1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = 0,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 				FEC_QUIRK_HAS_COALESCE,
123 	}, {
124 		/* sentinel */
125 	}
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128 
129 enum imx_fec_type {
130 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
131 	IMX27_FEC,	/* runs on i.mx27/35/51 */
132 	IMX28_FEC,
133 	IMX6Q_FEC,
134 	MVF600_FEC,
135 	IMX6SX_FEC,
136 	IMX6UL_FEC,
137 };
138 
139 static const struct of_device_id fec_dt_ids[] = {
140 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176  */
177 #define PKT_MAXBUF_SIZE		1522
178 #define PKT_MINBUF_SIZE		64
179 #define PKT_MAXBLR_SIZE		1536
180 
181 /* FEC receive acceleration */
182 #define FEC_RACC_IPDIS		(1 << 1)
183 #define FEC_RACC_PRODIS		(1 << 2)
184 #define FEC_RACC_SHIFT16	BIT(7)
185 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
186 
187 /*
188  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
189  * size bits. Other FEC hardware does not, so we need to take that into
190  * account when setting it.
191  */
192 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
193     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
194 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
195 #else
196 #define	OPT_FRAME_SIZE	0
197 #endif
198 
199 /* FEC MII MMFR bits definition */
200 #define FEC_MMFR_ST		(1 << 30)
201 #define FEC_MMFR_OP_READ	(2 << 28)
202 #define FEC_MMFR_OP_WRITE	(1 << 28)
203 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
204 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
205 #define FEC_MMFR_TA		(2 << 16)
206 #define FEC_MMFR_DATA(v)	(v & 0xffff)
207 /* FEC ECR bits definition */
208 #define FEC_ECR_MAGICEN		(1 << 2)
209 #define FEC_ECR_SLEEP		(1 << 3)
210 
211 #define FEC_MII_TIMEOUT		30000 /* us */
212 
213 /* Transmitter timeout */
214 #define TX_TIMEOUT (2 * HZ)
215 
216 #define FEC_PAUSE_FLAG_AUTONEG	0x1
217 #define FEC_PAUSE_FLAG_ENABLE	0x2
218 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
219 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
220 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
221 
222 #define COPYBREAK_DEFAULT	256
223 
224 #define TSO_HEADER_SIZE		128
225 /* Max number of allowed TCP segments for software TSO */
226 #define FEC_MAX_TSO_SEGS	100
227 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
228 
229 #define IS_TSO_HEADER(txq, addr) \
230 	((addr >= txq->tso_hdrs_dma) && \
231 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
232 
233 static int mii_cnt;
234 
235 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
236 					     struct bufdesc_prop *bd)
237 {
238 	return (bdp >= bd->last) ? bd->base
239 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
240 }
241 
242 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
243 					     struct bufdesc_prop *bd)
244 {
245 	return (bdp <= bd->base) ? bd->last
246 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
247 }
248 
249 static int fec_enet_get_bd_index(struct bufdesc *bdp,
250 				 struct bufdesc_prop *bd)
251 {
252 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
253 }
254 
255 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
256 {
257 	int entries;
258 
259 	entries = (((const char *)txq->dirty_tx -
260 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
261 
262 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
263 }
264 
265 static void swap_buffer(void *bufaddr, int len)
266 {
267 	int i;
268 	unsigned int *buf = bufaddr;
269 
270 	for (i = 0; i < len; i += 4, buf++)
271 		swab32s(buf);
272 }
273 
274 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
275 {
276 	int i;
277 	unsigned int *src = src_buf;
278 	unsigned int *dst = dst_buf;
279 
280 	for (i = 0; i < len; i += 4, src++, dst++)
281 		*dst = swab32p(src);
282 }
283 
284 static void fec_dump(struct net_device *ndev)
285 {
286 	struct fec_enet_private *fep = netdev_priv(ndev);
287 	struct bufdesc *bdp;
288 	struct fec_enet_priv_tx_q *txq;
289 	int index = 0;
290 
291 	netdev_info(ndev, "TX ring dump\n");
292 	pr_info("Nr     SC     addr       len  SKB\n");
293 
294 	txq = fep->tx_queue[0];
295 	bdp = txq->bd.base;
296 
297 	do {
298 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
299 			index,
300 			bdp == txq->bd.cur ? 'S' : ' ',
301 			bdp == txq->dirty_tx ? 'H' : ' ',
302 			fec16_to_cpu(bdp->cbd_sc),
303 			fec32_to_cpu(bdp->cbd_bufaddr),
304 			fec16_to_cpu(bdp->cbd_datlen),
305 			txq->tx_skbuff[index]);
306 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
307 		index++;
308 	} while (bdp != txq->bd.base);
309 }
310 
311 static inline bool is_ipv4_pkt(struct sk_buff *skb)
312 {
313 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
314 }
315 
316 static int
317 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
318 {
319 	/* Only run for packets requiring a checksum. */
320 	if (skb->ip_summed != CHECKSUM_PARTIAL)
321 		return 0;
322 
323 	if (unlikely(skb_cow_head(skb, 0)))
324 		return -1;
325 
326 	if (is_ipv4_pkt(skb))
327 		ip_hdr(skb)->check = 0;
328 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
329 
330 	return 0;
331 }
332 
333 static struct bufdesc *
334 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
335 			     struct sk_buff *skb,
336 			     struct net_device *ndev)
337 {
338 	struct fec_enet_private *fep = netdev_priv(ndev);
339 	struct bufdesc *bdp = txq->bd.cur;
340 	struct bufdesc_ex *ebdp;
341 	int nr_frags = skb_shinfo(skb)->nr_frags;
342 	int frag, frag_len;
343 	unsigned short status;
344 	unsigned int estatus = 0;
345 	skb_frag_t *this_frag;
346 	unsigned int index;
347 	void *bufaddr;
348 	dma_addr_t addr;
349 	int i;
350 
351 	for (frag = 0; frag < nr_frags; frag++) {
352 		this_frag = &skb_shinfo(skb)->frags[frag];
353 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
354 		ebdp = (struct bufdesc_ex *)bdp;
355 
356 		status = fec16_to_cpu(bdp->cbd_sc);
357 		status &= ~BD_ENET_TX_STATS;
358 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
359 		frag_len = skb_shinfo(skb)->frags[frag].size;
360 
361 		/* Handle the last BD specially */
362 		if (frag == nr_frags - 1) {
363 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
364 			if (fep->bufdesc_ex) {
365 				estatus |= BD_ENET_TX_INT;
366 				if (unlikely(skb_shinfo(skb)->tx_flags &
367 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
368 					estatus |= BD_ENET_TX_TS;
369 			}
370 		}
371 
372 		if (fep->bufdesc_ex) {
373 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
374 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
375 			if (skb->ip_summed == CHECKSUM_PARTIAL)
376 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
377 			ebdp->cbd_bdu = 0;
378 			ebdp->cbd_esc = cpu_to_fec32(estatus);
379 		}
380 
381 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
382 
383 		index = fec_enet_get_bd_index(bdp, &txq->bd);
384 		if (((unsigned long) bufaddr) & fep->tx_align ||
385 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
386 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
387 			bufaddr = txq->tx_bounce[index];
388 
389 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
390 				swap_buffer(bufaddr, frag_len);
391 		}
392 
393 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
394 				      DMA_TO_DEVICE);
395 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
396 			if (net_ratelimit())
397 				netdev_err(ndev, "Tx DMA memory map failed\n");
398 			goto dma_mapping_error;
399 		}
400 
401 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
402 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
403 		/* Make sure the updates to rest of the descriptor are
404 		 * performed before transferring ownership.
405 		 */
406 		wmb();
407 		bdp->cbd_sc = cpu_to_fec16(status);
408 	}
409 
410 	return bdp;
411 dma_mapping_error:
412 	bdp = txq->bd.cur;
413 	for (i = 0; i < frag; i++) {
414 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
415 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
416 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
417 	}
418 	return ERR_PTR(-ENOMEM);
419 }
420 
421 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
422 				   struct sk_buff *skb, struct net_device *ndev)
423 {
424 	struct fec_enet_private *fep = netdev_priv(ndev);
425 	int nr_frags = skb_shinfo(skb)->nr_frags;
426 	struct bufdesc *bdp, *last_bdp;
427 	void *bufaddr;
428 	dma_addr_t addr;
429 	unsigned short status;
430 	unsigned short buflen;
431 	unsigned int estatus = 0;
432 	unsigned int index;
433 	int entries_free;
434 
435 	entries_free = fec_enet_get_free_txdesc_num(txq);
436 	if (entries_free < MAX_SKB_FRAGS + 1) {
437 		dev_kfree_skb_any(skb);
438 		if (net_ratelimit())
439 			netdev_err(ndev, "NOT enough BD for SG!\n");
440 		return NETDEV_TX_OK;
441 	}
442 
443 	/* Protocol checksum off-load for TCP and UDP. */
444 	if (fec_enet_clear_csum(skb, ndev)) {
445 		dev_kfree_skb_any(skb);
446 		return NETDEV_TX_OK;
447 	}
448 
449 	/* Fill in a Tx ring entry */
450 	bdp = txq->bd.cur;
451 	last_bdp = bdp;
452 	status = fec16_to_cpu(bdp->cbd_sc);
453 	status &= ~BD_ENET_TX_STATS;
454 
455 	/* Set buffer length and buffer pointer */
456 	bufaddr = skb->data;
457 	buflen = skb_headlen(skb);
458 
459 	index = fec_enet_get_bd_index(bdp, &txq->bd);
460 	if (((unsigned long) bufaddr) & fep->tx_align ||
461 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
462 		memcpy(txq->tx_bounce[index], skb->data, buflen);
463 		bufaddr = txq->tx_bounce[index];
464 
465 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
466 			swap_buffer(bufaddr, buflen);
467 	}
468 
469 	/* Push the data cache so the CPM does not get stale memory data. */
470 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
471 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
472 		dev_kfree_skb_any(skb);
473 		if (net_ratelimit())
474 			netdev_err(ndev, "Tx DMA memory map failed\n");
475 		return NETDEV_TX_OK;
476 	}
477 
478 	if (nr_frags) {
479 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
480 		if (IS_ERR(last_bdp)) {
481 			dma_unmap_single(&fep->pdev->dev, addr,
482 					 buflen, DMA_TO_DEVICE);
483 			dev_kfree_skb_any(skb);
484 			return NETDEV_TX_OK;
485 		}
486 	} else {
487 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
488 		if (fep->bufdesc_ex) {
489 			estatus = BD_ENET_TX_INT;
490 			if (unlikely(skb_shinfo(skb)->tx_flags &
491 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
492 				estatus |= BD_ENET_TX_TS;
493 		}
494 	}
495 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
496 	bdp->cbd_datlen = cpu_to_fec16(buflen);
497 
498 	if (fep->bufdesc_ex) {
499 
500 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
501 
502 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
503 			fep->hwts_tx_en))
504 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
505 
506 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
507 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
508 
509 		if (skb->ip_summed == CHECKSUM_PARTIAL)
510 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
511 
512 		ebdp->cbd_bdu = 0;
513 		ebdp->cbd_esc = cpu_to_fec32(estatus);
514 	}
515 
516 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
517 	/* Save skb pointer */
518 	txq->tx_skbuff[index] = skb;
519 
520 	/* Make sure the updates to rest of the descriptor are performed before
521 	 * transferring ownership.
522 	 */
523 	wmb();
524 
525 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
526 	 * it's the last BD of the frame, and to put the CRC on the end.
527 	 */
528 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
529 	bdp->cbd_sc = cpu_to_fec16(status);
530 
531 	/* If this was the last BD in the ring, start at the beginning again. */
532 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
533 
534 	skb_tx_timestamp(skb);
535 
536 	/* Make sure the update to bdp and tx_skbuff are performed before
537 	 * txq->bd.cur.
538 	 */
539 	wmb();
540 	txq->bd.cur = bdp;
541 
542 	/* Trigger transmission start */
543 	writel(0, txq->bd.reg_desc_active);
544 
545 	return 0;
546 }
547 
548 static int
549 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
550 			  struct net_device *ndev,
551 			  struct bufdesc *bdp, int index, char *data,
552 			  int size, bool last_tcp, bool is_last)
553 {
554 	struct fec_enet_private *fep = netdev_priv(ndev);
555 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
556 	unsigned short status;
557 	unsigned int estatus = 0;
558 	dma_addr_t addr;
559 
560 	status = fec16_to_cpu(bdp->cbd_sc);
561 	status &= ~BD_ENET_TX_STATS;
562 
563 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
564 
565 	if (((unsigned long) data) & fep->tx_align ||
566 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
567 		memcpy(txq->tx_bounce[index], data, size);
568 		data = txq->tx_bounce[index];
569 
570 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
571 			swap_buffer(data, size);
572 	}
573 
574 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
575 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
576 		dev_kfree_skb_any(skb);
577 		if (net_ratelimit())
578 			netdev_err(ndev, "Tx DMA memory map failed\n");
579 		return NETDEV_TX_BUSY;
580 	}
581 
582 	bdp->cbd_datlen = cpu_to_fec16(size);
583 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
584 
585 	if (fep->bufdesc_ex) {
586 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
587 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
588 		if (skb->ip_summed == CHECKSUM_PARTIAL)
589 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
590 		ebdp->cbd_bdu = 0;
591 		ebdp->cbd_esc = cpu_to_fec32(estatus);
592 	}
593 
594 	/* Handle the last BD specially */
595 	if (last_tcp)
596 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
597 	if (is_last) {
598 		status |= BD_ENET_TX_INTR;
599 		if (fep->bufdesc_ex)
600 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
601 	}
602 
603 	bdp->cbd_sc = cpu_to_fec16(status);
604 
605 	return 0;
606 }
607 
608 static int
609 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
610 			 struct sk_buff *skb, struct net_device *ndev,
611 			 struct bufdesc *bdp, int index)
612 {
613 	struct fec_enet_private *fep = netdev_priv(ndev);
614 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
615 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
616 	void *bufaddr;
617 	unsigned long dmabuf;
618 	unsigned short status;
619 	unsigned int estatus = 0;
620 
621 	status = fec16_to_cpu(bdp->cbd_sc);
622 	status &= ~BD_ENET_TX_STATS;
623 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
624 
625 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
626 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
627 	if (((unsigned long)bufaddr) & fep->tx_align ||
628 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
629 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
630 		bufaddr = txq->tx_bounce[index];
631 
632 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
633 			swap_buffer(bufaddr, hdr_len);
634 
635 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
636 					hdr_len, DMA_TO_DEVICE);
637 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
638 			dev_kfree_skb_any(skb);
639 			if (net_ratelimit())
640 				netdev_err(ndev, "Tx DMA memory map failed\n");
641 			return NETDEV_TX_BUSY;
642 		}
643 	}
644 
645 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
646 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
647 
648 	if (fep->bufdesc_ex) {
649 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
650 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
651 		if (skb->ip_summed == CHECKSUM_PARTIAL)
652 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
653 		ebdp->cbd_bdu = 0;
654 		ebdp->cbd_esc = cpu_to_fec32(estatus);
655 	}
656 
657 	bdp->cbd_sc = cpu_to_fec16(status);
658 
659 	return 0;
660 }
661 
662 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
663 				   struct sk_buff *skb,
664 				   struct net_device *ndev)
665 {
666 	struct fec_enet_private *fep = netdev_priv(ndev);
667 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
668 	int total_len, data_left;
669 	struct bufdesc *bdp = txq->bd.cur;
670 	struct tso_t tso;
671 	unsigned int index = 0;
672 	int ret;
673 
674 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
675 		dev_kfree_skb_any(skb);
676 		if (net_ratelimit())
677 			netdev_err(ndev, "NOT enough BD for TSO!\n");
678 		return NETDEV_TX_OK;
679 	}
680 
681 	/* Protocol checksum off-load for TCP and UDP. */
682 	if (fec_enet_clear_csum(skb, ndev)) {
683 		dev_kfree_skb_any(skb);
684 		return NETDEV_TX_OK;
685 	}
686 
687 	/* Initialize the TSO handler, and prepare the first payload */
688 	tso_start(skb, &tso);
689 
690 	total_len = skb->len - hdr_len;
691 	while (total_len > 0) {
692 		char *hdr;
693 
694 		index = fec_enet_get_bd_index(bdp, &txq->bd);
695 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
696 		total_len -= data_left;
697 
698 		/* prepare packet headers: MAC + IP + TCP */
699 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
700 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
701 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
702 		if (ret)
703 			goto err_release;
704 
705 		while (data_left > 0) {
706 			int size;
707 
708 			size = min_t(int, tso.size, data_left);
709 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
710 			index = fec_enet_get_bd_index(bdp, &txq->bd);
711 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
712 							bdp, index,
713 							tso.data, size,
714 							size == data_left,
715 							total_len == 0);
716 			if (ret)
717 				goto err_release;
718 
719 			data_left -= size;
720 			tso_build_data(skb, &tso, size);
721 		}
722 
723 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
724 	}
725 
726 	/* Save skb pointer */
727 	txq->tx_skbuff[index] = skb;
728 
729 	skb_tx_timestamp(skb);
730 	txq->bd.cur = bdp;
731 
732 	/* Trigger transmission start */
733 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
734 	    !readl(txq->bd.reg_desc_active) ||
735 	    !readl(txq->bd.reg_desc_active) ||
736 	    !readl(txq->bd.reg_desc_active) ||
737 	    !readl(txq->bd.reg_desc_active))
738 		writel(0, txq->bd.reg_desc_active);
739 
740 	return 0;
741 
742 err_release:
743 	/* TODO: Release all used data descriptors for TSO */
744 	return ret;
745 }
746 
747 static netdev_tx_t
748 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
749 {
750 	struct fec_enet_private *fep = netdev_priv(ndev);
751 	int entries_free;
752 	unsigned short queue;
753 	struct fec_enet_priv_tx_q *txq;
754 	struct netdev_queue *nq;
755 	int ret;
756 
757 	queue = skb_get_queue_mapping(skb);
758 	txq = fep->tx_queue[queue];
759 	nq = netdev_get_tx_queue(ndev, queue);
760 
761 	if (skb_is_gso(skb))
762 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
763 	else
764 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
765 	if (ret)
766 		return ret;
767 
768 	entries_free = fec_enet_get_free_txdesc_num(txq);
769 	if (entries_free <= txq->tx_stop_threshold)
770 		netif_tx_stop_queue(nq);
771 
772 	return NETDEV_TX_OK;
773 }
774 
775 /* Init RX & TX buffer descriptors
776  */
777 static void fec_enet_bd_init(struct net_device *dev)
778 {
779 	struct fec_enet_private *fep = netdev_priv(dev);
780 	struct fec_enet_priv_tx_q *txq;
781 	struct fec_enet_priv_rx_q *rxq;
782 	struct bufdesc *bdp;
783 	unsigned int i;
784 	unsigned int q;
785 
786 	for (q = 0; q < fep->num_rx_queues; q++) {
787 		/* Initialize the receive buffer descriptors. */
788 		rxq = fep->rx_queue[q];
789 		bdp = rxq->bd.base;
790 
791 		for (i = 0; i < rxq->bd.ring_size; i++) {
792 
793 			/* Initialize the BD for every fragment in the page. */
794 			if (bdp->cbd_bufaddr)
795 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
796 			else
797 				bdp->cbd_sc = cpu_to_fec16(0);
798 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
799 		}
800 
801 		/* Set the last buffer to wrap */
802 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
803 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
804 
805 		rxq->bd.cur = rxq->bd.base;
806 	}
807 
808 	for (q = 0; q < fep->num_tx_queues; q++) {
809 		/* ...and the same for transmit */
810 		txq = fep->tx_queue[q];
811 		bdp = txq->bd.base;
812 		txq->bd.cur = bdp;
813 
814 		for (i = 0; i < txq->bd.ring_size; i++) {
815 			/* Initialize the BD for every fragment in the page. */
816 			bdp->cbd_sc = cpu_to_fec16(0);
817 			if (txq->tx_skbuff[i]) {
818 				dev_kfree_skb_any(txq->tx_skbuff[i]);
819 				txq->tx_skbuff[i] = NULL;
820 			}
821 			bdp->cbd_bufaddr = cpu_to_fec32(0);
822 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
823 		}
824 
825 		/* Set the last buffer to wrap */
826 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
827 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
828 		txq->dirty_tx = bdp;
829 	}
830 }
831 
832 static void fec_enet_active_rxring(struct net_device *ndev)
833 {
834 	struct fec_enet_private *fep = netdev_priv(ndev);
835 	int i;
836 
837 	for (i = 0; i < fep->num_rx_queues; i++)
838 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
839 }
840 
841 static void fec_enet_enable_ring(struct net_device *ndev)
842 {
843 	struct fec_enet_private *fep = netdev_priv(ndev);
844 	struct fec_enet_priv_tx_q *txq;
845 	struct fec_enet_priv_rx_q *rxq;
846 	int i;
847 
848 	for (i = 0; i < fep->num_rx_queues; i++) {
849 		rxq = fep->rx_queue[i];
850 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
851 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
852 
853 		/* enable DMA1/2 */
854 		if (i)
855 			writel(RCMR_MATCHEN | RCMR_CMP(i),
856 			       fep->hwp + FEC_RCMR(i));
857 	}
858 
859 	for (i = 0; i < fep->num_tx_queues; i++) {
860 		txq = fep->tx_queue[i];
861 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
862 
863 		/* enable DMA1/2 */
864 		if (i)
865 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
866 			       fep->hwp + FEC_DMA_CFG(i));
867 	}
868 }
869 
870 static void fec_enet_reset_skb(struct net_device *ndev)
871 {
872 	struct fec_enet_private *fep = netdev_priv(ndev);
873 	struct fec_enet_priv_tx_q *txq;
874 	int i, j;
875 
876 	for (i = 0; i < fep->num_tx_queues; i++) {
877 		txq = fep->tx_queue[i];
878 
879 		for (j = 0; j < txq->bd.ring_size; j++) {
880 			if (txq->tx_skbuff[j]) {
881 				dev_kfree_skb_any(txq->tx_skbuff[j]);
882 				txq->tx_skbuff[j] = NULL;
883 			}
884 		}
885 	}
886 }
887 
888 /*
889  * This function is called to start or restart the FEC during a link
890  * change, transmit timeout, or to reconfigure the FEC.  The network
891  * packet processing for this device must be stopped before this call.
892  */
893 static void
894 fec_restart(struct net_device *ndev)
895 {
896 	struct fec_enet_private *fep = netdev_priv(ndev);
897 	u32 val;
898 	u32 temp_mac[2];
899 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
900 	u32 ecntl = 0x2; /* ETHEREN */
901 
902 	/* Whack a reset.  We should wait for this.
903 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
904 	 * instead of reset MAC itself.
905 	 */
906 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
907 		writel(0, fep->hwp + FEC_ECNTRL);
908 	} else {
909 		writel(1, fep->hwp + FEC_ECNTRL);
910 		udelay(10);
911 	}
912 
913 	/*
914 	 * enet-mac reset will reset mac address registers too,
915 	 * so need to reconfigure it.
916 	 */
917 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
918 	writel((__force u32)cpu_to_be32(temp_mac[0]),
919 	       fep->hwp + FEC_ADDR_LOW);
920 	writel((__force u32)cpu_to_be32(temp_mac[1]),
921 	       fep->hwp + FEC_ADDR_HIGH);
922 
923 	/* Clear any outstanding interrupt. */
924 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
925 
926 	fec_enet_bd_init(ndev);
927 
928 	fec_enet_enable_ring(ndev);
929 
930 	/* Reset tx SKB buffers. */
931 	fec_enet_reset_skb(ndev);
932 
933 	/* Enable MII mode */
934 	if (fep->full_duplex == DUPLEX_FULL) {
935 		/* FD enable */
936 		writel(0x04, fep->hwp + FEC_X_CNTRL);
937 	} else {
938 		/* No Rcv on Xmit */
939 		rcntl |= 0x02;
940 		writel(0x0, fep->hwp + FEC_X_CNTRL);
941 	}
942 
943 	/* Set MII speed */
944 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
945 
946 #if !defined(CONFIG_M5272)
947 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
948 		val = readl(fep->hwp + FEC_RACC);
949 		/* align IP header */
950 		val |= FEC_RACC_SHIFT16;
951 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
952 			/* set RX checksum */
953 			val |= FEC_RACC_OPTIONS;
954 		else
955 			val &= ~FEC_RACC_OPTIONS;
956 		writel(val, fep->hwp + FEC_RACC);
957 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
958 	}
959 #endif
960 
961 	/*
962 	 * The phy interface and speed need to get configured
963 	 * differently on enet-mac.
964 	 */
965 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
966 		/* Enable flow control and length check */
967 		rcntl |= 0x40000000 | 0x00000020;
968 
969 		/* RGMII, RMII or MII */
970 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
971 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
972 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
973 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
974 			rcntl |= (1 << 6);
975 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
976 			rcntl |= (1 << 8);
977 		else
978 			rcntl &= ~(1 << 8);
979 
980 		/* 1G, 100M or 10M */
981 		if (ndev->phydev) {
982 			if (ndev->phydev->speed == SPEED_1000)
983 				ecntl |= (1 << 5);
984 			else if (ndev->phydev->speed == SPEED_100)
985 				rcntl &= ~(1 << 9);
986 			else
987 				rcntl |= (1 << 9);
988 		}
989 	} else {
990 #ifdef FEC_MIIGSK_ENR
991 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
992 			u32 cfgr;
993 			/* disable the gasket and wait */
994 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
995 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
996 				udelay(1);
997 
998 			/*
999 			 * configure the gasket:
1000 			 *   RMII, 50 MHz, no loopback, no echo
1001 			 *   MII, 25 MHz, no loopback, no echo
1002 			 */
1003 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1004 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1005 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1006 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1007 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1008 
1009 			/* re-enable the gasket */
1010 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1011 		}
1012 #endif
1013 	}
1014 
1015 #if !defined(CONFIG_M5272)
1016 	/* enable pause frame*/
1017 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1018 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1019 	     ndev->phydev && ndev->phydev->pause)) {
1020 		rcntl |= FEC_ENET_FCE;
1021 
1022 		/* set FIFO threshold parameter to reduce overrun */
1023 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1024 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1025 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1026 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1027 
1028 		/* OPD */
1029 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1030 	} else {
1031 		rcntl &= ~FEC_ENET_FCE;
1032 	}
1033 #endif /* !defined(CONFIG_M5272) */
1034 
1035 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1036 
1037 	/* Setup multicast filter. */
1038 	set_multicast_list(ndev);
1039 #ifndef CONFIG_M5272
1040 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1041 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1042 #endif
1043 
1044 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1045 		/* enable ENET endian swap */
1046 		ecntl |= (1 << 8);
1047 		/* enable ENET store and forward mode */
1048 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1049 	}
1050 
1051 	if (fep->bufdesc_ex)
1052 		ecntl |= (1 << 4);
1053 
1054 #ifndef CONFIG_M5272
1055 	/* Enable the MIB statistic event counters */
1056 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1057 #endif
1058 
1059 	/* And last, enable the transmit and receive processing */
1060 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1061 	fec_enet_active_rxring(ndev);
1062 
1063 	if (fep->bufdesc_ex)
1064 		fec_ptp_start_cyclecounter(ndev);
1065 
1066 	/* Enable interrupts we wish to service */
1067 	if (fep->link)
1068 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1069 	else
1070 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1071 
1072 	/* Init the interrupt coalescing */
1073 	fec_enet_itr_coal_init(ndev);
1074 
1075 }
1076 
1077 static void
1078 fec_stop(struct net_device *ndev)
1079 {
1080 	struct fec_enet_private *fep = netdev_priv(ndev);
1081 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1082 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1083 	u32 val;
1084 
1085 	/* We cannot expect a graceful transmit stop without link !!! */
1086 	if (fep->link) {
1087 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1088 		udelay(10);
1089 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1090 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1091 	}
1092 
1093 	/* Whack a reset.  We should wait for this.
1094 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1095 	 * instead of reset MAC itself.
1096 	 */
1097 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1098 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1099 			writel(0, fep->hwp + FEC_ECNTRL);
1100 		} else {
1101 			writel(1, fep->hwp + FEC_ECNTRL);
1102 			udelay(10);
1103 		}
1104 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1105 	} else {
1106 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1107 		val = readl(fep->hwp + FEC_ECNTRL);
1108 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1109 		writel(val, fep->hwp + FEC_ECNTRL);
1110 
1111 		if (pdata && pdata->sleep_mode_enable)
1112 			pdata->sleep_mode_enable(true);
1113 	}
1114 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1115 
1116 	/* We have to keep ENET enabled to have MII interrupt stay working */
1117 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1118 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1119 		writel(2, fep->hwp + FEC_ECNTRL);
1120 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1121 	}
1122 }
1123 
1124 
1125 static void
1126 fec_timeout(struct net_device *ndev)
1127 {
1128 	struct fec_enet_private *fep = netdev_priv(ndev);
1129 
1130 	fec_dump(ndev);
1131 
1132 	ndev->stats.tx_errors++;
1133 
1134 	schedule_work(&fep->tx_timeout_work);
1135 }
1136 
1137 static void fec_enet_timeout_work(struct work_struct *work)
1138 {
1139 	struct fec_enet_private *fep =
1140 		container_of(work, struct fec_enet_private, tx_timeout_work);
1141 	struct net_device *ndev = fep->netdev;
1142 
1143 	rtnl_lock();
1144 	if (netif_device_present(ndev) || netif_running(ndev)) {
1145 		napi_disable(&fep->napi);
1146 		netif_tx_lock_bh(ndev);
1147 		fec_restart(ndev);
1148 		netif_wake_queue(ndev);
1149 		netif_tx_unlock_bh(ndev);
1150 		napi_enable(&fep->napi);
1151 	}
1152 	rtnl_unlock();
1153 }
1154 
1155 static void
1156 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1157 	struct skb_shared_hwtstamps *hwtstamps)
1158 {
1159 	unsigned long flags;
1160 	u64 ns;
1161 
1162 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1163 	ns = timecounter_cyc2time(&fep->tc, ts);
1164 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1165 
1166 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1167 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1168 }
1169 
1170 static void
1171 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1172 {
1173 	struct	fec_enet_private *fep;
1174 	struct bufdesc *bdp;
1175 	unsigned short status;
1176 	struct	sk_buff	*skb;
1177 	struct fec_enet_priv_tx_q *txq;
1178 	struct netdev_queue *nq;
1179 	int	index = 0;
1180 	int	entries_free;
1181 
1182 	fep = netdev_priv(ndev);
1183 
1184 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1185 
1186 	txq = fep->tx_queue[queue_id];
1187 	/* get next bdp of dirty_tx */
1188 	nq = netdev_get_tx_queue(ndev, queue_id);
1189 	bdp = txq->dirty_tx;
1190 
1191 	/* get next bdp of dirty_tx */
1192 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1193 
1194 	while (bdp != READ_ONCE(txq->bd.cur)) {
1195 		/* Order the load of bd.cur and cbd_sc */
1196 		rmb();
1197 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1198 		if (status & BD_ENET_TX_READY)
1199 			break;
1200 
1201 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1202 
1203 		skb = txq->tx_skbuff[index];
1204 		txq->tx_skbuff[index] = NULL;
1205 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1206 			dma_unmap_single(&fep->pdev->dev,
1207 					 fec32_to_cpu(bdp->cbd_bufaddr),
1208 					 fec16_to_cpu(bdp->cbd_datlen),
1209 					 DMA_TO_DEVICE);
1210 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1211 		if (!skb)
1212 			goto skb_done;
1213 
1214 		/* Check for errors. */
1215 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1216 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1217 				   BD_ENET_TX_CSL)) {
1218 			ndev->stats.tx_errors++;
1219 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1220 				ndev->stats.tx_heartbeat_errors++;
1221 			if (status & BD_ENET_TX_LC)  /* Late collision */
1222 				ndev->stats.tx_window_errors++;
1223 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1224 				ndev->stats.tx_aborted_errors++;
1225 			if (status & BD_ENET_TX_UN)  /* Underrun */
1226 				ndev->stats.tx_fifo_errors++;
1227 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1228 				ndev->stats.tx_carrier_errors++;
1229 		} else {
1230 			ndev->stats.tx_packets++;
1231 			ndev->stats.tx_bytes += skb->len;
1232 		}
1233 
1234 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1235 			fep->bufdesc_ex) {
1236 			struct skb_shared_hwtstamps shhwtstamps;
1237 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1238 
1239 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1240 			skb_tstamp_tx(skb, &shhwtstamps);
1241 		}
1242 
1243 		/* Deferred means some collisions occurred during transmit,
1244 		 * but we eventually sent the packet OK.
1245 		 */
1246 		if (status & BD_ENET_TX_DEF)
1247 			ndev->stats.collisions++;
1248 
1249 		/* Free the sk buffer associated with this last transmit */
1250 		dev_kfree_skb_any(skb);
1251 skb_done:
1252 		/* Make sure the update to bdp and tx_skbuff are performed
1253 		 * before dirty_tx
1254 		 */
1255 		wmb();
1256 		txq->dirty_tx = bdp;
1257 
1258 		/* Update pointer to next buffer descriptor to be transmitted */
1259 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1260 
1261 		/* Since we have freed up a buffer, the ring is no longer full
1262 		 */
1263 		if (netif_queue_stopped(ndev)) {
1264 			entries_free = fec_enet_get_free_txdesc_num(txq);
1265 			if (entries_free >= txq->tx_wake_threshold)
1266 				netif_tx_wake_queue(nq);
1267 		}
1268 	}
1269 
1270 	/* ERR006358: Keep the transmitter going */
1271 	if (bdp != txq->bd.cur &&
1272 	    readl(txq->bd.reg_desc_active) == 0)
1273 		writel(0, txq->bd.reg_desc_active);
1274 }
1275 
1276 static void
1277 fec_enet_tx(struct net_device *ndev)
1278 {
1279 	struct fec_enet_private *fep = netdev_priv(ndev);
1280 	u16 queue_id;
1281 	/* First process class A queue, then Class B and Best Effort queue */
1282 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1283 		clear_bit(queue_id, &fep->work_tx);
1284 		fec_enet_tx_queue(ndev, queue_id);
1285 	}
1286 	return;
1287 }
1288 
1289 static int
1290 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1291 {
1292 	struct  fec_enet_private *fep = netdev_priv(ndev);
1293 	int off;
1294 
1295 	off = ((unsigned long)skb->data) & fep->rx_align;
1296 	if (off)
1297 		skb_reserve(skb, fep->rx_align + 1 - off);
1298 
1299 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1300 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1301 		if (net_ratelimit())
1302 			netdev_err(ndev, "Rx DMA memory map failed\n");
1303 		return -ENOMEM;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1310 			       struct bufdesc *bdp, u32 length, bool swap)
1311 {
1312 	struct  fec_enet_private *fep = netdev_priv(ndev);
1313 	struct sk_buff *new_skb;
1314 
1315 	if (length > fep->rx_copybreak)
1316 		return false;
1317 
1318 	new_skb = netdev_alloc_skb(ndev, length);
1319 	if (!new_skb)
1320 		return false;
1321 
1322 	dma_sync_single_for_cpu(&fep->pdev->dev,
1323 				fec32_to_cpu(bdp->cbd_bufaddr),
1324 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1325 				DMA_FROM_DEVICE);
1326 	if (!swap)
1327 		memcpy(new_skb->data, (*skb)->data, length);
1328 	else
1329 		swap_buffer2(new_skb->data, (*skb)->data, length);
1330 	*skb = new_skb;
1331 
1332 	return true;
1333 }
1334 
1335 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1336  * When we update through the ring, if the next incoming buffer has
1337  * not been given to the system, we just set the empty indicator,
1338  * effectively tossing the packet.
1339  */
1340 static int
1341 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1342 {
1343 	struct fec_enet_private *fep = netdev_priv(ndev);
1344 	struct fec_enet_priv_rx_q *rxq;
1345 	struct bufdesc *bdp;
1346 	unsigned short status;
1347 	struct  sk_buff *skb_new = NULL;
1348 	struct  sk_buff *skb;
1349 	ushort	pkt_len;
1350 	__u8 *data;
1351 	int	pkt_received = 0;
1352 	struct	bufdesc_ex *ebdp = NULL;
1353 	bool	vlan_packet_rcvd = false;
1354 	u16	vlan_tag;
1355 	int	index = 0;
1356 	bool	is_copybreak;
1357 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1358 
1359 #ifdef CONFIG_M532x
1360 	flush_cache_all();
1361 #endif
1362 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1363 	rxq = fep->rx_queue[queue_id];
1364 
1365 	/* First, grab all of the stats for the incoming packet.
1366 	 * These get messed up if we get called due to a busy condition.
1367 	 */
1368 	bdp = rxq->bd.cur;
1369 
1370 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1371 
1372 		if (pkt_received >= budget)
1373 			break;
1374 		pkt_received++;
1375 
1376 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1377 
1378 		/* Check for errors. */
1379 		status ^= BD_ENET_RX_LAST;
1380 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1381 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1382 			   BD_ENET_RX_CL)) {
1383 			ndev->stats.rx_errors++;
1384 			if (status & BD_ENET_RX_OV) {
1385 				/* FIFO overrun */
1386 				ndev->stats.rx_fifo_errors++;
1387 				goto rx_processing_done;
1388 			}
1389 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1390 						| BD_ENET_RX_LAST)) {
1391 				/* Frame too long or too short. */
1392 				ndev->stats.rx_length_errors++;
1393 				if (status & BD_ENET_RX_LAST)
1394 					netdev_err(ndev, "rcv is not +last\n");
1395 			}
1396 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1397 				ndev->stats.rx_crc_errors++;
1398 			/* Report late collisions as a frame error. */
1399 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1400 				ndev->stats.rx_frame_errors++;
1401 			goto rx_processing_done;
1402 		}
1403 
1404 		/* Process the incoming frame. */
1405 		ndev->stats.rx_packets++;
1406 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1407 		ndev->stats.rx_bytes += pkt_len;
1408 
1409 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1410 		skb = rxq->rx_skbuff[index];
1411 
1412 		/* The packet length includes FCS, but we don't want to
1413 		 * include that when passing upstream as it messes up
1414 		 * bridging applications.
1415 		 */
1416 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1417 						  need_swap);
1418 		if (!is_copybreak) {
1419 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1420 			if (unlikely(!skb_new)) {
1421 				ndev->stats.rx_dropped++;
1422 				goto rx_processing_done;
1423 			}
1424 			dma_unmap_single(&fep->pdev->dev,
1425 					 fec32_to_cpu(bdp->cbd_bufaddr),
1426 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1427 					 DMA_FROM_DEVICE);
1428 		}
1429 
1430 		prefetch(skb->data - NET_IP_ALIGN);
1431 		skb_put(skb, pkt_len - 4);
1432 		data = skb->data;
1433 
1434 		if (!is_copybreak && need_swap)
1435 			swap_buffer(data, pkt_len);
1436 
1437 #if !defined(CONFIG_M5272)
1438 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1439 			data = skb_pull_inline(skb, 2);
1440 #endif
1441 
1442 		/* Extract the enhanced buffer descriptor */
1443 		ebdp = NULL;
1444 		if (fep->bufdesc_ex)
1445 			ebdp = (struct bufdesc_ex *)bdp;
1446 
1447 		/* If this is a VLAN packet remove the VLAN Tag */
1448 		vlan_packet_rcvd = false;
1449 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1450 		    fep->bufdesc_ex &&
1451 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1452 			/* Push and remove the vlan tag */
1453 			struct vlan_hdr *vlan_header =
1454 					(struct vlan_hdr *) (data + ETH_HLEN);
1455 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1456 
1457 			vlan_packet_rcvd = true;
1458 
1459 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1460 			skb_pull(skb, VLAN_HLEN);
1461 		}
1462 
1463 		skb->protocol = eth_type_trans(skb, ndev);
1464 
1465 		/* Get receive timestamp from the skb */
1466 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1467 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1468 					  skb_hwtstamps(skb));
1469 
1470 		if (fep->bufdesc_ex &&
1471 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1472 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1473 				/* don't check it */
1474 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1475 			} else {
1476 				skb_checksum_none_assert(skb);
1477 			}
1478 		}
1479 
1480 		/* Handle received VLAN packets */
1481 		if (vlan_packet_rcvd)
1482 			__vlan_hwaccel_put_tag(skb,
1483 					       htons(ETH_P_8021Q),
1484 					       vlan_tag);
1485 
1486 		napi_gro_receive(&fep->napi, skb);
1487 
1488 		if (is_copybreak) {
1489 			dma_sync_single_for_device(&fep->pdev->dev,
1490 						   fec32_to_cpu(bdp->cbd_bufaddr),
1491 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1492 						   DMA_FROM_DEVICE);
1493 		} else {
1494 			rxq->rx_skbuff[index] = skb_new;
1495 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1496 		}
1497 
1498 rx_processing_done:
1499 		/* Clear the status flags for this buffer */
1500 		status &= ~BD_ENET_RX_STATS;
1501 
1502 		/* Mark the buffer empty */
1503 		status |= BD_ENET_RX_EMPTY;
1504 
1505 		if (fep->bufdesc_ex) {
1506 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1507 
1508 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1509 			ebdp->cbd_prot = 0;
1510 			ebdp->cbd_bdu = 0;
1511 		}
1512 		/* Make sure the updates to rest of the descriptor are
1513 		 * performed before transferring ownership.
1514 		 */
1515 		wmb();
1516 		bdp->cbd_sc = cpu_to_fec16(status);
1517 
1518 		/* Update BD pointer to next entry */
1519 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1520 
1521 		/* Doing this here will keep the FEC running while we process
1522 		 * incoming frames.  On a heavily loaded network, we should be
1523 		 * able to keep up at the expense of system resources.
1524 		 */
1525 		writel(0, rxq->bd.reg_desc_active);
1526 	}
1527 	rxq->bd.cur = bdp;
1528 	return pkt_received;
1529 }
1530 
1531 static int
1532 fec_enet_rx(struct net_device *ndev, int budget)
1533 {
1534 	int     pkt_received = 0;
1535 	u16	queue_id;
1536 	struct fec_enet_private *fep = netdev_priv(ndev);
1537 
1538 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1539 		int ret;
1540 
1541 		ret = fec_enet_rx_queue(ndev,
1542 					budget - pkt_received, queue_id);
1543 
1544 		if (ret < budget - pkt_received)
1545 			clear_bit(queue_id, &fep->work_rx);
1546 
1547 		pkt_received += ret;
1548 	}
1549 	return pkt_received;
1550 }
1551 
1552 static bool
1553 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1554 {
1555 	if (int_events == 0)
1556 		return false;
1557 
1558 	if (int_events & FEC_ENET_RXF)
1559 		fep->work_rx |= (1 << 2);
1560 	if (int_events & FEC_ENET_RXF_1)
1561 		fep->work_rx |= (1 << 0);
1562 	if (int_events & FEC_ENET_RXF_2)
1563 		fep->work_rx |= (1 << 1);
1564 
1565 	if (int_events & FEC_ENET_TXF)
1566 		fep->work_tx |= (1 << 2);
1567 	if (int_events & FEC_ENET_TXF_1)
1568 		fep->work_tx |= (1 << 0);
1569 	if (int_events & FEC_ENET_TXF_2)
1570 		fep->work_tx |= (1 << 1);
1571 
1572 	return true;
1573 }
1574 
1575 static irqreturn_t
1576 fec_enet_interrupt(int irq, void *dev_id)
1577 {
1578 	struct net_device *ndev = dev_id;
1579 	struct fec_enet_private *fep = netdev_priv(ndev);
1580 	uint int_events;
1581 	irqreturn_t ret = IRQ_NONE;
1582 
1583 	int_events = readl(fep->hwp + FEC_IEVENT);
1584 	writel(int_events, fep->hwp + FEC_IEVENT);
1585 	fec_enet_collect_events(fep, int_events);
1586 
1587 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1588 		ret = IRQ_HANDLED;
1589 
1590 		if (napi_schedule_prep(&fep->napi)) {
1591 			/* Disable the NAPI interrupts */
1592 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1593 			__napi_schedule(&fep->napi);
1594 		}
1595 	}
1596 
1597 	if (int_events & FEC_ENET_MII) {
1598 		ret = IRQ_HANDLED;
1599 		complete(&fep->mdio_done);
1600 	}
1601 
1602 	if (fep->ptp_clock)
1603 		fec_ptp_check_pps_event(fep);
1604 
1605 	return ret;
1606 }
1607 
1608 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1609 {
1610 	struct net_device *ndev = napi->dev;
1611 	struct fec_enet_private *fep = netdev_priv(ndev);
1612 	int pkts;
1613 
1614 	pkts = fec_enet_rx(ndev, budget);
1615 
1616 	fec_enet_tx(ndev);
1617 
1618 	if (pkts < budget) {
1619 		napi_complete_done(napi, pkts);
1620 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1621 	}
1622 	return pkts;
1623 }
1624 
1625 /* ------------------------------------------------------------------------- */
1626 static void fec_get_mac(struct net_device *ndev)
1627 {
1628 	struct fec_enet_private *fep = netdev_priv(ndev);
1629 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1630 	unsigned char *iap, tmpaddr[ETH_ALEN];
1631 
1632 	/*
1633 	 * try to get mac address in following order:
1634 	 *
1635 	 * 1) module parameter via kernel command line in form
1636 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1637 	 */
1638 	iap = macaddr;
1639 
1640 	/*
1641 	 * 2) from device tree data
1642 	 */
1643 	if (!is_valid_ether_addr(iap)) {
1644 		struct device_node *np = fep->pdev->dev.of_node;
1645 		if (np) {
1646 			const char *mac = of_get_mac_address(np);
1647 			if (mac)
1648 				iap = (unsigned char *) mac;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * 3) from flash or fuse (via platform data)
1654 	 */
1655 	if (!is_valid_ether_addr(iap)) {
1656 #ifdef CONFIG_M5272
1657 		if (FEC_FLASHMAC)
1658 			iap = (unsigned char *)FEC_FLASHMAC;
1659 #else
1660 		if (pdata)
1661 			iap = (unsigned char *)&pdata->mac;
1662 #endif
1663 	}
1664 
1665 	/*
1666 	 * 4) FEC mac registers set by bootloader
1667 	 */
1668 	if (!is_valid_ether_addr(iap)) {
1669 		*((__be32 *) &tmpaddr[0]) =
1670 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1671 		*((__be16 *) &tmpaddr[4]) =
1672 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1673 		iap = &tmpaddr[0];
1674 	}
1675 
1676 	/*
1677 	 * 5) random mac address
1678 	 */
1679 	if (!is_valid_ether_addr(iap)) {
1680 		/* Report it and use a random ethernet address instead */
1681 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1682 		eth_hw_addr_random(ndev);
1683 		netdev_info(ndev, "Using random MAC address: %pM\n",
1684 			    ndev->dev_addr);
1685 		return;
1686 	}
1687 
1688 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1689 
1690 	/* Adjust MAC if using macaddr */
1691 	if (iap == macaddr)
1692 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1693 }
1694 
1695 /* ------------------------------------------------------------------------- */
1696 
1697 /*
1698  * Phy section
1699  */
1700 static void fec_enet_adjust_link(struct net_device *ndev)
1701 {
1702 	struct fec_enet_private *fep = netdev_priv(ndev);
1703 	struct phy_device *phy_dev = ndev->phydev;
1704 	int status_change = 0;
1705 
1706 	/* Prevent a state halted on mii error */
1707 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1708 		phy_dev->state = PHY_RESUMING;
1709 		return;
1710 	}
1711 
1712 	/*
1713 	 * If the netdev is down, or is going down, we're not interested
1714 	 * in link state events, so just mark our idea of the link as down
1715 	 * and ignore the event.
1716 	 */
1717 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1718 		fep->link = 0;
1719 	} else if (phy_dev->link) {
1720 		if (!fep->link) {
1721 			fep->link = phy_dev->link;
1722 			status_change = 1;
1723 		}
1724 
1725 		if (fep->full_duplex != phy_dev->duplex) {
1726 			fep->full_duplex = phy_dev->duplex;
1727 			status_change = 1;
1728 		}
1729 
1730 		if (phy_dev->speed != fep->speed) {
1731 			fep->speed = phy_dev->speed;
1732 			status_change = 1;
1733 		}
1734 
1735 		/* if any of the above changed restart the FEC */
1736 		if (status_change) {
1737 			napi_disable(&fep->napi);
1738 			netif_tx_lock_bh(ndev);
1739 			fec_restart(ndev);
1740 			netif_wake_queue(ndev);
1741 			netif_tx_unlock_bh(ndev);
1742 			napi_enable(&fep->napi);
1743 		}
1744 	} else {
1745 		if (fep->link) {
1746 			napi_disable(&fep->napi);
1747 			netif_tx_lock_bh(ndev);
1748 			fec_stop(ndev);
1749 			netif_tx_unlock_bh(ndev);
1750 			napi_enable(&fep->napi);
1751 			fep->link = phy_dev->link;
1752 			status_change = 1;
1753 		}
1754 	}
1755 
1756 	if (status_change)
1757 		phy_print_status(phy_dev);
1758 }
1759 
1760 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1761 {
1762 	struct fec_enet_private *fep = bus->priv;
1763 	struct device *dev = &fep->pdev->dev;
1764 	unsigned long time_left;
1765 	int ret = 0;
1766 
1767 	ret = pm_runtime_get_sync(dev);
1768 	if (ret < 0)
1769 		return ret;
1770 
1771 	fep->mii_timeout = 0;
1772 	reinit_completion(&fep->mdio_done);
1773 
1774 	/* start a read op */
1775 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1776 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1777 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1778 
1779 	/* wait for end of transfer */
1780 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1781 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1782 	if (time_left == 0) {
1783 		fep->mii_timeout = 1;
1784 		netdev_err(fep->netdev, "MDIO read timeout\n");
1785 		ret = -ETIMEDOUT;
1786 		goto out;
1787 	}
1788 
1789 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1790 
1791 out:
1792 	pm_runtime_mark_last_busy(dev);
1793 	pm_runtime_put_autosuspend(dev);
1794 
1795 	return ret;
1796 }
1797 
1798 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1799 			   u16 value)
1800 {
1801 	struct fec_enet_private *fep = bus->priv;
1802 	struct device *dev = &fep->pdev->dev;
1803 	unsigned long time_left;
1804 	int ret;
1805 
1806 	ret = pm_runtime_get_sync(dev);
1807 	if (ret < 0)
1808 		return ret;
1809 	else
1810 		ret = 0;
1811 
1812 	fep->mii_timeout = 0;
1813 	reinit_completion(&fep->mdio_done);
1814 
1815 	/* start a write op */
1816 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1817 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1818 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1819 		fep->hwp + FEC_MII_DATA);
1820 
1821 	/* wait for end of transfer */
1822 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1823 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1824 	if (time_left == 0) {
1825 		fep->mii_timeout = 1;
1826 		netdev_err(fep->netdev, "MDIO write timeout\n");
1827 		ret  = -ETIMEDOUT;
1828 	}
1829 
1830 	pm_runtime_mark_last_busy(dev);
1831 	pm_runtime_put_autosuspend(dev);
1832 
1833 	return ret;
1834 }
1835 
1836 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1837 {
1838 	struct fec_enet_private *fep = netdev_priv(ndev);
1839 	int ret;
1840 
1841 	if (enable) {
1842 		ret = clk_prepare_enable(fep->clk_ahb);
1843 		if (ret)
1844 			return ret;
1845 
1846 		ret = clk_prepare_enable(fep->clk_enet_out);
1847 		if (ret)
1848 			goto failed_clk_enet_out;
1849 
1850 		if (fep->clk_ptp) {
1851 			mutex_lock(&fep->ptp_clk_mutex);
1852 			ret = clk_prepare_enable(fep->clk_ptp);
1853 			if (ret) {
1854 				mutex_unlock(&fep->ptp_clk_mutex);
1855 				goto failed_clk_ptp;
1856 			} else {
1857 				fep->ptp_clk_on = true;
1858 			}
1859 			mutex_unlock(&fep->ptp_clk_mutex);
1860 		}
1861 
1862 		ret = clk_prepare_enable(fep->clk_ref);
1863 		if (ret)
1864 			goto failed_clk_ref;
1865 	} else {
1866 		clk_disable_unprepare(fep->clk_ahb);
1867 		clk_disable_unprepare(fep->clk_enet_out);
1868 		if (fep->clk_ptp) {
1869 			mutex_lock(&fep->ptp_clk_mutex);
1870 			clk_disable_unprepare(fep->clk_ptp);
1871 			fep->ptp_clk_on = false;
1872 			mutex_unlock(&fep->ptp_clk_mutex);
1873 		}
1874 		clk_disable_unprepare(fep->clk_ref);
1875 	}
1876 
1877 	return 0;
1878 
1879 failed_clk_ref:
1880 	if (fep->clk_ref)
1881 		clk_disable_unprepare(fep->clk_ref);
1882 failed_clk_ptp:
1883 	if (fep->clk_enet_out)
1884 		clk_disable_unprepare(fep->clk_enet_out);
1885 failed_clk_enet_out:
1886 		clk_disable_unprepare(fep->clk_ahb);
1887 
1888 	return ret;
1889 }
1890 
1891 static int fec_enet_mii_probe(struct net_device *ndev)
1892 {
1893 	struct fec_enet_private *fep = netdev_priv(ndev);
1894 	struct phy_device *phy_dev = NULL;
1895 	char mdio_bus_id[MII_BUS_ID_SIZE];
1896 	char phy_name[MII_BUS_ID_SIZE + 3];
1897 	int phy_id;
1898 	int dev_id = fep->dev_id;
1899 
1900 	if (fep->phy_node) {
1901 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1902 					 &fec_enet_adjust_link, 0,
1903 					 fep->phy_interface);
1904 		if (!phy_dev)
1905 			return -ENODEV;
1906 	} else {
1907 		/* check for attached phy */
1908 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1909 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1910 				continue;
1911 			if (dev_id--)
1912 				continue;
1913 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1914 			break;
1915 		}
1916 
1917 		if (phy_id >= PHY_MAX_ADDR) {
1918 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1919 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1920 			phy_id = 0;
1921 		}
1922 
1923 		snprintf(phy_name, sizeof(phy_name),
1924 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1925 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1926 				      fep->phy_interface);
1927 	}
1928 
1929 	if (IS_ERR(phy_dev)) {
1930 		netdev_err(ndev, "could not attach to PHY\n");
1931 		return PTR_ERR(phy_dev);
1932 	}
1933 
1934 	/* mask with MAC supported features */
1935 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1936 		phy_dev->supported &= PHY_GBIT_FEATURES;
1937 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1938 #if !defined(CONFIG_M5272)
1939 		phy_dev->supported |= SUPPORTED_Pause;
1940 #endif
1941 	}
1942 	else
1943 		phy_dev->supported &= PHY_BASIC_FEATURES;
1944 
1945 	phy_dev->advertising = phy_dev->supported;
1946 
1947 	fep->link = 0;
1948 	fep->full_duplex = 0;
1949 
1950 	phy_attached_info(phy_dev);
1951 
1952 	return 0;
1953 }
1954 
1955 static int fec_enet_mii_init(struct platform_device *pdev)
1956 {
1957 	static struct mii_bus *fec0_mii_bus;
1958 	struct net_device *ndev = platform_get_drvdata(pdev);
1959 	struct fec_enet_private *fep = netdev_priv(ndev);
1960 	struct device_node *node;
1961 	int err = -ENXIO;
1962 	u32 mii_speed, holdtime;
1963 
1964 	/*
1965 	 * The i.MX28 dual fec interfaces are not equal.
1966 	 * Here are the differences:
1967 	 *
1968 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1969 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1970 	 *  - external phys can only be configured by fec0
1971 	 *
1972 	 * That is to say fec1 can not work independently. It only works
1973 	 * when fec0 is working. The reason behind this design is that the
1974 	 * second interface is added primarily for Switch mode.
1975 	 *
1976 	 * Because of the last point above, both phys are attached on fec0
1977 	 * mdio interface in board design, and need to be configured by
1978 	 * fec0 mii_bus.
1979 	 */
1980 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1981 		/* fec1 uses fec0 mii_bus */
1982 		if (mii_cnt && fec0_mii_bus) {
1983 			fep->mii_bus = fec0_mii_bus;
1984 			mii_cnt++;
1985 			return 0;
1986 		}
1987 		return -ENOENT;
1988 	}
1989 
1990 	fep->mii_timeout = 0;
1991 
1992 	/*
1993 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1994 	 *
1995 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1996 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1997 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1998 	 * document.
1999 	 */
2000 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2001 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2002 		mii_speed--;
2003 	if (mii_speed > 63) {
2004 		dev_err(&pdev->dev,
2005 			"fec clock (%lu) too fast to get right mii speed\n",
2006 			clk_get_rate(fep->clk_ipg));
2007 		err = -EINVAL;
2008 		goto err_out;
2009 	}
2010 
2011 	/*
2012 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2013 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2014 	 * versions are RAZ there, so just ignore the difference and write the
2015 	 * register always.
2016 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2017 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2018 	 * output.
2019 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2020 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2021 	 * holdtime cannot result in a value greater than 3.
2022 	 */
2023 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2024 
2025 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2026 
2027 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2028 
2029 	fep->mii_bus = mdiobus_alloc();
2030 	if (fep->mii_bus == NULL) {
2031 		err = -ENOMEM;
2032 		goto err_out;
2033 	}
2034 
2035 	fep->mii_bus->name = "fec_enet_mii_bus";
2036 	fep->mii_bus->read = fec_enet_mdio_read;
2037 	fep->mii_bus->write = fec_enet_mdio_write;
2038 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2039 		pdev->name, fep->dev_id + 1);
2040 	fep->mii_bus->priv = fep;
2041 	fep->mii_bus->parent = &pdev->dev;
2042 
2043 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2044 	if (node) {
2045 		err = of_mdiobus_register(fep->mii_bus, node);
2046 		of_node_put(node);
2047 	} else {
2048 		err = mdiobus_register(fep->mii_bus);
2049 	}
2050 
2051 	if (err)
2052 		goto err_out_free_mdiobus;
2053 
2054 	mii_cnt++;
2055 
2056 	/* save fec0 mii_bus */
2057 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2058 		fec0_mii_bus = fep->mii_bus;
2059 
2060 	return 0;
2061 
2062 err_out_free_mdiobus:
2063 	mdiobus_free(fep->mii_bus);
2064 err_out:
2065 	return err;
2066 }
2067 
2068 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2069 {
2070 	if (--mii_cnt == 0) {
2071 		mdiobus_unregister(fep->mii_bus);
2072 		mdiobus_free(fep->mii_bus);
2073 	}
2074 }
2075 
2076 static void fec_enet_get_drvinfo(struct net_device *ndev,
2077 				 struct ethtool_drvinfo *info)
2078 {
2079 	struct fec_enet_private *fep = netdev_priv(ndev);
2080 
2081 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2082 		sizeof(info->driver));
2083 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2084 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2085 }
2086 
2087 static int fec_enet_get_regs_len(struct net_device *ndev)
2088 {
2089 	struct fec_enet_private *fep = netdev_priv(ndev);
2090 	struct resource *r;
2091 	int s = 0;
2092 
2093 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2094 	if (r)
2095 		s = resource_size(r);
2096 
2097 	return s;
2098 }
2099 
2100 /* List of registers that can be safety be read to dump them with ethtool */
2101 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2102 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2103 static u32 fec_enet_register_offset[] = {
2104 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2105 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2106 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2107 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2108 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2109 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2110 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2111 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2112 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2113 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2114 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2115 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2116 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2117 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2118 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2119 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2120 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2121 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2122 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2123 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2124 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2125 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2126 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2127 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2128 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2129 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2130 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2131 };
2132 #else
2133 static u32 fec_enet_register_offset[] = {
2134 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2135 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2136 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2137 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2138 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2139 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2140 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2141 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2142 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2143 };
2144 #endif
2145 
2146 static void fec_enet_get_regs(struct net_device *ndev,
2147 			      struct ethtool_regs *regs, void *regbuf)
2148 {
2149 	struct fec_enet_private *fep = netdev_priv(ndev);
2150 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2151 	u32 *buf = (u32 *)regbuf;
2152 	u32 i, off;
2153 
2154 	memset(buf, 0, regs->len);
2155 
2156 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2157 		off = fec_enet_register_offset[i] / 4;
2158 		buf[off] = readl(&theregs[off]);
2159 	}
2160 }
2161 
2162 static int fec_enet_get_ts_info(struct net_device *ndev,
2163 				struct ethtool_ts_info *info)
2164 {
2165 	struct fec_enet_private *fep = netdev_priv(ndev);
2166 
2167 	if (fep->bufdesc_ex) {
2168 
2169 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2170 					SOF_TIMESTAMPING_RX_SOFTWARE |
2171 					SOF_TIMESTAMPING_SOFTWARE |
2172 					SOF_TIMESTAMPING_TX_HARDWARE |
2173 					SOF_TIMESTAMPING_RX_HARDWARE |
2174 					SOF_TIMESTAMPING_RAW_HARDWARE;
2175 		if (fep->ptp_clock)
2176 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2177 		else
2178 			info->phc_index = -1;
2179 
2180 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2181 				 (1 << HWTSTAMP_TX_ON);
2182 
2183 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2184 				   (1 << HWTSTAMP_FILTER_ALL);
2185 		return 0;
2186 	} else {
2187 		return ethtool_op_get_ts_info(ndev, info);
2188 	}
2189 }
2190 
2191 #if !defined(CONFIG_M5272)
2192 
2193 static void fec_enet_get_pauseparam(struct net_device *ndev,
2194 				    struct ethtool_pauseparam *pause)
2195 {
2196 	struct fec_enet_private *fep = netdev_priv(ndev);
2197 
2198 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2199 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2200 	pause->rx_pause = pause->tx_pause;
2201 }
2202 
2203 static int fec_enet_set_pauseparam(struct net_device *ndev,
2204 				   struct ethtool_pauseparam *pause)
2205 {
2206 	struct fec_enet_private *fep = netdev_priv(ndev);
2207 
2208 	if (!ndev->phydev)
2209 		return -ENODEV;
2210 
2211 	if (pause->tx_pause != pause->rx_pause) {
2212 		netdev_info(ndev,
2213 			"hardware only support enable/disable both tx and rx");
2214 		return -EINVAL;
2215 	}
2216 
2217 	fep->pause_flag = 0;
2218 
2219 	/* tx pause must be same as rx pause */
2220 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2221 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2222 
2223 	if (pause->rx_pause || pause->autoneg) {
2224 		ndev->phydev->supported |= ADVERTISED_Pause;
2225 		ndev->phydev->advertising |= ADVERTISED_Pause;
2226 	} else {
2227 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2228 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2229 	}
2230 
2231 	if (pause->autoneg) {
2232 		if (netif_running(ndev))
2233 			fec_stop(ndev);
2234 		phy_start_aneg(ndev->phydev);
2235 	}
2236 	if (netif_running(ndev)) {
2237 		napi_disable(&fep->napi);
2238 		netif_tx_lock_bh(ndev);
2239 		fec_restart(ndev);
2240 		netif_wake_queue(ndev);
2241 		netif_tx_unlock_bh(ndev);
2242 		napi_enable(&fep->napi);
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static const struct fec_stat {
2249 	char name[ETH_GSTRING_LEN];
2250 	u16 offset;
2251 } fec_stats[] = {
2252 	/* RMON TX */
2253 	{ "tx_dropped", RMON_T_DROP },
2254 	{ "tx_packets", RMON_T_PACKETS },
2255 	{ "tx_broadcast", RMON_T_BC_PKT },
2256 	{ "tx_multicast", RMON_T_MC_PKT },
2257 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2258 	{ "tx_undersize", RMON_T_UNDERSIZE },
2259 	{ "tx_oversize", RMON_T_OVERSIZE },
2260 	{ "tx_fragment", RMON_T_FRAG },
2261 	{ "tx_jabber", RMON_T_JAB },
2262 	{ "tx_collision", RMON_T_COL },
2263 	{ "tx_64byte", RMON_T_P64 },
2264 	{ "tx_65to127byte", RMON_T_P65TO127 },
2265 	{ "tx_128to255byte", RMON_T_P128TO255 },
2266 	{ "tx_256to511byte", RMON_T_P256TO511 },
2267 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2268 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2269 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2270 	{ "tx_octets", RMON_T_OCTETS },
2271 
2272 	/* IEEE TX */
2273 	{ "IEEE_tx_drop", IEEE_T_DROP },
2274 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2275 	{ "IEEE_tx_1col", IEEE_T_1COL },
2276 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2277 	{ "IEEE_tx_def", IEEE_T_DEF },
2278 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2279 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2280 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2281 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2282 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2283 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2284 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2285 
2286 	/* RMON RX */
2287 	{ "rx_packets", RMON_R_PACKETS },
2288 	{ "rx_broadcast", RMON_R_BC_PKT },
2289 	{ "rx_multicast", RMON_R_MC_PKT },
2290 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2291 	{ "rx_undersize", RMON_R_UNDERSIZE },
2292 	{ "rx_oversize", RMON_R_OVERSIZE },
2293 	{ "rx_fragment", RMON_R_FRAG },
2294 	{ "rx_jabber", RMON_R_JAB },
2295 	{ "rx_64byte", RMON_R_P64 },
2296 	{ "rx_65to127byte", RMON_R_P65TO127 },
2297 	{ "rx_128to255byte", RMON_R_P128TO255 },
2298 	{ "rx_256to511byte", RMON_R_P256TO511 },
2299 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2300 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2301 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2302 	{ "rx_octets", RMON_R_OCTETS },
2303 
2304 	/* IEEE RX */
2305 	{ "IEEE_rx_drop", IEEE_R_DROP },
2306 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2307 	{ "IEEE_rx_crc", IEEE_R_CRC },
2308 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2309 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2310 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2311 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2312 };
2313 
2314 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2315 
2316 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2317 {
2318 	struct fec_enet_private *fep = netdev_priv(dev);
2319 	int i;
2320 
2321 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2322 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2323 }
2324 
2325 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2326 				       struct ethtool_stats *stats, u64 *data)
2327 {
2328 	struct fec_enet_private *fep = netdev_priv(dev);
2329 
2330 	if (netif_running(dev))
2331 		fec_enet_update_ethtool_stats(dev);
2332 
2333 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2334 }
2335 
2336 static void fec_enet_get_strings(struct net_device *netdev,
2337 	u32 stringset, u8 *data)
2338 {
2339 	int i;
2340 	switch (stringset) {
2341 	case ETH_SS_STATS:
2342 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2343 			memcpy(data + i * ETH_GSTRING_LEN,
2344 				fec_stats[i].name, ETH_GSTRING_LEN);
2345 		break;
2346 	}
2347 }
2348 
2349 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2350 {
2351 	switch (sset) {
2352 	case ETH_SS_STATS:
2353 		return ARRAY_SIZE(fec_stats);
2354 	default:
2355 		return -EOPNOTSUPP;
2356 	}
2357 }
2358 
2359 #else	/* !defined(CONFIG_M5272) */
2360 #define FEC_STATS_SIZE	0
2361 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2362 {
2363 }
2364 #endif /* !defined(CONFIG_M5272) */
2365 
2366 /* ITR clock source is enet system clock (clk_ahb).
2367  * TCTT unit is cycle_ns * 64 cycle
2368  * So, the ICTT value = X us / (cycle_ns * 64)
2369  */
2370 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2371 {
2372 	struct fec_enet_private *fep = netdev_priv(ndev);
2373 
2374 	return us * (fep->itr_clk_rate / 64000) / 1000;
2375 }
2376 
2377 /* Set threshold for interrupt coalescing */
2378 static void fec_enet_itr_coal_set(struct net_device *ndev)
2379 {
2380 	struct fec_enet_private *fep = netdev_priv(ndev);
2381 	int rx_itr, tx_itr;
2382 
2383 	/* Must be greater than zero to avoid unpredictable behavior */
2384 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2385 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2386 		return;
2387 
2388 	/* Select enet system clock as Interrupt Coalescing
2389 	 * timer Clock Source
2390 	 */
2391 	rx_itr = FEC_ITR_CLK_SEL;
2392 	tx_itr = FEC_ITR_CLK_SEL;
2393 
2394 	/* set ICFT and ICTT */
2395 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2396 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2397 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2398 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2399 
2400 	rx_itr |= FEC_ITR_EN;
2401 	tx_itr |= FEC_ITR_EN;
2402 
2403 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2404 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2405 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2406 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2407 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2408 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2409 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2410 	}
2411 }
2412 
2413 static int
2414 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2415 {
2416 	struct fec_enet_private *fep = netdev_priv(ndev);
2417 
2418 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2419 		return -EOPNOTSUPP;
2420 
2421 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2422 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2423 
2424 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2425 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2426 
2427 	return 0;
2428 }
2429 
2430 static int
2431 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2432 {
2433 	struct fec_enet_private *fep = netdev_priv(ndev);
2434 	unsigned int cycle;
2435 
2436 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2437 		return -EOPNOTSUPP;
2438 
2439 	if (ec->rx_max_coalesced_frames > 255) {
2440 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2441 		return -EINVAL;
2442 	}
2443 
2444 	if (ec->tx_max_coalesced_frames > 255) {
2445 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2446 		return -EINVAL;
2447 	}
2448 
2449 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2450 	if (cycle > 0xFFFF) {
2451 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2452 		return -EINVAL;
2453 	}
2454 
2455 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2456 	if (cycle > 0xFFFF) {
2457 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2458 		return -EINVAL;
2459 	}
2460 
2461 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2462 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2463 
2464 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2465 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2466 
2467 	fec_enet_itr_coal_set(ndev);
2468 
2469 	return 0;
2470 }
2471 
2472 static void fec_enet_itr_coal_init(struct net_device *ndev)
2473 {
2474 	struct ethtool_coalesce ec;
2475 
2476 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2477 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2478 
2479 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2480 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2481 
2482 	fec_enet_set_coalesce(ndev, &ec);
2483 }
2484 
2485 static int fec_enet_get_tunable(struct net_device *netdev,
2486 				const struct ethtool_tunable *tuna,
2487 				void *data)
2488 {
2489 	struct fec_enet_private *fep = netdev_priv(netdev);
2490 	int ret = 0;
2491 
2492 	switch (tuna->id) {
2493 	case ETHTOOL_RX_COPYBREAK:
2494 		*(u32 *)data = fep->rx_copybreak;
2495 		break;
2496 	default:
2497 		ret = -EINVAL;
2498 		break;
2499 	}
2500 
2501 	return ret;
2502 }
2503 
2504 static int fec_enet_set_tunable(struct net_device *netdev,
2505 				const struct ethtool_tunable *tuna,
2506 				const void *data)
2507 {
2508 	struct fec_enet_private *fep = netdev_priv(netdev);
2509 	int ret = 0;
2510 
2511 	switch (tuna->id) {
2512 	case ETHTOOL_RX_COPYBREAK:
2513 		fep->rx_copybreak = *(u32 *)data;
2514 		break;
2515 	default:
2516 		ret = -EINVAL;
2517 		break;
2518 	}
2519 
2520 	return ret;
2521 }
2522 
2523 static void
2524 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2525 {
2526 	struct fec_enet_private *fep = netdev_priv(ndev);
2527 
2528 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2529 		wol->supported = WAKE_MAGIC;
2530 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2531 	} else {
2532 		wol->supported = wol->wolopts = 0;
2533 	}
2534 }
2535 
2536 static int
2537 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2538 {
2539 	struct fec_enet_private *fep = netdev_priv(ndev);
2540 
2541 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2542 		return -EINVAL;
2543 
2544 	if (wol->wolopts & ~WAKE_MAGIC)
2545 		return -EINVAL;
2546 
2547 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2548 	if (device_may_wakeup(&ndev->dev)) {
2549 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2550 		if (fep->irq[0] > 0)
2551 			enable_irq_wake(fep->irq[0]);
2552 	} else {
2553 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2554 		if (fep->irq[0] > 0)
2555 			disable_irq_wake(fep->irq[0]);
2556 	}
2557 
2558 	return 0;
2559 }
2560 
2561 static const struct ethtool_ops fec_enet_ethtool_ops = {
2562 	.get_drvinfo		= fec_enet_get_drvinfo,
2563 	.get_regs_len		= fec_enet_get_regs_len,
2564 	.get_regs		= fec_enet_get_regs,
2565 	.nway_reset		= phy_ethtool_nway_reset,
2566 	.get_link		= ethtool_op_get_link,
2567 	.get_coalesce		= fec_enet_get_coalesce,
2568 	.set_coalesce		= fec_enet_set_coalesce,
2569 #ifndef CONFIG_M5272
2570 	.get_pauseparam		= fec_enet_get_pauseparam,
2571 	.set_pauseparam		= fec_enet_set_pauseparam,
2572 	.get_strings		= fec_enet_get_strings,
2573 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2574 	.get_sset_count		= fec_enet_get_sset_count,
2575 #endif
2576 	.get_ts_info		= fec_enet_get_ts_info,
2577 	.get_tunable		= fec_enet_get_tunable,
2578 	.set_tunable		= fec_enet_set_tunable,
2579 	.get_wol		= fec_enet_get_wol,
2580 	.set_wol		= fec_enet_set_wol,
2581 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2582 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2583 };
2584 
2585 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2586 {
2587 	struct fec_enet_private *fep = netdev_priv(ndev);
2588 	struct phy_device *phydev = ndev->phydev;
2589 
2590 	if (!netif_running(ndev))
2591 		return -EINVAL;
2592 
2593 	if (!phydev)
2594 		return -ENODEV;
2595 
2596 	if (fep->bufdesc_ex) {
2597 		if (cmd == SIOCSHWTSTAMP)
2598 			return fec_ptp_set(ndev, rq);
2599 		if (cmd == SIOCGHWTSTAMP)
2600 			return fec_ptp_get(ndev, rq);
2601 	}
2602 
2603 	return phy_mii_ioctl(phydev, rq, cmd);
2604 }
2605 
2606 static void fec_enet_free_buffers(struct net_device *ndev)
2607 {
2608 	struct fec_enet_private *fep = netdev_priv(ndev);
2609 	unsigned int i;
2610 	struct sk_buff *skb;
2611 	struct bufdesc	*bdp;
2612 	struct fec_enet_priv_tx_q *txq;
2613 	struct fec_enet_priv_rx_q *rxq;
2614 	unsigned int q;
2615 
2616 	for (q = 0; q < fep->num_rx_queues; q++) {
2617 		rxq = fep->rx_queue[q];
2618 		bdp = rxq->bd.base;
2619 		for (i = 0; i < rxq->bd.ring_size; i++) {
2620 			skb = rxq->rx_skbuff[i];
2621 			rxq->rx_skbuff[i] = NULL;
2622 			if (skb) {
2623 				dma_unmap_single(&fep->pdev->dev,
2624 						 fec32_to_cpu(bdp->cbd_bufaddr),
2625 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2626 						 DMA_FROM_DEVICE);
2627 				dev_kfree_skb(skb);
2628 			}
2629 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2630 		}
2631 	}
2632 
2633 	for (q = 0; q < fep->num_tx_queues; q++) {
2634 		txq = fep->tx_queue[q];
2635 		bdp = txq->bd.base;
2636 		for (i = 0; i < txq->bd.ring_size; i++) {
2637 			kfree(txq->tx_bounce[i]);
2638 			txq->tx_bounce[i] = NULL;
2639 			skb = txq->tx_skbuff[i];
2640 			txq->tx_skbuff[i] = NULL;
2641 			dev_kfree_skb(skb);
2642 		}
2643 	}
2644 }
2645 
2646 static void fec_enet_free_queue(struct net_device *ndev)
2647 {
2648 	struct fec_enet_private *fep = netdev_priv(ndev);
2649 	int i;
2650 	struct fec_enet_priv_tx_q *txq;
2651 
2652 	for (i = 0; i < fep->num_tx_queues; i++)
2653 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2654 			txq = fep->tx_queue[i];
2655 			dma_free_coherent(&fep->pdev->dev,
2656 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2657 					  txq->tso_hdrs,
2658 					  txq->tso_hdrs_dma);
2659 		}
2660 
2661 	for (i = 0; i < fep->num_rx_queues; i++)
2662 		kfree(fep->rx_queue[i]);
2663 	for (i = 0; i < fep->num_tx_queues; i++)
2664 		kfree(fep->tx_queue[i]);
2665 }
2666 
2667 static int fec_enet_alloc_queue(struct net_device *ndev)
2668 {
2669 	struct fec_enet_private *fep = netdev_priv(ndev);
2670 	int i;
2671 	int ret = 0;
2672 	struct fec_enet_priv_tx_q *txq;
2673 
2674 	for (i = 0; i < fep->num_tx_queues; i++) {
2675 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2676 		if (!txq) {
2677 			ret = -ENOMEM;
2678 			goto alloc_failed;
2679 		}
2680 
2681 		fep->tx_queue[i] = txq;
2682 		txq->bd.ring_size = TX_RING_SIZE;
2683 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2684 
2685 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2686 		txq->tx_wake_threshold =
2687 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2688 
2689 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2690 					txq->bd.ring_size * TSO_HEADER_SIZE,
2691 					&txq->tso_hdrs_dma,
2692 					GFP_KERNEL);
2693 		if (!txq->tso_hdrs) {
2694 			ret = -ENOMEM;
2695 			goto alloc_failed;
2696 		}
2697 	}
2698 
2699 	for (i = 0; i < fep->num_rx_queues; i++) {
2700 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2701 					   GFP_KERNEL);
2702 		if (!fep->rx_queue[i]) {
2703 			ret = -ENOMEM;
2704 			goto alloc_failed;
2705 		}
2706 
2707 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2708 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2709 	}
2710 	return ret;
2711 
2712 alloc_failed:
2713 	fec_enet_free_queue(ndev);
2714 	return ret;
2715 }
2716 
2717 static int
2718 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2719 {
2720 	struct fec_enet_private *fep = netdev_priv(ndev);
2721 	unsigned int i;
2722 	struct sk_buff *skb;
2723 	struct bufdesc	*bdp;
2724 	struct fec_enet_priv_rx_q *rxq;
2725 
2726 	rxq = fep->rx_queue[queue];
2727 	bdp = rxq->bd.base;
2728 	for (i = 0; i < rxq->bd.ring_size; i++) {
2729 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2730 		if (!skb)
2731 			goto err_alloc;
2732 
2733 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2734 			dev_kfree_skb(skb);
2735 			goto err_alloc;
2736 		}
2737 
2738 		rxq->rx_skbuff[i] = skb;
2739 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2740 
2741 		if (fep->bufdesc_ex) {
2742 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2743 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2744 		}
2745 
2746 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2747 	}
2748 
2749 	/* Set the last buffer to wrap. */
2750 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2751 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2752 	return 0;
2753 
2754  err_alloc:
2755 	fec_enet_free_buffers(ndev);
2756 	return -ENOMEM;
2757 }
2758 
2759 static int
2760 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2761 {
2762 	struct fec_enet_private *fep = netdev_priv(ndev);
2763 	unsigned int i;
2764 	struct bufdesc  *bdp;
2765 	struct fec_enet_priv_tx_q *txq;
2766 
2767 	txq = fep->tx_queue[queue];
2768 	bdp = txq->bd.base;
2769 	for (i = 0; i < txq->bd.ring_size; i++) {
2770 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2771 		if (!txq->tx_bounce[i])
2772 			goto err_alloc;
2773 
2774 		bdp->cbd_sc = cpu_to_fec16(0);
2775 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2776 
2777 		if (fep->bufdesc_ex) {
2778 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2779 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2780 		}
2781 
2782 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2783 	}
2784 
2785 	/* Set the last buffer to wrap. */
2786 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2787 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2788 
2789 	return 0;
2790 
2791  err_alloc:
2792 	fec_enet_free_buffers(ndev);
2793 	return -ENOMEM;
2794 }
2795 
2796 static int fec_enet_alloc_buffers(struct net_device *ndev)
2797 {
2798 	struct fec_enet_private *fep = netdev_priv(ndev);
2799 	unsigned int i;
2800 
2801 	for (i = 0; i < fep->num_rx_queues; i++)
2802 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2803 			return -ENOMEM;
2804 
2805 	for (i = 0; i < fep->num_tx_queues; i++)
2806 		if (fec_enet_alloc_txq_buffers(ndev, i))
2807 			return -ENOMEM;
2808 	return 0;
2809 }
2810 
2811 static int
2812 fec_enet_open(struct net_device *ndev)
2813 {
2814 	struct fec_enet_private *fep = netdev_priv(ndev);
2815 	int ret;
2816 
2817 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2818 	if (ret < 0)
2819 		return ret;
2820 
2821 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2822 	ret = fec_enet_clk_enable(ndev, true);
2823 	if (ret)
2824 		goto clk_enable;
2825 
2826 	/* I should reset the ring buffers here, but I don't yet know
2827 	 * a simple way to do that.
2828 	 */
2829 
2830 	ret = fec_enet_alloc_buffers(ndev);
2831 	if (ret)
2832 		goto err_enet_alloc;
2833 
2834 	/* Init MAC prior to mii bus probe */
2835 	fec_restart(ndev);
2836 
2837 	/* Probe and connect to PHY when open the interface */
2838 	ret = fec_enet_mii_probe(ndev);
2839 	if (ret)
2840 		goto err_enet_mii_probe;
2841 
2842 	if (fep->quirks & FEC_QUIRK_ERR006687)
2843 		imx6q_cpuidle_fec_irqs_used();
2844 
2845 	napi_enable(&fep->napi);
2846 	phy_start(ndev->phydev);
2847 	netif_tx_start_all_queues(ndev);
2848 
2849 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2850 				 FEC_WOL_FLAG_ENABLE);
2851 
2852 	return 0;
2853 
2854 err_enet_mii_probe:
2855 	fec_enet_free_buffers(ndev);
2856 err_enet_alloc:
2857 	fec_enet_clk_enable(ndev, false);
2858 clk_enable:
2859 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2860 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2861 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2862 	return ret;
2863 }
2864 
2865 static int
2866 fec_enet_close(struct net_device *ndev)
2867 {
2868 	struct fec_enet_private *fep = netdev_priv(ndev);
2869 
2870 	phy_stop(ndev->phydev);
2871 
2872 	if (netif_device_present(ndev)) {
2873 		napi_disable(&fep->napi);
2874 		netif_tx_disable(ndev);
2875 		fec_stop(ndev);
2876 	}
2877 
2878 	phy_disconnect(ndev->phydev);
2879 
2880 	if (fep->quirks & FEC_QUIRK_ERR006687)
2881 		imx6q_cpuidle_fec_irqs_unused();
2882 
2883 	fec_enet_update_ethtool_stats(ndev);
2884 
2885 	fec_enet_clk_enable(ndev, false);
2886 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2887 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2888 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2889 
2890 	fec_enet_free_buffers(ndev);
2891 
2892 	return 0;
2893 }
2894 
2895 /* Set or clear the multicast filter for this adaptor.
2896  * Skeleton taken from sunlance driver.
2897  * The CPM Ethernet implementation allows Multicast as well as individual
2898  * MAC address filtering.  Some of the drivers check to make sure it is
2899  * a group multicast address, and discard those that are not.  I guess I
2900  * will do the same for now, but just remove the test if you want
2901  * individual filtering as well (do the upper net layers want or support
2902  * this kind of feature?).
2903  */
2904 
2905 #define FEC_HASH_BITS	6		/* #bits in hash */
2906 #define CRC32_POLY	0xEDB88320
2907 
2908 static void set_multicast_list(struct net_device *ndev)
2909 {
2910 	struct fec_enet_private *fep = netdev_priv(ndev);
2911 	struct netdev_hw_addr *ha;
2912 	unsigned int i, bit, data, crc, tmp;
2913 	unsigned char hash;
2914 	unsigned int hash_high = 0, hash_low = 0;
2915 
2916 	if (ndev->flags & IFF_PROMISC) {
2917 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2918 		tmp |= 0x8;
2919 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2920 		return;
2921 	}
2922 
2923 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2924 	tmp &= ~0x8;
2925 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2926 
2927 	if (ndev->flags & IFF_ALLMULTI) {
2928 		/* Catch all multicast addresses, so set the
2929 		 * filter to all 1's
2930 		 */
2931 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2932 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2933 
2934 		return;
2935 	}
2936 
2937 	/* Add the addresses in hash register */
2938 	netdev_for_each_mc_addr(ha, ndev) {
2939 		/* calculate crc32 value of mac address */
2940 		crc = 0xffffffff;
2941 
2942 		for (i = 0; i < ndev->addr_len; i++) {
2943 			data = ha->addr[i];
2944 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2945 				crc = (crc >> 1) ^
2946 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2947 			}
2948 		}
2949 
2950 		/* only upper 6 bits (FEC_HASH_BITS) are used
2951 		 * which point to specific bit in the hash registers
2952 		 */
2953 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2954 
2955 		if (hash > 31)
2956 			hash_high |= 1 << (hash - 32);
2957 		else
2958 			hash_low |= 1 << hash;
2959 	}
2960 
2961 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2962 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2963 }
2964 
2965 /* Set a MAC change in hardware. */
2966 static int
2967 fec_set_mac_address(struct net_device *ndev, void *p)
2968 {
2969 	struct fec_enet_private *fep = netdev_priv(ndev);
2970 	struct sockaddr *addr = p;
2971 
2972 	if (addr) {
2973 		if (!is_valid_ether_addr(addr->sa_data))
2974 			return -EADDRNOTAVAIL;
2975 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2976 	}
2977 
2978 	/* Add netif status check here to avoid system hang in below case:
2979 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2980 	 * After ethx down, fec all clocks are gated off and then register
2981 	 * access causes system hang.
2982 	 */
2983 	if (!netif_running(ndev))
2984 		return 0;
2985 
2986 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2987 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2988 		fep->hwp + FEC_ADDR_LOW);
2989 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2990 		fep->hwp + FEC_ADDR_HIGH);
2991 	return 0;
2992 }
2993 
2994 #ifdef CONFIG_NET_POLL_CONTROLLER
2995 /**
2996  * fec_poll_controller - FEC Poll controller function
2997  * @dev: The FEC network adapter
2998  *
2999  * Polled functionality used by netconsole and others in non interrupt mode
3000  *
3001  */
3002 static void fec_poll_controller(struct net_device *dev)
3003 {
3004 	int i;
3005 	struct fec_enet_private *fep = netdev_priv(dev);
3006 
3007 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3008 		if (fep->irq[i] > 0) {
3009 			disable_irq(fep->irq[i]);
3010 			fec_enet_interrupt(fep->irq[i], dev);
3011 			enable_irq(fep->irq[i]);
3012 		}
3013 	}
3014 }
3015 #endif
3016 
3017 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3018 	netdev_features_t features)
3019 {
3020 	struct fec_enet_private *fep = netdev_priv(netdev);
3021 	netdev_features_t changed = features ^ netdev->features;
3022 
3023 	netdev->features = features;
3024 
3025 	/* Receive checksum has been changed */
3026 	if (changed & NETIF_F_RXCSUM) {
3027 		if (features & NETIF_F_RXCSUM)
3028 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3029 		else
3030 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3031 	}
3032 }
3033 
3034 static int fec_set_features(struct net_device *netdev,
3035 	netdev_features_t features)
3036 {
3037 	struct fec_enet_private *fep = netdev_priv(netdev);
3038 	netdev_features_t changed = features ^ netdev->features;
3039 
3040 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3041 		napi_disable(&fep->napi);
3042 		netif_tx_lock_bh(netdev);
3043 		fec_stop(netdev);
3044 		fec_enet_set_netdev_features(netdev, features);
3045 		fec_restart(netdev);
3046 		netif_tx_wake_all_queues(netdev);
3047 		netif_tx_unlock_bh(netdev);
3048 		napi_enable(&fep->napi);
3049 	} else {
3050 		fec_enet_set_netdev_features(netdev, features);
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 static const struct net_device_ops fec_netdev_ops = {
3057 	.ndo_open		= fec_enet_open,
3058 	.ndo_stop		= fec_enet_close,
3059 	.ndo_start_xmit		= fec_enet_start_xmit,
3060 	.ndo_set_rx_mode	= set_multicast_list,
3061 	.ndo_validate_addr	= eth_validate_addr,
3062 	.ndo_tx_timeout		= fec_timeout,
3063 	.ndo_set_mac_address	= fec_set_mac_address,
3064 	.ndo_do_ioctl		= fec_enet_ioctl,
3065 #ifdef CONFIG_NET_POLL_CONTROLLER
3066 	.ndo_poll_controller	= fec_poll_controller,
3067 #endif
3068 	.ndo_set_features	= fec_set_features,
3069 };
3070 
3071 static const unsigned short offset_des_active_rxq[] = {
3072 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3073 };
3074 
3075 static const unsigned short offset_des_active_txq[] = {
3076 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3077 };
3078 
3079  /*
3080   * XXX:  We need to clean up on failure exits here.
3081   *
3082   */
3083 static int fec_enet_init(struct net_device *ndev)
3084 {
3085 	struct fec_enet_private *fep = netdev_priv(ndev);
3086 	struct bufdesc *cbd_base;
3087 	dma_addr_t bd_dma;
3088 	int bd_size;
3089 	unsigned int i;
3090 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3091 			sizeof(struct bufdesc);
3092 	unsigned dsize_log2 = __fls(dsize);
3093 
3094 	WARN_ON(dsize != (1 << dsize_log2));
3095 #if defined(CONFIG_ARM)
3096 	fep->rx_align = 0xf;
3097 	fep->tx_align = 0xf;
3098 #else
3099 	fep->rx_align = 0x3;
3100 	fep->tx_align = 0x3;
3101 #endif
3102 
3103 	fec_enet_alloc_queue(ndev);
3104 
3105 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3106 
3107 	/* Allocate memory for buffer descriptors. */
3108 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3109 				       GFP_KERNEL);
3110 	if (!cbd_base) {
3111 		return -ENOMEM;
3112 	}
3113 
3114 	memset(cbd_base, 0, bd_size);
3115 
3116 	/* Get the Ethernet address */
3117 	fec_get_mac(ndev);
3118 	/* make sure MAC we just acquired is programmed into the hw */
3119 	fec_set_mac_address(ndev, NULL);
3120 
3121 	/* Set receive and transmit descriptor base. */
3122 	for (i = 0; i < fep->num_rx_queues; i++) {
3123 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3124 		unsigned size = dsize * rxq->bd.ring_size;
3125 
3126 		rxq->bd.qid = i;
3127 		rxq->bd.base = cbd_base;
3128 		rxq->bd.cur = cbd_base;
3129 		rxq->bd.dma = bd_dma;
3130 		rxq->bd.dsize = dsize;
3131 		rxq->bd.dsize_log2 = dsize_log2;
3132 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3133 		bd_dma += size;
3134 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3135 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3136 	}
3137 
3138 	for (i = 0; i < fep->num_tx_queues; i++) {
3139 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3140 		unsigned size = dsize * txq->bd.ring_size;
3141 
3142 		txq->bd.qid = i;
3143 		txq->bd.base = cbd_base;
3144 		txq->bd.cur = cbd_base;
3145 		txq->bd.dma = bd_dma;
3146 		txq->bd.dsize = dsize;
3147 		txq->bd.dsize_log2 = dsize_log2;
3148 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3149 		bd_dma += size;
3150 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3151 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3152 	}
3153 
3154 
3155 	/* The FEC Ethernet specific entries in the device structure */
3156 	ndev->watchdog_timeo = TX_TIMEOUT;
3157 	ndev->netdev_ops = &fec_netdev_ops;
3158 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3159 
3160 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3161 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3162 
3163 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3164 		/* enable hw VLAN support */
3165 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3166 
3167 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3168 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3169 
3170 		/* enable hw accelerator */
3171 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3172 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3173 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3174 	}
3175 
3176 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3177 		fep->tx_align = 0;
3178 		fep->rx_align = 0x3f;
3179 	}
3180 
3181 	ndev->hw_features = ndev->features;
3182 
3183 	fec_restart(ndev);
3184 
3185 	fec_enet_update_ethtool_stats(ndev);
3186 
3187 	return 0;
3188 }
3189 
3190 #ifdef CONFIG_OF
3191 static int fec_reset_phy(struct platform_device *pdev)
3192 {
3193 	int err, phy_reset;
3194 	bool active_high = false;
3195 	int msec = 1, phy_post_delay = 0;
3196 	struct device_node *np = pdev->dev.of_node;
3197 
3198 	if (!np)
3199 		return 0;
3200 
3201 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3202 	/* A sane reset duration should not be longer than 1s */
3203 	if (!err && msec > 1000)
3204 		msec = 1;
3205 
3206 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3207 	if (phy_reset == -EPROBE_DEFER)
3208 		return phy_reset;
3209 	else if (!gpio_is_valid(phy_reset))
3210 		return 0;
3211 
3212 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3213 	/* valid reset duration should be less than 1s */
3214 	if (!err && phy_post_delay > 1000)
3215 		return -EINVAL;
3216 
3217 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3218 
3219 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3220 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3221 			"phy-reset");
3222 	if (err) {
3223 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3224 		return err;
3225 	}
3226 
3227 	if (msec > 20)
3228 		msleep(msec);
3229 	else
3230 		usleep_range(msec * 1000, msec * 1000 + 1000);
3231 
3232 	gpio_set_value_cansleep(phy_reset, !active_high);
3233 
3234 	if (!phy_post_delay)
3235 		return 0;
3236 
3237 	if (phy_post_delay > 20)
3238 		msleep(phy_post_delay);
3239 	else
3240 		usleep_range(phy_post_delay * 1000,
3241 			     phy_post_delay * 1000 + 1000);
3242 
3243 	return 0;
3244 }
3245 #else /* CONFIG_OF */
3246 static int fec_reset_phy(struct platform_device *pdev)
3247 {
3248 	/*
3249 	 * In case of platform probe, the reset has been done
3250 	 * by machine code.
3251 	 */
3252 	return 0;
3253 }
3254 #endif /* CONFIG_OF */
3255 
3256 static void
3257 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3258 {
3259 	struct device_node *np = pdev->dev.of_node;
3260 
3261 	*num_tx = *num_rx = 1;
3262 
3263 	if (!np || !of_device_is_available(np))
3264 		return;
3265 
3266 	/* parse the num of tx and rx queues */
3267 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3268 
3269 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3270 
3271 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3272 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3273 			 *num_tx);
3274 		*num_tx = 1;
3275 		return;
3276 	}
3277 
3278 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3279 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3280 			 *num_rx);
3281 		*num_rx = 1;
3282 		return;
3283 	}
3284 
3285 }
3286 
3287 static int
3288 fec_probe(struct platform_device *pdev)
3289 {
3290 	struct fec_enet_private *fep;
3291 	struct fec_platform_data *pdata;
3292 	struct net_device *ndev;
3293 	int i, irq, ret = 0;
3294 	struct resource *r;
3295 	const struct of_device_id *of_id;
3296 	static int dev_id;
3297 	struct device_node *np = pdev->dev.of_node, *phy_node;
3298 	int num_tx_qs;
3299 	int num_rx_qs;
3300 
3301 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3302 
3303 	/* Init network device */
3304 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3305 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3306 	if (!ndev)
3307 		return -ENOMEM;
3308 
3309 	SET_NETDEV_DEV(ndev, &pdev->dev);
3310 
3311 	/* setup board info structure */
3312 	fep = netdev_priv(ndev);
3313 
3314 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3315 	if (of_id)
3316 		pdev->id_entry = of_id->data;
3317 	fep->quirks = pdev->id_entry->driver_data;
3318 
3319 	fep->netdev = ndev;
3320 	fep->num_rx_queues = num_rx_qs;
3321 	fep->num_tx_queues = num_tx_qs;
3322 
3323 #if !defined(CONFIG_M5272)
3324 	/* default enable pause frame auto negotiation */
3325 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3326 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3327 #endif
3328 
3329 	/* Select default pin state */
3330 	pinctrl_pm_select_default_state(&pdev->dev);
3331 
3332 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3333 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3334 	if (IS_ERR(fep->hwp)) {
3335 		ret = PTR_ERR(fep->hwp);
3336 		goto failed_ioremap;
3337 	}
3338 
3339 	fep->pdev = pdev;
3340 	fep->dev_id = dev_id++;
3341 
3342 	platform_set_drvdata(pdev, ndev);
3343 
3344 	if ((of_machine_is_compatible("fsl,imx6q") ||
3345 	     of_machine_is_compatible("fsl,imx6dl")) &&
3346 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3347 		fep->quirks |= FEC_QUIRK_ERR006687;
3348 
3349 	if (of_get_property(np, "fsl,magic-packet", NULL))
3350 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3351 
3352 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3353 	if (!phy_node && of_phy_is_fixed_link(np)) {
3354 		ret = of_phy_register_fixed_link(np);
3355 		if (ret < 0) {
3356 			dev_err(&pdev->dev,
3357 				"broken fixed-link specification\n");
3358 			goto failed_phy;
3359 		}
3360 		phy_node = of_node_get(np);
3361 	}
3362 	fep->phy_node = phy_node;
3363 
3364 	ret = of_get_phy_mode(pdev->dev.of_node);
3365 	if (ret < 0) {
3366 		pdata = dev_get_platdata(&pdev->dev);
3367 		if (pdata)
3368 			fep->phy_interface = pdata->phy;
3369 		else
3370 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3371 	} else {
3372 		fep->phy_interface = ret;
3373 	}
3374 
3375 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3376 	if (IS_ERR(fep->clk_ipg)) {
3377 		ret = PTR_ERR(fep->clk_ipg);
3378 		goto failed_clk;
3379 	}
3380 
3381 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3382 	if (IS_ERR(fep->clk_ahb)) {
3383 		ret = PTR_ERR(fep->clk_ahb);
3384 		goto failed_clk;
3385 	}
3386 
3387 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3388 
3389 	/* enet_out is optional, depends on board */
3390 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3391 	if (IS_ERR(fep->clk_enet_out))
3392 		fep->clk_enet_out = NULL;
3393 
3394 	fep->ptp_clk_on = false;
3395 	mutex_init(&fep->ptp_clk_mutex);
3396 
3397 	/* clk_ref is optional, depends on board */
3398 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3399 	if (IS_ERR(fep->clk_ref))
3400 		fep->clk_ref = NULL;
3401 
3402 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3403 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3404 	if (IS_ERR(fep->clk_ptp)) {
3405 		fep->clk_ptp = NULL;
3406 		fep->bufdesc_ex = false;
3407 	}
3408 
3409 	ret = fec_enet_clk_enable(ndev, true);
3410 	if (ret)
3411 		goto failed_clk;
3412 
3413 	ret = clk_prepare_enable(fep->clk_ipg);
3414 	if (ret)
3415 		goto failed_clk_ipg;
3416 
3417 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3418 	if (!IS_ERR(fep->reg_phy)) {
3419 		ret = regulator_enable(fep->reg_phy);
3420 		if (ret) {
3421 			dev_err(&pdev->dev,
3422 				"Failed to enable phy regulator: %d\n", ret);
3423 			clk_disable_unprepare(fep->clk_ipg);
3424 			goto failed_regulator;
3425 		}
3426 	} else {
3427 		fep->reg_phy = NULL;
3428 	}
3429 
3430 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3431 	pm_runtime_use_autosuspend(&pdev->dev);
3432 	pm_runtime_get_noresume(&pdev->dev);
3433 	pm_runtime_set_active(&pdev->dev);
3434 	pm_runtime_enable(&pdev->dev);
3435 
3436 	ret = fec_reset_phy(pdev);
3437 	if (ret)
3438 		goto failed_reset;
3439 
3440 	if (fep->bufdesc_ex)
3441 		fec_ptp_init(pdev);
3442 
3443 	ret = fec_enet_init(ndev);
3444 	if (ret)
3445 		goto failed_init;
3446 
3447 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3448 		irq = platform_get_irq(pdev, i);
3449 		if (irq < 0) {
3450 			if (i)
3451 				break;
3452 			ret = irq;
3453 			goto failed_irq;
3454 		}
3455 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3456 				       0, pdev->name, ndev);
3457 		if (ret)
3458 			goto failed_irq;
3459 
3460 		fep->irq[i] = irq;
3461 	}
3462 
3463 	init_completion(&fep->mdio_done);
3464 	ret = fec_enet_mii_init(pdev);
3465 	if (ret)
3466 		goto failed_mii_init;
3467 
3468 	/* Carrier starts down, phylib will bring it up */
3469 	netif_carrier_off(ndev);
3470 	fec_enet_clk_enable(ndev, false);
3471 	pinctrl_pm_select_sleep_state(&pdev->dev);
3472 
3473 	ret = register_netdev(ndev);
3474 	if (ret)
3475 		goto failed_register;
3476 
3477 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3478 			   FEC_WOL_HAS_MAGIC_PACKET);
3479 
3480 	if (fep->bufdesc_ex && fep->ptp_clock)
3481 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3482 
3483 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3484 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3485 
3486 	pm_runtime_mark_last_busy(&pdev->dev);
3487 	pm_runtime_put_autosuspend(&pdev->dev);
3488 
3489 	return 0;
3490 
3491 failed_register:
3492 	fec_enet_mii_remove(fep);
3493 failed_mii_init:
3494 failed_irq:
3495 failed_init:
3496 	fec_ptp_stop(pdev);
3497 	if (fep->reg_phy)
3498 		regulator_disable(fep->reg_phy);
3499 failed_reset:
3500 	pm_runtime_put(&pdev->dev);
3501 	pm_runtime_disable(&pdev->dev);
3502 failed_regulator:
3503 failed_clk_ipg:
3504 	fec_enet_clk_enable(ndev, false);
3505 failed_clk:
3506 	if (of_phy_is_fixed_link(np))
3507 		of_phy_deregister_fixed_link(np);
3508 failed_phy:
3509 	of_node_put(phy_node);
3510 failed_ioremap:
3511 	free_netdev(ndev);
3512 
3513 	return ret;
3514 }
3515 
3516 static int
3517 fec_drv_remove(struct platform_device *pdev)
3518 {
3519 	struct net_device *ndev = platform_get_drvdata(pdev);
3520 	struct fec_enet_private *fep = netdev_priv(ndev);
3521 	struct device_node *np = pdev->dev.of_node;
3522 
3523 	cancel_work_sync(&fep->tx_timeout_work);
3524 	fec_ptp_stop(pdev);
3525 	unregister_netdev(ndev);
3526 	fec_enet_mii_remove(fep);
3527 	if (fep->reg_phy)
3528 		regulator_disable(fep->reg_phy);
3529 	if (of_phy_is_fixed_link(np))
3530 		of_phy_deregister_fixed_link(np);
3531 	of_node_put(fep->phy_node);
3532 	free_netdev(ndev);
3533 
3534 	return 0;
3535 }
3536 
3537 static int __maybe_unused fec_suspend(struct device *dev)
3538 {
3539 	struct net_device *ndev = dev_get_drvdata(dev);
3540 	struct fec_enet_private *fep = netdev_priv(ndev);
3541 
3542 	rtnl_lock();
3543 	if (netif_running(ndev)) {
3544 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3545 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3546 		phy_stop(ndev->phydev);
3547 		napi_disable(&fep->napi);
3548 		netif_tx_lock_bh(ndev);
3549 		netif_device_detach(ndev);
3550 		netif_tx_unlock_bh(ndev);
3551 		fec_stop(ndev);
3552 		fec_enet_clk_enable(ndev, false);
3553 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3554 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3555 	}
3556 	rtnl_unlock();
3557 
3558 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3559 		regulator_disable(fep->reg_phy);
3560 
3561 	/* SOC supply clock to phy, when clock is disabled, phy link down
3562 	 * SOC control phy regulator, when regulator is disabled, phy link down
3563 	 */
3564 	if (fep->clk_enet_out || fep->reg_phy)
3565 		fep->link = 0;
3566 
3567 	return 0;
3568 }
3569 
3570 static int __maybe_unused fec_resume(struct device *dev)
3571 {
3572 	struct net_device *ndev = dev_get_drvdata(dev);
3573 	struct fec_enet_private *fep = netdev_priv(ndev);
3574 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3575 	int ret;
3576 	int val;
3577 
3578 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3579 		ret = regulator_enable(fep->reg_phy);
3580 		if (ret)
3581 			return ret;
3582 	}
3583 
3584 	rtnl_lock();
3585 	if (netif_running(ndev)) {
3586 		ret = fec_enet_clk_enable(ndev, true);
3587 		if (ret) {
3588 			rtnl_unlock();
3589 			goto failed_clk;
3590 		}
3591 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3592 			if (pdata && pdata->sleep_mode_enable)
3593 				pdata->sleep_mode_enable(false);
3594 			val = readl(fep->hwp + FEC_ECNTRL);
3595 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3596 			writel(val, fep->hwp + FEC_ECNTRL);
3597 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3598 		} else {
3599 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3600 		}
3601 		fec_restart(ndev);
3602 		netif_tx_lock_bh(ndev);
3603 		netif_device_attach(ndev);
3604 		netif_tx_unlock_bh(ndev);
3605 		napi_enable(&fep->napi);
3606 		phy_start(ndev->phydev);
3607 	}
3608 	rtnl_unlock();
3609 
3610 	return 0;
3611 
3612 failed_clk:
3613 	if (fep->reg_phy)
3614 		regulator_disable(fep->reg_phy);
3615 	return ret;
3616 }
3617 
3618 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3619 {
3620 	struct net_device *ndev = dev_get_drvdata(dev);
3621 	struct fec_enet_private *fep = netdev_priv(ndev);
3622 
3623 	clk_disable_unprepare(fep->clk_ipg);
3624 
3625 	return 0;
3626 }
3627 
3628 static int __maybe_unused fec_runtime_resume(struct device *dev)
3629 {
3630 	struct net_device *ndev = dev_get_drvdata(dev);
3631 	struct fec_enet_private *fep = netdev_priv(ndev);
3632 
3633 	return clk_prepare_enable(fep->clk_ipg);
3634 }
3635 
3636 static const struct dev_pm_ops fec_pm_ops = {
3637 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3638 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3639 };
3640 
3641 static struct platform_driver fec_driver = {
3642 	.driver	= {
3643 		.name	= DRIVER_NAME,
3644 		.pm	= &fec_pm_ops,
3645 		.of_match_table = fec_dt_ids,
3646 	},
3647 	.id_table = fec_devtype,
3648 	.probe	= fec_probe,
3649 	.remove	= fec_drv_remove,
3650 };
3651 
3652 module_platform_driver(fec_driver);
3653 
3654 MODULE_ALIAS("platform:"DRIVER_NAME);
3655 MODULE_LICENSE("GPL");
3656