1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/gpio/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_set(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 108 FEC_QUIRK_HAS_MDIO_C45, 109 }; 110 111 static const struct fec_devinfo fec_imx28_info = { 112 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 113 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 114 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 115 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 116 }; 117 118 static const struct fec_devinfo fec_imx6q_info = { 119 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 120 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 121 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 122 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 123 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 124 }; 125 126 static const struct fec_devinfo fec_mvf600_info = { 127 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 128 FEC_QUIRK_HAS_MDIO_C45, 129 }; 130 131 static const struct fec_devinfo fec_imx6x_info = { 132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 133 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 134 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 135 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 136 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 137 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 138 FEC_QUIRK_HAS_MDIO_C45, 139 }; 140 141 static const struct fec_devinfo fec_imx6ul_info = { 142 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 143 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 144 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 145 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 146 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 147 FEC_QUIRK_HAS_MDIO_C45, 148 }; 149 150 static const struct fec_devinfo fec_imx8mq_info = { 151 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 152 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 153 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 154 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 155 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 156 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 157 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 158 FEC_QUIRK_HAS_MDIO_C45, 159 }; 160 161 static const struct fec_devinfo fec_imx8qm_info = { 162 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 163 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 164 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 165 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 166 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 167 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 168 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 169 }; 170 171 static const struct fec_devinfo fec_s32v234_info = { 172 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 173 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 174 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 175 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 176 FEC_QUIRK_HAS_MDIO_C45, 177 }; 178 179 static struct platform_device_id fec_devtype[] = { 180 { 181 /* keep it for coldfire */ 182 .name = DRIVER_NAME, 183 .driver_data = 0, 184 }, { 185 .name = "imx25-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx25_info, 187 }, { 188 .name = "imx27-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx27_info, 190 }, { 191 .name = "imx28-fec", 192 .driver_data = (kernel_ulong_t)&fec_imx28_info, 193 }, { 194 .name = "imx6q-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 196 }, { 197 .name = "mvf600-fec", 198 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 199 }, { 200 .name = "imx6sx-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 202 }, { 203 .name = "imx6ul-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 205 }, { 206 .name = "imx8mq-fec", 207 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 208 }, { 209 .name = "imx8qm-fec", 210 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 211 }, { 212 .name = "s32v234-fec", 213 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 214 }, { 215 /* sentinel */ 216 } 217 }; 218 MODULE_DEVICE_TABLE(platform, fec_devtype); 219 220 enum imx_fec_type { 221 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 222 IMX27_FEC, /* runs on i.mx27/35/51 */ 223 IMX28_FEC, 224 IMX6Q_FEC, 225 MVF600_FEC, 226 IMX6SX_FEC, 227 IMX6UL_FEC, 228 IMX8MQ_FEC, 229 IMX8QM_FEC, 230 S32V234_FEC, 231 }; 232 233 static const struct of_device_id fec_dt_ids[] = { 234 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 235 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 236 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 237 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 238 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 239 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 240 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 241 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 242 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 243 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 244 { /* sentinel */ } 245 }; 246 MODULE_DEVICE_TABLE(of, fec_dt_ids); 247 248 static unsigned char macaddr[ETH_ALEN]; 249 module_param_array(macaddr, byte, NULL, 0); 250 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 251 252 #if defined(CONFIG_M5272) 253 /* 254 * Some hardware gets it MAC address out of local flash memory. 255 * if this is non-zero then assume it is the address to get MAC from. 256 */ 257 #if defined(CONFIG_NETtel) 258 #define FEC_FLASHMAC 0xf0006006 259 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 260 #define FEC_FLASHMAC 0xf0006000 261 #elif defined(CONFIG_CANCam) 262 #define FEC_FLASHMAC 0xf0020000 263 #elif defined (CONFIG_M5272C3) 264 #define FEC_FLASHMAC (0xffe04000 + 4) 265 #elif defined(CONFIG_MOD5272) 266 #define FEC_FLASHMAC 0xffc0406b 267 #else 268 #define FEC_FLASHMAC 0 269 #endif 270 #endif /* CONFIG_M5272 */ 271 272 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 273 * 274 * 2048 byte skbufs are allocated. However, alignment requirements 275 * varies between FEC variants. Worst case is 64, so round down by 64. 276 */ 277 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 278 #define PKT_MINBUF_SIZE 64 279 280 /* FEC receive acceleration */ 281 #define FEC_RACC_IPDIS (1 << 1) 282 #define FEC_RACC_PRODIS (1 << 2) 283 #define FEC_RACC_SHIFT16 BIT(7) 284 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 285 286 /* MIB Control Register */ 287 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 288 289 /* 290 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 291 * size bits. Other FEC hardware does not, so we need to take that into 292 * account when setting it. 293 */ 294 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 295 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 296 defined(CONFIG_ARM64) 297 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 298 #else 299 #define OPT_FRAME_SIZE 0 300 #endif 301 302 /* FEC MII MMFR bits definition */ 303 #define FEC_MMFR_ST (1 << 30) 304 #define FEC_MMFR_ST_C45 (0) 305 #define FEC_MMFR_OP_READ (2 << 28) 306 #define FEC_MMFR_OP_READ_C45 (3 << 28) 307 #define FEC_MMFR_OP_WRITE (1 << 28) 308 #define FEC_MMFR_OP_ADDR_WRITE (0) 309 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 310 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 311 #define FEC_MMFR_TA (2 << 16) 312 #define FEC_MMFR_DATA(v) (v & 0xffff) 313 /* FEC ECR bits definition */ 314 #define FEC_ECR_MAGICEN (1 << 2) 315 #define FEC_ECR_SLEEP (1 << 3) 316 317 #define FEC_MII_TIMEOUT 30000 /* us */ 318 319 /* Transmitter timeout */ 320 #define TX_TIMEOUT (2 * HZ) 321 322 #define FEC_PAUSE_FLAG_AUTONEG 0x1 323 #define FEC_PAUSE_FLAG_ENABLE 0x2 324 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 325 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 326 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 327 328 #define COPYBREAK_DEFAULT 256 329 330 /* Max number of allowed TCP segments for software TSO */ 331 #define FEC_MAX_TSO_SEGS 100 332 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 333 334 #define IS_TSO_HEADER(txq, addr) \ 335 ((addr >= txq->tso_hdrs_dma) && \ 336 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 337 338 static int mii_cnt; 339 340 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 341 struct bufdesc_prop *bd) 342 { 343 return (bdp >= bd->last) ? bd->base 344 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 345 } 346 347 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 348 struct bufdesc_prop *bd) 349 { 350 return (bdp <= bd->base) ? bd->last 351 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 352 } 353 354 static int fec_enet_get_bd_index(struct bufdesc *bdp, 355 struct bufdesc_prop *bd) 356 { 357 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 358 } 359 360 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 361 { 362 int entries; 363 364 entries = (((const char *)txq->dirty_tx - 365 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 366 367 return entries >= 0 ? entries : entries + txq->bd.ring_size; 368 } 369 370 static void swap_buffer(void *bufaddr, int len) 371 { 372 int i; 373 unsigned int *buf = bufaddr; 374 375 for (i = 0; i < len; i += 4, buf++) 376 swab32s(buf); 377 } 378 379 static void fec_dump(struct net_device *ndev) 380 { 381 struct fec_enet_private *fep = netdev_priv(ndev); 382 struct bufdesc *bdp; 383 struct fec_enet_priv_tx_q *txq; 384 int index = 0; 385 386 netdev_info(ndev, "TX ring dump\n"); 387 pr_info("Nr SC addr len SKB\n"); 388 389 txq = fep->tx_queue[0]; 390 bdp = txq->bd.base; 391 392 do { 393 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 394 index, 395 bdp == txq->bd.cur ? 'S' : ' ', 396 bdp == txq->dirty_tx ? 'H' : ' ', 397 fec16_to_cpu(bdp->cbd_sc), 398 fec32_to_cpu(bdp->cbd_bufaddr), 399 fec16_to_cpu(bdp->cbd_datlen), 400 txq->tx_skbuff[index]); 401 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 402 index++; 403 } while (bdp != txq->bd.base); 404 } 405 406 static inline bool is_ipv4_pkt(struct sk_buff *skb) 407 { 408 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 409 } 410 411 static int 412 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 413 { 414 /* Only run for packets requiring a checksum. */ 415 if (skb->ip_summed != CHECKSUM_PARTIAL) 416 return 0; 417 418 if (unlikely(skb_cow_head(skb, 0))) 419 return -1; 420 421 if (is_ipv4_pkt(skb)) 422 ip_hdr(skb)->check = 0; 423 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 424 425 return 0; 426 } 427 428 static int 429 fec_enet_create_page_pool(struct fec_enet_private *fep, 430 struct fec_enet_priv_rx_q *rxq, int size) 431 { 432 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 433 struct page_pool_params pp_params = { 434 .order = 0, 435 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 436 .pool_size = size, 437 .nid = dev_to_node(&fep->pdev->dev), 438 .dev = &fep->pdev->dev, 439 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 440 .offset = FEC_ENET_XDP_HEADROOM, 441 .max_len = FEC_ENET_RX_FRSIZE, 442 }; 443 int err; 444 445 rxq->page_pool = page_pool_create(&pp_params); 446 if (IS_ERR(rxq->page_pool)) { 447 err = PTR_ERR(rxq->page_pool); 448 rxq->page_pool = NULL; 449 return err; 450 } 451 452 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 453 if (err < 0) 454 goto err_free_pp; 455 456 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 457 rxq->page_pool); 458 if (err) 459 goto err_unregister_rxq; 460 461 return 0; 462 463 err_unregister_rxq: 464 xdp_rxq_info_unreg(&rxq->xdp_rxq); 465 err_free_pp: 466 page_pool_destroy(rxq->page_pool); 467 rxq->page_pool = NULL; 468 return err; 469 } 470 471 static struct bufdesc * 472 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 473 struct sk_buff *skb, 474 struct net_device *ndev) 475 { 476 struct fec_enet_private *fep = netdev_priv(ndev); 477 struct bufdesc *bdp = txq->bd.cur; 478 struct bufdesc_ex *ebdp; 479 int nr_frags = skb_shinfo(skb)->nr_frags; 480 int frag, frag_len; 481 unsigned short status; 482 unsigned int estatus = 0; 483 skb_frag_t *this_frag; 484 unsigned int index; 485 void *bufaddr; 486 dma_addr_t addr; 487 int i; 488 489 for (frag = 0; frag < nr_frags; frag++) { 490 this_frag = &skb_shinfo(skb)->frags[frag]; 491 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 492 ebdp = (struct bufdesc_ex *)bdp; 493 494 status = fec16_to_cpu(bdp->cbd_sc); 495 status &= ~BD_ENET_TX_STATS; 496 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 497 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 498 499 /* Handle the last BD specially */ 500 if (frag == nr_frags - 1) { 501 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 502 if (fep->bufdesc_ex) { 503 estatus |= BD_ENET_TX_INT; 504 if (unlikely(skb_shinfo(skb)->tx_flags & 505 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 506 estatus |= BD_ENET_TX_TS; 507 } 508 } 509 510 if (fep->bufdesc_ex) { 511 if (fep->quirks & FEC_QUIRK_HAS_AVB) 512 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 513 if (skb->ip_summed == CHECKSUM_PARTIAL) 514 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 515 516 ebdp->cbd_bdu = 0; 517 ebdp->cbd_esc = cpu_to_fec32(estatus); 518 } 519 520 bufaddr = skb_frag_address(this_frag); 521 522 index = fec_enet_get_bd_index(bdp, &txq->bd); 523 if (((unsigned long) bufaddr) & fep->tx_align || 524 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 525 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 526 bufaddr = txq->tx_bounce[index]; 527 528 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 529 swap_buffer(bufaddr, frag_len); 530 } 531 532 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 533 DMA_TO_DEVICE); 534 if (dma_mapping_error(&fep->pdev->dev, addr)) { 535 if (net_ratelimit()) 536 netdev_err(ndev, "Tx DMA memory map failed\n"); 537 goto dma_mapping_error; 538 } 539 540 bdp->cbd_bufaddr = cpu_to_fec32(addr); 541 bdp->cbd_datlen = cpu_to_fec16(frag_len); 542 /* Make sure the updates to rest of the descriptor are 543 * performed before transferring ownership. 544 */ 545 wmb(); 546 bdp->cbd_sc = cpu_to_fec16(status); 547 } 548 549 return bdp; 550 dma_mapping_error: 551 bdp = txq->bd.cur; 552 for (i = 0; i < frag; i++) { 553 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 554 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 555 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 556 } 557 return ERR_PTR(-ENOMEM); 558 } 559 560 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 561 struct sk_buff *skb, struct net_device *ndev) 562 { 563 struct fec_enet_private *fep = netdev_priv(ndev); 564 int nr_frags = skb_shinfo(skb)->nr_frags; 565 struct bufdesc *bdp, *last_bdp; 566 void *bufaddr; 567 dma_addr_t addr; 568 unsigned short status; 569 unsigned short buflen; 570 unsigned int estatus = 0; 571 unsigned int index; 572 int entries_free; 573 574 entries_free = fec_enet_get_free_txdesc_num(txq); 575 if (entries_free < MAX_SKB_FRAGS + 1) { 576 dev_kfree_skb_any(skb); 577 if (net_ratelimit()) 578 netdev_err(ndev, "NOT enough BD for SG!\n"); 579 return NETDEV_TX_OK; 580 } 581 582 /* Protocol checksum off-load for TCP and UDP. */ 583 if (fec_enet_clear_csum(skb, ndev)) { 584 dev_kfree_skb_any(skb); 585 return NETDEV_TX_OK; 586 } 587 588 /* Fill in a Tx ring entry */ 589 bdp = txq->bd.cur; 590 last_bdp = bdp; 591 status = fec16_to_cpu(bdp->cbd_sc); 592 status &= ~BD_ENET_TX_STATS; 593 594 /* Set buffer length and buffer pointer */ 595 bufaddr = skb->data; 596 buflen = skb_headlen(skb); 597 598 index = fec_enet_get_bd_index(bdp, &txq->bd); 599 if (((unsigned long) bufaddr) & fep->tx_align || 600 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 601 memcpy(txq->tx_bounce[index], skb->data, buflen); 602 bufaddr = txq->tx_bounce[index]; 603 604 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 605 swap_buffer(bufaddr, buflen); 606 } 607 608 /* Push the data cache so the CPM does not get stale memory data. */ 609 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 610 if (dma_mapping_error(&fep->pdev->dev, addr)) { 611 dev_kfree_skb_any(skb); 612 if (net_ratelimit()) 613 netdev_err(ndev, "Tx DMA memory map failed\n"); 614 return NETDEV_TX_OK; 615 } 616 617 if (nr_frags) { 618 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 619 if (IS_ERR(last_bdp)) { 620 dma_unmap_single(&fep->pdev->dev, addr, 621 buflen, DMA_TO_DEVICE); 622 dev_kfree_skb_any(skb); 623 return NETDEV_TX_OK; 624 } 625 } else { 626 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 627 if (fep->bufdesc_ex) { 628 estatus = BD_ENET_TX_INT; 629 if (unlikely(skb_shinfo(skb)->tx_flags & 630 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 631 estatus |= BD_ENET_TX_TS; 632 } 633 } 634 bdp->cbd_bufaddr = cpu_to_fec32(addr); 635 bdp->cbd_datlen = cpu_to_fec16(buflen); 636 637 if (fep->bufdesc_ex) { 638 639 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 640 641 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 642 fep->hwts_tx_en)) 643 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 644 645 if (fep->quirks & FEC_QUIRK_HAS_AVB) 646 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 647 648 if (skb->ip_summed == CHECKSUM_PARTIAL) 649 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 650 651 ebdp->cbd_bdu = 0; 652 ebdp->cbd_esc = cpu_to_fec32(estatus); 653 } 654 655 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 656 /* Save skb pointer */ 657 txq->tx_skbuff[index] = skb; 658 659 /* Make sure the updates to rest of the descriptor are performed before 660 * transferring ownership. 661 */ 662 wmb(); 663 664 /* Send it on its way. Tell FEC it's ready, interrupt when done, 665 * it's the last BD of the frame, and to put the CRC on the end. 666 */ 667 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 668 bdp->cbd_sc = cpu_to_fec16(status); 669 670 /* If this was the last BD in the ring, start at the beginning again. */ 671 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 672 673 skb_tx_timestamp(skb); 674 675 /* Make sure the update to bdp and tx_skbuff are performed before 676 * txq->bd.cur. 677 */ 678 wmb(); 679 txq->bd.cur = bdp; 680 681 /* Trigger transmission start */ 682 writel(0, txq->bd.reg_desc_active); 683 684 return 0; 685 } 686 687 static int 688 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 689 struct net_device *ndev, 690 struct bufdesc *bdp, int index, char *data, 691 int size, bool last_tcp, bool is_last) 692 { 693 struct fec_enet_private *fep = netdev_priv(ndev); 694 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 695 unsigned short status; 696 unsigned int estatus = 0; 697 dma_addr_t addr; 698 699 status = fec16_to_cpu(bdp->cbd_sc); 700 status &= ~BD_ENET_TX_STATS; 701 702 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 703 704 if (((unsigned long) data) & fep->tx_align || 705 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 706 memcpy(txq->tx_bounce[index], data, size); 707 data = txq->tx_bounce[index]; 708 709 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 710 swap_buffer(data, size); 711 } 712 713 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 714 if (dma_mapping_error(&fep->pdev->dev, addr)) { 715 dev_kfree_skb_any(skb); 716 if (net_ratelimit()) 717 netdev_err(ndev, "Tx DMA memory map failed\n"); 718 return NETDEV_TX_OK; 719 } 720 721 bdp->cbd_datlen = cpu_to_fec16(size); 722 bdp->cbd_bufaddr = cpu_to_fec32(addr); 723 724 if (fep->bufdesc_ex) { 725 if (fep->quirks & FEC_QUIRK_HAS_AVB) 726 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 727 if (skb->ip_summed == CHECKSUM_PARTIAL) 728 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 729 ebdp->cbd_bdu = 0; 730 ebdp->cbd_esc = cpu_to_fec32(estatus); 731 } 732 733 /* Handle the last BD specially */ 734 if (last_tcp) 735 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 736 if (is_last) { 737 status |= BD_ENET_TX_INTR; 738 if (fep->bufdesc_ex) 739 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 740 } 741 742 bdp->cbd_sc = cpu_to_fec16(status); 743 744 return 0; 745 } 746 747 static int 748 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 749 struct sk_buff *skb, struct net_device *ndev, 750 struct bufdesc *bdp, int index) 751 { 752 struct fec_enet_private *fep = netdev_priv(ndev); 753 int hdr_len = skb_tcp_all_headers(skb); 754 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 755 void *bufaddr; 756 unsigned long dmabuf; 757 unsigned short status; 758 unsigned int estatus = 0; 759 760 status = fec16_to_cpu(bdp->cbd_sc); 761 status &= ~BD_ENET_TX_STATS; 762 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 763 764 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 765 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 766 if (((unsigned long)bufaddr) & fep->tx_align || 767 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 768 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 769 bufaddr = txq->tx_bounce[index]; 770 771 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 772 swap_buffer(bufaddr, hdr_len); 773 774 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 775 hdr_len, DMA_TO_DEVICE); 776 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 777 dev_kfree_skb_any(skb); 778 if (net_ratelimit()) 779 netdev_err(ndev, "Tx DMA memory map failed\n"); 780 return NETDEV_TX_OK; 781 } 782 } 783 784 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 785 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 786 787 if (fep->bufdesc_ex) { 788 if (fep->quirks & FEC_QUIRK_HAS_AVB) 789 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 790 if (skb->ip_summed == CHECKSUM_PARTIAL) 791 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 792 ebdp->cbd_bdu = 0; 793 ebdp->cbd_esc = cpu_to_fec32(estatus); 794 } 795 796 bdp->cbd_sc = cpu_to_fec16(status); 797 798 return 0; 799 } 800 801 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 802 struct sk_buff *skb, 803 struct net_device *ndev) 804 { 805 struct fec_enet_private *fep = netdev_priv(ndev); 806 int hdr_len, total_len, data_left; 807 struct bufdesc *bdp = txq->bd.cur; 808 struct tso_t tso; 809 unsigned int index = 0; 810 int ret; 811 812 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 813 dev_kfree_skb_any(skb); 814 if (net_ratelimit()) 815 netdev_err(ndev, "NOT enough BD for TSO!\n"); 816 return NETDEV_TX_OK; 817 } 818 819 /* Protocol checksum off-load for TCP and UDP. */ 820 if (fec_enet_clear_csum(skb, ndev)) { 821 dev_kfree_skb_any(skb); 822 return NETDEV_TX_OK; 823 } 824 825 /* Initialize the TSO handler, and prepare the first payload */ 826 hdr_len = tso_start(skb, &tso); 827 828 total_len = skb->len - hdr_len; 829 while (total_len > 0) { 830 char *hdr; 831 832 index = fec_enet_get_bd_index(bdp, &txq->bd); 833 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 834 total_len -= data_left; 835 836 /* prepare packet headers: MAC + IP + TCP */ 837 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 838 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 839 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 840 if (ret) 841 goto err_release; 842 843 while (data_left > 0) { 844 int size; 845 846 size = min_t(int, tso.size, data_left); 847 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 848 index = fec_enet_get_bd_index(bdp, &txq->bd); 849 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 850 bdp, index, 851 tso.data, size, 852 size == data_left, 853 total_len == 0); 854 if (ret) 855 goto err_release; 856 857 data_left -= size; 858 tso_build_data(skb, &tso, size); 859 } 860 861 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 862 } 863 864 /* Save skb pointer */ 865 txq->tx_skbuff[index] = skb; 866 867 skb_tx_timestamp(skb); 868 txq->bd.cur = bdp; 869 870 /* Trigger transmission start */ 871 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 872 !readl(txq->bd.reg_desc_active) || 873 !readl(txq->bd.reg_desc_active) || 874 !readl(txq->bd.reg_desc_active) || 875 !readl(txq->bd.reg_desc_active)) 876 writel(0, txq->bd.reg_desc_active); 877 878 return 0; 879 880 err_release: 881 /* TODO: Release all used data descriptors for TSO */ 882 return ret; 883 } 884 885 static netdev_tx_t 886 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 887 { 888 struct fec_enet_private *fep = netdev_priv(ndev); 889 int entries_free; 890 unsigned short queue; 891 struct fec_enet_priv_tx_q *txq; 892 struct netdev_queue *nq; 893 int ret; 894 895 queue = skb_get_queue_mapping(skb); 896 txq = fep->tx_queue[queue]; 897 nq = netdev_get_tx_queue(ndev, queue); 898 899 if (skb_is_gso(skb)) 900 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 901 else 902 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 903 if (ret) 904 return ret; 905 906 entries_free = fec_enet_get_free_txdesc_num(txq); 907 if (entries_free <= txq->tx_stop_threshold) 908 netif_tx_stop_queue(nq); 909 910 return NETDEV_TX_OK; 911 } 912 913 /* Init RX & TX buffer descriptors 914 */ 915 static void fec_enet_bd_init(struct net_device *dev) 916 { 917 struct fec_enet_private *fep = netdev_priv(dev); 918 struct fec_enet_priv_tx_q *txq; 919 struct fec_enet_priv_rx_q *rxq; 920 struct bufdesc *bdp; 921 unsigned int i; 922 unsigned int q; 923 924 for (q = 0; q < fep->num_rx_queues; q++) { 925 /* Initialize the receive buffer descriptors. */ 926 rxq = fep->rx_queue[q]; 927 bdp = rxq->bd.base; 928 929 for (i = 0; i < rxq->bd.ring_size; i++) { 930 931 /* Initialize the BD for every fragment in the page. */ 932 if (bdp->cbd_bufaddr) 933 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 934 else 935 bdp->cbd_sc = cpu_to_fec16(0); 936 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 937 } 938 939 /* Set the last buffer to wrap */ 940 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 941 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 942 943 rxq->bd.cur = rxq->bd.base; 944 } 945 946 for (q = 0; q < fep->num_tx_queues; q++) { 947 /* ...and the same for transmit */ 948 txq = fep->tx_queue[q]; 949 bdp = txq->bd.base; 950 txq->bd.cur = bdp; 951 952 for (i = 0; i < txq->bd.ring_size; i++) { 953 /* Initialize the BD for every fragment in the page. */ 954 bdp->cbd_sc = cpu_to_fec16(0); 955 if (bdp->cbd_bufaddr && 956 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 957 dma_unmap_single(&fep->pdev->dev, 958 fec32_to_cpu(bdp->cbd_bufaddr), 959 fec16_to_cpu(bdp->cbd_datlen), 960 DMA_TO_DEVICE); 961 if (txq->tx_skbuff[i]) { 962 dev_kfree_skb_any(txq->tx_skbuff[i]); 963 txq->tx_skbuff[i] = NULL; 964 } 965 bdp->cbd_bufaddr = cpu_to_fec32(0); 966 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 967 } 968 969 /* Set the last buffer to wrap */ 970 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 971 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 972 txq->dirty_tx = bdp; 973 } 974 } 975 976 static void fec_enet_active_rxring(struct net_device *ndev) 977 { 978 struct fec_enet_private *fep = netdev_priv(ndev); 979 int i; 980 981 for (i = 0; i < fep->num_rx_queues; i++) 982 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 983 } 984 985 static void fec_enet_enable_ring(struct net_device *ndev) 986 { 987 struct fec_enet_private *fep = netdev_priv(ndev); 988 struct fec_enet_priv_tx_q *txq; 989 struct fec_enet_priv_rx_q *rxq; 990 int i; 991 992 for (i = 0; i < fep->num_rx_queues; i++) { 993 rxq = fep->rx_queue[i]; 994 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 995 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 996 997 /* enable DMA1/2 */ 998 if (i) 999 writel(RCMR_MATCHEN | RCMR_CMP(i), 1000 fep->hwp + FEC_RCMR(i)); 1001 } 1002 1003 for (i = 0; i < fep->num_tx_queues; i++) { 1004 txq = fep->tx_queue[i]; 1005 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1006 1007 /* enable DMA1/2 */ 1008 if (i) 1009 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1010 fep->hwp + FEC_DMA_CFG(i)); 1011 } 1012 } 1013 1014 static void fec_enet_reset_skb(struct net_device *ndev) 1015 { 1016 struct fec_enet_private *fep = netdev_priv(ndev); 1017 struct fec_enet_priv_tx_q *txq; 1018 int i, j; 1019 1020 for (i = 0; i < fep->num_tx_queues; i++) { 1021 txq = fep->tx_queue[i]; 1022 1023 for (j = 0; j < txq->bd.ring_size; j++) { 1024 if (txq->tx_skbuff[j]) { 1025 dev_kfree_skb_any(txq->tx_skbuff[j]); 1026 txq->tx_skbuff[j] = NULL; 1027 } 1028 } 1029 } 1030 } 1031 1032 /* 1033 * This function is called to start or restart the FEC during a link 1034 * change, transmit timeout, or to reconfigure the FEC. The network 1035 * packet processing for this device must be stopped before this call. 1036 */ 1037 static void 1038 fec_restart(struct net_device *ndev) 1039 { 1040 struct fec_enet_private *fep = netdev_priv(ndev); 1041 u32 temp_mac[2]; 1042 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1043 u32 ecntl = 0x2; /* ETHEREN */ 1044 1045 /* Whack a reset. We should wait for this. 1046 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1047 * instead of reset MAC itself. 1048 */ 1049 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1050 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1051 writel(0, fep->hwp + FEC_ECNTRL); 1052 } else { 1053 writel(1, fep->hwp + FEC_ECNTRL); 1054 udelay(10); 1055 } 1056 1057 /* 1058 * enet-mac reset will reset mac address registers too, 1059 * so need to reconfigure it. 1060 */ 1061 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1062 writel((__force u32)cpu_to_be32(temp_mac[0]), 1063 fep->hwp + FEC_ADDR_LOW); 1064 writel((__force u32)cpu_to_be32(temp_mac[1]), 1065 fep->hwp + FEC_ADDR_HIGH); 1066 1067 /* Clear any outstanding interrupt, except MDIO. */ 1068 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1069 1070 fec_enet_bd_init(ndev); 1071 1072 fec_enet_enable_ring(ndev); 1073 1074 /* Reset tx SKB buffers. */ 1075 fec_enet_reset_skb(ndev); 1076 1077 /* Enable MII mode */ 1078 if (fep->full_duplex == DUPLEX_FULL) { 1079 /* FD enable */ 1080 writel(0x04, fep->hwp + FEC_X_CNTRL); 1081 } else { 1082 /* No Rcv on Xmit */ 1083 rcntl |= 0x02; 1084 writel(0x0, fep->hwp + FEC_X_CNTRL); 1085 } 1086 1087 /* Set MII speed */ 1088 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1089 1090 #if !defined(CONFIG_M5272) 1091 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1092 u32 val = readl(fep->hwp + FEC_RACC); 1093 1094 /* align IP header */ 1095 val |= FEC_RACC_SHIFT16; 1096 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1097 /* set RX checksum */ 1098 val |= FEC_RACC_OPTIONS; 1099 else 1100 val &= ~FEC_RACC_OPTIONS; 1101 writel(val, fep->hwp + FEC_RACC); 1102 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1103 } 1104 #endif 1105 1106 /* 1107 * The phy interface and speed need to get configured 1108 * differently on enet-mac. 1109 */ 1110 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1111 /* Enable flow control and length check */ 1112 rcntl |= 0x40000000 | 0x00000020; 1113 1114 /* RGMII, RMII or MII */ 1115 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1116 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1117 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1118 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1119 rcntl |= (1 << 6); 1120 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1121 rcntl |= (1 << 8); 1122 else 1123 rcntl &= ~(1 << 8); 1124 1125 /* 1G, 100M or 10M */ 1126 if (ndev->phydev) { 1127 if (ndev->phydev->speed == SPEED_1000) 1128 ecntl |= (1 << 5); 1129 else if (ndev->phydev->speed == SPEED_100) 1130 rcntl &= ~(1 << 9); 1131 else 1132 rcntl |= (1 << 9); 1133 } 1134 } else { 1135 #ifdef FEC_MIIGSK_ENR 1136 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1137 u32 cfgr; 1138 /* disable the gasket and wait */ 1139 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1140 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1141 udelay(1); 1142 1143 /* 1144 * configure the gasket: 1145 * RMII, 50 MHz, no loopback, no echo 1146 * MII, 25 MHz, no loopback, no echo 1147 */ 1148 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1149 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1150 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1151 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1152 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1153 1154 /* re-enable the gasket */ 1155 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1156 } 1157 #endif 1158 } 1159 1160 #if !defined(CONFIG_M5272) 1161 /* enable pause frame*/ 1162 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1163 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1164 ndev->phydev && ndev->phydev->pause)) { 1165 rcntl |= FEC_ENET_FCE; 1166 1167 /* set FIFO threshold parameter to reduce overrun */ 1168 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1169 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1170 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1171 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1172 1173 /* OPD */ 1174 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1175 } else { 1176 rcntl &= ~FEC_ENET_FCE; 1177 } 1178 #endif /* !defined(CONFIG_M5272) */ 1179 1180 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1181 1182 /* Setup multicast filter. */ 1183 set_multicast_list(ndev); 1184 #ifndef CONFIG_M5272 1185 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1186 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1187 #endif 1188 1189 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1190 /* enable ENET endian swap */ 1191 ecntl |= (1 << 8); 1192 /* enable ENET store and forward mode */ 1193 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1194 } 1195 1196 if (fep->bufdesc_ex) 1197 ecntl |= (1 << 4); 1198 1199 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1200 fep->rgmii_txc_dly) 1201 ecntl |= FEC_ENET_TXC_DLY; 1202 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1203 fep->rgmii_rxc_dly) 1204 ecntl |= FEC_ENET_RXC_DLY; 1205 1206 #ifndef CONFIG_M5272 1207 /* Enable the MIB statistic event counters */ 1208 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1209 #endif 1210 1211 /* And last, enable the transmit and receive processing */ 1212 writel(ecntl, fep->hwp + FEC_ECNTRL); 1213 fec_enet_active_rxring(ndev); 1214 1215 if (fep->bufdesc_ex) 1216 fec_ptp_start_cyclecounter(ndev); 1217 1218 /* Enable interrupts we wish to service */ 1219 if (fep->link) 1220 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1221 else 1222 writel(0, fep->hwp + FEC_IMASK); 1223 1224 /* Init the interrupt coalescing */ 1225 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1226 fec_enet_itr_coal_set(ndev); 1227 } 1228 1229 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1230 { 1231 if (!(of_machine_is_compatible("fsl,imx8qm") || 1232 of_machine_is_compatible("fsl,imx8qxp") || 1233 of_machine_is_compatible("fsl,imx8dxl"))) 1234 return 0; 1235 1236 return imx_scu_get_handle(&fep->ipc_handle); 1237 } 1238 1239 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1240 { 1241 struct device_node *np = fep->pdev->dev.of_node; 1242 u32 rsrc_id, val; 1243 int idx; 1244 1245 if (!np || !fep->ipc_handle) 1246 return; 1247 1248 idx = of_alias_get_id(np, "ethernet"); 1249 if (idx < 0) 1250 idx = 0; 1251 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1252 1253 val = enabled ? 1 : 0; 1254 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1255 } 1256 1257 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1258 { 1259 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1260 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1261 1262 if (stop_gpr->gpr) { 1263 if (enabled) 1264 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1265 BIT(stop_gpr->bit), 1266 BIT(stop_gpr->bit)); 1267 else 1268 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1269 BIT(stop_gpr->bit), 0); 1270 } else if (pdata && pdata->sleep_mode_enable) { 1271 pdata->sleep_mode_enable(enabled); 1272 } else { 1273 fec_enet_ipg_stop_set(fep, enabled); 1274 } 1275 } 1276 1277 static void fec_irqs_disable(struct net_device *ndev) 1278 { 1279 struct fec_enet_private *fep = netdev_priv(ndev); 1280 1281 writel(0, fep->hwp + FEC_IMASK); 1282 } 1283 1284 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1285 { 1286 struct fec_enet_private *fep = netdev_priv(ndev); 1287 1288 writel(0, fep->hwp + FEC_IMASK); 1289 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1290 } 1291 1292 static void 1293 fec_stop(struct net_device *ndev) 1294 { 1295 struct fec_enet_private *fep = netdev_priv(ndev); 1296 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1297 u32 val; 1298 1299 /* We cannot expect a graceful transmit stop without link !!! */ 1300 if (fep->link) { 1301 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1302 udelay(10); 1303 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1304 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1305 } 1306 1307 /* Whack a reset. We should wait for this. 1308 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1309 * instead of reset MAC itself. 1310 */ 1311 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1312 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1313 writel(0, fep->hwp + FEC_ECNTRL); 1314 } else { 1315 writel(1, fep->hwp + FEC_ECNTRL); 1316 udelay(10); 1317 } 1318 } else { 1319 val = readl(fep->hwp + FEC_ECNTRL); 1320 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1321 writel(val, fep->hwp + FEC_ECNTRL); 1322 } 1323 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1324 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1325 1326 /* We have to keep ENET enabled to have MII interrupt stay working */ 1327 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1328 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1329 writel(2, fep->hwp + FEC_ECNTRL); 1330 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1331 } 1332 } 1333 1334 1335 static void 1336 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1337 { 1338 struct fec_enet_private *fep = netdev_priv(ndev); 1339 1340 fec_dump(ndev); 1341 1342 ndev->stats.tx_errors++; 1343 1344 schedule_work(&fep->tx_timeout_work); 1345 } 1346 1347 static void fec_enet_timeout_work(struct work_struct *work) 1348 { 1349 struct fec_enet_private *fep = 1350 container_of(work, struct fec_enet_private, tx_timeout_work); 1351 struct net_device *ndev = fep->netdev; 1352 1353 rtnl_lock(); 1354 if (netif_device_present(ndev) || netif_running(ndev)) { 1355 napi_disable(&fep->napi); 1356 netif_tx_lock_bh(ndev); 1357 fec_restart(ndev); 1358 netif_tx_wake_all_queues(ndev); 1359 netif_tx_unlock_bh(ndev); 1360 napi_enable(&fep->napi); 1361 } 1362 rtnl_unlock(); 1363 } 1364 1365 static void 1366 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1367 struct skb_shared_hwtstamps *hwtstamps) 1368 { 1369 unsigned long flags; 1370 u64 ns; 1371 1372 spin_lock_irqsave(&fep->tmreg_lock, flags); 1373 ns = timecounter_cyc2time(&fep->tc, ts); 1374 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1375 1376 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1377 hwtstamps->hwtstamp = ns_to_ktime(ns); 1378 } 1379 1380 static void 1381 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1382 { 1383 struct fec_enet_private *fep; 1384 struct bufdesc *bdp; 1385 unsigned short status; 1386 struct sk_buff *skb; 1387 struct fec_enet_priv_tx_q *txq; 1388 struct netdev_queue *nq; 1389 int index = 0; 1390 int entries_free; 1391 1392 fep = netdev_priv(ndev); 1393 1394 txq = fep->tx_queue[queue_id]; 1395 /* get next bdp of dirty_tx */ 1396 nq = netdev_get_tx_queue(ndev, queue_id); 1397 bdp = txq->dirty_tx; 1398 1399 /* get next bdp of dirty_tx */ 1400 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1401 1402 while (bdp != READ_ONCE(txq->bd.cur)) { 1403 /* Order the load of bd.cur and cbd_sc */ 1404 rmb(); 1405 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1406 if (status & BD_ENET_TX_READY) 1407 break; 1408 1409 index = fec_enet_get_bd_index(bdp, &txq->bd); 1410 1411 skb = txq->tx_skbuff[index]; 1412 txq->tx_skbuff[index] = NULL; 1413 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1414 dma_unmap_single(&fep->pdev->dev, 1415 fec32_to_cpu(bdp->cbd_bufaddr), 1416 fec16_to_cpu(bdp->cbd_datlen), 1417 DMA_TO_DEVICE); 1418 bdp->cbd_bufaddr = cpu_to_fec32(0); 1419 if (!skb) 1420 goto skb_done; 1421 1422 /* Check for errors. */ 1423 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1424 BD_ENET_TX_RL | BD_ENET_TX_UN | 1425 BD_ENET_TX_CSL)) { 1426 ndev->stats.tx_errors++; 1427 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1428 ndev->stats.tx_heartbeat_errors++; 1429 if (status & BD_ENET_TX_LC) /* Late collision */ 1430 ndev->stats.tx_window_errors++; 1431 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1432 ndev->stats.tx_aborted_errors++; 1433 if (status & BD_ENET_TX_UN) /* Underrun */ 1434 ndev->stats.tx_fifo_errors++; 1435 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1436 ndev->stats.tx_carrier_errors++; 1437 } else { 1438 ndev->stats.tx_packets++; 1439 ndev->stats.tx_bytes += skb->len; 1440 } 1441 1442 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1443 * are to time stamp the packet, so we still need to check time 1444 * stamping enabled flag. 1445 */ 1446 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1447 fep->hwts_tx_en) && 1448 fep->bufdesc_ex) { 1449 struct skb_shared_hwtstamps shhwtstamps; 1450 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1451 1452 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1453 skb_tstamp_tx(skb, &shhwtstamps); 1454 } 1455 1456 /* Deferred means some collisions occurred during transmit, 1457 * but we eventually sent the packet OK. 1458 */ 1459 if (status & BD_ENET_TX_DEF) 1460 ndev->stats.collisions++; 1461 1462 /* Free the sk buffer associated with this last transmit */ 1463 dev_kfree_skb_any(skb); 1464 skb_done: 1465 /* Make sure the update to bdp and tx_skbuff are performed 1466 * before dirty_tx 1467 */ 1468 wmb(); 1469 txq->dirty_tx = bdp; 1470 1471 /* Update pointer to next buffer descriptor to be transmitted */ 1472 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1473 1474 /* Since we have freed up a buffer, the ring is no longer full 1475 */ 1476 if (netif_tx_queue_stopped(nq)) { 1477 entries_free = fec_enet_get_free_txdesc_num(txq); 1478 if (entries_free >= txq->tx_wake_threshold) 1479 netif_tx_wake_queue(nq); 1480 } 1481 } 1482 1483 /* ERR006358: Keep the transmitter going */ 1484 if (bdp != txq->bd.cur && 1485 readl(txq->bd.reg_desc_active) == 0) 1486 writel(0, txq->bd.reg_desc_active); 1487 } 1488 1489 static void fec_enet_tx(struct net_device *ndev) 1490 { 1491 struct fec_enet_private *fep = netdev_priv(ndev); 1492 int i; 1493 1494 /* Make sure that AVB queues are processed first. */ 1495 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1496 fec_enet_tx_queue(ndev, i); 1497 } 1498 1499 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1500 struct bufdesc *bdp, int index) 1501 { 1502 struct page *new_page; 1503 dma_addr_t phys_addr; 1504 1505 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1506 WARN_ON(!new_page); 1507 rxq->rx_skb_info[index].page = new_page; 1508 1509 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1510 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1511 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1512 } 1513 1514 static u32 1515 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1516 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1517 { 1518 unsigned int sync, len = xdp->data_end - xdp->data; 1519 u32 ret = FEC_ENET_XDP_PASS; 1520 struct page *page; 1521 int err; 1522 u32 act; 1523 1524 act = bpf_prog_run_xdp(prog, xdp); 1525 1526 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1527 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1528 sync = max(sync, len); 1529 1530 switch (act) { 1531 case XDP_PASS: 1532 rxq->stats[RX_XDP_PASS]++; 1533 ret = FEC_ENET_XDP_PASS; 1534 break; 1535 1536 case XDP_REDIRECT: 1537 rxq->stats[RX_XDP_REDIRECT]++; 1538 err = xdp_do_redirect(fep->netdev, xdp, prog); 1539 if (!err) { 1540 ret = FEC_ENET_XDP_REDIR; 1541 } else { 1542 ret = FEC_ENET_XDP_CONSUMED; 1543 page = virt_to_head_page(xdp->data); 1544 page_pool_put_page(rxq->page_pool, page, sync, true); 1545 } 1546 break; 1547 1548 default: 1549 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1550 fallthrough; 1551 1552 case XDP_TX: 1553 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1554 fallthrough; 1555 1556 case XDP_ABORTED: 1557 fallthrough; /* handle aborts by dropping packet */ 1558 1559 case XDP_DROP: 1560 rxq->stats[RX_XDP_DROP]++; 1561 ret = FEC_ENET_XDP_CONSUMED; 1562 page = virt_to_head_page(xdp->data); 1563 page_pool_put_page(rxq->page_pool, page, sync, true); 1564 break; 1565 } 1566 1567 return ret; 1568 } 1569 1570 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1571 * When we update through the ring, if the next incoming buffer has 1572 * not been given to the system, we just set the empty indicator, 1573 * effectively tossing the packet. 1574 */ 1575 static int 1576 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1577 { 1578 struct fec_enet_private *fep = netdev_priv(ndev); 1579 struct fec_enet_priv_rx_q *rxq; 1580 struct bufdesc *bdp; 1581 unsigned short status; 1582 struct sk_buff *skb; 1583 ushort pkt_len; 1584 __u8 *data; 1585 int pkt_received = 0; 1586 struct bufdesc_ex *ebdp = NULL; 1587 bool vlan_packet_rcvd = false; 1588 u16 vlan_tag; 1589 int index = 0; 1590 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1591 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1592 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1593 u32 data_start = FEC_ENET_XDP_HEADROOM; 1594 struct xdp_buff xdp; 1595 struct page *page; 1596 u32 sub_len = 4; 1597 1598 #if !defined(CONFIG_M5272) 1599 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1600 * FEC_RACC_SHIFT16 is set by default in the probe function. 1601 */ 1602 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1603 data_start += 2; 1604 sub_len += 2; 1605 } 1606 #endif 1607 1608 #ifdef CONFIG_M532x 1609 flush_cache_all(); 1610 #endif 1611 rxq = fep->rx_queue[queue_id]; 1612 1613 /* First, grab all of the stats for the incoming packet. 1614 * These get messed up if we get called due to a busy condition. 1615 */ 1616 bdp = rxq->bd.cur; 1617 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1618 1619 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1620 1621 if (pkt_received >= budget) 1622 break; 1623 pkt_received++; 1624 1625 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1626 1627 /* Check for errors. */ 1628 status ^= BD_ENET_RX_LAST; 1629 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1630 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1631 BD_ENET_RX_CL)) { 1632 ndev->stats.rx_errors++; 1633 if (status & BD_ENET_RX_OV) { 1634 /* FIFO overrun */ 1635 ndev->stats.rx_fifo_errors++; 1636 goto rx_processing_done; 1637 } 1638 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1639 | BD_ENET_RX_LAST)) { 1640 /* Frame too long or too short. */ 1641 ndev->stats.rx_length_errors++; 1642 if (status & BD_ENET_RX_LAST) 1643 netdev_err(ndev, "rcv is not +last\n"); 1644 } 1645 if (status & BD_ENET_RX_CR) /* CRC Error */ 1646 ndev->stats.rx_crc_errors++; 1647 /* Report late collisions as a frame error. */ 1648 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1649 ndev->stats.rx_frame_errors++; 1650 goto rx_processing_done; 1651 } 1652 1653 /* Process the incoming frame. */ 1654 ndev->stats.rx_packets++; 1655 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1656 ndev->stats.rx_bytes += pkt_len; 1657 1658 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1659 page = rxq->rx_skb_info[index].page; 1660 dma_sync_single_for_cpu(&fep->pdev->dev, 1661 fec32_to_cpu(bdp->cbd_bufaddr), 1662 pkt_len, 1663 DMA_FROM_DEVICE); 1664 prefetch(page_address(page)); 1665 fec_enet_update_cbd(rxq, bdp, index); 1666 1667 if (xdp_prog) { 1668 xdp_buff_clear_frags_flag(&xdp); 1669 /* subtract 16bit shift and FCS */ 1670 xdp_prepare_buff(&xdp, page_address(page), 1671 data_start, pkt_len - sub_len, false); 1672 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1673 xdp_result |= ret; 1674 if (ret != FEC_ENET_XDP_PASS) 1675 goto rx_processing_done; 1676 } 1677 1678 /* The packet length includes FCS, but we don't want to 1679 * include that when passing upstream as it messes up 1680 * bridging applications. 1681 */ 1682 skb = build_skb(page_address(page), PAGE_SIZE); 1683 if (unlikely(!skb)) { 1684 page_pool_recycle_direct(rxq->page_pool, page); 1685 ndev->stats.rx_dropped++; 1686 1687 netdev_err_once(ndev, "build_skb failed!\n"); 1688 goto rx_processing_done; 1689 } 1690 1691 skb_reserve(skb, data_start); 1692 skb_put(skb, pkt_len - sub_len); 1693 skb_mark_for_recycle(skb); 1694 1695 if (unlikely(need_swap)) { 1696 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1697 swap_buffer(data, pkt_len); 1698 } 1699 data = skb->data; 1700 1701 /* Extract the enhanced buffer descriptor */ 1702 ebdp = NULL; 1703 if (fep->bufdesc_ex) 1704 ebdp = (struct bufdesc_ex *)bdp; 1705 1706 /* If this is a VLAN packet remove the VLAN Tag */ 1707 vlan_packet_rcvd = false; 1708 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1709 fep->bufdesc_ex && 1710 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1711 /* Push and remove the vlan tag */ 1712 struct vlan_hdr *vlan_header = 1713 (struct vlan_hdr *) (data + ETH_HLEN); 1714 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1715 1716 vlan_packet_rcvd = true; 1717 1718 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1719 skb_pull(skb, VLAN_HLEN); 1720 } 1721 1722 skb->protocol = eth_type_trans(skb, ndev); 1723 1724 /* Get receive timestamp from the skb */ 1725 if (fep->hwts_rx_en && fep->bufdesc_ex) 1726 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1727 skb_hwtstamps(skb)); 1728 1729 if (fep->bufdesc_ex && 1730 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1731 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1732 /* don't check it */ 1733 skb->ip_summed = CHECKSUM_UNNECESSARY; 1734 } else { 1735 skb_checksum_none_assert(skb); 1736 } 1737 } 1738 1739 /* Handle received VLAN packets */ 1740 if (vlan_packet_rcvd) 1741 __vlan_hwaccel_put_tag(skb, 1742 htons(ETH_P_8021Q), 1743 vlan_tag); 1744 1745 skb_record_rx_queue(skb, queue_id); 1746 napi_gro_receive(&fep->napi, skb); 1747 1748 rx_processing_done: 1749 /* Clear the status flags for this buffer */ 1750 status &= ~BD_ENET_RX_STATS; 1751 1752 /* Mark the buffer empty */ 1753 status |= BD_ENET_RX_EMPTY; 1754 1755 if (fep->bufdesc_ex) { 1756 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1757 1758 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1759 ebdp->cbd_prot = 0; 1760 ebdp->cbd_bdu = 0; 1761 } 1762 /* Make sure the updates to rest of the descriptor are 1763 * performed before transferring ownership. 1764 */ 1765 wmb(); 1766 bdp->cbd_sc = cpu_to_fec16(status); 1767 1768 /* Update BD pointer to next entry */ 1769 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1770 1771 /* Doing this here will keep the FEC running while we process 1772 * incoming frames. On a heavily loaded network, we should be 1773 * able to keep up at the expense of system resources. 1774 */ 1775 writel(0, rxq->bd.reg_desc_active); 1776 } 1777 rxq->bd.cur = bdp; 1778 1779 if (xdp_result & FEC_ENET_XDP_REDIR) 1780 xdp_do_flush_map(); 1781 1782 return pkt_received; 1783 } 1784 1785 static int fec_enet_rx(struct net_device *ndev, int budget) 1786 { 1787 struct fec_enet_private *fep = netdev_priv(ndev); 1788 int i, done = 0; 1789 1790 /* Make sure that AVB queues are processed first. */ 1791 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1792 done += fec_enet_rx_queue(ndev, budget - done, i); 1793 1794 return done; 1795 } 1796 1797 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1798 { 1799 uint int_events; 1800 1801 int_events = readl(fep->hwp + FEC_IEVENT); 1802 1803 /* Don't clear MDIO events, we poll for those */ 1804 int_events &= ~FEC_ENET_MII; 1805 1806 writel(int_events, fep->hwp + FEC_IEVENT); 1807 1808 return int_events != 0; 1809 } 1810 1811 static irqreturn_t 1812 fec_enet_interrupt(int irq, void *dev_id) 1813 { 1814 struct net_device *ndev = dev_id; 1815 struct fec_enet_private *fep = netdev_priv(ndev); 1816 irqreturn_t ret = IRQ_NONE; 1817 1818 if (fec_enet_collect_events(fep) && fep->link) { 1819 ret = IRQ_HANDLED; 1820 1821 if (napi_schedule_prep(&fep->napi)) { 1822 /* Disable interrupts */ 1823 writel(0, fep->hwp + FEC_IMASK); 1824 __napi_schedule(&fep->napi); 1825 } 1826 } 1827 1828 return ret; 1829 } 1830 1831 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1832 { 1833 struct net_device *ndev = napi->dev; 1834 struct fec_enet_private *fep = netdev_priv(ndev); 1835 int done = 0; 1836 1837 do { 1838 done += fec_enet_rx(ndev, budget - done); 1839 fec_enet_tx(ndev); 1840 } while ((done < budget) && fec_enet_collect_events(fep)); 1841 1842 if (done < budget) { 1843 napi_complete_done(napi, done); 1844 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1845 } 1846 1847 return done; 1848 } 1849 1850 /* ------------------------------------------------------------------------- */ 1851 static int fec_get_mac(struct net_device *ndev) 1852 { 1853 struct fec_enet_private *fep = netdev_priv(ndev); 1854 unsigned char *iap, tmpaddr[ETH_ALEN]; 1855 int ret; 1856 1857 /* 1858 * try to get mac address in following order: 1859 * 1860 * 1) module parameter via kernel command line in form 1861 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1862 */ 1863 iap = macaddr; 1864 1865 /* 1866 * 2) from device tree data 1867 */ 1868 if (!is_valid_ether_addr(iap)) { 1869 struct device_node *np = fep->pdev->dev.of_node; 1870 if (np) { 1871 ret = of_get_mac_address(np, tmpaddr); 1872 if (!ret) 1873 iap = tmpaddr; 1874 else if (ret == -EPROBE_DEFER) 1875 return ret; 1876 } 1877 } 1878 1879 /* 1880 * 3) from flash or fuse (via platform data) 1881 */ 1882 if (!is_valid_ether_addr(iap)) { 1883 #ifdef CONFIG_M5272 1884 if (FEC_FLASHMAC) 1885 iap = (unsigned char *)FEC_FLASHMAC; 1886 #else 1887 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1888 1889 if (pdata) 1890 iap = (unsigned char *)&pdata->mac; 1891 #endif 1892 } 1893 1894 /* 1895 * 4) FEC mac registers set by bootloader 1896 */ 1897 if (!is_valid_ether_addr(iap)) { 1898 *((__be32 *) &tmpaddr[0]) = 1899 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1900 *((__be16 *) &tmpaddr[4]) = 1901 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1902 iap = &tmpaddr[0]; 1903 } 1904 1905 /* 1906 * 5) random mac address 1907 */ 1908 if (!is_valid_ether_addr(iap)) { 1909 /* Report it and use a random ethernet address instead */ 1910 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1911 eth_hw_addr_random(ndev); 1912 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1913 ndev->dev_addr); 1914 return 0; 1915 } 1916 1917 /* Adjust MAC if using macaddr */ 1918 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1919 1920 return 0; 1921 } 1922 1923 /* ------------------------------------------------------------------------- */ 1924 1925 /* 1926 * Phy section 1927 */ 1928 static void fec_enet_adjust_link(struct net_device *ndev) 1929 { 1930 struct fec_enet_private *fep = netdev_priv(ndev); 1931 struct phy_device *phy_dev = ndev->phydev; 1932 int status_change = 0; 1933 1934 /* 1935 * If the netdev is down, or is going down, we're not interested 1936 * in link state events, so just mark our idea of the link as down 1937 * and ignore the event. 1938 */ 1939 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1940 fep->link = 0; 1941 } else if (phy_dev->link) { 1942 if (!fep->link) { 1943 fep->link = phy_dev->link; 1944 status_change = 1; 1945 } 1946 1947 if (fep->full_duplex != phy_dev->duplex) { 1948 fep->full_duplex = phy_dev->duplex; 1949 status_change = 1; 1950 } 1951 1952 if (phy_dev->speed != fep->speed) { 1953 fep->speed = phy_dev->speed; 1954 status_change = 1; 1955 } 1956 1957 /* if any of the above changed restart the FEC */ 1958 if (status_change) { 1959 napi_disable(&fep->napi); 1960 netif_tx_lock_bh(ndev); 1961 fec_restart(ndev); 1962 netif_tx_wake_all_queues(ndev); 1963 netif_tx_unlock_bh(ndev); 1964 napi_enable(&fep->napi); 1965 } 1966 } else { 1967 if (fep->link) { 1968 napi_disable(&fep->napi); 1969 netif_tx_lock_bh(ndev); 1970 fec_stop(ndev); 1971 netif_tx_unlock_bh(ndev); 1972 napi_enable(&fep->napi); 1973 fep->link = phy_dev->link; 1974 status_change = 1; 1975 } 1976 } 1977 1978 if (status_change) 1979 phy_print_status(phy_dev); 1980 } 1981 1982 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1983 { 1984 uint ievent; 1985 int ret; 1986 1987 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1988 ievent & FEC_ENET_MII, 2, 30000); 1989 1990 if (!ret) 1991 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1992 1993 return ret; 1994 } 1995 1996 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 1997 { 1998 struct fec_enet_private *fep = bus->priv; 1999 struct device *dev = &fep->pdev->dev; 2000 int ret = 0, frame_start, frame_addr, frame_op; 2001 2002 ret = pm_runtime_resume_and_get(dev); 2003 if (ret < 0) 2004 return ret; 2005 2006 /* C22 read */ 2007 frame_op = FEC_MMFR_OP_READ; 2008 frame_start = FEC_MMFR_ST; 2009 frame_addr = regnum; 2010 2011 /* start a read op */ 2012 writel(frame_start | frame_op | 2013 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2014 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2015 2016 /* wait for end of transfer */ 2017 ret = fec_enet_mdio_wait(fep); 2018 if (ret) { 2019 netdev_err(fep->netdev, "MDIO read timeout\n"); 2020 goto out; 2021 } 2022 2023 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2024 2025 out: 2026 pm_runtime_mark_last_busy(dev); 2027 pm_runtime_put_autosuspend(dev); 2028 2029 return ret; 2030 } 2031 2032 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2033 int devad, int regnum) 2034 { 2035 struct fec_enet_private *fep = bus->priv; 2036 struct device *dev = &fep->pdev->dev; 2037 int ret = 0, frame_start, frame_op; 2038 2039 ret = pm_runtime_resume_and_get(dev); 2040 if (ret < 0) 2041 return ret; 2042 2043 frame_start = FEC_MMFR_ST_C45; 2044 2045 /* write address */ 2046 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2047 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2048 FEC_MMFR_TA | (regnum & 0xFFFF), 2049 fep->hwp + FEC_MII_DATA); 2050 2051 /* wait for end of transfer */ 2052 ret = fec_enet_mdio_wait(fep); 2053 if (ret) { 2054 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2055 goto out; 2056 } 2057 2058 frame_op = FEC_MMFR_OP_READ_C45; 2059 2060 /* start a read op */ 2061 writel(frame_start | frame_op | 2062 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2063 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2064 2065 /* wait for end of transfer */ 2066 ret = fec_enet_mdio_wait(fep); 2067 if (ret) { 2068 netdev_err(fep->netdev, "MDIO read timeout\n"); 2069 goto out; 2070 } 2071 2072 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2073 2074 out: 2075 pm_runtime_mark_last_busy(dev); 2076 pm_runtime_put_autosuspend(dev); 2077 2078 return ret; 2079 } 2080 2081 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2082 u16 value) 2083 { 2084 struct fec_enet_private *fep = bus->priv; 2085 struct device *dev = &fep->pdev->dev; 2086 int ret, frame_start, frame_addr; 2087 2088 ret = pm_runtime_resume_and_get(dev); 2089 if (ret < 0) 2090 return ret; 2091 2092 /* C22 write */ 2093 frame_start = FEC_MMFR_ST; 2094 frame_addr = regnum; 2095 2096 /* start a write op */ 2097 writel(frame_start | FEC_MMFR_OP_WRITE | 2098 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2099 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2100 fep->hwp + FEC_MII_DATA); 2101 2102 /* wait for end of transfer */ 2103 ret = fec_enet_mdio_wait(fep); 2104 if (ret) 2105 netdev_err(fep->netdev, "MDIO write timeout\n"); 2106 2107 pm_runtime_mark_last_busy(dev); 2108 pm_runtime_put_autosuspend(dev); 2109 2110 return ret; 2111 } 2112 2113 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2114 int devad, int regnum, u16 value) 2115 { 2116 struct fec_enet_private *fep = bus->priv; 2117 struct device *dev = &fep->pdev->dev; 2118 int ret, frame_start; 2119 2120 ret = pm_runtime_resume_and_get(dev); 2121 if (ret < 0) 2122 return ret; 2123 2124 frame_start = FEC_MMFR_ST_C45; 2125 2126 /* write address */ 2127 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2128 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2129 FEC_MMFR_TA | (regnum & 0xFFFF), 2130 fep->hwp + FEC_MII_DATA); 2131 2132 /* wait for end of transfer */ 2133 ret = fec_enet_mdio_wait(fep); 2134 if (ret) { 2135 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2136 goto out; 2137 } 2138 2139 /* start a write op */ 2140 writel(frame_start | FEC_MMFR_OP_WRITE | 2141 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2142 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2143 fep->hwp + FEC_MII_DATA); 2144 2145 /* wait for end of transfer */ 2146 ret = fec_enet_mdio_wait(fep); 2147 if (ret) 2148 netdev_err(fep->netdev, "MDIO write timeout\n"); 2149 2150 out: 2151 pm_runtime_mark_last_busy(dev); 2152 pm_runtime_put_autosuspend(dev); 2153 2154 return ret; 2155 } 2156 2157 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2158 { 2159 struct fec_enet_private *fep = netdev_priv(ndev); 2160 struct phy_device *phy_dev = ndev->phydev; 2161 2162 if (phy_dev) { 2163 phy_reset_after_clk_enable(phy_dev); 2164 } else if (fep->phy_node) { 2165 /* 2166 * If the PHY still is not bound to the MAC, but there is 2167 * OF PHY node and a matching PHY device instance already, 2168 * use the OF PHY node to obtain the PHY device instance, 2169 * and then use that PHY device instance when triggering 2170 * the PHY reset. 2171 */ 2172 phy_dev = of_phy_find_device(fep->phy_node); 2173 phy_reset_after_clk_enable(phy_dev); 2174 put_device(&phy_dev->mdio.dev); 2175 } 2176 } 2177 2178 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2179 { 2180 struct fec_enet_private *fep = netdev_priv(ndev); 2181 int ret; 2182 2183 if (enable) { 2184 ret = clk_prepare_enable(fep->clk_enet_out); 2185 if (ret) 2186 return ret; 2187 2188 if (fep->clk_ptp) { 2189 mutex_lock(&fep->ptp_clk_mutex); 2190 ret = clk_prepare_enable(fep->clk_ptp); 2191 if (ret) { 2192 mutex_unlock(&fep->ptp_clk_mutex); 2193 goto failed_clk_ptp; 2194 } else { 2195 fep->ptp_clk_on = true; 2196 } 2197 mutex_unlock(&fep->ptp_clk_mutex); 2198 } 2199 2200 ret = clk_prepare_enable(fep->clk_ref); 2201 if (ret) 2202 goto failed_clk_ref; 2203 2204 ret = clk_prepare_enable(fep->clk_2x_txclk); 2205 if (ret) 2206 goto failed_clk_2x_txclk; 2207 2208 fec_enet_phy_reset_after_clk_enable(ndev); 2209 } else { 2210 clk_disable_unprepare(fep->clk_enet_out); 2211 if (fep->clk_ptp) { 2212 mutex_lock(&fep->ptp_clk_mutex); 2213 clk_disable_unprepare(fep->clk_ptp); 2214 fep->ptp_clk_on = false; 2215 mutex_unlock(&fep->ptp_clk_mutex); 2216 } 2217 clk_disable_unprepare(fep->clk_ref); 2218 clk_disable_unprepare(fep->clk_2x_txclk); 2219 } 2220 2221 return 0; 2222 2223 failed_clk_2x_txclk: 2224 if (fep->clk_ref) 2225 clk_disable_unprepare(fep->clk_ref); 2226 failed_clk_ref: 2227 if (fep->clk_ptp) { 2228 mutex_lock(&fep->ptp_clk_mutex); 2229 clk_disable_unprepare(fep->clk_ptp); 2230 fep->ptp_clk_on = false; 2231 mutex_unlock(&fep->ptp_clk_mutex); 2232 } 2233 failed_clk_ptp: 2234 clk_disable_unprepare(fep->clk_enet_out); 2235 2236 return ret; 2237 } 2238 2239 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2240 struct device_node *np) 2241 { 2242 u32 rgmii_tx_delay, rgmii_rx_delay; 2243 2244 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2245 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2246 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2247 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2248 return -EINVAL; 2249 } else if (rgmii_tx_delay == 2000) { 2250 fep->rgmii_txc_dly = true; 2251 } 2252 } 2253 2254 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2255 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2256 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2257 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2258 return -EINVAL; 2259 } else if (rgmii_rx_delay == 2000) { 2260 fep->rgmii_rxc_dly = true; 2261 } 2262 } 2263 2264 return 0; 2265 } 2266 2267 static int fec_enet_mii_probe(struct net_device *ndev) 2268 { 2269 struct fec_enet_private *fep = netdev_priv(ndev); 2270 struct phy_device *phy_dev = NULL; 2271 char mdio_bus_id[MII_BUS_ID_SIZE]; 2272 char phy_name[MII_BUS_ID_SIZE + 3]; 2273 int phy_id; 2274 int dev_id = fep->dev_id; 2275 2276 if (fep->phy_node) { 2277 phy_dev = of_phy_connect(ndev, fep->phy_node, 2278 &fec_enet_adjust_link, 0, 2279 fep->phy_interface); 2280 if (!phy_dev) { 2281 netdev_err(ndev, "Unable to connect to phy\n"); 2282 return -ENODEV; 2283 } 2284 } else { 2285 /* check for attached phy */ 2286 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2287 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2288 continue; 2289 if (dev_id--) 2290 continue; 2291 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2292 break; 2293 } 2294 2295 if (phy_id >= PHY_MAX_ADDR) { 2296 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2297 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2298 phy_id = 0; 2299 } 2300 2301 snprintf(phy_name, sizeof(phy_name), 2302 PHY_ID_FMT, mdio_bus_id, phy_id); 2303 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2304 fep->phy_interface); 2305 } 2306 2307 if (IS_ERR(phy_dev)) { 2308 netdev_err(ndev, "could not attach to PHY\n"); 2309 return PTR_ERR(phy_dev); 2310 } 2311 2312 /* mask with MAC supported features */ 2313 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2314 phy_set_max_speed(phy_dev, 1000); 2315 phy_remove_link_mode(phy_dev, 2316 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2317 #if !defined(CONFIG_M5272) 2318 phy_support_sym_pause(phy_dev); 2319 #endif 2320 } 2321 else 2322 phy_set_max_speed(phy_dev, 100); 2323 2324 fep->link = 0; 2325 fep->full_duplex = 0; 2326 2327 phy_dev->mac_managed_pm = true; 2328 2329 phy_attached_info(phy_dev); 2330 2331 return 0; 2332 } 2333 2334 static int fec_enet_mii_init(struct platform_device *pdev) 2335 { 2336 static struct mii_bus *fec0_mii_bus; 2337 struct net_device *ndev = platform_get_drvdata(pdev); 2338 struct fec_enet_private *fep = netdev_priv(ndev); 2339 bool suppress_preamble = false; 2340 struct device_node *node; 2341 int err = -ENXIO; 2342 u32 mii_speed, holdtime; 2343 u32 bus_freq; 2344 2345 /* 2346 * The i.MX28 dual fec interfaces are not equal. 2347 * Here are the differences: 2348 * 2349 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2350 * - fec0 acts as the 1588 time master while fec1 is slave 2351 * - external phys can only be configured by fec0 2352 * 2353 * That is to say fec1 can not work independently. It only works 2354 * when fec0 is working. The reason behind this design is that the 2355 * second interface is added primarily for Switch mode. 2356 * 2357 * Because of the last point above, both phys are attached on fec0 2358 * mdio interface in board design, and need to be configured by 2359 * fec0 mii_bus. 2360 */ 2361 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2362 /* fec1 uses fec0 mii_bus */ 2363 if (mii_cnt && fec0_mii_bus) { 2364 fep->mii_bus = fec0_mii_bus; 2365 mii_cnt++; 2366 return 0; 2367 } 2368 return -ENOENT; 2369 } 2370 2371 bus_freq = 2500000; /* 2.5MHz by default */ 2372 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2373 if (node) { 2374 of_property_read_u32(node, "clock-frequency", &bus_freq); 2375 suppress_preamble = of_property_read_bool(node, 2376 "suppress-preamble"); 2377 } 2378 2379 /* 2380 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2381 * 2382 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2383 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2384 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2385 * document. 2386 */ 2387 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2388 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2389 mii_speed--; 2390 if (mii_speed > 63) { 2391 dev_err(&pdev->dev, 2392 "fec clock (%lu) too fast to get right mii speed\n", 2393 clk_get_rate(fep->clk_ipg)); 2394 err = -EINVAL; 2395 goto err_out; 2396 } 2397 2398 /* 2399 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2400 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2401 * versions are RAZ there, so just ignore the difference and write the 2402 * register always. 2403 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2404 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2405 * output. 2406 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2407 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2408 * holdtime cannot result in a value greater than 3. 2409 */ 2410 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2411 2412 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2413 2414 if (suppress_preamble) 2415 fep->phy_speed |= BIT(7); 2416 2417 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2418 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2419 * MII event generation condition: 2420 * - writing MSCR: 2421 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2422 * mscr_reg_data_in[7:0] != 0 2423 * - writing MMFR: 2424 * - mscr[7:0]_not_zero 2425 */ 2426 writel(0, fep->hwp + FEC_MII_DATA); 2427 } 2428 2429 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2430 2431 /* Clear any pending transaction complete indication */ 2432 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2433 2434 fep->mii_bus = mdiobus_alloc(); 2435 if (fep->mii_bus == NULL) { 2436 err = -ENOMEM; 2437 goto err_out; 2438 } 2439 2440 fep->mii_bus->name = "fec_enet_mii_bus"; 2441 fep->mii_bus->read = fec_enet_mdio_read_c22; 2442 fep->mii_bus->write = fec_enet_mdio_write_c22; 2443 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2444 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2445 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2446 } 2447 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2448 pdev->name, fep->dev_id + 1); 2449 fep->mii_bus->priv = fep; 2450 fep->mii_bus->parent = &pdev->dev; 2451 2452 err = of_mdiobus_register(fep->mii_bus, node); 2453 if (err) 2454 goto err_out_free_mdiobus; 2455 of_node_put(node); 2456 2457 mii_cnt++; 2458 2459 /* save fec0 mii_bus */ 2460 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2461 fec0_mii_bus = fep->mii_bus; 2462 2463 return 0; 2464 2465 err_out_free_mdiobus: 2466 mdiobus_free(fep->mii_bus); 2467 err_out: 2468 of_node_put(node); 2469 return err; 2470 } 2471 2472 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2473 { 2474 if (--mii_cnt == 0) { 2475 mdiobus_unregister(fep->mii_bus); 2476 mdiobus_free(fep->mii_bus); 2477 } 2478 } 2479 2480 static void fec_enet_get_drvinfo(struct net_device *ndev, 2481 struct ethtool_drvinfo *info) 2482 { 2483 struct fec_enet_private *fep = netdev_priv(ndev); 2484 2485 strscpy(info->driver, fep->pdev->dev.driver->name, 2486 sizeof(info->driver)); 2487 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2488 } 2489 2490 static int fec_enet_get_regs_len(struct net_device *ndev) 2491 { 2492 struct fec_enet_private *fep = netdev_priv(ndev); 2493 struct resource *r; 2494 int s = 0; 2495 2496 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2497 if (r) 2498 s = resource_size(r); 2499 2500 return s; 2501 } 2502 2503 /* List of registers that can be safety be read to dump them with ethtool */ 2504 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2505 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2506 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2507 static __u32 fec_enet_register_version = 2; 2508 static u32 fec_enet_register_offset[] = { 2509 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2510 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2511 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2512 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2513 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2514 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2515 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2516 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2517 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2518 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2519 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2520 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2521 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2522 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2523 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2524 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2525 RMON_T_P_GTE2048, RMON_T_OCTETS, 2526 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2527 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2528 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2529 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2530 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2531 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2532 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2533 RMON_R_P_GTE2048, RMON_R_OCTETS, 2534 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2535 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2536 }; 2537 /* for i.MX6ul */ 2538 static u32 fec_enet_register_offset_6ul[] = { 2539 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2540 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2541 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2542 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2543 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2544 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2545 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2546 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2547 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2548 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2549 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2550 RMON_T_P_GTE2048, RMON_T_OCTETS, 2551 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2552 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2553 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2554 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2555 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2556 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2557 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2558 RMON_R_P_GTE2048, RMON_R_OCTETS, 2559 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2560 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2561 }; 2562 #else 2563 static __u32 fec_enet_register_version = 1; 2564 static u32 fec_enet_register_offset[] = { 2565 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2566 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2567 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2568 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2569 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2570 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2571 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2572 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2573 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2574 }; 2575 #endif 2576 2577 static void fec_enet_get_regs(struct net_device *ndev, 2578 struct ethtool_regs *regs, void *regbuf) 2579 { 2580 struct fec_enet_private *fep = netdev_priv(ndev); 2581 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2582 struct device *dev = &fep->pdev->dev; 2583 u32 *buf = (u32 *)regbuf; 2584 u32 i, off; 2585 int ret; 2586 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2587 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2588 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2589 u32 *reg_list; 2590 u32 reg_cnt; 2591 2592 if (!of_machine_is_compatible("fsl,imx6ul")) { 2593 reg_list = fec_enet_register_offset; 2594 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2595 } else { 2596 reg_list = fec_enet_register_offset_6ul; 2597 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2598 } 2599 #else 2600 /* coldfire */ 2601 static u32 *reg_list = fec_enet_register_offset; 2602 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2603 #endif 2604 ret = pm_runtime_resume_and_get(dev); 2605 if (ret < 0) 2606 return; 2607 2608 regs->version = fec_enet_register_version; 2609 2610 memset(buf, 0, regs->len); 2611 2612 for (i = 0; i < reg_cnt; i++) { 2613 off = reg_list[i]; 2614 2615 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2616 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2617 continue; 2618 2619 off >>= 2; 2620 buf[off] = readl(&theregs[off]); 2621 } 2622 2623 pm_runtime_mark_last_busy(dev); 2624 pm_runtime_put_autosuspend(dev); 2625 } 2626 2627 static int fec_enet_get_ts_info(struct net_device *ndev, 2628 struct ethtool_ts_info *info) 2629 { 2630 struct fec_enet_private *fep = netdev_priv(ndev); 2631 2632 if (fep->bufdesc_ex) { 2633 2634 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2635 SOF_TIMESTAMPING_RX_SOFTWARE | 2636 SOF_TIMESTAMPING_SOFTWARE | 2637 SOF_TIMESTAMPING_TX_HARDWARE | 2638 SOF_TIMESTAMPING_RX_HARDWARE | 2639 SOF_TIMESTAMPING_RAW_HARDWARE; 2640 if (fep->ptp_clock) 2641 info->phc_index = ptp_clock_index(fep->ptp_clock); 2642 else 2643 info->phc_index = -1; 2644 2645 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2646 (1 << HWTSTAMP_TX_ON); 2647 2648 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2649 (1 << HWTSTAMP_FILTER_ALL); 2650 return 0; 2651 } else { 2652 return ethtool_op_get_ts_info(ndev, info); 2653 } 2654 } 2655 2656 #if !defined(CONFIG_M5272) 2657 2658 static void fec_enet_get_pauseparam(struct net_device *ndev, 2659 struct ethtool_pauseparam *pause) 2660 { 2661 struct fec_enet_private *fep = netdev_priv(ndev); 2662 2663 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2664 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2665 pause->rx_pause = pause->tx_pause; 2666 } 2667 2668 static int fec_enet_set_pauseparam(struct net_device *ndev, 2669 struct ethtool_pauseparam *pause) 2670 { 2671 struct fec_enet_private *fep = netdev_priv(ndev); 2672 2673 if (!ndev->phydev) 2674 return -ENODEV; 2675 2676 if (pause->tx_pause != pause->rx_pause) { 2677 netdev_info(ndev, 2678 "hardware only support enable/disable both tx and rx"); 2679 return -EINVAL; 2680 } 2681 2682 fep->pause_flag = 0; 2683 2684 /* tx pause must be same as rx pause */ 2685 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2686 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2687 2688 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2689 pause->autoneg); 2690 2691 if (pause->autoneg) { 2692 if (netif_running(ndev)) 2693 fec_stop(ndev); 2694 phy_start_aneg(ndev->phydev); 2695 } 2696 if (netif_running(ndev)) { 2697 napi_disable(&fep->napi); 2698 netif_tx_lock_bh(ndev); 2699 fec_restart(ndev); 2700 netif_tx_wake_all_queues(ndev); 2701 netif_tx_unlock_bh(ndev); 2702 napi_enable(&fep->napi); 2703 } 2704 2705 return 0; 2706 } 2707 2708 static const struct fec_stat { 2709 char name[ETH_GSTRING_LEN]; 2710 u16 offset; 2711 } fec_stats[] = { 2712 /* RMON TX */ 2713 { "tx_dropped", RMON_T_DROP }, 2714 { "tx_packets", RMON_T_PACKETS }, 2715 { "tx_broadcast", RMON_T_BC_PKT }, 2716 { "tx_multicast", RMON_T_MC_PKT }, 2717 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2718 { "tx_undersize", RMON_T_UNDERSIZE }, 2719 { "tx_oversize", RMON_T_OVERSIZE }, 2720 { "tx_fragment", RMON_T_FRAG }, 2721 { "tx_jabber", RMON_T_JAB }, 2722 { "tx_collision", RMON_T_COL }, 2723 { "tx_64byte", RMON_T_P64 }, 2724 { "tx_65to127byte", RMON_T_P65TO127 }, 2725 { "tx_128to255byte", RMON_T_P128TO255 }, 2726 { "tx_256to511byte", RMON_T_P256TO511 }, 2727 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2728 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2729 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2730 { "tx_octets", RMON_T_OCTETS }, 2731 2732 /* IEEE TX */ 2733 { "IEEE_tx_drop", IEEE_T_DROP }, 2734 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2735 { "IEEE_tx_1col", IEEE_T_1COL }, 2736 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2737 { "IEEE_tx_def", IEEE_T_DEF }, 2738 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2739 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2740 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2741 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2742 { "IEEE_tx_sqe", IEEE_T_SQE }, 2743 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2744 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2745 2746 /* RMON RX */ 2747 { "rx_packets", RMON_R_PACKETS }, 2748 { "rx_broadcast", RMON_R_BC_PKT }, 2749 { "rx_multicast", RMON_R_MC_PKT }, 2750 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2751 { "rx_undersize", RMON_R_UNDERSIZE }, 2752 { "rx_oversize", RMON_R_OVERSIZE }, 2753 { "rx_fragment", RMON_R_FRAG }, 2754 { "rx_jabber", RMON_R_JAB }, 2755 { "rx_64byte", RMON_R_P64 }, 2756 { "rx_65to127byte", RMON_R_P65TO127 }, 2757 { "rx_128to255byte", RMON_R_P128TO255 }, 2758 { "rx_256to511byte", RMON_R_P256TO511 }, 2759 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2760 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2761 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2762 { "rx_octets", RMON_R_OCTETS }, 2763 2764 /* IEEE RX */ 2765 { "IEEE_rx_drop", IEEE_R_DROP }, 2766 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2767 { "IEEE_rx_crc", IEEE_R_CRC }, 2768 { "IEEE_rx_align", IEEE_R_ALIGN }, 2769 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2770 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2771 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2772 }; 2773 2774 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2775 2776 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2777 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2778 "rx_xdp_pass", /* RX_XDP_PASS, */ 2779 "rx_xdp_drop", /* RX_XDP_DROP, */ 2780 "rx_xdp_tx", /* RX_XDP_TX, */ 2781 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2782 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2783 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2784 }; 2785 2786 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2787 { 2788 struct fec_enet_private *fep = netdev_priv(dev); 2789 int i; 2790 2791 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2792 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2793 } 2794 2795 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2796 { 2797 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2798 struct fec_enet_priv_rx_q *rxq; 2799 int i, j; 2800 2801 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2802 rxq = fep->rx_queue[i]; 2803 2804 for (j = 0; j < XDP_STATS_TOTAL; j++) 2805 xdp_stats[j] += rxq->stats[j]; 2806 } 2807 2808 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2809 } 2810 2811 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2812 { 2813 struct page_pool_stats stats = {}; 2814 struct fec_enet_priv_rx_q *rxq; 2815 int i; 2816 2817 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2818 rxq = fep->rx_queue[i]; 2819 2820 if (!rxq->page_pool) 2821 continue; 2822 2823 page_pool_get_stats(rxq->page_pool, &stats); 2824 } 2825 2826 page_pool_ethtool_stats_get(data, &stats); 2827 } 2828 2829 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2830 struct ethtool_stats *stats, u64 *data) 2831 { 2832 struct fec_enet_private *fep = netdev_priv(dev); 2833 2834 if (netif_running(dev)) 2835 fec_enet_update_ethtool_stats(dev); 2836 2837 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2838 data += FEC_STATS_SIZE / sizeof(u64); 2839 2840 fec_enet_get_xdp_stats(fep, data); 2841 data += XDP_STATS_TOTAL; 2842 2843 fec_enet_page_pool_stats(fep, data); 2844 } 2845 2846 static void fec_enet_get_strings(struct net_device *netdev, 2847 u32 stringset, u8 *data) 2848 { 2849 int i; 2850 switch (stringset) { 2851 case ETH_SS_STATS: 2852 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2853 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2854 data += ETH_GSTRING_LEN; 2855 } 2856 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2857 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2858 data += ETH_GSTRING_LEN; 2859 } 2860 page_pool_ethtool_stats_get_strings(data); 2861 2862 break; 2863 case ETH_SS_TEST: 2864 net_selftest_get_strings(data); 2865 break; 2866 } 2867 } 2868 2869 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2870 { 2871 int count; 2872 2873 switch (sset) { 2874 case ETH_SS_STATS: 2875 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2876 count += page_pool_ethtool_stats_get_count(); 2877 return count; 2878 2879 case ETH_SS_TEST: 2880 return net_selftest_get_count(); 2881 default: 2882 return -EOPNOTSUPP; 2883 } 2884 } 2885 2886 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2887 { 2888 struct fec_enet_private *fep = netdev_priv(dev); 2889 struct fec_enet_priv_rx_q *rxq; 2890 int i, j; 2891 2892 /* Disable MIB statistics counters */ 2893 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2894 2895 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2896 writel(0, fep->hwp + fec_stats[i].offset); 2897 2898 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2899 rxq = fep->rx_queue[i]; 2900 for (j = 0; j < XDP_STATS_TOTAL; j++) 2901 rxq->stats[j] = 0; 2902 } 2903 2904 /* Don't disable MIB statistics counters */ 2905 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2906 } 2907 2908 #else /* !defined(CONFIG_M5272) */ 2909 #define FEC_STATS_SIZE 0 2910 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2911 { 2912 } 2913 2914 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2915 { 2916 } 2917 #endif /* !defined(CONFIG_M5272) */ 2918 2919 /* ITR clock source is enet system clock (clk_ahb). 2920 * TCTT unit is cycle_ns * 64 cycle 2921 * So, the ICTT value = X us / (cycle_ns * 64) 2922 */ 2923 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2924 { 2925 struct fec_enet_private *fep = netdev_priv(ndev); 2926 2927 return us * (fep->itr_clk_rate / 64000) / 1000; 2928 } 2929 2930 /* Set threshold for interrupt coalescing */ 2931 static void fec_enet_itr_coal_set(struct net_device *ndev) 2932 { 2933 struct fec_enet_private *fep = netdev_priv(ndev); 2934 int rx_itr, tx_itr; 2935 2936 /* Must be greater than zero to avoid unpredictable behavior */ 2937 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2938 !fep->tx_time_itr || !fep->tx_pkts_itr) 2939 return; 2940 2941 /* Select enet system clock as Interrupt Coalescing 2942 * timer Clock Source 2943 */ 2944 rx_itr = FEC_ITR_CLK_SEL; 2945 tx_itr = FEC_ITR_CLK_SEL; 2946 2947 /* set ICFT and ICTT */ 2948 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2949 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2950 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2951 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2952 2953 rx_itr |= FEC_ITR_EN; 2954 tx_itr |= FEC_ITR_EN; 2955 2956 writel(tx_itr, fep->hwp + FEC_TXIC0); 2957 writel(rx_itr, fep->hwp + FEC_RXIC0); 2958 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2959 writel(tx_itr, fep->hwp + FEC_TXIC1); 2960 writel(rx_itr, fep->hwp + FEC_RXIC1); 2961 writel(tx_itr, fep->hwp + FEC_TXIC2); 2962 writel(rx_itr, fep->hwp + FEC_RXIC2); 2963 } 2964 } 2965 2966 static int fec_enet_get_coalesce(struct net_device *ndev, 2967 struct ethtool_coalesce *ec, 2968 struct kernel_ethtool_coalesce *kernel_coal, 2969 struct netlink_ext_ack *extack) 2970 { 2971 struct fec_enet_private *fep = netdev_priv(ndev); 2972 2973 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2974 return -EOPNOTSUPP; 2975 2976 ec->rx_coalesce_usecs = fep->rx_time_itr; 2977 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2978 2979 ec->tx_coalesce_usecs = fep->tx_time_itr; 2980 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2981 2982 return 0; 2983 } 2984 2985 static int fec_enet_set_coalesce(struct net_device *ndev, 2986 struct ethtool_coalesce *ec, 2987 struct kernel_ethtool_coalesce *kernel_coal, 2988 struct netlink_ext_ack *extack) 2989 { 2990 struct fec_enet_private *fep = netdev_priv(ndev); 2991 struct device *dev = &fep->pdev->dev; 2992 unsigned int cycle; 2993 2994 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2995 return -EOPNOTSUPP; 2996 2997 if (ec->rx_max_coalesced_frames > 255) { 2998 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2999 return -EINVAL; 3000 } 3001 3002 if (ec->tx_max_coalesced_frames > 255) { 3003 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3004 return -EINVAL; 3005 } 3006 3007 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3008 if (cycle > 0xFFFF) { 3009 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3010 return -EINVAL; 3011 } 3012 3013 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3014 if (cycle > 0xFFFF) { 3015 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3016 return -EINVAL; 3017 } 3018 3019 fep->rx_time_itr = ec->rx_coalesce_usecs; 3020 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3021 3022 fep->tx_time_itr = ec->tx_coalesce_usecs; 3023 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3024 3025 fec_enet_itr_coal_set(ndev); 3026 3027 return 0; 3028 } 3029 3030 static int fec_enet_get_tunable(struct net_device *netdev, 3031 const struct ethtool_tunable *tuna, 3032 void *data) 3033 { 3034 struct fec_enet_private *fep = netdev_priv(netdev); 3035 int ret = 0; 3036 3037 switch (tuna->id) { 3038 case ETHTOOL_RX_COPYBREAK: 3039 *(u32 *)data = fep->rx_copybreak; 3040 break; 3041 default: 3042 ret = -EINVAL; 3043 break; 3044 } 3045 3046 return ret; 3047 } 3048 3049 static int fec_enet_set_tunable(struct net_device *netdev, 3050 const struct ethtool_tunable *tuna, 3051 const void *data) 3052 { 3053 struct fec_enet_private *fep = netdev_priv(netdev); 3054 int ret = 0; 3055 3056 switch (tuna->id) { 3057 case ETHTOOL_RX_COPYBREAK: 3058 fep->rx_copybreak = *(u32 *)data; 3059 break; 3060 default: 3061 ret = -EINVAL; 3062 break; 3063 } 3064 3065 return ret; 3066 } 3067 3068 /* LPI Sleep Ts count base on tx clk (clk_ref). 3069 * The lpi sleep cnt value = X us / (cycle_ns). 3070 */ 3071 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3072 { 3073 struct fec_enet_private *fep = netdev_priv(ndev); 3074 3075 return us * (fep->clk_ref_rate / 1000) / 1000; 3076 } 3077 3078 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3079 { 3080 struct fec_enet_private *fep = netdev_priv(ndev); 3081 struct ethtool_eee *p = &fep->eee; 3082 unsigned int sleep_cycle, wake_cycle; 3083 int ret = 0; 3084 3085 if (enable) { 3086 ret = phy_init_eee(ndev->phydev, false); 3087 if (ret) 3088 return ret; 3089 3090 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3091 wake_cycle = sleep_cycle; 3092 } else { 3093 sleep_cycle = 0; 3094 wake_cycle = 0; 3095 } 3096 3097 p->tx_lpi_enabled = enable; 3098 p->eee_enabled = enable; 3099 p->eee_active = enable; 3100 3101 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3102 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3103 3104 return 0; 3105 } 3106 3107 static int 3108 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3109 { 3110 struct fec_enet_private *fep = netdev_priv(ndev); 3111 struct ethtool_eee *p = &fep->eee; 3112 3113 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3114 return -EOPNOTSUPP; 3115 3116 if (!netif_running(ndev)) 3117 return -ENETDOWN; 3118 3119 edata->eee_enabled = p->eee_enabled; 3120 edata->eee_active = p->eee_active; 3121 edata->tx_lpi_timer = p->tx_lpi_timer; 3122 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3123 3124 return phy_ethtool_get_eee(ndev->phydev, edata); 3125 } 3126 3127 static int 3128 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3129 { 3130 struct fec_enet_private *fep = netdev_priv(ndev); 3131 struct ethtool_eee *p = &fep->eee; 3132 int ret = 0; 3133 3134 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3135 return -EOPNOTSUPP; 3136 3137 if (!netif_running(ndev)) 3138 return -ENETDOWN; 3139 3140 p->tx_lpi_timer = edata->tx_lpi_timer; 3141 3142 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3143 !edata->tx_lpi_timer) 3144 ret = fec_enet_eee_mode_set(ndev, false); 3145 else 3146 ret = fec_enet_eee_mode_set(ndev, true); 3147 3148 if (ret) 3149 return ret; 3150 3151 return phy_ethtool_set_eee(ndev->phydev, edata); 3152 } 3153 3154 static void 3155 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3156 { 3157 struct fec_enet_private *fep = netdev_priv(ndev); 3158 3159 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3160 wol->supported = WAKE_MAGIC; 3161 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3162 } else { 3163 wol->supported = wol->wolopts = 0; 3164 } 3165 } 3166 3167 static int 3168 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3169 { 3170 struct fec_enet_private *fep = netdev_priv(ndev); 3171 3172 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3173 return -EINVAL; 3174 3175 if (wol->wolopts & ~WAKE_MAGIC) 3176 return -EINVAL; 3177 3178 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3179 if (device_may_wakeup(&ndev->dev)) 3180 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3181 else 3182 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3183 3184 return 0; 3185 } 3186 3187 static const struct ethtool_ops fec_enet_ethtool_ops = { 3188 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3189 ETHTOOL_COALESCE_MAX_FRAMES, 3190 .get_drvinfo = fec_enet_get_drvinfo, 3191 .get_regs_len = fec_enet_get_regs_len, 3192 .get_regs = fec_enet_get_regs, 3193 .nway_reset = phy_ethtool_nway_reset, 3194 .get_link = ethtool_op_get_link, 3195 .get_coalesce = fec_enet_get_coalesce, 3196 .set_coalesce = fec_enet_set_coalesce, 3197 #ifndef CONFIG_M5272 3198 .get_pauseparam = fec_enet_get_pauseparam, 3199 .set_pauseparam = fec_enet_set_pauseparam, 3200 .get_strings = fec_enet_get_strings, 3201 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3202 .get_sset_count = fec_enet_get_sset_count, 3203 #endif 3204 .get_ts_info = fec_enet_get_ts_info, 3205 .get_tunable = fec_enet_get_tunable, 3206 .set_tunable = fec_enet_set_tunable, 3207 .get_wol = fec_enet_get_wol, 3208 .set_wol = fec_enet_set_wol, 3209 .get_eee = fec_enet_get_eee, 3210 .set_eee = fec_enet_set_eee, 3211 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3212 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3213 .self_test = net_selftest, 3214 }; 3215 3216 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3217 { 3218 struct fec_enet_private *fep = netdev_priv(ndev); 3219 struct phy_device *phydev = ndev->phydev; 3220 3221 if (!netif_running(ndev)) 3222 return -EINVAL; 3223 3224 if (!phydev) 3225 return -ENODEV; 3226 3227 if (fep->bufdesc_ex) { 3228 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3229 3230 if (cmd == SIOCSHWTSTAMP) { 3231 if (use_fec_hwts) 3232 return fec_ptp_set(ndev, rq); 3233 fec_ptp_disable_hwts(ndev); 3234 } else if (cmd == SIOCGHWTSTAMP) { 3235 if (use_fec_hwts) 3236 return fec_ptp_get(ndev, rq); 3237 } 3238 } 3239 3240 return phy_mii_ioctl(phydev, rq, cmd); 3241 } 3242 3243 static void fec_enet_free_buffers(struct net_device *ndev) 3244 { 3245 struct fec_enet_private *fep = netdev_priv(ndev); 3246 unsigned int i; 3247 struct sk_buff *skb; 3248 struct fec_enet_priv_tx_q *txq; 3249 struct fec_enet_priv_rx_q *rxq; 3250 unsigned int q; 3251 3252 for (q = 0; q < fep->num_rx_queues; q++) { 3253 rxq = fep->rx_queue[q]; 3254 for (i = 0; i < rxq->bd.ring_size; i++) 3255 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3256 3257 for (i = 0; i < XDP_STATS_TOTAL; i++) 3258 rxq->stats[i] = 0; 3259 3260 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3261 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3262 page_pool_destroy(rxq->page_pool); 3263 rxq->page_pool = NULL; 3264 } 3265 3266 for (q = 0; q < fep->num_tx_queues; q++) { 3267 txq = fep->tx_queue[q]; 3268 for (i = 0; i < txq->bd.ring_size; i++) { 3269 kfree(txq->tx_bounce[i]); 3270 txq->tx_bounce[i] = NULL; 3271 skb = txq->tx_skbuff[i]; 3272 txq->tx_skbuff[i] = NULL; 3273 dev_kfree_skb(skb); 3274 } 3275 } 3276 } 3277 3278 static void fec_enet_free_queue(struct net_device *ndev) 3279 { 3280 struct fec_enet_private *fep = netdev_priv(ndev); 3281 int i; 3282 struct fec_enet_priv_tx_q *txq; 3283 3284 for (i = 0; i < fep->num_tx_queues; i++) 3285 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3286 txq = fep->tx_queue[i]; 3287 dma_free_coherent(&fep->pdev->dev, 3288 txq->bd.ring_size * TSO_HEADER_SIZE, 3289 txq->tso_hdrs, 3290 txq->tso_hdrs_dma); 3291 } 3292 3293 for (i = 0; i < fep->num_rx_queues; i++) 3294 kfree(fep->rx_queue[i]); 3295 for (i = 0; i < fep->num_tx_queues; i++) 3296 kfree(fep->tx_queue[i]); 3297 } 3298 3299 static int fec_enet_alloc_queue(struct net_device *ndev) 3300 { 3301 struct fec_enet_private *fep = netdev_priv(ndev); 3302 int i; 3303 int ret = 0; 3304 struct fec_enet_priv_tx_q *txq; 3305 3306 for (i = 0; i < fep->num_tx_queues; i++) { 3307 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3308 if (!txq) { 3309 ret = -ENOMEM; 3310 goto alloc_failed; 3311 } 3312 3313 fep->tx_queue[i] = txq; 3314 txq->bd.ring_size = TX_RING_SIZE; 3315 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3316 3317 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3318 txq->tx_wake_threshold = 3319 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3320 3321 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3322 txq->bd.ring_size * TSO_HEADER_SIZE, 3323 &txq->tso_hdrs_dma, 3324 GFP_KERNEL); 3325 if (!txq->tso_hdrs) { 3326 ret = -ENOMEM; 3327 goto alloc_failed; 3328 } 3329 } 3330 3331 for (i = 0; i < fep->num_rx_queues; i++) { 3332 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3333 GFP_KERNEL); 3334 if (!fep->rx_queue[i]) { 3335 ret = -ENOMEM; 3336 goto alloc_failed; 3337 } 3338 3339 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3340 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3341 } 3342 return ret; 3343 3344 alloc_failed: 3345 fec_enet_free_queue(ndev); 3346 return ret; 3347 } 3348 3349 static int 3350 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3351 { 3352 struct fec_enet_private *fep = netdev_priv(ndev); 3353 struct fec_enet_priv_rx_q *rxq; 3354 dma_addr_t phys_addr; 3355 struct bufdesc *bdp; 3356 struct page *page; 3357 int i, err; 3358 3359 rxq = fep->rx_queue[queue]; 3360 bdp = rxq->bd.base; 3361 3362 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3363 if (err < 0) { 3364 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3365 return err; 3366 } 3367 3368 for (i = 0; i < rxq->bd.ring_size; i++) { 3369 page = page_pool_dev_alloc_pages(rxq->page_pool); 3370 if (!page) 3371 goto err_alloc; 3372 3373 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3374 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3375 3376 rxq->rx_skb_info[i].page = page; 3377 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3378 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3379 3380 if (fep->bufdesc_ex) { 3381 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3382 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3383 } 3384 3385 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3386 } 3387 3388 /* Set the last buffer to wrap. */ 3389 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3390 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3391 return 0; 3392 3393 err_alloc: 3394 fec_enet_free_buffers(ndev); 3395 return -ENOMEM; 3396 } 3397 3398 static int 3399 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3400 { 3401 struct fec_enet_private *fep = netdev_priv(ndev); 3402 unsigned int i; 3403 struct bufdesc *bdp; 3404 struct fec_enet_priv_tx_q *txq; 3405 3406 txq = fep->tx_queue[queue]; 3407 bdp = txq->bd.base; 3408 for (i = 0; i < txq->bd.ring_size; i++) { 3409 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3410 if (!txq->tx_bounce[i]) 3411 goto err_alloc; 3412 3413 bdp->cbd_sc = cpu_to_fec16(0); 3414 bdp->cbd_bufaddr = cpu_to_fec32(0); 3415 3416 if (fep->bufdesc_ex) { 3417 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3418 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3419 } 3420 3421 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3422 } 3423 3424 /* Set the last buffer to wrap. */ 3425 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3426 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3427 3428 return 0; 3429 3430 err_alloc: 3431 fec_enet_free_buffers(ndev); 3432 return -ENOMEM; 3433 } 3434 3435 static int fec_enet_alloc_buffers(struct net_device *ndev) 3436 { 3437 struct fec_enet_private *fep = netdev_priv(ndev); 3438 unsigned int i; 3439 3440 for (i = 0; i < fep->num_rx_queues; i++) 3441 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3442 return -ENOMEM; 3443 3444 for (i = 0; i < fep->num_tx_queues; i++) 3445 if (fec_enet_alloc_txq_buffers(ndev, i)) 3446 return -ENOMEM; 3447 return 0; 3448 } 3449 3450 static int 3451 fec_enet_open(struct net_device *ndev) 3452 { 3453 struct fec_enet_private *fep = netdev_priv(ndev); 3454 int ret; 3455 bool reset_again; 3456 3457 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3458 if (ret < 0) 3459 return ret; 3460 3461 pinctrl_pm_select_default_state(&fep->pdev->dev); 3462 ret = fec_enet_clk_enable(ndev, true); 3463 if (ret) 3464 goto clk_enable; 3465 3466 /* During the first fec_enet_open call the PHY isn't probed at this 3467 * point. Therefore the phy_reset_after_clk_enable() call within 3468 * fec_enet_clk_enable() fails. As we need this reset in order to be 3469 * sure the PHY is working correctly we check if we need to reset again 3470 * later when the PHY is probed 3471 */ 3472 if (ndev->phydev && ndev->phydev->drv) 3473 reset_again = false; 3474 else 3475 reset_again = true; 3476 3477 /* I should reset the ring buffers here, but I don't yet know 3478 * a simple way to do that. 3479 */ 3480 3481 ret = fec_enet_alloc_buffers(ndev); 3482 if (ret) 3483 goto err_enet_alloc; 3484 3485 /* Init MAC prior to mii bus probe */ 3486 fec_restart(ndev); 3487 3488 /* Call phy_reset_after_clk_enable() again if it failed during 3489 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3490 */ 3491 if (reset_again) 3492 fec_enet_phy_reset_after_clk_enable(ndev); 3493 3494 /* Probe and connect to PHY when open the interface */ 3495 ret = fec_enet_mii_probe(ndev); 3496 if (ret) 3497 goto err_enet_mii_probe; 3498 3499 if (fep->quirks & FEC_QUIRK_ERR006687) 3500 imx6q_cpuidle_fec_irqs_used(); 3501 3502 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3503 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3504 3505 napi_enable(&fep->napi); 3506 phy_start(ndev->phydev); 3507 netif_tx_start_all_queues(ndev); 3508 3509 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3510 FEC_WOL_FLAG_ENABLE); 3511 3512 return 0; 3513 3514 err_enet_mii_probe: 3515 fec_enet_free_buffers(ndev); 3516 err_enet_alloc: 3517 fec_enet_clk_enable(ndev, false); 3518 clk_enable: 3519 pm_runtime_mark_last_busy(&fep->pdev->dev); 3520 pm_runtime_put_autosuspend(&fep->pdev->dev); 3521 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3522 return ret; 3523 } 3524 3525 static int 3526 fec_enet_close(struct net_device *ndev) 3527 { 3528 struct fec_enet_private *fep = netdev_priv(ndev); 3529 3530 phy_stop(ndev->phydev); 3531 3532 if (netif_device_present(ndev)) { 3533 napi_disable(&fep->napi); 3534 netif_tx_disable(ndev); 3535 fec_stop(ndev); 3536 } 3537 3538 phy_disconnect(ndev->phydev); 3539 3540 if (fep->quirks & FEC_QUIRK_ERR006687) 3541 imx6q_cpuidle_fec_irqs_unused(); 3542 3543 fec_enet_update_ethtool_stats(ndev); 3544 3545 fec_enet_clk_enable(ndev, false); 3546 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3547 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3548 3549 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3550 pm_runtime_mark_last_busy(&fep->pdev->dev); 3551 pm_runtime_put_autosuspend(&fep->pdev->dev); 3552 3553 fec_enet_free_buffers(ndev); 3554 3555 return 0; 3556 } 3557 3558 /* Set or clear the multicast filter for this adaptor. 3559 * Skeleton taken from sunlance driver. 3560 * The CPM Ethernet implementation allows Multicast as well as individual 3561 * MAC address filtering. Some of the drivers check to make sure it is 3562 * a group multicast address, and discard those that are not. I guess I 3563 * will do the same for now, but just remove the test if you want 3564 * individual filtering as well (do the upper net layers want or support 3565 * this kind of feature?). 3566 */ 3567 3568 #define FEC_HASH_BITS 6 /* #bits in hash */ 3569 3570 static void set_multicast_list(struct net_device *ndev) 3571 { 3572 struct fec_enet_private *fep = netdev_priv(ndev); 3573 struct netdev_hw_addr *ha; 3574 unsigned int crc, tmp; 3575 unsigned char hash; 3576 unsigned int hash_high = 0, hash_low = 0; 3577 3578 if (ndev->flags & IFF_PROMISC) { 3579 tmp = readl(fep->hwp + FEC_R_CNTRL); 3580 tmp |= 0x8; 3581 writel(tmp, fep->hwp + FEC_R_CNTRL); 3582 return; 3583 } 3584 3585 tmp = readl(fep->hwp + FEC_R_CNTRL); 3586 tmp &= ~0x8; 3587 writel(tmp, fep->hwp + FEC_R_CNTRL); 3588 3589 if (ndev->flags & IFF_ALLMULTI) { 3590 /* Catch all multicast addresses, so set the 3591 * filter to all 1's 3592 */ 3593 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3594 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3595 3596 return; 3597 } 3598 3599 /* Add the addresses in hash register */ 3600 netdev_for_each_mc_addr(ha, ndev) { 3601 /* calculate crc32 value of mac address */ 3602 crc = ether_crc_le(ndev->addr_len, ha->addr); 3603 3604 /* only upper 6 bits (FEC_HASH_BITS) are used 3605 * which point to specific bit in the hash registers 3606 */ 3607 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3608 3609 if (hash > 31) 3610 hash_high |= 1 << (hash - 32); 3611 else 3612 hash_low |= 1 << hash; 3613 } 3614 3615 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3616 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3617 } 3618 3619 /* Set a MAC change in hardware. */ 3620 static int 3621 fec_set_mac_address(struct net_device *ndev, void *p) 3622 { 3623 struct fec_enet_private *fep = netdev_priv(ndev); 3624 struct sockaddr *addr = p; 3625 3626 if (addr) { 3627 if (!is_valid_ether_addr(addr->sa_data)) 3628 return -EADDRNOTAVAIL; 3629 eth_hw_addr_set(ndev, addr->sa_data); 3630 } 3631 3632 /* Add netif status check here to avoid system hang in below case: 3633 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3634 * After ethx down, fec all clocks are gated off and then register 3635 * access causes system hang. 3636 */ 3637 if (!netif_running(ndev)) 3638 return 0; 3639 3640 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3641 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3642 fep->hwp + FEC_ADDR_LOW); 3643 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3644 fep->hwp + FEC_ADDR_HIGH); 3645 return 0; 3646 } 3647 3648 #ifdef CONFIG_NET_POLL_CONTROLLER 3649 /** 3650 * fec_poll_controller - FEC Poll controller function 3651 * @dev: The FEC network adapter 3652 * 3653 * Polled functionality used by netconsole and others in non interrupt mode 3654 * 3655 */ 3656 static void fec_poll_controller(struct net_device *dev) 3657 { 3658 int i; 3659 struct fec_enet_private *fep = netdev_priv(dev); 3660 3661 for (i = 0; i < FEC_IRQ_NUM; i++) { 3662 if (fep->irq[i] > 0) { 3663 disable_irq(fep->irq[i]); 3664 fec_enet_interrupt(fep->irq[i], dev); 3665 enable_irq(fep->irq[i]); 3666 } 3667 } 3668 } 3669 #endif 3670 3671 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3672 netdev_features_t features) 3673 { 3674 struct fec_enet_private *fep = netdev_priv(netdev); 3675 netdev_features_t changed = features ^ netdev->features; 3676 3677 netdev->features = features; 3678 3679 /* Receive checksum has been changed */ 3680 if (changed & NETIF_F_RXCSUM) { 3681 if (features & NETIF_F_RXCSUM) 3682 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3683 else 3684 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3685 } 3686 } 3687 3688 static int fec_set_features(struct net_device *netdev, 3689 netdev_features_t features) 3690 { 3691 struct fec_enet_private *fep = netdev_priv(netdev); 3692 netdev_features_t changed = features ^ netdev->features; 3693 3694 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3695 napi_disable(&fep->napi); 3696 netif_tx_lock_bh(netdev); 3697 fec_stop(netdev); 3698 fec_enet_set_netdev_features(netdev, features); 3699 fec_restart(netdev); 3700 netif_tx_wake_all_queues(netdev); 3701 netif_tx_unlock_bh(netdev); 3702 napi_enable(&fep->napi); 3703 } else { 3704 fec_enet_set_netdev_features(netdev, features); 3705 } 3706 3707 return 0; 3708 } 3709 3710 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3711 { 3712 struct vlan_ethhdr *vhdr; 3713 unsigned short vlan_TCI = 0; 3714 3715 if (skb->protocol == htons(ETH_P_ALL)) { 3716 vhdr = (struct vlan_ethhdr *)(skb->data); 3717 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3718 } 3719 3720 return vlan_TCI; 3721 } 3722 3723 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3724 struct net_device *sb_dev) 3725 { 3726 struct fec_enet_private *fep = netdev_priv(ndev); 3727 u16 vlan_tag; 3728 3729 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3730 return netdev_pick_tx(ndev, skb, NULL); 3731 3732 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3733 if (!vlan_tag) 3734 return vlan_tag; 3735 3736 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3737 } 3738 3739 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3740 { 3741 struct fec_enet_private *fep = netdev_priv(dev); 3742 bool is_run = netif_running(dev); 3743 struct bpf_prog *old_prog; 3744 3745 switch (bpf->command) { 3746 case XDP_SETUP_PROG: 3747 /* No need to support the SoCs that require to 3748 * do the frame swap because the performance wouldn't be 3749 * better than the skb mode. 3750 */ 3751 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3752 return -EOPNOTSUPP; 3753 3754 if (is_run) { 3755 napi_disable(&fep->napi); 3756 netif_tx_disable(dev); 3757 } 3758 3759 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3760 fec_restart(dev); 3761 3762 if (is_run) { 3763 napi_enable(&fep->napi); 3764 netif_tx_start_all_queues(dev); 3765 } 3766 3767 if (old_prog) 3768 bpf_prog_put(old_prog); 3769 3770 return 0; 3771 3772 case XDP_SETUP_XSK_POOL: 3773 return -EOPNOTSUPP; 3774 3775 default: 3776 return -EOPNOTSUPP; 3777 } 3778 } 3779 3780 static int 3781 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3782 { 3783 if (unlikely(index < 0)) 3784 return 0; 3785 3786 return (index % fep->num_tx_queues); 3787 } 3788 3789 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3790 struct fec_enet_priv_tx_q *txq, 3791 struct xdp_frame *frame) 3792 { 3793 unsigned int index, status, estatus; 3794 struct bufdesc *bdp, *last_bdp; 3795 dma_addr_t dma_addr; 3796 int entries_free; 3797 3798 entries_free = fec_enet_get_free_txdesc_num(txq); 3799 if (entries_free < MAX_SKB_FRAGS + 1) { 3800 netdev_err(fep->netdev, "NOT enough BD for SG!\n"); 3801 return NETDEV_TX_BUSY; 3802 } 3803 3804 /* Fill in a Tx ring entry */ 3805 bdp = txq->bd.cur; 3806 last_bdp = bdp; 3807 status = fec16_to_cpu(bdp->cbd_sc); 3808 status &= ~BD_ENET_TX_STATS; 3809 3810 index = fec_enet_get_bd_index(bdp, &txq->bd); 3811 3812 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3813 frame->len, DMA_TO_DEVICE); 3814 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3815 return FEC_ENET_XDP_CONSUMED; 3816 3817 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3818 if (fep->bufdesc_ex) 3819 estatus = BD_ENET_TX_INT; 3820 3821 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3822 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3823 3824 if (fep->bufdesc_ex) { 3825 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3826 3827 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3828 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3829 3830 ebdp->cbd_bdu = 0; 3831 ebdp->cbd_esc = cpu_to_fec32(estatus); 3832 } 3833 3834 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 3835 txq->tx_skbuff[index] = NULL; 3836 3837 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3838 * it's the last BD of the frame, and to put the CRC on the end. 3839 */ 3840 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3841 bdp->cbd_sc = cpu_to_fec16(status); 3842 3843 /* If this was the last BD in the ring, start at the beginning again. */ 3844 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 3845 3846 txq->bd.cur = bdp; 3847 3848 return 0; 3849 } 3850 3851 static int fec_enet_xdp_xmit(struct net_device *dev, 3852 int num_frames, 3853 struct xdp_frame **frames, 3854 u32 flags) 3855 { 3856 struct fec_enet_private *fep = netdev_priv(dev); 3857 struct fec_enet_priv_tx_q *txq; 3858 int cpu = smp_processor_id(); 3859 unsigned int sent_frames = 0; 3860 struct netdev_queue *nq; 3861 unsigned int queue; 3862 int i; 3863 3864 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3865 txq = fep->tx_queue[queue]; 3866 nq = netdev_get_tx_queue(fep->netdev, queue); 3867 3868 __netif_tx_lock(nq, cpu); 3869 3870 for (i = 0; i < num_frames; i++) { 3871 if (fec_enet_txq_xmit_frame(fep, txq, frames[i]) != 0) 3872 break; 3873 sent_frames++; 3874 } 3875 3876 /* Make sure the update to bdp and tx_skbuff are performed. */ 3877 wmb(); 3878 3879 /* Trigger transmission start */ 3880 writel(0, txq->bd.reg_desc_active); 3881 3882 __netif_tx_unlock(nq); 3883 3884 return sent_frames; 3885 } 3886 3887 static const struct net_device_ops fec_netdev_ops = { 3888 .ndo_open = fec_enet_open, 3889 .ndo_stop = fec_enet_close, 3890 .ndo_start_xmit = fec_enet_start_xmit, 3891 .ndo_select_queue = fec_enet_select_queue, 3892 .ndo_set_rx_mode = set_multicast_list, 3893 .ndo_validate_addr = eth_validate_addr, 3894 .ndo_tx_timeout = fec_timeout, 3895 .ndo_set_mac_address = fec_set_mac_address, 3896 .ndo_eth_ioctl = fec_enet_ioctl, 3897 #ifdef CONFIG_NET_POLL_CONTROLLER 3898 .ndo_poll_controller = fec_poll_controller, 3899 #endif 3900 .ndo_set_features = fec_set_features, 3901 .ndo_bpf = fec_enet_bpf, 3902 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3903 }; 3904 3905 static const unsigned short offset_des_active_rxq[] = { 3906 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3907 }; 3908 3909 static const unsigned short offset_des_active_txq[] = { 3910 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3911 }; 3912 3913 /* 3914 * XXX: We need to clean up on failure exits here. 3915 * 3916 */ 3917 static int fec_enet_init(struct net_device *ndev) 3918 { 3919 struct fec_enet_private *fep = netdev_priv(ndev); 3920 struct bufdesc *cbd_base; 3921 dma_addr_t bd_dma; 3922 int bd_size; 3923 unsigned int i; 3924 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3925 sizeof(struct bufdesc); 3926 unsigned dsize_log2 = __fls(dsize); 3927 int ret; 3928 3929 WARN_ON(dsize != (1 << dsize_log2)); 3930 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3931 fep->rx_align = 0xf; 3932 fep->tx_align = 0xf; 3933 #else 3934 fep->rx_align = 0x3; 3935 fep->tx_align = 0x3; 3936 #endif 3937 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3938 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3939 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 3940 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 3941 3942 /* Check mask of the streaming and coherent API */ 3943 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3944 if (ret < 0) { 3945 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3946 return ret; 3947 } 3948 3949 ret = fec_enet_alloc_queue(ndev); 3950 if (ret) 3951 return ret; 3952 3953 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3954 3955 /* Allocate memory for buffer descriptors. */ 3956 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3957 GFP_KERNEL); 3958 if (!cbd_base) { 3959 ret = -ENOMEM; 3960 goto free_queue_mem; 3961 } 3962 3963 /* Get the Ethernet address */ 3964 ret = fec_get_mac(ndev); 3965 if (ret) 3966 goto free_queue_mem; 3967 3968 /* make sure MAC we just acquired is programmed into the hw */ 3969 fec_set_mac_address(ndev, NULL); 3970 3971 /* Set receive and transmit descriptor base. */ 3972 for (i = 0; i < fep->num_rx_queues; i++) { 3973 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3974 unsigned size = dsize * rxq->bd.ring_size; 3975 3976 rxq->bd.qid = i; 3977 rxq->bd.base = cbd_base; 3978 rxq->bd.cur = cbd_base; 3979 rxq->bd.dma = bd_dma; 3980 rxq->bd.dsize = dsize; 3981 rxq->bd.dsize_log2 = dsize_log2; 3982 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3983 bd_dma += size; 3984 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3985 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3986 } 3987 3988 for (i = 0; i < fep->num_tx_queues; i++) { 3989 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3990 unsigned size = dsize * txq->bd.ring_size; 3991 3992 txq->bd.qid = i; 3993 txq->bd.base = cbd_base; 3994 txq->bd.cur = cbd_base; 3995 txq->bd.dma = bd_dma; 3996 txq->bd.dsize = dsize; 3997 txq->bd.dsize_log2 = dsize_log2; 3998 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3999 bd_dma += size; 4000 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4001 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4002 } 4003 4004 4005 /* The FEC Ethernet specific entries in the device structure */ 4006 ndev->watchdog_timeo = TX_TIMEOUT; 4007 ndev->netdev_ops = &fec_netdev_ops; 4008 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4009 4010 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4011 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4012 4013 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4014 /* enable hw VLAN support */ 4015 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4016 4017 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4018 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4019 4020 /* enable hw accelerator */ 4021 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4022 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4023 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4024 } 4025 4026 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4027 fep->tx_align = 0; 4028 fep->rx_align = 0x3f; 4029 } 4030 4031 ndev->hw_features = ndev->features; 4032 4033 fec_restart(ndev); 4034 4035 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4036 fec_enet_clear_ethtool_stats(ndev); 4037 else 4038 fec_enet_update_ethtool_stats(ndev); 4039 4040 return 0; 4041 4042 free_queue_mem: 4043 fec_enet_free_queue(ndev); 4044 return ret; 4045 } 4046 4047 #ifdef CONFIG_OF 4048 static int fec_reset_phy(struct platform_device *pdev) 4049 { 4050 struct gpio_desc *phy_reset; 4051 int msec = 1, phy_post_delay = 0; 4052 struct device_node *np = pdev->dev.of_node; 4053 int err; 4054 4055 if (!np) 4056 return 0; 4057 4058 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4059 /* A sane reset duration should not be longer than 1s */ 4060 if (!err && msec > 1000) 4061 msec = 1; 4062 4063 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4064 /* valid reset duration should be less than 1s */ 4065 if (!err && phy_post_delay > 1000) 4066 return -EINVAL; 4067 4068 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4069 GPIOD_OUT_HIGH); 4070 if (IS_ERR(phy_reset)) 4071 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4072 "failed to get phy-reset-gpios\n"); 4073 4074 if (!phy_reset) 4075 return 0; 4076 4077 if (msec > 20) 4078 msleep(msec); 4079 else 4080 usleep_range(msec * 1000, msec * 1000 + 1000); 4081 4082 gpiod_set_value_cansleep(phy_reset, 0); 4083 4084 if (!phy_post_delay) 4085 return 0; 4086 4087 if (phy_post_delay > 20) 4088 msleep(phy_post_delay); 4089 else 4090 usleep_range(phy_post_delay * 1000, 4091 phy_post_delay * 1000 + 1000); 4092 4093 return 0; 4094 } 4095 #else /* CONFIG_OF */ 4096 static int fec_reset_phy(struct platform_device *pdev) 4097 { 4098 /* 4099 * In case of platform probe, the reset has been done 4100 * by machine code. 4101 */ 4102 return 0; 4103 } 4104 #endif /* CONFIG_OF */ 4105 4106 static void 4107 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4108 { 4109 struct device_node *np = pdev->dev.of_node; 4110 4111 *num_tx = *num_rx = 1; 4112 4113 if (!np || !of_device_is_available(np)) 4114 return; 4115 4116 /* parse the num of tx and rx queues */ 4117 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4118 4119 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4120 4121 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4122 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4123 *num_tx); 4124 *num_tx = 1; 4125 return; 4126 } 4127 4128 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4129 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4130 *num_rx); 4131 *num_rx = 1; 4132 return; 4133 } 4134 4135 } 4136 4137 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4138 { 4139 int irq_cnt = platform_irq_count(pdev); 4140 4141 if (irq_cnt > FEC_IRQ_NUM) 4142 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4143 else if (irq_cnt == 2) 4144 irq_cnt = 1; /* last for pps */ 4145 else if (irq_cnt <= 0) 4146 irq_cnt = 1; /* At least 1 irq is needed */ 4147 return irq_cnt; 4148 } 4149 4150 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4151 { 4152 struct net_device *ndev = platform_get_drvdata(pdev); 4153 struct fec_enet_private *fep = netdev_priv(ndev); 4154 4155 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4156 fep->wake_irq = fep->irq[2]; 4157 else 4158 fep->wake_irq = fep->irq[0]; 4159 } 4160 4161 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4162 struct device_node *np) 4163 { 4164 struct device_node *gpr_np; 4165 u32 out_val[3]; 4166 int ret = 0; 4167 4168 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4169 if (!gpr_np) 4170 return 0; 4171 4172 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4173 ARRAY_SIZE(out_val)); 4174 if (ret) { 4175 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4176 goto out; 4177 } 4178 4179 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4180 if (IS_ERR(fep->stop_gpr.gpr)) { 4181 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4182 ret = PTR_ERR(fep->stop_gpr.gpr); 4183 fep->stop_gpr.gpr = NULL; 4184 goto out; 4185 } 4186 4187 fep->stop_gpr.reg = out_val[1]; 4188 fep->stop_gpr.bit = out_val[2]; 4189 4190 out: 4191 of_node_put(gpr_np); 4192 4193 return ret; 4194 } 4195 4196 static int 4197 fec_probe(struct platform_device *pdev) 4198 { 4199 struct fec_enet_private *fep; 4200 struct fec_platform_data *pdata; 4201 phy_interface_t interface; 4202 struct net_device *ndev; 4203 int i, irq, ret = 0; 4204 const struct of_device_id *of_id; 4205 static int dev_id; 4206 struct device_node *np = pdev->dev.of_node, *phy_node; 4207 int num_tx_qs; 4208 int num_rx_qs; 4209 char irq_name[8]; 4210 int irq_cnt; 4211 struct fec_devinfo *dev_info; 4212 4213 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4214 4215 /* Init network device */ 4216 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4217 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4218 if (!ndev) 4219 return -ENOMEM; 4220 4221 SET_NETDEV_DEV(ndev, &pdev->dev); 4222 4223 /* setup board info structure */ 4224 fep = netdev_priv(ndev); 4225 4226 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4227 if (of_id) 4228 pdev->id_entry = of_id->data; 4229 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4230 if (dev_info) 4231 fep->quirks = dev_info->quirks; 4232 4233 fep->netdev = ndev; 4234 fep->num_rx_queues = num_rx_qs; 4235 fep->num_tx_queues = num_tx_qs; 4236 4237 #if !defined(CONFIG_M5272) 4238 /* default enable pause frame auto negotiation */ 4239 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4240 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4241 #endif 4242 4243 /* Select default pin state */ 4244 pinctrl_pm_select_default_state(&pdev->dev); 4245 4246 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4247 if (IS_ERR(fep->hwp)) { 4248 ret = PTR_ERR(fep->hwp); 4249 goto failed_ioremap; 4250 } 4251 4252 fep->pdev = pdev; 4253 fep->dev_id = dev_id++; 4254 4255 platform_set_drvdata(pdev, ndev); 4256 4257 if ((of_machine_is_compatible("fsl,imx6q") || 4258 of_machine_is_compatible("fsl,imx6dl")) && 4259 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4260 fep->quirks |= FEC_QUIRK_ERR006687; 4261 4262 ret = fec_enet_ipc_handle_init(fep); 4263 if (ret) 4264 goto failed_ipc_init; 4265 4266 if (of_property_read_bool(np, "fsl,magic-packet")) 4267 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4268 4269 ret = fec_enet_init_stop_mode(fep, np); 4270 if (ret) 4271 goto failed_stop_mode; 4272 4273 phy_node = of_parse_phandle(np, "phy-handle", 0); 4274 if (!phy_node && of_phy_is_fixed_link(np)) { 4275 ret = of_phy_register_fixed_link(np); 4276 if (ret < 0) { 4277 dev_err(&pdev->dev, 4278 "broken fixed-link specification\n"); 4279 goto failed_phy; 4280 } 4281 phy_node = of_node_get(np); 4282 } 4283 fep->phy_node = phy_node; 4284 4285 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4286 if (ret) { 4287 pdata = dev_get_platdata(&pdev->dev); 4288 if (pdata) 4289 fep->phy_interface = pdata->phy; 4290 else 4291 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4292 } else { 4293 fep->phy_interface = interface; 4294 } 4295 4296 ret = fec_enet_parse_rgmii_delay(fep, np); 4297 if (ret) 4298 goto failed_rgmii_delay; 4299 4300 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4301 if (IS_ERR(fep->clk_ipg)) { 4302 ret = PTR_ERR(fep->clk_ipg); 4303 goto failed_clk; 4304 } 4305 4306 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4307 if (IS_ERR(fep->clk_ahb)) { 4308 ret = PTR_ERR(fep->clk_ahb); 4309 goto failed_clk; 4310 } 4311 4312 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4313 4314 /* enet_out is optional, depends on board */ 4315 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4316 if (IS_ERR(fep->clk_enet_out)) { 4317 ret = PTR_ERR(fep->clk_enet_out); 4318 goto failed_clk; 4319 } 4320 4321 fep->ptp_clk_on = false; 4322 mutex_init(&fep->ptp_clk_mutex); 4323 4324 /* clk_ref is optional, depends on board */ 4325 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4326 if (IS_ERR(fep->clk_ref)) { 4327 ret = PTR_ERR(fep->clk_ref); 4328 goto failed_clk; 4329 } 4330 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4331 4332 /* clk_2x_txclk is optional, depends on board */ 4333 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4334 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4335 if (IS_ERR(fep->clk_2x_txclk)) 4336 fep->clk_2x_txclk = NULL; 4337 } 4338 4339 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4340 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4341 if (IS_ERR(fep->clk_ptp)) { 4342 fep->clk_ptp = NULL; 4343 fep->bufdesc_ex = false; 4344 } 4345 4346 ret = fec_enet_clk_enable(ndev, true); 4347 if (ret) 4348 goto failed_clk; 4349 4350 ret = clk_prepare_enable(fep->clk_ipg); 4351 if (ret) 4352 goto failed_clk_ipg; 4353 ret = clk_prepare_enable(fep->clk_ahb); 4354 if (ret) 4355 goto failed_clk_ahb; 4356 4357 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4358 if (!IS_ERR(fep->reg_phy)) { 4359 ret = regulator_enable(fep->reg_phy); 4360 if (ret) { 4361 dev_err(&pdev->dev, 4362 "Failed to enable phy regulator: %d\n", ret); 4363 goto failed_regulator; 4364 } 4365 } else { 4366 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4367 ret = -EPROBE_DEFER; 4368 goto failed_regulator; 4369 } 4370 fep->reg_phy = NULL; 4371 } 4372 4373 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4374 pm_runtime_use_autosuspend(&pdev->dev); 4375 pm_runtime_get_noresume(&pdev->dev); 4376 pm_runtime_set_active(&pdev->dev); 4377 pm_runtime_enable(&pdev->dev); 4378 4379 ret = fec_reset_phy(pdev); 4380 if (ret) 4381 goto failed_reset; 4382 4383 irq_cnt = fec_enet_get_irq_cnt(pdev); 4384 if (fep->bufdesc_ex) 4385 fec_ptp_init(pdev, irq_cnt); 4386 4387 ret = fec_enet_init(ndev); 4388 if (ret) 4389 goto failed_init; 4390 4391 for (i = 0; i < irq_cnt; i++) { 4392 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4393 irq = platform_get_irq_byname_optional(pdev, irq_name); 4394 if (irq < 0) 4395 irq = platform_get_irq(pdev, i); 4396 if (irq < 0) { 4397 ret = irq; 4398 goto failed_irq; 4399 } 4400 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4401 0, pdev->name, ndev); 4402 if (ret) 4403 goto failed_irq; 4404 4405 fep->irq[i] = irq; 4406 } 4407 4408 /* Decide which interrupt line is wakeup capable */ 4409 fec_enet_get_wakeup_irq(pdev); 4410 4411 ret = fec_enet_mii_init(pdev); 4412 if (ret) 4413 goto failed_mii_init; 4414 4415 /* Carrier starts down, phylib will bring it up */ 4416 netif_carrier_off(ndev); 4417 fec_enet_clk_enable(ndev, false); 4418 pinctrl_pm_select_sleep_state(&pdev->dev); 4419 4420 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4421 4422 ret = register_netdev(ndev); 4423 if (ret) 4424 goto failed_register; 4425 4426 device_init_wakeup(&ndev->dev, fep->wol_flag & 4427 FEC_WOL_HAS_MAGIC_PACKET); 4428 4429 if (fep->bufdesc_ex && fep->ptp_clock) 4430 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4431 4432 fep->rx_copybreak = COPYBREAK_DEFAULT; 4433 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4434 4435 pm_runtime_mark_last_busy(&pdev->dev); 4436 pm_runtime_put_autosuspend(&pdev->dev); 4437 4438 return 0; 4439 4440 failed_register: 4441 fec_enet_mii_remove(fep); 4442 failed_mii_init: 4443 failed_irq: 4444 failed_init: 4445 fec_ptp_stop(pdev); 4446 failed_reset: 4447 pm_runtime_put_noidle(&pdev->dev); 4448 pm_runtime_disable(&pdev->dev); 4449 if (fep->reg_phy) 4450 regulator_disable(fep->reg_phy); 4451 failed_regulator: 4452 clk_disable_unprepare(fep->clk_ahb); 4453 failed_clk_ahb: 4454 clk_disable_unprepare(fep->clk_ipg); 4455 failed_clk_ipg: 4456 fec_enet_clk_enable(ndev, false); 4457 failed_clk: 4458 failed_rgmii_delay: 4459 if (of_phy_is_fixed_link(np)) 4460 of_phy_deregister_fixed_link(np); 4461 of_node_put(phy_node); 4462 failed_stop_mode: 4463 failed_ipc_init: 4464 failed_phy: 4465 dev_id--; 4466 failed_ioremap: 4467 free_netdev(ndev); 4468 4469 return ret; 4470 } 4471 4472 static int 4473 fec_drv_remove(struct platform_device *pdev) 4474 { 4475 struct net_device *ndev = platform_get_drvdata(pdev); 4476 struct fec_enet_private *fep = netdev_priv(ndev); 4477 struct device_node *np = pdev->dev.of_node; 4478 int ret; 4479 4480 ret = pm_runtime_get_sync(&pdev->dev); 4481 if (ret < 0) 4482 dev_err(&pdev->dev, 4483 "Failed to resume device in remove callback (%pe)\n", 4484 ERR_PTR(ret)); 4485 4486 cancel_work_sync(&fep->tx_timeout_work); 4487 fec_ptp_stop(pdev); 4488 unregister_netdev(ndev); 4489 fec_enet_mii_remove(fep); 4490 if (fep->reg_phy) 4491 regulator_disable(fep->reg_phy); 4492 4493 if (of_phy_is_fixed_link(np)) 4494 of_phy_deregister_fixed_link(np); 4495 of_node_put(fep->phy_node); 4496 4497 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4498 * disabling them again. 4499 */ 4500 if (ret >= 0) { 4501 clk_disable_unprepare(fep->clk_ahb); 4502 clk_disable_unprepare(fep->clk_ipg); 4503 } 4504 pm_runtime_put_noidle(&pdev->dev); 4505 pm_runtime_disable(&pdev->dev); 4506 4507 free_netdev(ndev); 4508 return 0; 4509 } 4510 4511 static int __maybe_unused fec_suspend(struct device *dev) 4512 { 4513 struct net_device *ndev = dev_get_drvdata(dev); 4514 struct fec_enet_private *fep = netdev_priv(ndev); 4515 int ret; 4516 4517 rtnl_lock(); 4518 if (netif_running(ndev)) { 4519 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4520 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4521 phy_stop(ndev->phydev); 4522 napi_disable(&fep->napi); 4523 netif_tx_lock_bh(ndev); 4524 netif_device_detach(ndev); 4525 netif_tx_unlock_bh(ndev); 4526 fec_stop(ndev); 4527 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4528 fec_irqs_disable(ndev); 4529 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4530 } else { 4531 fec_irqs_disable_except_wakeup(ndev); 4532 if (fep->wake_irq > 0) { 4533 disable_irq(fep->wake_irq); 4534 enable_irq_wake(fep->wake_irq); 4535 } 4536 fec_enet_stop_mode(fep, true); 4537 } 4538 /* It's safe to disable clocks since interrupts are masked */ 4539 fec_enet_clk_enable(ndev, false); 4540 4541 fep->rpm_active = !pm_runtime_status_suspended(dev); 4542 if (fep->rpm_active) { 4543 ret = pm_runtime_force_suspend(dev); 4544 if (ret < 0) { 4545 rtnl_unlock(); 4546 return ret; 4547 } 4548 } 4549 } 4550 rtnl_unlock(); 4551 4552 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4553 regulator_disable(fep->reg_phy); 4554 4555 /* SOC supply clock to phy, when clock is disabled, phy link down 4556 * SOC control phy regulator, when regulator is disabled, phy link down 4557 */ 4558 if (fep->clk_enet_out || fep->reg_phy) 4559 fep->link = 0; 4560 4561 return 0; 4562 } 4563 4564 static int __maybe_unused fec_resume(struct device *dev) 4565 { 4566 struct net_device *ndev = dev_get_drvdata(dev); 4567 struct fec_enet_private *fep = netdev_priv(ndev); 4568 int ret; 4569 int val; 4570 4571 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4572 ret = regulator_enable(fep->reg_phy); 4573 if (ret) 4574 return ret; 4575 } 4576 4577 rtnl_lock(); 4578 if (netif_running(ndev)) { 4579 if (fep->rpm_active) 4580 pm_runtime_force_resume(dev); 4581 4582 ret = fec_enet_clk_enable(ndev, true); 4583 if (ret) { 4584 rtnl_unlock(); 4585 goto failed_clk; 4586 } 4587 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4588 fec_enet_stop_mode(fep, false); 4589 if (fep->wake_irq) { 4590 disable_irq_wake(fep->wake_irq); 4591 enable_irq(fep->wake_irq); 4592 } 4593 4594 val = readl(fep->hwp + FEC_ECNTRL); 4595 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4596 writel(val, fep->hwp + FEC_ECNTRL); 4597 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4598 } else { 4599 pinctrl_pm_select_default_state(&fep->pdev->dev); 4600 } 4601 fec_restart(ndev); 4602 netif_tx_lock_bh(ndev); 4603 netif_device_attach(ndev); 4604 netif_tx_unlock_bh(ndev); 4605 napi_enable(&fep->napi); 4606 phy_init_hw(ndev->phydev); 4607 phy_start(ndev->phydev); 4608 } 4609 rtnl_unlock(); 4610 4611 return 0; 4612 4613 failed_clk: 4614 if (fep->reg_phy) 4615 regulator_disable(fep->reg_phy); 4616 return ret; 4617 } 4618 4619 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4620 { 4621 struct net_device *ndev = dev_get_drvdata(dev); 4622 struct fec_enet_private *fep = netdev_priv(ndev); 4623 4624 clk_disable_unprepare(fep->clk_ahb); 4625 clk_disable_unprepare(fep->clk_ipg); 4626 4627 return 0; 4628 } 4629 4630 static int __maybe_unused fec_runtime_resume(struct device *dev) 4631 { 4632 struct net_device *ndev = dev_get_drvdata(dev); 4633 struct fec_enet_private *fep = netdev_priv(ndev); 4634 int ret; 4635 4636 ret = clk_prepare_enable(fep->clk_ahb); 4637 if (ret) 4638 return ret; 4639 ret = clk_prepare_enable(fep->clk_ipg); 4640 if (ret) 4641 goto failed_clk_ipg; 4642 4643 return 0; 4644 4645 failed_clk_ipg: 4646 clk_disable_unprepare(fep->clk_ahb); 4647 return ret; 4648 } 4649 4650 static const struct dev_pm_ops fec_pm_ops = { 4651 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4652 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4653 }; 4654 4655 static struct platform_driver fec_driver = { 4656 .driver = { 4657 .name = DRIVER_NAME, 4658 .pm = &fec_pm_ops, 4659 .of_match_table = fec_dt_ids, 4660 .suppress_bind_attrs = true, 4661 }, 4662 .id_table = fec_devtype, 4663 .probe = fec_probe, 4664 .remove = fec_drv_remove, 4665 }; 4666 4667 module_platform_driver(fec_driver); 4668 4669 MODULE_LICENSE("GPL"); 4670