep = netdev_priv(ndev); 589 590 fep->ptp_caps.owner = THIS_MODULE; 591 snprintf(fep->ptp_caps.name, 16, "fec ptp"); 592 593 fep->ptp_caps.max_adj = 250000000; 594 fep->ptp_caps.n_alarm = 0; 595 fep->ptp_caps.n_ext_ts = 0; 596 fep->ptp_caps.n_per_out = 0; 597 fep->ptp_caps.n_pins = 0; 598 fep->ptp_caps.pps = 1; 599 fep->ptp_caps.adjfreq = fec_ptp_adjfreq; 600 fep->ptp_caps.adjtime = fec_ptp_adjtime; 601 fep->ptp_caps.gettime = fec_ptp_gettime; 602 fep->ptp_caps.settime = fec_ptp_settime; 603 fep->ptp_caps.enable = fec_ptp_enable; 604 605 fep->cycle_speed = clk_get_rate(fep->clk_ptp); 606 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; 607 608 spin_lock_init(&fep->tmreg_lock); 609 610 fec_ptp_start_cyclecounter(ndev); 611 612 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); 613 614 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); 615 if (IS_ERR(fep->ptp_clock)) { 616 fep->ptp_clock = NULL; 617 pr_err("ptp_clock_register failed\n"); 618 } 619 620 schedule_delayed_work(&fep->time_keep, HZ); 621 } 622 623 /** 624 * fec_ptp_check_pps_event 625 * @fep: the fec_enet_private structure handle 626 * 627 * This function check the pps event and reload the timer compare counter. 628 */ 629 uint fec_ptp_check_pps_event(struct fec_enet_private *fep) 630 { 631 u32 val; 632 u8 channel = fep->pps_channel; 633 struct ptp_clock_event event; 634 635 val = readl(fep->hwp + FEC_TCSR(channel)); 636 if (val & FEC_T_TF_MASK) { 637 /* Write the next next compare(not the next according the spec) 638 * value to the register 639 */ 640 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); 641 do { 642 writel(val, fep->hwp + FEC_TCSR(channel)); 643 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); 644 645 /* Update the counter; */ 646 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; 647 648 event.type = PTP_CLOCK_PPS; 649 ptp_clock_event(fep->ptp_clock, &event); 650 return 1; 651 } 652 653 return 0; 654 } 655