1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <soc/imx/cpuidle.h>
66 
67 #include <asm/cacheflush.h>
68 
69 #include "fec.h"
70 
71 static void set_multicast_list(struct net_device *ndev);
72 static void fec_enet_itr_coal_init(struct net_device *ndev);
73 
74 #define DRIVER_NAME	"fec"
75 
76 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
77 
78 /* Pause frame feild and FIFO threshold */
79 #define FEC_ENET_FCE	(1 << 5)
80 #define FEC_ENET_RSEM_V	0x84
81 #define FEC_ENET_RSFL_V	16
82 #define FEC_ENET_RAEM_V	0x8
83 #define FEC_ENET_RAFL_V	0x8
84 #define FEC_ENET_OPD_V	0xFFF0
85 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
86 
87 static struct platform_device_id fec_devtype[] = {
88 	{
89 		/* keep it for coldfire */
90 		.name = DRIVER_NAME,
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx25-fec",
94 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95 			       FEC_QUIRK_HAS_FRREG,
96 	}, {
97 		.name = "imx27-fec",
98 		.driver_data = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
99 	}, {
100 		.name = "imx28-fec",
101 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
102 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
103 				FEC_QUIRK_HAS_FRREG,
104 	}, {
105 		.name = "imx6q-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
109 				FEC_QUIRK_HAS_RACC,
110 	}, {
111 		.name = "mvf600-fec",
112 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
113 	}, {
114 		.name = "imx6sx-fec",
115 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
116 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
117 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
118 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
119 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
120 	}, {
121 		.name = "imx6ul-fec",
122 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
125 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
126 				FEC_QUIRK_HAS_COALESCE,
127 	}, {
128 		/* sentinel */
129 	}
130 };
131 MODULE_DEVICE_TABLE(platform, fec_devtype);
132 
133 enum imx_fec_type {
134 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
135 	IMX27_FEC,	/* runs on i.mx27/35/51 */
136 	IMX28_FEC,
137 	IMX6Q_FEC,
138 	MVF600_FEC,
139 	IMX6SX_FEC,
140 	IMX6UL_FEC,
141 };
142 
143 static const struct of_device_id fec_dt_ids[] = {
144 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
145 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
146 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
147 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
148 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
149 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
150 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
151 	{ /* sentinel */ }
152 };
153 MODULE_DEVICE_TABLE(of, fec_dt_ids);
154 
155 static unsigned char macaddr[ETH_ALEN];
156 module_param_array(macaddr, byte, NULL, 0);
157 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
158 
159 #if defined(CONFIG_M5272)
160 /*
161  * Some hardware gets it MAC address out of local flash memory.
162  * if this is non-zero then assume it is the address to get MAC from.
163  */
164 #if defined(CONFIG_NETtel)
165 #define	FEC_FLASHMAC	0xf0006006
166 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
167 #define	FEC_FLASHMAC	0xf0006000
168 #elif defined(CONFIG_CANCam)
169 #define	FEC_FLASHMAC	0xf0020000
170 #elif defined (CONFIG_M5272C3)
171 #define	FEC_FLASHMAC	(0xffe04000 + 4)
172 #elif defined(CONFIG_MOD5272)
173 #define FEC_FLASHMAC	0xffc0406b
174 #else
175 #define	FEC_FLASHMAC	0
176 #endif
177 #endif /* CONFIG_M5272 */
178 
179 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
180  *
181  * 2048 byte skbufs are allocated. However, alignment requirements
182  * varies between FEC variants. Worst case is 64, so round down by 64.
183  */
184 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
185 #define PKT_MINBUF_SIZE		64
186 
187 /* FEC receive acceleration */
188 #define FEC_RACC_IPDIS		(1 << 1)
189 #define FEC_RACC_PRODIS		(1 << 2)
190 #define FEC_RACC_SHIFT16	BIT(7)
191 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
192 
193 /* MIB Control Register */
194 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
195 
196 /*
197  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
198  * size bits. Other FEC hardware does not, so we need to take that into
199  * account when setting it.
200  */
201 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
202     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
203     defined(CONFIG_ARM64)
204 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
205 #else
206 #define	OPT_FRAME_SIZE	0
207 #endif
208 
209 /* FEC MII MMFR bits definition */
210 #define FEC_MMFR_ST		(1 << 30)
211 #define FEC_MMFR_ST_C45		(0)
212 #define FEC_MMFR_OP_READ	(2 << 28)
213 #define FEC_MMFR_OP_READ_C45	(3 << 28)
214 #define FEC_MMFR_OP_WRITE	(1 << 28)
215 #define FEC_MMFR_OP_ADDR_WRITE	(0)
216 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
217 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
218 #define FEC_MMFR_TA		(2 << 16)
219 #define FEC_MMFR_DATA(v)	(v & 0xffff)
220 /* FEC ECR bits definition */
221 #define FEC_ECR_MAGICEN		(1 << 2)
222 #define FEC_ECR_SLEEP		(1 << 3)
223 
224 #define FEC_MII_TIMEOUT		30000 /* us */
225 
226 /* Transmitter timeout */
227 #define TX_TIMEOUT (2 * HZ)
228 
229 #define FEC_PAUSE_FLAG_AUTONEG	0x1
230 #define FEC_PAUSE_FLAG_ENABLE	0x2
231 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
232 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
233 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
234 
235 #define COPYBREAK_DEFAULT	256
236 
237 /* Max number of allowed TCP segments for software TSO */
238 #define FEC_MAX_TSO_SEGS	100
239 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
240 
241 #define IS_TSO_HEADER(txq, addr) \
242 	((addr >= txq->tso_hdrs_dma) && \
243 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
244 
245 static int mii_cnt;
246 
247 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
248 					     struct bufdesc_prop *bd)
249 {
250 	return (bdp >= bd->last) ? bd->base
251 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
252 }
253 
254 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
255 					     struct bufdesc_prop *bd)
256 {
257 	return (bdp <= bd->base) ? bd->last
258 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
259 }
260 
261 static int fec_enet_get_bd_index(struct bufdesc *bdp,
262 				 struct bufdesc_prop *bd)
263 {
264 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
265 }
266 
267 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
268 {
269 	int entries;
270 
271 	entries = (((const char *)txq->dirty_tx -
272 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
273 
274 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
275 }
276 
277 static void swap_buffer(void *bufaddr, int len)
278 {
279 	int i;
280 	unsigned int *buf = bufaddr;
281 
282 	for (i = 0; i < len; i += 4, buf++)
283 		swab32s(buf);
284 }
285 
286 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
287 {
288 	int i;
289 	unsigned int *src = src_buf;
290 	unsigned int *dst = dst_buf;
291 
292 	for (i = 0; i < len; i += 4, src++, dst++)
293 		*dst = swab32p(src);
294 }
295 
296 static void fec_dump(struct net_device *ndev)
297 {
298 	struct fec_enet_private *fep = netdev_priv(ndev);
299 	struct bufdesc *bdp;
300 	struct fec_enet_priv_tx_q *txq;
301 	int index = 0;
302 
303 	netdev_info(ndev, "TX ring dump\n");
304 	pr_info("Nr     SC     addr       len  SKB\n");
305 
306 	txq = fep->tx_queue[0];
307 	bdp = txq->bd.base;
308 
309 	do {
310 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
311 			index,
312 			bdp == txq->bd.cur ? 'S' : ' ',
313 			bdp == txq->dirty_tx ? 'H' : ' ',
314 			fec16_to_cpu(bdp->cbd_sc),
315 			fec32_to_cpu(bdp->cbd_bufaddr),
316 			fec16_to_cpu(bdp->cbd_datlen),
317 			txq->tx_skbuff[index]);
318 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
319 		index++;
320 	} while (bdp != txq->bd.base);
321 }
322 
323 static inline bool is_ipv4_pkt(struct sk_buff *skb)
324 {
325 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
326 }
327 
328 static int
329 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
330 {
331 	/* Only run for packets requiring a checksum. */
332 	if (skb->ip_summed != CHECKSUM_PARTIAL)
333 		return 0;
334 
335 	if (unlikely(skb_cow_head(skb, 0)))
336 		return -1;
337 
338 	if (is_ipv4_pkt(skb))
339 		ip_hdr(skb)->check = 0;
340 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
341 
342 	return 0;
343 }
344 
345 static struct bufdesc *
346 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
347 			     struct sk_buff *skb,
348 			     struct net_device *ndev)
349 {
350 	struct fec_enet_private *fep = netdev_priv(ndev);
351 	struct bufdesc *bdp = txq->bd.cur;
352 	struct bufdesc_ex *ebdp;
353 	int nr_frags = skb_shinfo(skb)->nr_frags;
354 	int frag, frag_len;
355 	unsigned short status;
356 	unsigned int estatus = 0;
357 	skb_frag_t *this_frag;
358 	unsigned int index;
359 	void *bufaddr;
360 	dma_addr_t addr;
361 	int i;
362 
363 	for (frag = 0; frag < nr_frags; frag++) {
364 		this_frag = &skb_shinfo(skb)->frags[frag];
365 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
366 		ebdp = (struct bufdesc_ex *)bdp;
367 
368 		status = fec16_to_cpu(bdp->cbd_sc);
369 		status &= ~BD_ENET_TX_STATS;
370 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
371 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
372 
373 		/* Handle the last BD specially */
374 		if (frag == nr_frags - 1) {
375 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
376 			if (fep->bufdesc_ex) {
377 				estatus |= BD_ENET_TX_INT;
378 				if (unlikely(skb_shinfo(skb)->tx_flags &
379 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
380 					estatus |= BD_ENET_TX_TS;
381 			}
382 		}
383 
384 		if (fep->bufdesc_ex) {
385 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
386 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
387 			if (skb->ip_summed == CHECKSUM_PARTIAL)
388 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
389 			ebdp->cbd_bdu = 0;
390 			ebdp->cbd_esc = cpu_to_fec32(estatus);
391 		}
392 
393 		bufaddr = skb_frag_address(this_frag);
394 
395 		index = fec_enet_get_bd_index(bdp, &txq->bd);
396 		if (((unsigned long) bufaddr) & fep->tx_align ||
397 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
398 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
399 			bufaddr = txq->tx_bounce[index];
400 
401 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
402 				swap_buffer(bufaddr, frag_len);
403 		}
404 
405 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
406 				      DMA_TO_DEVICE);
407 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
408 			if (net_ratelimit())
409 				netdev_err(ndev, "Tx DMA memory map failed\n");
410 			goto dma_mapping_error;
411 		}
412 
413 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
414 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
415 		/* Make sure the updates to rest of the descriptor are
416 		 * performed before transferring ownership.
417 		 */
418 		wmb();
419 		bdp->cbd_sc = cpu_to_fec16(status);
420 	}
421 
422 	return bdp;
423 dma_mapping_error:
424 	bdp = txq->bd.cur;
425 	for (i = 0; i < frag; i++) {
426 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
427 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
428 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
429 	}
430 	return ERR_PTR(-ENOMEM);
431 }
432 
433 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
434 				   struct sk_buff *skb, struct net_device *ndev)
435 {
436 	struct fec_enet_private *fep = netdev_priv(ndev);
437 	int nr_frags = skb_shinfo(skb)->nr_frags;
438 	struct bufdesc *bdp, *last_bdp;
439 	void *bufaddr;
440 	dma_addr_t addr;
441 	unsigned short status;
442 	unsigned short buflen;
443 	unsigned int estatus = 0;
444 	unsigned int index;
445 	int entries_free;
446 
447 	entries_free = fec_enet_get_free_txdesc_num(txq);
448 	if (entries_free < MAX_SKB_FRAGS + 1) {
449 		dev_kfree_skb_any(skb);
450 		if (net_ratelimit())
451 			netdev_err(ndev, "NOT enough BD for SG!\n");
452 		return NETDEV_TX_OK;
453 	}
454 
455 	/* Protocol checksum off-load for TCP and UDP. */
456 	if (fec_enet_clear_csum(skb, ndev)) {
457 		dev_kfree_skb_any(skb);
458 		return NETDEV_TX_OK;
459 	}
460 
461 	/* Fill in a Tx ring entry */
462 	bdp = txq->bd.cur;
463 	last_bdp = bdp;
464 	status = fec16_to_cpu(bdp->cbd_sc);
465 	status &= ~BD_ENET_TX_STATS;
466 
467 	/* Set buffer length and buffer pointer */
468 	bufaddr = skb->data;
469 	buflen = skb_headlen(skb);
470 
471 	index = fec_enet_get_bd_index(bdp, &txq->bd);
472 	if (((unsigned long) bufaddr) & fep->tx_align ||
473 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
474 		memcpy(txq->tx_bounce[index], skb->data, buflen);
475 		bufaddr = txq->tx_bounce[index];
476 
477 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
478 			swap_buffer(bufaddr, buflen);
479 	}
480 
481 	/* Push the data cache so the CPM does not get stale memory data. */
482 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
483 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
484 		dev_kfree_skb_any(skb);
485 		if (net_ratelimit())
486 			netdev_err(ndev, "Tx DMA memory map failed\n");
487 		return NETDEV_TX_OK;
488 	}
489 
490 	if (nr_frags) {
491 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
492 		if (IS_ERR(last_bdp)) {
493 			dma_unmap_single(&fep->pdev->dev, addr,
494 					 buflen, DMA_TO_DEVICE);
495 			dev_kfree_skb_any(skb);
496 			return NETDEV_TX_OK;
497 		}
498 	} else {
499 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
500 		if (fep->bufdesc_ex) {
501 			estatus = BD_ENET_TX_INT;
502 			if (unlikely(skb_shinfo(skb)->tx_flags &
503 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
504 				estatus |= BD_ENET_TX_TS;
505 		}
506 	}
507 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
508 	bdp->cbd_datlen = cpu_to_fec16(buflen);
509 
510 	if (fep->bufdesc_ex) {
511 
512 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
513 
514 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
515 			fep->hwts_tx_en))
516 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
517 
518 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
519 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
520 
521 		if (skb->ip_summed == CHECKSUM_PARTIAL)
522 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
523 
524 		ebdp->cbd_bdu = 0;
525 		ebdp->cbd_esc = cpu_to_fec32(estatus);
526 	}
527 
528 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
529 	/* Save skb pointer */
530 	txq->tx_skbuff[index] = skb;
531 
532 	/* Make sure the updates to rest of the descriptor are performed before
533 	 * transferring ownership.
534 	 */
535 	wmb();
536 
537 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
538 	 * it's the last BD of the frame, and to put the CRC on the end.
539 	 */
540 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
541 	bdp->cbd_sc = cpu_to_fec16(status);
542 
543 	/* If this was the last BD in the ring, start at the beginning again. */
544 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
545 
546 	skb_tx_timestamp(skb);
547 
548 	/* Make sure the update to bdp and tx_skbuff are performed before
549 	 * txq->bd.cur.
550 	 */
551 	wmb();
552 	txq->bd.cur = bdp;
553 
554 	/* Trigger transmission start */
555 	writel(0, txq->bd.reg_desc_active);
556 
557 	return 0;
558 }
559 
560 static int
561 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
562 			  struct net_device *ndev,
563 			  struct bufdesc *bdp, int index, char *data,
564 			  int size, bool last_tcp, bool is_last)
565 {
566 	struct fec_enet_private *fep = netdev_priv(ndev);
567 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
568 	unsigned short status;
569 	unsigned int estatus = 0;
570 	dma_addr_t addr;
571 
572 	status = fec16_to_cpu(bdp->cbd_sc);
573 	status &= ~BD_ENET_TX_STATS;
574 
575 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
576 
577 	if (((unsigned long) data) & fep->tx_align ||
578 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
579 		memcpy(txq->tx_bounce[index], data, size);
580 		data = txq->tx_bounce[index];
581 
582 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
583 			swap_buffer(data, size);
584 	}
585 
586 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
587 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
588 		dev_kfree_skb_any(skb);
589 		if (net_ratelimit())
590 			netdev_err(ndev, "Tx DMA memory map failed\n");
591 		return NETDEV_TX_BUSY;
592 	}
593 
594 	bdp->cbd_datlen = cpu_to_fec16(size);
595 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
596 
597 	if (fep->bufdesc_ex) {
598 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
599 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
600 		if (skb->ip_summed == CHECKSUM_PARTIAL)
601 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
602 		ebdp->cbd_bdu = 0;
603 		ebdp->cbd_esc = cpu_to_fec32(estatus);
604 	}
605 
606 	/* Handle the last BD specially */
607 	if (last_tcp)
608 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
609 	if (is_last) {
610 		status |= BD_ENET_TX_INTR;
611 		if (fep->bufdesc_ex)
612 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
613 	}
614 
615 	bdp->cbd_sc = cpu_to_fec16(status);
616 
617 	return 0;
618 }
619 
620 static int
621 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
622 			 struct sk_buff *skb, struct net_device *ndev,
623 			 struct bufdesc *bdp, int index)
624 {
625 	struct fec_enet_private *fep = netdev_priv(ndev);
626 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
627 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
628 	void *bufaddr;
629 	unsigned long dmabuf;
630 	unsigned short status;
631 	unsigned int estatus = 0;
632 
633 	status = fec16_to_cpu(bdp->cbd_sc);
634 	status &= ~BD_ENET_TX_STATS;
635 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
636 
637 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
638 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
639 	if (((unsigned long)bufaddr) & fep->tx_align ||
640 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
641 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
642 		bufaddr = txq->tx_bounce[index];
643 
644 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
645 			swap_buffer(bufaddr, hdr_len);
646 
647 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
648 					hdr_len, DMA_TO_DEVICE);
649 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
650 			dev_kfree_skb_any(skb);
651 			if (net_ratelimit())
652 				netdev_err(ndev, "Tx DMA memory map failed\n");
653 			return NETDEV_TX_BUSY;
654 		}
655 	}
656 
657 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
658 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
659 
660 	if (fep->bufdesc_ex) {
661 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
662 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
663 		if (skb->ip_summed == CHECKSUM_PARTIAL)
664 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
665 		ebdp->cbd_bdu = 0;
666 		ebdp->cbd_esc = cpu_to_fec32(estatus);
667 	}
668 
669 	bdp->cbd_sc = cpu_to_fec16(status);
670 
671 	return 0;
672 }
673 
674 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
675 				   struct sk_buff *skb,
676 				   struct net_device *ndev)
677 {
678 	struct fec_enet_private *fep = netdev_priv(ndev);
679 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
680 	int total_len, data_left;
681 	struct bufdesc *bdp = txq->bd.cur;
682 	struct tso_t tso;
683 	unsigned int index = 0;
684 	int ret;
685 
686 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
687 		dev_kfree_skb_any(skb);
688 		if (net_ratelimit())
689 			netdev_err(ndev, "NOT enough BD for TSO!\n");
690 		return NETDEV_TX_OK;
691 	}
692 
693 	/* Protocol checksum off-load for TCP and UDP. */
694 	if (fec_enet_clear_csum(skb, ndev)) {
695 		dev_kfree_skb_any(skb);
696 		return NETDEV_TX_OK;
697 	}
698 
699 	/* Initialize the TSO handler, and prepare the first payload */
700 	tso_start(skb, &tso);
701 
702 	total_len = skb->len - hdr_len;
703 	while (total_len > 0) {
704 		char *hdr;
705 
706 		index = fec_enet_get_bd_index(bdp, &txq->bd);
707 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
708 		total_len -= data_left;
709 
710 		/* prepare packet headers: MAC + IP + TCP */
711 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
712 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
713 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
714 		if (ret)
715 			goto err_release;
716 
717 		while (data_left > 0) {
718 			int size;
719 
720 			size = min_t(int, tso.size, data_left);
721 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
722 			index = fec_enet_get_bd_index(bdp, &txq->bd);
723 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
724 							bdp, index,
725 							tso.data, size,
726 							size == data_left,
727 							total_len == 0);
728 			if (ret)
729 				goto err_release;
730 
731 			data_left -= size;
732 			tso_build_data(skb, &tso, size);
733 		}
734 
735 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
736 	}
737 
738 	/* Save skb pointer */
739 	txq->tx_skbuff[index] = skb;
740 
741 	skb_tx_timestamp(skb);
742 	txq->bd.cur = bdp;
743 
744 	/* Trigger transmission start */
745 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
746 	    !readl(txq->bd.reg_desc_active) ||
747 	    !readl(txq->bd.reg_desc_active) ||
748 	    !readl(txq->bd.reg_desc_active) ||
749 	    !readl(txq->bd.reg_desc_active))
750 		writel(0, txq->bd.reg_desc_active);
751 
752 	return 0;
753 
754 err_release:
755 	/* TODO: Release all used data descriptors for TSO */
756 	return ret;
757 }
758 
759 static netdev_tx_t
760 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
761 {
762 	struct fec_enet_private *fep = netdev_priv(ndev);
763 	int entries_free;
764 	unsigned short queue;
765 	struct fec_enet_priv_tx_q *txq;
766 	struct netdev_queue *nq;
767 	int ret;
768 
769 	queue = skb_get_queue_mapping(skb);
770 	txq = fep->tx_queue[queue];
771 	nq = netdev_get_tx_queue(ndev, queue);
772 
773 	if (skb_is_gso(skb))
774 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
775 	else
776 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
777 	if (ret)
778 		return ret;
779 
780 	entries_free = fec_enet_get_free_txdesc_num(txq);
781 	if (entries_free <= txq->tx_stop_threshold)
782 		netif_tx_stop_queue(nq);
783 
784 	return NETDEV_TX_OK;
785 }
786 
787 /* Init RX & TX buffer descriptors
788  */
789 static void fec_enet_bd_init(struct net_device *dev)
790 {
791 	struct fec_enet_private *fep = netdev_priv(dev);
792 	struct fec_enet_priv_tx_q *txq;
793 	struct fec_enet_priv_rx_q *rxq;
794 	struct bufdesc *bdp;
795 	unsigned int i;
796 	unsigned int q;
797 
798 	for (q = 0; q < fep->num_rx_queues; q++) {
799 		/* Initialize the receive buffer descriptors. */
800 		rxq = fep->rx_queue[q];
801 		bdp = rxq->bd.base;
802 
803 		for (i = 0; i < rxq->bd.ring_size; i++) {
804 
805 			/* Initialize the BD for every fragment in the page. */
806 			if (bdp->cbd_bufaddr)
807 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
808 			else
809 				bdp->cbd_sc = cpu_to_fec16(0);
810 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
811 		}
812 
813 		/* Set the last buffer to wrap */
814 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
815 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
816 
817 		rxq->bd.cur = rxq->bd.base;
818 	}
819 
820 	for (q = 0; q < fep->num_tx_queues; q++) {
821 		/* ...and the same for transmit */
822 		txq = fep->tx_queue[q];
823 		bdp = txq->bd.base;
824 		txq->bd.cur = bdp;
825 
826 		for (i = 0; i < txq->bd.ring_size; i++) {
827 			/* Initialize the BD for every fragment in the page. */
828 			bdp->cbd_sc = cpu_to_fec16(0);
829 			if (bdp->cbd_bufaddr &&
830 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
831 				dma_unmap_single(&fep->pdev->dev,
832 						 fec32_to_cpu(bdp->cbd_bufaddr),
833 						 fec16_to_cpu(bdp->cbd_datlen),
834 						 DMA_TO_DEVICE);
835 			if (txq->tx_skbuff[i]) {
836 				dev_kfree_skb_any(txq->tx_skbuff[i]);
837 				txq->tx_skbuff[i] = NULL;
838 			}
839 			bdp->cbd_bufaddr = cpu_to_fec32(0);
840 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
841 		}
842 
843 		/* Set the last buffer to wrap */
844 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
845 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
846 		txq->dirty_tx = bdp;
847 	}
848 }
849 
850 static void fec_enet_active_rxring(struct net_device *ndev)
851 {
852 	struct fec_enet_private *fep = netdev_priv(ndev);
853 	int i;
854 
855 	for (i = 0; i < fep->num_rx_queues; i++)
856 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
857 }
858 
859 static void fec_enet_enable_ring(struct net_device *ndev)
860 {
861 	struct fec_enet_private *fep = netdev_priv(ndev);
862 	struct fec_enet_priv_tx_q *txq;
863 	struct fec_enet_priv_rx_q *rxq;
864 	int i;
865 
866 	for (i = 0; i < fep->num_rx_queues; i++) {
867 		rxq = fep->rx_queue[i];
868 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
869 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
870 
871 		/* enable DMA1/2 */
872 		if (i)
873 			writel(RCMR_MATCHEN | RCMR_CMP(i),
874 			       fep->hwp + FEC_RCMR(i));
875 	}
876 
877 	for (i = 0; i < fep->num_tx_queues; i++) {
878 		txq = fep->tx_queue[i];
879 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
880 
881 		/* enable DMA1/2 */
882 		if (i)
883 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
884 			       fep->hwp + FEC_DMA_CFG(i));
885 	}
886 }
887 
888 static void fec_enet_reset_skb(struct net_device *ndev)
889 {
890 	struct fec_enet_private *fep = netdev_priv(ndev);
891 	struct fec_enet_priv_tx_q *txq;
892 	int i, j;
893 
894 	for (i = 0; i < fep->num_tx_queues; i++) {
895 		txq = fep->tx_queue[i];
896 
897 		for (j = 0; j < txq->bd.ring_size; j++) {
898 			if (txq->tx_skbuff[j]) {
899 				dev_kfree_skb_any(txq->tx_skbuff[j]);
900 				txq->tx_skbuff[j] = NULL;
901 			}
902 		}
903 	}
904 }
905 
906 /*
907  * This function is called to start or restart the FEC during a link
908  * change, transmit timeout, or to reconfigure the FEC.  The network
909  * packet processing for this device must be stopped before this call.
910  */
911 static void
912 fec_restart(struct net_device *ndev)
913 {
914 	struct fec_enet_private *fep = netdev_priv(ndev);
915 	u32 val;
916 	u32 temp_mac[2];
917 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
918 	u32 ecntl = 0x2; /* ETHEREN */
919 
920 	/* Whack a reset.  We should wait for this.
921 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
922 	 * instead of reset MAC itself.
923 	 */
924 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
925 		writel(0, fep->hwp + FEC_ECNTRL);
926 	} else {
927 		writel(1, fep->hwp + FEC_ECNTRL);
928 		udelay(10);
929 	}
930 
931 	/*
932 	 * enet-mac reset will reset mac address registers too,
933 	 * so need to reconfigure it.
934 	 */
935 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
936 	writel((__force u32)cpu_to_be32(temp_mac[0]),
937 	       fep->hwp + FEC_ADDR_LOW);
938 	writel((__force u32)cpu_to_be32(temp_mac[1]),
939 	       fep->hwp + FEC_ADDR_HIGH);
940 
941 	/* Clear any outstanding interrupt. */
942 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
943 
944 	fec_enet_bd_init(ndev);
945 
946 	fec_enet_enable_ring(ndev);
947 
948 	/* Reset tx SKB buffers. */
949 	fec_enet_reset_skb(ndev);
950 
951 	/* Enable MII mode */
952 	if (fep->full_duplex == DUPLEX_FULL) {
953 		/* FD enable */
954 		writel(0x04, fep->hwp + FEC_X_CNTRL);
955 	} else {
956 		/* No Rcv on Xmit */
957 		rcntl |= 0x02;
958 		writel(0x0, fep->hwp + FEC_X_CNTRL);
959 	}
960 
961 	/* Set MII speed */
962 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
963 
964 #if !defined(CONFIG_M5272)
965 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
966 		val = readl(fep->hwp + FEC_RACC);
967 		/* align IP header */
968 		val |= FEC_RACC_SHIFT16;
969 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
970 			/* set RX checksum */
971 			val |= FEC_RACC_OPTIONS;
972 		else
973 			val &= ~FEC_RACC_OPTIONS;
974 		writel(val, fep->hwp + FEC_RACC);
975 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
976 	}
977 #endif
978 
979 	/*
980 	 * The phy interface and speed need to get configured
981 	 * differently on enet-mac.
982 	 */
983 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
984 		/* Enable flow control and length check */
985 		rcntl |= 0x40000000 | 0x00000020;
986 
987 		/* RGMII, RMII or MII */
988 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
989 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
990 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
991 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
992 			rcntl |= (1 << 6);
993 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
994 			rcntl |= (1 << 8);
995 		else
996 			rcntl &= ~(1 << 8);
997 
998 		/* 1G, 100M or 10M */
999 		if (ndev->phydev) {
1000 			if (ndev->phydev->speed == SPEED_1000)
1001 				ecntl |= (1 << 5);
1002 			else if (ndev->phydev->speed == SPEED_100)
1003 				rcntl &= ~(1 << 9);
1004 			else
1005 				rcntl |= (1 << 9);
1006 		}
1007 	} else {
1008 #ifdef FEC_MIIGSK_ENR
1009 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1010 			u32 cfgr;
1011 			/* disable the gasket and wait */
1012 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1013 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1014 				udelay(1);
1015 
1016 			/*
1017 			 * configure the gasket:
1018 			 *   RMII, 50 MHz, no loopback, no echo
1019 			 *   MII, 25 MHz, no loopback, no echo
1020 			 */
1021 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1022 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1023 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1024 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1025 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1026 
1027 			/* re-enable the gasket */
1028 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1029 		}
1030 #endif
1031 	}
1032 
1033 #if !defined(CONFIG_M5272)
1034 	/* enable pause frame*/
1035 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1036 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1037 	     ndev->phydev && ndev->phydev->pause)) {
1038 		rcntl |= FEC_ENET_FCE;
1039 
1040 		/* set FIFO threshold parameter to reduce overrun */
1041 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1042 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1043 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1044 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1045 
1046 		/* OPD */
1047 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1048 	} else {
1049 		rcntl &= ~FEC_ENET_FCE;
1050 	}
1051 #endif /* !defined(CONFIG_M5272) */
1052 
1053 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1054 
1055 	/* Setup multicast filter. */
1056 	set_multicast_list(ndev);
1057 #ifndef CONFIG_M5272
1058 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1059 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1060 #endif
1061 
1062 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1063 		/* enable ENET endian swap */
1064 		ecntl |= (1 << 8);
1065 		/* enable ENET store and forward mode */
1066 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1067 	}
1068 
1069 	if (fep->bufdesc_ex)
1070 		ecntl |= (1 << 4);
1071 
1072 #ifndef CONFIG_M5272
1073 	/* Enable the MIB statistic event counters */
1074 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1075 #endif
1076 
1077 	/* And last, enable the transmit and receive processing */
1078 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1079 	fec_enet_active_rxring(ndev);
1080 
1081 	if (fep->bufdesc_ex)
1082 		fec_ptp_start_cyclecounter(ndev);
1083 
1084 	/* Enable interrupts we wish to service */
1085 	if (fep->link)
1086 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1087 	else
1088 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1089 
1090 	/* Init the interrupt coalescing */
1091 	fec_enet_itr_coal_init(ndev);
1092 
1093 }
1094 
1095 static void
1096 fec_stop(struct net_device *ndev)
1097 {
1098 	struct fec_enet_private *fep = netdev_priv(ndev);
1099 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1100 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1101 	u32 val;
1102 
1103 	/* We cannot expect a graceful transmit stop without link !!! */
1104 	if (fep->link) {
1105 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1106 		udelay(10);
1107 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1108 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1109 	}
1110 
1111 	/* Whack a reset.  We should wait for this.
1112 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1113 	 * instead of reset MAC itself.
1114 	 */
1115 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1117 			writel(0, fep->hwp + FEC_ECNTRL);
1118 		} else {
1119 			writel(1, fep->hwp + FEC_ECNTRL);
1120 			udelay(10);
1121 		}
1122 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1123 	} else {
1124 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1125 		val = readl(fep->hwp + FEC_ECNTRL);
1126 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1127 		writel(val, fep->hwp + FEC_ECNTRL);
1128 
1129 		if (pdata && pdata->sleep_mode_enable)
1130 			pdata->sleep_mode_enable(true);
1131 	}
1132 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1133 
1134 	/* We have to keep ENET enabled to have MII interrupt stay working */
1135 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1136 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1137 		writel(2, fep->hwp + FEC_ECNTRL);
1138 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1139 	}
1140 }
1141 
1142 
1143 static void
1144 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1145 {
1146 	struct fec_enet_private *fep = netdev_priv(ndev);
1147 
1148 	fec_dump(ndev);
1149 
1150 	ndev->stats.tx_errors++;
1151 
1152 	schedule_work(&fep->tx_timeout_work);
1153 }
1154 
1155 static void fec_enet_timeout_work(struct work_struct *work)
1156 {
1157 	struct fec_enet_private *fep =
1158 		container_of(work, struct fec_enet_private, tx_timeout_work);
1159 	struct net_device *ndev = fep->netdev;
1160 
1161 	rtnl_lock();
1162 	if (netif_device_present(ndev) || netif_running(ndev)) {
1163 		napi_disable(&fep->napi);
1164 		netif_tx_lock_bh(ndev);
1165 		fec_restart(ndev);
1166 		netif_tx_wake_all_queues(ndev);
1167 		netif_tx_unlock_bh(ndev);
1168 		napi_enable(&fep->napi);
1169 	}
1170 	rtnl_unlock();
1171 }
1172 
1173 static void
1174 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1175 	struct skb_shared_hwtstamps *hwtstamps)
1176 {
1177 	unsigned long flags;
1178 	u64 ns;
1179 
1180 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1181 	ns = timecounter_cyc2time(&fep->tc, ts);
1182 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1183 
1184 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1185 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1186 }
1187 
1188 static void
1189 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1190 {
1191 	struct	fec_enet_private *fep;
1192 	struct bufdesc *bdp;
1193 	unsigned short status;
1194 	struct	sk_buff	*skb;
1195 	struct fec_enet_priv_tx_q *txq;
1196 	struct netdev_queue *nq;
1197 	int	index = 0;
1198 	int	entries_free;
1199 
1200 	fep = netdev_priv(ndev);
1201 
1202 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1203 
1204 	txq = fep->tx_queue[queue_id];
1205 	/* get next bdp of dirty_tx */
1206 	nq = netdev_get_tx_queue(ndev, queue_id);
1207 	bdp = txq->dirty_tx;
1208 
1209 	/* get next bdp of dirty_tx */
1210 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1211 
1212 	while (bdp != READ_ONCE(txq->bd.cur)) {
1213 		/* Order the load of bd.cur and cbd_sc */
1214 		rmb();
1215 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1216 		if (status & BD_ENET_TX_READY)
1217 			break;
1218 
1219 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1220 
1221 		skb = txq->tx_skbuff[index];
1222 		txq->tx_skbuff[index] = NULL;
1223 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1224 			dma_unmap_single(&fep->pdev->dev,
1225 					 fec32_to_cpu(bdp->cbd_bufaddr),
1226 					 fec16_to_cpu(bdp->cbd_datlen),
1227 					 DMA_TO_DEVICE);
1228 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1229 		if (!skb)
1230 			goto skb_done;
1231 
1232 		/* Check for errors. */
1233 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1234 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1235 				   BD_ENET_TX_CSL)) {
1236 			ndev->stats.tx_errors++;
1237 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1238 				ndev->stats.tx_heartbeat_errors++;
1239 			if (status & BD_ENET_TX_LC)  /* Late collision */
1240 				ndev->stats.tx_window_errors++;
1241 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1242 				ndev->stats.tx_aborted_errors++;
1243 			if (status & BD_ENET_TX_UN)  /* Underrun */
1244 				ndev->stats.tx_fifo_errors++;
1245 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1246 				ndev->stats.tx_carrier_errors++;
1247 		} else {
1248 			ndev->stats.tx_packets++;
1249 			ndev->stats.tx_bytes += skb->len;
1250 		}
1251 
1252 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1253 			fep->bufdesc_ex) {
1254 			struct skb_shared_hwtstamps shhwtstamps;
1255 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1256 
1257 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1258 			skb_tstamp_tx(skb, &shhwtstamps);
1259 		}
1260 
1261 		/* Deferred means some collisions occurred during transmit,
1262 		 * but we eventually sent the packet OK.
1263 		 */
1264 		if (status & BD_ENET_TX_DEF)
1265 			ndev->stats.collisions++;
1266 
1267 		/* Free the sk buffer associated with this last transmit */
1268 		dev_kfree_skb_any(skb);
1269 skb_done:
1270 		/* Make sure the update to bdp and tx_skbuff are performed
1271 		 * before dirty_tx
1272 		 */
1273 		wmb();
1274 		txq->dirty_tx = bdp;
1275 
1276 		/* Update pointer to next buffer descriptor to be transmitted */
1277 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1278 
1279 		/* Since we have freed up a buffer, the ring is no longer full
1280 		 */
1281 		if (netif_tx_queue_stopped(nq)) {
1282 			entries_free = fec_enet_get_free_txdesc_num(txq);
1283 			if (entries_free >= txq->tx_wake_threshold)
1284 				netif_tx_wake_queue(nq);
1285 		}
1286 	}
1287 
1288 	/* ERR006358: Keep the transmitter going */
1289 	if (bdp != txq->bd.cur &&
1290 	    readl(txq->bd.reg_desc_active) == 0)
1291 		writel(0, txq->bd.reg_desc_active);
1292 }
1293 
1294 static void
1295 fec_enet_tx(struct net_device *ndev)
1296 {
1297 	struct fec_enet_private *fep = netdev_priv(ndev);
1298 	u16 queue_id;
1299 	/* First process class A queue, then Class B and Best Effort queue */
1300 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1301 		clear_bit(queue_id, &fep->work_tx);
1302 		fec_enet_tx_queue(ndev, queue_id);
1303 	}
1304 	return;
1305 }
1306 
1307 static int
1308 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1309 {
1310 	struct  fec_enet_private *fep = netdev_priv(ndev);
1311 	int off;
1312 
1313 	off = ((unsigned long)skb->data) & fep->rx_align;
1314 	if (off)
1315 		skb_reserve(skb, fep->rx_align + 1 - off);
1316 
1317 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1318 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1319 		if (net_ratelimit())
1320 			netdev_err(ndev, "Rx DMA memory map failed\n");
1321 		return -ENOMEM;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1328 			       struct bufdesc *bdp, u32 length, bool swap)
1329 {
1330 	struct  fec_enet_private *fep = netdev_priv(ndev);
1331 	struct sk_buff *new_skb;
1332 
1333 	if (length > fep->rx_copybreak)
1334 		return false;
1335 
1336 	new_skb = netdev_alloc_skb(ndev, length);
1337 	if (!new_skb)
1338 		return false;
1339 
1340 	dma_sync_single_for_cpu(&fep->pdev->dev,
1341 				fec32_to_cpu(bdp->cbd_bufaddr),
1342 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1343 				DMA_FROM_DEVICE);
1344 	if (!swap)
1345 		memcpy(new_skb->data, (*skb)->data, length);
1346 	else
1347 		swap_buffer2(new_skb->data, (*skb)->data, length);
1348 	*skb = new_skb;
1349 
1350 	return true;
1351 }
1352 
1353 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1354  * When we update through the ring, if the next incoming buffer has
1355  * not been given to the system, we just set the empty indicator,
1356  * effectively tossing the packet.
1357  */
1358 static int
1359 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1360 {
1361 	struct fec_enet_private *fep = netdev_priv(ndev);
1362 	struct fec_enet_priv_rx_q *rxq;
1363 	struct bufdesc *bdp;
1364 	unsigned short status;
1365 	struct  sk_buff *skb_new = NULL;
1366 	struct  sk_buff *skb;
1367 	ushort	pkt_len;
1368 	__u8 *data;
1369 	int	pkt_received = 0;
1370 	struct	bufdesc_ex *ebdp = NULL;
1371 	bool	vlan_packet_rcvd = false;
1372 	u16	vlan_tag;
1373 	int	index = 0;
1374 	bool	is_copybreak;
1375 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1376 
1377 #ifdef CONFIG_M532x
1378 	flush_cache_all();
1379 #endif
1380 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1381 	rxq = fep->rx_queue[queue_id];
1382 
1383 	/* First, grab all of the stats for the incoming packet.
1384 	 * These get messed up if we get called due to a busy condition.
1385 	 */
1386 	bdp = rxq->bd.cur;
1387 
1388 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1389 
1390 		if (pkt_received >= budget)
1391 			break;
1392 		pkt_received++;
1393 
1394 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1395 
1396 		/* Check for errors. */
1397 		status ^= BD_ENET_RX_LAST;
1398 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1399 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1400 			   BD_ENET_RX_CL)) {
1401 			ndev->stats.rx_errors++;
1402 			if (status & BD_ENET_RX_OV) {
1403 				/* FIFO overrun */
1404 				ndev->stats.rx_fifo_errors++;
1405 				goto rx_processing_done;
1406 			}
1407 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1408 						| BD_ENET_RX_LAST)) {
1409 				/* Frame too long or too short. */
1410 				ndev->stats.rx_length_errors++;
1411 				if (status & BD_ENET_RX_LAST)
1412 					netdev_err(ndev, "rcv is not +last\n");
1413 			}
1414 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1415 				ndev->stats.rx_crc_errors++;
1416 			/* Report late collisions as a frame error. */
1417 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1418 				ndev->stats.rx_frame_errors++;
1419 			goto rx_processing_done;
1420 		}
1421 
1422 		/* Process the incoming frame. */
1423 		ndev->stats.rx_packets++;
1424 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1425 		ndev->stats.rx_bytes += pkt_len;
1426 
1427 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1428 		skb = rxq->rx_skbuff[index];
1429 
1430 		/* The packet length includes FCS, but we don't want to
1431 		 * include that when passing upstream as it messes up
1432 		 * bridging applications.
1433 		 */
1434 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1435 						  need_swap);
1436 		if (!is_copybreak) {
1437 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1438 			if (unlikely(!skb_new)) {
1439 				ndev->stats.rx_dropped++;
1440 				goto rx_processing_done;
1441 			}
1442 			dma_unmap_single(&fep->pdev->dev,
1443 					 fec32_to_cpu(bdp->cbd_bufaddr),
1444 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1445 					 DMA_FROM_DEVICE);
1446 		}
1447 
1448 		prefetch(skb->data - NET_IP_ALIGN);
1449 		skb_put(skb, pkt_len - 4);
1450 		data = skb->data;
1451 
1452 		if (!is_copybreak && need_swap)
1453 			swap_buffer(data, pkt_len);
1454 
1455 #if !defined(CONFIG_M5272)
1456 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1457 			data = skb_pull_inline(skb, 2);
1458 #endif
1459 
1460 		/* Extract the enhanced buffer descriptor */
1461 		ebdp = NULL;
1462 		if (fep->bufdesc_ex)
1463 			ebdp = (struct bufdesc_ex *)bdp;
1464 
1465 		/* If this is a VLAN packet remove the VLAN Tag */
1466 		vlan_packet_rcvd = false;
1467 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1468 		    fep->bufdesc_ex &&
1469 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1470 			/* Push and remove the vlan tag */
1471 			struct vlan_hdr *vlan_header =
1472 					(struct vlan_hdr *) (data + ETH_HLEN);
1473 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1474 
1475 			vlan_packet_rcvd = true;
1476 
1477 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1478 			skb_pull(skb, VLAN_HLEN);
1479 		}
1480 
1481 		skb->protocol = eth_type_trans(skb, ndev);
1482 
1483 		/* Get receive timestamp from the skb */
1484 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1485 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1486 					  skb_hwtstamps(skb));
1487 
1488 		if (fep->bufdesc_ex &&
1489 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1490 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1491 				/* don't check it */
1492 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1493 			} else {
1494 				skb_checksum_none_assert(skb);
1495 			}
1496 		}
1497 
1498 		/* Handle received VLAN packets */
1499 		if (vlan_packet_rcvd)
1500 			__vlan_hwaccel_put_tag(skb,
1501 					       htons(ETH_P_8021Q),
1502 					       vlan_tag);
1503 
1504 		napi_gro_receive(&fep->napi, skb);
1505 
1506 		if (is_copybreak) {
1507 			dma_sync_single_for_device(&fep->pdev->dev,
1508 						   fec32_to_cpu(bdp->cbd_bufaddr),
1509 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1510 						   DMA_FROM_DEVICE);
1511 		} else {
1512 			rxq->rx_skbuff[index] = skb_new;
1513 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1514 		}
1515 
1516 rx_processing_done:
1517 		/* Clear the status flags for this buffer */
1518 		status &= ~BD_ENET_RX_STATS;
1519 
1520 		/* Mark the buffer empty */
1521 		status |= BD_ENET_RX_EMPTY;
1522 
1523 		if (fep->bufdesc_ex) {
1524 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1525 
1526 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1527 			ebdp->cbd_prot = 0;
1528 			ebdp->cbd_bdu = 0;
1529 		}
1530 		/* Make sure the updates to rest of the descriptor are
1531 		 * performed before transferring ownership.
1532 		 */
1533 		wmb();
1534 		bdp->cbd_sc = cpu_to_fec16(status);
1535 
1536 		/* Update BD pointer to next entry */
1537 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1538 
1539 		/* Doing this here will keep the FEC running while we process
1540 		 * incoming frames.  On a heavily loaded network, we should be
1541 		 * able to keep up at the expense of system resources.
1542 		 */
1543 		writel(0, rxq->bd.reg_desc_active);
1544 	}
1545 	rxq->bd.cur = bdp;
1546 	return pkt_received;
1547 }
1548 
1549 static int
1550 fec_enet_rx(struct net_device *ndev, int budget)
1551 {
1552 	int     pkt_received = 0;
1553 	u16	queue_id;
1554 	struct fec_enet_private *fep = netdev_priv(ndev);
1555 
1556 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1557 		int ret;
1558 
1559 		ret = fec_enet_rx_queue(ndev,
1560 					budget - pkt_received, queue_id);
1561 
1562 		if (ret < budget - pkt_received)
1563 			clear_bit(queue_id, &fep->work_rx);
1564 
1565 		pkt_received += ret;
1566 	}
1567 	return pkt_received;
1568 }
1569 
1570 static bool
1571 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1572 {
1573 	if (int_events == 0)
1574 		return false;
1575 
1576 	if (int_events & FEC_ENET_RXF_0)
1577 		fep->work_rx |= (1 << 2);
1578 	if (int_events & FEC_ENET_RXF_1)
1579 		fep->work_rx |= (1 << 0);
1580 	if (int_events & FEC_ENET_RXF_2)
1581 		fep->work_rx |= (1 << 1);
1582 
1583 	if (int_events & FEC_ENET_TXF_0)
1584 		fep->work_tx |= (1 << 2);
1585 	if (int_events & FEC_ENET_TXF_1)
1586 		fep->work_tx |= (1 << 0);
1587 	if (int_events & FEC_ENET_TXF_2)
1588 		fep->work_tx |= (1 << 1);
1589 
1590 	return true;
1591 }
1592 
1593 static irqreturn_t
1594 fec_enet_interrupt(int irq, void *dev_id)
1595 {
1596 	struct net_device *ndev = dev_id;
1597 	struct fec_enet_private *fep = netdev_priv(ndev);
1598 	uint int_events;
1599 	irqreturn_t ret = IRQ_NONE;
1600 
1601 	int_events = readl(fep->hwp + FEC_IEVENT);
1602 	writel(int_events, fep->hwp + FEC_IEVENT);
1603 	fec_enet_collect_events(fep, int_events);
1604 
1605 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1606 		ret = IRQ_HANDLED;
1607 
1608 		if (napi_schedule_prep(&fep->napi)) {
1609 			/* Disable the NAPI interrupts */
1610 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1611 			__napi_schedule(&fep->napi);
1612 		}
1613 	}
1614 
1615 	if (int_events & FEC_ENET_MII) {
1616 		ret = IRQ_HANDLED;
1617 		complete(&fep->mdio_done);
1618 	}
1619 	return ret;
1620 }
1621 
1622 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1623 {
1624 	struct net_device *ndev = napi->dev;
1625 	struct fec_enet_private *fep = netdev_priv(ndev);
1626 	int pkts;
1627 
1628 	pkts = fec_enet_rx(ndev, budget);
1629 
1630 	fec_enet_tx(ndev);
1631 
1632 	if (pkts < budget) {
1633 		napi_complete_done(napi, pkts);
1634 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1635 	}
1636 	return pkts;
1637 }
1638 
1639 /* ------------------------------------------------------------------------- */
1640 static void fec_get_mac(struct net_device *ndev)
1641 {
1642 	struct fec_enet_private *fep = netdev_priv(ndev);
1643 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1644 	unsigned char *iap, tmpaddr[ETH_ALEN];
1645 
1646 	/*
1647 	 * try to get mac address in following order:
1648 	 *
1649 	 * 1) module parameter via kernel command line in form
1650 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1651 	 */
1652 	iap = macaddr;
1653 
1654 	/*
1655 	 * 2) from device tree data
1656 	 */
1657 	if (!is_valid_ether_addr(iap)) {
1658 		struct device_node *np = fep->pdev->dev.of_node;
1659 		if (np) {
1660 			const char *mac = of_get_mac_address(np);
1661 			if (!IS_ERR(mac))
1662 				iap = (unsigned char *) mac;
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * 3) from flash or fuse (via platform data)
1668 	 */
1669 	if (!is_valid_ether_addr(iap)) {
1670 #ifdef CONFIG_M5272
1671 		if (FEC_FLASHMAC)
1672 			iap = (unsigned char *)FEC_FLASHMAC;
1673 #else
1674 		if (pdata)
1675 			iap = (unsigned char *)&pdata->mac;
1676 #endif
1677 	}
1678 
1679 	/*
1680 	 * 4) FEC mac registers set by bootloader
1681 	 */
1682 	if (!is_valid_ether_addr(iap)) {
1683 		*((__be32 *) &tmpaddr[0]) =
1684 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1685 		*((__be16 *) &tmpaddr[4]) =
1686 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1687 		iap = &tmpaddr[0];
1688 	}
1689 
1690 	/*
1691 	 * 5) random mac address
1692 	 */
1693 	if (!is_valid_ether_addr(iap)) {
1694 		/* Report it and use a random ethernet address instead */
1695 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1696 		eth_hw_addr_random(ndev);
1697 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1698 			 ndev->dev_addr);
1699 		return;
1700 	}
1701 
1702 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1703 
1704 	/* Adjust MAC if using macaddr */
1705 	if (iap == macaddr)
1706 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1707 }
1708 
1709 /* ------------------------------------------------------------------------- */
1710 
1711 /*
1712  * Phy section
1713  */
1714 static void fec_enet_adjust_link(struct net_device *ndev)
1715 {
1716 	struct fec_enet_private *fep = netdev_priv(ndev);
1717 	struct phy_device *phy_dev = ndev->phydev;
1718 	int status_change = 0;
1719 
1720 	/*
1721 	 * If the netdev is down, or is going down, we're not interested
1722 	 * in link state events, so just mark our idea of the link as down
1723 	 * and ignore the event.
1724 	 */
1725 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1726 		fep->link = 0;
1727 	} else if (phy_dev->link) {
1728 		if (!fep->link) {
1729 			fep->link = phy_dev->link;
1730 			status_change = 1;
1731 		}
1732 
1733 		if (fep->full_duplex != phy_dev->duplex) {
1734 			fep->full_duplex = phy_dev->duplex;
1735 			status_change = 1;
1736 		}
1737 
1738 		if (phy_dev->speed != fep->speed) {
1739 			fep->speed = phy_dev->speed;
1740 			status_change = 1;
1741 		}
1742 
1743 		/* if any of the above changed restart the FEC */
1744 		if (status_change) {
1745 			napi_disable(&fep->napi);
1746 			netif_tx_lock_bh(ndev);
1747 			fec_restart(ndev);
1748 			netif_tx_wake_all_queues(ndev);
1749 			netif_tx_unlock_bh(ndev);
1750 			napi_enable(&fep->napi);
1751 		}
1752 	} else {
1753 		if (fep->link) {
1754 			napi_disable(&fep->napi);
1755 			netif_tx_lock_bh(ndev);
1756 			fec_stop(ndev);
1757 			netif_tx_unlock_bh(ndev);
1758 			napi_enable(&fep->napi);
1759 			fep->link = phy_dev->link;
1760 			status_change = 1;
1761 		}
1762 	}
1763 
1764 	if (status_change)
1765 		phy_print_status(phy_dev);
1766 }
1767 
1768 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1769 {
1770 	struct fec_enet_private *fep = bus->priv;
1771 	struct device *dev = &fep->pdev->dev;
1772 	unsigned long time_left;
1773 	int ret = 0, frame_start, frame_addr, frame_op;
1774 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1775 
1776 	ret = pm_runtime_get_sync(dev);
1777 	if (ret < 0)
1778 		return ret;
1779 
1780 	reinit_completion(&fep->mdio_done);
1781 
1782 	if (is_c45) {
1783 		frame_start = FEC_MMFR_ST_C45;
1784 
1785 		/* write address */
1786 		frame_addr = (regnum >> 16);
1787 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1788 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1789 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1790 		       fep->hwp + FEC_MII_DATA);
1791 
1792 		/* wait for end of transfer */
1793 		time_left = wait_for_completion_timeout(&fep->mdio_done,
1794 				usecs_to_jiffies(FEC_MII_TIMEOUT));
1795 		if (time_left == 0) {
1796 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1797 			ret = -ETIMEDOUT;
1798 			goto out;
1799 		}
1800 
1801 		frame_op = FEC_MMFR_OP_READ_C45;
1802 
1803 	} else {
1804 		/* C22 read */
1805 		frame_op = FEC_MMFR_OP_READ;
1806 		frame_start = FEC_MMFR_ST;
1807 		frame_addr = regnum;
1808 	}
1809 
1810 	/* start a read op */
1811 	writel(frame_start | frame_op |
1812 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1813 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1814 
1815 	/* wait for end of transfer */
1816 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1817 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1818 	if (time_left == 0) {
1819 		netdev_err(fep->netdev, "MDIO read timeout\n");
1820 		ret = -ETIMEDOUT;
1821 		goto out;
1822 	}
1823 
1824 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1825 
1826 out:
1827 	pm_runtime_mark_last_busy(dev);
1828 	pm_runtime_put_autosuspend(dev);
1829 
1830 	return ret;
1831 }
1832 
1833 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1834 			   u16 value)
1835 {
1836 	struct fec_enet_private *fep = bus->priv;
1837 	struct device *dev = &fep->pdev->dev;
1838 	unsigned long time_left;
1839 	int ret, frame_start, frame_addr;
1840 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1841 
1842 	ret = pm_runtime_get_sync(dev);
1843 	if (ret < 0)
1844 		return ret;
1845 	else
1846 		ret = 0;
1847 
1848 	reinit_completion(&fep->mdio_done);
1849 
1850 	if (is_c45) {
1851 		frame_start = FEC_MMFR_ST_C45;
1852 
1853 		/* write address */
1854 		frame_addr = (regnum >> 16);
1855 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1856 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1857 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1858 		       fep->hwp + FEC_MII_DATA);
1859 
1860 		/* wait for end of transfer */
1861 		time_left = wait_for_completion_timeout(&fep->mdio_done,
1862 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1863 		if (time_left == 0) {
1864 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1865 			ret = -ETIMEDOUT;
1866 			goto out;
1867 		}
1868 	} else {
1869 		/* C22 write */
1870 		frame_start = FEC_MMFR_ST;
1871 		frame_addr = regnum;
1872 	}
1873 
1874 	/* start a write op */
1875 	writel(frame_start | FEC_MMFR_OP_WRITE |
1876 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1877 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1878 		fep->hwp + FEC_MII_DATA);
1879 
1880 	/* wait for end of transfer */
1881 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1882 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1883 	if (time_left == 0) {
1884 		netdev_err(fep->netdev, "MDIO write timeout\n");
1885 		ret  = -ETIMEDOUT;
1886 	}
1887 
1888 out:
1889 	pm_runtime_mark_last_busy(dev);
1890 	pm_runtime_put_autosuspend(dev);
1891 
1892 	return ret;
1893 }
1894 
1895 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1896 {
1897 	struct fec_enet_private *fep = netdev_priv(ndev);
1898 	int ret;
1899 
1900 	if (enable) {
1901 		ret = clk_prepare_enable(fep->clk_enet_out);
1902 		if (ret)
1903 			return ret;
1904 
1905 		if (fep->clk_ptp) {
1906 			mutex_lock(&fep->ptp_clk_mutex);
1907 			ret = clk_prepare_enable(fep->clk_ptp);
1908 			if (ret) {
1909 				mutex_unlock(&fep->ptp_clk_mutex);
1910 				goto failed_clk_ptp;
1911 			} else {
1912 				fep->ptp_clk_on = true;
1913 			}
1914 			mutex_unlock(&fep->ptp_clk_mutex);
1915 		}
1916 
1917 		ret = clk_prepare_enable(fep->clk_ref);
1918 		if (ret)
1919 			goto failed_clk_ref;
1920 
1921 		phy_reset_after_clk_enable(ndev->phydev);
1922 	} else {
1923 		clk_disable_unprepare(fep->clk_enet_out);
1924 		if (fep->clk_ptp) {
1925 			mutex_lock(&fep->ptp_clk_mutex);
1926 			clk_disable_unprepare(fep->clk_ptp);
1927 			fep->ptp_clk_on = false;
1928 			mutex_unlock(&fep->ptp_clk_mutex);
1929 		}
1930 		clk_disable_unprepare(fep->clk_ref);
1931 	}
1932 
1933 	return 0;
1934 
1935 failed_clk_ref:
1936 	if (fep->clk_ref)
1937 		clk_disable_unprepare(fep->clk_ref);
1938 failed_clk_ptp:
1939 	if (fep->clk_enet_out)
1940 		clk_disable_unprepare(fep->clk_enet_out);
1941 
1942 	return ret;
1943 }
1944 
1945 static int fec_enet_mii_probe(struct net_device *ndev)
1946 {
1947 	struct fec_enet_private *fep = netdev_priv(ndev);
1948 	struct phy_device *phy_dev = NULL;
1949 	char mdio_bus_id[MII_BUS_ID_SIZE];
1950 	char phy_name[MII_BUS_ID_SIZE + 3];
1951 	int phy_id;
1952 	int dev_id = fep->dev_id;
1953 
1954 	if (fep->phy_node) {
1955 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1956 					 &fec_enet_adjust_link, 0,
1957 					 fep->phy_interface);
1958 		if (!phy_dev) {
1959 			netdev_err(ndev, "Unable to connect to phy\n");
1960 			return -ENODEV;
1961 		}
1962 	} else {
1963 		/* check for attached phy */
1964 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1965 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1966 				continue;
1967 			if (dev_id--)
1968 				continue;
1969 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1970 			break;
1971 		}
1972 
1973 		if (phy_id >= PHY_MAX_ADDR) {
1974 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1975 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1976 			phy_id = 0;
1977 		}
1978 
1979 		snprintf(phy_name, sizeof(phy_name),
1980 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1981 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1982 				      fep->phy_interface);
1983 	}
1984 
1985 	if (IS_ERR(phy_dev)) {
1986 		netdev_err(ndev, "could not attach to PHY\n");
1987 		return PTR_ERR(phy_dev);
1988 	}
1989 
1990 	/* mask with MAC supported features */
1991 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1992 		phy_set_max_speed(phy_dev, 1000);
1993 		phy_remove_link_mode(phy_dev,
1994 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1995 #if !defined(CONFIG_M5272)
1996 		phy_support_sym_pause(phy_dev);
1997 #endif
1998 	}
1999 	else
2000 		phy_set_max_speed(phy_dev, 100);
2001 
2002 	fep->link = 0;
2003 	fep->full_duplex = 0;
2004 
2005 	phy_attached_info(phy_dev);
2006 
2007 	return 0;
2008 }
2009 
2010 static int fec_enet_mii_init(struct platform_device *pdev)
2011 {
2012 	static struct mii_bus *fec0_mii_bus;
2013 	struct net_device *ndev = platform_get_drvdata(pdev);
2014 	struct fec_enet_private *fep = netdev_priv(ndev);
2015 	struct device_node *node;
2016 	int err = -ENXIO;
2017 	u32 mii_speed, holdtime;
2018 
2019 	/*
2020 	 * The i.MX28 dual fec interfaces are not equal.
2021 	 * Here are the differences:
2022 	 *
2023 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2024 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2025 	 *  - external phys can only be configured by fec0
2026 	 *
2027 	 * That is to say fec1 can not work independently. It only works
2028 	 * when fec0 is working. The reason behind this design is that the
2029 	 * second interface is added primarily for Switch mode.
2030 	 *
2031 	 * Because of the last point above, both phys are attached on fec0
2032 	 * mdio interface in board design, and need to be configured by
2033 	 * fec0 mii_bus.
2034 	 */
2035 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2036 		/* fec1 uses fec0 mii_bus */
2037 		if (mii_cnt && fec0_mii_bus) {
2038 			fep->mii_bus = fec0_mii_bus;
2039 			mii_cnt++;
2040 			return 0;
2041 		}
2042 		return -ENOENT;
2043 	}
2044 
2045 	/*
2046 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2047 	 *
2048 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2049 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2050 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2051 	 * document.
2052 	 */
2053 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2054 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2055 		mii_speed--;
2056 	if (mii_speed > 63) {
2057 		dev_err(&pdev->dev,
2058 			"fec clock (%lu) too fast to get right mii speed\n",
2059 			clk_get_rate(fep->clk_ipg));
2060 		err = -EINVAL;
2061 		goto err_out;
2062 	}
2063 
2064 	/*
2065 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2066 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2067 	 * versions are RAZ there, so just ignore the difference and write the
2068 	 * register always.
2069 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2070 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2071 	 * output.
2072 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2073 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2074 	 * holdtime cannot result in a value greater than 3.
2075 	 */
2076 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2077 
2078 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2079 
2080 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2081 
2082 	fep->mii_bus = mdiobus_alloc();
2083 	if (fep->mii_bus == NULL) {
2084 		err = -ENOMEM;
2085 		goto err_out;
2086 	}
2087 
2088 	fep->mii_bus->name = "fec_enet_mii_bus";
2089 	fep->mii_bus->read = fec_enet_mdio_read;
2090 	fep->mii_bus->write = fec_enet_mdio_write;
2091 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2092 		pdev->name, fep->dev_id + 1);
2093 	fep->mii_bus->priv = fep;
2094 	fep->mii_bus->parent = &pdev->dev;
2095 
2096 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2097 	err = of_mdiobus_register(fep->mii_bus, node);
2098 	of_node_put(node);
2099 	if (err)
2100 		goto err_out_free_mdiobus;
2101 
2102 	mii_cnt++;
2103 
2104 	/* save fec0 mii_bus */
2105 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2106 		fec0_mii_bus = fep->mii_bus;
2107 
2108 	return 0;
2109 
2110 err_out_free_mdiobus:
2111 	mdiobus_free(fep->mii_bus);
2112 err_out:
2113 	return err;
2114 }
2115 
2116 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2117 {
2118 	if (--mii_cnt == 0) {
2119 		mdiobus_unregister(fep->mii_bus);
2120 		mdiobus_free(fep->mii_bus);
2121 	}
2122 }
2123 
2124 static void fec_enet_get_drvinfo(struct net_device *ndev,
2125 				 struct ethtool_drvinfo *info)
2126 {
2127 	struct fec_enet_private *fep = netdev_priv(ndev);
2128 
2129 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2130 		sizeof(info->driver));
2131 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2132 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2133 }
2134 
2135 static int fec_enet_get_regs_len(struct net_device *ndev)
2136 {
2137 	struct fec_enet_private *fep = netdev_priv(ndev);
2138 	struct resource *r;
2139 	int s = 0;
2140 
2141 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2142 	if (r)
2143 		s = resource_size(r);
2144 
2145 	return s;
2146 }
2147 
2148 /* List of registers that can be safety be read to dump them with ethtool */
2149 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2150 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2151 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2152 static __u32 fec_enet_register_version = 2;
2153 static u32 fec_enet_register_offset[] = {
2154 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2155 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2156 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2157 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2158 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2159 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2160 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2161 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2162 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2163 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2164 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2165 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2166 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2167 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2168 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2169 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2170 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2171 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2172 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2173 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2174 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2175 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2176 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2177 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2178 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2179 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2180 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2181 };
2182 #else
2183 static __u32 fec_enet_register_version = 1;
2184 static u32 fec_enet_register_offset[] = {
2185 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2186 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2187 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2188 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2189 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2190 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2191 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2192 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2193 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2194 };
2195 #endif
2196 
2197 static void fec_enet_get_regs(struct net_device *ndev,
2198 			      struct ethtool_regs *regs, void *regbuf)
2199 {
2200 	struct fec_enet_private *fep = netdev_priv(ndev);
2201 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2202 	struct device *dev = &fep->pdev->dev;
2203 	u32 *buf = (u32 *)regbuf;
2204 	u32 i, off;
2205 	int ret;
2206 
2207 	ret = pm_runtime_get_sync(dev);
2208 	if (ret < 0)
2209 		return;
2210 
2211 	regs->version = fec_enet_register_version;
2212 
2213 	memset(buf, 0, regs->len);
2214 
2215 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2216 		off = fec_enet_register_offset[i];
2217 
2218 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2219 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2220 			continue;
2221 
2222 		off >>= 2;
2223 		buf[off] = readl(&theregs[off]);
2224 	}
2225 
2226 	pm_runtime_mark_last_busy(dev);
2227 	pm_runtime_put_autosuspend(dev);
2228 }
2229 
2230 static int fec_enet_get_ts_info(struct net_device *ndev,
2231 				struct ethtool_ts_info *info)
2232 {
2233 	struct fec_enet_private *fep = netdev_priv(ndev);
2234 
2235 	if (fep->bufdesc_ex) {
2236 
2237 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2238 					SOF_TIMESTAMPING_RX_SOFTWARE |
2239 					SOF_TIMESTAMPING_SOFTWARE |
2240 					SOF_TIMESTAMPING_TX_HARDWARE |
2241 					SOF_TIMESTAMPING_RX_HARDWARE |
2242 					SOF_TIMESTAMPING_RAW_HARDWARE;
2243 		if (fep->ptp_clock)
2244 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2245 		else
2246 			info->phc_index = -1;
2247 
2248 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2249 				 (1 << HWTSTAMP_TX_ON);
2250 
2251 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2252 				   (1 << HWTSTAMP_FILTER_ALL);
2253 		return 0;
2254 	} else {
2255 		return ethtool_op_get_ts_info(ndev, info);
2256 	}
2257 }
2258 
2259 #if !defined(CONFIG_M5272)
2260 
2261 static void fec_enet_get_pauseparam(struct net_device *ndev,
2262 				    struct ethtool_pauseparam *pause)
2263 {
2264 	struct fec_enet_private *fep = netdev_priv(ndev);
2265 
2266 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2267 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2268 	pause->rx_pause = pause->tx_pause;
2269 }
2270 
2271 static int fec_enet_set_pauseparam(struct net_device *ndev,
2272 				   struct ethtool_pauseparam *pause)
2273 {
2274 	struct fec_enet_private *fep = netdev_priv(ndev);
2275 
2276 	if (!ndev->phydev)
2277 		return -ENODEV;
2278 
2279 	if (pause->tx_pause != pause->rx_pause) {
2280 		netdev_info(ndev,
2281 			"hardware only support enable/disable both tx and rx");
2282 		return -EINVAL;
2283 	}
2284 
2285 	fep->pause_flag = 0;
2286 
2287 	/* tx pause must be same as rx pause */
2288 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2289 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2290 
2291 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2292 			  pause->autoneg);
2293 
2294 	if (pause->autoneg) {
2295 		if (netif_running(ndev))
2296 			fec_stop(ndev);
2297 		phy_start_aneg(ndev->phydev);
2298 	}
2299 	if (netif_running(ndev)) {
2300 		napi_disable(&fep->napi);
2301 		netif_tx_lock_bh(ndev);
2302 		fec_restart(ndev);
2303 		netif_tx_wake_all_queues(ndev);
2304 		netif_tx_unlock_bh(ndev);
2305 		napi_enable(&fep->napi);
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 static const struct fec_stat {
2312 	char name[ETH_GSTRING_LEN];
2313 	u16 offset;
2314 } fec_stats[] = {
2315 	/* RMON TX */
2316 	{ "tx_dropped", RMON_T_DROP },
2317 	{ "tx_packets", RMON_T_PACKETS },
2318 	{ "tx_broadcast", RMON_T_BC_PKT },
2319 	{ "tx_multicast", RMON_T_MC_PKT },
2320 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2321 	{ "tx_undersize", RMON_T_UNDERSIZE },
2322 	{ "tx_oversize", RMON_T_OVERSIZE },
2323 	{ "tx_fragment", RMON_T_FRAG },
2324 	{ "tx_jabber", RMON_T_JAB },
2325 	{ "tx_collision", RMON_T_COL },
2326 	{ "tx_64byte", RMON_T_P64 },
2327 	{ "tx_65to127byte", RMON_T_P65TO127 },
2328 	{ "tx_128to255byte", RMON_T_P128TO255 },
2329 	{ "tx_256to511byte", RMON_T_P256TO511 },
2330 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2331 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2332 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2333 	{ "tx_octets", RMON_T_OCTETS },
2334 
2335 	/* IEEE TX */
2336 	{ "IEEE_tx_drop", IEEE_T_DROP },
2337 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2338 	{ "IEEE_tx_1col", IEEE_T_1COL },
2339 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2340 	{ "IEEE_tx_def", IEEE_T_DEF },
2341 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2342 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2343 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2344 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2345 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2346 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2347 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2348 
2349 	/* RMON RX */
2350 	{ "rx_packets", RMON_R_PACKETS },
2351 	{ "rx_broadcast", RMON_R_BC_PKT },
2352 	{ "rx_multicast", RMON_R_MC_PKT },
2353 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2354 	{ "rx_undersize", RMON_R_UNDERSIZE },
2355 	{ "rx_oversize", RMON_R_OVERSIZE },
2356 	{ "rx_fragment", RMON_R_FRAG },
2357 	{ "rx_jabber", RMON_R_JAB },
2358 	{ "rx_64byte", RMON_R_P64 },
2359 	{ "rx_65to127byte", RMON_R_P65TO127 },
2360 	{ "rx_128to255byte", RMON_R_P128TO255 },
2361 	{ "rx_256to511byte", RMON_R_P256TO511 },
2362 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2363 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2364 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2365 	{ "rx_octets", RMON_R_OCTETS },
2366 
2367 	/* IEEE RX */
2368 	{ "IEEE_rx_drop", IEEE_R_DROP },
2369 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2370 	{ "IEEE_rx_crc", IEEE_R_CRC },
2371 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2372 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2373 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2374 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2375 };
2376 
2377 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2378 
2379 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2380 {
2381 	struct fec_enet_private *fep = netdev_priv(dev);
2382 	int i;
2383 
2384 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2385 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2386 }
2387 
2388 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2389 				       struct ethtool_stats *stats, u64 *data)
2390 {
2391 	struct fec_enet_private *fep = netdev_priv(dev);
2392 
2393 	if (netif_running(dev))
2394 		fec_enet_update_ethtool_stats(dev);
2395 
2396 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2397 }
2398 
2399 static void fec_enet_get_strings(struct net_device *netdev,
2400 	u32 stringset, u8 *data)
2401 {
2402 	int i;
2403 	switch (stringset) {
2404 	case ETH_SS_STATS:
2405 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2406 			memcpy(data + i * ETH_GSTRING_LEN,
2407 				fec_stats[i].name, ETH_GSTRING_LEN);
2408 		break;
2409 	}
2410 }
2411 
2412 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2413 {
2414 	switch (sset) {
2415 	case ETH_SS_STATS:
2416 		return ARRAY_SIZE(fec_stats);
2417 	default:
2418 		return -EOPNOTSUPP;
2419 	}
2420 }
2421 
2422 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2423 {
2424 	struct fec_enet_private *fep = netdev_priv(dev);
2425 	int i;
2426 
2427 	/* Disable MIB statistics counters */
2428 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2429 
2430 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2431 		writel(0, fep->hwp + fec_stats[i].offset);
2432 
2433 	/* Don't disable MIB statistics counters */
2434 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2435 }
2436 
2437 #else	/* !defined(CONFIG_M5272) */
2438 #define FEC_STATS_SIZE	0
2439 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2440 {
2441 }
2442 
2443 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2444 {
2445 }
2446 #endif /* !defined(CONFIG_M5272) */
2447 
2448 /* ITR clock source is enet system clock (clk_ahb).
2449  * TCTT unit is cycle_ns * 64 cycle
2450  * So, the ICTT value = X us / (cycle_ns * 64)
2451  */
2452 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2453 {
2454 	struct fec_enet_private *fep = netdev_priv(ndev);
2455 
2456 	return us * (fep->itr_clk_rate / 64000) / 1000;
2457 }
2458 
2459 /* Set threshold for interrupt coalescing */
2460 static void fec_enet_itr_coal_set(struct net_device *ndev)
2461 {
2462 	struct fec_enet_private *fep = netdev_priv(ndev);
2463 	int rx_itr, tx_itr;
2464 
2465 	/* Must be greater than zero to avoid unpredictable behavior */
2466 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2467 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2468 		return;
2469 
2470 	/* Select enet system clock as Interrupt Coalescing
2471 	 * timer Clock Source
2472 	 */
2473 	rx_itr = FEC_ITR_CLK_SEL;
2474 	tx_itr = FEC_ITR_CLK_SEL;
2475 
2476 	/* set ICFT and ICTT */
2477 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2478 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2479 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2480 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2481 
2482 	rx_itr |= FEC_ITR_EN;
2483 	tx_itr |= FEC_ITR_EN;
2484 
2485 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2486 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2487 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2488 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2489 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2490 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2491 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2492 	}
2493 }
2494 
2495 static int
2496 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2497 {
2498 	struct fec_enet_private *fep = netdev_priv(ndev);
2499 
2500 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2501 		return -EOPNOTSUPP;
2502 
2503 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2504 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2505 
2506 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2507 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2508 
2509 	return 0;
2510 }
2511 
2512 static int
2513 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2514 {
2515 	struct fec_enet_private *fep = netdev_priv(ndev);
2516 	struct device *dev = &fep->pdev->dev;
2517 	unsigned int cycle;
2518 
2519 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2520 		return -EOPNOTSUPP;
2521 
2522 	if (ec->rx_max_coalesced_frames > 255) {
2523 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2524 		return -EINVAL;
2525 	}
2526 
2527 	if (ec->tx_max_coalesced_frames > 255) {
2528 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2529 		return -EINVAL;
2530 	}
2531 
2532 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2533 	if (cycle > 0xFFFF) {
2534 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2535 		return -EINVAL;
2536 	}
2537 
2538 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2539 	if (cycle > 0xFFFF) {
2540 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2541 		return -EINVAL;
2542 	}
2543 
2544 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2545 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2546 
2547 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2548 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2549 
2550 	fec_enet_itr_coal_set(ndev);
2551 
2552 	return 0;
2553 }
2554 
2555 static void fec_enet_itr_coal_init(struct net_device *ndev)
2556 {
2557 	struct ethtool_coalesce ec;
2558 
2559 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2560 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2561 
2562 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2563 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2564 
2565 	fec_enet_set_coalesce(ndev, &ec);
2566 }
2567 
2568 static int fec_enet_get_tunable(struct net_device *netdev,
2569 				const struct ethtool_tunable *tuna,
2570 				void *data)
2571 {
2572 	struct fec_enet_private *fep = netdev_priv(netdev);
2573 	int ret = 0;
2574 
2575 	switch (tuna->id) {
2576 	case ETHTOOL_RX_COPYBREAK:
2577 		*(u32 *)data = fep->rx_copybreak;
2578 		break;
2579 	default:
2580 		ret = -EINVAL;
2581 		break;
2582 	}
2583 
2584 	return ret;
2585 }
2586 
2587 static int fec_enet_set_tunable(struct net_device *netdev,
2588 				const struct ethtool_tunable *tuna,
2589 				const void *data)
2590 {
2591 	struct fec_enet_private *fep = netdev_priv(netdev);
2592 	int ret = 0;
2593 
2594 	switch (tuna->id) {
2595 	case ETHTOOL_RX_COPYBREAK:
2596 		fep->rx_copybreak = *(u32 *)data;
2597 		break;
2598 	default:
2599 		ret = -EINVAL;
2600 		break;
2601 	}
2602 
2603 	return ret;
2604 }
2605 
2606 static void
2607 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2608 {
2609 	struct fec_enet_private *fep = netdev_priv(ndev);
2610 
2611 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2612 		wol->supported = WAKE_MAGIC;
2613 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2614 	} else {
2615 		wol->supported = wol->wolopts = 0;
2616 	}
2617 }
2618 
2619 static int
2620 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2621 {
2622 	struct fec_enet_private *fep = netdev_priv(ndev);
2623 
2624 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2625 		return -EINVAL;
2626 
2627 	if (wol->wolopts & ~WAKE_MAGIC)
2628 		return -EINVAL;
2629 
2630 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2631 	if (device_may_wakeup(&ndev->dev)) {
2632 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2633 		if (fep->irq[0] > 0)
2634 			enable_irq_wake(fep->irq[0]);
2635 	} else {
2636 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2637 		if (fep->irq[0] > 0)
2638 			disable_irq_wake(fep->irq[0]);
2639 	}
2640 
2641 	return 0;
2642 }
2643 
2644 static const struct ethtool_ops fec_enet_ethtool_ops = {
2645 	.get_drvinfo		= fec_enet_get_drvinfo,
2646 	.get_regs_len		= fec_enet_get_regs_len,
2647 	.get_regs		= fec_enet_get_regs,
2648 	.nway_reset		= phy_ethtool_nway_reset,
2649 	.get_link		= ethtool_op_get_link,
2650 	.get_coalesce		= fec_enet_get_coalesce,
2651 	.set_coalesce		= fec_enet_set_coalesce,
2652 #ifndef CONFIG_M5272
2653 	.get_pauseparam		= fec_enet_get_pauseparam,
2654 	.set_pauseparam		= fec_enet_set_pauseparam,
2655 	.get_strings		= fec_enet_get_strings,
2656 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2657 	.get_sset_count		= fec_enet_get_sset_count,
2658 #endif
2659 	.get_ts_info		= fec_enet_get_ts_info,
2660 	.get_tunable		= fec_enet_get_tunable,
2661 	.set_tunable		= fec_enet_set_tunable,
2662 	.get_wol		= fec_enet_get_wol,
2663 	.set_wol		= fec_enet_set_wol,
2664 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2665 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2666 };
2667 
2668 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2669 {
2670 	struct fec_enet_private *fep = netdev_priv(ndev);
2671 	struct phy_device *phydev = ndev->phydev;
2672 
2673 	if (!netif_running(ndev))
2674 		return -EINVAL;
2675 
2676 	if (!phydev)
2677 		return -ENODEV;
2678 
2679 	if (fep->bufdesc_ex) {
2680 		if (cmd == SIOCSHWTSTAMP)
2681 			return fec_ptp_set(ndev, rq);
2682 		if (cmd == SIOCGHWTSTAMP)
2683 			return fec_ptp_get(ndev, rq);
2684 	}
2685 
2686 	return phy_mii_ioctl(phydev, rq, cmd);
2687 }
2688 
2689 static void fec_enet_free_buffers(struct net_device *ndev)
2690 {
2691 	struct fec_enet_private *fep = netdev_priv(ndev);
2692 	unsigned int i;
2693 	struct sk_buff *skb;
2694 	struct bufdesc	*bdp;
2695 	struct fec_enet_priv_tx_q *txq;
2696 	struct fec_enet_priv_rx_q *rxq;
2697 	unsigned int q;
2698 
2699 	for (q = 0; q < fep->num_rx_queues; q++) {
2700 		rxq = fep->rx_queue[q];
2701 		bdp = rxq->bd.base;
2702 		for (i = 0; i < rxq->bd.ring_size; i++) {
2703 			skb = rxq->rx_skbuff[i];
2704 			rxq->rx_skbuff[i] = NULL;
2705 			if (skb) {
2706 				dma_unmap_single(&fep->pdev->dev,
2707 						 fec32_to_cpu(bdp->cbd_bufaddr),
2708 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2709 						 DMA_FROM_DEVICE);
2710 				dev_kfree_skb(skb);
2711 			}
2712 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2713 		}
2714 	}
2715 
2716 	for (q = 0; q < fep->num_tx_queues; q++) {
2717 		txq = fep->tx_queue[q];
2718 		for (i = 0; i < txq->bd.ring_size; i++) {
2719 			kfree(txq->tx_bounce[i]);
2720 			txq->tx_bounce[i] = NULL;
2721 			skb = txq->tx_skbuff[i];
2722 			txq->tx_skbuff[i] = NULL;
2723 			dev_kfree_skb(skb);
2724 		}
2725 	}
2726 }
2727 
2728 static void fec_enet_free_queue(struct net_device *ndev)
2729 {
2730 	struct fec_enet_private *fep = netdev_priv(ndev);
2731 	int i;
2732 	struct fec_enet_priv_tx_q *txq;
2733 
2734 	for (i = 0; i < fep->num_tx_queues; i++)
2735 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2736 			txq = fep->tx_queue[i];
2737 			dma_free_coherent(&fep->pdev->dev,
2738 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2739 					  txq->tso_hdrs,
2740 					  txq->tso_hdrs_dma);
2741 		}
2742 
2743 	for (i = 0; i < fep->num_rx_queues; i++)
2744 		kfree(fep->rx_queue[i]);
2745 	for (i = 0; i < fep->num_tx_queues; i++)
2746 		kfree(fep->tx_queue[i]);
2747 }
2748 
2749 static int fec_enet_alloc_queue(struct net_device *ndev)
2750 {
2751 	struct fec_enet_private *fep = netdev_priv(ndev);
2752 	int i;
2753 	int ret = 0;
2754 	struct fec_enet_priv_tx_q *txq;
2755 
2756 	for (i = 0; i < fep->num_tx_queues; i++) {
2757 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2758 		if (!txq) {
2759 			ret = -ENOMEM;
2760 			goto alloc_failed;
2761 		}
2762 
2763 		fep->tx_queue[i] = txq;
2764 		txq->bd.ring_size = TX_RING_SIZE;
2765 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2766 
2767 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2768 		txq->tx_wake_threshold =
2769 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2770 
2771 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2772 					txq->bd.ring_size * TSO_HEADER_SIZE,
2773 					&txq->tso_hdrs_dma,
2774 					GFP_KERNEL);
2775 		if (!txq->tso_hdrs) {
2776 			ret = -ENOMEM;
2777 			goto alloc_failed;
2778 		}
2779 	}
2780 
2781 	for (i = 0; i < fep->num_rx_queues; i++) {
2782 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2783 					   GFP_KERNEL);
2784 		if (!fep->rx_queue[i]) {
2785 			ret = -ENOMEM;
2786 			goto alloc_failed;
2787 		}
2788 
2789 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2790 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2791 	}
2792 	return ret;
2793 
2794 alloc_failed:
2795 	fec_enet_free_queue(ndev);
2796 	return ret;
2797 }
2798 
2799 static int
2800 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2801 {
2802 	struct fec_enet_private *fep = netdev_priv(ndev);
2803 	unsigned int i;
2804 	struct sk_buff *skb;
2805 	struct bufdesc	*bdp;
2806 	struct fec_enet_priv_rx_q *rxq;
2807 
2808 	rxq = fep->rx_queue[queue];
2809 	bdp = rxq->bd.base;
2810 	for (i = 0; i < rxq->bd.ring_size; i++) {
2811 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2812 		if (!skb)
2813 			goto err_alloc;
2814 
2815 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2816 			dev_kfree_skb(skb);
2817 			goto err_alloc;
2818 		}
2819 
2820 		rxq->rx_skbuff[i] = skb;
2821 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2822 
2823 		if (fep->bufdesc_ex) {
2824 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2825 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2826 		}
2827 
2828 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2829 	}
2830 
2831 	/* Set the last buffer to wrap. */
2832 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2833 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2834 	return 0;
2835 
2836  err_alloc:
2837 	fec_enet_free_buffers(ndev);
2838 	return -ENOMEM;
2839 }
2840 
2841 static int
2842 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2843 {
2844 	struct fec_enet_private *fep = netdev_priv(ndev);
2845 	unsigned int i;
2846 	struct bufdesc  *bdp;
2847 	struct fec_enet_priv_tx_q *txq;
2848 
2849 	txq = fep->tx_queue[queue];
2850 	bdp = txq->bd.base;
2851 	for (i = 0; i < txq->bd.ring_size; i++) {
2852 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2853 		if (!txq->tx_bounce[i])
2854 			goto err_alloc;
2855 
2856 		bdp->cbd_sc = cpu_to_fec16(0);
2857 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2858 
2859 		if (fep->bufdesc_ex) {
2860 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2861 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2862 		}
2863 
2864 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2865 	}
2866 
2867 	/* Set the last buffer to wrap. */
2868 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2869 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2870 
2871 	return 0;
2872 
2873  err_alloc:
2874 	fec_enet_free_buffers(ndev);
2875 	return -ENOMEM;
2876 }
2877 
2878 static int fec_enet_alloc_buffers(struct net_device *ndev)
2879 {
2880 	struct fec_enet_private *fep = netdev_priv(ndev);
2881 	unsigned int i;
2882 
2883 	for (i = 0; i < fep->num_rx_queues; i++)
2884 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2885 			return -ENOMEM;
2886 
2887 	for (i = 0; i < fep->num_tx_queues; i++)
2888 		if (fec_enet_alloc_txq_buffers(ndev, i))
2889 			return -ENOMEM;
2890 	return 0;
2891 }
2892 
2893 static int
2894 fec_enet_open(struct net_device *ndev)
2895 {
2896 	struct fec_enet_private *fep = netdev_priv(ndev);
2897 	int ret;
2898 	bool reset_again;
2899 
2900 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2901 	if (ret < 0)
2902 		return ret;
2903 
2904 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2905 	ret = fec_enet_clk_enable(ndev, true);
2906 	if (ret)
2907 		goto clk_enable;
2908 
2909 	/* During the first fec_enet_open call the PHY isn't probed at this
2910 	 * point. Therefore the phy_reset_after_clk_enable() call within
2911 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2912 	 * sure the PHY is working correctly we check if we need to reset again
2913 	 * later when the PHY is probed
2914 	 */
2915 	if (ndev->phydev && ndev->phydev->drv)
2916 		reset_again = false;
2917 	else
2918 		reset_again = true;
2919 
2920 	/* I should reset the ring buffers here, but I don't yet know
2921 	 * a simple way to do that.
2922 	 */
2923 
2924 	ret = fec_enet_alloc_buffers(ndev);
2925 	if (ret)
2926 		goto err_enet_alloc;
2927 
2928 	/* Init MAC prior to mii bus probe */
2929 	fec_restart(ndev);
2930 
2931 	/* Probe and connect to PHY when open the interface */
2932 	ret = fec_enet_mii_probe(ndev);
2933 	if (ret)
2934 		goto err_enet_mii_probe;
2935 
2936 	/* Call phy_reset_after_clk_enable() again if it failed during
2937 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2938 	 */
2939 	if (reset_again)
2940 		phy_reset_after_clk_enable(ndev->phydev);
2941 
2942 	if (fep->quirks & FEC_QUIRK_ERR006687)
2943 		imx6q_cpuidle_fec_irqs_used();
2944 
2945 	napi_enable(&fep->napi);
2946 	phy_start(ndev->phydev);
2947 	netif_tx_start_all_queues(ndev);
2948 
2949 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2950 				 FEC_WOL_FLAG_ENABLE);
2951 
2952 	return 0;
2953 
2954 err_enet_mii_probe:
2955 	fec_enet_free_buffers(ndev);
2956 err_enet_alloc:
2957 	fec_enet_clk_enable(ndev, false);
2958 clk_enable:
2959 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2960 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2961 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2962 	return ret;
2963 }
2964 
2965 static int
2966 fec_enet_close(struct net_device *ndev)
2967 {
2968 	struct fec_enet_private *fep = netdev_priv(ndev);
2969 
2970 	phy_stop(ndev->phydev);
2971 
2972 	if (netif_device_present(ndev)) {
2973 		napi_disable(&fep->napi);
2974 		netif_tx_disable(ndev);
2975 		fec_stop(ndev);
2976 	}
2977 
2978 	phy_disconnect(ndev->phydev);
2979 
2980 	if (fep->quirks & FEC_QUIRK_ERR006687)
2981 		imx6q_cpuidle_fec_irqs_unused();
2982 
2983 	fec_enet_update_ethtool_stats(ndev);
2984 
2985 	fec_enet_clk_enable(ndev, false);
2986 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2987 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2988 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2989 
2990 	fec_enet_free_buffers(ndev);
2991 
2992 	return 0;
2993 }
2994 
2995 /* Set or clear the multicast filter for this adaptor.
2996  * Skeleton taken from sunlance driver.
2997  * The CPM Ethernet implementation allows Multicast as well as individual
2998  * MAC address filtering.  Some of the drivers check to make sure it is
2999  * a group multicast address, and discard those that are not.  I guess I
3000  * will do the same for now, but just remove the test if you want
3001  * individual filtering as well (do the upper net layers want or support
3002  * this kind of feature?).
3003  */
3004 
3005 #define FEC_HASH_BITS	6		/* #bits in hash */
3006 
3007 static void set_multicast_list(struct net_device *ndev)
3008 {
3009 	struct fec_enet_private *fep = netdev_priv(ndev);
3010 	struct netdev_hw_addr *ha;
3011 	unsigned int crc, tmp;
3012 	unsigned char hash;
3013 	unsigned int hash_high = 0, hash_low = 0;
3014 
3015 	if (ndev->flags & IFF_PROMISC) {
3016 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3017 		tmp |= 0x8;
3018 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3019 		return;
3020 	}
3021 
3022 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3023 	tmp &= ~0x8;
3024 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3025 
3026 	if (ndev->flags & IFF_ALLMULTI) {
3027 		/* Catch all multicast addresses, so set the
3028 		 * filter to all 1's
3029 		 */
3030 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3031 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3032 
3033 		return;
3034 	}
3035 
3036 	/* Add the addresses in hash register */
3037 	netdev_for_each_mc_addr(ha, ndev) {
3038 		/* calculate crc32 value of mac address */
3039 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3040 
3041 		/* only upper 6 bits (FEC_HASH_BITS) are used
3042 		 * which point to specific bit in the hash registers
3043 		 */
3044 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3045 
3046 		if (hash > 31)
3047 			hash_high |= 1 << (hash - 32);
3048 		else
3049 			hash_low |= 1 << hash;
3050 	}
3051 
3052 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3053 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3054 }
3055 
3056 /* Set a MAC change in hardware. */
3057 static int
3058 fec_set_mac_address(struct net_device *ndev, void *p)
3059 {
3060 	struct fec_enet_private *fep = netdev_priv(ndev);
3061 	struct sockaddr *addr = p;
3062 
3063 	if (addr) {
3064 		if (!is_valid_ether_addr(addr->sa_data))
3065 			return -EADDRNOTAVAIL;
3066 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3067 	}
3068 
3069 	/* Add netif status check here to avoid system hang in below case:
3070 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3071 	 * After ethx down, fec all clocks are gated off and then register
3072 	 * access causes system hang.
3073 	 */
3074 	if (!netif_running(ndev))
3075 		return 0;
3076 
3077 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3078 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3079 		fep->hwp + FEC_ADDR_LOW);
3080 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3081 		fep->hwp + FEC_ADDR_HIGH);
3082 	return 0;
3083 }
3084 
3085 #ifdef CONFIG_NET_POLL_CONTROLLER
3086 /**
3087  * fec_poll_controller - FEC Poll controller function
3088  * @dev: The FEC network adapter
3089  *
3090  * Polled functionality used by netconsole and others in non interrupt mode
3091  *
3092  */
3093 static void fec_poll_controller(struct net_device *dev)
3094 {
3095 	int i;
3096 	struct fec_enet_private *fep = netdev_priv(dev);
3097 
3098 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3099 		if (fep->irq[i] > 0) {
3100 			disable_irq(fep->irq[i]);
3101 			fec_enet_interrupt(fep->irq[i], dev);
3102 			enable_irq(fep->irq[i]);
3103 		}
3104 	}
3105 }
3106 #endif
3107 
3108 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3109 	netdev_features_t features)
3110 {
3111 	struct fec_enet_private *fep = netdev_priv(netdev);
3112 	netdev_features_t changed = features ^ netdev->features;
3113 
3114 	netdev->features = features;
3115 
3116 	/* Receive checksum has been changed */
3117 	if (changed & NETIF_F_RXCSUM) {
3118 		if (features & NETIF_F_RXCSUM)
3119 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3120 		else
3121 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3122 	}
3123 }
3124 
3125 static int fec_set_features(struct net_device *netdev,
3126 	netdev_features_t features)
3127 {
3128 	struct fec_enet_private *fep = netdev_priv(netdev);
3129 	netdev_features_t changed = features ^ netdev->features;
3130 
3131 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3132 		napi_disable(&fep->napi);
3133 		netif_tx_lock_bh(netdev);
3134 		fec_stop(netdev);
3135 		fec_enet_set_netdev_features(netdev, features);
3136 		fec_restart(netdev);
3137 		netif_tx_wake_all_queues(netdev);
3138 		netif_tx_unlock_bh(netdev);
3139 		napi_enable(&fep->napi);
3140 	} else {
3141 		fec_enet_set_netdev_features(netdev, features);
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static const struct net_device_ops fec_netdev_ops = {
3148 	.ndo_open		= fec_enet_open,
3149 	.ndo_stop		= fec_enet_close,
3150 	.ndo_start_xmit		= fec_enet_start_xmit,
3151 	.ndo_set_rx_mode	= set_multicast_list,
3152 	.ndo_validate_addr	= eth_validate_addr,
3153 	.ndo_tx_timeout		= fec_timeout,
3154 	.ndo_set_mac_address	= fec_set_mac_address,
3155 	.ndo_do_ioctl		= fec_enet_ioctl,
3156 #ifdef CONFIG_NET_POLL_CONTROLLER
3157 	.ndo_poll_controller	= fec_poll_controller,
3158 #endif
3159 	.ndo_set_features	= fec_set_features,
3160 };
3161 
3162 static const unsigned short offset_des_active_rxq[] = {
3163 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3164 };
3165 
3166 static const unsigned short offset_des_active_txq[] = {
3167 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3168 };
3169 
3170  /*
3171   * XXX:  We need to clean up on failure exits here.
3172   *
3173   */
3174 static int fec_enet_init(struct net_device *ndev)
3175 {
3176 	struct fec_enet_private *fep = netdev_priv(ndev);
3177 	struct bufdesc *cbd_base;
3178 	dma_addr_t bd_dma;
3179 	int bd_size;
3180 	unsigned int i;
3181 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3182 			sizeof(struct bufdesc);
3183 	unsigned dsize_log2 = __fls(dsize);
3184 	int ret;
3185 
3186 	WARN_ON(dsize != (1 << dsize_log2));
3187 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3188 	fep->rx_align = 0xf;
3189 	fep->tx_align = 0xf;
3190 #else
3191 	fep->rx_align = 0x3;
3192 	fep->tx_align = 0x3;
3193 #endif
3194 
3195 	/* Check mask of the streaming and coherent API */
3196 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3197 	if (ret < 0) {
3198 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3199 		return ret;
3200 	}
3201 
3202 	fec_enet_alloc_queue(ndev);
3203 
3204 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3205 
3206 	/* Allocate memory for buffer descriptors. */
3207 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3208 				       GFP_KERNEL);
3209 	if (!cbd_base) {
3210 		return -ENOMEM;
3211 	}
3212 
3213 	/* Get the Ethernet address */
3214 	fec_get_mac(ndev);
3215 	/* make sure MAC we just acquired is programmed into the hw */
3216 	fec_set_mac_address(ndev, NULL);
3217 
3218 	/* Set receive and transmit descriptor base. */
3219 	for (i = 0; i < fep->num_rx_queues; i++) {
3220 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3221 		unsigned size = dsize * rxq->bd.ring_size;
3222 
3223 		rxq->bd.qid = i;
3224 		rxq->bd.base = cbd_base;
3225 		rxq->bd.cur = cbd_base;
3226 		rxq->bd.dma = bd_dma;
3227 		rxq->bd.dsize = dsize;
3228 		rxq->bd.dsize_log2 = dsize_log2;
3229 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3230 		bd_dma += size;
3231 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3232 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3233 	}
3234 
3235 	for (i = 0; i < fep->num_tx_queues; i++) {
3236 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3237 		unsigned size = dsize * txq->bd.ring_size;
3238 
3239 		txq->bd.qid = i;
3240 		txq->bd.base = cbd_base;
3241 		txq->bd.cur = cbd_base;
3242 		txq->bd.dma = bd_dma;
3243 		txq->bd.dsize = dsize;
3244 		txq->bd.dsize_log2 = dsize_log2;
3245 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3246 		bd_dma += size;
3247 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3248 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3249 	}
3250 
3251 
3252 	/* The FEC Ethernet specific entries in the device structure */
3253 	ndev->watchdog_timeo = TX_TIMEOUT;
3254 	ndev->netdev_ops = &fec_netdev_ops;
3255 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3256 
3257 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3258 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3259 
3260 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3261 		/* enable hw VLAN support */
3262 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3263 
3264 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3265 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3266 
3267 		/* enable hw accelerator */
3268 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3269 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3270 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3271 	}
3272 
3273 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3274 		fep->tx_align = 0;
3275 		fep->rx_align = 0x3f;
3276 	}
3277 
3278 	ndev->hw_features = ndev->features;
3279 
3280 	fec_restart(ndev);
3281 
3282 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3283 		fec_enet_clear_ethtool_stats(ndev);
3284 	else
3285 		fec_enet_update_ethtool_stats(ndev);
3286 
3287 	return 0;
3288 }
3289 
3290 #ifdef CONFIG_OF
3291 static int fec_reset_phy(struct platform_device *pdev)
3292 {
3293 	int err, phy_reset;
3294 	bool active_high = false;
3295 	int msec = 1, phy_post_delay = 0;
3296 	struct device_node *np = pdev->dev.of_node;
3297 
3298 	if (!np)
3299 		return 0;
3300 
3301 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3302 	/* A sane reset duration should not be longer than 1s */
3303 	if (!err && msec > 1000)
3304 		msec = 1;
3305 
3306 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3307 	if (phy_reset == -EPROBE_DEFER)
3308 		return phy_reset;
3309 	else if (!gpio_is_valid(phy_reset))
3310 		return 0;
3311 
3312 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3313 	/* valid reset duration should be less than 1s */
3314 	if (!err && phy_post_delay > 1000)
3315 		return -EINVAL;
3316 
3317 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3318 
3319 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3320 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3321 			"phy-reset");
3322 	if (err) {
3323 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3324 		return err;
3325 	}
3326 
3327 	if (msec > 20)
3328 		msleep(msec);
3329 	else
3330 		usleep_range(msec * 1000, msec * 1000 + 1000);
3331 
3332 	gpio_set_value_cansleep(phy_reset, !active_high);
3333 
3334 	if (!phy_post_delay)
3335 		return 0;
3336 
3337 	if (phy_post_delay > 20)
3338 		msleep(phy_post_delay);
3339 	else
3340 		usleep_range(phy_post_delay * 1000,
3341 			     phy_post_delay * 1000 + 1000);
3342 
3343 	return 0;
3344 }
3345 #else /* CONFIG_OF */
3346 static int fec_reset_phy(struct platform_device *pdev)
3347 {
3348 	/*
3349 	 * In case of platform probe, the reset has been done
3350 	 * by machine code.
3351 	 */
3352 	return 0;
3353 }
3354 #endif /* CONFIG_OF */
3355 
3356 static void
3357 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3358 {
3359 	struct device_node *np = pdev->dev.of_node;
3360 
3361 	*num_tx = *num_rx = 1;
3362 
3363 	if (!np || !of_device_is_available(np))
3364 		return;
3365 
3366 	/* parse the num of tx and rx queues */
3367 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3368 
3369 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3370 
3371 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3372 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3373 			 *num_tx);
3374 		*num_tx = 1;
3375 		return;
3376 	}
3377 
3378 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3379 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3380 			 *num_rx);
3381 		*num_rx = 1;
3382 		return;
3383 	}
3384 
3385 }
3386 
3387 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3388 {
3389 	int irq_cnt = platform_irq_count(pdev);
3390 
3391 	if (irq_cnt > FEC_IRQ_NUM)
3392 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3393 	else if (irq_cnt == 2)
3394 		irq_cnt = 1;	/* last for pps */
3395 	else if (irq_cnt <= 0)
3396 		irq_cnt = 1;	/* At least 1 irq is needed */
3397 	return irq_cnt;
3398 }
3399 
3400 static int
3401 fec_probe(struct platform_device *pdev)
3402 {
3403 	struct fec_enet_private *fep;
3404 	struct fec_platform_data *pdata;
3405 	phy_interface_t interface;
3406 	struct net_device *ndev;
3407 	int i, irq, ret = 0;
3408 	const struct of_device_id *of_id;
3409 	static int dev_id;
3410 	struct device_node *np = pdev->dev.of_node, *phy_node;
3411 	int num_tx_qs;
3412 	int num_rx_qs;
3413 	char irq_name[8];
3414 	int irq_cnt;
3415 
3416 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3417 
3418 	/* Init network device */
3419 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3420 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3421 	if (!ndev)
3422 		return -ENOMEM;
3423 
3424 	SET_NETDEV_DEV(ndev, &pdev->dev);
3425 
3426 	/* setup board info structure */
3427 	fep = netdev_priv(ndev);
3428 
3429 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3430 	if (of_id)
3431 		pdev->id_entry = of_id->data;
3432 	fep->quirks = pdev->id_entry->driver_data;
3433 
3434 	fep->netdev = ndev;
3435 	fep->num_rx_queues = num_rx_qs;
3436 	fep->num_tx_queues = num_tx_qs;
3437 
3438 #if !defined(CONFIG_M5272)
3439 	/* default enable pause frame auto negotiation */
3440 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3441 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3442 #endif
3443 
3444 	/* Select default pin state */
3445 	pinctrl_pm_select_default_state(&pdev->dev);
3446 
3447 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3448 	if (IS_ERR(fep->hwp)) {
3449 		ret = PTR_ERR(fep->hwp);
3450 		goto failed_ioremap;
3451 	}
3452 
3453 	fep->pdev = pdev;
3454 	fep->dev_id = dev_id++;
3455 
3456 	platform_set_drvdata(pdev, ndev);
3457 
3458 	if ((of_machine_is_compatible("fsl,imx6q") ||
3459 	     of_machine_is_compatible("fsl,imx6dl")) &&
3460 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3461 		fep->quirks |= FEC_QUIRK_ERR006687;
3462 
3463 	if (of_get_property(np, "fsl,magic-packet", NULL))
3464 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3465 
3466 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3467 	if (!phy_node && of_phy_is_fixed_link(np)) {
3468 		ret = of_phy_register_fixed_link(np);
3469 		if (ret < 0) {
3470 			dev_err(&pdev->dev,
3471 				"broken fixed-link specification\n");
3472 			goto failed_phy;
3473 		}
3474 		phy_node = of_node_get(np);
3475 	}
3476 	fep->phy_node = phy_node;
3477 
3478 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3479 	if (ret) {
3480 		pdata = dev_get_platdata(&pdev->dev);
3481 		if (pdata)
3482 			fep->phy_interface = pdata->phy;
3483 		else
3484 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3485 	} else {
3486 		fep->phy_interface = interface;
3487 	}
3488 
3489 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3490 	if (IS_ERR(fep->clk_ipg)) {
3491 		ret = PTR_ERR(fep->clk_ipg);
3492 		goto failed_clk;
3493 	}
3494 
3495 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3496 	if (IS_ERR(fep->clk_ahb)) {
3497 		ret = PTR_ERR(fep->clk_ahb);
3498 		goto failed_clk;
3499 	}
3500 
3501 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3502 
3503 	/* enet_out is optional, depends on board */
3504 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3505 	if (IS_ERR(fep->clk_enet_out))
3506 		fep->clk_enet_out = NULL;
3507 
3508 	fep->ptp_clk_on = false;
3509 	mutex_init(&fep->ptp_clk_mutex);
3510 
3511 	/* clk_ref is optional, depends on board */
3512 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3513 	if (IS_ERR(fep->clk_ref))
3514 		fep->clk_ref = NULL;
3515 
3516 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3517 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3518 	if (IS_ERR(fep->clk_ptp)) {
3519 		fep->clk_ptp = NULL;
3520 		fep->bufdesc_ex = false;
3521 	}
3522 
3523 	ret = fec_enet_clk_enable(ndev, true);
3524 	if (ret)
3525 		goto failed_clk;
3526 
3527 	ret = clk_prepare_enable(fep->clk_ipg);
3528 	if (ret)
3529 		goto failed_clk_ipg;
3530 	ret = clk_prepare_enable(fep->clk_ahb);
3531 	if (ret)
3532 		goto failed_clk_ahb;
3533 
3534 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3535 	if (!IS_ERR(fep->reg_phy)) {
3536 		ret = regulator_enable(fep->reg_phy);
3537 		if (ret) {
3538 			dev_err(&pdev->dev,
3539 				"Failed to enable phy regulator: %d\n", ret);
3540 			goto failed_regulator;
3541 		}
3542 	} else {
3543 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3544 			ret = -EPROBE_DEFER;
3545 			goto failed_regulator;
3546 		}
3547 		fep->reg_phy = NULL;
3548 	}
3549 
3550 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3551 	pm_runtime_use_autosuspend(&pdev->dev);
3552 	pm_runtime_get_noresume(&pdev->dev);
3553 	pm_runtime_set_active(&pdev->dev);
3554 	pm_runtime_enable(&pdev->dev);
3555 
3556 	ret = fec_reset_phy(pdev);
3557 	if (ret)
3558 		goto failed_reset;
3559 
3560 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3561 	if (fep->bufdesc_ex)
3562 		fec_ptp_init(pdev, irq_cnt);
3563 
3564 	ret = fec_enet_init(ndev);
3565 	if (ret)
3566 		goto failed_init;
3567 
3568 	for (i = 0; i < irq_cnt; i++) {
3569 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3570 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3571 		if (irq < 0)
3572 			irq = platform_get_irq(pdev, i);
3573 		if (irq < 0) {
3574 			ret = irq;
3575 			goto failed_irq;
3576 		}
3577 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3578 				       0, pdev->name, ndev);
3579 		if (ret)
3580 			goto failed_irq;
3581 
3582 		fep->irq[i] = irq;
3583 	}
3584 
3585 	init_completion(&fep->mdio_done);
3586 	ret = fec_enet_mii_init(pdev);
3587 	if (ret)
3588 		goto failed_mii_init;
3589 
3590 	/* Carrier starts down, phylib will bring it up */
3591 	netif_carrier_off(ndev);
3592 	fec_enet_clk_enable(ndev, false);
3593 	pinctrl_pm_select_sleep_state(&pdev->dev);
3594 
3595 	ret = register_netdev(ndev);
3596 	if (ret)
3597 		goto failed_register;
3598 
3599 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3600 			   FEC_WOL_HAS_MAGIC_PACKET);
3601 
3602 	if (fep->bufdesc_ex && fep->ptp_clock)
3603 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3604 
3605 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3606 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3607 
3608 	pm_runtime_mark_last_busy(&pdev->dev);
3609 	pm_runtime_put_autosuspend(&pdev->dev);
3610 
3611 	return 0;
3612 
3613 failed_register:
3614 	fec_enet_mii_remove(fep);
3615 failed_mii_init:
3616 failed_irq:
3617 failed_init:
3618 	fec_ptp_stop(pdev);
3619 	if (fep->reg_phy)
3620 		regulator_disable(fep->reg_phy);
3621 failed_reset:
3622 	pm_runtime_put_noidle(&pdev->dev);
3623 	pm_runtime_disable(&pdev->dev);
3624 failed_regulator:
3625 	clk_disable_unprepare(fep->clk_ahb);
3626 failed_clk_ahb:
3627 	clk_disable_unprepare(fep->clk_ipg);
3628 failed_clk_ipg:
3629 	fec_enet_clk_enable(ndev, false);
3630 failed_clk:
3631 	if (of_phy_is_fixed_link(np))
3632 		of_phy_deregister_fixed_link(np);
3633 	of_node_put(phy_node);
3634 failed_phy:
3635 	dev_id--;
3636 failed_ioremap:
3637 	free_netdev(ndev);
3638 
3639 	return ret;
3640 }
3641 
3642 static int
3643 fec_drv_remove(struct platform_device *pdev)
3644 {
3645 	struct net_device *ndev = platform_get_drvdata(pdev);
3646 	struct fec_enet_private *fep = netdev_priv(ndev);
3647 	struct device_node *np = pdev->dev.of_node;
3648 	int ret;
3649 
3650 	ret = pm_runtime_get_sync(&pdev->dev);
3651 	if (ret < 0)
3652 		return ret;
3653 
3654 	cancel_work_sync(&fep->tx_timeout_work);
3655 	fec_ptp_stop(pdev);
3656 	unregister_netdev(ndev);
3657 	fec_enet_mii_remove(fep);
3658 	if (fep->reg_phy)
3659 		regulator_disable(fep->reg_phy);
3660 
3661 	if (of_phy_is_fixed_link(np))
3662 		of_phy_deregister_fixed_link(np);
3663 	of_node_put(fep->phy_node);
3664 	free_netdev(ndev);
3665 
3666 	clk_disable_unprepare(fep->clk_ahb);
3667 	clk_disable_unprepare(fep->clk_ipg);
3668 	pm_runtime_put_noidle(&pdev->dev);
3669 	pm_runtime_disable(&pdev->dev);
3670 
3671 	return 0;
3672 }
3673 
3674 static int __maybe_unused fec_suspend(struct device *dev)
3675 {
3676 	struct net_device *ndev = dev_get_drvdata(dev);
3677 	struct fec_enet_private *fep = netdev_priv(ndev);
3678 
3679 	rtnl_lock();
3680 	if (netif_running(ndev)) {
3681 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3682 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3683 		phy_stop(ndev->phydev);
3684 		napi_disable(&fep->napi);
3685 		netif_tx_lock_bh(ndev);
3686 		netif_device_detach(ndev);
3687 		netif_tx_unlock_bh(ndev);
3688 		fec_stop(ndev);
3689 		fec_enet_clk_enable(ndev, false);
3690 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3691 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3692 	}
3693 	rtnl_unlock();
3694 
3695 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3696 		regulator_disable(fep->reg_phy);
3697 
3698 	/* SOC supply clock to phy, when clock is disabled, phy link down
3699 	 * SOC control phy regulator, when regulator is disabled, phy link down
3700 	 */
3701 	if (fep->clk_enet_out || fep->reg_phy)
3702 		fep->link = 0;
3703 
3704 	return 0;
3705 }
3706 
3707 static int __maybe_unused fec_resume(struct device *dev)
3708 {
3709 	struct net_device *ndev = dev_get_drvdata(dev);
3710 	struct fec_enet_private *fep = netdev_priv(ndev);
3711 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3712 	int ret;
3713 	int val;
3714 
3715 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3716 		ret = regulator_enable(fep->reg_phy);
3717 		if (ret)
3718 			return ret;
3719 	}
3720 
3721 	rtnl_lock();
3722 	if (netif_running(ndev)) {
3723 		ret = fec_enet_clk_enable(ndev, true);
3724 		if (ret) {
3725 			rtnl_unlock();
3726 			goto failed_clk;
3727 		}
3728 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3729 			if (pdata && pdata->sleep_mode_enable)
3730 				pdata->sleep_mode_enable(false);
3731 			val = readl(fep->hwp + FEC_ECNTRL);
3732 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3733 			writel(val, fep->hwp + FEC_ECNTRL);
3734 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3735 		} else {
3736 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3737 		}
3738 		fec_restart(ndev);
3739 		netif_tx_lock_bh(ndev);
3740 		netif_device_attach(ndev);
3741 		netif_tx_unlock_bh(ndev);
3742 		napi_enable(&fep->napi);
3743 		phy_start(ndev->phydev);
3744 	}
3745 	rtnl_unlock();
3746 
3747 	return 0;
3748 
3749 failed_clk:
3750 	if (fep->reg_phy)
3751 		regulator_disable(fep->reg_phy);
3752 	return ret;
3753 }
3754 
3755 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3756 {
3757 	struct net_device *ndev = dev_get_drvdata(dev);
3758 	struct fec_enet_private *fep = netdev_priv(ndev);
3759 
3760 	clk_disable_unprepare(fep->clk_ahb);
3761 	clk_disable_unprepare(fep->clk_ipg);
3762 
3763 	return 0;
3764 }
3765 
3766 static int __maybe_unused fec_runtime_resume(struct device *dev)
3767 {
3768 	struct net_device *ndev = dev_get_drvdata(dev);
3769 	struct fec_enet_private *fep = netdev_priv(ndev);
3770 	int ret;
3771 
3772 	ret = clk_prepare_enable(fep->clk_ahb);
3773 	if (ret)
3774 		return ret;
3775 	ret = clk_prepare_enable(fep->clk_ipg);
3776 	if (ret)
3777 		goto failed_clk_ipg;
3778 
3779 	return 0;
3780 
3781 failed_clk_ipg:
3782 	clk_disable_unprepare(fep->clk_ahb);
3783 	return ret;
3784 }
3785 
3786 static const struct dev_pm_ops fec_pm_ops = {
3787 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3788 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3789 };
3790 
3791 static struct platform_driver fec_driver = {
3792 	.driver	= {
3793 		.name	= DRIVER_NAME,
3794 		.pm	= &fec_pm_ops,
3795 		.of_match_table = fec_dt_ids,
3796 	},
3797 	.id_table = fec_devtype,
3798 	.probe	= fec_probe,
3799 	.remove	= fec_drv_remove,
3800 };
3801 
3802 module_platform_driver(fec_driver);
3803 
3804 MODULE_ALIAS("platform:"DRIVER_NAME);
3805 MODULE_LICENSE("GPL");
3806