1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/pinctrl/consumer.h>
57 #include <linux/regulator/consumer.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 #if defined(CONFIG_ARM)
64 #define FEC_ALIGNMENT	0xf
65 #else
66 #define FEC_ALIGNMENT	0x3
67 #endif
68 
69 #define DRIVER_NAME	"fec"
70 #define FEC_NAPI_WEIGHT	64
71 
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE	(1 << 5)
74 #define FEC_ENET_RSEM_V	0x84
75 #define FEC_ENET_RSFL_V	16
76 #define FEC_ENET_RAEM_V	0x8
77 #define FEC_ENET_RAFL_V	0x8
78 #define FEC_ENET_OPD_V	0xFFF0
79 
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC		(1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET		(1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
92 
93 static struct platform_device_id fec_devtype[] = {
94 	{
95 		/* keep it for coldfire */
96 		.name = DRIVER_NAME,
97 		.driver_data = 0,
98 	}, {
99 		.name = "imx25-fec",
100 		.driver_data = FEC_QUIRK_USE_GASKET,
101 	}, {
102 		.name = "imx27-fec",
103 		.driver_data = 0,
104 	}, {
105 		.name = "imx28-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
107 	}, {
108 		.name = "imx6q-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM,
111 	}, {
112 		.name = "mvf600-fec",
113 		.driver_data = FEC_QUIRK_ENET_MAC,
114 	}, {
115 		/* sentinel */
116 	}
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119 
120 enum imx_fec_type {
121 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
122 	IMX27_FEC,	/* runs on i.mx27/35/51 */
123 	IMX28_FEC,
124 	IMX6Q_FEC,
125 	MVF600_FEC,
126 };
127 
128 static const struct of_device_id fec_dt_ids[] = {
129 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
130 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
131 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
132 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
133 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
134 	{ /* sentinel */ }
135 };
136 MODULE_DEVICE_TABLE(of, fec_dt_ids);
137 
138 static unsigned char macaddr[ETH_ALEN];
139 module_param_array(macaddr, byte, NULL, 0);
140 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
141 
142 #if defined(CONFIG_M5272)
143 /*
144  * Some hardware gets it MAC address out of local flash memory.
145  * if this is non-zero then assume it is the address to get MAC from.
146  */
147 #if defined(CONFIG_NETtel)
148 #define	FEC_FLASHMAC	0xf0006006
149 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
150 #define	FEC_FLASHMAC	0xf0006000
151 #elif defined(CONFIG_CANCam)
152 #define	FEC_FLASHMAC	0xf0020000
153 #elif defined (CONFIG_M5272C3)
154 #define	FEC_FLASHMAC	(0xffe04000 + 4)
155 #elif defined(CONFIG_MOD5272)
156 #define FEC_FLASHMAC	0xffc0406b
157 #else
158 #define	FEC_FLASHMAC	0
159 #endif
160 #endif /* CONFIG_M5272 */
161 
162 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
163 #error "FEC: descriptor ring size constants too large"
164 #endif
165 
166 /* Interrupt events/masks. */
167 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
168 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
169 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
170 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
171 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
172 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
173 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
174 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
175 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
176 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
177 
178 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
179 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
180 
181 /* The FEC stores dest/src/type, data, and checksum for receive packets.
182  */
183 #define PKT_MAXBUF_SIZE		1518
184 #define PKT_MINBUF_SIZE		64
185 #define PKT_MAXBLR_SIZE		1520
186 
187 /* FEC receive acceleration */
188 #define FEC_RACC_IPDIS		(1 << 1)
189 #define FEC_RACC_PRODIS		(1 << 2)
190 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
191 
192 /*
193  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194  * size bits. Other FEC hardware does not, so we need to take that into
195  * account when setting it.
196  */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
200 #else
201 #define	OPT_FRAME_SIZE	0
202 #endif
203 
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST		(1 << 30)
206 #define FEC_MMFR_OP_READ	(2 << 28)
207 #define FEC_MMFR_OP_WRITE	(1 << 28)
208 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
210 #define FEC_MMFR_TA		(2 << 16)
211 #define FEC_MMFR_DATA(v)	(v & 0xffff)
212 
213 #define FEC_MII_TIMEOUT		30000 /* us */
214 
215 /* Transmitter timeout */
216 #define TX_TIMEOUT (2 * HZ)
217 
218 #define FEC_PAUSE_FLAG_AUTONEG	0x1
219 #define FEC_PAUSE_FLAG_ENABLE	0x2
220 
221 static int mii_cnt;
222 
223 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, int is_ex)
224 {
225 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
226 	if (is_ex)
227 		return (struct bufdesc *)(ex + 1);
228 	else
229 		return bdp + 1;
230 }
231 
232 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, int is_ex)
233 {
234 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
235 	if (is_ex)
236 		return (struct bufdesc *)(ex - 1);
237 	else
238 		return bdp - 1;
239 }
240 
241 static void *swap_buffer(void *bufaddr, int len)
242 {
243 	int i;
244 	unsigned int *buf = bufaddr;
245 
246 	for (i = 0; i < (len + 3) / 4; i++, buf++)
247 		*buf = cpu_to_be32(*buf);
248 
249 	return bufaddr;
250 }
251 
252 static int
253 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
254 {
255 	/* Only run for packets requiring a checksum. */
256 	if (skb->ip_summed != CHECKSUM_PARTIAL)
257 		return 0;
258 
259 	if (unlikely(skb_cow_head(skb, 0)))
260 		return -1;
261 
262 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
263 
264 	return 0;
265 }
266 
267 static netdev_tx_t
268 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
269 {
270 	struct fec_enet_private *fep = netdev_priv(ndev);
271 	const struct platform_device_id *id_entry =
272 				platform_get_device_id(fep->pdev);
273 	struct bufdesc *bdp;
274 	void *bufaddr;
275 	unsigned short	status;
276 	unsigned int index;
277 
278 	if (!fep->link) {
279 		/* Link is down or auto-negotiation is in progress. */
280 		return NETDEV_TX_BUSY;
281 	}
282 
283 	/* Fill in a Tx ring entry */
284 	bdp = fep->cur_tx;
285 
286 	status = bdp->cbd_sc;
287 
288 	if (status & BD_ENET_TX_READY) {
289 		/* Ooops.  All transmit buffers are full.  Bail out.
290 		 * This should not happen, since ndev->tbusy should be set.
291 		 */
292 		netdev_err(ndev, "tx queue full!\n");
293 		return NETDEV_TX_BUSY;
294 	}
295 
296 	/* Protocol checksum off-load for TCP and UDP. */
297 	if (fec_enet_clear_csum(skb, ndev)) {
298 		kfree_skb(skb);
299 		return NETDEV_TX_OK;
300 	}
301 
302 	/* Clear all of the status flags */
303 	status &= ~BD_ENET_TX_STATS;
304 
305 	/* Set buffer length and buffer pointer */
306 	bufaddr = skb->data;
307 	bdp->cbd_datlen = skb->len;
308 
309 	/*
310 	 * On some FEC implementations data must be aligned on
311 	 * 4-byte boundaries. Use bounce buffers to copy data
312 	 * and get it aligned. Ugh.
313 	 */
314 	if (fep->bufdesc_ex)
315 		index = (struct bufdesc_ex *)bdp -
316 			(struct bufdesc_ex *)fep->tx_bd_base;
317 	else
318 		index = bdp - fep->tx_bd_base;
319 
320 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
321 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
322 		bufaddr = fep->tx_bounce[index];
323 	}
324 
325 	/*
326 	 * Some design made an incorrect assumption on endian mode of
327 	 * the system that it's running on. As the result, driver has to
328 	 * swap every frame going to and coming from the controller.
329 	 */
330 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
331 		swap_buffer(bufaddr, skb->len);
332 
333 	/* Save skb pointer */
334 	fep->tx_skbuff[index] = skb;
335 
336 	/* Push the data cache so the CPM does not get stale memory
337 	 * data.
338 	 */
339 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
340 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
341 
342 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
343 	 * it's the last BD of the frame, and to put the CRC on the end.
344 	 */
345 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
346 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
347 	bdp->cbd_sc = status;
348 
349 	if (fep->bufdesc_ex) {
350 
351 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
352 		ebdp->cbd_bdu = 0;
353 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
354 			fep->hwts_tx_en)) {
355 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
356 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
357 		} else {
358 			ebdp->cbd_esc = BD_ENET_TX_INT;
359 
360 			/* Enable protocol checksum flags
361 			 * We do not bother with the IP Checksum bits as they
362 			 * are done by the kernel
363 			 */
364 			if (skb->ip_summed == CHECKSUM_PARTIAL)
365 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
366 		}
367 	}
368 	/* If this was the last BD in the ring, start at the beginning again. */
369 	if (status & BD_ENET_TX_WRAP)
370 		bdp = fep->tx_bd_base;
371 	else
372 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
373 
374 	fep->cur_tx = bdp;
375 
376 	if (fep->cur_tx == fep->dirty_tx)
377 		netif_stop_queue(ndev);
378 
379 	/* Trigger transmission start */
380 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
381 
382 	skb_tx_timestamp(skb);
383 
384 	return NETDEV_TX_OK;
385 }
386 
387 /* Init RX & TX buffer descriptors
388  */
389 static void fec_enet_bd_init(struct net_device *dev)
390 {
391 	struct fec_enet_private *fep = netdev_priv(dev);
392 	struct bufdesc *bdp;
393 	unsigned int i;
394 
395 	/* Initialize the receive buffer descriptors. */
396 	bdp = fep->rx_bd_base;
397 	for (i = 0; i < RX_RING_SIZE; i++) {
398 
399 		/* Initialize the BD for every fragment in the page. */
400 		if (bdp->cbd_bufaddr)
401 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
402 		else
403 			bdp->cbd_sc = 0;
404 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
405 	}
406 
407 	/* Set the last buffer to wrap */
408 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
409 	bdp->cbd_sc |= BD_SC_WRAP;
410 
411 	fep->cur_rx = fep->rx_bd_base;
412 
413 	/* ...and the same for transmit */
414 	bdp = fep->tx_bd_base;
415 	fep->cur_tx = bdp;
416 	for (i = 0; i < TX_RING_SIZE; i++) {
417 
418 		/* Initialize the BD for every fragment in the page. */
419 		bdp->cbd_sc = 0;
420 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
421 			dev_kfree_skb_any(fep->tx_skbuff[i]);
422 			fep->tx_skbuff[i] = NULL;
423 		}
424 		bdp->cbd_bufaddr = 0;
425 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
426 	}
427 
428 	/* Set the last buffer to wrap */
429 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
430 	bdp->cbd_sc |= BD_SC_WRAP;
431 	fep->dirty_tx = bdp;
432 }
433 
434 /* This function is called to start or restart the FEC during a link
435  * change.  This only happens when switching between half and full
436  * duplex.
437  */
438 static void
439 fec_restart(struct net_device *ndev, int duplex)
440 {
441 	struct fec_enet_private *fep = netdev_priv(ndev);
442 	const struct platform_device_id *id_entry =
443 				platform_get_device_id(fep->pdev);
444 	int i;
445 	u32 val;
446 	u32 temp_mac[2];
447 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
448 	u32 ecntl = 0x2; /* ETHEREN */
449 
450 	if (netif_running(ndev)) {
451 		netif_device_detach(ndev);
452 		napi_disable(&fep->napi);
453 		netif_stop_queue(ndev);
454 		netif_tx_lock_bh(ndev);
455 	}
456 
457 	/* Whack a reset.  We should wait for this. */
458 	writel(1, fep->hwp + FEC_ECNTRL);
459 	udelay(10);
460 
461 	/*
462 	 * enet-mac reset will reset mac address registers too,
463 	 * so need to reconfigure it.
464 	 */
465 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
466 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
467 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
468 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
469 	}
470 
471 	/* Clear any outstanding interrupt. */
472 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
473 
474 	/* Reset all multicast.	*/
475 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
476 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
477 #ifndef CONFIG_M5272
478 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
479 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
480 #endif
481 
482 	/* Set maximum receive buffer size. */
483 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
484 
485 	fec_enet_bd_init(ndev);
486 
487 	/* Set receive and transmit descriptor base. */
488 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
489 	if (fep->bufdesc_ex)
490 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
491 			* RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
492 	else
493 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
494 			* RX_RING_SIZE,	fep->hwp + FEC_X_DES_START);
495 
496 
497 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
498 		if (fep->tx_skbuff[i]) {
499 			dev_kfree_skb_any(fep->tx_skbuff[i]);
500 			fep->tx_skbuff[i] = NULL;
501 		}
502 	}
503 
504 	/* Enable MII mode */
505 	if (duplex) {
506 		/* FD enable */
507 		writel(0x04, fep->hwp + FEC_X_CNTRL);
508 	} else {
509 		/* No Rcv on Xmit */
510 		rcntl |= 0x02;
511 		writel(0x0, fep->hwp + FEC_X_CNTRL);
512 	}
513 
514 	fep->full_duplex = duplex;
515 
516 	/* Set MII speed */
517 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
518 
519 	/* set RX checksum */
520 	val = readl(fep->hwp + FEC_RACC);
521 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
522 		val |= FEC_RACC_OPTIONS;
523 	else
524 		val &= ~FEC_RACC_OPTIONS;
525 	writel(val, fep->hwp + FEC_RACC);
526 
527 	/*
528 	 * The phy interface and speed need to get configured
529 	 * differently on enet-mac.
530 	 */
531 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
532 		/* Enable flow control and length check */
533 		rcntl |= 0x40000000 | 0x00000020;
534 
535 		/* RGMII, RMII or MII */
536 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
537 			rcntl |= (1 << 6);
538 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
539 			rcntl |= (1 << 8);
540 		else
541 			rcntl &= ~(1 << 8);
542 
543 		/* 1G, 100M or 10M */
544 		if (fep->phy_dev) {
545 			if (fep->phy_dev->speed == SPEED_1000)
546 				ecntl |= (1 << 5);
547 			else if (fep->phy_dev->speed == SPEED_100)
548 				rcntl &= ~(1 << 9);
549 			else
550 				rcntl |= (1 << 9);
551 		}
552 	} else {
553 #ifdef FEC_MIIGSK_ENR
554 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
555 			u32 cfgr;
556 			/* disable the gasket and wait */
557 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
558 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
559 				udelay(1);
560 
561 			/*
562 			 * configure the gasket:
563 			 *   RMII, 50 MHz, no loopback, no echo
564 			 *   MII, 25 MHz, no loopback, no echo
565 			 */
566 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
567 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
568 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
569 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
570 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
571 
572 			/* re-enable the gasket */
573 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
574 		}
575 #endif
576 	}
577 
578 	/* enable pause frame*/
579 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
580 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
581 	     fep->phy_dev && fep->phy_dev->pause)) {
582 		rcntl |= FEC_ENET_FCE;
583 
584 		/* set FIFO threshold parameter to reduce overrun */
585 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
586 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
587 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
588 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
589 
590 		/* OPD */
591 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
592 	} else {
593 		rcntl &= ~FEC_ENET_FCE;
594 	}
595 
596 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
597 
598 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
599 		/* enable ENET endian swap */
600 		ecntl |= (1 << 8);
601 		/* enable ENET store and forward mode */
602 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
603 	}
604 
605 	if (fep->bufdesc_ex)
606 		ecntl |= (1 << 4);
607 
608 	/* And last, enable the transmit and receive processing */
609 	writel(ecntl, fep->hwp + FEC_ECNTRL);
610 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
611 
612 	if (fep->bufdesc_ex)
613 		fec_ptp_start_cyclecounter(ndev);
614 
615 	/* Enable interrupts we wish to service */
616 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
617 
618 	if (netif_running(ndev)) {
619 		netif_tx_unlock_bh(ndev);
620 		netif_wake_queue(ndev);
621 		napi_enable(&fep->napi);
622 		netif_device_attach(ndev);
623 	}
624 }
625 
626 static void
627 fec_stop(struct net_device *ndev)
628 {
629 	struct fec_enet_private *fep = netdev_priv(ndev);
630 	const struct platform_device_id *id_entry =
631 				platform_get_device_id(fep->pdev);
632 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
633 
634 	/* We cannot expect a graceful transmit stop without link !!! */
635 	if (fep->link) {
636 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
637 		udelay(10);
638 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
639 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
640 	}
641 
642 	/* Whack a reset.  We should wait for this. */
643 	writel(1, fep->hwp + FEC_ECNTRL);
644 	udelay(10);
645 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
646 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
647 
648 	/* We have to keep ENET enabled to have MII interrupt stay working */
649 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
650 		writel(2, fep->hwp + FEC_ECNTRL);
651 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
652 	}
653 }
654 
655 
656 static void
657 fec_timeout(struct net_device *ndev)
658 {
659 	struct fec_enet_private *fep = netdev_priv(ndev);
660 
661 	ndev->stats.tx_errors++;
662 
663 	fep->delay_work.timeout = true;
664 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
665 }
666 
667 static void fec_enet_work(struct work_struct *work)
668 {
669 	struct fec_enet_private *fep =
670 		container_of(work,
671 			     struct fec_enet_private,
672 			     delay_work.delay_work.work);
673 
674 	if (fep->delay_work.timeout) {
675 		fep->delay_work.timeout = false;
676 		fec_restart(fep->netdev, fep->full_duplex);
677 		netif_wake_queue(fep->netdev);
678 	}
679 }
680 
681 static void
682 fec_enet_tx(struct net_device *ndev)
683 {
684 	struct	fec_enet_private *fep;
685 	struct bufdesc *bdp;
686 	unsigned short status;
687 	struct	sk_buff	*skb;
688 	int	index = 0;
689 
690 	fep = netdev_priv(ndev);
691 	bdp = fep->dirty_tx;
692 
693 	/* get next bdp of dirty_tx */
694 	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
695 		bdp = fep->tx_bd_base;
696 	else
697 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
698 
699 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
700 
701 		/* current queue is empty */
702 		if (bdp == fep->cur_tx)
703 			break;
704 
705 		if (fep->bufdesc_ex)
706 			index = (struct bufdesc_ex *)bdp -
707 				(struct bufdesc_ex *)fep->tx_bd_base;
708 		else
709 			index = bdp - fep->tx_bd_base;
710 
711 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
712 				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
713 		bdp->cbd_bufaddr = 0;
714 
715 		skb = fep->tx_skbuff[index];
716 
717 		/* Check for errors. */
718 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
719 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
720 				   BD_ENET_TX_CSL)) {
721 			ndev->stats.tx_errors++;
722 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
723 				ndev->stats.tx_heartbeat_errors++;
724 			if (status & BD_ENET_TX_LC)  /* Late collision */
725 				ndev->stats.tx_window_errors++;
726 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
727 				ndev->stats.tx_aborted_errors++;
728 			if (status & BD_ENET_TX_UN)  /* Underrun */
729 				ndev->stats.tx_fifo_errors++;
730 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
731 				ndev->stats.tx_carrier_errors++;
732 		} else {
733 			ndev->stats.tx_packets++;
734 		}
735 
736 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
737 			fep->bufdesc_ex) {
738 			struct skb_shared_hwtstamps shhwtstamps;
739 			unsigned long flags;
740 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
741 
742 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
743 			spin_lock_irqsave(&fep->tmreg_lock, flags);
744 			shhwtstamps.hwtstamp = ns_to_ktime(
745 				timecounter_cyc2time(&fep->tc, ebdp->ts));
746 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
747 			skb_tstamp_tx(skb, &shhwtstamps);
748 		}
749 
750 		if (status & BD_ENET_TX_READY)
751 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
752 
753 		/* Deferred means some collisions occurred during transmit,
754 		 * but we eventually sent the packet OK.
755 		 */
756 		if (status & BD_ENET_TX_DEF)
757 			ndev->stats.collisions++;
758 
759 		/* Free the sk buffer associated with this last transmit */
760 		dev_kfree_skb_any(skb);
761 		fep->tx_skbuff[index] = NULL;
762 
763 		fep->dirty_tx = bdp;
764 
765 		/* Update pointer to next buffer descriptor to be transmitted */
766 		if (status & BD_ENET_TX_WRAP)
767 			bdp = fep->tx_bd_base;
768 		else
769 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
770 
771 		/* Since we have freed up a buffer, the ring is no longer full
772 		 */
773 		if (fep->dirty_tx != fep->cur_tx) {
774 			if (netif_queue_stopped(ndev))
775 				netif_wake_queue(ndev);
776 		}
777 	}
778 	return;
779 }
780 
781 
782 /* During a receive, the cur_rx points to the current incoming buffer.
783  * When we update through the ring, if the next incoming buffer has
784  * not been given to the system, we just set the empty indicator,
785  * effectively tossing the packet.
786  */
787 static int
788 fec_enet_rx(struct net_device *ndev, int budget)
789 {
790 	struct fec_enet_private *fep = netdev_priv(ndev);
791 	const struct platform_device_id *id_entry =
792 				platform_get_device_id(fep->pdev);
793 	struct bufdesc *bdp;
794 	unsigned short status;
795 	struct	sk_buff	*skb;
796 	ushort	pkt_len;
797 	__u8 *data;
798 	int	pkt_received = 0;
799 
800 #ifdef CONFIG_M532x
801 	flush_cache_all();
802 #endif
803 
804 	/* First, grab all of the stats for the incoming packet.
805 	 * These get messed up if we get called due to a busy condition.
806 	 */
807 	bdp = fep->cur_rx;
808 
809 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
810 
811 		if (pkt_received >= budget)
812 			break;
813 		pkt_received++;
814 
815 		/* Since we have allocated space to hold a complete frame,
816 		 * the last indicator should be set.
817 		 */
818 		if ((status & BD_ENET_RX_LAST) == 0)
819 			netdev_err(ndev, "rcv is not +last\n");
820 
821 		if (!fep->opened)
822 			goto rx_processing_done;
823 
824 		/* Check for errors. */
825 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
826 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
827 			ndev->stats.rx_errors++;
828 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
829 				/* Frame too long or too short. */
830 				ndev->stats.rx_length_errors++;
831 			}
832 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
833 				ndev->stats.rx_frame_errors++;
834 			if (status & BD_ENET_RX_CR)	/* CRC Error */
835 				ndev->stats.rx_crc_errors++;
836 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
837 				ndev->stats.rx_fifo_errors++;
838 		}
839 
840 		/* Report late collisions as a frame error.
841 		 * On this error, the BD is closed, but we don't know what we
842 		 * have in the buffer.  So, just drop this frame on the floor.
843 		 */
844 		if (status & BD_ENET_RX_CL) {
845 			ndev->stats.rx_errors++;
846 			ndev->stats.rx_frame_errors++;
847 			goto rx_processing_done;
848 		}
849 
850 		/* Process the incoming frame. */
851 		ndev->stats.rx_packets++;
852 		pkt_len = bdp->cbd_datlen;
853 		ndev->stats.rx_bytes += pkt_len;
854 		data = (__u8*)__va(bdp->cbd_bufaddr);
855 
856 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
857 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
858 
859 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
860 			swap_buffer(data, pkt_len);
861 
862 		/* This does 16 byte alignment, exactly what we need.
863 		 * The packet length includes FCS, but we don't want to
864 		 * include that when passing upstream as it messes up
865 		 * bridging applications.
866 		 */
867 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
868 
869 		if (unlikely(!skb)) {
870 			ndev->stats.rx_dropped++;
871 		} else {
872 			skb_reserve(skb, NET_IP_ALIGN);
873 			skb_put(skb, pkt_len - 4);	/* Make room */
874 			skb_copy_to_linear_data(skb, data, pkt_len - 4);
875 			skb->protocol = eth_type_trans(skb, ndev);
876 
877 			/* Get receive timestamp from the skb */
878 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
879 				struct skb_shared_hwtstamps *shhwtstamps =
880 							    skb_hwtstamps(skb);
881 				unsigned long flags;
882 				struct bufdesc_ex *ebdp =
883 					(struct bufdesc_ex *)bdp;
884 
885 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
886 
887 				spin_lock_irqsave(&fep->tmreg_lock, flags);
888 				shhwtstamps->hwtstamp = ns_to_ktime(
889 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
890 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
891 			}
892 
893 			if (fep->bufdesc_ex &&
894 				(fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
895 				struct bufdesc_ex *ebdp =
896 					(struct bufdesc_ex *)bdp;
897 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
898 					/* don't check it */
899 					skb->ip_summed = CHECKSUM_UNNECESSARY;
900 				} else {
901 					skb_checksum_none_assert(skb);
902 				}
903 			}
904 
905 			if (!skb_defer_rx_timestamp(skb))
906 				napi_gro_receive(&fep->napi, skb);
907 		}
908 
909 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
910 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
911 rx_processing_done:
912 		/* Clear the status flags for this buffer */
913 		status &= ~BD_ENET_RX_STATS;
914 
915 		/* Mark the buffer empty */
916 		status |= BD_ENET_RX_EMPTY;
917 		bdp->cbd_sc = status;
918 
919 		if (fep->bufdesc_ex) {
920 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
921 
922 			ebdp->cbd_esc = BD_ENET_RX_INT;
923 			ebdp->cbd_prot = 0;
924 			ebdp->cbd_bdu = 0;
925 		}
926 
927 		/* Update BD pointer to next entry */
928 		if (status & BD_ENET_RX_WRAP)
929 			bdp = fep->rx_bd_base;
930 		else
931 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
932 		/* Doing this here will keep the FEC running while we process
933 		 * incoming frames.  On a heavily loaded network, we should be
934 		 * able to keep up at the expense of system resources.
935 		 */
936 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
937 	}
938 	fep->cur_rx = bdp;
939 
940 	return pkt_received;
941 }
942 
943 static irqreturn_t
944 fec_enet_interrupt(int irq, void *dev_id)
945 {
946 	struct net_device *ndev = dev_id;
947 	struct fec_enet_private *fep = netdev_priv(ndev);
948 	uint int_events;
949 	irqreturn_t ret = IRQ_NONE;
950 
951 	do {
952 		int_events = readl(fep->hwp + FEC_IEVENT);
953 		writel(int_events, fep->hwp + FEC_IEVENT);
954 
955 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
956 			ret = IRQ_HANDLED;
957 
958 			/* Disable the RX interrupt */
959 			if (napi_schedule_prep(&fep->napi)) {
960 				writel(FEC_RX_DISABLED_IMASK,
961 					fep->hwp + FEC_IMASK);
962 				__napi_schedule(&fep->napi);
963 			}
964 		}
965 
966 		if (int_events & FEC_ENET_MII) {
967 			ret = IRQ_HANDLED;
968 			complete(&fep->mdio_done);
969 		}
970 	} while (int_events);
971 
972 	return ret;
973 }
974 
975 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
976 {
977 	struct net_device *ndev = napi->dev;
978 	int pkts = fec_enet_rx(ndev, budget);
979 	struct fec_enet_private *fep = netdev_priv(ndev);
980 
981 	fec_enet_tx(ndev);
982 
983 	if (pkts < budget) {
984 		napi_complete(napi);
985 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
986 	}
987 	return pkts;
988 }
989 
990 /* ------------------------------------------------------------------------- */
991 static void fec_get_mac(struct net_device *ndev)
992 {
993 	struct fec_enet_private *fep = netdev_priv(ndev);
994 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
995 	unsigned char *iap, tmpaddr[ETH_ALEN];
996 
997 	/*
998 	 * try to get mac address in following order:
999 	 *
1000 	 * 1) module parameter via kernel command line in form
1001 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1002 	 */
1003 	iap = macaddr;
1004 
1005 	/*
1006 	 * 2) from device tree data
1007 	 */
1008 	if (!is_valid_ether_addr(iap)) {
1009 		struct device_node *np = fep->pdev->dev.of_node;
1010 		if (np) {
1011 			const char *mac = of_get_mac_address(np);
1012 			if (mac)
1013 				iap = (unsigned char *) mac;
1014 		}
1015 	}
1016 
1017 	/*
1018 	 * 3) from flash or fuse (via platform data)
1019 	 */
1020 	if (!is_valid_ether_addr(iap)) {
1021 #ifdef CONFIG_M5272
1022 		if (FEC_FLASHMAC)
1023 			iap = (unsigned char *)FEC_FLASHMAC;
1024 #else
1025 		if (pdata)
1026 			iap = (unsigned char *)&pdata->mac;
1027 #endif
1028 	}
1029 
1030 	/*
1031 	 * 4) FEC mac registers set by bootloader
1032 	 */
1033 	if (!is_valid_ether_addr(iap)) {
1034 		*((unsigned long *) &tmpaddr[0]) =
1035 			be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
1036 		*((unsigned short *) &tmpaddr[4]) =
1037 			be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1038 		iap = &tmpaddr[0];
1039 	}
1040 
1041 	/*
1042 	 * 5) random mac address
1043 	 */
1044 	if (!is_valid_ether_addr(iap)) {
1045 		/* Report it and use a random ethernet address instead */
1046 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1047 		eth_hw_addr_random(ndev);
1048 		netdev_info(ndev, "Using random MAC address: %pM\n",
1049 			    ndev->dev_addr);
1050 		return;
1051 	}
1052 
1053 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1054 
1055 	/* Adjust MAC if using macaddr */
1056 	if (iap == macaddr)
1057 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1058 }
1059 
1060 /* ------------------------------------------------------------------------- */
1061 
1062 /*
1063  * Phy section
1064  */
1065 static void fec_enet_adjust_link(struct net_device *ndev)
1066 {
1067 	struct fec_enet_private *fep = netdev_priv(ndev);
1068 	struct phy_device *phy_dev = fep->phy_dev;
1069 	int status_change = 0;
1070 
1071 	/* Prevent a state halted on mii error */
1072 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1073 		phy_dev->state = PHY_RESUMING;
1074 		return;
1075 	}
1076 
1077 	if (phy_dev->link) {
1078 		if (!fep->link) {
1079 			fep->link = phy_dev->link;
1080 			status_change = 1;
1081 		}
1082 
1083 		if (fep->full_duplex != phy_dev->duplex)
1084 			status_change = 1;
1085 
1086 		if (phy_dev->speed != fep->speed) {
1087 			fep->speed = phy_dev->speed;
1088 			status_change = 1;
1089 		}
1090 
1091 		/* if any of the above changed restart the FEC */
1092 		if (status_change)
1093 			fec_restart(ndev, phy_dev->duplex);
1094 	} else {
1095 		if (fep->link) {
1096 			fec_stop(ndev);
1097 			fep->link = phy_dev->link;
1098 			status_change = 1;
1099 		}
1100 	}
1101 
1102 	if (status_change)
1103 		phy_print_status(phy_dev);
1104 }
1105 
1106 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1107 {
1108 	struct fec_enet_private *fep = bus->priv;
1109 	unsigned long time_left;
1110 
1111 	fep->mii_timeout = 0;
1112 	init_completion(&fep->mdio_done);
1113 
1114 	/* start a read op */
1115 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1116 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1117 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1118 
1119 	/* wait for end of transfer */
1120 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1121 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1122 	if (time_left == 0) {
1123 		fep->mii_timeout = 1;
1124 		netdev_err(fep->netdev, "MDIO read timeout\n");
1125 		return -ETIMEDOUT;
1126 	}
1127 
1128 	/* return value */
1129 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1130 }
1131 
1132 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1133 			   u16 value)
1134 {
1135 	struct fec_enet_private *fep = bus->priv;
1136 	unsigned long time_left;
1137 
1138 	fep->mii_timeout = 0;
1139 	init_completion(&fep->mdio_done);
1140 
1141 	/* start a write op */
1142 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1143 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1144 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1145 		fep->hwp + FEC_MII_DATA);
1146 
1147 	/* wait for end of transfer */
1148 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1149 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1150 	if (time_left == 0) {
1151 		fep->mii_timeout = 1;
1152 		netdev_err(fep->netdev, "MDIO write timeout\n");
1153 		return -ETIMEDOUT;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 static int fec_enet_mdio_reset(struct mii_bus *bus)
1160 {
1161 	return 0;
1162 }
1163 
1164 static int fec_enet_mii_probe(struct net_device *ndev)
1165 {
1166 	struct fec_enet_private *fep = netdev_priv(ndev);
1167 	const struct platform_device_id *id_entry =
1168 				platform_get_device_id(fep->pdev);
1169 	struct phy_device *phy_dev = NULL;
1170 	char mdio_bus_id[MII_BUS_ID_SIZE];
1171 	char phy_name[MII_BUS_ID_SIZE + 3];
1172 	int phy_id;
1173 	int dev_id = fep->dev_id;
1174 
1175 	fep->phy_dev = NULL;
1176 
1177 	/* check for attached phy */
1178 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1179 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1180 			continue;
1181 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1182 			continue;
1183 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1184 			continue;
1185 		if (dev_id--)
1186 			continue;
1187 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1188 		break;
1189 	}
1190 
1191 	if (phy_id >= PHY_MAX_ADDR) {
1192 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1193 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1194 		phy_id = 0;
1195 	}
1196 
1197 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1198 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1199 			      fep->phy_interface);
1200 	if (IS_ERR(phy_dev)) {
1201 		netdev_err(ndev, "could not attach to PHY\n");
1202 		return PTR_ERR(phy_dev);
1203 	}
1204 
1205 	/* mask with MAC supported features */
1206 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1207 		phy_dev->supported &= PHY_GBIT_FEATURES;
1208 		phy_dev->supported |= SUPPORTED_Pause;
1209 	}
1210 	else
1211 		phy_dev->supported &= PHY_BASIC_FEATURES;
1212 
1213 	phy_dev->advertising = phy_dev->supported;
1214 
1215 	fep->phy_dev = phy_dev;
1216 	fep->link = 0;
1217 	fep->full_duplex = 0;
1218 
1219 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1220 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1221 		    fep->phy_dev->irq);
1222 
1223 	return 0;
1224 }
1225 
1226 static int fec_enet_mii_init(struct platform_device *pdev)
1227 {
1228 	static struct mii_bus *fec0_mii_bus;
1229 	struct net_device *ndev = platform_get_drvdata(pdev);
1230 	struct fec_enet_private *fep = netdev_priv(ndev);
1231 	const struct platform_device_id *id_entry =
1232 				platform_get_device_id(fep->pdev);
1233 	int err = -ENXIO, i;
1234 
1235 	/*
1236 	 * The dual fec interfaces are not equivalent with enet-mac.
1237 	 * Here are the differences:
1238 	 *
1239 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1240 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1241 	 *  - external phys can only be configured by fec0
1242 	 *
1243 	 * That is to say fec1 can not work independently. It only works
1244 	 * when fec0 is working. The reason behind this design is that the
1245 	 * second interface is added primarily for Switch mode.
1246 	 *
1247 	 * Because of the last point above, both phys are attached on fec0
1248 	 * mdio interface in board design, and need to be configured by
1249 	 * fec0 mii_bus.
1250 	 */
1251 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1252 		/* fec1 uses fec0 mii_bus */
1253 		if (mii_cnt && fec0_mii_bus) {
1254 			fep->mii_bus = fec0_mii_bus;
1255 			mii_cnt++;
1256 			return 0;
1257 		}
1258 		return -ENOENT;
1259 	}
1260 
1261 	fep->mii_timeout = 0;
1262 
1263 	/*
1264 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1265 	 *
1266 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1267 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1268 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1269 	 * document.
1270 	 */
1271 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1272 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1273 		fep->phy_speed--;
1274 	fep->phy_speed <<= 1;
1275 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1276 
1277 	fep->mii_bus = mdiobus_alloc();
1278 	if (fep->mii_bus == NULL) {
1279 		err = -ENOMEM;
1280 		goto err_out;
1281 	}
1282 
1283 	fep->mii_bus->name = "fec_enet_mii_bus";
1284 	fep->mii_bus->read = fec_enet_mdio_read;
1285 	fep->mii_bus->write = fec_enet_mdio_write;
1286 	fep->mii_bus->reset = fec_enet_mdio_reset;
1287 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1288 		pdev->name, fep->dev_id + 1);
1289 	fep->mii_bus->priv = fep;
1290 	fep->mii_bus->parent = &pdev->dev;
1291 
1292 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1293 	if (!fep->mii_bus->irq) {
1294 		err = -ENOMEM;
1295 		goto err_out_free_mdiobus;
1296 	}
1297 
1298 	for (i = 0; i < PHY_MAX_ADDR; i++)
1299 		fep->mii_bus->irq[i] = PHY_POLL;
1300 
1301 	if (mdiobus_register(fep->mii_bus))
1302 		goto err_out_free_mdio_irq;
1303 
1304 	mii_cnt++;
1305 
1306 	/* save fec0 mii_bus */
1307 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1308 		fec0_mii_bus = fep->mii_bus;
1309 
1310 	return 0;
1311 
1312 err_out_free_mdio_irq:
1313 	kfree(fep->mii_bus->irq);
1314 err_out_free_mdiobus:
1315 	mdiobus_free(fep->mii_bus);
1316 err_out:
1317 	return err;
1318 }
1319 
1320 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1321 {
1322 	if (--mii_cnt == 0) {
1323 		mdiobus_unregister(fep->mii_bus);
1324 		kfree(fep->mii_bus->irq);
1325 		mdiobus_free(fep->mii_bus);
1326 	}
1327 }
1328 
1329 static int fec_enet_get_settings(struct net_device *ndev,
1330 				  struct ethtool_cmd *cmd)
1331 {
1332 	struct fec_enet_private *fep = netdev_priv(ndev);
1333 	struct phy_device *phydev = fep->phy_dev;
1334 
1335 	if (!phydev)
1336 		return -ENODEV;
1337 
1338 	return phy_ethtool_gset(phydev, cmd);
1339 }
1340 
1341 static int fec_enet_set_settings(struct net_device *ndev,
1342 				 struct ethtool_cmd *cmd)
1343 {
1344 	struct fec_enet_private *fep = netdev_priv(ndev);
1345 	struct phy_device *phydev = fep->phy_dev;
1346 
1347 	if (!phydev)
1348 		return -ENODEV;
1349 
1350 	return phy_ethtool_sset(phydev, cmd);
1351 }
1352 
1353 static void fec_enet_get_drvinfo(struct net_device *ndev,
1354 				 struct ethtool_drvinfo *info)
1355 {
1356 	struct fec_enet_private *fep = netdev_priv(ndev);
1357 
1358 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1359 		sizeof(info->driver));
1360 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1361 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1362 }
1363 
1364 static int fec_enet_get_ts_info(struct net_device *ndev,
1365 				struct ethtool_ts_info *info)
1366 {
1367 	struct fec_enet_private *fep = netdev_priv(ndev);
1368 
1369 	if (fep->bufdesc_ex) {
1370 
1371 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1372 					SOF_TIMESTAMPING_RX_SOFTWARE |
1373 					SOF_TIMESTAMPING_SOFTWARE |
1374 					SOF_TIMESTAMPING_TX_HARDWARE |
1375 					SOF_TIMESTAMPING_RX_HARDWARE |
1376 					SOF_TIMESTAMPING_RAW_HARDWARE;
1377 		if (fep->ptp_clock)
1378 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1379 		else
1380 			info->phc_index = -1;
1381 
1382 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1383 				 (1 << HWTSTAMP_TX_ON);
1384 
1385 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1386 				   (1 << HWTSTAMP_FILTER_ALL);
1387 		return 0;
1388 	} else {
1389 		return ethtool_op_get_ts_info(ndev, info);
1390 	}
1391 }
1392 
1393 static void fec_enet_get_pauseparam(struct net_device *ndev,
1394 				    struct ethtool_pauseparam *pause)
1395 {
1396 	struct fec_enet_private *fep = netdev_priv(ndev);
1397 
1398 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1399 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1400 	pause->rx_pause = pause->tx_pause;
1401 }
1402 
1403 static int fec_enet_set_pauseparam(struct net_device *ndev,
1404 				   struct ethtool_pauseparam *pause)
1405 {
1406 	struct fec_enet_private *fep = netdev_priv(ndev);
1407 
1408 	if (pause->tx_pause != pause->rx_pause) {
1409 		netdev_info(ndev,
1410 			"hardware only support enable/disable both tx and rx");
1411 		return -EINVAL;
1412 	}
1413 
1414 	fep->pause_flag = 0;
1415 
1416 	/* tx pause must be same as rx pause */
1417 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1418 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1419 
1420 	if (pause->rx_pause || pause->autoneg) {
1421 		fep->phy_dev->supported |= ADVERTISED_Pause;
1422 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1423 	} else {
1424 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1425 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1426 	}
1427 
1428 	if (pause->autoneg) {
1429 		if (netif_running(ndev))
1430 			fec_stop(ndev);
1431 		phy_start_aneg(fep->phy_dev);
1432 	}
1433 	if (netif_running(ndev))
1434 		fec_restart(ndev, 0);
1435 
1436 	return 0;
1437 }
1438 
1439 static const struct ethtool_ops fec_enet_ethtool_ops = {
1440 	.get_pauseparam		= fec_enet_get_pauseparam,
1441 	.set_pauseparam		= fec_enet_set_pauseparam,
1442 	.get_settings		= fec_enet_get_settings,
1443 	.set_settings		= fec_enet_set_settings,
1444 	.get_drvinfo		= fec_enet_get_drvinfo,
1445 	.get_link		= ethtool_op_get_link,
1446 	.get_ts_info		= fec_enet_get_ts_info,
1447 };
1448 
1449 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1450 {
1451 	struct fec_enet_private *fep = netdev_priv(ndev);
1452 	struct phy_device *phydev = fep->phy_dev;
1453 
1454 	if (!netif_running(ndev))
1455 		return -EINVAL;
1456 
1457 	if (!phydev)
1458 		return -ENODEV;
1459 
1460 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1461 		return fec_ptp_ioctl(ndev, rq, cmd);
1462 
1463 	return phy_mii_ioctl(phydev, rq, cmd);
1464 }
1465 
1466 static void fec_enet_free_buffers(struct net_device *ndev)
1467 {
1468 	struct fec_enet_private *fep = netdev_priv(ndev);
1469 	unsigned int i;
1470 	struct sk_buff *skb;
1471 	struct bufdesc	*bdp;
1472 
1473 	bdp = fep->rx_bd_base;
1474 	for (i = 0; i < RX_RING_SIZE; i++) {
1475 		skb = fep->rx_skbuff[i];
1476 
1477 		if (bdp->cbd_bufaddr)
1478 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1479 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1480 		if (skb)
1481 			dev_kfree_skb(skb);
1482 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1483 	}
1484 
1485 	bdp = fep->tx_bd_base;
1486 	for (i = 0; i < TX_RING_SIZE; i++)
1487 		kfree(fep->tx_bounce[i]);
1488 }
1489 
1490 static int fec_enet_alloc_buffers(struct net_device *ndev)
1491 {
1492 	struct fec_enet_private *fep = netdev_priv(ndev);
1493 	unsigned int i;
1494 	struct sk_buff *skb;
1495 	struct bufdesc	*bdp;
1496 
1497 	bdp = fep->rx_bd_base;
1498 	for (i = 0; i < RX_RING_SIZE; i++) {
1499 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1500 		if (!skb) {
1501 			fec_enet_free_buffers(ndev);
1502 			return -ENOMEM;
1503 		}
1504 		fep->rx_skbuff[i] = skb;
1505 
1506 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1507 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1508 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1509 
1510 		if (fep->bufdesc_ex) {
1511 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1512 			ebdp->cbd_esc = BD_ENET_RX_INT;
1513 		}
1514 
1515 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1516 	}
1517 
1518 	/* Set the last buffer to wrap. */
1519 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1520 	bdp->cbd_sc |= BD_SC_WRAP;
1521 
1522 	bdp = fep->tx_bd_base;
1523 	for (i = 0; i < TX_RING_SIZE; i++) {
1524 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1525 
1526 		bdp->cbd_sc = 0;
1527 		bdp->cbd_bufaddr = 0;
1528 
1529 		if (fep->bufdesc_ex) {
1530 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1531 			ebdp->cbd_esc = BD_ENET_TX_INT;
1532 		}
1533 
1534 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1535 	}
1536 
1537 	/* Set the last buffer to wrap. */
1538 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1539 	bdp->cbd_sc |= BD_SC_WRAP;
1540 
1541 	return 0;
1542 }
1543 
1544 static int
1545 fec_enet_open(struct net_device *ndev)
1546 {
1547 	struct fec_enet_private *fep = netdev_priv(ndev);
1548 	int ret;
1549 
1550 	napi_enable(&fep->napi);
1551 
1552 	/* I should reset the ring buffers here, but I don't yet know
1553 	 * a simple way to do that.
1554 	 */
1555 
1556 	ret = fec_enet_alloc_buffers(ndev);
1557 	if (ret)
1558 		return ret;
1559 
1560 	/* Probe and connect to PHY when open the interface */
1561 	ret = fec_enet_mii_probe(ndev);
1562 	if (ret) {
1563 		fec_enet_free_buffers(ndev);
1564 		return ret;
1565 	}
1566 	phy_start(fep->phy_dev);
1567 	netif_start_queue(ndev);
1568 	fep->opened = 1;
1569 	return 0;
1570 }
1571 
1572 static int
1573 fec_enet_close(struct net_device *ndev)
1574 {
1575 	struct fec_enet_private *fep = netdev_priv(ndev);
1576 
1577 	/* Don't know what to do yet. */
1578 	napi_disable(&fep->napi);
1579 	fep->opened = 0;
1580 	netif_stop_queue(ndev);
1581 	fec_stop(ndev);
1582 
1583 	if (fep->phy_dev) {
1584 		phy_stop(fep->phy_dev);
1585 		phy_disconnect(fep->phy_dev);
1586 	}
1587 
1588 	fec_enet_free_buffers(ndev);
1589 
1590 	return 0;
1591 }
1592 
1593 /* Set or clear the multicast filter for this adaptor.
1594  * Skeleton taken from sunlance driver.
1595  * The CPM Ethernet implementation allows Multicast as well as individual
1596  * MAC address filtering.  Some of the drivers check to make sure it is
1597  * a group multicast address, and discard those that are not.  I guess I
1598  * will do the same for now, but just remove the test if you want
1599  * individual filtering as well (do the upper net layers want or support
1600  * this kind of feature?).
1601  */
1602 
1603 #define HASH_BITS	6		/* #bits in hash */
1604 #define CRC32_POLY	0xEDB88320
1605 
1606 static void set_multicast_list(struct net_device *ndev)
1607 {
1608 	struct fec_enet_private *fep = netdev_priv(ndev);
1609 	struct netdev_hw_addr *ha;
1610 	unsigned int i, bit, data, crc, tmp;
1611 	unsigned char hash;
1612 
1613 	if (ndev->flags & IFF_PROMISC) {
1614 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1615 		tmp |= 0x8;
1616 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1617 		return;
1618 	}
1619 
1620 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1621 	tmp &= ~0x8;
1622 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1623 
1624 	if (ndev->flags & IFF_ALLMULTI) {
1625 		/* Catch all multicast addresses, so set the
1626 		 * filter to all 1's
1627 		 */
1628 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1629 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1630 
1631 		return;
1632 	}
1633 
1634 	/* Clear filter and add the addresses in hash register
1635 	 */
1636 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1637 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1638 
1639 	netdev_for_each_mc_addr(ha, ndev) {
1640 		/* calculate crc32 value of mac address */
1641 		crc = 0xffffffff;
1642 
1643 		for (i = 0; i < ndev->addr_len; i++) {
1644 			data = ha->addr[i];
1645 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1646 				crc = (crc >> 1) ^
1647 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1648 			}
1649 		}
1650 
1651 		/* only upper 6 bits (HASH_BITS) are used
1652 		 * which point to specific bit in he hash registers
1653 		 */
1654 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1655 
1656 		if (hash > 31) {
1657 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1658 			tmp |= 1 << (hash - 32);
1659 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1660 		} else {
1661 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1662 			tmp |= 1 << hash;
1663 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1664 		}
1665 	}
1666 }
1667 
1668 /* Set a MAC change in hardware. */
1669 static int
1670 fec_set_mac_address(struct net_device *ndev, void *p)
1671 {
1672 	struct fec_enet_private *fep = netdev_priv(ndev);
1673 	struct sockaddr *addr = p;
1674 
1675 	if (!is_valid_ether_addr(addr->sa_data))
1676 		return -EADDRNOTAVAIL;
1677 
1678 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1679 
1680 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1681 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1682 		fep->hwp + FEC_ADDR_LOW);
1683 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1684 		fep->hwp + FEC_ADDR_HIGH);
1685 	return 0;
1686 }
1687 
1688 #ifdef CONFIG_NET_POLL_CONTROLLER
1689 /**
1690  * fec_poll_controller - FEC Poll controller function
1691  * @dev: The FEC network adapter
1692  *
1693  * Polled functionality used by netconsole and others in non interrupt mode
1694  *
1695  */
1696 static void fec_poll_controller(struct net_device *dev)
1697 {
1698 	int i;
1699 	struct fec_enet_private *fep = netdev_priv(dev);
1700 
1701 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1702 		if (fep->irq[i] > 0) {
1703 			disable_irq(fep->irq[i]);
1704 			fec_enet_interrupt(fep->irq[i], dev);
1705 			enable_irq(fep->irq[i]);
1706 		}
1707 	}
1708 }
1709 #endif
1710 
1711 static int fec_set_features(struct net_device *netdev,
1712 	netdev_features_t features)
1713 {
1714 	struct fec_enet_private *fep = netdev_priv(netdev);
1715 	netdev_features_t changed = features ^ netdev->features;
1716 
1717 	netdev->features = features;
1718 
1719 	/* Receive checksum has been changed */
1720 	if (changed & NETIF_F_RXCSUM) {
1721 		if (features & NETIF_F_RXCSUM)
1722 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1723 		else
1724 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1725 
1726 		if (netif_running(netdev)) {
1727 			fec_stop(netdev);
1728 			fec_restart(netdev, fep->phy_dev->duplex);
1729 			netif_wake_queue(netdev);
1730 		} else {
1731 			fec_restart(netdev, fep->phy_dev->duplex);
1732 		}
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 static const struct net_device_ops fec_netdev_ops = {
1739 	.ndo_open		= fec_enet_open,
1740 	.ndo_stop		= fec_enet_close,
1741 	.ndo_start_xmit		= fec_enet_start_xmit,
1742 	.ndo_set_rx_mode	= set_multicast_list,
1743 	.ndo_change_mtu		= eth_change_mtu,
1744 	.ndo_validate_addr	= eth_validate_addr,
1745 	.ndo_tx_timeout		= fec_timeout,
1746 	.ndo_set_mac_address	= fec_set_mac_address,
1747 	.ndo_do_ioctl		= fec_enet_ioctl,
1748 #ifdef CONFIG_NET_POLL_CONTROLLER
1749 	.ndo_poll_controller	= fec_poll_controller,
1750 #endif
1751 	.ndo_set_features	= fec_set_features,
1752 };
1753 
1754  /*
1755   * XXX:  We need to clean up on failure exits here.
1756   *
1757   */
1758 static int fec_enet_init(struct net_device *ndev)
1759 {
1760 	struct fec_enet_private *fep = netdev_priv(ndev);
1761 	const struct platform_device_id *id_entry =
1762 				platform_get_device_id(fep->pdev);
1763 	struct bufdesc *cbd_base;
1764 
1765 	/* Allocate memory for buffer descriptors. */
1766 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1767 				      GFP_KERNEL);
1768 	if (!cbd_base)
1769 		return -ENOMEM;
1770 
1771 	memset(cbd_base, 0, PAGE_SIZE);
1772 
1773 	fep->netdev = ndev;
1774 
1775 	/* Get the Ethernet address */
1776 	fec_get_mac(ndev);
1777 
1778 	/* Set receive and transmit descriptor base. */
1779 	fep->rx_bd_base = cbd_base;
1780 	if (fep->bufdesc_ex)
1781 		fep->tx_bd_base = (struct bufdesc *)
1782 			(((struct bufdesc_ex *)cbd_base) + RX_RING_SIZE);
1783 	else
1784 		fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1785 
1786 	/* The FEC Ethernet specific entries in the device structure */
1787 	ndev->watchdog_timeo = TX_TIMEOUT;
1788 	ndev->netdev_ops = &fec_netdev_ops;
1789 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
1790 
1791 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
1792 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, FEC_NAPI_WEIGHT);
1793 
1794 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
1795 		/* enable hw accelerator */
1796 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1797 				| NETIF_F_RXCSUM);
1798 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1799 				| NETIF_F_RXCSUM);
1800 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1801 	}
1802 
1803 	fec_restart(ndev, 0);
1804 
1805 	return 0;
1806 }
1807 
1808 #ifdef CONFIG_OF
1809 static void fec_reset_phy(struct platform_device *pdev)
1810 {
1811 	int err, phy_reset;
1812 	int msec = 1;
1813 	struct device_node *np = pdev->dev.of_node;
1814 
1815 	if (!np)
1816 		return;
1817 
1818 	of_property_read_u32(np, "phy-reset-duration", &msec);
1819 	/* A sane reset duration should not be longer than 1s */
1820 	if (msec > 1000)
1821 		msec = 1;
1822 
1823 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1824 	if (!gpio_is_valid(phy_reset))
1825 		return;
1826 
1827 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
1828 				    GPIOF_OUT_INIT_LOW, "phy-reset");
1829 	if (err) {
1830 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
1831 		return;
1832 	}
1833 	msleep(msec);
1834 	gpio_set_value(phy_reset, 1);
1835 }
1836 #else /* CONFIG_OF */
1837 static void fec_reset_phy(struct platform_device *pdev)
1838 {
1839 	/*
1840 	 * In case of platform probe, the reset has been done
1841 	 * by machine code.
1842 	 */
1843 }
1844 #endif /* CONFIG_OF */
1845 
1846 static int
1847 fec_probe(struct platform_device *pdev)
1848 {
1849 	struct fec_enet_private *fep;
1850 	struct fec_platform_data *pdata;
1851 	struct net_device *ndev;
1852 	int i, irq, ret = 0;
1853 	struct resource *r;
1854 	const struct of_device_id *of_id;
1855 	static int dev_id;
1856 	struct pinctrl *pinctrl;
1857 	struct regulator *reg_phy;
1858 
1859 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
1860 	if (of_id)
1861 		pdev->id_entry = of_id->data;
1862 
1863 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1864 	if (!r)
1865 		return -ENXIO;
1866 
1867 	/* Init network device */
1868 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1869 	if (!ndev)
1870 		return -ENOMEM;
1871 
1872 	SET_NETDEV_DEV(ndev, &pdev->dev);
1873 
1874 	/* setup board info structure */
1875 	fep = netdev_priv(ndev);
1876 
1877 	/* default enable pause frame auto negotiation */
1878 	if (pdev->id_entry &&
1879 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
1880 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
1881 
1882 	fep->hwp = devm_request_and_ioremap(&pdev->dev, r);
1883 	fep->pdev = pdev;
1884 	fep->dev_id = dev_id++;
1885 
1886 	fep->bufdesc_ex = 0;
1887 
1888 	if (!fep->hwp) {
1889 		ret = -ENOMEM;
1890 		goto failed_ioremap;
1891 	}
1892 
1893 	platform_set_drvdata(pdev, ndev);
1894 
1895 	ret = of_get_phy_mode(pdev->dev.of_node);
1896 	if (ret < 0) {
1897 		pdata = pdev->dev.platform_data;
1898 		if (pdata)
1899 			fep->phy_interface = pdata->phy;
1900 		else
1901 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
1902 	} else {
1903 		fep->phy_interface = ret;
1904 	}
1905 
1906 	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1907 	if (IS_ERR(pinctrl)) {
1908 		ret = PTR_ERR(pinctrl);
1909 		goto failed_pin;
1910 	}
1911 
1912 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1913 	if (IS_ERR(fep->clk_ipg)) {
1914 		ret = PTR_ERR(fep->clk_ipg);
1915 		goto failed_clk;
1916 	}
1917 
1918 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1919 	if (IS_ERR(fep->clk_ahb)) {
1920 		ret = PTR_ERR(fep->clk_ahb);
1921 		goto failed_clk;
1922 	}
1923 
1924 	/* enet_out is optional, depends on board */
1925 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
1926 	if (IS_ERR(fep->clk_enet_out))
1927 		fep->clk_enet_out = NULL;
1928 
1929 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
1930 	fep->bufdesc_ex =
1931 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
1932 	if (IS_ERR(fep->clk_ptp)) {
1933 		fep->clk_ptp = NULL;
1934 		fep->bufdesc_ex = 0;
1935 	}
1936 
1937 	clk_prepare_enable(fep->clk_ahb);
1938 	clk_prepare_enable(fep->clk_ipg);
1939 	clk_prepare_enable(fep->clk_enet_out);
1940 	clk_prepare_enable(fep->clk_ptp);
1941 
1942 	reg_phy = devm_regulator_get(&pdev->dev, "phy");
1943 	if (!IS_ERR(reg_phy)) {
1944 		ret = regulator_enable(reg_phy);
1945 		if (ret) {
1946 			dev_err(&pdev->dev,
1947 				"Failed to enable phy regulator: %d\n", ret);
1948 			goto failed_regulator;
1949 		}
1950 	}
1951 
1952 	fec_reset_phy(pdev);
1953 
1954 	if (fep->bufdesc_ex)
1955 		fec_ptp_init(ndev, pdev);
1956 
1957 	ret = fec_enet_init(ndev);
1958 	if (ret)
1959 		goto failed_init;
1960 
1961 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1962 		irq = platform_get_irq(pdev, i);
1963 		if (irq < 0) {
1964 			if (i)
1965 				break;
1966 			ret = irq;
1967 			goto failed_irq;
1968 		}
1969 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1970 		if (ret) {
1971 			while (--i >= 0) {
1972 				irq = platform_get_irq(pdev, i);
1973 				free_irq(irq, ndev);
1974 			}
1975 			goto failed_irq;
1976 		}
1977 	}
1978 
1979 	ret = fec_enet_mii_init(pdev);
1980 	if (ret)
1981 		goto failed_mii_init;
1982 
1983 	/* Carrier starts down, phylib will bring it up */
1984 	netif_carrier_off(ndev);
1985 
1986 	ret = register_netdev(ndev);
1987 	if (ret)
1988 		goto failed_register;
1989 
1990 	if (fep->bufdesc_ex && fep->ptp_clock)
1991 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
1992 
1993 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
1994 	return 0;
1995 
1996 failed_register:
1997 	fec_enet_mii_remove(fep);
1998 failed_mii_init:
1999 failed_init:
2000 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2001 		irq = platform_get_irq(pdev, i);
2002 		if (irq > 0)
2003 			free_irq(irq, ndev);
2004 	}
2005 failed_irq:
2006 failed_regulator:
2007 	clk_disable_unprepare(fep->clk_ahb);
2008 	clk_disable_unprepare(fep->clk_ipg);
2009 	clk_disable_unprepare(fep->clk_enet_out);
2010 	clk_disable_unprepare(fep->clk_ptp);
2011 failed_pin:
2012 failed_clk:
2013 failed_ioremap:
2014 	free_netdev(ndev);
2015 
2016 	return ret;
2017 }
2018 
2019 static int
2020 fec_drv_remove(struct platform_device *pdev)
2021 {
2022 	struct net_device *ndev = platform_get_drvdata(pdev);
2023 	struct fec_enet_private *fep = netdev_priv(ndev);
2024 	int i;
2025 
2026 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2027 	unregister_netdev(ndev);
2028 	fec_enet_mii_remove(fep);
2029 	del_timer_sync(&fep->time_keep);
2030 	clk_disable_unprepare(fep->clk_ptp);
2031 	if (fep->ptp_clock)
2032 		ptp_clock_unregister(fep->ptp_clock);
2033 	clk_disable_unprepare(fep->clk_enet_out);
2034 	clk_disable_unprepare(fep->clk_ahb);
2035 	clk_disable_unprepare(fep->clk_ipg);
2036 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2037 		int irq = platform_get_irq(pdev, i);
2038 		if (irq > 0)
2039 			free_irq(irq, ndev);
2040 	}
2041 	free_netdev(ndev);
2042 
2043 	platform_set_drvdata(pdev, NULL);
2044 
2045 	return 0;
2046 }
2047 
2048 #ifdef CONFIG_PM_SLEEP
2049 static int
2050 fec_suspend(struct device *dev)
2051 {
2052 	struct net_device *ndev = dev_get_drvdata(dev);
2053 	struct fec_enet_private *fep = netdev_priv(ndev);
2054 
2055 	if (netif_running(ndev)) {
2056 		fec_stop(ndev);
2057 		netif_device_detach(ndev);
2058 	}
2059 	clk_disable_unprepare(fep->clk_enet_out);
2060 	clk_disable_unprepare(fep->clk_ahb);
2061 	clk_disable_unprepare(fep->clk_ipg);
2062 
2063 	return 0;
2064 }
2065 
2066 static int
2067 fec_resume(struct device *dev)
2068 {
2069 	struct net_device *ndev = dev_get_drvdata(dev);
2070 	struct fec_enet_private *fep = netdev_priv(ndev);
2071 
2072 	clk_prepare_enable(fep->clk_enet_out);
2073 	clk_prepare_enable(fep->clk_ahb);
2074 	clk_prepare_enable(fep->clk_ipg);
2075 	if (netif_running(ndev)) {
2076 		fec_restart(ndev, fep->full_duplex);
2077 		netif_device_attach(ndev);
2078 	}
2079 
2080 	return 0;
2081 }
2082 #endif /* CONFIG_PM_SLEEP */
2083 
2084 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2085 
2086 static struct platform_driver fec_driver = {
2087 	.driver	= {
2088 		.name	= DRIVER_NAME,
2089 		.owner	= THIS_MODULE,
2090 		.pm	= &fec_pm_ops,
2091 		.of_match_table = fec_dt_ids,
2092 	},
2093 	.id_table = fec_devtype,
2094 	.probe	= fec_probe,
2095 	.remove	= fec_drv_remove,
2096 };
2097 
2098 module_platform_driver(fec_driver);
2099 
2100 MODULE_LICENSE("GPL");
2101