1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 static void set_multicast_list(struct net_device *ndev);
64 
65 #if defined(CONFIG_ARM)
66 #define FEC_ALIGNMENT	0xf
67 #else
68 #define FEC_ALIGNMENT	0x3
69 #endif
70 
71 #define DRIVER_NAME	"fec"
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 /* Controller is ENET-MAC */
82 #define FEC_QUIRK_ENET_MAC		(1 << 0)
83 /* Controller needs driver to swap frame */
84 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
85 /* Controller uses gasket */
86 #define FEC_QUIRK_USE_GASKET		(1 << 2)
87 /* Controller has GBIT support */
88 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
89 /* Controller has extend desc buffer */
90 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
91 /* Controller has hardware checksum support */
92 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
93 /* Controller has hardware vlan support */
94 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
95 /* ENET IP errata ERR006358
96  *
97  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
98  * detected as not set during a prior frame transmission, then the
99  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
100  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
101  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
102  * detected as not set during a prior frame transmission, then the
103  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
104  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
105  * frames not being transmitted until there is a 0-to-1 transition on
106  * ENET_TDAR[TDAR].
107  */
108 #define FEC_QUIRK_ERR006358            (1 << 7)
109 
110 static struct platform_device_id fec_devtype[] = {
111 	{
112 		/* keep it for coldfire */
113 		.name = DRIVER_NAME,
114 		.driver_data = 0,
115 	}, {
116 		.name = "imx25-fec",
117 		.driver_data = FEC_QUIRK_USE_GASKET,
118 	}, {
119 		.name = "imx27-fec",
120 		.driver_data = 0,
121 	}, {
122 		.name = "imx28-fec",
123 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
124 	}, {
125 		.name = "imx6q-fec",
126 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
127 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
128 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
129 	}, {
130 		.name = "mvf600-fec",
131 		.driver_data = FEC_QUIRK_ENET_MAC,
132 	}, {
133 		/* sentinel */
134 	}
135 };
136 MODULE_DEVICE_TABLE(platform, fec_devtype);
137 
138 enum imx_fec_type {
139 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
140 	IMX27_FEC,	/* runs on i.mx27/35/51 */
141 	IMX28_FEC,
142 	IMX6Q_FEC,
143 	MVF600_FEC,
144 };
145 
146 static const struct of_device_id fec_dt_ids[] = {
147 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
148 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
149 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
150 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
151 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
152 	{ /* sentinel */ }
153 };
154 MODULE_DEVICE_TABLE(of, fec_dt_ids);
155 
156 static unsigned char macaddr[ETH_ALEN];
157 module_param_array(macaddr, byte, NULL, 0);
158 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
159 
160 #if defined(CONFIG_M5272)
161 /*
162  * Some hardware gets it MAC address out of local flash memory.
163  * if this is non-zero then assume it is the address to get MAC from.
164  */
165 #if defined(CONFIG_NETtel)
166 #define	FEC_FLASHMAC	0xf0006006
167 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
168 #define	FEC_FLASHMAC	0xf0006000
169 #elif defined(CONFIG_CANCam)
170 #define	FEC_FLASHMAC	0xf0020000
171 #elif defined (CONFIG_M5272C3)
172 #define	FEC_FLASHMAC	(0xffe04000 + 4)
173 #elif defined(CONFIG_MOD5272)
174 #define FEC_FLASHMAC	0xffc0406b
175 #else
176 #define	FEC_FLASHMAC	0
177 #endif
178 #endif /* CONFIG_M5272 */
179 
180 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
181 #error "FEC: descriptor ring size constants too large"
182 #endif
183 
184 /* Interrupt events/masks. */
185 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
186 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
187 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
188 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
189 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
190 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
191 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
192 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
193 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
194 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
195 
196 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
197 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
198 
199 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
200  */
201 #define PKT_MAXBUF_SIZE		1522
202 #define PKT_MINBUF_SIZE		64
203 #define PKT_MAXBLR_SIZE		1536
204 
205 /* FEC receive acceleration */
206 #define FEC_RACC_IPDIS		(1 << 1)
207 #define FEC_RACC_PRODIS		(1 << 2)
208 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
209 
210 /*
211  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
212  * size bits. Other FEC hardware does not, so we need to take that into
213  * account when setting it.
214  */
215 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
216     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
217 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
218 #else
219 #define	OPT_FRAME_SIZE	0
220 #endif
221 
222 /* FEC MII MMFR bits definition */
223 #define FEC_MMFR_ST		(1 << 30)
224 #define FEC_MMFR_OP_READ	(2 << 28)
225 #define FEC_MMFR_OP_WRITE	(1 << 28)
226 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
227 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
228 #define FEC_MMFR_TA		(2 << 16)
229 #define FEC_MMFR_DATA(v)	(v & 0xffff)
230 
231 #define FEC_MII_TIMEOUT		30000 /* us */
232 
233 /* Transmitter timeout */
234 #define TX_TIMEOUT (2 * HZ)
235 
236 #define FEC_PAUSE_FLAG_AUTONEG	0x1
237 #define FEC_PAUSE_FLAG_ENABLE	0x2
238 
239 static int mii_cnt;
240 
241 static inline
242 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
243 {
244 	struct bufdesc *new_bd = bdp + 1;
245 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
246 	struct bufdesc_ex *ex_base;
247 	struct bufdesc *base;
248 	int ring_size;
249 
250 	if (bdp >= fep->tx_bd_base) {
251 		base = fep->tx_bd_base;
252 		ring_size = fep->tx_ring_size;
253 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
254 	} else {
255 		base = fep->rx_bd_base;
256 		ring_size = fep->rx_ring_size;
257 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
258 	}
259 
260 	if (fep->bufdesc_ex)
261 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
262 			ex_base : ex_new_bd);
263 	else
264 		return (new_bd >= (base + ring_size)) ?
265 			base : new_bd;
266 }
267 
268 static inline
269 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
270 {
271 	struct bufdesc *new_bd = bdp - 1;
272 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
273 	struct bufdesc_ex *ex_base;
274 	struct bufdesc *base;
275 	int ring_size;
276 
277 	if (bdp >= fep->tx_bd_base) {
278 		base = fep->tx_bd_base;
279 		ring_size = fep->tx_ring_size;
280 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
281 	} else {
282 		base = fep->rx_bd_base;
283 		ring_size = fep->rx_ring_size;
284 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
285 	}
286 
287 	if (fep->bufdesc_ex)
288 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
289 			(ex_new_bd + ring_size) : ex_new_bd);
290 	else
291 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
292 }
293 
294 static void *swap_buffer(void *bufaddr, int len)
295 {
296 	int i;
297 	unsigned int *buf = bufaddr;
298 
299 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
300 		*buf = cpu_to_be32(*buf);
301 
302 	return bufaddr;
303 }
304 
305 static int
306 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
307 {
308 	/* Only run for packets requiring a checksum. */
309 	if (skb->ip_summed != CHECKSUM_PARTIAL)
310 		return 0;
311 
312 	if (unlikely(skb_cow_head(skb, 0)))
313 		return -1;
314 
315 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
316 
317 	return 0;
318 }
319 
320 static netdev_tx_t
321 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
322 {
323 	struct fec_enet_private *fep = netdev_priv(ndev);
324 	const struct platform_device_id *id_entry =
325 				platform_get_device_id(fep->pdev);
326 	struct bufdesc *bdp, *bdp_pre;
327 	void *bufaddr;
328 	unsigned short	status;
329 	unsigned int index;
330 
331 	/* Fill in a Tx ring entry */
332 	bdp = fep->cur_tx;
333 
334 	status = bdp->cbd_sc;
335 
336 	if (status & BD_ENET_TX_READY) {
337 		/* Ooops.  All transmit buffers are full.  Bail out.
338 		 * This should not happen, since ndev->tbusy should be set.
339 		 */
340 		netdev_err(ndev, "tx queue full!\n");
341 		return NETDEV_TX_BUSY;
342 	}
343 
344 	/* Protocol checksum off-load for TCP and UDP. */
345 	if (fec_enet_clear_csum(skb, ndev)) {
346 		kfree_skb(skb);
347 		return NETDEV_TX_OK;
348 	}
349 
350 	/* Clear all of the status flags */
351 	status &= ~BD_ENET_TX_STATS;
352 
353 	/* Set buffer length and buffer pointer */
354 	bufaddr = skb->data;
355 	bdp->cbd_datlen = skb->len;
356 
357 	/*
358 	 * On some FEC implementations data must be aligned on
359 	 * 4-byte boundaries. Use bounce buffers to copy data
360 	 * and get it aligned. Ugh.
361 	 */
362 	if (fep->bufdesc_ex)
363 		index = (struct bufdesc_ex *)bdp -
364 			(struct bufdesc_ex *)fep->tx_bd_base;
365 	else
366 		index = bdp - fep->tx_bd_base;
367 
368 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
369 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
370 		bufaddr = fep->tx_bounce[index];
371 	}
372 
373 	/*
374 	 * Some design made an incorrect assumption on endian mode of
375 	 * the system that it's running on. As the result, driver has to
376 	 * swap every frame going to and coming from the controller.
377 	 */
378 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
379 		swap_buffer(bufaddr, skb->len);
380 
381 	/* Save skb pointer */
382 	fep->tx_skbuff[index] = skb;
383 
384 	/* Push the data cache so the CPM does not get stale memory
385 	 * data.
386 	 */
387 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
388 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
389 
390 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
391 	 * it's the last BD of the frame, and to put the CRC on the end.
392 	 */
393 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
394 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
395 	bdp->cbd_sc = status;
396 
397 	if (fep->bufdesc_ex) {
398 
399 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
400 		ebdp->cbd_bdu = 0;
401 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
402 			fep->hwts_tx_en)) {
403 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
404 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
405 		} else {
406 			ebdp->cbd_esc = BD_ENET_TX_INT;
407 
408 			/* Enable protocol checksum flags
409 			 * We do not bother with the IP Checksum bits as they
410 			 * are done by the kernel
411 			 */
412 			if (skb->ip_summed == CHECKSUM_PARTIAL)
413 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
414 		}
415 	}
416 
417 	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
418 	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
419 	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
420 		fep->delay_work.trig_tx = true;
421 		schedule_delayed_work(&(fep->delay_work.delay_work),
422 					msecs_to_jiffies(1));
423 	}
424 
425 	/* If this was the last BD in the ring, start at the beginning again. */
426 	bdp = fec_enet_get_nextdesc(bdp, fep);
427 
428 	fep->cur_tx = bdp;
429 
430 	if (fep->cur_tx == fep->dirty_tx)
431 		netif_stop_queue(ndev);
432 
433 	/* Trigger transmission start */
434 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
435 
436 	skb_tx_timestamp(skb);
437 
438 	return NETDEV_TX_OK;
439 }
440 
441 /* Init RX & TX buffer descriptors
442  */
443 static void fec_enet_bd_init(struct net_device *dev)
444 {
445 	struct fec_enet_private *fep = netdev_priv(dev);
446 	struct bufdesc *bdp;
447 	unsigned int i;
448 
449 	/* Initialize the receive buffer descriptors. */
450 	bdp = fep->rx_bd_base;
451 	for (i = 0; i < fep->rx_ring_size; i++) {
452 
453 		/* Initialize the BD for every fragment in the page. */
454 		if (bdp->cbd_bufaddr)
455 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
456 		else
457 			bdp->cbd_sc = 0;
458 		bdp = fec_enet_get_nextdesc(bdp, fep);
459 	}
460 
461 	/* Set the last buffer to wrap */
462 	bdp = fec_enet_get_prevdesc(bdp, fep);
463 	bdp->cbd_sc |= BD_SC_WRAP;
464 
465 	fep->cur_rx = fep->rx_bd_base;
466 
467 	/* ...and the same for transmit */
468 	bdp = fep->tx_bd_base;
469 	fep->cur_tx = bdp;
470 	for (i = 0; i < fep->tx_ring_size; i++) {
471 
472 		/* Initialize the BD for every fragment in the page. */
473 		bdp->cbd_sc = 0;
474 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
475 			dev_kfree_skb_any(fep->tx_skbuff[i]);
476 			fep->tx_skbuff[i] = NULL;
477 		}
478 		bdp->cbd_bufaddr = 0;
479 		bdp = fec_enet_get_nextdesc(bdp, fep);
480 	}
481 
482 	/* Set the last buffer to wrap */
483 	bdp = fec_enet_get_prevdesc(bdp, fep);
484 	bdp->cbd_sc |= BD_SC_WRAP;
485 	fep->dirty_tx = bdp;
486 }
487 
488 /* This function is called to start or restart the FEC during a link
489  * change.  This only happens when switching between half and full
490  * duplex.
491  */
492 static void
493 fec_restart(struct net_device *ndev, int duplex)
494 {
495 	struct fec_enet_private *fep = netdev_priv(ndev);
496 	const struct platform_device_id *id_entry =
497 				platform_get_device_id(fep->pdev);
498 	int i;
499 	u32 val;
500 	u32 temp_mac[2];
501 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
502 	u32 ecntl = 0x2; /* ETHEREN */
503 
504 	if (netif_running(ndev)) {
505 		netif_device_detach(ndev);
506 		napi_disable(&fep->napi);
507 		netif_stop_queue(ndev);
508 		netif_tx_lock_bh(ndev);
509 	}
510 
511 	/* Whack a reset.  We should wait for this. */
512 	writel(1, fep->hwp + FEC_ECNTRL);
513 	udelay(10);
514 
515 	/*
516 	 * enet-mac reset will reset mac address registers too,
517 	 * so need to reconfigure it.
518 	 */
519 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
520 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
521 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
522 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
523 	}
524 
525 	/* Clear any outstanding interrupt. */
526 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
527 
528 	/* Setup multicast filter. */
529 	set_multicast_list(ndev);
530 #ifndef CONFIG_M5272
531 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
532 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
533 #endif
534 
535 	/* Set maximum receive buffer size. */
536 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
537 
538 	fec_enet_bd_init(ndev);
539 
540 	/* Set receive and transmit descriptor base. */
541 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
542 	if (fep->bufdesc_ex)
543 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
544 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
545 	else
546 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
547 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
548 
549 
550 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
551 		if (fep->tx_skbuff[i]) {
552 			dev_kfree_skb_any(fep->tx_skbuff[i]);
553 			fep->tx_skbuff[i] = NULL;
554 		}
555 	}
556 
557 	/* Enable MII mode */
558 	if (duplex) {
559 		/* FD enable */
560 		writel(0x04, fep->hwp + FEC_X_CNTRL);
561 	} else {
562 		/* No Rcv on Xmit */
563 		rcntl |= 0x02;
564 		writel(0x0, fep->hwp + FEC_X_CNTRL);
565 	}
566 
567 	fep->full_duplex = duplex;
568 
569 	/* Set MII speed */
570 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
571 
572 #if !defined(CONFIG_M5272)
573 	/* set RX checksum */
574 	val = readl(fep->hwp + FEC_RACC);
575 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
576 		val |= FEC_RACC_OPTIONS;
577 	else
578 		val &= ~FEC_RACC_OPTIONS;
579 	writel(val, fep->hwp + FEC_RACC);
580 #endif
581 
582 	/*
583 	 * The phy interface and speed need to get configured
584 	 * differently on enet-mac.
585 	 */
586 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
587 		/* Enable flow control and length check */
588 		rcntl |= 0x40000000 | 0x00000020;
589 
590 		/* RGMII, RMII or MII */
591 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
592 			rcntl |= (1 << 6);
593 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
594 			rcntl |= (1 << 8);
595 		else
596 			rcntl &= ~(1 << 8);
597 
598 		/* 1G, 100M or 10M */
599 		if (fep->phy_dev) {
600 			if (fep->phy_dev->speed == SPEED_1000)
601 				ecntl |= (1 << 5);
602 			else if (fep->phy_dev->speed == SPEED_100)
603 				rcntl &= ~(1 << 9);
604 			else
605 				rcntl |= (1 << 9);
606 		}
607 	} else {
608 #ifdef FEC_MIIGSK_ENR
609 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
610 			u32 cfgr;
611 			/* disable the gasket and wait */
612 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
613 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
614 				udelay(1);
615 
616 			/*
617 			 * configure the gasket:
618 			 *   RMII, 50 MHz, no loopback, no echo
619 			 *   MII, 25 MHz, no loopback, no echo
620 			 */
621 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
622 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
623 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
624 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
625 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
626 
627 			/* re-enable the gasket */
628 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
629 		}
630 #endif
631 	}
632 
633 #if !defined(CONFIG_M5272)
634 	/* enable pause frame*/
635 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
636 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
637 	     fep->phy_dev && fep->phy_dev->pause)) {
638 		rcntl |= FEC_ENET_FCE;
639 
640 		/* set FIFO threshold parameter to reduce overrun */
641 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
642 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
643 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
644 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
645 
646 		/* OPD */
647 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
648 	} else {
649 		rcntl &= ~FEC_ENET_FCE;
650 	}
651 #endif /* !defined(CONFIG_M5272) */
652 
653 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
654 
655 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
656 		/* enable ENET endian swap */
657 		ecntl |= (1 << 8);
658 		/* enable ENET store and forward mode */
659 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
660 	}
661 
662 	if (fep->bufdesc_ex)
663 		ecntl |= (1 << 4);
664 
665 #ifndef CONFIG_M5272
666 	/* Enable the MIB statistic event counters */
667 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
668 #endif
669 
670 	/* And last, enable the transmit and receive processing */
671 	writel(ecntl, fep->hwp + FEC_ECNTRL);
672 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
673 
674 	if (fep->bufdesc_ex)
675 		fec_ptp_start_cyclecounter(ndev);
676 
677 	/* Enable interrupts we wish to service */
678 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
679 
680 	if (netif_running(ndev)) {
681 		netif_tx_unlock_bh(ndev);
682 		netif_wake_queue(ndev);
683 		napi_enable(&fep->napi);
684 		netif_device_attach(ndev);
685 	}
686 }
687 
688 static void
689 fec_stop(struct net_device *ndev)
690 {
691 	struct fec_enet_private *fep = netdev_priv(ndev);
692 	const struct platform_device_id *id_entry =
693 				platform_get_device_id(fep->pdev);
694 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
695 
696 	/* We cannot expect a graceful transmit stop without link !!! */
697 	if (fep->link) {
698 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
699 		udelay(10);
700 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
701 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
702 	}
703 
704 	/* Whack a reset.  We should wait for this. */
705 	writel(1, fep->hwp + FEC_ECNTRL);
706 	udelay(10);
707 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
708 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
709 
710 	/* We have to keep ENET enabled to have MII interrupt stay working */
711 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
712 		writel(2, fep->hwp + FEC_ECNTRL);
713 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
714 	}
715 }
716 
717 
718 static void
719 fec_timeout(struct net_device *ndev)
720 {
721 	struct fec_enet_private *fep = netdev_priv(ndev);
722 
723 	ndev->stats.tx_errors++;
724 
725 	fep->delay_work.timeout = true;
726 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
727 }
728 
729 static void fec_enet_work(struct work_struct *work)
730 {
731 	struct fec_enet_private *fep =
732 		container_of(work,
733 			     struct fec_enet_private,
734 			     delay_work.delay_work.work);
735 
736 	if (fep->delay_work.timeout) {
737 		fep->delay_work.timeout = false;
738 		fec_restart(fep->netdev, fep->full_duplex);
739 		netif_wake_queue(fep->netdev);
740 	}
741 
742 	if (fep->delay_work.trig_tx) {
743 		fep->delay_work.trig_tx = false;
744 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
745 	}
746 }
747 
748 static void
749 fec_enet_tx(struct net_device *ndev)
750 {
751 	struct	fec_enet_private *fep;
752 	struct bufdesc *bdp;
753 	unsigned short status;
754 	struct	sk_buff	*skb;
755 	int	index = 0;
756 
757 	fep = netdev_priv(ndev);
758 	bdp = fep->dirty_tx;
759 
760 	/* get next bdp of dirty_tx */
761 	bdp = fec_enet_get_nextdesc(bdp, fep);
762 
763 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
764 
765 		/* current queue is empty */
766 		if (bdp == fep->cur_tx)
767 			break;
768 
769 		if (fep->bufdesc_ex)
770 			index = (struct bufdesc_ex *)bdp -
771 				(struct bufdesc_ex *)fep->tx_bd_base;
772 		else
773 			index = bdp - fep->tx_bd_base;
774 
775 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
776 				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
777 		bdp->cbd_bufaddr = 0;
778 
779 		skb = fep->tx_skbuff[index];
780 
781 		/* Check for errors. */
782 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
783 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
784 				   BD_ENET_TX_CSL)) {
785 			ndev->stats.tx_errors++;
786 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
787 				ndev->stats.tx_heartbeat_errors++;
788 			if (status & BD_ENET_TX_LC)  /* Late collision */
789 				ndev->stats.tx_window_errors++;
790 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
791 				ndev->stats.tx_aborted_errors++;
792 			if (status & BD_ENET_TX_UN)  /* Underrun */
793 				ndev->stats.tx_fifo_errors++;
794 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
795 				ndev->stats.tx_carrier_errors++;
796 		} else {
797 			ndev->stats.tx_packets++;
798 			ndev->stats.tx_bytes += bdp->cbd_datlen;
799 		}
800 
801 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
802 			fep->bufdesc_ex) {
803 			struct skb_shared_hwtstamps shhwtstamps;
804 			unsigned long flags;
805 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
806 
807 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
808 			spin_lock_irqsave(&fep->tmreg_lock, flags);
809 			shhwtstamps.hwtstamp = ns_to_ktime(
810 				timecounter_cyc2time(&fep->tc, ebdp->ts));
811 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
812 			skb_tstamp_tx(skb, &shhwtstamps);
813 		}
814 
815 		if (status & BD_ENET_TX_READY)
816 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
817 
818 		/* Deferred means some collisions occurred during transmit,
819 		 * but we eventually sent the packet OK.
820 		 */
821 		if (status & BD_ENET_TX_DEF)
822 			ndev->stats.collisions++;
823 
824 		/* Free the sk buffer associated with this last transmit */
825 		dev_kfree_skb_any(skb);
826 		fep->tx_skbuff[index] = NULL;
827 
828 		fep->dirty_tx = bdp;
829 
830 		/* Update pointer to next buffer descriptor to be transmitted */
831 		bdp = fec_enet_get_nextdesc(bdp, fep);
832 
833 		/* Since we have freed up a buffer, the ring is no longer full
834 		 */
835 		if (fep->dirty_tx != fep->cur_tx) {
836 			if (netif_queue_stopped(ndev))
837 				netif_wake_queue(ndev);
838 		}
839 	}
840 	return;
841 }
842 
843 
844 /* During a receive, the cur_rx points to the current incoming buffer.
845  * When we update through the ring, if the next incoming buffer has
846  * not been given to the system, we just set the empty indicator,
847  * effectively tossing the packet.
848  */
849 static int
850 fec_enet_rx(struct net_device *ndev, int budget)
851 {
852 	struct fec_enet_private *fep = netdev_priv(ndev);
853 	const struct platform_device_id *id_entry =
854 				platform_get_device_id(fep->pdev);
855 	struct bufdesc *bdp;
856 	unsigned short status;
857 	struct	sk_buff	*skb;
858 	ushort	pkt_len;
859 	__u8 *data;
860 	int	pkt_received = 0;
861 	struct	bufdesc_ex *ebdp = NULL;
862 	bool	vlan_packet_rcvd = false;
863 	u16	vlan_tag;
864 
865 #ifdef CONFIG_M532x
866 	flush_cache_all();
867 #endif
868 
869 	/* First, grab all of the stats for the incoming packet.
870 	 * These get messed up if we get called due to a busy condition.
871 	 */
872 	bdp = fep->cur_rx;
873 
874 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
875 
876 		if (pkt_received >= budget)
877 			break;
878 		pkt_received++;
879 
880 		/* Since we have allocated space to hold a complete frame,
881 		 * the last indicator should be set.
882 		 */
883 		if ((status & BD_ENET_RX_LAST) == 0)
884 			netdev_err(ndev, "rcv is not +last\n");
885 
886 		if (!fep->opened)
887 			goto rx_processing_done;
888 
889 		/* Check for errors. */
890 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
891 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
892 			ndev->stats.rx_errors++;
893 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
894 				/* Frame too long or too short. */
895 				ndev->stats.rx_length_errors++;
896 			}
897 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
898 				ndev->stats.rx_frame_errors++;
899 			if (status & BD_ENET_RX_CR)	/* CRC Error */
900 				ndev->stats.rx_crc_errors++;
901 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
902 				ndev->stats.rx_fifo_errors++;
903 		}
904 
905 		/* Report late collisions as a frame error.
906 		 * On this error, the BD is closed, but we don't know what we
907 		 * have in the buffer.  So, just drop this frame on the floor.
908 		 */
909 		if (status & BD_ENET_RX_CL) {
910 			ndev->stats.rx_errors++;
911 			ndev->stats.rx_frame_errors++;
912 			goto rx_processing_done;
913 		}
914 
915 		/* Process the incoming frame. */
916 		ndev->stats.rx_packets++;
917 		pkt_len = bdp->cbd_datlen;
918 		ndev->stats.rx_bytes += pkt_len;
919 		data = (__u8*)__va(bdp->cbd_bufaddr);
920 
921 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
922 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
923 
924 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
925 			swap_buffer(data, pkt_len);
926 
927 		/* Extract the enhanced buffer descriptor */
928 		ebdp = NULL;
929 		if (fep->bufdesc_ex)
930 			ebdp = (struct bufdesc_ex *)bdp;
931 
932 		/* If this is a VLAN packet remove the VLAN Tag */
933 		vlan_packet_rcvd = false;
934 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
935 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
936 			/* Push and remove the vlan tag */
937 			struct vlan_hdr *vlan_header =
938 					(struct vlan_hdr *) (data + ETH_HLEN);
939 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
940 			pkt_len -= VLAN_HLEN;
941 
942 			vlan_packet_rcvd = true;
943 		}
944 
945 		/* This does 16 byte alignment, exactly what we need.
946 		 * The packet length includes FCS, but we don't want to
947 		 * include that when passing upstream as it messes up
948 		 * bridging applications.
949 		 */
950 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
951 
952 		if (unlikely(!skb)) {
953 			ndev->stats.rx_dropped++;
954 		} else {
955 			int payload_offset = (2 * ETH_ALEN);
956 			skb_reserve(skb, NET_IP_ALIGN);
957 			skb_put(skb, pkt_len - 4);	/* Make room */
958 
959 			/* Extract the frame data without the VLAN header. */
960 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
961 			if (vlan_packet_rcvd)
962 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
963 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
964 						       data + payload_offset,
965 						       pkt_len - 4 - (2 * ETH_ALEN));
966 
967 			skb->protocol = eth_type_trans(skb, ndev);
968 
969 			/* Get receive timestamp from the skb */
970 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
971 				struct skb_shared_hwtstamps *shhwtstamps =
972 							    skb_hwtstamps(skb);
973 				unsigned long flags;
974 
975 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
976 
977 				spin_lock_irqsave(&fep->tmreg_lock, flags);
978 				shhwtstamps->hwtstamp = ns_to_ktime(
979 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
980 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
981 			}
982 
983 			if (fep->bufdesc_ex &&
984 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
985 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
986 					/* don't check it */
987 					skb->ip_summed = CHECKSUM_UNNECESSARY;
988 				} else {
989 					skb_checksum_none_assert(skb);
990 				}
991 			}
992 
993 			/* Handle received VLAN packets */
994 			if (vlan_packet_rcvd)
995 				__vlan_hwaccel_put_tag(skb,
996 						       htons(ETH_P_8021Q),
997 						       vlan_tag);
998 
999 			napi_gro_receive(&fep->napi, skb);
1000 		}
1001 
1002 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
1003 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
1004 rx_processing_done:
1005 		/* Clear the status flags for this buffer */
1006 		status &= ~BD_ENET_RX_STATS;
1007 
1008 		/* Mark the buffer empty */
1009 		status |= BD_ENET_RX_EMPTY;
1010 		bdp->cbd_sc = status;
1011 
1012 		if (fep->bufdesc_ex) {
1013 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1014 
1015 			ebdp->cbd_esc = BD_ENET_RX_INT;
1016 			ebdp->cbd_prot = 0;
1017 			ebdp->cbd_bdu = 0;
1018 		}
1019 
1020 		/* Update BD pointer to next entry */
1021 		bdp = fec_enet_get_nextdesc(bdp, fep);
1022 
1023 		/* Doing this here will keep the FEC running while we process
1024 		 * incoming frames.  On a heavily loaded network, we should be
1025 		 * able to keep up at the expense of system resources.
1026 		 */
1027 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1028 	}
1029 	fep->cur_rx = bdp;
1030 
1031 	return pkt_received;
1032 }
1033 
1034 static irqreturn_t
1035 fec_enet_interrupt(int irq, void *dev_id)
1036 {
1037 	struct net_device *ndev = dev_id;
1038 	struct fec_enet_private *fep = netdev_priv(ndev);
1039 	uint int_events;
1040 	irqreturn_t ret = IRQ_NONE;
1041 
1042 	do {
1043 		int_events = readl(fep->hwp + FEC_IEVENT);
1044 		writel(int_events, fep->hwp + FEC_IEVENT);
1045 
1046 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1047 			ret = IRQ_HANDLED;
1048 
1049 			/* Disable the RX interrupt */
1050 			if (napi_schedule_prep(&fep->napi)) {
1051 				writel(FEC_RX_DISABLED_IMASK,
1052 					fep->hwp + FEC_IMASK);
1053 				__napi_schedule(&fep->napi);
1054 			}
1055 		}
1056 
1057 		if (int_events & FEC_ENET_MII) {
1058 			ret = IRQ_HANDLED;
1059 			complete(&fep->mdio_done);
1060 		}
1061 	} while (int_events);
1062 
1063 	return ret;
1064 }
1065 
1066 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1067 {
1068 	struct net_device *ndev = napi->dev;
1069 	int pkts = fec_enet_rx(ndev, budget);
1070 	struct fec_enet_private *fep = netdev_priv(ndev);
1071 
1072 	fec_enet_tx(ndev);
1073 
1074 	if (pkts < budget) {
1075 		napi_complete(napi);
1076 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1077 	}
1078 	return pkts;
1079 }
1080 
1081 /* ------------------------------------------------------------------------- */
1082 static void fec_get_mac(struct net_device *ndev)
1083 {
1084 	struct fec_enet_private *fep = netdev_priv(ndev);
1085 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1086 	unsigned char *iap, tmpaddr[ETH_ALEN];
1087 
1088 	/*
1089 	 * try to get mac address in following order:
1090 	 *
1091 	 * 1) module parameter via kernel command line in form
1092 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1093 	 */
1094 	iap = macaddr;
1095 
1096 	/*
1097 	 * 2) from device tree data
1098 	 */
1099 	if (!is_valid_ether_addr(iap)) {
1100 		struct device_node *np = fep->pdev->dev.of_node;
1101 		if (np) {
1102 			const char *mac = of_get_mac_address(np);
1103 			if (mac)
1104 				iap = (unsigned char *) mac;
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * 3) from flash or fuse (via platform data)
1110 	 */
1111 	if (!is_valid_ether_addr(iap)) {
1112 #ifdef CONFIG_M5272
1113 		if (FEC_FLASHMAC)
1114 			iap = (unsigned char *)FEC_FLASHMAC;
1115 #else
1116 		if (pdata)
1117 			iap = (unsigned char *)&pdata->mac;
1118 #endif
1119 	}
1120 
1121 	/*
1122 	 * 4) FEC mac registers set by bootloader
1123 	 */
1124 	if (!is_valid_ether_addr(iap)) {
1125 		*((__be32 *) &tmpaddr[0]) =
1126 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1127 		*((__be16 *) &tmpaddr[4]) =
1128 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1129 		iap = &tmpaddr[0];
1130 	}
1131 
1132 	/*
1133 	 * 5) random mac address
1134 	 */
1135 	if (!is_valid_ether_addr(iap)) {
1136 		/* Report it and use a random ethernet address instead */
1137 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1138 		eth_hw_addr_random(ndev);
1139 		netdev_info(ndev, "Using random MAC address: %pM\n",
1140 			    ndev->dev_addr);
1141 		return;
1142 	}
1143 
1144 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1145 
1146 	/* Adjust MAC if using macaddr */
1147 	if (iap == macaddr)
1148 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1149 }
1150 
1151 /* ------------------------------------------------------------------------- */
1152 
1153 /*
1154  * Phy section
1155  */
1156 static void fec_enet_adjust_link(struct net_device *ndev)
1157 {
1158 	struct fec_enet_private *fep = netdev_priv(ndev);
1159 	struct phy_device *phy_dev = fep->phy_dev;
1160 	int status_change = 0;
1161 
1162 	/* Prevent a state halted on mii error */
1163 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1164 		phy_dev->state = PHY_RESUMING;
1165 		return;
1166 	}
1167 
1168 	if (phy_dev->link) {
1169 		if (!fep->link) {
1170 			fep->link = phy_dev->link;
1171 			status_change = 1;
1172 		}
1173 
1174 		if (fep->full_duplex != phy_dev->duplex)
1175 			status_change = 1;
1176 
1177 		if (phy_dev->speed != fep->speed) {
1178 			fep->speed = phy_dev->speed;
1179 			status_change = 1;
1180 		}
1181 
1182 		/* if any of the above changed restart the FEC */
1183 		if (status_change)
1184 			fec_restart(ndev, phy_dev->duplex);
1185 	} else {
1186 		if (fep->link) {
1187 			fec_stop(ndev);
1188 			fep->link = phy_dev->link;
1189 			status_change = 1;
1190 		}
1191 	}
1192 
1193 	if (status_change)
1194 		phy_print_status(phy_dev);
1195 }
1196 
1197 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1198 {
1199 	struct fec_enet_private *fep = bus->priv;
1200 	unsigned long time_left;
1201 
1202 	fep->mii_timeout = 0;
1203 	init_completion(&fep->mdio_done);
1204 
1205 	/* start a read op */
1206 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1207 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1208 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1209 
1210 	/* wait for end of transfer */
1211 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1212 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1213 	if (time_left == 0) {
1214 		fep->mii_timeout = 1;
1215 		netdev_err(fep->netdev, "MDIO read timeout\n");
1216 		return -ETIMEDOUT;
1217 	}
1218 
1219 	/* return value */
1220 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1221 }
1222 
1223 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1224 			   u16 value)
1225 {
1226 	struct fec_enet_private *fep = bus->priv;
1227 	unsigned long time_left;
1228 
1229 	fep->mii_timeout = 0;
1230 	init_completion(&fep->mdio_done);
1231 
1232 	/* start a write op */
1233 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1234 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1235 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1236 		fep->hwp + FEC_MII_DATA);
1237 
1238 	/* wait for end of transfer */
1239 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1240 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1241 	if (time_left == 0) {
1242 		fep->mii_timeout = 1;
1243 		netdev_err(fep->netdev, "MDIO write timeout\n");
1244 		return -ETIMEDOUT;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 static int fec_enet_mdio_reset(struct mii_bus *bus)
1251 {
1252 	return 0;
1253 }
1254 
1255 static int fec_enet_mii_probe(struct net_device *ndev)
1256 {
1257 	struct fec_enet_private *fep = netdev_priv(ndev);
1258 	const struct platform_device_id *id_entry =
1259 				platform_get_device_id(fep->pdev);
1260 	struct phy_device *phy_dev = NULL;
1261 	char mdio_bus_id[MII_BUS_ID_SIZE];
1262 	char phy_name[MII_BUS_ID_SIZE + 3];
1263 	int phy_id;
1264 	int dev_id = fep->dev_id;
1265 
1266 	fep->phy_dev = NULL;
1267 
1268 	/* check for attached phy */
1269 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1270 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1271 			continue;
1272 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1273 			continue;
1274 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1275 			continue;
1276 		if (dev_id--)
1277 			continue;
1278 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1279 		break;
1280 	}
1281 
1282 	if (phy_id >= PHY_MAX_ADDR) {
1283 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1284 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1285 		phy_id = 0;
1286 	}
1287 
1288 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1289 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1290 			      fep->phy_interface);
1291 	if (IS_ERR(phy_dev)) {
1292 		netdev_err(ndev, "could not attach to PHY\n");
1293 		return PTR_ERR(phy_dev);
1294 	}
1295 
1296 	/* mask with MAC supported features */
1297 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1298 		phy_dev->supported &= PHY_GBIT_FEATURES;
1299 #if !defined(CONFIG_M5272)
1300 		phy_dev->supported |= SUPPORTED_Pause;
1301 #endif
1302 	}
1303 	else
1304 		phy_dev->supported &= PHY_BASIC_FEATURES;
1305 
1306 	phy_dev->advertising = phy_dev->supported;
1307 
1308 	fep->phy_dev = phy_dev;
1309 	fep->link = 0;
1310 	fep->full_duplex = 0;
1311 
1312 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1313 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1314 		    fep->phy_dev->irq);
1315 
1316 	return 0;
1317 }
1318 
1319 static int fec_enet_mii_init(struct platform_device *pdev)
1320 {
1321 	static struct mii_bus *fec0_mii_bus;
1322 	struct net_device *ndev = platform_get_drvdata(pdev);
1323 	struct fec_enet_private *fep = netdev_priv(ndev);
1324 	const struct platform_device_id *id_entry =
1325 				platform_get_device_id(fep->pdev);
1326 	int err = -ENXIO, i;
1327 
1328 	/*
1329 	 * The dual fec interfaces are not equivalent with enet-mac.
1330 	 * Here are the differences:
1331 	 *
1332 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1333 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1334 	 *  - external phys can only be configured by fec0
1335 	 *
1336 	 * That is to say fec1 can not work independently. It only works
1337 	 * when fec0 is working. The reason behind this design is that the
1338 	 * second interface is added primarily for Switch mode.
1339 	 *
1340 	 * Because of the last point above, both phys are attached on fec0
1341 	 * mdio interface in board design, and need to be configured by
1342 	 * fec0 mii_bus.
1343 	 */
1344 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1345 		/* fec1 uses fec0 mii_bus */
1346 		if (mii_cnt && fec0_mii_bus) {
1347 			fep->mii_bus = fec0_mii_bus;
1348 			mii_cnt++;
1349 			return 0;
1350 		}
1351 		return -ENOENT;
1352 	}
1353 
1354 	fep->mii_timeout = 0;
1355 
1356 	/*
1357 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1358 	 *
1359 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1360 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1361 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1362 	 * document.
1363 	 */
1364 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1365 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1366 		fep->phy_speed--;
1367 	fep->phy_speed <<= 1;
1368 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1369 
1370 	fep->mii_bus = mdiobus_alloc();
1371 	if (fep->mii_bus == NULL) {
1372 		err = -ENOMEM;
1373 		goto err_out;
1374 	}
1375 
1376 	fep->mii_bus->name = "fec_enet_mii_bus";
1377 	fep->mii_bus->read = fec_enet_mdio_read;
1378 	fep->mii_bus->write = fec_enet_mdio_write;
1379 	fep->mii_bus->reset = fec_enet_mdio_reset;
1380 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1381 		pdev->name, fep->dev_id + 1);
1382 	fep->mii_bus->priv = fep;
1383 	fep->mii_bus->parent = &pdev->dev;
1384 
1385 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1386 	if (!fep->mii_bus->irq) {
1387 		err = -ENOMEM;
1388 		goto err_out_free_mdiobus;
1389 	}
1390 
1391 	for (i = 0; i < PHY_MAX_ADDR; i++)
1392 		fep->mii_bus->irq[i] = PHY_POLL;
1393 
1394 	if (mdiobus_register(fep->mii_bus))
1395 		goto err_out_free_mdio_irq;
1396 
1397 	mii_cnt++;
1398 
1399 	/* save fec0 mii_bus */
1400 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1401 		fec0_mii_bus = fep->mii_bus;
1402 
1403 	return 0;
1404 
1405 err_out_free_mdio_irq:
1406 	kfree(fep->mii_bus->irq);
1407 err_out_free_mdiobus:
1408 	mdiobus_free(fep->mii_bus);
1409 err_out:
1410 	return err;
1411 }
1412 
1413 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1414 {
1415 	if (--mii_cnt == 0) {
1416 		mdiobus_unregister(fep->mii_bus);
1417 		kfree(fep->mii_bus->irq);
1418 		mdiobus_free(fep->mii_bus);
1419 	}
1420 }
1421 
1422 static int fec_enet_get_settings(struct net_device *ndev,
1423 				  struct ethtool_cmd *cmd)
1424 {
1425 	struct fec_enet_private *fep = netdev_priv(ndev);
1426 	struct phy_device *phydev = fep->phy_dev;
1427 
1428 	if (!phydev)
1429 		return -ENODEV;
1430 
1431 	return phy_ethtool_gset(phydev, cmd);
1432 }
1433 
1434 static int fec_enet_set_settings(struct net_device *ndev,
1435 				 struct ethtool_cmd *cmd)
1436 {
1437 	struct fec_enet_private *fep = netdev_priv(ndev);
1438 	struct phy_device *phydev = fep->phy_dev;
1439 
1440 	if (!phydev)
1441 		return -ENODEV;
1442 
1443 	return phy_ethtool_sset(phydev, cmd);
1444 }
1445 
1446 static void fec_enet_get_drvinfo(struct net_device *ndev,
1447 				 struct ethtool_drvinfo *info)
1448 {
1449 	struct fec_enet_private *fep = netdev_priv(ndev);
1450 
1451 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1452 		sizeof(info->driver));
1453 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1454 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1455 }
1456 
1457 static int fec_enet_get_ts_info(struct net_device *ndev,
1458 				struct ethtool_ts_info *info)
1459 {
1460 	struct fec_enet_private *fep = netdev_priv(ndev);
1461 
1462 	if (fep->bufdesc_ex) {
1463 
1464 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1465 					SOF_TIMESTAMPING_RX_SOFTWARE |
1466 					SOF_TIMESTAMPING_SOFTWARE |
1467 					SOF_TIMESTAMPING_TX_HARDWARE |
1468 					SOF_TIMESTAMPING_RX_HARDWARE |
1469 					SOF_TIMESTAMPING_RAW_HARDWARE;
1470 		if (fep->ptp_clock)
1471 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1472 		else
1473 			info->phc_index = -1;
1474 
1475 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1476 				 (1 << HWTSTAMP_TX_ON);
1477 
1478 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1479 				   (1 << HWTSTAMP_FILTER_ALL);
1480 		return 0;
1481 	} else {
1482 		return ethtool_op_get_ts_info(ndev, info);
1483 	}
1484 }
1485 
1486 #if !defined(CONFIG_M5272)
1487 
1488 static void fec_enet_get_pauseparam(struct net_device *ndev,
1489 				    struct ethtool_pauseparam *pause)
1490 {
1491 	struct fec_enet_private *fep = netdev_priv(ndev);
1492 
1493 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1494 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1495 	pause->rx_pause = pause->tx_pause;
1496 }
1497 
1498 static int fec_enet_set_pauseparam(struct net_device *ndev,
1499 				   struct ethtool_pauseparam *pause)
1500 {
1501 	struct fec_enet_private *fep = netdev_priv(ndev);
1502 
1503 	if (pause->tx_pause != pause->rx_pause) {
1504 		netdev_info(ndev,
1505 			"hardware only support enable/disable both tx and rx");
1506 		return -EINVAL;
1507 	}
1508 
1509 	fep->pause_flag = 0;
1510 
1511 	/* tx pause must be same as rx pause */
1512 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1513 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1514 
1515 	if (pause->rx_pause || pause->autoneg) {
1516 		fep->phy_dev->supported |= ADVERTISED_Pause;
1517 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1518 	} else {
1519 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1520 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1521 	}
1522 
1523 	if (pause->autoneg) {
1524 		if (netif_running(ndev))
1525 			fec_stop(ndev);
1526 		phy_start_aneg(fep->phy_dev);
1527 	}
1528 	if (netif_running(ndev))
1529 		fec_restart(ndev, 0);
1530 
1531 	return 0;
1532 }
1533 
1534 static const struct fec_stat {
1535 	char name[ETH_GSTRING_LEN];
1536 	u16 offset;
1537 } fec_stats[] = {
1538 	/* RMON TX */
1539 	{ "tx_dropped", RMON_T_DROP },
1540 	{ "tx_packets", RMON_T_PACKETS },
1541 	{ "tx_broadcast", RMON_T_BC_PKT },
1542 	{ "tx_multicast", RMON_T_MC_PKT },
1543 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1544 	{ "tx_undersize", RMON_T_UNDERSIZE },
1545 	{ "tx_oversize", RMON_T_OVERSIZE },
1546 	{ "tx_fragment", RMON_T_FRAG },
1547 	{ "tx_jabber", RMON_T_JAB },
1548 	{ "tx_collision", RMON_T_COL },
1549 	{ "tx_64byte", RMON_T_P64 },
1550 	{ "tx_65to127byte", RMON_T_P65TO127 },
1551 	{ "tx_128to255byte", RMON_T_P128TO255 },
1552 	{ "tx_256to511byte", RMON_T_P256TO511 },
1553 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1554 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1555 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1556 	{ "tx_octets", RMON_T_OCTETS },
1557 
1558 	/* IEEE TX */
1559 	{ "IEEE_tx_drop", IEEE_T_DROP },
1560 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1561 	{ "IEEE_tx_1col", IEEE_T_1COL },
1562 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1563 	{ "IEEE_tx_def", IEEE_T_DEF },
1564 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1565 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1566 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1567 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1568 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1569 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1570 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1571 
1572 	/* RMON RX */
1573 	{ "rx_packets", RMON_R_PACKETS },
1574 	{ "rx_broadcast", RMON_R_BC_PKT },
1575 	{ "rx_multicast", RMON_R_MC_PKT },
1576 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1577 	{ "rx_undersize", RMON_R_UNDERSIZE },
1578 	{ "rx_oversize", RMON_R_OVERSIZE },
1579 	{ "rx_fragment", RMON_R_FRAG },
1580 	{ "rx_jabber", RMON_R_JAB },
1581 	{ "rx_64byte", RMON_R_P64 },
1582 	{ "rx_65to127byte", RMON_R_P65TO127 },
1583 	{ "rx_128to255byte", RMON_R_P128TO255 },
1584 	{ "rx_256to511byte", RMON_R_P256TO511 },
1585 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1586 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1587 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1588 	{ "rx_octets", RMON_R_OCTETS },
1589 
1590 	/* IEEE RX */
1591 	{ "IEEE_rx_drop", IEEE_R_DROP },
1592 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1593 	{ "IEEE_rx_crc", IEEE_R_CRC },
1594 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1595 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1596 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1597 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1598 };
1599 
1600 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1601 	struct ethtool_stats *stats, u64 *data)
1602 {
1603 	struct fec_enet_private *fep = netdev_priv(dev);
1604 	int i;
1605 
1606 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1607 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1608 }
1609 
1610 static void fec_enet_get_strings(struct net_device *netdev,
1611 	u32 stringset, u8 *data)
1612 {
1613 	int i;
1614 	switch (stringset) {
1615 	case ETH_SS_STATS:
1616 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1617 			memcpy(data + i * ETH_GSTRING_LEN,
1618 				fec_stats[i].name, ETH_GSTRING_LEN);
1619 		break;
1620 	}
1621 }
1622 
1623 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1624 {
1625 	switch (sset) {
1626 	case ETH_SS_STATS:
1627 		return ARRAY_SIZE(fec_stats);
1628 	default:
1629 		return -EOPNOTSUPP;
1630 	}
1631 }
1632 #endif /* !defined(CONFIG_M5272) */
1633 
1634 static int fec_enet_nway_reset(struct net_device *dev)
1635 {
1636 	struct fec_enet_private *fep = netdev_priv(dev);
1637 	struct phy_device *phydev = fep->phy_dev;
1638 
1639 	if (!phydev)
1640 		return -ENODEV;
1641 
1642 	return genphy_restart_aneg(phydev);
1643 }
1644 
1645 static const struct ethtool_ops fec_enet_ethtool_ops = {
1646 #if !defined(CONFIG_M5272)
1647 	.get_pauseparam		= fec_enet_get_pauseparam,
1648 	.set_pauseparam		= fec_enet_set_pauseparam,
1649 #endif
1650 	.get_settings		= fec_enet_get_settings,
1651 	.set_settings		= fec_enet_set_settings,
1652 	.get_drvinfo		= fec_enet_get_drvinfo,
1653 	.get_link		= ethtool_op_get_link,
1654 	.get_ts_info		= fec_enet_get_ts_info,
1655 	.nway_reset		= fec_enet_nway_reset,
1656 #ifndef CONFIG_M5272
1657 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1658 	.get_strings		= fec_enet_get_strings,
1659 	.get_sset_count		= fec_enet_get_sset_count,
1660 #endif
1661 };
1662 
1663 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1664 {
1665 	struct fec_enet_private *fep = netdev_priv(ndev);
1666 	struct phy_device *phydev = fep->phy_dev;
1667 
1668 	if (!netif_running(ndev))
1669 		return -EINVAL;
1670 
1671 	if (!phydev)
1672 		return -ENODEV;
1673 
1674 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1675 		return fec_ptp_ioctl(ndev, rq, cmd);
1676 
1677 	return phy_mii_ioctl(phydev, rq, cmd);
1678 }
1679 
1680 static void fec_enet_free_buffers(struct net_device *ndev)
1681 {
1682 	struct fec_enet_private *fep = netdev_priv(ndev);
1683 	unsigned int i;
1684 	struct sk_buff *skb;
1685 	struct bufdesc	*bdp;
1686 
1687 	bdp = fep->rx_bd_base;
1688 	for (i = 0; i < fep->rx_ring_size; i++) {
1689 		skb = fep->rx_skbuff[i];
1690 
1691 		if (bdp->cbd_bufaddr)
1692 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1693 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1694 		if (skb)
1695 			dev_kfree_skb(skb);
1696 		bdp = fec_enet_get_nextdesc(bdp, fep);
1697 	}
1698 
1699 	bdp = fep->tx_bd_base;
1700 	for (i = 0; i < fep->tx_ring_size; i++)
1701 		kfree(fep->tx_bounce[i]);
1702 }
1703 
1704 static int fec_enet_alloc_buffers(struct net_device *ndev)
1705 {
1706 	struct fec_enet_private *fep = netdev_priv(ndev);
1707 	unsigned int i;
1708 	struct sk_buff *skb;
1709 	struct bufdesc	*bdp;
1710 
1711 	bdp = fep->rx_bd_base;
1712 	for (i = 0; i < fep->rx_ring_size; i++) {
1713 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1714 		if (!skb) {
1715 			fec_enet_free_buffers(ndev);
1716 			return -ENOMEM;
1717 		}
1718 		fep->rx_skbuff[i] = skb;
1719 
1720 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1721 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1722 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1723 
1724 		if (fep->bufdesc_ex) {
1725 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1726 			ebdp->cbd_esc = BD_ENET_RX_INT;
1727 		}
1728 
1729 		bdp = fec_enet_get_nextdesc(bdp, fep);
1730 	}
1731 
1732 	/* Set the last buffer to wrap. */
1733 	bdp = fec_enet_get_prevdesc(bdp, fep);
1734 	bdp->cbd_sc |= BD_SC_WRAP;
1735 
1736 	bdp = fep->tx_bd_base;
1737 	for (i = 0; i < fep->tx_ring_size; i++) {
1738 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1739 
1740 		bdp->cbd_sc = 0;
1741 		bdp->cbd_bufaddr = 0;
1742 
1743 		if (fep->bufdesc_ex) {
1744 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1745 			ebdp->cbd_esc = BD_ENET_TX_INT;
1746 		}
1747 
1748 		bdp = fec_enet_get_nextdesc(bdp, fep);
1749 	}
1750 
1751 	/* Set the last buffer to wrap. */
1752 	bdp = fec_enet_get_prevdesc(bdp, fep);
1753 	bdp->cbd_sc |= BD_SC_WRAP;
1754 
1755 	return 0;
1756 }
1757 
1758 static int
1759 fec_enet_open(struct net_device *ndev)
1760 {
1761 	struct fec_enet_private *fep = netdev_priv(ndev);
1762 	int ret;
1763 
1764 	napi_enable(&fep->napi);
1765 
1766 	/* I should reset the ring buffers here, but I don't yet know
1767 	 * a simple way to do that.
1768 	 */
1769 
1770 	ret = fec_enet_alloc_buffers(ndev);
1771 	if (ret)
1772 		return ret;
1773 
1774 	/* Probe and connect to PHY when open the interface */
1775 	ret = fec_enet_mii_probe(ndev);
1776 	if (ret) {
1777 		fec_enet_free_buffers(ndev);
1778 		return ret;
1779 	}
1780 	phy_start(fep->phy_dev);
1781 	netif_start_queue(ndev);
1782 	fep->opened = 1;
1783 	return 0;
1784 }
1785 
1786 static int
1787 fec_enet_close(struct net_device *ndev)
1788 {
1789 	struct fec_enet_private *fep = netdev_priv(ndev);
1790 
1791 	/* Don't know what to do yet. */
1792 	napi_disable(&fep->napi);
1793 	fep->opened = 0;
1794 	netif_stop_queue(ndev);
1795 	fec_stop(ndev);
1796 
1797 	if (fep->phy_dev) {
1798 		phy_stop(fep->phy_dev);
1799 		phy_disconnect(fep->phy_dev);
1800 	}
1801 
1802 	fec_enet_free_buffers(ndev);
1803 
1804 	return 0;
1805 }
1806 
1807 /* Set or clear the multicast filter for this adaptor.
1808  * Skeleton taken from sunlance driver.
1809  * The CPM Ethernet implementation allows Multicast as well as individual
1810  * MAC address filtering.  Some of the drivers check to make sure it is
1811  * a group multicast address, and discard those that are not.  I guess I
1812  * will do the same for now, but just remove the test if you want
1813  * individual filtering as well (do the upper net layers want or support
1814  * this kind of feature?).
1815  */
1816 
1817 #define HASH_BITS	6		/* #bits in hash */
1818 #define CRC32_POLY	0xEDB88320
1819 
1820 static void set_multicast_list(struct net_device *ndev)
1821 {
1822 	struct fec_enet_private *fep = netdev_priv(ndev);
1823 	struct netdev_hw_addr *ha;
1824 	unsigned int i, bit, data, crc, tmp;
1825 	unsigned char hash;
1826 
1827 	if (ndev->flags & IFF_PROMISC) {
1828 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1829 		tmp |= 0x8;
1830 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1831 		return;
1832 	}
1833 
1834 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1835 	tmp &= ~0x8;
1836 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1837 
1838 	if (ndev->flags & IFF_ALLMULTI) {
1839 		/* Catch all multicast addresses, so set the
1840 		 * filter to all 1's
1841 		 */
1842 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1843 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1844 
1845 		return;
1846 	}
1847 
1848 	/* Clear filter and add the addresses in hash register
1849 	 */
1850 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1851 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1852 
1853 	netdev_for_each_mc_addr(ha, ndev) {
1854 		/* calculate crc32 value of mac address */
1855 		crc = 0xffffffff;
1856 
1857 		for (i = 0; i < ndev->addr_len; i++) {
1858 			data = ha->addr[i];
1859 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1860 				crc = (crc >> 1) ^
1861 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1862 			}
1863 		}
1864 
1865 		/* only upper 6 bits (HASH_BITS) are used
1866 		 * which point to specific bit in he hash registers
1867 		 */
1868 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1869 
1870 		if (hash > 31) {
1871 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1872 			tmp |= 1 << (hash - 32);
1873 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1874 		} else {
1875 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1876 			tmp |= 1 << hash;
1877 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1878 		}
1879 	}
1880 }
1881 
1882 /* Set a MAC change in hardware. */
1883 static int
1884 fec_set_mac_address(struct net_device *ndev, void *p)
1885 {
1886 	struct fec_enet_private *fep = netdev_priv(ndev);
1887 	struct sockaddr *addr = p;
1888 
1889 	if (!is_valid_ether_addr(addr->sa_data))
1890 		return -EADDRNOTAVAIL;
1891 
1892 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1893 
1894 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1895 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1896 		fep->hwp + FEC_ADDR_LOW);
1897 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1898 		fep->hwp + FEC_ADDR_HIGH);
1899 	return 0;
1900 }
1901 
1902 #ifdef CONFIG_NET_POLL_CONTROLLER
1903 /**
1904  * fec_poll_controller - FEC Poll controller function
1905  * @dev: The FEC network adapter
1906  *
1907  * Polled functionality used by netconsole and others in non interrupt mode
1908  *
1909  */
1910 static void fec_poll_controller(struct net_device *dev)
1911 {
1912 	int i;
1913 	struct fec_enet_private *fep = netdev_priv(dev);
1914 
1915 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1916 		if (fep->irq[i] > 0) {
1917 			disable_irq(fep->irq[i]);
1918 			fec_enet_interrupt(fep->irq[i], dev);
1919 			enable_irq(fep->irq[i]);
1920 		}
1921 	}
1922 }
1923 #endif
1924 
1925 static int fec_set_features(struct net_device *netdev,
1926 	netdev_features_t features)
1927 {
1928 	struct fec_enet_private *fep = netdev_priv(netdev);
1929 	netdev_features_t changed = features ^ netdev->features;
1930 
1931 	netdev->features = features;
1932 
1933 	/* Receive checksum has been changed */
1934 	if (changed & NETIF_F_RXCSUM) {
1935 		if (features & NETIF_F_RXCSUM)
1936 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1937 		else
1938 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1939 
1940 		if (netif_running(netdev)) {
1941 			fec_stop(netdev);
1942 			fec_restart(netdev, fep->phy_dev->duplex);
1943 			netif_wake_queue(netdev);
1944 		} else {
1945 			fec_restart(netdev, fep->phy_dev->duplex);
1946 		}
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static const struct net_device_ops fec_netdev_ops = {
1953 	.ndo_open		= fec_enet_open,
1954 	.ndo_stop		= fec_enet_close,
1955 	.ndo_start_xmit		= fec_enet_start_xmit,
1956 	.ndo_set_rx_mode	= set_multicast_list,
1957 	.ndo_change_mtu		= eth_change_mtu,
1958 	.ndo_validate_addr	= eth_validate_addr,
1959 	.ndo_tx_timeout		= fec_timeout,
1960 	.ndo_set_mac_address	= fec_set_mac_address,
1961 	.ndo_do_ioctl		= fec_enet_ioctl,
1962 #ifdef CONFIG_NET_POLL_CONTROLLER
1963 	.ndo_poll_controller	= fec_poll_controller,
1964 #endif
1965 	.ndo_set_features	= fec_set_features,
1966 };
1967 
1968  /*
1969   * XXX:  We need to clean up on failure exits here.
1970   *
1971   */
1972 static int fec_enet_init(struct net_device *ndev)
1973 {
1974 	struct fec_enet_private *fep = netdev_priv(ndev);
1975 	const struct platform_device_id *id_entry =
1976 				platform_get_device_id(fep->pdev);
1977 	struct bufdesc *cbd_base;
1978 
1979 	/* Allocate memory for buffer descriptors. */
1980 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1981 				      GFP_KERNEL);
1982 	if (!cbd_base)
1983 		return -ENOMEM;
1984 
1985 	memset(cbd_base, 0, PAGE_SIZE);
1986 
1987 	fep->netdev = ndev;
1988 
1989 	/* Get the Ethernet address */
1990 	fec_get_mac(ndev);
1991 
1992 	/* init the tx & rx ring size */
1993 	fep->tx_ring_size = TX_RING_SIZE;
1994 	fep->rx_ring_size = RX_RING_SIZE;
1995 
1996 	/* Set receive and transmit descriptor base. */
1997 	fep->rx_bd_base = cbd_base;
1998 	if (fep->bufdesc_ex)
1999 		fep->tx_bd_base = (struct bufdesc *)
2000 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2001 	else
2002 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2003 
2004 	/* The FEC Ethernet specific entries in the device structure */
2005 	ndev->watchdog_timeo = TX_TIMEOUT;
2006 	ndev->netdev_ops = &fec_netdev_ops;
2007 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2008 
2009 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2010 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2011 
2012 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2013 		/* enable hw VLAN support */
2014 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2015 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2016 	}
2017 
2018 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2019 		/* enable hw accelerator */
2020 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2021 				| NETIF_F_RXCSUM);
2022 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2023 				| NETIF_F_RXCSUM);
2024 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2025 	}
2026 
2027 	fec_restart(ndev, 0);
2028 
2029 	return 0;
2030 }
2031 
2032 #ifdef CONFIG_OF
2033 static void fec_reset_phy(struct platform_device *pdev)
2034 {
2035 	int err, phy_reset;
2036 	int msec = 1;
2037 	struct device_node *np = pdev->dev.of_node;
2038 
2039 	if (!np)
2040 		return;
2041 
2042 	of_property_read_u32(np, "phy-reset-duration", &msec);
2043 	/* A sane reset duration should not be longer than 1s */
2044 	if (msec > 1000)
2045 		msec = 1;
2046 
2047 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2048 	if (!gpio_is_valid(phy_reset))
2049 		return;
2050 
2051 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2052 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2053 	if (err) {
2054 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2055 		return;
2056 	}
2057 	msleep(msec);
2058 	gpio_set_value(phy_reset, 1);
2059 }
2060 #else /* CONFIG_OF */
2061 static void fec_reset_phy(struct platform_device *pdev)
2062 {
2063 	/*
2064 	 * In case of platform probe, the reset has been done
2065 	 * by machine code.
2066 	 */
2067 }
2068 #endif /* CONFIG_OF */
2069 
2070 static int
2071 fec_probe(struct platform_device *pdev)
2072 {
2073 	struct fec_enet_private *fep;
2074 	struct fec_platform_data *pdata;
2075 	struct net_device *ndev;
2076 	int i, irq, ret = 0;
2077 	struct resource *r;
2078 	const struct of_device_id *of_id;
2079 	static int dev_id;
2080 
2081 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2082 	if (of_id)
2083 		pdev->id_entry = of_id->data;
2084 
2085 	/* Init network device */
2086 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2087 	if (!ndev)
2088 		return -ENOMEM;
2089 
2090 	SET_NETDEV_DEV(ndev, &pdev->dev);
2091 
2092 	/* setup board info structure */
2093 	fep = netdev_priv(ndev);
2094 
2095 #if !defined(CONFIG_M5272)
2096 	/* default enable pause frame auto negotiation */
2097 	if (pdev->id_entry &&
2098 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2099 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2100 #endif
2101 
2102 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2103 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2104 	if (IS_ERR(fep->hwp)) {
2105 		ret = PTR_ERR(fep->hwp);
2106 		goto failed_ioremap;
2107 	}
2108 
2109 	fep->pdev = pdev;
2110 	fep->dev_id = dev_id++;
2111 
2112 	fep->bufdesc_ex = 0;
2113 
2114 	platform_set_drvdata(pdev, ndev);
2115 
2116 	ret = of_get_phy_mode(pdev->dev.of_node);
2117 	if (ret < 0) {
2118 		pdata = dev_get_platdata(&pdev->dev);
2119 		if (pdata)
2120 			fep->phy_interface = pdata->phy;
2121 		else
2122 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2123 	} else {
2124 		fep->phy_interface = ret;
2125 	}
2126 
2127 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2128 	if (IS_ERR(fep->clk_ipg)) {
2129 		ret = PTR_ERR(fep->clk_ipg);
2130 		goto failed_clk;
2131 	}
2132 
2133 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2134 	if (IS_ERR(fep->clk_ahb)) {
2135 		ret = PTR_ERR(fep->clk_ahb);
2136 		goto failed_clk;
2137 	}
2138 
2139 	/* enet_out is optional, depends on board */
2140 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2141 	if (IS_ERR(fep->clk_enet_out))
2142 		fep->clk_enet_out = NULL;
2143 
2144 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2145 	fep->bufdesc_ex =
2146 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2147 	if (IS_ERR(fep->clk_ptp)) {
2148 		fep->clk_ptp = NULL;
2149 		fep->bufdesc_ex = 0;
2150 	}
2151 
2152 	ret = clk_prepare_enable(fep->clk_ahb);
2153 	if (ret)
2154 		goto failed_clk;
2155 
2156 	ret = clk_prepare_enable(fep->clk_ipg);
2157 	if (ret)
2158 		goto failed_clk_ipg;
2159 
2160 	if (fep->clk_enet_out) {
2161 		ret = clk_prepare_enable(fep->clk_enet_out);
2162 		if (ret)
2163 			goto failed_clk_enet_out;
2164 	}
2165 
2166 	if (fep->clk_ptp) {
2167 		ret = clk_prepare_enable(fep->clk_ptp);
2168 		if (ret)
2169 			goto failed_clk_ptp;
2170 	}
2171 
2172 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2173 	if (!IS_ERR(fep->reg_phy)) {
2174 		ret = regulator_enable(fep->reg_phy);
2175 		if (ret) {
2176 			dev_err(&pdev->dev,
2177 				"Failed to enable phy regulator: %d\n", ret);
2178 			goto failed_regulator;
2179 		}
2180 	} else {
2181 		fep->reg_phy = NULL;
2182 	}
2183 
2184 	fec_reset_phy(pdev);
2185 
2186 	if (fep->bufdesc_ex)
2187 		fec_ptp_init(pdev);
2188 
2189 	ret = fec_enet_init(ndev);
2190 	if (ret)
2191 		goto failed_init;
2192 
2193 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2194 		irq = platform_get_irq(pdev, i);
2195 		if (irq < 0) {
2196 			if (i)
2197 				break;
2198 			ret = irq;
2199 			goto failed_irq;
2200 		}
2201 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2202 				       0, pdev->name, ndev);
2203 		if (ret)
2204 			goto failed_irq;
2205 	}
2206 
2207 	ret = fec_enet_mii_init(pdev);
2208 	if (ret)
2209 		goto failed_mii_init;
2210 
2211 	/* Carrier starts down, phylib will bring it up */
2212 	netif_carrier_off(ndev);
2213 
2214 	ret = register_netdev(ndev);
2215 	if (ret)
2216 		goto failed_register;
2217 
2218 	if (fep->bufdesc_ex && fep->ptp_clock)
2219 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2220 
2221 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2222 	return 0;
2223 
2224 failed_register:
2225 	fec_enet_mii_remove(fep);
2226 failed_mii_init:
2227 failed_irq:
2228 failed_init:
2229 	if (fep->reg_phy)
2230 		regulator_disable(fep->reg_phy);
2231 failed_regulator:
2232 	if (fep->clk_ptp)
2233 		clk_disable_unprepare(fep->clk_ptp);
2234 failed_clk_ptp:
2235 	if (fep->clk_enet_out)
2236 		clk_disable_unprepare(fep->clk_enet_out);
2237 failed_clk_enet_out:
2238 	clk_disable_unprepare(fep->clk_ipg);
2239 failed_clk_ipg:
2240 	clk_disable_unprepare(fep->clk_ahb);
2241 failed_clk:
2242 failed_ioremap:
2243 	free_netdev(ndev);
2244 
2245 	return ret;
2246 }
2247 
2248 static int
2249 fec_drv_remove(struct platform_device *pdev)
2250 {
2251 	struct net_device *ndev = platform_get_drvdata(pdev);
2252 	struct fec_enet_private *fep = netdev_priv(ndev);
2253 
2254 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2255 	unregister_netdev(ndev);
2256 	fec_enet_mii_remove(fep);
2257 	del_timer_sync(&fep->time_keep);
2258 	if (fep->reg_phy)
2259 		regulator_disable(fep->reg_phy);
2260 	if (fep->clk_ptp)
2261 		clk_disable_unprepare(fep->clk_ptp);
2262 	if (fep->ptp_clock)
2263 		ptp_clock_unregister(fep->ptp_clock);
2264 	if (fep->clk_enet_out)
2265 		clk_disable_unprepare(fep->clk_enet_out);
2266 	clk_disable_unprepare(fep->clk_ipg);
2267 	clk_disable_unprepare(fep->clk_ahb);
2268 	free_netdev(ndev);
2269 
2270 	return 0;
2271 }
2272 
2273 #ifdef CONFIG_PM_SLEEP
2274 static int
2275 fec_suspend(struct device *dev)
2276 {
2277 	struct net_device *ndev = dev_get_drvdata(dev);
2278 	struct fec_enet_private *fep = netdev_priv(ndev);
2279 
2280 	if (netif_running(ndev)) {
2281 		fec_stop(ndev);
2282 		netif_device_detach(ndev);
2283 	}
2284 	if (fep->clk_ptp)
2285 		clk_disable_unprepare(fep->clk_ptp);
2286 	if (fep->clk_enet_out)
2287 		clk_disable_unprepare(fep->clk_enet_out);
2288 	clk_disable_unprepare(fep->clk_ipg);
2289 	clk_disable_unprepare(fep->clk_ahb);
2290 
2291 	if (fep->reg_phy)
2292 		regulator_disable(fep->reg_phy);
2293 
2294 	return 0;
2295 }
2296 
2297 static int
2298 fec_resume(struct device *dev)
2299 {
2300 	struct net_device *ndev = dev_get_drvdata(dev);
2301 	struct fec_enet_private *fep = netdev_priv(ndev);
2302 	int ret;
2303 
2304 	if (fep->reg_phy) {
2305 		ret = regulator_enable(fep->reg_phy);
2306 		if (ret)
2307 			return ret;
2308 	}
2309 
2310 	ret = clk_prepare_enable(fep->clk_ahb);
2311 	if (ret)
2312 		goto failed_clk_ahb;
2313 
2314 	ret = clk_prepare_enable(fep->clk_ipg);
2315 	if (ret)
2316 		goto failed_clk_ipg;
2317 
2318 	if (fep->clk_enet_out) {
2319 		ret = clk_prepare_enable(fep->clk_enet_out);
2320 		if (ret)
2321 			goto failed_clk_enet_out;
2322 	}
2323 
2324 	if (fep->clk_ptp) {
2325 		ret = clk_prepare_enable(fep->clk_ptp);
2326 		if (ret)
2327 			goto failed_clk_ptp;
2328 	}
2329 
2330 	if (netif_running(ndev)) {
2331 		fec_restart(ndev, fep->full_duplex);
2332 		netif_device_attach(ndev);
2333 	}
2334 
2335 	return 0;
2336 
2337 failed_clk_ptp:
2338 	if (fep->clk_enet_out)
2339 		clk_disable_unprepare(fep->clk_enet_out);
2340 failed_clk_enet_out:
2341 	clk_disable_unprepare(fep->clk_ipg);
2342 failed_clk_ipg:
2343 	clk_disable_unprepare(fep->clk_ahb);
2344 failed_clk_ahb:
2345 	if (fep->reg_phy)
2346 		regulator_disable(fep->reg_phy);
2347 	return ret;
2348 }
2349 #endif /* CONFIG_PM_SLEEP */
2350 
2351 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2352 
2353 static struct platform_driver fec_driver = {
2354 	.driver	= {
2355 		.name	= DRIVER_NAME,
2356 		.owner	= THIS_MODULE,
2357 		.pm	= &fec_pm_ops,
2358 		.of_match_table = fec_dt_ids,
2359 	},
2360 	.id_table = fec_devtype,
2361 	.probe	= fec_probe,
2362 	.remove	= fec_drv_remove,
2363 };
2364 
2365 module_platform_driver(fec_driver);
2366 
2367 MODULE_ALIAS("platform:"DRIVER_NAME);
2368 MODULE_LICENSE("GPL");
2369