1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/gpio/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 #include <linux/filter.h>
70 #include <linux/bpf.h>
71 
72 #include <asm/cacheflush.h>
73 
74 #include "fec.h"
75 
76 static void set_multicast_list(struct net_device *ndev);
77 static void fec_enet_itr_coal_set(struct net_device *ndev);
78 
79 #define DRIVER_NAME	"fec"
80 
81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
82 
83 /* Pause frame feild and FIFO threshold */
84 #define FEC_ENET_FCE	(1 << 5)
85 #define FEC_ENET_RSEM_V	0x84
86 #define FEC_ENET_RSFL_V	16
87 #define FEC_ENET_RAEM_V	0x8
88 #define FEC_ENET_RAFL_V	0x8
89 #define FEC_ENET_OPD_V	0xFFF0
90 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
91 
92 #define FEC_ENET_XDP_PASS          0
93 #define FEC_ENET_XDP_CONSUMED      BIT(0)
94 #define FEC_ENET_XDP_TX            BIT(1)
95 #define FEC_ENET_XDP_REDIR         BIT(2)
96 
97 struct fec_devinfo {
98 	u32 quirks;
99 };
100 
101 static const struct fec_devinfo fec_imx25_info = {
102 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
103 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
104 };
105 
106 static const struct fec_devinfo fec_imx27_info = {
107 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
108 		  FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx28_info = {
112 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
113 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
114 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
115 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
116 };
117 
118 static const struct fec_devinfo fec_imx6q_info = {
119 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
120 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
121 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
123 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
124 };
125 
126 static const struct fec_devinfo fec_mvf600_info = {
127 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
128 		  FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_imx6x_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
135 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
136 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
137 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
138 		  FEC_QUIRK_HAS_MDIO_C45,
139 };
140 
141 static const struct fec_devinfo fec_imx6ul_info = {
142 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
143 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
144 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
145 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
146 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
147 		  FEC_QUIRK_HAS_MDIO_C45,
148 };
149 
150 static const struct fec_devinfo fec_imx8mq_info = {
151 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
152 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
153 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
154 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
155 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
156 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
157 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
158 		  FEC_QUIRK_HAS_MDIO_C45,
159 };
160 
161 static const struct fec_devinfo fec_imx8qm_info = {
162 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
163 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
164 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
165 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
166 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
167 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
168 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
169 };
170 
171 static const struct fec_devinfo fec_s32v234_info = {
172 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
173 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
174 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
175 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
176 		  FEC_QUIRK_HAS_MDIO_C45,
177 };
178 
179 static struct platform_device_id fec_devtype[] = {
180 	{
181 		/* keep it for coldfire */
182 		.name = DRIVER_NAME,
183 		.driver_data = 0,
184 	}, {
185 		.name = "imx25-fec",
186 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
187 	}, {
188 		.name = "imx27-fec",
189 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
190 	}, {
191 		.name = "imx28-fec",
192 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
193 	}, {
194 		.name = "imx6q-fec",
195 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
196 	}, {
197 		.name = "mvf600-fec",
198 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
199 	}, {
200 		.name = "imx6sx-fec",
201 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
202 	}, {
203 		.name = "imx6ul-fec",
204 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
205 	}, {
206 		.name = "imx8mq-fec",
207 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
208 	}, {
209 		.name = "imx8qm-fec",
210 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
211 	}, {
212 		.name = "s32v234-fec",
213 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
214 	}, {
215 		/* sentinel */
216 	}
217 };
218 MODULE_DEVICE_TABLE(platform, fec_devtype);
219 
220 enum imx_fec_type {
221 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
222 	IMX27_FEC,	/* runs on i.mx27/35/51 */
223 	IMX28_FEC,
224 	IMX6Q_FEC,
225 	MVF600_FEC,
226 	IMX6SX_FEC,
227 	IMX6UL_FEC,
228 	IMX8MQ_FEC,
229 	IMX8QM_FEC,
230 	S32V234_FEC,
231 };
232 
233 static const struct of_device_id fec_dt_ids[] = {
234 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
235 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
236 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
237 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
238 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
239 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
240 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
241 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
242 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
243 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
244 	{ /* sentinel */ }
245 };
246 MODULE_DEVICE_TABLE(of, fec_dt_ids);
247 
248 static unsigned char macaddr[ETH_ALEN];
249 module_param_array(macaddr, byte, NULL, 0);
250 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
251 
252 #if defined(CONFIG_M5272)
253 /*
254  * Some hardware gets it MAC address out of local flash memory.
255  * if this is non-zero then assume it is the address to get MAC from.
256  */
257 #if defined(CONFIG_NETtel)
258 #define	FEC_FLASHMAC	0xf0006006
259 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
260 #define	FEC_FLASHMAC	0xf0006000
261 #elif defined(CONFIG_CANCam)
262 #define	FEC_FLASHMAC	0xf0020000
263 #elif defined (CONFIG_M5272C3)
264 #define	FEC_FLASHMAC	(0xffe04000 + 4)
265 #elif defined(CONFIG_MOD5272)
266 #define FEC_FLASHMAC	0xffc0406b
267 #else
268 #define	FEC_FLASHMAC	0
269 #endif
270 #endif /* CONFIG_M5272 */
271 
272 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
273  *
274  * 2048 byte skbufs are allocated. However, alignment requirements
275  * varies between FEC variants. Worst case is 64, so round down by 64.
276  */
277 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
278 #define PKT_MINBUF_SIZE		64
279 
280 /* FEC receive acceleration */
281 #define FEC_RACC_IPDIS		(1 << 1)
282 #define FEC_RACC_PRODIS		(1 << 2)
283 #define FEC_RACC_SHIFT16	BIT(7)
284 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
285 
286 /* MIB Control Register */
287 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
288 
289 /*
290  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
291  * size bits. Other FEC hardware does not, so we need to take that into
292  * account when setting it.
293  */
294 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
295     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
296     defined(CONFIG_ARM64)
297 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
298 #else
299 #define	OPT_FRAME_SIZE	0
300 #endif
301 
302 /* FEC MII MMFR bits definition */
303 #define FEC_MMFR_ST		(1 << 30)
304 #define FEC_MMFR_ST_C45		(0)
305 #define FEC_MMFR_OP_READ	(2 << 28)
306 #define FEC_MMFR_OP_READ_C45	(3 << 28)
307 #define FEC_MMFR_OP_WRITE	(1 << 28)
308 #define FEC_MMFR_OP_ADDR_WRITE	(0)
309 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
310 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
311 #define FEC_MMFR_TA		(2 << 16)
312 #define FEC_MMFR_DATA(v)	(v & 0xffff)
313 /* FEC ECR bits definition */
314 #define FEC_ECR_MAGICEN		(1 << 2)
315 #define FEC_ECR_SLEEP		(1 << 3)
316 
317 #define FEC_MII_TIMEOUT		30000 /* us */
318 
319 /* Transmitter timeout */
320 #define TX_TIMEOUT (2 * HZ)
321 
322 #define FEC_PAUSE_FLAG_AUTONEG	0x1
323 #define FEC_PAUSE_FLAG_ENABLE	0x2
324 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
325 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
326 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
327 
328 #define COPYBREAK_DEFAULT	256
329 
330 /* Max number of allowed TCP segments for software TSO */
331 #define FEC_MAX_TSO_SEGS	100
332 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
333 
334 #define IS_TSO_HEADER(txq, addr) \
335 	((addr >= txq->tso_hdrs_dma) && \
336 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
337 
338 static int mii_cnt;
339 
340 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
341 					     struct bufdesc_prop *bd)
342 {
343 	return (bdp >= bd->last) ? bd->base
344 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
345 }
346 
347 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
348 					     struct bufdesc_prop *bd)
349 {
350 	return (bdp <= bd->base) ? bd->last
351 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
352 }
353 
354 static int fec_enet_get_bd_index(struct bufdesc *bdp,
355 				 struct bufdesc_prop *bd)
356 {
357 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
358 }
359 
360 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
361 {
362 	int entries;
363 
364 	entries = (((const char *)txq->dirty_tx -
365 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
366 
367 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
368 }
369 
370 static void swap_buffer(void *bufaddr, int len)
371 {
372 	int i;
373 	unsigned int *buf = bufaddr;
374 
375 	for (i = 0; i < len; i += 4, buf++)
376 		swab32s(buf);
377 }
378 
379 static void fec_dump(struct net_device *ndev)
380 {
381 	struct fec_enet_private *fep = netdev_priv(ndev);
382 	struct bufdesc *bdp;
383 	struct fec_enet_priv_tx_q *txq;
384 	int index = 0;
385 
386 	netdev_info(ndev, "TX ring dump\n");
387 	pr_info("Nr     SC     addr       len  SKB\n");
388 
389 	txq = fep->tx_queue[0];
390 	bdp = txq->bd.base;
391 
392 	do {
393 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
394 			index,
395 			bdp == txq->bd.cur ? 'S' : ' ',
396 			bdp == txq->dirty_tx ? 'H' : ' ',
397 			fec16_to_cpu(bdp->cbd_sc),
398 			fec32_to_cpu(bdp->cbd_bufaddr),
399 			fec16_to_cpu(bdp->cbd_datlen),
400 			txq->tx_buf[index].skb);
401 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
402 		index++;
403 	} while (bdp != txq->bd.base);
404 }
405 
406 static inline bool is_ipv4_pkt(struct sk_buff *skb)
407 {
408 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
409 }
410 
411 static int
412 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
413 {
414 	/* Only run for packets requiring a checksum. */
415 	if (skb->ip_summed != CHECKSUM_PARTIAL)
416 		return 0;
417 
418 	if (unlikely(skb_cow_head(skb, 0)))
419 		return -1;
420 
421 	if (is_ipv4_pkt(skb))
422 		ip_hdr(skb)->check = 0;
423 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
424 
425 	return 0;
426 }
427 
428 static int
429 fec_enet_create_page_pool(struct fec_enet_private *fep,
430 			  struct fec_enet_priv_rx_q *rxq, int size)
431 {
432 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
433 	struct page_pool_params pp_params = {
434 		.order = 0,
435 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
436 		.pool_size = size,
437 		.nid = dev_to_node(&fep->pdev->dev),
438 		.dev = &fep->pdev->dev,
439 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
440 		.offset = FEC_ENET_XDP_HEADROOM,
441 		.max_len = FEC_ENET_RX_FRSIZE,
442 	};
443 	int err;
444 
445 	rxq->page_pool = page_pool_create(&pp_params);
446 	if (IS_ERR(rxq->page_pool)) {
447 		err = PTR_ERR(rxq->page_pool);
448 		rxq->page_pool = NULL;
449 		return err;
450 	}
451 
452 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
453 	if (err < 0)
454 		goto err_free_pp;
455 
456 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
457 					 rxq->page_pool);
458 	if (err)
459 		goto err_unregister_rxq;
460 
461 	return 0;
462 
463 err_unregister_rxq:
464 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
465 err_free_pp:
466 	page_pool_destroy(rxq->page_pool);
467 	rxq->page_pool = NULL;
468 	return err;
469 }
470 
471 static struct bufdesc *
472 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
473 			     struct sk_buff *skb,
474 			     struct net_device *ndev)
475 {
476 	struct fec_enet_private *fep = netdev_priv(ndev);
477 	struct bufdesc *bdp = txq->bd.cur;
478 	struct bufdesc_ex *ebdp;
479 	int nr_frags = skb_shinfo(skb)->nr_frags;
480 	int frag, frag_len;
481 	unsigned short status;
482 	unsigned int estatus = 0;
483 	skb_frag_t *this_frag;
484 	unsigned int index;
485 	void *bufaddr;
486 	dma_addr_t addr;
487 	int i;
488 
489 	for (frag = 0; frag < nr_frags; frag++) {
490 		this_frag = &skb_shinfo(skb)->frags[frag];
491 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
492 		ebdp = (struct bufdesc_ex *)bdp;
493 
494 		status = fec16_to_cpu(bdp->cbd_sc);
495 		status &= ~BD_ENET_TX_STATS;
496 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
497 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
498 
499 		/* Handle the last BD specially */
500 		if (frag == nr_frags - 1) {
501 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
502 			if (fep->bufdesc_ex) {
503 				estatus |= BD_ENET_TX_INT;
504 				if (unlikely(skb_shinfo(skb)->tx_flags &
505 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
506 					estatus |= BD_ENET_TX_TS;
507 			}
508 		}
509 
510 		if (fep->bufdesc_ex) {
511 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
512 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
513 			if (skb->ip_summed == CHECKSUM_PARTIAL)
514 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515 
516 			ebdp->cbd_bdu = 0;
517 			ebdp->cbd_esc = cpu_to_fec32(estatus);
518 		}
519 
520 		bufaddr = skb_frag_address(this_frag);
521 
522 		index = fec_enet_get_bd_index(bdp, &txq->bd);
523 		if (((unsigned long) bufaddr) & fep->tx_align ||
524 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
525 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
526 			bufaddr = txq->tx_bounce[index];
527 
528 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
529 				swap_buffer(bufaddr, frag_len);
530 		}
531 
532 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
533 				      DMA_TO_DEVICE);
534 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
535 			if (net_ratelimit())
536 				netdev_err(ndev, "Tx DMA memory map failed\n");
537 			goto dma_mapping_error;
538 		}
539 
540 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
541 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
542 		/* Make sure the updates to rest of the descriptor are
543 		 * performed before transferring ownership.
544 		 */
545 		wmb();
546 		bdp->cbd_sc = cpu_to_fec16(status);
547 	}
548 
549 	return bdp;
550 dma_mapping_error:
551 	bdp = txq->bd.cur;
552 	for (i = 0; i < frag; i++) {
553 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
554 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
555 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
556 	}
557 	return ERR_PTR(-ENOMEM);
558 }
559 
560 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
561 				   struct sk_buff *skb, struct net_device *ndev)
562 {
563 	struct fec_enet_private *fep = netdev_priv(ndev);
564 	int nr_frags = skb_shinfo(skb)->nr_frags;
565 	struct bufdesc *bdp, *last_bdp;
566 	void *bufaddr;
567 	dma_addr_t addr;
568 	unsigned short status;
569 	unsigned short buflen;
570 	unsigned int estatus = 0;
571 	unsigned int index;
572 	int entries_free;
573 
574 	entries_free = fec_enet_get_free_txdesc_num(txq);
575 	if (entries_free < MAX_SKB_FRAGS + 1) {
576 		dev_kfree_skb_any(skb);
577 		if (net_ratelimit())
578 			netdev_err(ndev, "NOT enough BD for SG!\n");
579 		return NETDEV_TX_OK;
580 	}
581 
582 	/* Protocol checksum off-load for TCP and UDP. */
583 	if (fec_enet_clear_csum(skb, ndev)) {
584 		dev_kfree_skb_any(skb);
585 		return NETDEV_TX_OK;
586 	}
587 
588 	/* Fill in a Tx ring entry */
589 	bdp = txq->bd.cur;
590 	last_bdp = bdp;
591 	status = fec16_to_cpu(bdp->cbd_sc);
592 	status &= ~BD_ENET_TX_STATS;
593 
594 	/* Set buffer length and buffer pointer */
595 	bufaddr = skb->data;
596 	buflen = skb_headlen(skb);
597 
598 	index = fec_enet_get_bd_index(bdp, &txq->bd);
599 	if (((unsigned long) bufaddr) & fep->tx_align ||
600 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
601 		memcpy(txq->tx_bounce[index], skb->data, buflen);
602 		bufaddr = txq->tx_bounce[index];
603 
604 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
605 			swap_buffer(bufaddr, buflen);
606 	}
607 
608 	/* Push the data cache so the CPM does not get stale memory data. */
609 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
610 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
611 		dev_kfree_skb_any(skb);
612 		if (net_ratelimit())
613 			netdev_err(ndev, "Tx DMA memory map failed\n");
614 		return NETDEV_TX_OK;
615 	}
616 
617 	if (nr_frags) {
618 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
619 		if (IS_ERR(last_bdp)) {
620 			dma_unmap_single(&fep->pdev->dev, addr,
621 					 buflen, DMA_TO_DEVICE);
622 			dev_kfree_skb_any(skb);
623 			return NETDEV_TX_OK;
624 		}
625 	} else {
626 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
627 		if (fep->bufdesc_ex) {
628 			estatus = BD_ENET_TX_INT;
629 			if (unlikely(skb_shinfo(skb)->tx_flags &
630 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
631 				estatus |= BD_ENET_TX_TS;
632 		}
633 	}
634 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
635 	bdp->cbd_datlen = cpu_to_fec16(buflen);
636 
637 	if (fep->bufdesc_ex) {
638 
639 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
640 
641 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
642 			fep->hwts_tx_en))
643 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
644 
645 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
646 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
647 
648 		if (skb->ip_summed == CHECKSUM_PARTIAL)
649 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
650 
651 		ebdp->cbd_bdu = 0;
652 		ebdp->cbd_esc = cpu_to_fec32(estatus);
653 	}
654 
655 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
656 	/* Save skb pointer */
657 	txq->tx_buf[index].skb = skb;
658 
659 	/* Make sure the updates to rest of the descriptor are performed before
660 	 * transferring ownership.
661 	 */
662 	wmb();
663 
664 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
665 	 * it's the last BD of the frame, and to put the CRC on the end.
666 	 */
667 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
668 	bdp->cbd_sc = cpu_to_fec16(status);
669 
670 	/* If this was the last BD in the ring, start at the beginning again. */
671 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
672 
673 	skb_tx_timestamp(skb);
674 
675 	/* Make sure the update to bdp is performed before txq->bd.cur. */
676 	wmb();
677 	txq->bd.cur = bdp;
678 
679 	/* Trigger transmission start */
680 	writel(0, txq->bd.reg_desc_active);
681 
682 	return 0;
683 }
684 
685 static int
686 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
687 			  struct net_device *ndev,
688 			  struct bufdesc *bdp, int index, char *data,
689 			  int size, bool last_tcp, bool is_last)
690 {
691 	struct fec_enet_private *fep = netdev_priv(ndev);
692 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
693 	unsigned short status;
694 	unsigned int estatus = 0;
695 	dma_addr_t addr;
696 
697 	status = fec16_to_cpu(bdp->cbd_sc);
698 	status &= ~BD_ENET_TX_STATS;
699 
700 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
701 
702 	if (((unsigned long) data) & fep->tx_align ||
703 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
704 		memcpy(txq->tx_bounce[index], data, size);
705 		data = txq->tx_bounce[index];
706 
707 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
708 			swap_buffer(data, size);
709 	}
710 
711 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
712 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
713 		dev_kfree_skb_any(skb);
714 		if (net_ratelimit())
715 			netdev_err(ndev, "Tx DMA memory map failed\n");
716 		return NETDEV_TX_OK;
717 	}
718 
719 	bdp->cbd_datlen = cpu_to_fec16(size);
720 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
721 
722 	if (fep->bufdesc_ex) {
723 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
724 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
725 		if (skb->ip_summed == CHECKSUM_PARTIAL)
726 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
727 		ebdp->cbd_bdu = 0;
728 		ebdp->cbd_esc = cpu_to_fec32(estatus);
729 	}
730 
731 	/* Handle the last BD specially */
732 	if (last_tcp)
733 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
734 	if (is_last) {
735 		status |= BD_ENET_TX_INTR;
736 		if (fep->bufdesc_ex)
737 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
738 	}
739 
740 	bdp->cbd_sc = cpu_to_fec16(status);
741 
742 	return 0;
743 }
744 
745 static int
746 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
747 			 struct sk_buff *skb, struct net_device *ndev,
748 			 struct bufdesc *bdp, int index)
749 {
750 	struct fec_enet_private *fep = netdev_priv(ndev);
751 	int hdr_len = skb_tcp_all_headers(skb);
752 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
753 	void *bufaddr;
754 	unsigned long dmabuf;
755 	unsigned short status;
756 	unsigned int estatus = 0;
757 
758 	status = fec16_to_cpu(bdp->cbd_sc);
759 	status &= ~BD_ENET_TX_STATS;
760 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
761 
762 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
763 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
764 	if (((unsigned long)bufaddr) & fep->tx_align ||
765 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
766 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
767 		bufaddr = txq->tx_bounce[index];
768 
769 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
770 			swap_buffer(bufaddr, hdr_len);
771 
772 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
773 					hdr_len, DMA_TO_DEVICE);
774 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
775 			dev_kfree_skb_any(skb);
776 			if (net_ratelimit())
777 				netdev_err(ndev, "Tx DMA memory map failed\n");
778 			return NETDEV_TX_OK;
779 		}
780 	}
781 
782 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
783 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
784 
785 	if (fep->bufdesc_ex) {
786 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
787 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
788 		if (skb->ip_summed == CHECKSUM_PARTIAL)
789 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
790 		ebdp->cbd_bdu = 0;
791 		ebdp->cbd_esc = cpu_to_fec32(estatus);
792 	}
793 
794 	bdp->cbd_sc = cpu_to_fec16(status);
795 
796 	return 0;
797 }
798 
799 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
800 				   struct sk_buff *skb,
801 				   struct net_device *ndev)
802 {
803 	struct fec_enet_private *fep = netdev_priv(ndev);
804 	int hdr_len, total_len, data_left;
805 	struct bufdesc *bdp = txq->bd.cur;
806 	struct tso_t tso;
807 	unsigned int index = 0;
808 	int ret;
809 
810 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
811 		dev_kfree_skb_any(skb);
812 		if (net_ratelimit())
813 			netdev_err(ndev, "NOT enough BD for TSO!\n");
814 		return NETDEV_TX_OK;
815 	}
816 
817 	/* Protocol checksum off-load for TCP and UDP. */
818 	if (fec_enet_clear_csum(skb, ndev)) {
819 		dev_kfree_skb_any(skb);
820 		return NETDEV_TX_OK;
821 	}
822 
823 	/* Initialize the TSO handler, and prepare the first payload */
824 	hdr_len = tso_start(skb, &tso);
825 
826 	total_len = skb->len - hdr_len;
827 	while (total_len > 0) {
828 		char *hdr;
829 
830 		index = fec_enet_get_bd_index(bdp, &txq->bd);
831 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
832 		total_len -= data_left;
833 
834 		/* prepare packet headers: MAC + IP + TCP */
835 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
836 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
837 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
838 		if (ret)
839 			goto err_release;
840 
841 		while (data_left > 0) {
842 			int size;
843 
844 			size = min_t(int, tso.size, data_left);
845 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
846 			index = fec_enet_get_bd_index(bdp, &txq->bd);
847 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
848 							bdp, index,
849 							tso.data, size,
850 							size == data_left,
851 							total_len == 0);
852 			if (ret)
853 				goto err_release;
854 
855 			data_left -= size;
856 			tso_build_data(skb, &tso, size);
857 		}
858 
859 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
860 	}
861 
862 	/* Save skb pointer */
863 	txq->tx_buf[index].skb = skb;
864 
865 	skb_tx_timestamp(skb);
866 	txq->bd.cur = bdp;
867 
868 	/* Trigger transmission start */
869 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
870 	    !readl(txq->bd.reg_desc_active) ||
871 	    !readl(txq->bd.reg_desc_active) ||
872 	    !readl(txq->bd.reg_desc_active) ||
873 	    !readl(txq->bd.reg_desc_active))
874 		writel(0, txq->bd.reg_desc_active);
875 
876 	return 0;
877 
878 err_release:
879 	/* TODO: Release all used data descriptors for TSO */
880 	return ret;
881 }
882 
883 static netdev_tx_t
884 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
885 {
886 	struct fec_enet_private *fep = netdev_priv(ndev);
887 	int entries_free;
888 	unsigned short queue;
889 	struct fec_enet_priv_tx_q *txq;
890 	struct netdev_queue *nq;
891 	int ret;
892 
893 	queue = skb_get_queue_mapping(skb);
894 	txq = fep->tx_queue[queue];
895 	nq = netdev_get_tx_queue(ndev, queue);
896 
897 	if (skb_is_gso(skb))
898 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
899 	else
900 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
901 	if (ret)
902 		return ret;
903 
904 	entries_free = fec_enet_get_free_txdesc_num(txq);
905 	if (entries_free <= txq->tx_stop_threshold)
906 		netif_tx_stop_queue(nq);
907 
908 	return NETDEV_TX_OK;
909 }
910 
911 /* Init RX & TX buffer descriptors
912  */
913 static void fec_enet_bd_init(struct net_device *dev)
914 {
915 	struct fec_enet_private *fep = netdev_priv(dev);
916 	struct fec_enet_priv_tx_q *txq;
917 	struct fec_enet_priv_rx_q *rxq;
918 	struct bufdesc *bdp;
919 	unsigned int i;
920 	unsigned int q;
921 
922 	for (q = 0; q < fep->num_rx_queues; q++) {
923 		/* Initialize the receive buffer descriptors. */
924 		rxq = fep->rx_queue[q];
925 		bdp = rxq->bd.base;
926 
927 		for (i = 0; i < rxq->bd.ring_size; i++) {
928 
929 			/* Initialize the BD for every fragment in the page. */
930 			if (bdp->cbd_bufaddr)
931 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
932 			else
933 				bdp->cbd_sc = cpu_to_fec16(0);
934 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
935 		}
936 
937 		/* Set the last buffer to wrap */
938 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
939 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
940 
941 		rxq->bd.cur = rxq->bd.base;
942 	}
943 
944 	for (q = 0; q < fep->num_tx_queues; q++) {
945 		/* ...and the same for transmit */
946 		txq = fep->tx_queue[q];
947 		bdp = txq->bd.base;
948 		txq->bd.cur = bdp;
949 
950 		for (i = 0; i < txq->bd.ring_size; i++) {
951 			/* Initialize the BD for every fragment in the page. */
952 			bdp->cbd_sc = cpu_to_fec16(0);
953 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
954 				if (bdp->cbd_bufaddr &&
955 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
956 					dma_unmap_single(&fep->pdev->dev,
957 							 fec32_to_cpu(bdp->cbd_bufaddr),
958 							 fec16_to_cpu(bdp->cbd_datlen),
959 							 DMA_TO_DEVICE);
960 				if (txq->tx_buf[i].skb) {
961 					dev_kfree_skb_any(txq->tx_buf[i].skb);
962 					txq->tx_buf[i].skb = NULL;
963 				}
964 			} else {
965 				if (bdp->cbd_bufaddr)
966 					dma_unmap_single(&fep->pdev->dev,
967 							 fec32_to_cpu(bdp->cbd_bufaddr),
968 							 fec16_to_cpu(bdp->cbd_datlen),
969 							 DMA_TO_DEVICE);
970 
971 				if (txq->tx_buf[i].xdp) {
972 					xdp_return_frame(txq->tx_buf[i].xdp);
973 					txq->tx_buf[i].xdp = NULL;
974 				}
975 
976 				/* restore default tx buffer type: FEC_TXBUF_T_SKB */
977 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
978 			}
979 
980 			bdp->cbd_bufaddr = cpu_to_fec32(0);
981 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
982 		}
983 
984 		/* Set the last buffer to wrap */
985 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
986 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
987 		txq->dirty_tx = bdp;
988 	}
989 }
990 
991 static void fec_enet_active_rxring(struct net_device *ndev)
992 {
993 	struct fec_enet_private *fep = netdev_priv(ndev);
994 	int i;
995 
996 	for (i = 0; i < fep->num_rx_queues; i++)
997 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
998 }
999 
1000 static void fec_enet_enable_ring(struct net_device *ndev)
1001 {
1002 	struct fec_enet_private *fep = netdev_priv(ndev);
1003 	struct fec_enet_priv_tx_q *txq;
1004 	struct fec_enet_priv_rx_q *rxq;
1005 	int i;
1006 
1007 	for (i = 0; i < fep->num_rx_queues; i++) {
1008 		rxq = fep->rx_queue[i];
1009 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1010 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1011 
1012 		/* enable DMA1/2 */
1013 		if (i)
1014 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1015 			       fep->hwp + FEC_RCMR(i));
1016 	}
1017 
1018 	for (i = 0; i < fep->num_tx_queues; i++) {
1019 		txq = fep->tx_queue[i];
1020 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1021 
1022 		/* enable DMA1/2 */
1023 		if (i)
1024 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1025 			       fep->hwp + FEC_DMA_CFG(i));
1026 	}
1027 }
1028 
1029 /*
1030  * This function is called to start or restart the FEC during a link
1031  * change, transmit timeout, or to reconfigure the FEC.  The network
1032  * packet processing for this device must be stopped before this call.
1033  */
1034 static void
1035 fec_restart(struct net_device *ndev)
1036 {
1037 	struct fec_enet_private *fep = netdev_priv(ndev);
1038 	u32 temp_mac[2];
1039 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1040 	u32 ecntl = 0x2; /* ETHEREN */
1041 
1042 	/* Whack a reset.  We should wait for this.
1043 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1044 	 * instead of reset MAC itself.
1045 	 */
1046 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1047 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1048 		writel(0, fep->hwp + FEC_ECNTRL);
1049 	} else {
1050 		writel(1, fep->hwp + FEC_ECNTRL);
1051 		udelay(10);
1052 	}
1053 
1054 	/*
1055 	 * enet-mac reset will reset mac address registers too,
1056 	 * so need to reconfigure it.
1057 	 */
1058 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1059 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1060 	       fep->hwp + FEC_ADDR_LOW);
1061 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1062 	       fep->hwp + FEC_ADDR_HIGH);
1063 
1064 	/* Clear any outstanding interrupt, except MDIO. */
1065 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1066 
1067 	fec_enet_bd_init(ndev);
1068 
1069 	fec_enet_enable_ring(ndev);
1070 
1071 	/* Enable MII mode */
1072 	if (fep->full_duplex == DUPLEX_FULL) {
1073 		/* FD enable */
1074 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1075 	} else {
1076 		/* No Rcv on Xmit */
1077 		rcntl |= 0x02;
1078 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1079 	}
1080 
1081 	/* Set MII speed */
1082 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1083 
1084 #if !defined(CONFIG_M5272)
1085 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1086 		u32 val = readl(fep->hwp + FEC_RACC);
1087 
1088 		/* align IP header */
1089 		val |= FEC_RACC_SHIFT16;
1090 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1091 			/* set RX checksum */
1092 			val |= FEC_RACC_OPTIONS;
1093 		else
1094 			val &= ~FEC_RACC_OPTIONS;
1095 		writel(val, fep->hwp + FEC_RACC);
1096 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1097 	}
1098 #endif
1099 
1100 	/*
1101 	 * The phy interface and speed need to get configured
1102 	 * differently on enet-mac.
1103 	 */
1104 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1105 		/* Enable flow control and length check */
1106 		rcntl |= 0x40000000 | 0x00000020;
1107 
1108 		/* RGMII, RMII or MII */
1109 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1110 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1111 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1112 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1113 			rcntl |= (1 << 6);
1114 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1115 			rcntl |= (1 << 8);
1116 		else
1117 			rcntl &= ~(1 << 8);
1118 
1119 		/* 1G, 100M or 10M */
1120 		if (ndev->phydev) {
1121 			if (ndev->phydev->speed == SPEED_1000)
1122 				ecntl |= (1 << 5);
1123 			else if (ndev->phydev->speed == SPEED_100)
1124 				rcntl &= ~(1 << 9);
1125 			else
1126 				rcntl |= (1 << 9);
1127 		}
1128 	} else {
1129 #ifdef FEC_MIIGSK_ENR
1130 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1131 			u32 cfgr;
1132 			/* disable the gasket and wait */
1133 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1134 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1135 				udelay(1);
1136 
1137 			/*
1138 			 * configure the gasket:
1139 			 *   RMII, 50 MHz, no loopback, no echo
1140 			 *   MII, 25 MHz, no loopback, no echo
1141 			 */
1142 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1143 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1144 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1145 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1146 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1147 
1148 			/* re-enable the gasket */
1149 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1150 		}
1151 #endif
1152 	}
1153 
1154 #if !defined(CONFIG_M5272)
1155 	/* enable pause frame*/
1156 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1157 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1158 	     ndev->phydev && ndev->phydev->pause)) {
1159 		rcntl |= FEC_ENET_FCE;
1160 
1161 		/* set FIFO threshold parameter to reduce overrun */
1162 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1163 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1164 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1165 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1166 
1167 		/* OPD */
1168 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1169 	} else {
1170 		rcntl &= ~FEC_ENET_FCE;
1171 	}
1172 #endif /* !defined(CONFIG_M5272) */
1173 
1174 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1175 
1176 	/* Setup multicast filter. */
1177 	set_multicast_list(ndev);
1178 #ifndef CONFIG_M5272
1179 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1180 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1181 #endif
1182 
1183 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1184 		/* enable ENET endian swap */
1185 		ecntl |= (1 << 8);
1186 		/* enable ENET store and forward mode */
1187 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1188 	}
1189 
1190 	if (fep->bufdesc_ex)
1191 		ecntl |= (1 << 4);
1192 
1193 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1194 	    fep->rgmii_txc_dly)
1195 		ecntl |= FEC_ENET_TXC_DLY;
1196 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1197 	    fep->rgmii_rxc_dly)
1198 		ecntl |= FEC_ENET_RXC_DLY;
1199 
1200 #ifndef CONFIG_M5272
1201 	/* Enable the MIB statistic event counters */
1202 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1203 #endif
1204 
1205 	/* And last, enable the transmit and receive processing */
1206 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1207 	fec_enet_active_rxring(ndev);
1208 
1209 	if (fep->bufdesc_ex)
1210 		fec_ptp_start_cyclecounter(ndev);
1211 
1212 	/* Enable interrupts we wish to service */
1213 	if (fep->link)
1214 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1215 	else
1216 		writel(0, fep->hwp + FEC_IMASK);
1217 
1218 	/* Init the interrupt coalescing */
1219 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1220 		fec_enet_itr_coal_set(ndev);
1221 }
1222 
1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1224 {
1225 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1226 	      of_machine_is_compatible("fsl,imx8qxp") ||
1227 	      of_machine_is_compatible("fsl,imx8dxl")))
1228 		return 0;
1229 
1230 	return imx_scu_get_handle(&fep->ipc_handle);
1231 }
1232 
1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1234 {
1235 	struct device_node *np = fep->pdev->dev.of_node;
1236 	u32 rsrc_id, val;
1237 	int idx;
1238 
1239 	if (!np || !fep->ipc_handle)
1240 		return;
1241 
1242 	idx = of_alias_get_id(np, "ethernet");
1243 	if (idx < 0)
1244 		idx = 0;
1245 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1246 
1247 	val = enabled ? 1 : 0;
1248 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1249 }
1250 
1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1252 {
1253 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1254 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1255 
1256 	if (stop_gpr->gpr) {
1257 		if (enabled)
1258 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1259 					   BIT(stop_gpr->bit),
1260 					   BIT(stop_gpr->bit));
1261 		else
1262 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1263 					   BIT(stop_gpr->bit), 0);
1264 	} else if (pdata && pdata->sleep_mode_enable) {
1265 		pdata->sleep_mode_enable(enabled);
1266 	} else {
1267 		fec_enet_ipg_stop_set(fep, enabled);
1268 	}
1269 }
1270 
1271 static void fec_irqs_disable(struct net_device *ndev)
1272 {
1273 	struct fec_enet_private *fep = netdev_priv(ndev);
1274 
1275 	writel(0, fep->hwp + FEC_IMASK);
1276 }
1277 
1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1279 {
1280 	struct fec_enet_private *fep = netdev_priv(ndev);
1281 
1282 	writel(0, fep->hwp + FEC_IMASK);
1283 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1284 }
1285 
1286 static void
1287 fec_stop(struct net_device *ndev)
1288 {
1289 	struct fec_enet_private *fep = netdev_priv(ndev);
1290 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1291 	u32 val;
1292 
1293 	/* We cannot expect a graceful transmit stop without link !!! */
1294 	if (fep->link) {
1295 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1296 		udelay(10);
1297 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1298 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1299 	}
1300 
1301 	/* Whack a reset.  We should wait for this.
1302 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1303 	 * instead of reset MAC itself.
1304 	 */
1305 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1306 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1307 			writel(0, fep->hwp + FEC_ECNTRL);
1308 		} else {
1309 			writel(1, fep->hwp + FEC_ECNTRL);
1310 			udelay(10);
1311 		}
1312 	} else {
1313 		val = readl(fep->hwp + FEC_ECNTRL);
1314 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1315 		writel(val, fep->hwp + FEC_ECNTRL);
1316 	}
1317 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1318 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1319 
1320 	/* We have to keep ENET enabled to have MII interrupt stay working */
1321 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1322 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1323 		writel(2, fep->hwp + FEC_ECNTRL);
1324 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1325 	}
1326 }
1327 
1328 
1329 static void
1330 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1331 {
1332 	struct fec_enet_private *fep = netdev_priv(ndev);
1333 
1334 	fec_dump(ndev);
1335 
1336 	ndev->stats.tx_errors++;
1337 
1338 	schedule_work(&fep->tx_timeout_work);
1339 }
1340 
1341 static void fec_enet_timeout_work(struct work_struct *work)
1342 {
1343 	struct fec_enet_private *fep =
1344 		container_of(work, struct fec_enet_private, tx_timeout_work);
1345 	struct net_device *ndev = fep->netdev;
1346 
1347 	rtnl_lock();
1348 	if (netif_device_present(ndev) || netif_running(ndev)) {
1349 		napi_disable(&fep->napi);
1350 		netif_tx_lock_bh(ndev);
1351 		fec_restart(ndev);
1352 		netif_tx_wake_all_queues(ndev);
1353 		netif_tx_unlock_bh(ndev);
1354 		napi_enable(&fep->napi);
1355 	}
1356 	rtnl_unlock();
1357 }
1358 
1359 static void
1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1361 	struct skb_shared_hwtstamps *hwtstamps)
1362 {
1363 	unsigned long flags;
1364 	u64 ns;
1365 
1366 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1367 	ns = timecounter_cyc2time(&fep->tc, ts);
1368 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1369 
1370 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1371 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1372 }
1373 
1374 static void
1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1376 {
1377 	struct	fec_enet_private *fep;
1378 	struct xdp_frame *xdpf;
1379 	struct bufdesc *bdp;
1380 	unsigned short status;
1381 	struct	sk_buff	*skb;
1382 	struct fec_enet_priv_tx_q *txq;
1383 	struct netdev_queue *nq;
1384 	int	index = 0;
1385 	int	entries_free;
1386 
1387 	fep = netdev_priv(ndev);
1388 
1389 	txq = fep->tx_queue[queue_id];
1390 	/* get next bdp of dirty_tx */
1391 	nq = netdev_get_tx_queue(ndev, queue_id);
1392 	bdp = txq->dirty_tx;
1393 
1394 	/* get next bdp of dirty_tx */
1395 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1396 
1397 	while (bdp != READ_ONCE(txq->bd.cur)) {
1398 		/* Order the load of bd.cur and cbd_sc */
1399 		rmb();
1400 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1401 		if (status & BD_ENET_TX_READY)
1402 			break;
1403 
1404 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1405 
1406 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1407 			skb = txq->tx_buf[index].skb;
1408 			txq->tx_buf[index].skb = NULL;
1409 			if (bdp->cbd_bufaddr &&
1410 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1411 				dma_unmap_single(&fep->pdev->dev,
1412 						 fec32_to_cpu(bdp->cbd_bufaddr),
1413 						 fec16_to_cpu(bdp->cbd_datlen),
1414 						 DMA_TO_DEVICE);
1415 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1416 			if (!skb)
1417 				goto tx_buf_done;
1418 		} else {
1419 			/* Tx processing cannot call any XDP (or page pool) APIs if
1420 			 * the "budget" is 0. Because NAPI is called with budget of
1421 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1422 			 * however, we can't use the page pool from IRQ context.
1423 			 */
1424 			if (unlikely(!budget))
1425 				break;
1426 
1427 			xdpf = txq->tx_buf[index].xdp;
1428 			if (bdp->cbd_bufaddr)
1429 				dma_unmap_single(&fep->pdev->dev,
1430 						 fec32_to_cpu(bdp->cbd_bufaddr),
1431 						 fec16_to_cpu(bdp->cbd_datlen),
1432 						 DMA_TO_DEVICE);
1433 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1434 			if (!xdpf) {
1435 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1436 				goto tx_buf_done;
1437 			}
1438 		}
1439 
1440 		/* Check for errors. */
1441 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1442 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1443 				   BD_ENET_TX_CSL)) {
1444 			ndev->stats.tx_errors++;
1445 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1446 				ndev->stats.tx_heartbeat_errors++;
1447 			if (status & BD_ENET_TX_LC)  /* Late collision */
1448 				ndev->stats.tx_window_errors++;
1449 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1450 				ndev->stats.tx_aborted_errors++;
1451 			if (status & BD_ENET_TX_UN)  /* Underrun */
1452 				ndev->stats.tx_fifo_errors++;
1453 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1454 				ndev->stats.tx_carrier_errors++;
1455 		} else {
1456 			ndev->stats.tx_packets++;
1457 
1458 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1459 				ndev->stats.tx_bytes += skb->len;
1460 			else
1461 				ndev->stats.tx_bytes += xdpf->len;
1462 		}
1463 
1464 		/* Deferred means some collisions occurred during transmit,
1465 		 * but we eventually sent the packet OK.
1466 		 */
1467 		if (status & BD_ENET_TX_DEF)
1468 			ndev->stats.collisions++;
1469 
1470 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1471 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1472 			 * are to time stamp the packet, so we still need to check time
1473 			 * stamping enabled flag.
1474 			 */
1475 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1476 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1477 				struct skb_shared_hwtstamps shhwtstamps;
1478 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1479 
1480 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1481 				skb_tstamp_tx(skb, &shhwtstamps);
1482 			}
1483 
1484 			/* Free the sk buffer associated with this last transmit */
1485 			dev_kfree_skb_any(skb);
1486 		} else {
1487 			xdp_return_frame(xdpf);
1488 
1489 			txq->tx_buf[index].xdp = NULL;
1490 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1491 			txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1492 		}
1493 
1494 tx_buf_done:
1495 		/* Make sure the update to bdp and tx_buf are performed
1496 		 * before dirty_tx
1497 		 */
1498 		wmb();
1499 		txq->dirty_tx = bdp;
1500 
1501 		/* Update pointer to next buffer descriptor to be transmitted */
1502 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1503 
1504 		/* Since we have freed up a buffer, the ring is no longer full
1505 		 */
1506 		if (netif_tx_queue_stopped(nq)) {
1507 			entries_free = fec_enet_get_free_txdesc_num(txq);
1508 			if (entries_free >= txq->tx_wake_threshold)
1509 				netif_tx_wake_queue(nq);
1510 		}
1511 	}
1512 
1513 	/* ERR006358: Keep the transmitter going */
1514 	if (bdp != txq->bd.cur &&
1515 	    readl(txq->bd.reg_desc_active) == 0)
1516 		writel(0, txq->bd.reg_desc_active);
1517 }
1518 
1519 static void fec_enet_tx(struct net_device *ndev, int budget)
1520 {
1521 	struct fec_enet_private *fep = netdev_priv(ndev);
1522 	int i;
1523 
1524 	/* Make sure that AVB queues are processed first. */
1525 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1526 		fec_enet_tx_queue(ndev, i, budget);
1527 }
1528 
1529 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1530 				struct bufdesc *bdp, int index)
1531 {
1532 	struct page *new_page;
1533 	dma_addr_t phys_addr;
1534 
1535 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1536 	WARN_ON(!new_page);
1537 	rxq->rx_skb_info[index].page = new_page;
1538 
1539 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1540 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1541 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1542 }
1543 
1544 static u32
1545 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1546 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index)
1547 {
1548 	unsigned int sync, len = xdp->data_end - xdp->data;
1549 	u32 ret = FEC_ENET_XDP_PASS;
1550 	struct page *page;
1551 	int err;
1552 	u32 act;
1553 
1554 	act = bpf_prog_run_xdp(prog, xdp);
1555 
1556 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
1557 	sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM;
1558 	sync = max(sync, len);
1559 
1560 	switch (act) {
1561 	case XDP_PASS:
1562 		rxq->stats[RX_XDP_PASS]++;
1563 		ret = FEC_ENET_XDP_PASS;
1564 		break;
1565 
1566 	case XDP_REDIRECT:
1567 		rxq->stats[RX_XDP_REDIRECT]++;
1568 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1569 		if (!err) {
1570 			ret = FEC_ENET_XDP_REDIR;
1571 		} else {
1572 			ret = FEC_ENET_XDP_CONSUMED;
1573 			page = virt_to_head_page(xdp->data);
1574 			page_pool_put_page(rxq->page_pool, page, sync, true);
1575 		}
1576 		break;
1577 
1578 	default:
1579 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1580 		fallthrough;
1581 
1582 	case XDP_TX:
1583 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1584 		fallthrough;
1585 
1586 	case XDP_ABORTED:
1587 		fallthrough;    /* handle aborts by dropping packet */
1588 
1589 	case XDP_DROP:
1590 		rxq->stats[RX_XDP_DROP]++;
1591 		ret = FEC_ENET_XDP_CONSUMED;
1592 		page = virt_to_head_page(xdp->data);
1593 		page_pool_put_page(rxq->page_pool, page, sync, true);
1594 		break;
1595 	}
1596 
1597 	return ret;
1598 }
1599 
1600 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1601  * When we update through the ring, if the next incoming buffer has
1602  * not been given to the system, we just set the empty indicator,
1603  * effectively tossing the packet.
1604  */
1605 static int
1606 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1607 {
1608 	struct fec_enet_private *fep = netdev_priv(ndev);
1609 	struct fec_enet_priv_rx_q *rxq;
1610 	struct bufdesc *bdp;
1611 	unsigned short status;
1612 	struct  sk_buff *skb;
1613 	ushort	pkt_len;
1614 	__u8 *data;
1615 	int	pkt_received = 0;
1616 	struct	bufdesc_ex *ebdp = NULL;
1617 	bool	vlan_packet_rcvd = false;
1618 	u16	vlan_tag;
1619 	int	index = 0;
1620 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1621 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1622 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1623 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1624 	struct xdp_buff xdp;
1625 	struct page *page;
1626 	u32 sub_len = 4;
1627 
1628 #if !defined(CONFIG_M5272)
1629 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1630 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1631 	 */
1632 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1633 		data_start += 2;
1634 		sub_len += 2;
1635 	}
1636 #endif
1637 
1638 #ifdef CONFIG_M532x
1639 	flush_cache_all();
1640 #endif
1641 	rxq = fep->rx_queue[queue_id];
1642 
1643 	/* First, grab all of the stats for the incoming packet.
1644 	 * These get messed up if we get called due to a busy condition.
1645 	 */
1646 	bdp = rxq->bd.cur;
1647 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1648 
1649 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1650 
1651 		if (pkt_received >= budget)
1652 			break;
1653 		pkt_received++;
1654 
1655 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1656 
1657 		/* Check for errors. */
1658 		status ^= BD_ENET_RX_LAST;
1659 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1660 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1661 			   BD_ENET_RX_CL)) {
1662 			ndev->stats.rx_errors++;
1663 			if (status & BD_ENET_RX_OV) {
1664 				/* FIFO overrun */
1665 				ndev->stats.rx_fifo_errors++;
1666 				goto rx_processing_done;
1667 			}
1668 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1669 						| BD_ENET_RX_LAST)) {
1670 				/* Frame too long or too short. */
1671 				ndev->stats.rx_length_errors++;
1672 				if (status & BD_ENET_RX_LAST)
1673 					netdev_err(ndev, "rcv is not +last\n");
1674 			}
1675 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1676 				ndev->stats.rx_crc_errors++;
1677 			/* Report late collisions as a frame error. */
1678 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1679 				ndev->stats.rx_frame_errors++;
1680 			goto rx_processing_done;
1681 		}
1682 
1683 		/* Process the incoming frame. */
1684 		ndev->stats.rx_packets++;
1685 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1686 		ndev->stats.rx_bytes += pkt_len;
1687 
1688 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1689 		page = rxq->rx_skb_info[index].page;
1690 		dma_sync_single_for_cpu(&fep->pdev->dev,
1691 					fec32_to_cpu(bdp->cbd_bufaddr),
1692 					pkt_len,
1693 					DMA_FROM_DEVICE);
1694 		prefetch(page_address(page));
1695 		fec_enet_update_cbd(rxq, bdp, index);
1696 
1697 		if (xdp_prog) {
1698 			xdp_buff_clear_frags_flag(&xdp);
1699 			/* subtract 16bit shift and FCS */
1700 			xdp_prepare_buff(&xdp, page_address(page),
1701 					 data_start, pkt_len - sub_len, false);
1702 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index);
1703 			xdp_result |= ret;
1704 			if (ret != FEC_ENET_XDP_PASS)
1705 				goto rx_processing_done;
1706 		}
1707 
1708 		/* The packet length includes FCS, but we don't want to
1709 		 * include that when passing upstream as it messes up
1710 		 * bridging applications.
1711 		 */
1712 		skb = build_skb(page_address(page), PAGE_SIZE);
1713 		if (unlikely(!skb)) {
1714 			page_pool_recycle_direct(rxq->page_pool, page);
1715 			ndev->stats.rx_dropped++;
1716 
1717 			netdev_err_once(ndev, "build_skb failed!\n");
1718 			goto rx_processing_done;
1719 		}
1720 
1721 		skb_reserve(skb, data_start);
1722 		skb_put(skb, pkt_len - sub_len);
1723 		skb_mark_for_recycle(skb);
1724 
1725 		if (unlikely(need_swap)) {
1726 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1727 			swap_buffer(data, pkt_len);
1728 		}
1729 		data = skb->data;
1730 
1731 		/* Extract the enhanced buffer descriptor */
1732 		ebdp = NULL;
1733 		if (fep->bufdesc_ex)
1734 			ebdp = (struct bufdesc_ex *)bdp;
1735 
1736 		/* If this is a VLAN packet remove the VLAN Tag */
1737 		vlan_packet_rcvd = false;
1738 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1739 		    fep->bufdesc_ex &&
1740 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1741 			/* Push and remove the vlan tag */
1742 			struct vlan_hdr *vlan_header =
1743 					(struct vlan_hdr *) (data + ETH_HLEN);
1744 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1745 
1746 			vlan_packet_rcvd = true;
1747 
1748 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1749 			skb_pull(skb, VLAN_HLEN);
1750 		}
1751 
1752 		skb->protocol = eth_type_trans(skb, ndev);
1753 
1754 		/* Get receive timestamp from the skb */
1755 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1756 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1757 					  skb_hwtstamps(skb));
1758 
1759 		if (fep->bufdesc_ex &&
1760 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1761 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1762 				/* don't check it */
1763 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1764 			} else {
1765 				skb_checksum_none_assert(skb);
1766 			}
1767 		}
1768 
1769 		/* Handle received VLAN packets */
1770 		if (vlan_packet_rcvd)
1771 			__vlan_hwaccel_put_tag(skb,
1772 					       htons(ETH_P_8021Q),
1773 					       vlan_tag);
1774 
1775 		skb_record_rx_queue(skb, queue_id);
1776 		napi_gro_receive(&fep->napi, skb);
1777 
1778 rx_processing_done:
1779 		/* Clear the status flags for this buffer */
1780 		status &= ~BD_ENET_RX_STATS;
1781 
1782 		/* Mark the buffer empty */
1783 		status |= BD_ENET_RX_EMPTY;
1784 
1785 		if (fep->bufdesc_ex) {
1786 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1787 
1788 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1789 			ebdp->cbd_prot = 0;
1790 			ebdp->cbd_bdu = 0;
1791 		}
1792 		/* Make sure the updates to rest of the descriptor are
1793 		 * performed before transferring ownership.
1794 		 */
1795 		wmb();
1796 		bdp->cbd_sc = cpu_to_fec16(status);
1797 
1798 		/* Update BD pointer to next entry */
1799 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1800 
1801 		/* Doing this here will keep the FEC running while we process
1802 		 * incoming frames.  On a heavily loaded network, we should be
1803 		 * able to keep up at the expense of system resources.
1804 		 */
1805 		writel(0, rxq->bd.reg_desc_active);
1806 	}
1807 	rxq->bd.cur = bdp;
1808 
1809 	if (xdp_result & FEC_ENET_XDP_REDIR)
1810 		xdp_do_flush_map();
1811 
1812 	return pkt_received;
1813 }
1814 
1815 static int fec_enet_rx(struct net_device *ndev, int budget)
1816 {
1817 	struct fec_enet_private *fep = netdev_priv(ndev);
1818 	int i, done = 0;
1819 
1820 	/* Make sure that AVB queues are processed first. */
1821 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1822 		done += fec_enet_rx_queue(ndev, budget - done, i);
1823 
1824 	return done;
1825 }
1826 
1827 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1828 {
1829 	uint int_events;
1830 
1831 	int_events = readl(fep->hwp + FEC_IEVENT);
1832 
1833 	/* Don't clear MDIO events, we poll for those */
1834 	int_events &= ~FEC_ENET_MII;
1835 
1836 	writel(int_events, fep->hwp + FEC_IEVENT);
1837 
1838 	return int_events != 0;
1839 }
1840 
1841 static irqreturn_t
1842 fec_enet_interrupt(int irq, void *dev_id)
1843 {
1844 	struct net_device *ndev = dev_id;
1845 	struct fec_enet_private *fep = netdev_priv(ndev);
1846 	irqreturn_t ret = IRQ_NONE;
1847 
1848 	if (fec_enet_collect_events(fep) && fep->link) {
1849 		ret = IRQ_HANDLED;
1850 
1851 		if (napi_schedule_prep(&fep->napi)) {
1852 			/* Disable interrupts */
1853 			writel(0, fep->hwp + FEC_IMASK);
1854 			__napi_schedule(&fep->napi);
1855 		}
1856 	}
1857 
1858 	return ret;
1859 }
1860 
1861 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1862 {
1863 	struct net_device *ndev = napi->dev;
1864 	struct fec_enet_private *fep = netdev_priv(ndev);
1865 	int done = 0;
1866 
1867 	do {
1868 		done += fec_enet_rx(ndev, budget - done);
1869 		fec_enet_tx(ndev, budget);
1870 	} while ((done < budget) && fec_enet_collect_events(fep));
1871 
1872 	if (done < budget) {
1873 		napi_complete_done(napi, done);
1874 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1875 	}
1876 
1877 	return done;
1878 }
1879 
1880 /* ------------------------------------------------------------------------- */
1881 static int fec_get_mac(struct net_device *ndev)
1882 {
1883 	struct fec_enet_private *fep = netdev_priv(ndev);
1884 	unsigned char *iap, tmpaddr[ETH_ALEN];
1885 	int ret;
1886 
1887 	/*
1888 	 * try to get mac address in following order:
1889 	 *
1890 	 * 1) module parameter via kernel command line in form
1891 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1892 	 */
1893 	iap = macaddr;
1894 
1895 	/*
1896 	 * 2) from device tree data
1897 	 */
1898 	if (!is_valid_ether_addr(iap)) {
1899 		struct device_node *np = fep->pdev->dev.of_node;
1900 		if (np) {
1901 			ret = of_get_mac_address(np, tmpaddr);
1902 			if (!ret)
1903 				iap = tmpaddr;
1904 			else if (ret == -EPROBE_DEFER)
1905 				return ret;
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * 3) from flash or fuse (via platform data)
1911 	 */
1912 	if (!is_valid_ether_addr(iap)) {
1913 #ifdef CONFIG_M5272
1914 		if (FEC_FLASHMAC)
1915 			iap = (unsigned char *)FEC_FLASHMAC;
1916 #else
1917 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1918 
1919 		if (pdata)
1920 			iap = (unsigned char *)&pdata->mac;
1921 #endif
1922 	}
1923 
1924 	/*
1925 	 * 4) FEC mac registers set by bootloader
1926 	 */
1927 	if (!is_valid_ether_addr(iap)) {
1928 		*((__be32 *) &tmpaddr[0]) =
1929 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1930 		*((__be16 *) &tmpaddr[4]) =
1931 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1932 		iap = &tmpaddr[0];
1933 	}
1934 
1935 	/*
1936 	 * 5) random mac address
1937 	 */
1938 	if (!is_valid_ether_addr(iap)) {
1939 		/* Report it and use a random ethernet address instead */
1940 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1941 		eth_hw_addr_random(ndev);
1942 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1943 			 ndev->dev_addr);
1944 		return 0;
1945 	}
1946 
1947 	/* Adjust MAC if using macaddr */
1948 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1949 
1950 	return 0;
1951 }
1952 
1953 /* ------------------------------------------------------------------------- */
1954 
1955 /*
1956  * Phy section
1957  */
1958 static void fec_enet_adjust_link(struct net_device *ndev)
1959 {
1960 	struct fec_enet_private *fep = netdev_priv(ndev);
1961 	struct phy_device *phy_dev = ndev->phydev;
1962 	int status_change = 0;
1963 
1964 	/*
1965 	 * If the netdev is down, or is going down, we're not interested
1966 	 * in link state events, so just mark our idea of the link as down
1967 	 * and ignore the event.
1968 	 */
1969 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1970 		fep->link = 0;
1971 	} else if (phy_dev->link) {
1972 		if (!fep->link) {
1973 			fep->link = phy_dev->link;
1974 			status_change = 1;
1975 		}
1976 
1977 		if (fep->full_duplex != phy_dev->duplex) {
1978 			fep->full_duplex = phy_dev->duplex;
1979 			status_change = 1;
1980 		}
1981 
1982 		if (phy_dev->speed != fep->speed) {
1983 			fep->speed = phy_dev->speed;
1984 			status_change = 1;
1985 		}
1986 
1987 		/* if any of the above changed restart the FEC */
1988 		if (status_change) {
1989 			napi_disable(&fep->napi);
1990 			netif_tx_lock_bh(ndev);
1991 			fec_restart(ndev);
1992 			netif_tx_wake_all_queues(ndev);
1993 			netif_tx_unlock_bh(ndev);
1994 			napi_enable(&fep->napi);
1995 		}
1996 	} else {
1997 		if (fep->link) {
1998 			napi_disable(&fep->napi);
1999 			netif_tx_lock_bh(ndev);
2000 			fec_stop(ndev);
2001 			netif_tx_unlock_bh(ndev);
2002 			napi_enable(&fep->napi);
2003 			fep->link = phy_dev->link;
2004 			status_change = 1;
2005 		}
2006 	}
2007 
2008 	if (status_change)
2009 		phy_print_status(phy_dev);
2010 }
2011 
2012 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2013 {
2014 	uint ievent;
2015 	int ret;
2016 
2017 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2018 					ievent & FEC_ENET_MII, 2, 30000);
2019 
2020 	if (!ret)
2021 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2022 
2023 	return ret;
2024 }
2025 
2026 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2027 {
2028 	struct fec_enet_private *fep = bus->priv;
2029 	struct device *dev = &fep->pdev->dev;
2030 	int ret = 0, frame_start, frame_addr, frame_op;
2031 
2032 	ret = pm_runtime_resume_and_get(dev);
2033 	if (ret < 0)
2034 		return ret;
2035 
2036 	/* C22 read */
2037 	frame_op = FEC_MMFR_OP_READ;
2038 	frame_start = FEC_MMFR_ST;
2039 	frame_addr = regnum;
2040 
2041 	/* start a read op */
2042 	writel(frame_start | frame_op |
2043 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2044 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2045 
2046 	/* wait for end of transfer */
2047 	ret = fec_enet_mdio_wait(fep);
2048 	if (ret) {
2049 		netdev_err(fep->netdev, "MDIO read timeout\n");
2050 		goto out;
2051 	}
2052 
2053 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2054 
2055 out:
2056 	pm_runtime_mark_last_busy(dev);
2057 	pm_runtime_put_autosuspend(dev);
2058 
2059 	return ret;
2060 }
2061 
2062 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2063 				  int devad, int regnum)
2064 {
2065 	struct fec_enet_private *fep = bus->priv;
2066 	struct device *dev = &fep->pdev->dev;
2067 	int ret = 0, frame_start, frame_op;
2068 
2069 	ret = pm_runtime_resume_and_get(dev);
2070 	if (ret < 0)
2071 		return ret;
2072 
2073 	frame_start = FEC_MMFR_ST_C45;
2074 
2075 	/* write address */
2076 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2077 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2078 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2079 	       fep->hwp + FEC_MII_DATA);
2080 
2081 	/* wait for end of transfer */
2082 	ret = fec_enet_mdio_wait(fep);
2083 	if (ret) {
2084 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2085 		goto out;
2086 	}
2087 
2088 	frame_op = FEC_MMFR_OP_READ_C45;
2089 
2090 	/* start a read op */
2091 	writel(frame_start | frame_op |
2092 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2093 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2094 
2095 	/* wait for end of transfer */
2096 	ret = fec_enet_mdio_wait(fep);
2097 	if (ret) {
2098 		netdev_err(fep->netdev, "MDIO read timeout\n");
2099 		goto out;
2100 	}
2101 
2102 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2103 
2104 out:
2105 	pm_runtime_mark_last_busy(dev);
2106 	pm_runtime_put_autosuspend(dev);
2107 
2108 	return ret;
2109 }
2110 
2111 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2112 				   u16 value)
2113 {
2114 	struct fec_enet_private *fep = bus->priv;
2115 	struct device *dev = &fep->pdev->dev;
2116 	int ret, frame_start, frame_addr;
2117 
2118 	ret = pm_runtime_resume_and_get(dev);
2119 	if (ret < 0)
2120 		return ret;
2121 
2122 	/* C22 write */
2123 	frame_start = FEC_MMFR_ST;
2124 	frame_addr = regnum;
2125 
2126 	/* start a write op */
2127 	writel(frame_start | FEC_MMFR_OP_WRITE |
2128 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2129 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2130 	       fep->hwp + FEC_MII_DATA);
2131 
2132 	/* wait for end of transfer */
2133 	ret = fec_enet_mdio_wait(fep);
2134 	if (ret)
2135 		netdev_err(fep->netdev, "MDIO write timeout\n");
2136 
2137 	pm_runtime_mark_last_busy(dev);
2138 	pm_runtime_put_autosuspend(dev);
2139 
2140 	return ret;
2141 }
2142 
2143 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2144 				   int devad, int regnum, u16 value)
2145 {
2146 	struct fec_enet_private *fep = bus->priv;
2147 	struct device *dev = &fep->pdev->dev;
2148 	int ret, frame_start;
2149 
2150 	ret = pm_runtime_resume_and_get(dev);
2151 	if (ret < 0)
2152 		return ret;
2153 
2154 	frame_start = FEC_MMFR_ST_C45;
2155 
2156 	/* write address */
2157 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2158 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2159 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2160 	       fep->hwp + FEC_MII_DATA);
2161 
2162 	/* wait for end of transfer */
2163 	ret = fec_enet_mdio_wait(fep);
2164 	if (ret) {
2165 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2166 		goto out;
2167 	}
2168 
2169 	/* start a write op */
2170 	writel(frame_start | FEC_MMFR_OP_WRITE |
2171 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2172 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2173 	       fep->hwp + FEC_MII_DATA);
2174 
2175 	/* wait for end of transfer */
2176 	ret = fec_enet_mdio_wait(fep);
2177 	if (ret)
2178 		netdev_err(fep->netdev, "MDIO write timeout\n");
2179 
2180 out:
2181 	pm_runtime_mark_last_busy(dev);
2182 	pm_runtime_put_autosuspend(dev);
2183 
2184 	return ret;
2185 }
2186 
2187 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2188 {
2189 	struct fec_enet_private *fep = netdev_priv(ndev);
2190 	struct phy_device *phy_dev = ndev->phydev;
2191 
2192 	if (phy_dev) {
2193 		phy_reset_after_clk_enable(phy_dev);
2194 	} else if (fep->phy_node) {
2195 		/*
2196 		 * If the PHY still is not bound to the MAC, but there is
2197 		 * OF PHY node and a matching PHY device instance already,
2198 		 * use the OF PHY node to obtain the PHY device instance,
2199 		 * and then use that PHY device instance when triggering
2200 		 * the PHY reset.
2201 		 */
2202 		phy_dev = of_phy_find_device(fep->phy_node);
2203 		phy_reset_after_clk_enable(phy_dev);
2204 		put_device(&phy_dev->mdio.dev);
2205 	}
2206 }
2207 
2208 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2209 {
2210 	struct fec_enet_private *fep = netdev_priv(ndev);
2211 	int ret;
2212 
2213 	if (enable) {
2214 		ret = clk_prepare_enable(fep->clk_enet_out);
2215 		if (ret)
2216 			return ret;
2217 
2218 		if (fep->clk_ptp) {
2219 			mutex_lock(&fep->ptp_clk_mutex);
2220 			ret = clk_prepare_enable(fep->clk_ptp);
2221 			if (ret) {
2222 				mutex_unlock(&fep->ptp_clk_mutex);
2223 				goto failed_clk_ptp;
2224 			} else {
2225 				fep->ptp_clk_on = true;
2226 			}
2227 			mutex_unlock(&fep->ptp_clk_mutex);
2228 		}
2229 
2230 		ret = clk_prepare_enable(fep->clk_ref);
2231 		if (ret)
2232 			goto failed_clk_ref;
2233 
2234 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2235 		if (ret)
2236 			goto failed_clk_2x_txclk;
2237 
2238 		fec_enet_phy_reset_after_clk_enable(ndev);
2239 	} else {
2240 		clk_disable_unprepare(fep->clk_enet_out);
2241 		if (fep->clk_ptp) {
2242 			mutex_lock(&fep->ptp_clk_mutex);
2243 			clk_disable_unprepare(fep->clk_ptp);
2244 			fep->ptp_clk_on = false;
2245 			mutex_unlock(&fep->ptp_clk_mutex);
2246 		}
2247 		clk_disable_unprepare(fep->clk_ref);
2248 		clk_disable_unprepare(fep->clk_2x_txclk);
2249 	}
2250 
2251 	return 0;
2252 
2253 failed_clk_2x_txclk:
2254 	if (fep->clk_ref)
2255 		clk_disable_unprepare(fep->clk_ref);
2256 failed_clk_ref:
2257 	if (fep->clk_ptp) {
2258 		mutex_lock(&fep->ptp_clk_mutex);
2259 		clk_disable_unprepare(fep->clk_ptp);
2260 		fep->ptp_clk_on = false;
2261 		mutex_unlock(&fep->ptp_clk_mutex);
2262 	}
2263 failed_clk_ptp:
2264 	clk_disable_unprepare(fep->clk_enet_out);
2265 
2266 	return ret;
2267 }
2268 
2269 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2270 				      struct device_node *np)
2271 {
2272 	u32 rgmii_tx_delay, rgmii_rx_delay;
2273 
2274 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2275 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2276 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2277 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2278 			return -EINVAL;
2279 		} else if (rgmii_tx_delay == 2000) {
2280 			fep->rgmii_txc_dly = true;
2281 		}
2282 	}
2283 
2284 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2285 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2286 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2287 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2288 			return -EINVAL;
2289 		} else if (rgmii_rx_delay == 2000) {
2290 			fep->rgmii_rxc_dly = true;
2291 		}
2292 	}
2293 
2294 	return 0;
2295 }
2296 
2297 static int fec_enet_mii_probe(struct net_device *ndev)
2298 {
2299 	struct fec_enet_private *fep = netdev_priv(ndev);
2300 	struct phy_device *phy_dev = NULL;
2301 	char mdio_bus_id[MII_BUS_ID_SIZE];
2302 	char phy_name[MII_BUS_ID_SIZE + 3];
2303 	int phy_id;
2304 	int dev_id = fep->dev_id;
2305 
2306 	if (fep->phy_node) {
2307 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2308 					 &fec_enet_adjust_link, 0,
2309 					 fep->phy_interface);
2310 		if (!phy_dev) {
2311 			netdev_err(ndev, "Unable to connect to phy\n");
2312 			return -ENODEV;
2313 		}
2314 	} else {
2315 		/* check for attached phy */
2316 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2317 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2318 				continue;
2319 			if (dev_id--)
2320 				continue;
2321 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2322 			break;
2323 		}
2324 
2325 		if (phy_id >= PHY_MAX_ADDR) {
2326 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2327 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2328 			phy_id = 0;
2329 		}
2330 
2331 		snprintf(phy_name, sizeof(phy_name),
2332 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2333 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2334 				      fep->phy_interface);
2335 	}
2336 
2337 	if (IS_ERR(phy_dev)) {
2338 		netdev_err(ndev, "could not attach to PHY\n");
2339 		return PTR_ERR(phy_dev);
2340 	}
2341 
2342 	/* mask with MAC supported features */
2343 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2344 		phy_set_max_speed(phy_dev, 1000);
2345 		phy_remove_link_mode(phy_dev,
2346 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2347 #if !defined(CONFIG_M5272)
2348 		phy_support_sym_pause(phy_dev);
2349 #endif
2350 	}
2351 	else
2352 		phy_set_max_speed(phy_dev, 100);
2353 
2354 	fep->link = 0;
2355 	fep->full_duplex = 0;
2356 
2357 	phy_dev->mac_managed_pm = true;
2358 
2359 	phy_attached_info(phy_dev);
2360 
2361 	return 0;
2362 }
2363 
2364 static int fec_enet_mii_init(struct platform_device *pdev)
2365 {
2366 	static struct mii_bus *fec0_mii_bus;
2367 	struct net_device *ndev = platform_get_drvdata(pdev);
2368 	struct fec_enet_private *fep = netdev_priv(ndev);
2369 	bool suppress_preamble = false;
2370 	struct device_node *node;
2371 	int err = -ENXIO;
2372 	u32 mii_speed, holdtime;
2373 	u32 bus_freq;
2374 
2375 	/*
2376 	 * The i.MX28 dual fec interfaces are not equal.
2377 	 * Here are the differences:
2378 	 *
2379 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2380 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2381 	 *  - external phys can only be configured by fec0
2382 	 *
2383 	 * That is to say fec1 can not work independently. It only works
2384 	 * when fec0 is working. The reason behind this design is that the
2385 	 * second interface is added primarily for Switch mode.
2386 	 *
2387 	 * Because of the last point above, both phys are attached on fec0
2388 	 * mdio interface in board design, and need to be configured by
2389 	 * fec0 mii_bus.
2390 	 */
2391 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2392 		/* fec1 uses fec0 mii_bus */
2393 		if (mii_cnt && fec0_mii_bus) {
2394 			fep->mii_bus = fec0_mii_bus;
2395 			mii_cnt++;
2396 			return 0;
2397 		}
2398 		return -ENOENT;
2399 	}
2400 
2401 	bus_freq = 2500000; /* 2.5MHz by default */
2402 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2403 	if (node) {
2404 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2405 		suppress_preamble = of_property_read_bool(node,
2406 							  "suppress-preamble");
2407 	}
2408 
2409 	/*
2410 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2411 	 *
2412 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2413 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2414 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2415 	 * document.
2416 	 */
2417 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2418 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2419 		mii_speed--;
2420 	if (mii_speed > 63) {
2421 		dev_err(&pdev->dev,
2422 			"fec clock (%lu) too fast to get right mii speed\n",
2423 			clk_get_rate(fep->clk_ipg));
2424 		err = -EINVAL;
2425 		goto err_out;
2426 	}
2427 
2428 	/*
2429 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2430 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2431 	 * versions are RAZ there, so just ignore the difference and write the
2432 	 * register always.
2433 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2434 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2435 	 * output.
2436 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2437 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2438 	 * holdtime cannot result in a value greater than 3.
2439 	 */
2440 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2441 
2442 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2443 
2444 	if (suppress_preamble)
2445 		fep->phy_speed |= BIT(7);
2446 
2447 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2448 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2449 		 * MII event generation condition:
2450 		 * - writing MSCR:
2451 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2452 		 *	  mscr_reg_data_in[7:0] != 0
2453 		 * - writing MMFR:
2454 		 *	- mscr[7:0]_not_zero
2455 		 */
2456 		writel(0, fep->hwp + FEC_MII_DATA);
2457 	}
2458 
2459 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2460 
2461 	/* Clear any pending transaction complete indication */
2462 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2463 
2464 	fep->mii_bus = mdiobus_alloc();
2465 	if (fep->mii_bus == NULL) {
2466 		err = -ENOMEM;
2467 		goto err_out;
2468 	}
2469 
2470 	fep->mii_bus->name = "fec_enet_mii_bus";
2471 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2472 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2473 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2474 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2475 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2476 	}
2477 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2478 		pdev->name, fep->dev_id + 1);
2479 	fep->mii_bus->priv = fep;
2480 	fep->mii_bus->parent = &pdev->dev;
2481 
2482 	err = of_mdiobus_register(fep->mii_bus, node);
2483 	if (err)
2484 		goto err_out_free_mdiobus;
2485 	of_node_put(node);
2486 
2487 	mii_cnt++;
2488 
2489 	/* save fec0 mii_bus */
2490 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2491 		fec0_mii_bus = fep->mii_bus;
2492 
2493 	return 0;
2494 
2495 err_out_free_mdiobus:
2496 	mdiobus_free(fep->mii_bus);
2497 err_out:
2498 	of_node_put(node);
2499 	return err;
2500 }
2501 
2502 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2503 {
2504 	if (--mii_cnt == 0) {
2505 		mdiobus_unregister(fep->mii_bus);
2506 		mdiobus_free(fep->mii_bus);
2507 	}
2508 }
2509 
2510 static void fec_enet_get_drvinfo(struct net_device *ndev,
2511 				 struct ethtool_drvinfo *info)
2512 {
2513 	struct fec_enet_private *fep = netdev_priv(ndev);
2514 
2515 	strscpy(info->driver, fep->pdev->dev.driver->name,
2516 		sizeof(info->driver));
2517 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2518 }
2519 
2520 static int fec_enet_get_regs_len(struct net_device *ndev)
2521 {
2522 	struct fec_enet_private *fep = netdev_priv(ndev);
2523 	struct resource *r;
2524 	int s = 0;
2525 
2526 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2527 	if (r)
2528 		s = resource_size(r);
2529 
2530 	return s;
2531 }
2532 
2533 /* List of registers that can be safety be read to dump them with ethtool */
2534 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2535 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2536 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2537 static __u32 fec_enet_register_version = 2;
2538 static u32 fec_enet_register_offset[] = {
2539 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2540 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2541 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2542 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2543 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2544 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2545 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2546 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2547 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2548 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2549 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2550 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2551 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2552 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2553 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2554 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2555 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2556 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2557 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2558 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2559 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2560 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2561 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2562 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2563 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2564 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2565 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2566 };
2567 /* for i.MX6ul */
2568 static u32 fec_enet_register_offset_6ul[] = {
2569 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2570 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2571 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2572 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2573 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2574 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2575 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2576 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2577 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2578 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2579 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2580 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2581 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2582 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2583 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2584 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2585 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2586 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2587 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2588 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2589 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2590 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2591 };
2592 #else
2593 static __u32 fec_enet_register_version = 1;
2594 static u32 fec_enet_register_offset[] = {
2595 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2596 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2597 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2598 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2599 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2600 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2601 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2602 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2603 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2604 };
2605 #endif
2606 
2607 static void fec_enet_get_regs(struct net_device *ndev,
2608 			      struct ethtool_regs *regs, void *regbuf)
2609 {
2610 	struct fec_enet_private *fep = netdev_priv(ndev);
2611 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2612 	struct device *dev = &fep->pdev->dev;
2613 	u32 *buf = (u32 *)regbuf;
2614 	u32 i, off;
2615 	int ret;
2616 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2617 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2618 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2619 	u32 *reg_list;
2620 	u32 reg_cnt;
2621 
2622 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2623 		reg_list = fec_enet_register_offset;
2624 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2625 	} else {
2626 		reg_list = fec_enet_register_offset_6ul;
2627 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2628 	}
2629 #else
2630 	/* coldfire */
2631 	static u32 *reg_list = fec_enet_register_offset;
2632 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2633 #endif
2634 	ret = pm_runtime_resume_and_get(dev);
2635 	if (ret < 0)
2636 		return;
2637 
2638 	regs->version = fec_enet_register_version;
2639 
2640 	memset(buf, 0, regs->len);
2641 
2642 	for (i = 0; i < reg_cnt; i++) {
2643 		off = reg_list[i];
2644 
2645 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2646 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2647 			continue;
2648 
2649 		off >>= 2;
2650 		buf[off] = readl(&theregs[off]);
2651 	}
2652 
2653 	pm_runtime_mark_last_busy(dev);
2654 	pm_runtime_put_autosuspend(dev);
2655 }
2656 
2657 static int fec_enet_get_ts_info(struct net_device *ndev,
2658 				struct ethtool_ts_info *info)
2659 {
2660 	struct fec_enet_private *fep = netdev_priv(ndev);
2661 
2662 	if (fep->bufdesc_ex) {
2663 
2664 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2665 					SOF_TIMESTAMPING_RX_SOFTWARE |
2666 					SOF_TIMESTAMPING_SOFTWARE |
2667 					SOF_TIMESTAMPING_TX_HARDWARE |
2668 					SOF_TIMESTAMPING_RX_HARDWARE |
2669 					SOF_TIMESTAMPING_RAW_HARDWARE;
2670 		if (fep->ptp_clock)
2671 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2672 		else
2673 			info->phc_index = -1;
2674 
2675 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2676 				 (1 << HWTSTAMP_TX_ON);
2677 
2678 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2679 				   (1 << HWTSTAMP_FILTER_ALL);
2680 		return 0;
2681 	} else {
2682 		return ethtool_op_get_ts_info(ndev, info);
2683 	}
2684 }
2685 
2686 #if !defined(CONFIG_M5272)
2687 
2688 static void fec_enet_get_pauseparam(struct net_device *ndev,
2689 				    struct ethtool_pauseparam *pause)
2690 {
2691 	struct fec_enet_private *fep = netdev_priv(ndev);
2692 
2693 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2694 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2695 	pause->rx_pause = pause->tx_pause;
2696 }
2697 
2698 static int fec_enet_set_pauseparam(struct net_device *ndev,
2699 				   struct ethtool_pauseparam *pause)
2700 {
2701 	struct fec_enet_private *fep = netdev_priv(ndev);
2702 
2703 	if (!ndev->phydev)
2704 		return -ENODEV;
2705 
2706 	if (pause->tx_pause != pause->rx_pause) {
2707 		netdev_info(ndev,
2708 			"hardware only support enable/disable both tx and rx");
2709 		return -EINVAL;
2710 	}
2711 
2712 	fep->pause_flag = 0;
2713 
2714 	/* tx pause must be same as rx pause */
2715 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2716 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2717 
2718 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2719 			  pause->autoneg);
2720 
2721 	if (pause->autoneg) {
2722 		if (netif_running(ndev))
2723 			fec_stop(ndev);
2724 		phy_start_aneg(ndev->phydev);
2725 	}
2726 	if (netif_running(ndev)) {
2727 		napi_disable(&fep->napi);
2728 		netif_tx_lock_bh(ndev);
2729 		fec_restart(ndev);
2730 		netif_tx_wake_all_queues(ndev);
2731 		netif_tx_unlock_bh(ndev);
2732 		napi_enable(&fep->napi);
2733 	}
2734 
2735 	return 0;
2736 }
2737 
2738 static const struct fec_stat {
2739 	char name[ETH_GSTRING_LEN];
2740 	u16 offset;
2741 } fec_stats[] = {
2742 	/* RMON TX */
2743 	{ "tx_dropped", RMON_T_DROP },
2744 	{ "tx_packets", RMON_T_PACKETS },
2745 	{ "tx_broadcast", RMON_T_BC_PKT },
2746 	{ "tx_multicast", RMON_T_MC_PKT },
2747 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2748 	{ "tx_undersize", RMON_T_UNDERSIZE },
2749 	{ "tx_oversize", RMON_T_OVERSIZE },
2750 	{ "tx_fragment", RMON_T_FRAG },
2751 	{ "tx_jabber", RMON_T_JAB },
2752 	{ "tx_collision", RMON_T_COL },
2753 	{ "tx_64byte", RMON_T_P64 },
2754 	{ "tx_65to127byte", RMON_T_P65TO127 },
2755 	{ "tx_128to255byte", RMON_T_P128TO255 },
2756 	{ "tx_256to511byte", RMON_T_P256TO511 },
2757 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2758 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2759 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2760 	{ "tx_octets", RMON_T_OCTETS },
2761 
2762 	/* IEEE TX */
2763 	{ "IEEE_tx_drop", IEEE_T_DROP },
2764 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2765 	{ "IEEE_tx_1col", IEEE_T_1COL },
2766 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2767 	{ "IEEE_tx_def", IEEE_T_DEF },
2768 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2769 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2770 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2771 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2772 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2773 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2774 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2775 
2776 	/* RMON RX */
2777 	{ "rx_packets", RMON_R_PACKETS },
2778 	{ "rx_broadcast", RMON_R_BC_PKT },
2779 	{ "rx_multicast", RMON_R_MC_PKT },
2780 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2781 	{ "rx_undersize", RMON_R_UNDERSIZE },
2782 	{ "rx_oversize", RMON_R_OVERSIZE },
2783 	{ "rx_fragment", RMON_R_FRAG },
2784 	{ "rx_jabber", RMON_R_JAB },
2785 	{ "rx_64byte", RMON_R_P64 },
2786 	{ "rx_65to127byte", RMON_R_P65TO127 },
2787 	{ "rx_128to255byte", RMON_R_P128TO255 },
2788 	{ "rx_256to511byte", RMON_R_P256TO511 },
2789 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2790 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2791 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2792 	{ "rx_octets", RMON_R_OCTETS },
2793 
2794 	/* IEEE RX */
2795 	{ "IEEE_rx_drop", IEEE_R_DROP },
2796 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2797 	{ "IEEE_rx_crc", IEEE_R_CRC },
2798 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2799 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2800 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2801 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2802 };
2803 
2804 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2805 
2806 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2807 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2808 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2809 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2810 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2811 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2812 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2813 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2814 };
2815 
2816 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2817 {
2818 	struct fec_enet_private *fep = netdev_priv(dev);
2819 	int i;
2820 
2821 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2822 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2823 }
2824 
2825 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2826 {
2827 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2828 	struct fec_enet_priv_rx_q *rxq;
2829 	int i, j;
2830 
2831 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2832 		rxq = fep->rx_queue[i];
2833 
2834 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2835 			xdp_stats[j] += rxq->stats[j];
2836 	}
2837 
2838 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2839 }
2840 
2841 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2842 {
2843 #ifdef CONFIG_PAGE_POOL_STATS
2844 	struct page_pool_stats stats = {};
2845 	struct fec_enet_priv_rx_q *rxq;
2846 	int i;
2847 
2848 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2849 		rxq = fep->rx_queue[i];
2850 
2851 		if (!rxq->page_pool)
2852 			continue;
2853 
2854 		page_pool_get_stats(rxq->page_pool, &stats);
2855 	}
2856 
2857 	page_pool_ethtool_stats_get(data, &stats);
2858 #endif
2859 }
2860 
2861 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2862 				       struct ethtool_stats *stats, u64 *data)
2863 {
2864 	struct fec_enet_private *fep = netdev_priv(dev);
2865 
2866 	if (netif_running(dev))
2867 		fec_enet_update_ethtool_stats(dev);
2868 
2869 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2870 	data += FEC_STATS_SIZE / sizeof(u64);
2871 
2872 	fec_enet_get_xdp_stats(fep, data);
2873 	data += XDP_STATS_TOTAL;
2874 
2875 	fec_enet_page_pool_stats(fep, data);
2876 }
2877 
2878 static void fec_enet_get_strings(struct net_device *netdev,
2879 	u32 stringset, u8 *data)
2880 {
2881 	int i;
2882 	switch (stringset) {
2883 	case ETH_SS_STATS:
2884 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2885 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2886 			data += ETH_GSTRING_LEN;
2887 		}
2888 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2889 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2890 			data += ETH_GSTRING_LEN;
2891 		}
2892 		page_pool_ethtool_stats_get_strings(data);
2893 
2894 		break;
2895 	case ETH_SS_TEST:
2896 		net_selftest_get_strings(data);
2897 		break;
2898 	}
2899 }
2900 
2901 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2902 {
2903 	int count;
2904 
2905 	switch (sset) {
2906 	case ETH_SS_STATS:
2907 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2908 		count += page_pool_ethtool_stats_get_count();
2909 		return count;
2910 
2911 	case ETH_SS_TEST:
2912 		return net_selftest_get_count();
2913 	default:
2914 		return -EOPNOTSUPP;
2915 	}
2916 }
2917 
2918 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2919 {
2920 	struct fec_enet_private *fep = netdev_priv(dev);
2921 	struct fec_enet_priv_rx_q *rxq;
2922 	int i, j;
2923 
2924 	/* Disable MIB statistics counters */
2925 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2926 
2927 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2928 		writel(0, fep->hwp + fec_stats[i].offset);
2929 
2930 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2931 		rxq = fep->rx_queue[i];
2932 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2933 			rxq->stats[j] = 0;
2934 	}
2935 
2936 	/* Don't disable MIB statistics counters */
2937 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2938 }
2939 
2940 #else	/* !defined(CONFIG_M5272) */
2941 #define FEC_STATS_SIZE	0
2942 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2943 {
2944 }
2945 
2946 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2947 {
2948 }
2949 #endif /* !defined(CONFIG_M5272) */
2950 
2951 /* ITR clock source is enet system clock (clk_ahb).
2952  * TCTT unit is cycle_ns * 64 cycle
2953  * So, the ICTT value = X us / (cycle_ns * 64)
2954  */
2955 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2956 {
2957 	struct fec_enet_private *fep = netdev_priv(ndev);
2958 
2959 	return us * (fep->itr_clk_rate / 64000) / 1000;
2960 }
2961 
2962 /* Set threshold for interrupt coalescing */
2963 static void fec_enet_itr_coal_set(struct net_device *ndev)
2964 {
2965 	struct fec_enet_private *fep = netdev_priv(ndev);
2966 	int rx_itr, tx_itr;
2967 
2968 	/* Must be greater than zero to avoid unpredictable behavior */
2969 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2970 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2971 		return;
2972 
2973 	/* Select enet system clock as Interrupt Coalescing
2974 	 * timer Clock Source
2975 	 */
2976 	rx_itr = FEC_ITR_CLK_SEL;
2977 	tx_itr = FEC_ITR_CLK_SEL;
2978 
2979 	/* set ICFT and ICTT */
2980 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2981 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2982 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2983 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2984 
2985 	rx_itr |= FEC_ITR_EN;
2986 	tx_itr |= FEC_ITR_EN;
2987 
2988 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2989 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2990 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2991 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2992 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2993 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2994 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2995 	}
2996 }
2997 
2998 static int fec_enet_get_coalesce(struct net_device *ndev,
2999 				 struct ethtool_coalesce *ec,
3000 				 struct kernel_ethtool_coalesce *kernel_coal,
3001 				 struct netlink_ext_ack *extack)
3002 {
3003 	struct fec_enet_private *fep = netdev_priv(ndev);
3004 
3005 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3006 		return -EOPNOTSUPP;
3007 
3008 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3009 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3010 
3011 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3012 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3013 
3014 	return 0;
3015 }
3016 
3017 static int fec_enet_set_coalesce(struct net_device *ndev,
3018 				 struct ethtool_coalesce *ec,
3019 				 struct kernel_ethtool_coalesce *kernel_coal,
3020 				 struct netlink_ext_ack *extack)
3021 {
3022 	struct fec_enet_private *fep = netdev_priv(ndev);
3023 	struct device *dev = &fep->pdev->dev;
3024 	unsigned int cycle;
3025 
3026 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3027 		return -EOPNOTSUPP;
3028 
3029 	if (ec->rx_max_coalesced_frames > 255) {
3030 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3031 		return -EINVAL;
3032 	}
3033 
3034 	if (ec->tx_max_coalesced_frames > 255) {
3035 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3036 		return -EINVAL;
3037 	}
3038 
3039 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3040 	if (cycle > 0xFFFF) {
3041 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3042 		return -EINVAL;
3043 	}
3044 
3045 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3046 	if (cycle > 0xFFFF) {
3047 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3048 		return -EINVAL;
3049 	}
3050 
3051 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3052 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3053 
3054 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3055 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3056 
3057 	fec_enet_itr_coal_set(ndev);
3058 
3059 	return 0;
3060 }
3061 
3062 static int fec_enet_get_tunable(struct net_device *netdev,
3063 				const struct ethtool_tunable *tuna,
3064 				void *data)
3065 {
3066 	struct fec_enet_private *fep = netdev_priv(netdev);
3067 	int ret = 0;
3068 
3069 	switch (tuna->id) {
3070 	case ETHTOOL_RX_COPYBREAK:
3071 		*(u32 *)data = fep->rx_copybreak;
3072 		break;
3073 	default:
3074 		ret = -EINVAL;
3075 		break;
3076 	}
3077 
3078 	return ret;
3079 }
3080 
3081 static int fec_enet_set_tunable(struct net_device *netdev,
3082 				const struct ethtool_tunable *tuna,
3083 				const void *data)
3084 {
3085 	struct fec_enet_private *fep = netdev_priv(netdev);
3086 	int ret = 0;
3087 
3088 	switch (tuna->id) {
3089 	case ETHTOOL_RX_COPYBREAK:
3090 		fep->rx_copybreak = *(u32 *)data;
3091 		break;
3092 	default:
3093 		ret = -EINVAL;
3094 		break;
3095 	}
3096 
3097 	return ret;
3098 }
3099 
3100 /* LPI Sleep Ts count base on tx clk (clk_ref).
3101  * The lpi sleep cnt value = X us / (cycle_ns).
3102  */
3103 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3104 {
3105 	struct fec_enet_private *fep = netdev_priv(ndev);
3106 
3107 	return us * (fep->clk_ref_rate / 1000) / 1000;
3108 }
3109 
3110 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3111 {
3112 	struct fec_enet_private *fep = netdev_priv(ndev);
3113 	struct ethtool_eee *p = &fep->eee;
3114 	unsigned int sleep_cycle, wake_cycle;
3115 	int ret = 0;
3116 
3117 	if (enable) {
3118 		ret = phy_init_eee(ndev->phydev, false);
3119 		if (ret)
3120 			return ret;
3121 
3122 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3123 		wake_cycle = sleep_cycle;
3124 	} else {
3125 		sleep_cycle = 0;
3126 		wake_cycle = 0;
3127 	}
3128 
3129 	p->tx_lpi_enabled = enable;
3130 	p->eee_enabled = enable;
3131 	p->eee_active = enable;
3132 
3133 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3134 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3135 
3136 	return 0;
3137 }
3138 
3139 static int
3140 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3141 {
3142 	struct fec_enet_private *fep = netdev_priv(ndev);
3143 	struct ethtool_eee *p = &fep->eee;
3144 
3145 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3146 		return -EOPNOTSUPP;
3147 
3148 	if (!netif_running(ndev))
3149 		return -ENETDOWN;
3150 
3151 	edata->eee_enabled = p->eee_enabled;
3152 	edata->eee_active = p->eee_active;
3153 	edata->tx_lpi_timer = p->tx_lpi_timer;
3154 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3155 
3156 	return phy_ethtool_get_eee(ndev->phydev, edata);
3157 }
3158 
3159 static int
3160 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3161 {
3162 	struct fec_enet_private *fep = netdev_priv(ndev);
3163 	struct ethtool_eee *p = &fep->eee;
3164 	int ret = 0;
3165 
3166 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3167 		return -EOPNOTSUPP;
3168 
3169 	if (!netif_running(ndev))
3170 		return -ENETDOWN;
3171 
3172 	p->tx_lpi_timer = edata->tx_lpi_timer;
3173 
3174 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3175 	    !edata->tx_lpi_timer)
3176 		ret = fec_enet_eee_mode_set(ndev, false);
3177 	else
3178 		ret = fec_enet_eee_mode_set(ndev, true);
3179 
3180 	if (ret)
3181 		return ret;
3182 
3183 	return phy_ethtool_set_eee(ndev->phydev, edata);
3184 }
3185 
3186 static void
3187 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3188 {
3189 	struct fec_enet_private *fep = netdev_priv(ndev);
3190 
3191 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3192 		wol->supported = WAKE_MAGIC;
3193 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3194 	} else {
3195 		wol->supported = wol->wolopts = 0;
3196 	}
3197 }
3198 
3199 static int
3200 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3201 {
3202 	struct fec_enet_private *fep = netdev_priv(ndev);
3203 
3204 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3205 		return -EINVAL;
3206 
3207 	if (wol->wolopts & ~WAKE_MAGIC)
3208 		return -EINVAL;
3209 
3210 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3211 	if (device_may_wakeup(&ndev->dev))
3212 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3213 	else
3214 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3215 
3216 	return 0;
3217 }
3218 
3219 static const struct ethtool_ops fec_enet_ethtool_ops = {
3220 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3221 				     ETHTOOL_COALESCE_MAX_FRAMES,
3222 	.get_drvinfo		= fec_enet_get_drvinfo,
3223 	.get_regs_len		= fec_enet_get_regs_len,
3224 	.get_regs		= fec_enet_get_regs,
3225 	.nway_reset		= phy_ethtool_nway_reset,
3226 	.get_link		= ethtool_op_get_link,
3227 	.get_coalesce		= fec_enet_get_coalesce,
3228 	.set_coalesce		= fec_enet_set_coalesce,
3229 #ifndef CONFIG_M5272
3230 	.get_pauseparam		= fec_enet_get_pauseparam,
3231 	.set_pauseparam		= fec_enet_set_pauseparam,
3232 	.get_strings		= fec_enet_get_strings,
3233 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3234 	.get_sset_count		= fec_enet_get_sset_count,
3235 #endif
3236 	.get_ts_info		= fec_enet_get_ts_info,
3237 	.get_tunable		= fec_enet_get_tunable,
3238 	.set_tunable		= fec_enet_set_tunable,
3239 	.get_wol		= fec_enet_get_wol,
3240 	.set_wol		= fec_enet_set_wol,
3241 	.get_eee		= fec_enet_get_eee,
3242 	.set_eee		= fec_enet_set_eee,
3243 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3244 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3245 	.self_test		= net_selftest,
3246 };
3247 
3248 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
3249 {
3250 	struct fec_enet_private *fep = netdev_priv(ndev);
3251 	struct phy_device *phydev = ndev->phydev;
3252 
3253 	if (!netif_running(ndev))
3254 		return -EINVAL;
3255 
3256 	if (!phydev)
3257 		return -ENODEV;
3258 
3259 	if (fep->bufdesc_ex) {
3260 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
3261 
3262 		if (cmd == SIOCSHWTSTAMP) {
3263 			if (use_fec_hwts)
3264 				return fec_ptp_set(ndev, rq);
3265 			fec_ptp_disable_hwts(ndev);
3266 		} else if (cmd == SIOCGHWTSTAMP) {
3267 			if (use_fec_hwts)
3268 				return fec_ptp_get(ndev, rq);
3269 		}
3270 	}
3271 
3272 	return phy_mii_ioctl(phydev, rq, cmd);
3273 }
3274 
3275 static void fec_enet_free_buffers(struct net_device *ndev)
3276 {
3277 	struct fec_enet_private *fep = netdev_priv(ndev);
3278 	unsigned int i;
3279 	struct sk_buff *skb;
3280 	struct fec_enet_priv_tx_q *txq;
3281 	struct fec_enet_priv_rx_q *rxq;
3282 	unsigned int q;
3283 
3284 	for (q = 0; q < fep->num_rx_queues; q++) {
3285 		rxq = fep->rx_queue[q];
3286 		for (i = 0; i < rxq->bd.ring_size; i++)
3287 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3288 
3289 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3290 			rxq->stats[i] = 0;
3291 
3292 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3293 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3294 		page_pool_destroy(rxq->page_pool);
3295 		rxq->page_pool = NULL;
3296 	}
3297 
3298 	for (q = 0; q < fep->num_tx_queues; q++) {
3299 		txq = fep->tx_queue[q];
3300 		for (i = 0; i < txq->bd.ring_size; i++) {
3301 			kfree(txq->tx_bounce[i]);
3302 			txq->tx_bounce[i] = NULL;
3303 
3304 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3305 				skb = txq->tx_buf[i].skb;
3306 				txq->tx_buf[i].skb = NULL;
3307 				dev_kfree_skb(skb);
3308 			} else {
3309 				if (txq->tx_buf[i].xdp) {
3310 					xdp_return_frame(txq->tx_buf[i].xdp);
3311 					txq->tx_buf[i].xdp = NULL;
3312 				}
3313 
3314 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3315 			}
3316 		}
3317 	}
3318 }
3319 
3320 static void fec_enet_free_queue(struct net_device *ndev)
3321 {
3322 	struct fec_enet_private *fep = netdev_priv(ndev);
3323 	int i;
3324 	struct fec_enet_priv_tx_q *txq;
3325 
3326 	for (i = 0; i < fep->num_tx_queues; i++)
3327 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3328 			txq = fep->tx_queue[i];
3329 			dma_free_coherent(&fep->pdev->dev,
3330 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3331 					  txq->tso_hdrs,
3332 					  txq->tso_hdrs_dma);
3333 		}
3334 
3335 	for (i = 0; i < fep->num_rx_queues; i++)
3336 		kfree(fep->rx_queue[i]);
3337 	for (i = 0; i < fep->num_tx_queues; i++)
3338 		kfree(fep->tx_queue[i]);
3339 }
3340 
3341 static int fec_enet_alloc_queue(struct net_device *ndev)
3342 {
3343 	struct fec_enet_private *fep = netdev_priv(ndev);
3344 	int i;
3345 	int ret = 0;
3346 	struct fec_enet_priv_tx_q *txq;
3347 
3348 	for (i = 0; i < fep->num_tx_queues; i++) {
3349 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3350 		if (!txq) {
3351 			ret = -ENOMEM;
3352 			goto alloc_failed;
3353 		}
3354 
3355 		fep->tx_queue[i] = txq;
3356 		txq->bd.ring_size = TX_RING_SIZE;
3357 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3358 
3359 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3360 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3361 
3362 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3363 					txq->bd.ring_size * TSO_HEADER_SIZE,
3364 					&txq->tso_hdrs_dma,
3365 					GFP_KERNEL);
3366 		if (!txq->tso_hdrs) {
3367 			ret = -ENOMEM;
3368 			goto alloc_failed;
3369 		}
3370 	}
3371 
3372 	for (i = 0; i < fep->num_rx_queues; i++) {
3373 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3374 					   GFP_KERNEL);
3375 		if (!fep->rx_queue[i]) {
3376 			ret = -ENOMEM;
3377 			goto alloc_failed;
3378 		}
3379 
3380 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3381 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3382 	}
3383 	return ret;
3384 
3385 alloc_failed:
3386 	fec_enet_free_queue(ndev);
3387 	return ret;
3388 }
3389 
3390 static int
3391 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3392 {
3393 	struct fec_enet_private *fep = netdev_priv(ndev);
3394 	struct fec_enet_priv_rx_q *rxq;
3395 	dma_addr_t phys_addr;
3396 	struct bufdesc	*bdp;
3397 	struct page *page;
3398 	int i, err;
3399 
3400 	rxq = fep->rx_queue[queue];
3401 	bdp = rxq->bd.base;
3402 
3403 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3404 	if (err < 0) {
3405 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3406 		return err;
3407 	}
3408 
3409 	for (i = 0; i < rxq->bd.ring_size; i++) {
3410 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3411 		if (!page)
3412 			goto err_alloc;
3413 
3414 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3415 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3416 
3417 		rxq->rx_skb_info[i].page = page;
3418 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3419 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3420 
3421 		if (fep->bufdesc_ex) {
3422 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3423 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3424 		}
3425 
3426 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3427 	}
3428 
3429 	/* Set the last buffer to wrap. */
3430 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3431 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3432 	return 0;
3433 
3434  err_alloc:
3435 	fec_enet_free_buffers(ndev);
3436 	return -ENOMEM;
3437 }
3438 
3439 static int
3440 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3441 {
3442 	struct fec_enet_private *fep = netdev_priv(ndev);
3443 	unsigned int i;
3444 	struct bufdesc  *bdp;
3445 	struct fec_enet_priv_tx_q *txq;
3446 
3447 	txq = fep->tx_queue[queue];
3448 	bdp = txq->bd.base;
3449 	for (i = 0; i < txq->bd.ring_size; i++) {
3450 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3451 		if (!txq->tx_bounce[i])
3452 			goto err_alloc;
3453 
3454 		bdp->cbd_sc = cpu_to_fec16(0);
3455 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3456 
3457 		if (fep->bufdesc_ex) {
3458 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3459 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3460 		}
3461 
3462 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3463 	}
3464 
3465 	/* Set the last buffer to wrap. */
3466 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3467 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3468 
3469 	return 0;
3470 
3471  err_alloc:
3472 	fec_enet_free_buffers(ndev);
3473 	return -ENOMEM;
3474 }
3475 
3476 static int fec_enet_alloc_buffers(struct net_device *ndev)
3477 {
3478 	struct fec_enet_private *fep = netdev_priv(ndev);
3479 	unsigned int i;
3480 
3481 	for (i = 0; i < fep->num_rx_queues; i++)
3482 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3483 			return -ENOMEM;
3484 
3485 	for (i = 0; i < fep->num_tx_queues; i++)
3486 		if (fec_enet_alloc_txq_buffers(ndev, i))
3487 			return -ENOMEM;
3488 	return 0;
3489 }
3490 
3491 static int
3492 fec_enet_open(struct net_device *ndev)
3493 {
3494 	struct fec_enet_private *fep = netdev_priv(ndev);
3495 	int ret;
3496 	bool reset_again;
3497 
3498 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3499 	if (ret < 0)
3500 		return ret;
3501 
3502 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3503 	ret = fec_enet_clk_enable(ndev, true);
3504 	if (ret)
3505 		goto clk_enable;
3506 
3507 	/* During the first fec_enet_open call the PHY isn't probed at this
3508 	 * point. Therefore the phy_reset_after_clk_enable() call within
3509 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3510 	 * sure the PHY is working correctly we check if we need to reset again
3511 	 * later when the PHY is probed
3512 	 */
3513 	if (ndev->phydev && ndev->phydev->drv)
3514 		reset_again = false;
3515 	else
3516 		reset_again = true;
3517 
3518 	/* I should reset the ring buffers here, but I don't yet know
3519 	 * a simple way to do that.
3520 	 */
3521 
3522 	ret = fec_enet_alloc_buffers(ndev);
3523 	if (ret)
3524 		goto err_enet_alloc;
3525 
3526 	/* Init MAC prior to mii bus probe */
3527 	fec_restart(ndev);
3528 
3529 	/* Call phy_reset_after_clk_enable() again if it failed during
3530 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3531 	 */
3532 	if (reset_again)
3533 		fec_enet_phy_reset_after_clk_enable(ndev);
3534 
3535 	/* Probe and connect to PHY when open the interface */
3536 	ret = fec_enet_mii_probe(ndev);
3537 	if (ret)
3538 		goto err_enet_mii_probe;
3539 
3540 	if (fep->quirks & FEC_QUIRK_ERR006687)
3541 		imx6q_cpuidle_fec_irqs_used();
3542 
3543 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3544 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3545 
3546 	napi_enable(&fep->napi);
3547 	phy_start(ndev->phydev);
3548 	netif_tx_start_all_queues(ndev);
3549 
3550 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3551 				 FEC_WOL_FLAG_ENABLE);
3552 
3553 	return 0;
3554 
3555 err_enet_mii_probe:
3556 	fec_enet_free_buffers(ndev);
3557 err_enet_alloc:
3558 	fec_enet_clk_enable(ndev, false);
3559 clk_enable:
3560 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3561 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3562 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3563 	return ret;
3564 }
3565 
3566 static int
3567 fec_enet_close(struct net_device *ndev)
3568 {
3569 	struct fec_enet_private *fep = netdev_priv(ndev);
3570 
3571 	phy_stop(ndev->phydev);
3572 
3573 	if (netif_device_present(ndev)) {
3574 		napi_disable(&fep->napi);
3575 		netif_tx_disable(ndev);
3576 		fec_stop(ndev);
3577 	}
3578 
3579 	phy_disconnect(ndev->phydev);
3580 
3581 	if (fep->quirks & FEC_QUIRK_ERR006687)
3582 		imx6q_cpuidle_fec_irqs_unused();
3583 
3584 	fec_enet_update_ethtool_stats(ndev);
3585 
3586 	fec_enet_clk_enable(ndev, false);
3587 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3588 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3589 
3590 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3591 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3592 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3593 
3594 	fec_enet_free_buffers(ndev);
3595 
3596 	return 0;
3597 }
3598 
3599 /* Set or clear the multicast filter for this adaptor.
3600  * Skeleton taken from sunlance driver.
3601  * The CPM Ethernet implementation allows Multicast as well as individual
3602  * MAC address filtering.  Some of the drivers check to make sure it is
3603  * a group multicast address, and discard those that are not.  I guess I
3604  * will do the same for now, but just remove the test if you want
3605  * individual filtering as well (do the upper net layers want or support
3606  * this kind of feature?).
3607  */
3608 
3609 #define FEC_HASH_BITS	6		/* #bits in hash */
3610 
3611 static void set_multicast_list(struct net_device *ndev)
3612 {
3613 	struct fec_enet_private *fep = netdev_priv(ndev);
3614 	struct netdev_hw_addr *ha;
3615 	unsigned int crc, tmp;
3616 	unsigned char hash;
3617 	unsigned int hash_high = 0, hash_low = 0;
3618 
3619 	if (ndev->flags & IFF_PROMISC) {
3620 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3621 		tmp |= 0x8;
3622 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3623 		return;
3624 	}
3625 
3626 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3627 	tmp &= ~0x8;
3628 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3629 
3630 	if (ndev->flags & IFF_ALLMULTI) {
3631 		/* Catch all multicast addresses, so set the
3632 		 * filter to all 1's
3633 		 */
3634 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3635 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3636 
3637 		return;
3638 	}
3639 
3640 	/* Add the addresses in hash register */
3641 	netdev_for_each_mc_addr(ha, ndev) {
3642 		/* calculate crc32 value of mac address */
3643 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3644 
3645 		/* only upper 6 bits (FEC_HASH_BITS) are used
3646 		 * which point to specific bit in the hash registers
3647 		 */
3648 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3649 
3650 		if (hash > 31)
3651 			hash_high |= 1 << (hash - 32);
3652 		else
3653 			hash_low |= 1 << hash;
3654 	}
3655 
3656 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3657 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3658 }
3659 
3660 /* Set a MAC change in hardware. */
3661 static int
3662 fec_set_mac_address(struct net_device *ndev, void *p)
3663 {
3664 	struct fec_enet_private *fep = netdev_priv(ndev);
3665 	struct sockaddr *addr = p;
3666 
3667 	if (addr) {
3668 		if (!is_valid_ether_addr(addr->sa_data))
3669 			return -EADDRNOTAVAIL;
3670 		eth_hw_addr_set(ndev, addr->sa_data);
3671 	}
3672 
3673 	/* Add netif status check here to avoid system hang in below case:
3674 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3675 	 * After ethx down, fec all clocks are gated off and then register
3676 	 * access causes system hang.
3677 	 */
3678 	if (!netif_running(ndev))
3679 		return 0;
3680 
3681 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3682 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3683 		fep->hwp + FEC_ADDR_LOW);
3684 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3685 		fep->hwp + FEC_ADDR_HIGH);
3686 	return 0;
3687 }
3688 
3689 #ifdef CONFIG_NET_POLL_CONTROLLER
3690 /**
3691  * fec_poll_controller - FEC Poll controller function
3692  * @dev: The FEC network adapter
3693  *
3694  * Polled functionality used by netconsole and others in non interrupt mode
3695  *
3696  */
3697 static void fec_poll_controller(struct net_device *dev)
3698 {
3699 	int i;
3700 	struct fec_enet_private *fep = netdev_priv(dev);
3701 
3702 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3703 		if (fep->irq[i] > 0) {
3704 			disable_irq(fep->irq[i]);
3705 			fec_enet_interrupt(fep->irq[i], dev);
3706 			enable_irq(fep->irq[i]);
3707 		}
3708 	}
3709 }
3710 #endif
3711 
3712 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3713 	netdev_features_t features)
3714 {
3715 	struct fec_enet_private *fep = netdev_priv(netdev);
3716 	netdev_features_t changed = features ^ netdev->features;
3717 
3718 	netdev->features = features;
3719 
3720 	/* Receive checksum has been changed */
3721 	if (changed & NETIF_F_RXCSUM) {
3722 		if (features & NETIF_F_RXCSUM)
3723 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3724 		else
3725 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3726 	}
3727 }
3728 
3729 static int fec_set_features(struct net_device *netdev,
3730 	netdev_features_t features)
3731 {
3732 	struct fec_enet_private *fep = netdev_priv(netdev);
3733 	netdev_features_t changed = features ^ netdev->features;
3734 
3735 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3736 		napi_disable(&fep->napi);
3737 		netif_tx_lock_bh(netdev);
3738 		fec_stop(netdev);
3739 		fec_enet_set_netdev_features(netdev, features);
3740 		fec_restart(netdev);
3741 		netif_tx_wake_all_queues(netdev);
3742 		netif_tx_unlock_bh(netdev);
3743 		napi_enable(&fep->napi);
3744 	} else {
3745 		fec_enet_set_netdev_features(netdev, features);
3746 	}
3747 
3748 	return 0;
3749 }
3750 
3751 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3752 {
3753 	struct vlan_ethhdr *vhdr;
3754 	unsigned short vlan_TCI = 0;
3755 
3756 	if (skb->protocol == htons(ETH_P_ALL)) {
3757 		vhdr = (struct vlan_ethhdr *)(skb->data);
3758 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3759 	}
3760 
3761 	return vlan_TCI;
3762 }
3763 
3764 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3765 				 struct net_device *sb_dev)
3766 {
3767 	struct fec_enet_private *fep = netdev_priv(ndev);
3768 	u16 vlan_tag;
3769 
3770 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3771 		return netdev_pick_tx(ndev, skb, NULL);
3772 
3773 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3774 	if (!vlan_tag)
3775 		return vlan_tag;
3776 
3777 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3778 }
3779 
3780 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3781 {
3782 	struct fec_enet_private *fep = netdev_priv(dev);
3783 	bool is_run = netif_running(dev);
3784 	struct bpf_prog *old_prog;
3785 
3786 	switch (bpf->command) {
3787 	case XDP_SETUP_PROG:
3788 		/* No need to support the SoCs that require to
3789 		 * do the frame swap because the performance wouldn't be
3790 		 * better than the skb mode.
3791 		 */
3792 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3793 			return -EOPNOTSUPP;
3794 
3795 		if (!bpf->prog)
3796 			xdp_features_clear_redirect_target(dev);
3797 
3798 		if (is_run) {
3799 			napi_disable(&fep->napi);
3800 			netif_tx_disable(dev);
3801 		}
3802 
3803 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3804 		if (old_prog)
3805 			bpf_prog_put(old_prog);
3806 
3807 		fec_restart(dev);
3808 
3809 		if (is_run) {
3810 			napi_enable(&fep->napi);
3811 			netif_tx_start_all_queues(dev);
3812 		}
3813 
3814 		if (bpf->prog)
3815 			xdp_features_set_redirect_target(dev, false);
3816 
3817 		return 0;
3818 
3819 	case XDP_SETUP_XSK_POOL:
3820 		return -EOPNOTSUPP;
3821 
3822 	default:
3823 		return -EOPNOTSUPP;
3824 	}
3825 }
3826 
3827 static int
3828 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3829 {
3830 	if (unlikely(index < 0))
3831 		return 0;
3832 
3833 	return (index % fep->num_tx_queues);
3834 }
3835 
3836 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3837 				   struct fec_enet_priv_tx_q *txq,
3838 				   struct xdp_frame *frame)
3839 {
3840 	unsigned int index, status, estatus;
3841 	struct bufdesc *bdp;
3842 	dma_addr_t dma_addr;
3843 	int entries_free;
3844 
3845 	entries_free = fec_enet_get_free_txdesc_num(txq);
3846 	if (entries_free < MAX_SKB_FRAGS + 1) {
3847 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3848 		return -EBUSY;
3849 	}
3850 
3851 	/* Fill in a Tx ring entry */
3852 	bdp = txq->bd.cur;
3853 	status = fec16_to_cpu(bdp->cbd_sc);
3854 	status &= ~BD_ENET_TX_STATS;
3855 
3856 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3857 
3858 	dma_addr = dma_map_single(&fep->pdev->dev, frame->data,
3859 				  frame->len, DMA_TO_DEVICE);
3860 	if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3861 		return -ENOMEM;
3862 
3863 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3864 	if (fep->bufdesc_ex)
3865 		estatus = BD_ENET_TX_INT;
3866 
3867 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3868 	bdp->cbd_datlen = cpu_to_fec16(frame->len);
3869 
3870 	if (fep->bufdesc_ex) {
3871 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3872 
3873 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3874 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3875 
3876 		ebdp->cbd_bdu = 0;
3877 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3878 	}
3879 
3880 	txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3881 	txq->tx_buf[index].xdp = frame;
3882 
3883 	/* Make sure the updates to rest of the descriptor are performed before
3884 	 * transferring ownership.
3885 	 */
3886 	dma_wmb();
3887 
3888 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3889 	 * it's the last BD of the frame, and to put the CRC on the end.
3890 	 */
3891 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3892 	bdp->cbd_sc = cpu_to_fec16(status);
3893 
3894 	/* If this was the last BD in the ring, start at the beginning again. */
3895 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3896 
3897 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3898 	dma_wmb();
3899 
3900 	txq->bd.cur = bdp;
3901 
3902 	/* Trigger transmission start */
3903 	writel(0, txq->bd.reg_desc_active);
3904 
3905 	return 0;
3906 }
3907 
3908 static int fec_enet_xdp_xmit(struct net_device *dev,
3909 			     int num_frames,
3910 			     struct xdp_frame **frames,
3911 			     u32 flags)
3912 {
3913 	struct fec_enet_private *fep = netdev_priv(dev);
3914 	struct fec_enet_priv_tx_q *txq;
3915 	int cpu = smp_processor_id();
3916 	unsigned int sent_frames = 0;
3917 	struct netdev_queue *nq;
3918 	unsigned int queue;
3919 	int i;
3920 
3921 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3922 	txq = fep->tx_queue[queue];
3923 	nq = netdev_get_tx_queue(fep->netdev, queue);
3924 
3925 	__netif_tx_lock(nq, cpu);
3926 
3927 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3928 	txq_trans_cond_update(nq);
3929 	for (i = 0; i < num_frames; i++) {
3930 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i]) < 0)
3931 			break;
3932 		sent_frames++;
3933 	}
3934 
3935 	__netif_tx_unlock(nq);
3936 
3937 	return sent_frames;
3938 }
3939 
3940 static const struct net_device_ops fec_netdev_ops = {
3941 	.ndo_open		= fec_enet_open,
3942 	.ndo_stop		= fec_enet_close,
3943 	.ndo_start_xmit		= fec_enet_start_xmit,
3944 	.ndo_select_queue       = fec_enet_select_queue,
3945 	.ndo_set_rx_mode	= set_multicast_list,
3946 	.ndo_validate_addr	= eth_validate_addr,
3947 	.ndo_tx_timeout		= fec_timeout,
3948 	.ndo_set_mac_address	= fec_set_mac_address,
3949 	.ndo_eth_ioctl		= fec_enet_ioctl,
3950 #ifdef CONFIG_NET_POLL_CONTROLLER
3951 	.ndo_poll_controller	= fec_poll_controller,
3952 #endif
3953 	.ndo_set_features	= fec_set_features,
3954 	.ndo_bpf		= fec_enet_bpf,
3955 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3956 };
3957 
3958 static const unsigned short offset_des_active_rxq[] = {
3959 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3960 };
3961 
3962 static const unsigned short offset_des_active_txq[] = {
3963 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3964 };
3965 
3966  /*
3967   * XXX:  We need to clean up on failure exits here.
3968   *
3969   */
3970 static int fec_enet_init(struct net_device *ndev)
3971 {
3972 	struct fec_enet_private *fep = netdev_priv(ndev);
3973 	struct bufdesc *cbd_base;
3974 	dma_addr_t bd_dma;
3975 	int bd_size;
3976 	unsigned int i;
3977 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3978 			sizeof(struct bufdesc);
3979 	unsigned dsize_log2 = __fls(dsize);
3980 	int ret;
3981 
3982 	WARN_ON(dsize != (1 << dsize_log2));
3983 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3984 	fep->rx_align = 0xf;
3985 	fep->tx_align = 0xf;
3986 #else
3987 	fep->rx_align = 0x3;
3988 	fep->tx_align = 0x3;
3989 #endif
3990 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3991 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3992 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
3993 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
3994 
3995 	/* Check mask of the streaming and coherent API */
3996 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3997 	if (ret < 0) {
3998 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3999 		return ret;
4000 	}
4001 
4002 	ret = fec_enet_alloc_queue(ndev);
4003 	if (ret)
4004 		return ret;
4005 
4006 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4007 
4008 	/* Allocate memory for buffer descriptors. */
4009 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4010 				       GFP_KERNEL);
4011 	if (!cbd_base) {
4012 		ret = -ENOMEM;
4013 		goto free_queue_mem;
4014 	}
4015 
4016 	/* Get the Ethernet address */
4017 	ret = fec_get_mac(ndev);
4018 	if (ret)
4019 		goto free_queue_mem;
4020 
4021 	/* make sure MAC we just acquired is programmed into the hw */
4022 	fec_set_mac_address(ndev, NULL);
4023 
4024 	/* Set receive and transmit descriptor base. */
4025 	for (i = 0; i < fep->num_rx_queues; i++) {
4026 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4027 		unsigned size = dsize * rxq->bd.ring_size;
4028 
4029 		rxq->bd.qid = i;
4030 		rxq->bd.base = cbd_base;
4031 		rxq->bd.cur = cbd_base;
4032 		rxq->bd.dma = bd_dma;
4033 		rxq->bd.dsize = dsize;
4034 		rxq->bd.dsize_log2 = dsize_log2;
4035 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4036 		bd_dma += size;
4037 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4038 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4039 	}
4040 
4041 	for (i = 0; i < fep->num_tx_queues; i++) {
4042 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4043 		unsigned size = dsize * txq->bd.ring_size;
4044 
4045 		txq->bd.qid = i;
4046 		txq->bd.base = cbd_base;
4047 		txq->bd.cur = cbd_base;
4048 		txq->bd.dma = bd_dma;
4049 		txq->bd.dsize = dsize;
4050 		txq->bd.dsize_log2 = dsize_log2;
4051 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4052 		bd_dma += size;
4053 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4054 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4055 	}
4056 
4057 
4058 	/* The FEC Ethernet specific entries in the device structure */
4059 	ndev->watchdog_timeo = TX_TIMEOUT;
4060 	ndev->netdev_ops = &fec_netdev_ops;
4061 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4062 
4063 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4064 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4065 
4066 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4067 		/* enable hw VLAN support */
4068 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4069 
4070 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4071 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4072 
4073 		/* enable hw accelerator */
4074 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4075 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4076 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4077 	}
4078 
4079 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4080 		fep->tx_align = 0;
4081 		fep->rx_align = 0x3f;
4082 	}
4083 
4084 	ndev->hw_features = ndev->features;
4085 
4086 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4087 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4088 				     NETDEV_XDP_ACT_REDIRECT;
4089 
4090 	fec_restart(ndev);
4091 
4092 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4093 		fec_enet_clear_ethtool_stats(ndev);
4094 	else
4095 		fec_enet_update_ethtool_stats(ndev);
4096 
4097 	return 0;
4098 
4099 free_queue_mem:
4100 	fec_enet_free_queue(ndev);
4101 	return ret;
4102 }
4103 
4104 #ifdef CONFIG_OF
4105 static int fec_reset_phy(struct platform_device *pdev)
4106 {
4107 	struct gpio_desc *phy_reset;
4108 	int msec = 1, phy_post_delay = 0;
4109 	struct device_node *np = pdev->dev.of_node;
4110 	int err;
4111 
4112 	if (!np)
4113 		return 0;
4114 
4115 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4116 	/* A sane reset duration should not be longer than 1s */
4117 	if (!err && msec > 1000)
4118 		msec = 1;
4119 
4120 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4121 	/* valid reset duration should be less than 1s */
4122 	if (!err && phy_post_delay > 1000)
4123 		return -EINVAL;
4124 
4125 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4126 					    GPIOD_OUT_HIGH);
4127 	if (IS_ERR(phy_reset))
4128 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4129 				     "failed to get phy-reset-gpios\n");
4130 
4131 	if (!phy_reset)
4132 		return 0;
4133 
4134 	if (msec > 20)
4135 		msleep(msec);
4136 	else
4137 		usleep_range(msec * 1000, msec * 1000 + 1000);
4138 
4139 	gpiod_set_value_cansleep(phy_reset, 0);
4140 
4141 	if (!phy_post_delay)
4142 		return 0;
4143 
4144 	if (phy_post_delay > 20)
4145 		msleep(phy_post_delay);
4146 	else
4147 		usleep_range(phy_post_delay * 1000,
4148 			     phy_post_delay * 1000 + 1000);
4149 
4150 	return 0;
4151 }
4152 #else /* CONFIG_OF */
4153 static int fec_reset_phy(struct platform_device *pdev)
4154 {
4155 	/*
4156 	 * In case of platform probe, the reset has been done
4157 	 * by machine code.
4158 	 */
4159 	return 0;
4160 }
4161 #endif /* CONFIG_OF */
4162 
4163 static void
4164 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4165 {
4166 	struct device_node *np = pdev->dev.of_node;
4167 
4168 	*num_tx = *num_rx = 1;
4169 
4170 	if (!np || !of_device_is_available(np))
4171 		return;
4172 
4173 	/* parse the num of tx and rx queues */
4174 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4175 
4176 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4177 
4178 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4179 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4180 			 *num_tx);
4181 		*num_tx = 1;
4182 		return;
4183 	}
4184 
4185 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4186 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4187 			 *num_rx);
4188 		*num_rx = 1;
4189 		return;
4190 	}
4191 
4192 }
4193 
4194 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4195 {
4196 	int irq_cnt = platform_irq_count(pdev);
4197 
4198 	if (irq_cnt > FEC_IRQ_NUM)
4199 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4200 	else if (irq_cnt == 2)
4201 		irq_cnt = 1;	/* last for pps */
4202 	else if (irq_cnt <= 0)
4203 		irq_cnt = 1;	/* At least 1 irq is needed */
4204 	return irq_cnt;
4205 }
4206 
4207 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4208 {
4209 	struct net_device *ndev = platform_get_drvdata(pdev);
4210 	struct fec_enet_private *fep = netdev_priv(ndev);
4211 
4212 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4213 		fep->wake_irq = fep->irq[2];
4214 	else
4215 		fep->wake_irq = fep->irq[0];
4216 }
4217 
4218 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4219 				   struct device_node *np)
4220 {
4221 	struct device_node *gpr_np;
4222 	u32 out_val[3];
4223 	int ret = 0;
4224 
4225 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4226 	if (!gpr_np)
4227 		return 0;
4228 
4229 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4230 					 ARRAY_SIZE(out_val));
4231 	if (ret) {
4232 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4233 		goto out;
4234 	}
4235 
4236 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4237 	if (IS_ERR(fep->stop_gpr.gpr)) {
4238 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4239 		ret = PTR_ERR(fep->stop_gpr.gpr);
4240 		fep->stop_gpr.gpr = NULL;
4241 		goto out;
4242 	}
4243 
4244 	fep->stop_gpr.reg = out_val[1];
4245 	fep->stop_gpr.bit = out_val[2];
4246 
4247 out:
4248 	of_node_put(gpr_np);
4249 
4250 	return ret;
4251 }
4252 
4253 static int
4254 fec_probe(struct platform_device *pdev)
4255 {
4256 	struct fec_enet_private *fep;
4257 	struct fec_platform_data *pdata;
4258 	phy_interface_t interface;
4259 	struct net_device *ndev;
4260 	int i, irq, ret = 0;
4261 	const struct of_device_id *of_id;
4262 	static int dev_id;
4263 	struct device_node *np = pdev->dev.of_node, *phy_node;
4264 	int num_tx_qs;
4265 	int num_rx_qs;
4266 	char irq_name[8];
4267 	int irq_cnt;
4268 	struct fec_devinfo *dev_info;
4269 
4270 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4271 
4272 	/* Init network device */
4273 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4274 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4275 	if (!ndev)
4276 		return -ENOMEM;
4277 
4278 	SET_NETDEV_DEV(ndev, &pdev->dev);
4279 
4280 	/* setup board info structure */
4281 	fep = netdev_priv(ndev);
4282 
4283 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4284 	if (of_id)
4285 		pdev->id_entry = of_id->data;
4286 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4287 	if (dev_info)
4288 		fep->quirks = dev_info->quirks;
4289 
4290 	fep->netdev = ndev;
4291 	fep->num_rx_queues = num_rx_qs;
4292 	fep->num_tx_queues = num_tx_qs;
4293 
4294 #if !defined(CONFIG_M5272)
4295 	/* default enable pause frame auto negotiation */
4296 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4297 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4298 #endif
4299 
4300 	/* Select default pin state */
4301 	pinctrl_pm_select_default_state(&pdev->dev);
4302 
4303 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4304 	if (IS_ERR(fep->hwp)) {
4305 		ret = PTR_ERR(fep->hwp);
4306 		goto failed_ioremap;
4307 	}
4308 
4309 	fep->pdev = pdev;
4310 	fep->dev_id = dev_id++;
4311 
4312 	platform_set_drvdata(pdev, ndev);
4313 
4314 	if ((of_machine_is_compatible("fsl,imx6q") ||
4315 	     of_machine_is_compatible("fsl,imx6dl")) &&
4316 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4317 		fep->quirks |= FEC_QUIRK_ERR006687;
4318 
4319 	ret = fec_enet_ipc_handle_init(fep);
4320 	if (ret)
4321 		goto failed_ipc_init;
4322 
4323 	if (of_property_read_bool(np, "fsl,magic-packet"))
4324 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4325 
4326 	ret = fec_enet_init_stop_mode(fep, np);
4327 	if (ret)
4328 		goto failed_stop_mode;
4329 
4330 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4331 	if (!phy_node && of_phy_is_fixed_link(np)) {
4332 		ret = of_phy_register_fixed_link(np);
4333 		if (ret < 0) {
4334 			dev_err(&pdev->dev,
4335 				"broken fixed-link specification\n");
4336 			goto failed_phy;
4337 		}
4338 		phy_node = of_node_get(np);
4339 	}
4340 	fep->phy_node = phy_node;
4341 
4342 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4343 	if (ret) {
4344 		pdata = dev_get_platdata(&pdev->dev);
4345 		if (pdata)
4346 			fep->phy_interface = pdata->phy;
4347 		else
4348 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4349 	} else {
4350 		fep->phy_interface = interface;
4351 	}
4352 
4353 	ret = fec_enet_parse_rgmii_delay(fep, np);
4354 	if (ret)
4355 		goto failed_rgmii_delay;
4356 
4357 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4358 	if (IS_ERR(fep->clk_ipg)) {
4359 		ret = PTR_ERR(fep->clk_ipg);
4360 		goto failed_clk;
4361 	}
4362 
4363 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4364 	if (IS_ERR(fep->clk_ahb)) {
4365 		ret = PTR_ERR(fep->clk_ahb);
4366 		goto failed_clk;
4367 	}
4368 
4369 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4370 
4371 	/* enet_out is optional, depends on board */
4372 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4373 	if (IS_ERR(fep->clk_enet_out)) {
4374 		ret = PTR_ERR(fep->clk_enet_out);
4375 		goto failed_clk;
4376 	}
4377 
4378 	fep->ptp_clk_on = false;
4379 	mutex_init(&fep->ptp_clk_mutex);
4380 
4381 	/* clk_ref is optional, depends on board */
4382 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4383 	if (IS_ERR(fep->clk_ref)) {
4384 		ret = PTR_ERR(fep->clk_ref);
4385 		goto failed_clk;
4386 	}
4387 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4388 
4389 	/* clk_2x_txclk is optional, depends on board */
4390 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4391 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4392 		if (IS_ERR(fep->clk_2x_txclk))
4393 			fep->clk_2x_txclk = NULL;
4394 	}
4395 
4396 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4397 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4398 	if (IS_ERR(fep->clk_ptp)) {
4399 		fep->clk_ptp = NULL;
4400 		fep->bufdesc_ex = false;
4401 	}
4402 
4403 	ret = fec_enet_clk_enable(ndev, true);
4404 	if (ret)
4405 		goto failed_clk;
4406 
4407 	ret = clk_prepare_enable(fep->clk_ipg);
4408 	if (ret)
4409 		goto failed_clk_ipg;
4410 	ret = clk_prepare_enable(fep->clk_ahb);
4411 	if (ret)
4412 		goto failed_clk_ahb;
4413 
4414 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4415 	if (!IS_ERR(fep->reg_phy)) {
4416 		ret = regulator_enable(fep->reg_phy);
4417 		if (ret) {
4418 			dev_err(&pdev->dev,
4419 				"Failed to enable phy regulator: %d\n", ret);
4420 			goto failed_regulator;
4421 		}
4422 	} else {
4423 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4424 			ret = -EPROBE_DEFER;
4425 			goto failed_regulator;
4426 		}
4427 		fep->reg_phy = NULL;
4428 	}
4429 
4430 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4431 	pm_runtime_use_autosuspend(&pdev->dev);
4432 	pm_runtime_get_noresume(&pdev->dev);
4433 	pm_runtime_set_active(&pdev->dev);
4434 	pm_runtime_enable(&pdev->dev);
4435 
4436 	ret = fec_reset_phy(pdev);
4437 	if (ret)
4438 		goto failed_reset;
4439 
4440 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4441 	if (fep->bufdesc_ex)
4442 		fec_ptp_init(pdev, irq_cnt);
4443 
4444 	ret = fec_enet_init(ndev);
4445 	if (ret)
4446 		goto failed_init;
4447 
4448 	for (i = 0; i < irq_cnt; i++) {
4449 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4450 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4451 		if (irq < 0)
4452 			irq = platform_get_irq(pdev, i);
4453 		if (irq < 0) {
4454 			ret = irq;
4455 			goto failed_irq;
4456 		}
4457 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4458 				       0, pdev->name, ndev);
4459 		if (ret)
4460 			goto failed_irq;
4461 
4462 		fep->irq[i] = irq;
4463 	}
4464 
4465 	/* Decide which interrupt line is wakeup capable */
4466 	fec_enet_get_wakeup_irq(pdev);
4467 
4468 	ret = fec_enet_mii_init(pdev);
4469 	if (ret)
4470 		goto failed_mii_init;
4471 
4472 	/* Carrier starts down, phylib will bring it up */
4473 	netif_carrier_off(ndev);
4474 	fec_enet_clk_enable(ndev, false);
4475 	pinctrl_pm_select_sleep_state(&pdev->dev);
4476 
4477 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4478 
4479 	ret = register_netdev(ndev);
4480 	if (ret)
4481 		goto failed_register;
4482 
4483 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4484 			   FEC_WOL_HAS_MAGIC_PACKET);
4485 
4486 	if (fep->bufdesc_ex && fep->ptp_clock)
4487 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4488 
4489 	fep->rx_copybreak = COPYBREAK_DEFAULT;
4490 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4491 
4492 	pm_runtime_mark_last_busy(&pdev->dev);
4493 	pm_runtime_put_autosuspend(&pdev->dev);
4494 
4495 	return 0;
4496 
4497 failed_register:
4498 	fec_enet_mii_remove(fep);
4499 failed_mii_init:
4500 failed_irq:
4501 failed_init:
4502 	fec_ptp_stop(pdev);
4503 failed_reset:
4504 	pm_runtime_put_noidle(&pdev->dev);
4505 	pm_runtime_disable(&pdev->dev);
4506 	if (fep->reg_phy)
4507 		regulator_disable(fep->reg_phy);
4508 failed_regulator:
4509 	clk_disable_unprepare(fep->clk_ahb);
4510 failed_clk_ahb:
4511 	clk_disable_unprepare(fep->clk_ipg);
4512 failed_clk_ipg:
4513 	fec_enet_clk_enable(ndev, false);
4514 failed_clk:
4515 failed_rgmii_delay:
4516 	if (of_phy_is_fixed_link(np))
4517 		of_phy_deregister_fixed_link(np);
4518 	of_node_put(phy_node);
4519 failed_stop_mode:
4520 failed_ipc_init:
4521 failed_phy:
4522 	dev_id--;
4523 failed_ioremap:
4524 	free_netdev(ndev);
4525 
4526 	return ret;
4527 }
4528 
4529 static int
4530 fec_drv_remove(struct platform_device *pdev)
4531 {
4532 	struct net_device *ndev = platform_get_drvdata(pdev);
4533 	struct fec_enet_private *fep = netdev_priv(ndev);
4534 	struct device_node *np = pdev->dev.of_node;
4535 	int ret;
4536 
4537 	ret = pm_runtime_get_sync(&pdev->dev);
4538 	if (ret < 0)
4539 		dev_err(&pdev->dev,
4540 			"Failed to resume device in remove callback (%pe)\n",
4541 			ERR_PTR(ret));
4542 
4543 	cancel_work_sync(&fep->tx_timeout_work);
4544 	fec_ptp_stop(pdev);
4545 	unregister_netdev(ndev);
4546 	fec_enet_mii_remove(fep);
4547 	if (fep->reg_phy)
4548 		regulator_disable(fep->reg_phy);
4549 
4550 	if (of_phy_is_fixed_link(np))
4551 		of_phy_deregister_fixed_link(np);
4552 	of_node_put(fep->phy_node);
4553 
4554 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4555 	 * disabling them again.
4556 	 */
4557 	if (ret >= 0) {
4558 		clk_disable_unprepare(fep->clk_ahb);
4559 		clk_disable_unprepare(fep->clk_ipg);
4560 	}
4561 	pm_runtime_put_noidle(&pdev->dev);
4562 	pm_runtime_disable(&pdev->dev);
4563 
4564 	free_netdev(ndev);
4565 	return 0;
4566 }
4567 
4568 static int __maybe_unused fec_suspend(struct device *dev)
4569 {
4570 	struct net_device *ndev = dev_get_drvdata(dev);
4571 	struct fec_enet_private *fep = netdev_priv(ndev);
4572 	int ret;
4573 
4574 	rtnl_lock();
4575 	if (netif_running(ndev)) {
4576 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4577 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4578 		phy_stop(ndev->phydev);
4579 		napi_disable(&fep->napi);
4580 		netif_tx_lock_bh(ndev);
4581 		netif_device_detach(ndev);
4582 		netif_tx_unlock_bh(ndev);
4583 		fec_stop(ndev);
4584 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4585 			fec_irqs_disable(ndev);
4586 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4587 		} else {
4588 			fec_irqs_disable_except_wakeup(ndev);
4589 			if (fep->wake_irq > 0) {
4590 				disable_irq(fep->wake_irq);
4591 				enable_irq_wake(fep->wake_irq);
4592 			}
4593 			fec_enet_stop_mode(fep, true);
4594 		}
4595 		/* It's safe to disable clocks since interrupts are masked */
4596 		fec_enet_clk_enable(ndev, false);
4597 
4598 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4599 		if (fep->rpm_active) {
4600 			ret = pm_runtime_force_suspend(dev);
4601 			if (ret < 0) {
4602 				rtnl_unlock();
4603 				return ret;
4604 			}
4605 		}
4606 	}
4607 	rtnl_unlock();
4608 
4609 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4610 		regulator_disable(fep->reg_phy);
4611 
4612 	/* SOC supply clock to phy, when clock is disabled, phy link down
4613 	 * SOC control phy regulator, when regulator is disabled, phy link down
4614 	 */
4615 	if (fep->clk_enet_out || fep->reg_phy)
4616 		fep->link = 0;
4617 
4618 	return 0;
4619 }
4620 
4621 static int __maybe_unused fec_resume(struct device *dev)
4622 {
4623 	struct net_device *ndev = dev_get_drvdata(dev);
4624 	struct fec_enet_private *fep = netdev_priv(ndev);
4625 	int ret;
4626 	int val;
4627 
4628 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4629 		ret = regulator_enable(fep->reg_phy);
4630 		if (ret)
4631 			return ret;
4632 	}
4633 
4634 	rtnl_lock();
4635 	if (netif_running(ndev)) {
4636 		if (fep->rpm_active)
4637 			pm_runtime_force_resume(dev);
4638 
4639 		ret = fec_enet_clk_enable(ndev, true);
4640 		if (ret) {
4641 			rtnl_unlock();
4642 			goto failed_clk;
4643 		}
4644 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4645 			fec_enet_stop_mode(fep, false);
4646 			if (fep->wake_irq) {
4647 				disable_irq_wake(fep->wake_irq);
4648 				enable_irq(fep->wake_irq);
4649 			}
4650 
4651 			val = readl(fep->hwp + FEC_ECNTRL);
4652 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4653 			writel(val, fep->hwp + FEC_ECNTRL);
4654 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4655 		} else {
4656 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4657 		}
4658 		fec_restart(ndev);
4659 		netif_tx_lock_bh(ndev);
4660 		netif_device_attach(ndev);
4661 		netif_tx_unlock_bh(ndev);
4662 		napi_enable(&fep->napi);
4663 		phy_init_hw(ndev->phydev);
4664 		phy_start(ndev->phydev);
4665 	}
4666 	rtnl_unlock();
4667 
4668 	return 0;
4669 
4670 failed_clk:
4671 	if (fep->reg_phy)
4672 		regulator_disable(fep->reg_phy);
4673 	return ret;
4674 }
4675 
4676 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4677 {
4678 	struct net_device *ndev = dev_get_drvdata(dev);
4679 	struct fec_enet_private *fep = netdev_priv(ndev);
4680 
4681 	clk_disable_unprepare(fep->clk_ahb);
4682 	clk_disable_unprepare(fep->clk_ipg);
4683 
4684 	return 0;
4685 }
4686 
4687 static int __maybe_unused fec_runtime_resume(struct device *dev)
4688 {
4689 	struct net_device *ndev = dev_get_drvdata(dev);
4690 	struct fec_enet_private *fep = netdev_priv(ndev);
4691 	int ret;
4692 
4693 	ret = clk_prepare_enable(fep->clk_ahb);
4694 	if (ret)
4695 		return ret;
4696 	ret = clk_prepare_enable(fep->clk_ipg);
4697 	if (ret)
4698 		goto failed_clk_ipg;
4699 
4700 	return 0;
4701 
4702 failed_clk_ipg:
4703 	clk_disable_unprepare(fep->clk_ahb);
4704 	return ret;
4705 }
4706 
4707 static const struct dev_pm_ops fec_pm_ops = {
4708 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4709 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4710 };
4711 
4712 static struct platform_driver fec_driver = {
4713 	.driver	= {
4714 		.name	= DRIVER_NAME,
4715 		.pm	= &fec_pm_ops,
4716 		.of_match_table = fec_dt_ids,
4717 		.suppress_bind_attrs = true,
4718 	},
4719 	.id_table = fec_devtype,
4720 	.probe	= fec_probe,
4721 	.remove	= fec_drv_remove,
4722 };
4723 
4724 module_platform_driver(fec_driver);
4725 
4726 MODULE_LICENSE("GPL");
4727