1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE	(1 << 5)
90 #define FEC_ENET_RSEM_V	0x84
91 #define FEC_ENET_RSFL_V	16
92 #define FEC_ENET_RAEM_V	0x8
93 #define FEC_ENET_RAFL_V	0x8
94 #define FEC_ENET_OPD_V	0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
96 
97 #define FEC_ENET_XDP_PASS          0
98 #define FEC_ENET_XDP_CONSUMED      BIT(0)
99 #define FEC_ENET_XDP_TX            BIT(1)
100 #define FEC_ENET_XDP_REDIR         BIT(2)
101 
102 struct fec_devinfo {
103 	u32 quirks;
104 };
105 
106 static const struct fec_devinfo fec_imx25_info = {
107 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx27_info = {
112 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 		  FEC_QUIRK_HAS_MDIO_C45,
114 };
115 
116 static const struct fec_devinfo fec_imx28_info = {
117 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122 
123 static const struct fec_devinfo fec_imx6q_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_mvf600_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_MDIO_C45,
134 };
135 
136 static const struct fec_devinfo fec_imx6x_info = {
137 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 		  FEC_QUIRK_HAS_MDIO_C45,
144 };
145 
146 static const struct fec_devinfo fec_imx6ul_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 		  FEC_QUIRK_HAS_MDIO_C45,
153 };
154 
155 static const struct fec_devinfo fec_imx8mq_info = {
156 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 		  FEC_QUIRK_HAS_MDIO_C45,
164 };
165 
166 static const struct fec_devinfo fec_imx8qm_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175 
176 static const struct fec_devinfo fec_s32v234_info = {
177 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 		  FEC_QUIRK_HAS_MDIO_C45,
182 };
183 
184 static struct platform_device_id fec_devtype[] = {
185 	{
186 		/* keep it for coldfire */
187 		.name = DRIVER_NAME,
188 		.driver_data = 0,
189 	}, {
190 		.name = "imx25-fec",
191 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
192 	}, {
193 		.name = "imx27-fec",
194 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
195 	}, {
196 		.name = "imx28-fec",
197 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
198 	}, {
199 		.name = "imx6q-fec",
200 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 	}, {
202 		.name = "mvf600-fec",
203 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 	}, {
205 		.name = "imx6sx-fec",
206 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 	}, {
208 		.name = "imx6ul-fec",
209 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 	}, {
211 		.name = "imx8mq-fec",
212 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 	}, {
214 		.name = "imx8qm-fec",
215 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 	}, {
217 		.name = "s32v234-fec",
218 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 	}, {
220 		/* sentinel */
221 	}
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224 
225 enum imx_fec_type {
226 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
227 	IMX27_FEC,	/* runs on i.mx27/35/51 */
228 	IMX28_FEC,
229 	IMX6Q_FEC,
230 	MVF600_FEC,
231 	IMX6SX_FEC,
232 	IMX6UL_FEC,
233 	IMX8MQ_FEC,
234 	IMX8QM_FEC,
235 	S32V234_FEC,
236 };
237 
238 static const struct of_device_id fec_dt_ids[] = {
239 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 	{ /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252 
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256 
257 #if defined(CONFIG_M5272)
258 /*
259  * Some hardware gets it MAC address out of local flash memory.
260  * if this is non-zero then assume it is the address to get MAC from.
261  */
262 #if defined(CONFIG_NETtel)
263 #define	FEC_FLASHMAC	0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define	FEC_FLASHMAC	0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define	FEC_FLASHMAC	0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define	FEC_FLASHMAC	(0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC	0xffc0406b
272 #else
273 #define	FEC_FLASHMAC	0
274 #endif
275 #endif /* CONFIG_M5272 */
276 
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278  *
279  * 2048 byte skbufs are allocated. However, alignment requirements
280  * varies between FEC variants. Worst case is 64, so round down by 64.
281  */
282 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE		64
284 
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS		BIT(1)
287 #define FEC_RACC_PRODIS		BIT(2)
288 #define FEC_RACC_SHIFT16	BIT(7)
289 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290 
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
293 
294 /*
295  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296  * size bits. Other FEC hardware does not, so we need to take that into
297  * account when setting it.
298  */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301     defined(CONFIG_ARM64)
302 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
303 #else
304 #define	OPT_FRAME_SIZE	0
305 #endif
306 
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST		(1 << 30)
309 #define FEC_MMFR_ST_C45		(0)
310 #define FEC_MMFR_OP_READ	(2 << 28)
311 #define FEC_MMFR_OP_READ_C45	(3 << 28)
312 #define FEC_MMFR_OP_WRITE	(1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE	(0)
314 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
316 #define FEC_MMFR_TA		(2 << 16)
317 #define FEC_MMFR_DATA(v)	(v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_RESET           BIT(0)
320 #define FEC_ECR_ETHEREN         BIT(1)
321 #define FEC_ECR_MAGICEN         BIT(2)
322 #define FEC_ECR_SLEEP           BIT(3)
323 #define FEC_ECR_EN1588          BIT(4)
324 #define FEC_ECR_BYTESWP         BIT(8)
325 /* FEC RCR bits definition */
326 #define FEC_RCR_LOOP            BIT(0)
327 #define FEC_RCR_HALFDPX         BIT(1)
328 #define FEC_RCR_MII             BIT(2)
329 #define FEC_RCR_PROMISC         BIT(3)
330 #define FEC_RCR_BC_REJ          BIT(4)
331 #define FEC_RCR_FLOWCTL         BIT(5)
332 #define FEC_RCR_RMII            BIT(8)
333 #define FEC_RCR_10BASET         BIT(9)
334 /* TX WMARK bits */
335 #define FEC_TXWMRK_STRFWD       BIT(8)
336 
337 #define FEC_MII_TIMEOUT		30000 /* us */
338 
339 /* Transmitter timeout */
340 #define TX_TIMEOUT (2 * HZ)
341 
342 #define FEC_PAUSE_FLAG_AUTONEG	0x1
343 #define FEC_PAUSE_FLAG_ENABLE	0x2
344 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
345 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
346 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
347 
348 /* Max number of allowed TCP segments for software TSO */
349 #define FEC_MAX_TSO_SEGS	100
350 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
351 
352 #define IS_TSO_HEADER(txq, addr) \
353 	((addr >= txq->tso_hdrs_dma) && \
354 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
355 
356 static int mii_cnt;
357 
358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
359 					     struct bufdesc_prop *bd)
360 {
361 	return (bdp >= bd->last) ? bd->base
362 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
363 }
364 
365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
366 					     struct bufdesc_prop *bd)
367 {
368 	return (bdp <= bd->base) ? bd->last
369 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
370 }
371 
372 static int fec_enet_get_bd_index(struct bufdesc *bdp,
373 				 struct bufdesc_prop *bd)
374 {
375 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
376 }
377 
378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
379 {
380 	int entries;
381 
382 	entries = (((const char *)txq->dirty_tx -
383 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
384 
385 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
386 }
387 
388 static void swap_buffer(void *bufaddr, int len)
389 {
390 	int i;
391 	unsigned int *buf = bufaddr;
392 
393 	for (i = 0; i < len; i += 4, buf++)
394 		swab32s(buf);
395 }
396 
397 static void fec_dump(struct net_device *ndev)
398 {
399 	struct fec_enet_private *fep = netdev_priv(ndev);
400 	struct bufdesc *bdp;
401 	struct fec_enet_priv_tx_q *txq;
402 	int index = 0;
403 
404 	netdev_info(ndev, "TX ring dump\n");
405 	pr_info("Nr     SC     addr       len  SKB\n");
406 
407 	txq = fep->tx_queue[0];
408 	bdp = txq->bd.base;
409 
410 	do {
411 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
412 			index,
413 			bdp == txq->bd.cur ? 'S' : ' ',
414 			bdp == txq->dirty_tx ? 'H' : ' ',
415 			fec16_to_cpu(bdp->cbd_sc),
416 			fec32_to_cpu(bdp->cbd_bufaddr),
417 			fec16_to_cpu(bdp->cbd_datlen),
418 			txq->tx_buf[index].buf_p);
419 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 		index++;
421 	} while (bdp != txq->bd.base);
422 }
423 
424 static inline bool is_ipv4_pkt(struct sk_buff *skb)
425 {
426 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
427 }
428 
429 static int
430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
431 {
432 	/* Only run for packets requiring a checksum. */
433 	if (skb->ip_summed != CHECKSUM_PARTIAL)
434 		return 0;
435 
436 	if (unlikely(skb_cow_head(skb, 0)))
437 		return -1;
438 
439 	if (is_ipv4_pkt(skb))
440 		ip_hdr(skb)->check = 0;
441 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
442 
443 	return 0;
444 }
445 
446 static int
447 fec_enet_create_page_pool(struct fec_enet_private *fep,
448 			  struct fec_enet_priv_rx_q *rxq, int size)
449 {
450 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
451 	struct page_pool_params pp_params = {
452 		.order = 0,
453 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
454 		.pool_size = size,
455 		.nid = dev_to_node(&fep->pdev->dev),
456 		.dev = &fep->pdev->dev,
457 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
458 		.offset = FEC_ENET_XDP_HEADROOM,
459 		.max_len = FEC_ENET_RX_FRSIZE,
460 	};
461 	int err;
462 
463 	rxq->page_pool = page_pool_create(&pp_params);
464 	if (IS_ERR(rxq->page_pool)) {
465 		err = PTR_ERR(rxq->page_pool);
466 		rxq->page_pool = NULL;
467 		return err;
468 	}
469 
470 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
471 	if (err < 0)
472 		goto err_free_pp;
473 
474 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
475 					 rxq->page_pool);
476 	if (err)
477 		goto err_unregister_rxq;
478 
479 	return 0;
480 
481 err_unregister_rxq:
482 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
483 err_free_pp:
484 	page_pool_destroy(rxq->page_pool);
485 	rxq->page_pool = NULL;
486 	return err;
487 }
488 
489 static struct bufdesc *
490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
491 			     struct sk_buff *skb,
492 			     struct net_device *ndev)
493 {
494 	struct fec_enet_private *fep = netdev_priv(ndev);
495 	struct bufdesc *bdp = txq->bd.cur;
496 	struct bufdesc_ex *ebdp;
497 	int nr_frags = skb_shinfo(skb)->nr_frags;
498 	int frag, frag_len;
499 	unsigned short status;
500 	unsigned int estatus = 0;
501 	skb_frag_t *this_frag;
502 	unsigned int index;
503 	void *bufaddr;
504 	dma_addr_t addr;
505 	int i;
506 
507 	for (frag = 0; frag < nr_frags; frag++) {
508 		this_frag = &skb_shinfo(skb)->frags[frag];
509 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
510 		ebdp = (struct bufdesc_ex *)bdp;
511 
512 		status = fec16_to_cpu(bdp->cbd_sc);
513 		status &= ~BD_ENET_TX_STATS;
514 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
515 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
516 
517 		/* Handle the last BD specially */
518 		if (frag == nr_frags - 1) {
519 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
520 			if (fep->bufdesc_ex) {
521 				estatus |= BD_ENET_TX_INT;
522 				if (unlikely(skb_shinfo(skb)->tx_flags &
523 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
524 					estatus |= BD_ENET_TX_TS;
525 			}
526 		}
527 
528 		if (fep->bufdesc_ex) {
529 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
530 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
531 			if (skb->ip_summed == CHECKSUM_PARTIAL)
532 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
533 
534 			ebdp->cbd_bdu = 0;
535 			ebdp->cbd_esc = cpu_to_fec32(estatus);
536 		}
537 
538 		bufaddr = skb_frag_address(this_frag);
539 
540 		index = fec_enet_get_bd_index(bdp, &txq->bd);
541 		if (((unsigned long) bufaddr) & fep->tx_align ||
542 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
544 			bufaddr = txq->tx_bounce[index];
545 
546 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 				swap_buffer(bufaddr, frag_len);
548 		}
549 
550 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
551 				      DMA_TO_DEVICE);
552 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 			if (net_ratelimit())
554 				netdev_err(ndev, "Tx DMA memory map failed\n");
555 			goto dma_mapping_error;
556 		}
557 
558 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
559 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
560 		/* Make sure the updates to rest of the descriptor are
561 		 * performed before transferring ownership.
562 		 */
563 		wmb();
564 		bdp->cbd_sc = cpu_to_fec16(status);
565 	}
566 
567 	return bdp;
568 dma_mapping_error:
569 	bdp = txq->bd.cur;
570 	for (i = 0; i < frag; i++) {
571 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
572 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
573 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
574 	}
575 	return ERR_PTR(-ENOMEM);
576 }
577 
578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
579 				   struct sk_buff *skb, struct net_device *ndev)
580 {
581 	struct fec_enet_private *fep = netdev_priv(ndev);
582 	int nr_frags = skb_shinfo(skb)->nr_frags;
583 	struct bufdesc *bdp, *last_bdp;
584 	void *bufaddr;
585 	dma_addr_t addr;
586 	unsigned short status;
587 	unsigned short buflen;
588 	unsigned int estatus = 0;
589 	unsigned int index;
590 	int entries_free;
591 
592 	entries_free = fec_enet_get_free_txdesc_num(txq);
593 	if (entries_free < MAX_SKB_FRAGS + 1) {
594 		dev_kfree_skb_any(skb);
595 		if (net_ratelimit())
596 			netdev_err(ndev, "NOT enough BD for SG!\n");
597 		return NETDEV_TX_OK;
598 	}
599 
600 	/* Protocol checksum off-load for TCP and UDP. */
601 	if (fec_enet_clear_csum(skb, ndev)) {
602 		dev_kfree_skb_any(skb);
603 		return NETDEV_TX_OK;
604 	}
605 
606 	/* Fill in a Tx ring entry */
607 	bdp = txq->bd.cur;
608 	last_bdp = bdp;
609 	status = fec16_to_cpu(bdp->cbd_sc);
610 	status &= ~BD_ENET_TX_STATS;
611 
612 	/* Set buffer length and buffer pointer */
613 	bufaddr = skb->data;
614 	buflen = skb_headlen(skb);
615 
616 	index = fec_enet_get_bd_index(bdp, &txq->bd);
617 	if (((unsigned long) bufaddr) & fep->tx_align ||
618 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 		memcpy(txq->tx_bounce[index], skb->data, buflen);
620 		bufaddr = txq->tx_bounce[index];
621 
622 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 			swap_buffer(bufaddr, buflen);
624 	}
625 
626 	/* Push the data cache so the CPM does not get stale memory data. */
627 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
628 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
629 		dev_kfree_skb_any(skb);
630 		if (net_ratelimit())
631 			netdev_err(ndev, "Tx DMA memory map failed\n");
632 		return NETDEV_TX_OK;
633 	}
634 
635 	if (nr_frags) {
636 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
637 		if (IS_ERR(last_bdp)) {
638 			dma_unmap_single(&fep->pdev->dev, addr,
639 					 buflen, DMA_TO_DEVICE);
640 			dev_kfree_skb_any(skb);
641 			return NETDEV_TX_OK;
642 		}
643 	} else {
644 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
645 		if (fep->bufdesc_ex) {
646 			estatus = BD_ENET_TX_INT;
647 			if (unlikely(skb_shinfo(skb)->tx_flags &
648 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
649 				estatus |= BD_ENET_TX_TS;
650 		}
651 	}
652 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
653 	bdp->cbd_datlen = cpu_to_fec16(buflen);
654 
655 	if (fep->bufdesc_ex) {
656 
657 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
658 
659 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
660 			fep->hwts_tx_en))
661 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
662 
663 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
664 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
665 
666 		if (skb->ip_summed == CHECKSUM_PARTIAL)
667 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
668 
669 		ebdp->cbd_bdu = 0;
670 		ebdp->cbd_esc = cpu_to_fec32(estatus);
671 	}
672 
673 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
674 	/* Save skb pointer */
675 	txq->tx_buf[index].buf_p = skb;
676 
677 	/* Make sure the updates to rest of the descriptor are performed before
678 	 * transferring ownership.
679 	 */
680 	wmb();
681 
682 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
683 	 * it's the last BD of the frame, and to put the CRC on the end.
684 	 */
685 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
686 	bdp->cbd_sc = cpu_to_fec16(status);
687 
688 	/* If this was the last BD in the ring, start at the beginning again. */
689 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
690 
691 	skb_tx_timestamp(skb);
692 
693 	/* Make sure the update to bdp is performed before txq->bd.cur. */
694 	wmb();
695 	txq->bd.cur = bdp;
696 
697 	/* Trigger transmission start */
698 	writel(0, txq->bd.reg_desc_active);
699 
700 	return 0;
701 }
702 
703 static int
704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
705 			  struct net_device *ndev,
706 			  struct bufdesc *bdp, int index, char *data,
707 			  int size, bool last_tcp, bool is_last)
708 {
709 	struct fec_enet_private *fep = netdev_priv(ndev);
710 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
711 	unsigned short status;
712 	unsigned int estatus = 0;
713 	dma_addr_t addr;
714 
715 	status = fec16_to_cpu(bdp->cbd_sc);
716 	status &= ~BD_ENET_TX_STATS;
717 
718 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
719 
720 	if (((unsigned long) data) & fep->tx_align ||
721 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 		memcpy(txq->tx_bounce[index], data, size);
723 		data = txq->tx_bounce[index];
724 
725 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 			swap_buffer(data, size);
727 	}
728 
729 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
730 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
731 		dev_kfree_skb_any(skb);
732 		if (net_ratelimit())
733 			netdev_err(ndev, "Tx DMA memory map failed\n");
734 		return NETDEV_TX_OK;
735 	}
736 
737 	bdp->cbd_datlen = cpu_to_fec16(size);
738 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
739 
740 	if (fep->bufdesc_ex) {
741 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
742 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
743 		if (skb->ip_summed == CHECKSUM_PARTIAL)
744 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
745 		ebdp->cbd_bdu = 0;
746 		ebdp->cbd_esc = cpu_to_fec32(estatus);
747 	}
748 
749 	/* Handle the last BD specially */
750 	if (last_tcp)
751 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
752 	if (is_last) {
753 		status |= BD_ENET_TX_INTR;
754 		if (fep->bufdesc_ex)
755 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
756 	}
757 
758 	bdp->cbd_sc = cpu_to_fec16(status);
759 
760 	return 0;
761 }
762 
763 static int
764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
765 			 struct sk_buff *skb, struct net_device *ndev,
766 			 struct bufdesc *bdp, int index)
767 {
768 	struct fec_enet_private *fep = netdev_priv(ndev);
769 	int hdr_len = skb_tcp_all_headers(skb);
770 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
771 	void *bufaddr;
772 	unsigned long dmabuf;
773 	unsigned short status;
774 	unsigned int estatus = 0;
775 
776 	status = fec16_to_cpu(bdp->cbd_sc);
777 	status &= ~BD_ENET_TX_STATS;
778 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
779 
780 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
781 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
782 	if (((unsigned long)bufaddr) & fep->tx_align ||
783 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
784 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
785 		bufaddr = txq->tx_bounce[index];
786 
787 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
788 			swap_buffer(bufaddr, hdr_len);
789 
790 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
791 					hdr_len, DMA_TO_DEVICE);
792 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
793 			dev_kfree_skb_any(skb);
794 			if (net_ratelimit())
795 				netdev_err(ndev, "Tx DMA memory map failed\n");
796 			return NETDEV_TX_OK;
797 		}
798 	}
799 
800 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
801 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
802 
803 	if (fep->bufdesc_ex) {
804 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
805 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
806 		if (skb->ip_summed == CHECKSUM_PARTIAL)
807 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
808 		ebdp->cbd_bdu = 0;
809 		ebdp->cbd_esc = cpu_to_fec32(estatus);
810 	}
811 
812 	bdp->cbd_sc = cpu_to_fec16(status);
813 
814 	return 0;
815 }
816 
817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
818 				   struct sk_buff *skb,
819 				   struct net_device *ndev)
820 {
821 	struct fec_enet_private *fep = netdev_priv(ndev);
822 	int hdr_len, total_len, data_left;
823 	struct bufdesc *bdp = txq->bd.cur;
824 	struct tso_t tso;
825 	unsigned int index = 0;
826 	int ret;
827 
828 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
829 		dev_kfree_skb_any(skb);
830 		if (net_ratelimit())
831 			netdev_err(ndev, "NOT enough BD for TSO!\n");
832 		return NETDEV_TX_OK;
833 	}
834 
835 	/* Protocol checksum off-load for TCP and UDP. */
836 	if (fec_enet_clear_csum(skb, ndev)) {
837 		dev_kfree_skb_any(skb);
838 		return NETDEV_TX_OK;
839 	}
840 
841 	/* Initialize the TSO handler, and prepare the first payload */
842 	hdr_len = tso_start(skb, &tso);
843 
844 	total_len = skb->len - hdr_len;
845 	while (total_len > 0) {
846 		char *hdr;
847 
848 		index = fec_enet_get_bd_index(bdp, &txq->bd);
849 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
850 		total_len -= data_left;
851 
852 		/* prepare packet headers: MAC + IP + TCP */
853 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
854 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
855 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
856 		if (ret)
857 			goto err_release;
858 
859 		while (data_left > 0) {
860 			int size;
861 
862 			size = min_t(int, tso.size, data_left);
863 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
864 			index = fec_enet_get_bd_index(bdp, &txq->bd);
865 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
866 							bdp, index,
867 							tso.data, size,
868 							size == data_left,
869 							total_len == 0);
870 			if (ret)
871 				goto err_release;
872 
873 			data_left -= size;
874 			tso_build_data(skb, &tso, size);
875 		}
876 
877 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
878 	}
879 
880 	/* Save skb pointer */
881 	txq->tx_buf[index].buf_p = skb;
882 
883 	skb_tx_timestamp(skb);
884 	txq->bd.cur = bdp;
885 
886 	/* Trigger transmission start */
887 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
888 	    !readl(txq->bd.reg_desc_active) ||
889 	    !readl(txq->bd.reg_desc_active) ||
890 	    !readl(txq->bd.reg_desc_active) ||
891 	    !readl(txq->bd.reg_desc_active))
892 		writel(0, txq->bd.reg_desc_active);
893 
894 	return 0;
895 
896 err_release:
897 	/* TODO: Release all used data descriptors for TSO */
898 	return ret;
899 }
900 
901 static netdev_tx_t
902 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
903 {
904 	struct fec_enet_private *fep = netdev_priv(ndev);
905 	int entries_free;
906 	unsigned short queue;
907 	struct fec_enet_priv_tx_q *txq;
908 	struct netdev_queue *nq;
909 	int ret;
910 
911 	queue = skb_get_queue_mapping(skb);
912 	txq = fep->tx_queue[queue];
913 	nq = netdev_get_tx_queue(ndev, queue);
914 
915 	if (skb_is_gso(skb))
916 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
917 	else
918 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
919 	if (ret)
920 		return ret;
921 
922 	entries_free = fec_enet_get_free_txdesc_num(txq);
923 	if (entries_free <= txq->tx_stop_threshold)
924 		netif_tx_stop_queue(nq);
925 
926 	return NETDEV_TX_OK;
927 }
928 
929 /* Init RX & TX buffer descriptors
930  */
931 static void fec_enet_bd_init(struct net_device *dev)
932 {
933 	struct fec_enet_private *fep = netdev_priv(dev);
934 	struct fec_enet_priv_tx_q *txq;
935 	struct fec_enet_priv_rx_q *rxq;
936 	struct bufdesc *bdp;
937 	unsigned int i;
938 	unsigned int q;
939 
940 	for (q = 0; q < fep->num_rx_queues; q++) {
941 		/* Initialize the receive buffer descriptors. */
942 		rxq = fep->rx_queue[q];
943 		bdp = rxq->bd.base;
944 
945 		for (i = 0; i < rxq->bd.ring_size; i++) {
946 
947 			/* Initialize the BD for every fragment in the page. */
948 			if (bdp->cbd_bufaddr)
949 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
950 			else
951 				bdp->cbd_sc = cpu_to_fec16(0);
952 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
953 		}
954 
955 		/* Set the last buffer to wrap */
956 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
957 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
958 
959 		rxq->bd.cur = rxq->bd.base;
960 	}
961 
962 	for (q = 0; q < fep->num_tx_queues; q++) {
963 		/* ...and the same for transmit */
964 		txq = fep->tx_queue[q];
965 		bdp = txq->bd.base;
966 		txq->bd.cur = bdp;
967 
968 		for (i = 0; i < txq->bd.ring_size; i++) {
969 			/* Initialize the BD for every fragment in the page. */
970 			bdp->cbd_sc = cpu_to_fec16(0);
971 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
972 				if (bdp->cbd_bufaddr &&
973 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
974 					dma_unmap_single(&fep->pdev->dev,
975 							 fec32_to_cpu(bdp->cbd_bufaddr),
976 							 fec16_to_cpu(bdp->cbd_datlen),
977 							 DMA_TO_DEVICE);
978 				if (txq->tx_buf[i].buf_p)
979 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
980 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
981 				if (bdp->cbd_bufaddr)
982 					dma_unmap_single(&fep->pdev->dev,
983 							 fec32_to_cpu(bdp->cbd_bufaddr),
984 							 fec16_to_cpu(bdp->cbd_datlen),
985 							 DMA_TO_DEVICE);
986 
987 				if (txq->tx_buf[i].buf_p)
988 					xdp_return_frame(txq->tx_buf[i].buf_p);
989 			} else {
990 				struct page *page = txq->tx_buf[i].buf_p;
991 
992 				if (page)
993 					page_pool_put_page(page->pp, page, 0, false);
994 			}
995 
996 			txq->tx_buf[i].buf_p = NULL;
997 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
998 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
999 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1000 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1001 		}
1002 
1003 		/* Set the last buffer to wrap */
1004 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1005 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006 		txq->dirty_tx = bdp;
1007 	}
1008 }
1009 
1010 static void fec_enet_active_rxring(struct net_device *ndev)
1011 {
1012 	struct fec_enet_private *fep = netdev_priv(ndev);
1013 	int i;
1014 
1015 	for (i = 0; i < fep->num_rx_queues; i++)
1016 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1017 }
1018 
1019 static void fec_enet_enable_ring(struct net_device *ndev)
1020 {
1021 	struct fec_enet_private *fep = netdev_priv(ndev);
1022 	struct fec_enet_priv_tx_q *txq;
1023 	struct fec_enet_priv_rx_q *rxq;
1024 	int i;
1025 
1026 	for (i = 0; i < fep->num_rx_queues; i++) {
1027 		rxq = fep->rx_queue[i];
1028 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1029 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1030 
1031 		/* enable DMA1/2 */
1032 		if (i)
1033 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1034 			       fep->hwp + FEC_RCMR(i));
1035 	}
1036 
1037 	for (i = 0; i < fep->num_tx_queues; i++) {
1038 		txq = fep->tx_queue[i];
1039 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1040 
1041 		/* enable DMA1/2 */
1042 		if (i)
1043 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1044 			       fep->hwp + FEC_DMA_CFG(i));
1045 	}
1046 }
1047 
1048 /*
1049  * This function is called to start or restart the FEC during a link
1050  * change, transmit timeout, or to reconfigure the FEC.  The network
1051  * packet processing for this device must be stopped before this call.
1052  */
1053 static void
1054 fec_restart(struct net_device *ndev)
1055 {
1056 	struct fec_enet_private *fep = netdev_priv(ndev);
1057 	u32 temp_mac[2];
1058 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1059 	u32 ecntl = FEC_ECR_ETHEREN;
1060 
1061 	/* Whack a reset.  We should wait for this.
1062 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1063 	 * instead of reset MAC itself.
1064 	 */
1065 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1066 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1067 		writel(0, fep->hwp + FEC_ECNTRL);
1068 	} else {
1069 		writel(1, fep->hwp + FEC_ECNTRL);
1070 		udelay(10);
1071 	}
1072 
1073 	/*
1074 	 * enet-mac reset will reset mac address registers too,
1075 	 * so need to reconfigure it.
1076 	 */
1077 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1078 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1079 	       fep->hwp + FEC_ADDR_LOW);
1080 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1081 	       fep->hwp + FEC_ADDR_HIGH);
1082 
1083 	/* Clear any outstanding interrupt, except MDIO. */
1084 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1085 
1086 	fec_enet_bd_init(ndev);
1087 
1088 	fec_enet_enable_ring(ndev);
1089 
1090 	/* Enable MII mode */
1091 	if (fep->full_duplex == DUPLEX_FULL) {
1092 		/* FD enable */
1093 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1094 	} else {
1095 		/* No Rcv on Xmit */
1096 		rcntl |= 0x02;
1097 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1098 	}
1099 
1100 	/* Set MII speed */
1101 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1102 
1103 #if !defined(CONFIG_M5272)
1104 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1105 		u32 val = readl(fep->hwp + FEC_RACC);
1106 
1107 		/* align IP header */
1108 		val |= FEC_RACC_SHIFT16;
1109 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1110 			/* set RX checksum */
1111 			val |= FEC_RACC_OPTIONS;
1112 		else
1113 			val &= ~FEC_RACC_OPTIONS;
1114 		writel(val, fep->hwp + FEC_RACC);
1115 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1116 	}
1117 #endif
1118 
1119 	/*
1120 	 * The phy interface and speed need to get configured
1121 	 * differently on enet-mac.
1122 	 */
1123 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1124 		/* Enable flow control and length check */
1125 		rcntl |= 0x40000000 | 0x00000020;
1126 
1127 		/* RGMII, RMII or MII */
1128 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1129 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1130 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1131 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1132 			rcntl |= (1 << 6);
1133 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1134 			rcntl |= FEC_RCR_RMII;
1135 		else
1136 			rcntl &= ~FEC_RCR_RMII;
1137 
1138 		/* 1G, 100M or 10M */
1139 		if (ndev->phydev) {
1140 			if (ndev->phydev->speed == SPEED_1000)
1141 				ecntl |= (1 << 5);
1142 			else if (ndev->phydev->speed == SPEED_100)
1143 				rcntl &= ~FEC_RCR_10BASET;
1144 			else
1145 				rcntl |= FEC_RCR_10BASET;
1146 		}
1147 	} else {
1148 #ifdef FEC_MIIGSK_ENR
1149 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1150 			u32 cfgr;
1151 			/* disable the gasket and wait */
1152 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1153 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1154 				udelay(1);
1155 
1156 			/*
1157 			 * configure the gasket:
1158 			 *   RMII, 50 MHz, no loopback, no echo
1159 			 *   MII, 25 MHz, no loopback, no echo
1160 			 */
1161 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1162 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1163 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1164 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1165 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1166 
1167 			/* re-enable the gasket */
1168 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1169 		}
1170 #endif
1171 	}
1172 
1173 #if !defined(CONFIG_M5272)
1174 	/* enable pause frame*/
1175 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1176 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1177 	     ndev->phydev && ndev->phydev->pause)) {
1178 		rcntl |= FEC_ENET_FCE;
1179 
1180 		/* set FIFO threshold parameter to reduce overrun */
1181 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1182 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1183 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1184 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1185 
1186 		/* OPD */
1187 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1188 	} else {
1189 		rcntl &= ~FEC_ENET_FCE;
1190 	}
1191 #endif /* !defined(CONFIG_M5272) */
1192 
1193 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1194 
1195 	/* Setup multicast filter. */
1196 	set_multicast_list(ndev);
1197 #ifndef CONFIG_M5272
1198 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1199 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1200 #endif
1201 
1202 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1203 		/* enable ENET endian swap */
1204 		ecntl |= FEC_ECR_BYTESWP;
1205 		/* enable ENET store and forward mode */
1206 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1207 	}
1208 
1209 	if (fep->bufdesc_ex)
1210 		ecntl |= FEC_ECR_EN1588;
1211 
1212 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1213 	    fep->rgmii_txc_dly)
1214 		ecntl |= FEC_ENET_TXC_DLY;
1215 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1216 	    fep->rgmii_rxc_dly)
1217 		ecntl |= FEC_ENET_RXC_DLY;
1218 
1219 #ifndef CONFIG_M5272
1220 	/* Enable the MIB statistic event counters */
1221 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1222 #endif
1223 
1224 	/* And last, enable the transmit and receive processing */
1225 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1226 	fec_enet_active_rxring(ndev);
1227 
1228 	if (fep->bufdesc_ex)
1229 		fec_ptp_start_cyclecounter(ndev);
1230 
1231 	/* Enable interrupts we wish to service */
1232 	if (fep->link)
1233 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1234 	else
1235 		writel(0, fep->hwp + FEC_IMASK);
1236 
1237 	/* Init the interrupt coalescing */
1238 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1239 		fec_enet_itr_coal_set(ndev);
1240 }
1241 
1242 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1243 {
1244 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1245 	      of_machine_is_compatible("fsl,imx8qxp") ||
1246 	      of_machine_is_compatible("fsl,imx8dxl")))
1247 		return 0;
1248 
1249 	return imx_scu_get_handle(&fep->ipc_handle);
1250 }
1251 
1252 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1253 {
1254 	struct device_node *np = fep->pdev->dev.of_node;
1255 	u32 rsrc_id, val;
1256 	int idx;
1257 
1258 	if (!np || !fep->ipc_handle)
1259 		return;
1260 
1261 	idx = of_alias_get_id(np, "ethernet");
1262 	if (idx < 0)
1263 		idx = 0;
1264 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1265 
1266 	val = enabled ? 1 : 0;
1267 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1268 }
1269 
1270 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1271 {
1272 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1273 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1274 
1275 	if (stop_gpr->gpr) {
1276 		if (enabled)
1277 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1278 					   BIT(stop_gpr->bit),
1279 					   BIT(stop_gpr->bit));
1280 		else
1281 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1282 					   BIT(stop_gpr->bit), 0);
1283 	} else if (pdata && pdata->sleep_mode_enable) {
1284 		pdata->sleep_mode_enable(enabled);
1285 	} else {
1286 		fec_enet_ipg_stop_set(fep, enabled);
1287 	}
1288 }
1289 
1290 static void fec_irqs_disable(struct net_device *ndev)
1291 {
1292 	struct fec_enet_private *fep = netdev_priv(ndev);
1293 
1294 	writel(0, fep->hwp + FEC_IMASK);
1295 }
1296 
1297 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1298 {
1299 	struct fec_enet_private *fep = netdev_priv(ndev);
1300 
1301 	writel(0, fep->hwp + FEC_IMASK);
1302 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1303 }
1304 
1305 static void
1306 fec_stop(struct net_device *ndev)
1307 {
1308 	struct fec_enet_private *fep = netdev_priv(ndev);
1309 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1310 	u32 val;
1311 
1312 	/* We cannot expect a graceful transmit stop without link !!! */
1313 	if (fep->link) {
1314 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1315 		udelay(10);
1316 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1317 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1318 	}
1319 
1320 	/* Whack a reset.  We should wait for this.
1321 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1322 	 * instead of reset MAC itself.
1323 	 */
1324 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1325 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1326 			writel(0, fep->hwp + FEC_ECNTRL);
1327 		} else {
1328 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1329 			udelay(10);
1330 		}
1331 	} else {
1332 		val = readl(fep->hwp + FEC_ECNTRL);
1333 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1334 		writel(val, fep->hwp + FEC_ECNTRL);
1335 	}
1336 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1337 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1338 
1339 	/* We have to keep ENET enabled to have MII interrupt stay working */
1340 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1341 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1342 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1343 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1344 	}
1345 
1346 	if (fep->bufdesc_ex) {
1347 		val = readl(fep->hwp + FEC_ECNTRL);
1348 		val |= FEC_ECR_EN1588;
1349 		writel(val, fep->hwp + FEC_ECNTRL);
1350 	}
1351 }
1352 
1353 static void
1354 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1355 {
1356 	struct fec_enet_private *fep = netdev_priv(ndev);
1357 
1358 	fec_dump(ndev);
1359 
1360 	ndev->stats.tx_errors++;
1361 
1362 	schedule_work(&fep->tx_timeout_work);
1363 }
1364 
1365 static void fec_enet_timeout_work(struct work_struct *work)
1366 {
1367 	struct fec_enet_private *fep =
1368 		container_of(work, struct fec_enet_private, tx_timeout_work);
1369 	struct net_device *ndev = fep->netdev;
1370 
1371 	rtnl_lock();
1372 	if (netif_device_present(ndev) || netif_running(ndev)) {
1373 		napi_disable(&fep->napi);
1374 		netif_tx_lock_bh(ndev);
1375 		fec_restart(ndev);
1376 		netif_tx_wake_all_queues(ndev);
1377 		netif_tx_unlock_bh(ndev);
1378 		napi_enable(&fep->napi);
1379 	}
1380 	rtnl_unlock();
1381 }
1382 
1383 static void
1384 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1385 	struct skb_shared_hwtstamps *hwtstamps)
1386 {
1387 	unsigned long flags;
1388 	u64 ns;
1389 
1390 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1391 	ns = timecounter_cyc2time(&fep->tc, ts);
1392 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1393 
1394 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1395 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1396 }
1397 
1398 static void
1399 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1400 {
1401 	struct	fec_enet_private *fep;
1402 	struct xdp_frame *xdpf;
1403 	struct bufdesc *bdp;
1404 	unsigned short status;
1405 	struct	sk_buff	*skb;
1406 	struct fec_enet_priv_tx_q *txq;
1407 	struct netdev_queue *nq;
1408 	int	index = 0;
1409 	int	entries_free;
1410 	struct page *page;
1411 	int frame_len;
1412 
1413 	fep = netdev_priv(ndev);
1414 
1415 	txq = fep->tx_queue[queue_id];
1416 	/* get next bdp of dirty_tx */
1417 	nq = netdev_get_tx_queue(ndev, queue_id);
1418 	bdp = txq->dirty_tx;
1419 
1420 	/* get next bdp of dirty_tx */
1421 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1422 
1423 	while (bdp != READ_ONCE(txq->bd.cur)) {
1424 		/* Order the load of bd.cur and cbd_sc */
1425 		rmb();
1426 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1427 		if (status & BD_ENET_TX_READY)
1428 			break;
1429 
1430 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1431 
1432 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1433 			skb = txq->tx_buf[index].buf_p;
1434 			if (bdp->cbd_bufaddr &&
1435 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1436 				dma_unmap_single(&fep->pdev->dev,
1437 						 fec32_to_cpu(bdp->cbd_bufaddr),
1438 						 fec16_to_cpu(bdp->cbd_datlen),
1439 						 DMA_TO_DEVICE);
1440 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1441 			if (!skb)
1442 				goto tx_buf_done;
1443 		} else {
1444 			/* Tx processing cannot call any XDP (or page pool) APIs if
1445 			 * the "budget" is 0. Because NAPI is called with budget of
1446 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1447 			 * however, we can't use the page pool from IRQ context.
1448 			 */
1449 			if (unlikely(!budget))
1450 				break;
1451 
1452 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1453 				xdpf = txq->tx_buf[index].buf_p;
1454 				if (bdp->cbd_bufaddr)
1455 					dma_unmap_single(&fep->pdev->dev,
1456 							 fec32_to_cpu(bdp->cbd_bufaddr),
1457 							 fec16_to_cpu(bdp->cbd_datlen),
1458 							 DMA_TO_DEVICE);
1459 			} else {
1460 				page = txq->tx_buf[index].buf_p;
1461 			}
1462 
1463 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1464 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1465 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1466 				goto tx_buf_done;
1467 			}
1468 
1469 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1470 		}
1471 
1472 		/* Check for errors. */
1473 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1474 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1475 				   BD_ENET_TX_CSL)) {
1476 			ndev->stats.tx_errors++;
1477 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1478 				ndev->stats.tx_heartbeat_errors++;
1479 			if (status & BD_ENET_TX_LC)  /* Late collision */
1480 				ndev->stats.tx_window_errors++;
1481 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1482 				ndev->stats.tx_aborted_errors++;
1483 			if (status & BD_ENET_TX_UN)  /* Underrun */
1484 				ndev->stats.tx_fifo_errors++;
1485 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1486 				ndev->stats.tx_carrier_errors++;
1487 		} else {
1488 			ndev->stats.tx_packets++;
1489 
1490 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1491 				ndev->stats.tx_bytes += skb->len;
1492 			else
1493 				ndev->stats.tx_bytes += frame_len;
1494 		}
1495 
1496 		/* Deferred means some collisions occurred during transmit,
1497 		 * but we eventually sent the packet OK.
1498 		 */
1499 		if (status & BD_ENET_TX_DEF)
1500 			ndev->stats.collisions++;
1501 
1502 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1503 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1504 			 * are to time stamp the packet, so we still need to check time
1505 			 * stamping enabled flag.
1506 			 */
1507 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1508 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1509 				struct skb_shared_hwtstamps shhwtstamps;
1510 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1511 
1512 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1513 				skb_tstamp_tx(skb, &shhwtstamps);
1514 			}
1515 
1516 			/* Free the sk buffer associated with this last transmit */
1517 			napi_consume_skb(skb, budget);
1518 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1519 			xdp_return_frame_rx_napi(xdpf);
1520 		} else { /* recycle pages of XDP_TX frames */
1521 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1522 			page_pool_put_page(page->pp, page, 0, true);
1523 		}
1524 
1525 		txq->tx_buf[index].buf_p = NULL;
1526 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1527 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1528 
1529 tx_buf_done:
1530 		/* Make sure the update to bdp and tx_buf are performed
1531 		 * before dirty_tx
1532 		 */
1533 		wmb();
1534 		txq->dirty_tx = bdp;
1535 
1536 		/* Update pointer to next buffer descriptor to be transmitted */
1537 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1538 
1539 		/* Since we have freed up a buffer, the ring is no longer full
1540 		 */
1541 		if (netif_tx_queue_stopped(nq)) {
1542 			entries_free = fec_enet_get_free_txdesc_num(txq);
1543 			if (entries_free >= txq->tx_wake_threshold)
1544 				netif_tx_wake_queue(nq);
1545 		}
1546 	}
1547 
1548 	/* ERR006358: Keep the transmitter going */
1549 	if (bdp != txq->bd.cur &&
1550 	    readl(txq->bd.reg_desc_active) == 0)
1551 		writel(0, txq->bd.reg_desc_active);
1552 }
1553 
1554 static void fec_enet_tx(struct net_device *ndev, int budget)
1555 {
1556 	struct fec_enet_private *fep = netdev_priv(ndev);
1557 	int i;
1558 
1559 	/* Make sure that AVB queues are processed first. */
1560 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1561 		fec_enet_tx_queue(ndev, i, budget);
1562 }
1563 
1564 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1565 				struct bufdesc *bdp, int index)
1566 {
1567 	struct page *new_page;
1568 	dma_addr_t phys_addr;
1569 
1570 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1571 	WARN_ON(!new_page);
1572 	rxq->rx_skb_info[index].page = new_page;
1573 
1574 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1575 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1576 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1577 }
1578 
1579 static u32
1580 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1581 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1582 {
1583 	unsigned int sync, len = xdp->data_end - xdp->data;
1584 	u32 ret = FEC_ENET_XDP_PASS;
1585 	struct page *page;
1586 	int err;
1587 	u32 act;
1588 
1589 	act = bpf_prog_run_xdp(prog, xdp);
1590 
1591 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1592 	 * max len CPU touch
1593 	 */
1594 	sync = xdp->data_end - xdp->data;
1595 	sync = max(sync, len);
1596 
1597 	switch (act) {
1598 	case XDP_PASS:
1599 		rxq->stats[RX_XDP_PASS]++;
1600 		ret = FEC_ENET_XDP_PASS;
1601 		break;
1602 
1603 	case XDP_REDIRECT:
1604 		rxq->stats[RX_XDP_REDIRECT]++;
1605 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1606 		if (unlikely(err))
1607 			goto xdp_err;
1608 
1609 		ret = FEC_ENET_XDP_REDIR;
1610 		break;
1611 
1612 	case XDP_TX:
1613 		rxq->stats[RX_XDP_TX]++;
1614 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1615 		if (unlikely(err)) {
1616 			rxq->stats[RX_XDP_TX_ERRORS]++;
1617 			goto xdp_err;
1618 		}
1619 
1620 		ret = FEC_ENET_XDP_TX;
1621 		break;
1622 
1623 	default:
1624 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1625 		fallthrough;
1626 
1627 	case XDP_ABORTED:
1628 		fallthrough;    /* handle aborts by dropping packet */
1629 
1630 	case XDP_DROP:
1631 		rxq->stats[RX_XDP_DROP]++;
1632 xdp_err:
1633 		ret = FEC_ENET_XDP_CONSUMED;
1634 		page = virt_to_head_page(xdp->data);
1635 		page_pool_put_page(rxq->page_pool, page, sync, true);
1636 		if (act != XDP_DROP)
1637 			trace_xdp_exception(fep->netdev, prog, act);
1638 		break;
1639 	}
1640 
1641 	return ret;
1642 }
1643 
1644 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1645  * When we update through the ring, if the next incoming buffer has
1646  * not been given to the system, we just set the empty indicator,
1647  * effectively tossing the packet.
1648  */
1649 static int
1650 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1651 {
1652 	struct fec_enet_private *fep = netdev_priv(ndev);
1653 	struct fec_enet_priv_rx_q *rxq;
1654 	struct bufdesc *bdp;
1655 	unsigned short status;
1656 	struct  sk_buff *skb;
1657 	ushort	pkt_len;
1658 	__u8 *data;
1659 	int	pkt_received = 0;
1660 	struct	bufdesc_ex *ebdp = NULL;
1661 	bool	vlan_packet_rcvd = false;
1662 	u16	vlan_tag;
1663 	int	index = 0;
1664 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1665 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1666 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1667 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1668 	int cpu = smp_processor_id();
1669 	struct xdp_buff xdp;
1670 	struct page *page;
1671 	u32 sub_len = 4;
1672 
1673 #if !defined(CONFIG_M5272)
1674 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1675 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1676 	 */
1677 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1678 		data_start += 2;
1679 		sub_len += 2;
1680 	}
1681 #endif
1682 
1683 #ifdef CONFIG_M532x
1684 	flush_cache_all();
1685 #endif
1686 	rxq = fep->rx_queue[queue_id];
1687 
1688 	/* First, grab all of the stats for the incoming packet.
1689 	 * These get messed up if we get called due to a busy condition.
1690 	 */
1691 	bdp = rxq->bd.cur;
1692 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1693 
1694 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1695 
1696 		if (pkt_received >= budget)
1697 			break;
1698 		pkt_received++;
1699 
1700 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1701 
1702 		/* Check for errors. */
1703 		status ^= BD_ENET_RX_LAST;
1704 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1705 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1706 			   BD_ENET_RX_CL)) {
1707 			ndev->stats.rx_errors++;
1708 			if (status & BD_ENET_RX_OV) {
1709 				/* FIFO overrun */
1710 				ndev->stats.rx_fifo_errors++;
1711 				goto rx_processing_done;
1712 			}
1713 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1714 						| BD_ENET_RX_LAST)) {
1715 				/* Frame too long or too short. */
1716 				ndev->stats.rx_length_errors++;
1717 				if (status & BD_ENET_RX_LAST)
1718 					netdev_err(ndev, "rcv is not +last\n");
1719 			}
1720 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1721 				ndev->stats.rx_crc_errors++;
1722 			/* Report late collisions as a frame error. */
1723 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1724 				ndev->stats.rx_frame_errors++;
1725 			goto rx_processing_done;
1726 		}
1727 
1728 		/* Process the incoming frame. */
1729 		ndev->stats.rx_packets++;
1730 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1731 		ndev->stats.rx_bytes += pkt_len;
1732 
1733 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1734 		page = rxq->rx_skb_info[index].page;
1735 		dma_sync_single_for_cpu(&fep->pdev->dev,
1736 					fec32_to_cpu(bdp->cbd_bufaddr),
1737 					pkt_len,
1738 					DMA_FROM_DEVICE);
1739 		prefetch(page_address(page));
1740 		fec_enet_update_cbd(rxq, bdp, index);
1741 
1742 		if (xdp_prog) {
1743 			xdp_buff_clear_frags_flag(&xdp);
1744 			/* subtract 16bit shift and FCS */
1745 			xdp_prepare_buff(&xdp, page_address(page),
1746 					 data_start, pkt_len - sub_len, false);
1747 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1748 			xdp_result |= ret;
1749 			if (ret != FEC_ENET_XDP_PASS)
1750 				goto rx_processing_done;
1751 		}
1752 
1753 		/* The packet length includes FCS, but we don't want to
1754 		 * include that when passing upstream as it messes up
1755 		 * bridging applications.
1756 		 */
1757 		skb = build_skb(page_address(page), PAGE_SIZE);
1758 		if (unlikely(!skb)) {
1759 			page_pool_recycle_direct(rxq->page_pool, page);
1760 			ndev->stats.rx_dropped++;
1761 
1762 			netdev_err_once(ndev, "build_skb failed!\n");
1763 			goto rx_processing_done;
1764 		}
1765 
1766 		skb_reserve(skb, data_start);
1767 		skb_put(skb, pkt_len - sub_len);
1768 		skb_mark_for_recycle(skb);
1769 
1770 		if (unlikely(need_swap)) {
1771 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1772 			swap_buffer(data, pkt_len);
1773 		}
1774 		data = skb->data;
1775 
1776 		/* Extract the enhanced buffer descriptor */
1777 		ebdp = NULL;
1778 		if (fep->bufdesc_ex)
1779 			ebdp = (struct bufdesc_ex *)bdp;
1780 
1781 		/* If this is a VLAN packet remove the VLAN Tag */
1782 		vlan_packet_rcvd = false;
1783 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1784 		    fep->bufdesc_ex &&
1785 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1786 			/* Push and remove the vlan tag */
1787 			struct vlan_hdr *vlan_header =
1788 					(struct vlan_hdr *) (data + ETH_HLEN);
1789 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1790 
1791 			vlan_packet_rcvd = true;
1792 
1793 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1794 			skb_pull(skb, VLAN_HLEN);
1795 		}
1796 
1797 		skb->protocol = eth_type_trans(skb, ndev);
1798 
1799 		/* Get receive timestamp from the skb */
1800 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1801 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1802 					  skb_hwtstamps(skb));
1803 
1804 		if (fep->bufdesc_ex &&
1805 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1806 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1807 				/* don't check it */
1808 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1809 			} else {
1810 				skb_checksum_none_assert(skb);
1811 			}
1812 		}
1813 
1814 		/* Handle received VLAN packets */
1815 		if (vlan_packet_rcvd)
1816 			__vlan_hwaccel_put_tag(skb,
1817 					       htons(ETH_P_8021Q),
1818 					       vlan_tag);
1819 
1820 		skb_record_rx_queue(skb, queue_id);
1821 		napi_gro_receive(&fep->napi, skb);
1822 
1823 rx_processing_done:
1824 		/* Clear the status flags for this buffer */
1825 		status &= ~BD_ENET_RX_STATS;
1826 
1827 		/* Mark the buffer empty */
1828 		status |= BD_ENET_RX_EMPTY;
1829 
1830 		if (fep->bufdesc_ex) {
1831 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1832 
1833 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1834 			ebdp->cbd_prot = 0;
1835 			ebdp->cbd_bdu = 0;
1836 		}
1837 		/* Make sure the updates to rest of the descriptor are
1838 		 * performed before transferring ownership.
1839 		 */
1840 		wmb();
1841 		bdp->cbd_sc = cpu_to_fec16(status);
1842 
1843 		/* Update BD pointer to next entry */
1844 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1845 
1846 		/* Doing this here will keep the FEC running while we process
1847 		 * incoming frames.  On a heavily loaded network, we should be
1848 		 * able to keep up at the expense of system resources.
1849 		 */
1850 		writel(0, rxq->bd.reg_desc_active);
1851 	}
1852 	rxq->bd.cur = bdp;
1853 
1854 	if (xdp_result & FEC_ENET_XDP_REDIR)
1855 		xdp_do_flush_map();
1856 
1857 	return pkt_received;
1858 }
1859 
1860 static int fec_enet_rx(struct net_device *ndev, int budget)
1861 {
1862 	struct fec_enet_private *fep = netdev_priv(ndev);
1863 	int i, done = 0;
1864 
1865 	/* Make sure that AVB queues are processed first. */
1866 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1867 		done += fec_enet_rx_queue(ndev, budget - done, i);
1868 
1869 	return done;
1870 }
1871 
1872 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1873 {
1874 	uint int_events;
1875 
1876 	int_events = readl(fep->hwp + FEC_IEVENT);
1877 
1878 	/* Don't clear MDIO events, we poll for those */
1879 	int_events &= ~FEC_ENET_MII;
1880 
1881 	writel(int_events, fep->hwp + FEC_IEVENT);
1882 
1883 	return int_events != 0;
1884 }
1885 
1886 static irqreturn_t
1887 fec_enet_interrupt(int irq, void *dev_id)
1888 {
1889 	struct net_device *ndev = dev_id;
1890 	struct fec_enet_private *fep = netdev_priv(ndev);
1891 	irqreturn_t ret = IRQ_NONE;
1892 
1893 	if (fec_enet_collect_events(fep) && fep->link) {
1894 		ret = IRQ_HANDLED;
1895 
1896 		if (napi_schedule_prep(&fep->napi)) {
1897 			/* Disable interrupts */
1898 			writel(0, fep->hwp + FEC_IMASK);
1899 			__napi_schedule(&fep->napi);
1900 		}
1901 	}
1902 
1903 	return ret;
1904 }
1905 
1906 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1907 {
1908 	struct net_device *ndev = napi->dev;
1909 	struct fec_enet_private *fep = netdev_priv(ndev);
1910 	int done = 0;
1911 
1912 	do {
1913 		done += fec_enet_rx(ndev, budget - done);
1914 		fec_enet_tx(ndev, budget);
1915 	} while ((done < budget) && fec_enet_collect_events(fep));
1916 
1917 	if (done < budget) {
1918 		napi_complete_done(napi, done);
1919 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1920 	}
1921 
1922 	return done;
1923 }
1924 
1925 /* ------------------------------------------------------------------------- */
1926 static int fec_get_mac(struct net_device *ndev)
1927 {
1928 	struct fec_enet_private *fep = netdev_priv(ndev);
1929 	unsigned char *iap, tmpaddr[ETH_ALEN];
1930 	int ret;
1931 
1932 	/*
1933 	 * try to get mac address in following order:
1934 	 *
1935 	 * 1) module parameter via kernel command line in form
1936 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1937 	 */
1938 	iap = macaddr;
1939 
1940 	/*
1941 	 * 2) from device tree data
1942 	 */
1943 	if (!is_valid_ether_addr(iap)) {
1944 		struct device_node *np = fep->pdev->dev.of_node;
1945 		if (np) {
1946 			ret = of_get_mac_address(np, tmpaddr);
1947 			if (!ret)
1948 				iap = tmpaddr;
1949 			else if (ret == -EPROBE_DEFER)
1950 				return ret;
1951 		}
1952 	}
1953 
1954 	/*
1955 	 * 3) from flash or fuse (via platform data)
1956 	 */
1957 	if (!is_valid_ether_addr(iap)) {
1958 #ifdef CONFIG_M5272
1959 		if (FEC_FLASHMAC)
1960 			iap = (unsigned char *)FEC_FLASHMAC;
1961 #else
1962 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1963 
1964 		if (pdata)
1965 			iap = (unsigned char *)&pdata->mac;
1966 #endif
1967 	}
1968 
1969 	/*
1970 	 * 4) FEC mac registers set by bootloader
1971 	 */
1972 	if (!is_valid_ether_addr(iap)) {
1973 		*((__be32 *) &tmpaddr[0]) =
1974 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1975 		*((__be16 *) &tmpaddr[4]) =
1976 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1977 		iap = &tmpaddr[0];
1978 	}
1979 
1980 	/*
1981 	 * 5) random mac address
1982 	 */
1983 	if (!is_valid_ether_addr(iap)) {
1984 		/* Report it and use a random ethernet address instead */
1985 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1986 		eth_hw_addr_random(ndev);
1987 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1988 			 ndev->dev_addr);
1989 		return 0;
1990 	}
1991 
1992 	/* Adjust MAC if using macaddr */
1993 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1994 
1995 	return 0;
1996 }
1997 
1998 /* ------------------------------------------------------------------------- */
1999 
2000 /*
2001  * Phy section
2002  */
2003 static void fec_enet_adjust_link(struct net_device *ndev)
2004 {
2005 	struct fec_enet_private *fep = netdev_priv(ndev);
2006 	struct phy_device *phy_dev = ndev->phydev;
2007 	int status_change = 0;
2008 
2009 	/*
2010 	 * If the netdev is down, or is going down, we're not interested
2011 	 * in link state events, so just mark our idea of the link as down
2012 	 * and ignore the event.
2013 	 */
2014 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2015 		fep->link = 0;
2016 	} else if (phy_dev->link) {
2017 		if (!fep->link) {
2018 			fep->link = phy_dev->link;
2019 			status_change = 1;
2020 		}
2021 
2022 		if (fep->full_duplex != phy_dev->duplex) {
2023 			fep->full_duplex = phy_dev->duplex;
2024 			status_change = 1;
2025 		}
2026 
2027 		if (phy_dev->speed != fep->speed) {
2028 			fep->speed = phy_dev->speed;
2029 			status_change = 1;
2030 		}
2031 
2032 		/* if any of the above changed restart the FEC */
2033 		if (status_change) {
2034 			netif_stop_queue(ndev);
2035 			napi_disable(&fep->napi);
2036 			netif_tx_lock_bh(ndev);
2037 			fec_restart(ndev);
2038 			netif_tx_wake_all_queues(ndev);
2039 			netif_tx_unlock_bh(ndev);
2040 			napi_enable(&fep->napi);
2041 		}
2042 	} else {
2043 		if (fep->link) {
2044 			netif_stop_queue(ndev);
2045 			napi_disable(&fep->napi);
2046 			netif_tx_lock_bh(ndev);
2047 			fec_stop(ndev);
2048 			netif_tx_unlock_bh(ndev);
2049 			napi_enable(&fep->napi);
2050 			fep->link = phy_dev->link;
2051 			status_change = 1;
2052 		}
2053 	}
2054 
2055 	if (status_change)
2056 		phy_print_status(phy_dev);
2057 }
2058 
2059 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2060 {
2061 	uint ievent;
2062 	int ret;
2063 
2064 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2065 					ievent & FEC_ENET_MII, 2, 30000);
2066 
2067 	if (!ret)
2068 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2069 
2070 	return ret;
2071 }
2072 
2073 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2074 {
2075 	struct fec_enet_private *fep = bus->priv;
2076 	struct device *dev = &fep->pdev->dev;
2077 	int ret = 0, frame_start, frame_addr, frame_op;
2078 
2079 	ret = pm_runtime_resume_and_get(dev);
2080 	if (ret < 0)
2081 		return ret;
2082 
2083 	/* C22 read */
2084 	frame_op = FEC_MMFR_OP_READ;
2085 	frame_start = FEC_MMFR_ST;
2086 	frame_addr = regnum;
2087 
2088 	/* start a read op */
2089 	writel(frame_start | frame_op |
2090 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2091 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2092 
2093 	/* wait for end of transfer */
2094 	ret = fec_enet_mdio_wait(fep);
2095 	if (ret) {
2096 		netdev_err(fep->netdev, "MDIO read timeout\n");
2097 		goto out;
2098 	}
2099 
2100 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2101 
2102 out:
2103 	pm_runtime_mark_last_busy(dev);
2104 	pm_runtime_put_autosuspend(dev);
2105 
2106 	return ret;
2107 }
2108 
2109 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2110 				  int devad, int regnum)
2111 {
2112 	struct fec_enet_private *fep = bus->priv;
2113 	struct device *dev = &fep->pdev->dev;
2114 	int ret = 0, frame_start, frame_op;
2115 
2116 	ret = pm_runtime_resume_and_get(dev);
2117 	if (ret < 0)
2118 		return ret;
2119 
2120 	frame_start = FEC_MMFR_ST_C45;
2121 
2122 	/* write address */
2123 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2124 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2125 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2126 	       fep->hwp + FEC_MII_DATA);
2127 
2128 	/* wait for end of transfer */
2129 	ret = fec_enet_mdio_wait(fep);
2130 	if (ret) {
2131 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2132 		goto out;
2133 	}
2134 
2135 	frame_op = FEC_MMFR_OP_READ_C45;
2136 
2137 	/* start a read op */
2138 	writel(frame_start | frame_op |
2139 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2140 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2141 
2142 	/* wait for end of transfer */
2143 	ret = fec_enet_mdio_wait(fep);
2144 	if (ret) {
2145 		netdev_err(fep->netdev, "MDIO read timeout\n");
2146 		goto out;
2147 	}
2148 
2149 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2150 
2151 out:
2152 	pm_runtime_mark_last_busy(dev);
2153 	pm_runtime_put_autosuspend(dev);
2154 
2155 	return ret;
2156 }
2157 
2158 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2159 				   u16 value)
2160 {
2161 	struct fec_enet_private *fep = bus->priv;
2162 	struct device *dev = &fep->pdev->dev;
2163 	int ret, frame_start, frame_addr;
2164 
2165 	ret = pm_runtime_resume_and_get(dev);
2166 	if (ret < 0)
2167 		return ret;
2168 
2169 	/* C22 write */
2170 	frame_start = FEC_MMFR_ST;
2171 	frame_addr = regnum;
2172 
2173 	/* start a write op */
2174 	writel(frame_start | FEC_MMFR_OP_WRITE |
2175 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2176 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2177 	       fep->hwp + FEC_MII_DATA);
2178 
2179 	/* wait for end of transfer */
2180 	ret = fec_enet_mdio_wait(fep);
2181 	if (ret)
2182 		netdev_err(fep->netdev, "MDIO write timeout\n");
2183 
2184 	pm_runtime_mark_last_busy(dev);
2185 	pm_runtime_put_autosuspend(dev);
2186 
2187 	return ret;
2188 }
2189 
2190 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2191 				   int devad, int regnum, u16 value)
2192 {
2193 	struct fec_enet_private *fep = bus->priv;
2194 	struct device *dev = &fep->pdev->dev;
2195 	int ret, frame_start;
2196 
2197 	ret = pm_runtime_resume_and_get(dev);
2198 	if (ret < 0)
2199 		return ret;
2200 
2201 	frame_start = FEC_MMFR_ST_C45;
2202 
2203 	/* write address */
2204 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2205 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2206 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2207 	       fep->hwp + FEC_MII_DATA);
2208 
2209 	/* wait for end of transfer */
2210 	ret = fec_enet_mdio_wait(fep);
2211 	if (ret) {
2212 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2213 		goto out;
2214 	}
2215 
2216 	/* start a write op */
2217 	writel(frame_start | FEC_MMFR_OP_WRITE |
2218 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2219 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2220 	       fep->hwp + FEC_MII_DATA);
2221 
2222 	/* wait for end of transfer */
2223 	ret = fec_enet_mdio_wait(fep);
2224 	if (ret)
2225 		netdev_err(fep->netdev, "MDIO write timeout\n");
2226 
2227 out:
2228 	pm_runtime_mark_last_busy(dev);
2229 	pm_runtime_put_autosuspend(dev);
2230 
2231 	return ret;
2232 }
2233 
2234 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2235 {
2236 	struct fec_enet_private *fep = netdev_priv(ndev);
2237 	struct phy_device *phy_dev = ndev->phydev;
2238 
2239 	if (phy_dev) {
2240 		phy_reset_after_clk_enable(phy_dev);
2241 	} else if (fep->phy_node) {
2242 		/*
2243 		 * If the PHY still is not bound to the MAC, but there is
2244 		 * OF PHY node and a matching PHY device instance already,
2245 		 * use the OF PHY node to obtain the PHY device instance,
2246 		 * and then use that PHY device instance when triggering
2247 		 * the PHY reset.
2248 		 */
2249 		phy_dev = of_phy_find_device(fep->phy_node);
2250 		phy_reset_after_clk_enable(phy_dev);
2251 		put_device(&phy_dev->mdio.dev);
2252 	}
2253 }
2254 
2255 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2256 {
2257 	struct fec_enet_private *fep = netdev_priv(ndev);
2258 	int ret;
2259 
2260 	if (enable) {
2261 		ret = clk_prepare_enable(fep->clk_enet_out);
2262 		if (ret)
2263 			return ret;
2264 
2265 		if (fep->clk_ptp) {
2266 			mutex_lock(&fep->ptp_clk_mutex);
2267 			ret = clk_prepare_enable(fep->clk_ptp);
2268 			if (ret) {
2269 				mutex_unlock(&fep->ptp_clk_mutex);
2270 				goto failed_clk_ptp;
2271 			} else {
2272 				fep->ptp_clk_on = true;
2273 			}
2274 			mutex_unlock(&fep->ptp_clk_mutex);
2275 		}
2276 
2277 		ret = clk_prepare_enable(fep->clk_ref);
2278 		if (ret)
2279 			goto failed_clk_ref;
2280 
2281 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2282 		if (ret)
2283 			goto failed_clk_2x_txclk;
2284 
2285 		fec_enet_phy_reset_after_clk_enable(ndev);
2286 	} else {
2287 		clk_disable_unprepare(fep->clk_enet_out);
2288 		if (fep->clk_ptp) {
2289 			mutex_lock(&fep->ptp_clk_mutex);
2290 			clk_disable_unprepare(fep->clk_ptp);
2291 			fep->ptp_clk_on = false;
2292 			mutex_unlock(&fep->ptp_clk_mutex);
2293 		}
2294 		clk_disable_unprepare(fep->clk_ref);
2295 		clk_disable_unprepare(fep->clk_2x_txclk);
2296 	}
2297 
2298 	return 0;
2299 
2300 failed_clk_2x_txclk:
2301 	if (fep->clk_ref)
2302 		clk_disable_unprepare(fep->clk_ref);
2303 failed_clk_ref:
2304 	if (fep->clk_ptp) {
2305 		mutex_lock(&fep->ptp_clk_mutex);
2306 		clk_disable_unprepare(fep->clk_ptp);
2307 		fep->ptp_clk_on = false;
2308 		mutex_unlock(&fep->ptp_clk_mutex);
2309 	}
2310 failed_clk_ptp:
2311 	clk_disable_unprepare(fep->clk_enet_out);
2312 
2313 	return ret;
2314 }
2315 
2316 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2317 				      struct device_node *np)
2318 {
2319 	u32 rgmii_tx_delay, rgmii_rx_delay;
2320 
2321 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2322 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2323 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2324 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2325 			return -EINVAL;
2326 		} else if (rgmii_tx_delay == 2000) {
2327 			fep->rgmii_txc_dly = true;
2328 		}
2329 	}
2330 
2331 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2332 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2333 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2334 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2335 			return -EINVAL;
2336 		} else if (rgmii_rx_delay == 2000) {
2337 			fep->rgmii_rxc_dly = true;
2338 		}
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 static int fec_enet_mii_probe(struct net_device *ndev)
2345 {
2346 	struct fec_enet_private *fep = netdev_priv(ndev);
2347 	struct phy_device *phy_dev = NULL;
2348 	char mdio_bus_id[MII_BUS_ID_SIZE];
2349 	char phy_name[MII_BUS_ID_SIZE + 3];
2350 	int phy_id;
2351 	int dev_id = fep->dev_id;
2352 
2353 	if (fep->phy_node) {
2354 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2355 					 &fec_enet_adjust_link, 0,
2356 					 fep->phy_interface);
2357 		if (!phy_dev) {
2358 			netdev_err(ndev, "Unable to connect to phy\n");
2359 			return -ENODEV;
2360 		}
2361 	} else {
2362 		/* check for attached phy */
2363 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2364 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2365 				continue;
2366 			if (dev_id--)
2367 				continue;
2368 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2369 			break;
2370 		}
2371 
2372 		if (phy_id >= PHY_MAX_ADDR) {
2373 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2374 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2375 			phy_id = 0;
2376 		}
2377 
2378 		snprintf(phy_name, sizeof(phy_name),
2379 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2380 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2381 				      fep->phy_interface);
2382 	}
2383 
2384 	if (IS_ERR(phy_dev)) {
2385 		netdev_err(ndev, "could not attach to PHY\n");
2386 		return PTR_ERR(phy_dev);
2387 	}
2388 
2389 	/* mask with MAC supported features */
2390 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2391 		phy_set_max_speed(phy_dev, 1000);
2392 		phy_remove_link_mode(phy_dev,
2393 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2394 #if !defined(CONFIG_M5272)
2395 		phy_support_sym_pause(phy_dev);
2396 #endif
2397 	}
2398 	else
2399 		phy_set_max_speed(phy_dev, 100);
2400 
2401 	fep->link = 0;
2402 	fep->full_duplex = 0;
2403 
2404 	phy_attached_info(phy_dev);
2405 
2406 	return 0;
2407 }
2408 
2409 static int fec_enet_mii_init(struct platform_device *pdev)
2410 {
2411 	static struct mii_bus *fec0_mii_bus;
2412 	struct net_device *ndev = platform_get_drvdata(pdev);
2413 	struct fec_enet_private *fep = netdev_priv(ndev);
2414 	bool suppress_preamble = false;
2415 	struct phy_device *phydev;
2416 	struct device_node *node;
2417 	int err = -ENXIO;
2418 	u32 mii_speed, holdtime;
2419 	u32 bus_freq;
2420 	int addr;
2421 
2422 	/*
2423 	 * The i.MX28 dual fec interfaces are not equal.
2424 	 * Here are the differences:
2425 	 *
2426 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2427 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2428 	 *  - external phys can only be configured by fec0
2429 	 *
2430 	 * That is to say fec1 can not work independently. It only works
2431 	 * when fec0 is working. The reason behind this design is that the
2432 	 * second interface is added primarily for Switch mode.
2433 	 *
2434 	 * Because of the last point above, both phys are attached on fec0
2435 	 * mdio interface in board design, and need to be configured by
2436 	 * fec0 mii_bus.
2437 	 */
2438 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2439 		/* fec1 uses fec0 mii_bus */
2440 		if (mii_cnt && fec0_mii_bus) {
2441 			fep->mii_bus = fec0_mii_bus;
2442 			mii_cnt++;
2443 			return 0;
2444 		}
2445 		return -ENOENT;
2446 	}
2447 
2448 	bus_freq = 2500000; /* 2.5MHz by default */
2449 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2450 	if (node) {
2451 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2452 		suppress_preamble = of_property_read_bool(node,
2453 							  "suppress-preamble");
2454 	}
2455 
2456 	/*
2457 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2458 	 *
2459 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2460 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2461 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2462 	 * document.
2463 	 */
2464 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2465 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2466 		mii_speed--;
2467 	if (mii_speed > 63) {
2468 		dev_err(&pdev->dev,
2469 			"fec clock (%lu) too fast to get right mii speed\n",
2470 			clk_get_rate(fep->clk_ipg));
2471 		err = -EINVAL;
2472 		goto err_out;
2473 	}
2474 
2475 	/*
2476 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2477 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2478 	 * versions are RAZ there, so just ignore the difference and write the
2479 	 * register always.
2480 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2481 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2482 	 * output.
2483 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2484 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2485 	 * holdtime cannot result in a value greater than 3.
2486 	 */
2487 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2488 
2489 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2490 
2491 	if (suppress_preamble)
2492 		fep->phy_speed |= BIT(7);
2493 
2494 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2495 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2496 		 * MII event generation condition:
2497 		 * - writing MSCR:
2498 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2499 		 *	  mscr_reg_data_in[7:0] != 0
2500 		 * - writing MMFR:
2501 		 *	- mscr[7:0]_not_zero
2502 		 */
2503 		writel(0, fep->hwp + FEC_MII_DATA);
2504 	}
2505 
2506 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2507 
2508 	/* Clear any pending transaction complete indication */
2509 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2510 
2511 	fep->mii_bus = mdiobus_alloc();
2512 	if (fep->mii_bus == NULL) {
2513 		err = -ENOMEM;
2514 		goto err_out;
2515 	}
2516 
2517 	fep->mii_bus->name = "fec_enet_mii_bus";
2518 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2519 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2520 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2521 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2522 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2523 	}
2524 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2525 		pdev->name, fep->dev_id + 1);
2526 	fep->mii_bus->priv = fep;
2527 	fep->mii_bus->parent = &pdev->dev;
2528 
2529 	err = of_mdiobus_register(fep->mii_bus, node);
2530 	if (err)
2531 		goto err_out_free_mdiobus;
2532 	of_node_put(node);
2533 
2534 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2535 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2536 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2537 		if (phydev)
2538 			phydev->mac_managed_pm = true;
2539 	}
2540 
2541 	mii_cnt++;
2542 
2543 	/* save fec0 mii_bus */
2544 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2545 		fec0_mii_bus = fep->mii_bus;
2546 
2547 	return 0;
2548 
2549 err_out_free_mdiobus:
2550 	mdiobus_free(fep->mii_bus);
2551 err_out:
2552 	of_node_put(node);
2553 	return err;
2554 }
2555 
2556 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2557 {
2558 	if (--mii_cnt == 0) {
2559 		mdiobus_unregister(fep->mii_bus);
2560 		mdiobus_free(fep->mii_bus);
2561 	}
2562 }
2563 
2564 static void fec_enet_get_drvinfo(struct net_device *ndev,
2565 				 struct ethtool_drvinfo *info)
2566 {
2567 	struct fec_enet_private *fep = netdev_priv(ndev);
2568 
2569 	strscpy(info->driver, fep->pdev->dev.driver->name,
2570 		sizeof(info->driver));
2571 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2572 }
2573 
2574 static int fec_enet_get_regs_len(struct net_device *ndev)
2575 {
2576 	struct fec_enet_private *fep = netdev_priv(ndev);
2577 	struct resource *r;
2578 	int s = 0;
2579 
2580 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2581 	if (r)
2582 		s = resource_size(r);
2583 
2584 	return s;
2585 }
2586 
2587 /* List of registers that can be safety be read to dump them with ethtool */
2588 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2589 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2590 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2591 static __u32 fec_enet_register_version = 2;
2592 static u32 fec_enet_register_offset[] = {
2593 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2594 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2595 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2596 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2597 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2598 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2599 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2600 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2601 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2602 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2603 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2604 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2605 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2606 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2607 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2608 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2609 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2610 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2611 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2612 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2613 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2614 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2615 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2616 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2617 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2618 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2619 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2620 };
2621 /* for i.MX6ul */
2622 static u32 fec_enet_register_offset_6ul[] = {
2623 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2624 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2625 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2626 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2627 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2628 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2629 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2630 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2631 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2632 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2633 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2634 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2635 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2636 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2637 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2638 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2639 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2640 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2641 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2642 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2643 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2644 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2645 };
2646 #else
2647 static __u32 fec_enet_register_version = 1;
2648 static u32 fec_enet_register_offset[] = {
2649 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2650 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2651 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2652 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2653 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2654 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2655 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2656 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2657 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2658 };
2659 #endif
2660 
2661 static void fec_enet_get_regs(struct net_device *ndev,
2662 			      struct ethtool_regs *regs, void *regbuf)
2663 {
2664 	struct fec_enet_private *fep = netdev_priv(ndev);
2665 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2666 	struct device *dev = &fep->pdev->dev;
2667 	u32 *buf = (u32 *)regbuf;
2668 	u32 i, off;
2669 	int ret;
2670 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2671 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2672 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2673 	u32 *reg_list;
2674 	u32 reg_cnt;
2675 
2676 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2677 		reg_list = fec_enet_register_offset;
2678 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2679 	} else {
2680 		reg_list = fec_enet_register_offset_6ul;
2681 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2682 	}
2683 #else
2684 	/* coldfire */
2685 	static u32 *reg_list = fec_enet_register_offset;
2686 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2687 #endif
2688 	ret = pm_runtime_resume_and_get(dev);
2689 	if (ret < 0)
2690 		return;
2691 
2692 	regs->version = fec_enet_register_version;
2693 
2694 	memset(buf, 0, regs->len);
2695 
2696 	for (i = 0; i < reg_cnt; i++) {
2697 		off = reg_list[i];
2698 
2699 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2700 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2701 			continue;
2702 
2703 		off >>= 2;
2704 		buf[off] = readl(&theregs[off]);
2705 	}
2706 
2707 	pm_runtime_mark_last_busy(dev);
2708 	pm_runtime_put_autosuspend(dev);
2709 }
2710 
2711 static int fec_enet_get_ts_info(struct net_device *ndev,
2712 				struct ethtool_ts_info *info)
2713 {
2714 	struct fec_enet_private *fep = netdev_priv(ndev);
2715 
2716 	if (fep->bufdesc_ex) {
2717 
2718 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2719 					SOF_TIMESTAMPING_RX_SOFTWARE |
2720 					SOF_TIMESTAMPING_SOFTWARE |
2721 					SOF_TIMESTAMPING_TX_HARDWARE |
2722 					SOF_TIMESTAMPING_RX_HARDWARE |
2723 					SOF_TIMESTAMPING_RAW_HARDWARE;
2724 		if (fep->ptp_clock)
2725 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2726 		else
2727 			info->phc_index = -1;
2728 
2729 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2730 				 (1 << HWTSTAMP_TX_ON);
2731 
2732 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2733 				   (1 << HWTSTAMP_FILTER_ALL);
2734 		return 0;
2735 	} else {
2736 		return ethtool_op_get_ts_info(ndev, info);
2737 	}
2738 }
2739 
2740 #if !defined(CONFIG_M5272)
2741 
2742 static void fec_enet_get_pauseparam(struct net_device *ndev,
2743 				    struct ethtool_pauseparam *pause)
2744 {
2745 	struct fec_enet_private *fep = netdev_priv(ndev);
2746 
2747 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2748 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2749 	pause->rx_pause = pause->tx_pause;
2750 }
2751 
2752 static int fec_enet_set_pauseparam(struct net_device *ndev,
2753 				   struct ethtool_pauseparam *pause)
2754 {
2755 	struct fec_enet_private *fep = netdev_priv(ndev);
2756 
2757 	if (!ndev->phydev)
2758 		return -ENODEV;
2759 
2760 	if (pause->tx_pause != pause->rx_pause) {
2761 		netdev_info(ndev,
2762 			"hardware only support enable/disable both tx and rx");
2763 		return -EINVAL;
2764 	}
2765 
2766 	fep->pause_flag = 0;
2767 
2768 	/* tx pause must be same as rx pause */
2769 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2770 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2771 
2772 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2773 			  pause->autoneg);
2774 
2775 	if (pause->autoneg) {
2776 		if (netif_running(ndev))
2777 			fec_stop(ndev);
2778 		phy_start_aneg(ndev->phydev);
2779 	}
2780 	if (netif_running(ndev)) {
2781 		napi_disable(&fep->napi);
2782 		netif_tx_lock_bh(ndev);
2783 		fec_restart(ndev);
2784 		netif_tx_wake_all_queues(ndev);
2785 		netif_tx_unlock_bh(ndev);
2786 		napi_enable(&fep->napi);
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static const struct fec_stat {
2793 	char name[ETH_GSTRING_LEN];
2794 	u16 offset;
2795 } fec_stats[] = {
2796 	/* RMON TX */
2797 	{ "tx_dropped", RMON_T_DROP },
2798 	{ "tx_packets", RMON_T_PACKETS },
2799 	{ "tx_broadcast", RMON_T_BC_PKT },
2800 	{ "tx_multicast", RMON_T_MC_PKT },
2801 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2802 	{ "tx_undersize", RMON_T_UNDERSIZE },
2803 	{ "tx_oversize", RMON_T_OVERSIZE },
2804 	{ "tx_fragment", RMON_T_FRAG },
2805 	{ "tx_jabber", RMON_T_JAB },
2806 	{ "tx_collision", RMON_T_COL },
2807 	{ "tx_64byte", RMON_T_P64 },
2808 	{ "tx_65to127byte", RMON_T_P65TO127 },
2809 	{ "tx_128to255byte", RMON_T_P128TO255 },
2810 	{ "tx_256to511byte", RMON_T_P256TO511 },
2811 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2812 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2813 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2814 	{ "tx_octets", RMON_T_OCTETS },
2815 
2816 	/* IEEE TX */
2817 	{ "IEEE_tx_drop", IEEE_T_DROP },
2818 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2819 	{ "IEEE_tx_1col", IEEE_T_1COL },
2820 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2821 	{ "IEEE_tx_def", IEEE_T_DEF },
2822 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2823 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2824 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2825 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2826 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2827 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2828 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2829 
2830 	/* RMON RX */
2831 	{ "rx_packets", RMON_R_PACKETS },
2832 	{ "rx_broadcast", RMON_R_BC_PKT },
2833 	{ "rx_multicast", RMON_R_MC_PKT },
2834 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2835 	{ "rx_undersize", RMON_R_UNDERSIZE },
2836 	{ "rx_oversize", RMON_R_OVERSIZE },
2837 	{ "rx_fragment", RMON_R_FRAG },
2838 	{ "rx_jabber", RMON_R_JAB },
2839 	{ "rx_64byte", RMON_R_P64 },
2840 	{ "rx_65to127byte", RMON_R_P65TO127 },
2841 	{ "rx_128to255byte", RMON_R_P128TO255 },
2842 	{ "rx_256to511byte", RMON_R_P256TO511 },
2843 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2844 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2845 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2846 	{ "rx_octets", RMON_R_OCTETS },
2847 
2848 	/* IEEE RX */
2849 	{ "IEEE_rx_drop", IEEE_R_DROP },
2850 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2851 	{ "IEEE_rx_crc", IEEE_R_CRC },
2852 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2853 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2854 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2855 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2856 };
2857 
2858 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2859 
2860 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2861 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2862 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2863 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2864 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2865 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2866 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2867 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2868 };
2869 
2870 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2871 {
2872 	struct fec_enet_private *fep = netdev_priv(dev);
2873 	int i;
2874 
2875 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2876 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2877 }
2878 
2879 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2880 {
2881 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2882 	struct fec_enet_priv_rx_q *rxq;
2883 	int i, j;
2884 
2885 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2886 		rxq = fep->rx_queue[i];
2887 
2888 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2889 			xdp_stats[j] += rxq->stats[j];
2890 	}
2891 
2892 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2893 }
2894 
2895 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2896 {
2897 #ifdef CONFIG_PAGE_POOL_STATS
2898 	struct page_pool_stats stats = {};
2899 	struct fec_enet_priv_rx_q *rxq;
2900 	int i;
2901 
2902 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2903 		rxq = fep->rx_queue[i];
2904 
2905 		if (!rxq->page_pool)
2906 			continue;
2907 
2908 		page_pool_get_stats(rxq->page_pool, &stats);
2909 	}
2910 
2911 	page_pool_ethtool_stats_get(data, &stats);
2912 #endif
2913 }
2914 
2915 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2916 				       struct ethtool_stats *stats, u64 *data)
2917 {
2918 	struct fec_enet_private *fep = netdev_priv(dev);
2919 
2920 	if (netif_running(dev))
2921 		fec_enet_update_ethtool_stats(dev);
2922 
2923 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2924 	data += FEC_STATS_SIZE / sizeof(u64);
2925 
2926 	fec_enet_get_xdp_stats(fep, data);
2927 	data += XDP_STATS_TOTAL;
2928 
2929 	fec_enet_page_pool_stats(fep, data);
2930 }
2931 
2932 static void fec_enet_get_strings(struct net_device *netdev,
2933 	u32 stringset, u8 *data)
2934 {
2935 	int i;
2936 	switch (stringset) {
2937 	case ETH_SS_STATS:
2938 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2939 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2940 			data += ETH_GSTRING_LEN;
2941 		}
2942 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2943 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2944 			data += ETH_GSTRING_LEN;
2945 		}
2946 		page_pool_ethtool_stats_get_strings(data);
2947 
2948 		break;
2949 	case ETH_SS_TEST:
2950 		net_selftest_get_strings(data);
2951 		break;
2952 	}
2953 }
2954 
2955 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2956 {
2957 	int count;
2958 
2959 	switch (sset) {
2960 	case ETH_SS_STATS:
2961 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2962 		count += page_pool_ethtool_stats_get_count();
2963 		return count;
2964 
2965 	case ETH_SS_TEST:
2966 		return net_selftest_get_count();
2967 	default:
2968 		return -EOPNOTSUPP;
2969 	}
2970 }
2971 
2972 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2973 {
2974 	struct fec_enet_private *fep = netdev_priv(dev);
2975 	struct fec_enet_priv_rx_q *rxq;
2976 	int i, j;
2977 
2978 	/* Disable MIB statistics counters */
2979 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2980 
2981 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2982 		writel(0, fep->hwp + fec_stats[i].offset);
2983 
2984 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2985 		rxq = fep->rx_queue[i];
2986 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2987 			rxq->stats[j] = 0;
2988 	}
2989 
2990 	/* Don't disable MIB statistics counters */
2991 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2992 }
2993 
2994 #else	/* !defined(CONFIG_M5272) */
2995 #define FEC_STATS_SIZE	0
2996 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2997 {
2998 }
2999 
3000 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3001 {
3002 }
3003 #endif /* !defined(CONFIG_M5272) */
3004 
3005 /* ITR clock source is enet system clock (clk_ahb).
3006  * TCTT unit is cycle_ns * 64 cycle
3007  * So, the ICTT value = X us / (cycle_ns * 64)
3008  */
3009 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3010 {
3011 	struct fec_enet_private *fep = netdev_priv(ndev);
3012 
3013 	return us * (fep->itr_clk_rate / 64000) / 1000;
3014 }
3015 
3016 /* Set threshold for interrupt coalescing */
3017 static void fec_enet_itr_coal_set(struct net_device *ndev)
3018 {
3019 	struct fec_enet_private *fep = netdev_priv(ndev);
3020 	int rx_itr, tx_itr;
3021 
3022 	/* Must be greater than zero to avoid unpredictable behavior */
3023 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3024 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3025 		return;
3026 
3027 	/* Select enet system clock as Interrupt Coalescing
3028 	 * timer Clock Source
3029 	 */
3030 	rx_itr = FEC_ITR_CLK_SEL;
3031 	tx_itr = FEC_ITR_CLK_SEL;
3032 
3033 	/* set ICFT and ICTT */
3034 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3035 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3036 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3037 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3038 
3039 	rx_itr |= FEC_ITR_EN;
3040 	tx_itr |= FEC_ITR_EN;
3041 
3042 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3043 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3044 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3045 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3046 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3047 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3048 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3049 	}
3050 }
3051 
3052 static int fec_enet_get_coalesce(struct net_device *ndev,
3053 				 struct ethtool_coalesce *ec,
3054 				 struct kernel_ethtool_coalesce *kernel_coal,
3055 				 struct netlink_ext_ack *extack)
3056 {
3057 	struct fec_enet_private *fep = netdev_priv(ndev);
3058 
3059 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3060 		return -EOPNOTSUPP;
3061 
3062 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3063 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3064 
3065 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3066 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3067 
3068 	return 0;
3069 }
3070 
3071 static int fec_enet_set_coalesce(struct net_device *ndev,
3072 				 struct ethtool_coalesce *ec,
3073 				 struct kernel_ethtool_coalesce *kernel_coal,
3074 				 struct netlink_ext_ack *extack)
3075 {
3076 	struct fec_enet_private *fep = netdev_priv(ndev);
3077 	struct device *dev = &fep->pdev->dev;
3078 	unsigned int cycle;
3079 
3080 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3081 		return -EOPNOTSUPP;
3082 
3083 	if (ec->rx_max_coalesced_frames > 255) {
3084 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3085 		return -EINVAL;
3086 	}
3087 
3088 	if (ec->tx_max_coalesced_frames > 255) {
3089 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3090 		return -EINVAL;
3091 	}
3092 
3093 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3094 	if (cycle > 0xFFFF) {
3095 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3096 		return -EINVAL;
3097 	}
3098 
3099 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3100 	if (cycle > 0xFFFF) {
3101 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3102 		return -EINVAL;
3103 	}
3104 
3105 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3106 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3107 
3108 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3109 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3110 
3111 	fec_enet_itr_coal_set(ndev);
3112 
3113 	return 0;
3114 }
3115 
3116 /* LPI Sleep Ts count base on tx clk (clk_ref).
3117  * The lpi sleep cnt value = X us / (cycle_ns).
3118  */
3119 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3120 {
3121 	struct fec_enet_private *fep = netdev_priv(ndev);
3122 
3123 	return us * (fep->clk_ref_rate / 1000) / 1000;
3124 }
3125 
3126 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3127 {
3128 	struct fec_enet_private *fep = netdev_priv(ndev);
3129 	struct ethtool_eee *p = &fep->eee;
3130 	unsigned int sleep_cycle, wake_cycle;
3131 	int ret = 0;
3132 
3133 	if (enable) {
3134 		ret = phy_init_eee(ndev->phydev, false);
3135 		if (ret)
3136 			return ret;
3137 
3138 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3139 		wake_cycle = sleep_cycle;
3140 	} else {
3141 		sleep_cycle = 0;
3142 		wake_cycle = 0;
3143 	}
3144 
3145 	p->tx_lpi_enabled = enable;
3146 	p->eee_enabled = enable;
3147 	p->eee_active = enable;
3148 
3149 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3150 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3151 
3152 	return 0;
3153 }
3154 
3155 static int
3156 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3157 {
3158 	struct fec_enet_private *fep = netdev_priv(ndev);
3159 	struct ethtool_eee *p = &fep->eee;
3160 
3161 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3162 		return -EOPNOTSUPP;
3163 
3164 	if (!netif_running(ndev))
3165 		return -ENETDOWN;
3166 
3167 	edata->eee_enabled = p->eee_enabled;
3168 	edata->eee_active = p->eee_active;
3169 	edata->tx_lpi_timer = p->tx_lpi_timer;
3170 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3171 
3172 	return phy_ethtool_get_eee(ndev->phydev, edata);
3173 }
3174 
3175 static int
3176 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3177 {
3178 	struct fec_enet_private *fep = netdev_priv(ndev);
3179 	struct ethtool_eee *p = &fep->eee;
3180 	int ret = 0;
3181 
3182 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3183 		return -EOPNOTSUPP;
3184 
3185 	if (!netif_running(ndev))
3186 		return -ENETDOWN;
3187 
3188 	p->tx_lpi_timer = edata->tx_lpi_timer;
3189 
3190 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3191 	    !edata->tx_lpi_timer)
3192 		ret = fec_enet_eee_mode_set(ndev, false);
3193 	else
3194 		ret = fec_enet_eee_mode_set(ndev, true);
3195 
3196 	if (ret)
3197 		return ret;
3198 
3199 	return phy_ethtool_set_eee(ndev->phydev, edata);
3200 }
3201 
3202 static void
3203 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3204 {
3205 	struct fec_enet_private *fep = netdev_priv(ndev);
3206 
3207 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3208 		wol->supported = WAKE_MAGIC;
3209 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3210 	} else {
3211 		wol->supported = wol->wolopts = 0;
3212 	}
3213 }
3214 
3215 static int
3216 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3217 {
3218 	struct fec_enet_private *fep = netdev_priv(ndev);
3219 
3220 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3221 		return -EINVAL;
3222 
3223 	if (wol->wolopts & ~WAKE_MAGIC)
3224 		return -EINVAL;
3225 
3226 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3227 	if (device_may_wakeup(&ndev->dev))
3228 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3229 	else
3230 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3231 
3232 	return 0;
3233 }
3234 
3235 static const struct ethtool_ops fec_enet_ethtool_ops = {
3236 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3237 				     ETHTOOL_COALESCE_MAX_FRAMES,
3238 	.get_drvinfo		= fec_enet_get_drvinfo,
3239 	.get_regs_len		= fec_enet_get_regs_len,
3240 	.get_regs		= fec_enet_get_regs,
3241 	.nway_reset		= phy_ethtool_nway_reset,
3242 	.get_link		= ethtool_op_get_link,
3243 	.get_coalesce		= fec_enet_get_coalesce,
3244 	.set_coalesce		= fec_enet_set_coalesce,
3245 #ifndef CONFIG_M5272
3246 	.get_pauseparam		= fec_enet_get_pauseparam,
3247 	.set_pauseparam		= fec_enet_set_pauseparam,
3248 	.get_strings		= fec_enet_get_strings,
3249 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3250 	.get_sset_count		= fec_enet_get_sset_count,
3251 #endif
3252 	.get_ts_info		= fec_enet_get_ts_info,
3253 	.get_wol		= fec_enet_get_wol,
3254 	.set_wol		= fec_enet_set_wol,
3255 	.get_eee		= fec_enet_get_eee,
3256 	.set_eee		= fec_enet_set_eee,
3257 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3258 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3259 	.self_test		= net_selftest,
3260 };
3261 
3262 static void fec_enet_free_buffers(struct net_device *ndev)
3263 {
3264 	struct fec_enet_private *fep = netdev_priv(ndev);
3265 	unsigned int i;
3266 	struct fec_enet_priv_tx_q *txq;
3267 	struct fec_enet_priv_rx_q *rxq;
3268 	unsigned int q;
3269 
3270 	for (q = 0; q < fep->num_rx_queues; q++) {
3271 		rxq = fep->rx_queue[q];
3272 		for (i = 0; i < rxq->bd.ring_size; i++)
3273 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3274 
3275 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3276 			rxq->stats[i] = 0;
3277 
3278 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3279 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3280 		page_pool_destroy(rxq->page_pool);
3281 		rxq->page_pool = NULL;
3282 	}
3283 
3284 	for (q = 0; q < fep->num_tx_queues; q++) {
3285 		txq = fep->tx_queue[q];
3286 		for (i = 0; i < txq->bd.ring_size; i++) {
3287 			kfree(txq->tx_bounce[i]);
3288 			txq->tx_bounce[i] = NULL;
3289 
3290 			if (!txq->tx_buf[i].buf_p) {
3291 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3292 				continue;
3293 			}
3294 
3295 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3296 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3297 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3298 				xdp_return_frame(txq->tx_buf[i].buf_p);
3299 			} else {
3300 				struct page *page = txq->tx_buf[i].buf_p;
3301 
3302 				page_pool_put_page(page->pp, page, 0, false);
3303 			}
3304 
3305 			txq->tx_buf[i].buf_p = NULL;
3306 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3307 		}
3308 	}
3309 }
3310 
3311 static void fec_enet_free_queue(struct net_device *ndev)
3312 {
3313 	struct fec_enet_private *fep = netdev_priv(ndev);
3314 	int i;
3315 	struct fec_enet_priv_tx_q *txq;
3316 
3317 	for (i = 0; i < fep->num_tx_queues; i++)
3318 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3319 			txq = fep->tx_queue[i];
3320 			dma_free_coherent(&fep->pdev->dev,
3321 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3322 					  txq->tso_hdrs,
3323 					  txq->tso_hdrs_dma);
3324 		}
3325 
3326 	for (i = 0; i < fep->num_rx_queues; i++)
3327 		kfree(fep->rx_queue[i]);
3328 	for (i = 0; i < fep->num_tx_queues; i++)
3329 		kfree(fep->tx_queue[i]);
3330 }
3331 
3332 static int fec_enet_alloc_queue(struct net_device *ndev)
3333 {
3334 	struct fec_enet_private *fep = netdev_priv(ndev);
3335 	int i;
3336 	int ret = 0;
3337 	struct fec_enet_priv_tx_q *txq;
3338 
3339 	for (i = 0; i < fep->num_tx_queues; i++) {
3340 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3341 		if (!txq) {
3342 			ret = -ENOMEM;
3343 			goto alloc_failed;
3344 		}
3345 
3346 		fep->tx_queue[i] = txq;
3347 		txq->bd.ring_size = TX_RING_SIZE;
3348 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3349 
3350 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3351 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3352 
3353 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3354 					txq->bd.ring_size * TSO_HEADER_SIZE,
3355 					&txq->tso_hdrs_dma,
3356 					GFP_KERNEL);
3357 		if (!txq->tso_hdrs) {
3358 			ret = -ENOMEM;
3359 			goto alloc_failed;
3360 		}
3361 	}
3362 
3363 	for (i = 0; i < fep->num_rx_queues; i++) {
3364 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3365 					   GFP_KERNEL);
3366 		if (!fep->rx_queue[i]) {
3367 			ret = -ENOMEM;
3368 			goto alloc_failed;
3369 		}
3370 
3371 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3372 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3373 	}
3374 	return ret;
3375 
3376 alloc_failed:
3377 	fec_enet_free_queue(ndev);
3378 	return ret;
3379 }
3380 
3381 static int
3382 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3383 {
3384 	struct fec_enet_private *fep = netdev_priv(ndev);
3385 	struct fec_enet_priv_rx_q *rxq;
3386 	dma_addr_t phys_addr;
3387 	struct bufdesc	*bdp;
3388 	struct page *page;
3389 	int i, err;
3390 
3391 	rxq = fep->rx_queue[queue];
3392 	bdp = rxq->bd.base;
3393 
3394 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3395 	if (err < 0) {
3396 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3397 		return err;
3398 	}
3399 
3400 	for (i = 0; i < rxq->bd.ring_size; i++) {
3401 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3402 		if (!page)
3403 			goto err_alloc;
3404 
3405 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3406 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3407 
3408 		rxq->rx_skb_info[i].page = page;
3409 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3410 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3411 
3412 		if (fep->bufdesc_ex) {
3413 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3414 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3415 		}
3416 
3417 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3418 	}
3419 
3420 	/* Set the last buffer to wrap. */
3421 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3422 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3423 	return 0;
3424 
3425  err_alloc:
3426 	fec_enet_free_buffers(ndev);
3427 	return -ENOMEM;
3428 }
3429 
3430 static int
3431 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3432 {
3433 	struct fec_enet_private *fep = netdev_priv(ndev);
3434 	unsigned int i;
3435 	struct bufdesc  *bdp;
3436 	struct fec_enet_priv_tx_q *txq;
3437 
3438 	txq = fep->tx_queue[queue];
3439 	bdp = txq->bd.base;
3440 	for (i = 0; i < txq->bd.ring_size; i++) {
3441 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3442 		if (!txq->tx_bounce[i])
3443 			goto err_alloc;
3444 
3445 		bdp->cbd_sc = cpu_to_fec16(0);
3446 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3447 
3448 		if (fep->bufdesc_ex) {
3449 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3450 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3451 		}
3452 
3453 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3454 	}
3455 
3456 	/* Set the last buffer to wrap. */
3457 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3458 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3459 
3460 	return 0;
3461 
3462  err_alloc:
3463 	fec_enet_free_buffers(ndev);
3464 	return -ENOMEM;
3465 }
3466 
3467 static int fec_enet_alloc_buffers(struct net_device *ndev)
3468 {
3469 	struct fec_enet_private *fep = netdev_priv(ndev);
3470 	unsigned int i;
3471 
3472 	for (i = 0; i < fep->num_rx_queues; i++)
3473 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3474 			return -ENOMEM;
3475 
3476 	for (i = 0; i < fep->num_tx_queues; i++)
3477 		if (fec_enet_alloc_txq_buffers(ndev, i))
3478 			return -ENOMEM;
3479 	return 0;
3480 }
3481 
3482 static int
3483 fec_enet_open(struct net_device *ndev)
3484 {
3485 	struct fec_enet_private *fep = netdev_priv(ndev);
3486 	int ret;
3487 	bool reset_again;
3488 
3489 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3490 	if (ret < 0)
3491 		return ret;
3492 
3493 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3494 	ret = fec_enet_clk_enable(ndev, true);
3495 	if (ret)
3496 		goto clk_enable;
3497 
3498 	/* During the first fec_enet_open call the PHY isn't probed at this
3499 	 * point. Therefore the phy_reset_after_clk_enable() call within
3500 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3501 	 * sure the PHY is working correctly we check if we need to reset again
3502 	 * later when the PHY is probed
3503 	 */
3504 	if (ndev->phydev && ndev->phydev->drv)
3505 		reset_again = false;
3506 	else
3507 		reset_again = true;
3508 
3509 	/* I should reset the ring buffers here, but I don't yet know
3510 	 * a simple way to do that.
3511 	 */
3512 
3513 	ret = fec_enet_alloc_buffers(ndev);
3514 	if (ret)
3515 		goto err_enet_alloc;
3516 
3517 	/* Init MAC prior to mii bus probe */
3518 	fec_restart(ndev);
3519 
3520 	/* Call phy_reset_after_clk_enable() again if it failed during
3521 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3522 	 */
3523 	if (reset_again)
3524 		fec_enet_phy_reset_after_clk_enable(ndev);
3525 
3526 	/* Probe and connect to PHY when open the interface */
3527 	ret = fec_enet_mii_probe(ndev);
3528 	if (ret)
3529 		goto err_enet_mii_probe;
3530 
3531 	if (fep->quirks & FEC_QUIRK_ERR006687)
3532 		imx6q_cpuidle_fec_irqs_used();
3533 
3534 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3535 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3536 
3537 	napi_enable(&fep->napi);
3538 	phy_start(ndev->phydev);
3539 	netif_tx_start_all_queues(ndev);
3540 
3541 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3542 				 FEC_WOL_FLAG_ENABLE);
3543 
3544 	return 0;
3545 
3546 err_enet_mii_probe:
3547 	fec_enet_free_buffers(ndev);
3548 err_enet_alloc:
3549 	fec_enet_clk_enable(ndev, false);
3550 clk_enable:
3551 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3552 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3553 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3554 	return ret;
3555 }
3556 
3557 static int
3558 fec_enet_close(struct net_device *ndev)
3559 {
3560 	struct fec_enet_private *fep = netdev_priv(ndev);
3561 
3562 	phy_stop(ndev->phydev);
3563 
3564 	if (netif_device_present(ndev)) {
3565 		napi_disable(&fep->napi);
3566 		netif_tx_disable(ndev);
3567 		fec_stop(ndev);
3568 	}
3569 
3570 	phy_disconnect(ndev->phydev);
3571 
3572 	if (fep->quirks & FEC_QUIRK_ERR006687)
3573 		imx6q_cpuidle_fec_irqs_unused();
3574 
3575 	fec_enet_update_ethtool_stats(ndev);
3576 
3577 	fec_enet_clk_enable(ndev, false);
3578 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3579 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3580 
3581 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3582 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3583 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3584 
3585 	fec_enet_free_buffers(ndev);
3586 
3587 	return 0;
3588 }
3589 
3590 /* Set or clear the multicast filter for this adaptor.
3591  * Skeleton taken from sunlance driver.
3592  * The CPM Ethernet implementation allows Multicast as well as individual
3593  * MAC address filtering.  Some of the drivers check to make sure it is
3594  * a group multicast address, and discard those that are not.  I guess I
3595  * will do the same for now, but just remove the test if you want
3596  * individual filtering as well (do the upper net layers want or support
3597  * this kind of feature?).
3598  */
3599 
3600 #define FEC_HASH_BITS	6		/* #bits in hash */
3601 
3602 static void set_multicast_list(struct net_device *ndev)
3603 {
3604 	struct fec_enet_private *fep = netdev_priv(ndev);
3605 	struct netdev_hw_addr *ha;
3606 	unsigned int crc, tmp;
3607 	unsigned char hash;
3608 	unsigned int hash_high = 0, hash_low = 0;
3609 
3610 	if (ndev->flags & IFF_PROMISC) {
3611 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3612 		tmp |= 0x8;
3613 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3614 		return;
3615 	}
3616 
3617 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3618 	tmp &= ~0x8;
3619 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3620 
3621 	if (ndev->flags & IFF_ALLMULTI) {
3622 		/* Catch all multicast addresses, so set the
3623 		 * filter to all 1's
3624 		 */
3625 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3626 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3627 
3628 		return;
3629 	}
3630 
3631 	/* Add the addresses in hash register */
3632 	netdev_for_each_mc_addr(ha, ndev) {
3633 		/* calculate crc32 value of mac address */
3634 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3635 
3636 		/* only upper 6 bits (FEC_HASH_BITS) are used
3637 		 * which point to specific bit in the hash registers
3638 		 */
3639 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3640 
3641 		if (hash > 31)
3642 			hash_high |= 1 << (hash - 32);
3643 		else
3644 			hash_low |= 1 << hash;
3645 	}
3646 
3647 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3648 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3649 }
3650 
3651 /* Set a MAC change in hardware. */
3652 static int
3653 fec_set_mac_address(struct net_device *ndev, void *p)
3654 {
3655 	struct fec_enet_private *fep = netdev_priv(ndev);
3656 	struct sockaddr *addr = p;
3657 
3658 	if (addr) {
3659 		if (!is_valid_ether_addr(addr->sa_data))
3660 			return -EADDRNOTAVAIL;
3661 		eth_hw_addr_set(ndev, addr->sa_data);
3662 	}
3663 
3664 	/* Add netif status check here to avoid system hang in below case:
3665 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3666 	 * After ethx down, fec all clocks are gated off and then register
3667 	 * access causes system hang.
3668 	 */
3669 	if (!netif_running(ndev))
3670 		return 0;
3671 
3672 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3673 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3674 		fep->hwp + FEC_ADDR_LOW);
3675 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3676 		fep->hwp + FEC_ADDR_HIGH);
3677 	return 0;
3678 }
3679 
3680 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3681 	netdev_features_t features)
3682 {
3683 	struct fec_enet_private *fep = netdev_priv(netdev);
3684 	netdev_features_t changed = features ^ netdev->features;
3685 
3686 	netdev->features = features;
3687 
3688 	/* Receive checksum has been changed */
3689 	if (changed & NETIF_F_RXCSUM) {
3690 		if (features & NETIF_F_RXCSUM)
3691 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3692 		else
3693 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3694 	}
3695 }
3696 
3697 static int fec_set_features(struct net_device *netdev,
3698 	netdev_features_t features)
3699 {
3700 	struct fec_enet_private *fep = netdev_priv(netdev);
3701 	netdev_features_t changed = features ^ netdev->features;
3702 
3703 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3704 		napi_disable(&fep->napi);
3705 		netif_tx_lock_bh(netdev);
3706 		fec_stop(netdev);
3707 		fec_enet_set_netdev_features(netdev, features);
3708 		fec_restart(netdev);
3709 		netif_tx_wake_all_queues(netdev);
3710 		netif_tx_unlock_bh(netdev);
3711 		napi_enable(&fep->napi);
3712 	} else {
3713 		fec_enet_set_netdev_features(netdev, features);
3714 	}
3715 
3716 	return 0;
3717 }
3718 
3719 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3720 				 struct net_device *sb_dev)
3721 {
3722 	struct fec_enet_private *fep = netdev_priv(ndev);
3723 	u16 vlan_tag = 0;
3724 
3725 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3726 		return netdev_pick_tx(ndev, skb, NULL);
3727 
3728 	/* VLAN is present in the payload.*/
3729 	if (eth_type_vlan(skb->protocol)) {
3730 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3731 
3732 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3733 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3734 	} else if (skb_vlan_tag_present(skb)) {
3735 		vlan_tag = skb->vlan_tci;
3736 	} else {
3737 		return vlan_tag;
3738 	}
3739 
3740 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3741 }
3742 
3743 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3744 {
3745 	struct fec_enet_private *fep = netdev_priv(dev);
3746 	bool is_run = netif_running(dev);
3747 	struct bpf_prog *old_prog;
3748 
3749 	switch (bpf->command) {
3750 	case XDP_SETUP_PROG:
3751 		/* No need to support the SoCs that require to
3752 		 * do the frame swap because the performance wouldn't be
3753 		 * better than the skb mode.
3754 		 */
3755 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3756 			return -EOPNOTSUPP;
3757 
3758 		if (!bpf->prog)
3759 			xdp_features_clear_redirect_target(dev);
3760 
3761 		if (is_run) {
3762 			napi_disable(&fep->napi);
3763 			netif_tx_disable(dev);
3764 		}
3765 
3766 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3767 		if (old_prog)
3768 			bpf_prog_put(old_prog);
3769 
3770 		fec_restart(dev);
3771 
3772 		if (is_run) {
3773 			napi_enable(&fep->napi);
3774 			netif_tx_start_all_queues(dev);
3775 		}
3776 
3777 		if (bpf->prog)
3778 			xdp_features_set_redirect_target(dev, false);
3779 
3780 		return 0;
3781 
3782 	case XDP_SETUP_XSK_POOL:
3783 		return -EOPNOTSUPP;
3784 
3785 	default:
3786 		return -EOPNOTSUPP;
3787 	}
3788 }
3789 
3790 static int
3791 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3792 {
3793 	if (unlikely(index < 0))
3794 		return 0;
3795 
3796 	return (index % fep->num_tx_queues);
3797 }
3798 
3799 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3800 				   struct fec_enet_priv_tx_q *txq,
3801 				   void *frame, u32 dma_sync_len,
3802 				   bool ndo_xmit)
3803 {
3804 	unsigned int index, status, estatus;
3805 	struct bufdesc *bdp;
3806 	dma_addr_t dma_addr;
3807 	int entries_free;
3808 	u16 frame_len;
3809 
3810 	entries_free = fec_enet_get_free_txdesc_num(txq);
3811 	if (entries_free < MAX_SKB_FRAGS + 1) {
3812 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3813 		return -EBUSY;
3814 	}
3815 
3816 	/* Fill in a Tx ring entry */
3817 	bdp = txq->bd.cur;
3818 	status = fec16_to_cpu(bdp->cbd_sc);
3819 	status &= ~BD_ENET_TX_STATS;
3820 
3821 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3822 
3823 	if (ndo_xmit) {
3824 		struct xdp_frame *xdpf = frame;
3825 
3826 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3827 					  xdpf->len, DMA_TO_DEVICE);
3828 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3829 			return -ENOMEM;
3830 
3831 		frame_len = xdpf->len;
3832 		txq->tx_buf[index].buf_p = xdpf;
3833 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3834 	} else {
3835 		struct xdp_buff *xdpb = frame;
3836 		struct page *page;
3837 
3838 		page = virt_to_page(xdpb->data);
3839 		dma_addr = page_pool_get_dma_addr(page) +
3840 			   (xdpb->data - xdpb->data_hard_start);
3841 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3842 					   dma_sync_len, DMA_BIDIRECTIONAL);
3843 		frame_len = xdpb->data_end - xdpb->data;
3844 		txq->tx_buf[index].buf_p = page;
3845 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3846 	}
3847 
3848 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3849 	if (fep->bufdesc_ex)
3850 		estatus = BD_ENET_TX_INT;
3851 
3852 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3853 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3854 
3855 	if (fep->bufdesc_ex) {
3856 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3857 
3858 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3859 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3860 
3861 		ebdp->cbd_bdu = 0;
3862 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3863 	}
3864 
3865 	/* Make sure the updates to rest of the descriptor are performed before
3866 	 * transferring ownership.
3867 	 */
3868 	dma_wmb();
3869 
3870 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3871 	 * it's the last BD of the frame, and to put the CRC on the end.
3872 	 */
3873 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3874 	bdp->cbd_sc = cpu_to_fec16(status);
3875 
3876 	/* If this was the last BD in the ring, start at the beginning again. */
3877 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3878 
3879 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3880 	dma_wmb();
3881 
3882 	txq->bd.cur = bdp;
3883 
3884 	/* Trigger transmission start */
3885 	writel(0, txq->bd.reg_desc_active);
3886 
3887 	return 0;
3888 }
3889 
3890 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3891 				int cpu, struct xdp_buff *xdp,
3892 				u32 dma_sync_len)
3893 {
3894 	struct fec_enet_priv_tx_q *txq;
3895 	struct netdev_queue *nq;
3896 	int queue, ret;
3897 
3898 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3899 	txq = fep->tx_queue[queue];
3900 	nq = netdev_get_tx_queue(fep->netdev, queue);
3901 
3902 	__netif_tx_lock(nq, cpu);
3903 
3904 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3905 	txq_trans_cond_update(nq);
3906 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3907 
3908 	__netif_tx_unlock(nq);
3909 
3910 	return ret;
3911 }
3912 
3913 static int fec_enet_xdp_xmit(struct net_device *dev,
3914 			     int num_frames,
3915 			     struct xdp_frame **frames,
3916 			     u32 flags)
3917 {
3918 	struct fec_enet_private *fep = netdev_priv(dev);
3919 	struct fec_enet_priv_tx_q *txq;
3920 	int cpu = smp_processor_id();
3921 	unsigned int sent_frames = 0;
3922 	struct netdev_queue *nq;
3923 	unsigned int queue;
3924 	int i;
3925 
3926 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3927 	txq = fep->tx_queue[queue];
3928 	nq = netdev_get_tx_queue(fep->netdev, queue);
3929 
3930 	__netif_tx_lock(nq, cpu);
3931 
3932 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3933 	txq_trans_cond_update(nq);
3934 	for (i = 0; i < num_frames; i++) {
3935 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3936 			break;
3937 		sent_frames++;
3938 	}
3939 
3940 	__netif_tx_unlock(nq);
3941 
3942 	return sent_frames;
3943 }
3944 
3945 static int fec_hwtstamp_get(struct net_device *ndev,
3946 			    struct kernel_hwtstamp_config *config)
3947 {
3948 	struct fec_enet_private *fep = netdev_priv(ndev);
3949 
3950 	if (!netif_running(ndev))
3951 		return -EINVAL;
3952 
3953 	if (!fep->bufdesc_ex)
3954 		return -EOPNOTSUPP;
3955 
3956 	fec_ptp_get(ndev, config);
3957 
3958 	return 0;
3959 }
3960 
3961 static int fec_hwtstamp_set(struct net_device *ndev,
3962 			    struct kernel_hwtstamp_config *config,
3963 			    struct netlink_ext_ack *extack)
3964 {
3965 	struct fec_enet_private *fep = netdev_priv(ndev);
3966 
3967 	if (!netif_running(ndev))
3968 		return -EINVAL;
3969 
3970 	if (!fep->bufdesc_ex)
3971 		return -EOPNOTSUPP;
3972 
3973 	return fec_ptp_set(ndev, config, extack);
3974 }
3975 
3976 static const struct net_device_ops fec_netdev_ops = {
3977 	.ndo_open		= fec_enet_open,
3978 	.ndo_stop		= fec_enet_close,
3979 	.ndo_start_xmit		= fec_enet_start_xmit,
3980 	.ndo_select_queue       = fec_enet_select_queue,
3981 	.ndo_set_rx_mode	= set_multicast_list,
3982 	.ndo_validate_addr	= eth_validate_addr,
3983 	.ndo_tx_timeout		= fec_timeout,
3984 	.ndo_set_mac_address	= fec_set_mac_address,
3985 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3986 	.ndo_set_features	= fec_set_features,
3987 	.ndo_bpf		= fec_enet_bpf,
3988 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3989 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
3990 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
3991 };
3992 
3993 static const unsigned short offset_des_active_rxq[] = {
3994 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3995 };
3996 
3997 static const unsigned short offset_des_active_txq[] = {
3998 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3999 };
4000 
4001  /*
4002   * XXX:  We need to clean up on failure exits here.
4003   *
4004   */
4005 static int fec_enet_init(struct net_device *ndev)
4006 {
4007 	struct fec_enet_private *fep = netdev_priv(ndev);
4008 	struct bufdesc *cbd_base;
4009 	dma_addr_t bd_dma;
4010 	int bd_size;
4011 	unsigned int i;
4012 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4013 			sizeof(struct bufdesc);
4014 	unsigned dsize_log2 = __fls(dsize);
4015 	int ret;
4016 
4017 	WARN_ON(dsize != (1 << dsize_log2));
4018 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4019 	fep->rx_align = 0xf;
4020 	fep->tx_align = 0xf;
4021 #else
4022 	fep->rx_align = 0x3;
4023 	fep->tx_align = 0x3;
4024 #endif
4025 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4026 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4027 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4028 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4029 
4030 	/* Check mask of the streaming and coherent API */
4031 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4032 	if (ret < 0) {
4033 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4034 		return ret;
4035 	}
4036 
4037 	ret = fec_enet_alloc_queue(ndev);
4038 	if (ret)
4039 		return ret;
4040 
4041 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4042 
4043 	/* Allocate memory for buffer descriptors. */
4044 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4045 				       GFP_KERNEL);
4046 	if (!cbd_base) {
4047 		ret = -ENOMEM;
4048 		goto free_queue_mem;
4049 	}
4050 
4051 	/* Get the Ethernet address */
4052 	ret = fec_get_mac(ndev);
4053 	if (ret)
4054 		goto free_queue_mem;
4055 
4056 	/* Set receive and transmit descriptor base. */
4057 	for (i = 0; i < fep->num_rx_queues; i++) {
4058 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4059 		unsigned size = dsize * rxq->bd.ring_size;
4060 
4061 		rxq->bd.qid = i;
4062 		rxq->bd.base = cbd_base;
4063 		rxq->bd.cur = cbd_base;
4064 		rxq->bd.dma = bd_dma;
4065 		rxq->bd.dsize = dsize;
4066 		rxq->bd.dsize_log2 = dsize_log2;
4067 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4068 		bd_dma += size;
4069 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4070 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4071 	}
4072 
4073 	for (i = 0; i < fep->num_tx_queues; i++) {
4074 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4075 		unsigned size = dsize * txq->bd.ring_size;
4076 
4077 		txq->bd.qid = i;
4078 		txq->bd.base = cbd_base;
4079 		txq->bd.cur = cbd_base;
4080 		txq->bd.dma = bd_dma;
4081 		txq->bd.dsize = dsize;
4082 		txq->bd.dsize_log2 = dsize_log2;
4083 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4084 		bd_dma += size;
4085 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4086 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4087 	}
4088 
4089 
4090 	/* The FEC Ethernet specific entries in the device structure */
4091 	ndev->watchdog_timeo = TX_TIMEOUT;
4092 	ndev->netdev_ops = &fec_netdev_ops;
4093 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4094 
4095 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4096 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4097 
4098 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4099 		/* enable hw VLAN support */
4100 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4101 
4102 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4103 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4104 
4105 		/* enable hw accelerator */
4106 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4107 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4108 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4109 	}
4110 
4111 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4112 		fep->tx_align = 0;
4113 		fep->rx_align = 0x3f;
4114 	}
4115 
4116 	ndev->hw_features = ndev->features;
4117 
4118 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4119 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4120 				     NETDEV_XDP_ACT_REDIRECT;
4121 
4122 	fec_restart(ndev);
4123 
4124 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4125 		fec_enet_clear_ethtool_stats(ndev);
4126 	else
4127 		fec_enet_update_ethtool_stats(ndev);
4128 
4129 	return 0;
4130 
4131 free_queue_mem:
4132 	fec_enet_free_queue(ndev);
4133 	return ret;
4134 }
4135 
4136 static void fec_enet_deinit(struct net_device *ndev)
4137 {
4138 	struct fec_enet_private *fep = netdev_priv(ndev);
4139 
4140 	netif_napi_del(&fep->napi);
4141 	fec_enet_free_queue(ndev);
4142 }
4143 
4144 #ifdef CONFIG_OF
4145 static int fec_reset_phy(struct platform_device *pdev)
4146 {
4147 	struct gpio_desc *phy_reset;
4148 	int msec = 1, phy_post_delay = 0;
4149 	struct device_node *np = pdev->dev.of_node;
4150 	int err;
4151 
4152 	if (!np)
4153 		return 0;
4154 
4155 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4156 	/* A sane reset duration should not be longer than 1s */
4157 	if (!err && msec > 1000)
4158 		msec = 1;
4159 
4160 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4161 	/* valid reset duration should be less than 1s */
4162 	if (!err && phy_post_delay > 1000)
4163 		return -EINVAL;
4164 
4165 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4166 					    GPIOD_OUT_HIGH);
4167 	if (IS_ERR(phy_reset))
4168 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4169 				     "failed to get phy-reset-gpios\n");
4170 
4171 	if (!phy_reset)
4172 		return 0;
4173 
4174 	if (msec > 20)
4175 		msleep(msec);
4176 	else
4177 		usleep_range(msec * 1000, msec * 1000 + 1000);
4178 
4179 	gpiod_set_value_cansleep(phy_reset, 0);
4180 
4181 	if (!phy_post_delay)
4182 		return 0;
4183 
4184 	if (phy_post_delay > 20)
4185 		msleep(phy_post_delay);
4186 	else
4187 		usleep_range(phy_post_delay * 1000,
4188 			     phy_post_delay * 1000 + 1000);
4189 
4190 	return 0;
4191 }
4192 #else /* CONFIG_OF */
4193 static int fec_reset_phy(struct platform_device *pdev)
4194 {
4195 	/*
4196 	 * In case of platform probe, the reset has been done
4197 	 * by machine code.
4198 	 */
4199 	return 0;
4200 }
4201 #endif /* CONFIG_OF */
4202 
4203 static void
4204 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4205 {
4206 	struct device_node *np = pdev->dev.of_node;
4207 
4208 	*num_tx = *num_rx = 1;
4209 
4210 	if (!np || !of_device_is_available(np))
4211 		return;
4212 
4213 	/* parse the num of tx and rx queues */
4214 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4215 
4216 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4217 
4218 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4219 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4220 			 *num_tx);
4221 		*num_tx = 1;
4222 		return;
4223 	}
4224 
4225 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4226 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4227 			 *num_rx);
4228 		*num_rx = 1;
4229 		return;
4230 	}
4231 
4232 }
4233 
4234 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4235 {
4236 	int irq_cnt = platform_irq_count(pdev);
4237 
4238 	if (irq_cnt > FEC_IRQ_NUM)
4239 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4240 	else if (irq_cnt == 2)
4241 		irq_cnt = 1;	/* last for pps */
4242 	else if (irq_cnt <= 0)
4243 		irq_cnt = 1;	/* At least 1 irq is needed */
4244 	return irq_cnt;
4245 }
4246 
4247 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4248 {
4249 	struct net_device *ndev = platform_get_drvdata(pdev);
4250 	struct fec_enet_private *fep = netdev_priv(ndev);
4251 
4252 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4253 		fep->wake_irq = fep->irq[2];
4254 	else
4255 		fep->wake_irq = fep->irq[0];
4256 }
4257 
4258 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4259 				   struct device_node *np)
4260 {
4261 	struct device_node *gpr_np;
4262 	u32 out_val[3];
4263 	int ret = 0;
4264 
4265 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4266 	if (!gpr_np)
4267 		return 0;
4268 
4269 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4270 					 ARRAY_SIZE(out_val));
4271 	if (ret) {
4272 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4273 		goto out;
4274 	}
4275 
4276 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4277 	if (IS_ERR(fep->stop_gpr.gpr)) {
4278 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4279 		ret = PTR_ERR(fep->stop_gpr.gpr);
4280 		fep->stop_gpr.gpr = NULL;
4281 		goto out;
4282 	}
4283 
4284 	fep->stop_gpr.reg = out_val[1];
4285 	fep->stop_gpr.bit = out_val[2];
4286 
4287 out:
4288 	of_node_put(gpr_np);
4289 
4290 	return ret;
4291 }
4292 
4293 static int
4294 fec_probe(struct platform_device *pdev)
4295 {
4296 	struct fec_enet_private *fep;
4297 	struct fec_platform_data *pdata;
4298 	phy_interface_t interface;
4299 	struct net_device *ndev;
4300 	int i, irq, ret = 0;
4301 	const struct of_device_id *of_id;
4302 	static int dev_id;
4303 	struct device_node *np = pdev->dev.of_node, *phy_node;
4304 	int num_tx_qs;
4305 	int num_rx_qs;
4306 	char irq_name[8];
4307 	int irq_cnt;
4308 	struct fec_devinfo *dev_info;
4309 
4310 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4311 
4312 	/* Init network device */
4313 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4314 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4315 	if (!ndev)
4316 		return -ENOMEM;
4317 
4318 	SET_NETDEV_DEV(ndev, &pdev->dev);
4319 
4320 	/* setup board info structure */
4321 	fep = netdev_priv(ndev);
4322 
4323 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4324 	if (of_id)
4325 		pdev->id_entry = of_id->data;
4326 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4327 	if (dev_info)
4328 		fep->quirks = dev_info->quirks;
4329 
4330 	fep->netdev = ndev;
4331 	fep->num_rx_queues = num_rx_qs;
4332 	fep->num_tx_queues = num_tx_qs;
4333 
4334 #if !defined(CONFIG_M5272)
4335 	/* default enable pause frame auto negotiation */
4336 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4337 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4338 #endif
4339 
4340 	/* Select default pin state */
4341 	pinctrl_pm_select_default_state(&pdev->dev);
4342 
4343 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4344 	if (IS_ERR(fep->hwp)) {
4345 		ret = PTR_ERR(fep->hwp);
4346 		goto failed_ioremap;
4347 	}
4348 
4349 	fep->pdev = pdev;
4350 	fep->dev_id = dev_id++;
4351 
4352 	platform_set_drvdata(pdev, ndev);
4353 
4354 	if ((of_machine_is_compatible("fsl,imx6q") ||
4355 	     of_machine_is_compatible("fsl,imx6dl")) &&
4356 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4357 		fep->quirks |= FEC_QUIRK_ERR006687;
4358 
4359 	ret = fec_enet_ipc_handle_init(fep);
4360 	if (ret)
4361 		goto failed_ipc_init;
4362 
4363 	if (of_property_read_bool(np, "fsl,magic-packet"))
4364 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4365 
4366 	ret = fec_enet_init_stop_mode(fep, np);
4367 	if (ret)
4368 		goto failed_stop_mode;
4369 
4370 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4371 	if (!phy_node && of_phy_is_fixed_link(np)) {
4372 		ret = of_phy_register_fixed_link(np);
4373 		if (ret < 0) {
4374 			dev_err(&pdev->dev,
4375 				"broken fixed-link specification\n");
4376 			goto failed_phy;
4377 		}
4378 		phy_node = of_node_get(np);
4379 	}
4380 	fep->phy_node = phy_node;
4381 
4382 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4383 	if (ret) {
4384 		pdata = dev_get_platdata(&pdev->dev);
4385 		if (pdata)
4386 			fep->phy_interface = pdata->phy;
4387 		else
4388 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4389 	} else {
4390 		fep->phy_interface = interface;
4391 	}
4392 
4393 	ret = fec_enet_parse_rgmii_delay(fep, np);
4394 	if (ret)
4395 		goto failed_rgmii_delay;
4396 
4397 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4398 	if (IS_ERR(fep->clk_ipg)) {
4399 		ret = PTR_ERR(fep->clk_ipg);
4400 		goto failed_clk;
4401 	}
4402 
4403 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4404 	if (IS_ERR(fep->clk_ahb)) {
4405 		ret = PTR_ERR(fep->clk_ahb);
4406 		goto failed_clk;
4407 	}
4408 
4409 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4410 
4411 	/* enet_out is optional, depends on board */
4412 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4413 	if (IS_ERR(fep->clk_enet_out)) {
4414 		ret = PTR_ERR(fep->clk_enet_out);
4415 		goto failed_clk;
4416 	}
4417 
4418 	fep->ptp_clk_on = false;
4419 	mutex_init(&fep->ptp_clk_mutex);
4420 
4421 	/* clk_ref is optional, depends on board */
4422 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4423 	if (IS_ERR(fep->clk_ref)) {
4424 		ret = PTR_ERR(fep->clk_ref);
4425 		goto failed_clk;
4426 	}
4427 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4428 
4429 	/* clk_2x_txclk is optional, depends on board */
4430 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4431 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4432 		if (IS_ERR(fep->clk_2x_txclk))
4433 			fep->clk_2x_txclk = NULL;
4434 	}
4435 
4436 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4437 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4438 	if (IS_ERR(fep->clk_ptp)) {
4439 		fep->clk_ptp = NULL;
4440 		fep->bufdesc_ex = false;
4441 	}
4442 
4443 	ret = fec_enet_clk_enable(ndev, true);
4444 	if (ret)
4445 		goto failed_clk;
4446 
4447 	ret = clk_prepare_enable(fep->clk_ipg);
4448 	if (ret)
4449 		goto failed_clk_ipg;
4450 	ret = clk_prepare_enable(fep->clk_ahb);
4451 	if (ret)
4452 		goto failed_clk_ahb;
4453 
4454 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4455 	if (!IS_ERR(fep->reg_phy)) {
4456 		ret = regulator_enable(fep->reg_phy);
4457 		if (ret) {
4458 			dev_err(&pdev->dev,
4459 				"Failed to enable phy regulator: %d\n", ret);
4460 			goto failed_regulator;
4461 		}
4462 	} else {
4463 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4464 			ret = -EPROBE_DEFER;
4465 			goto failed_regulator;
4466 		}
4467 		fep->reg_phy = NULL;
4468 	}
4469 
4470 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4471 	pm_runtime_use_autosuspend(&pdev->dev);
4472 	pm_runtime_get_noresume(&pdev->dev);
4473 	pm_runtime_set_active(&pdev->dev);
4474 	pm_runtime_enable(&pdev->dev);
4475 
4476 	ret = fec_reset_phy(pdev);
4477 	if (ret)
4478 		goto failed_reset;
4479 
4480 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4481 	if (fep->bufdesc_ex)
4482 		fec_ptp_init(pdev, irq_cnt);
4483 
4484 	ret = fec_enet_init(ndev);
4485 	if (ret)
4486 		goto failed_init;
4487 
4488 	for (i = 0; i < irq_cnt; i++) {
4489 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4490 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4491 		if (irq < 0)
4492 			irq = platform_get_irq(pdev, i);
4493 		if (irq < 0) {
4494 			ret = irq;
4495 			goto failed_irq;
4496 		}
4497 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4498 				       0, pdev->name, ndev);
4499 		if (ret)
4500 			goto failed_irq;
4501 
4502 		fep->irq[i] = irq;
4503 	}
4504 
4505 	/* Decide which interrupt line is wakeup capable */
4506 	fec_enet_get_wakeup_irq(pdev);
4507 
4508 	ret = fec_enet_mii_init(pdev);
4509 	if (ret)
4510 		goto failed_mii_init;
4511 
4512 	/* Carrier starts down, phylib will bring it up */
4513 	netif_carrier_off(ndev);
4514 	fec_enet_clk_enable(ndev, false);
4515 	pinctrl_pm_select_sleep_state(&pdev->dev);
4516 
4517 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4518 
4519 	ret = register_netdev(ndev);
4520 	if (ret)
4521 		goto failed_register;
4522 
4523 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4524 			   FEC_WOL_HAS_MAGIC_PACKET);
4525 
4526 	if (fep->bufdesc_ex && fep->ptp_clock)
4527 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4528 
4529 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4530 
4531 	pm_runtime_mark_last_busy(&pdev->dev);
4532 	pm_runtime_put_autosuspend(&pdev->dev);
4533 
4534 	return 0;
4535 
4536 failed_register:
4537 	fec_enet_mii_remove(fep);
4538 failed_mii_init:
4539 failed_irq:
4540 	fec_enet_deinit(ndev);
4541 failed_init:
4542 	fec_ptp_stop(pdev);
4543 failed_reset:
4544 	pm_runtime_put_noidle(&pdev->dev);
4545 	pm_runtime_disable(&pdev->dev);
4546 	if (fep->reg_phy)
4547 		regulator_disable(fep->reg_phy);
4548 failed_regulator:
4549 	clk_disable_unprepare(fep->clk_ahb);
4550 failed_clk_ahb:
4551 	clk_disable_unprepare(fep->clk_ipg);
4552 failed_clk_ipg:
4553 	fec_enet_clk_enable(ndev, false);
4554 failed_clk:
4555 failed_rgmii_delay:
4556 	if (of_phy_is_fixed_link(np))
4557 		of_phy_deregister_fixed_link(np);
4558 	of_node_put(phy_node);
4559 failed_stop_mode:
4560 failed_ipc_init:
4561 failed_phy:
4562 	dev_id--;
4563 failed_ioremap:
4564 	free_netdev(ndev);
4565 
4566 	return ret;
4567 }
4568 
4569 static void
4570 fec_drv_remove(struct platform_device *pdev)
4571 {
4572 	struct net_device *ndev = platform_get_drvdata(pdev);
4573 	struct fec_enet_private *fep = netdev_priv(ndev);
4574 	struct device_node *np = pdev->dev.of_node;
4575 	int ret;
4576 
4577 	ret = pm_runtime_get_sync(&pdev->dev);
4578 	if (ret < 0)
4579 		dev_err(&pdev->dev,
4580 			"Failed to resume device in remove callback (%pe)\n",
4581 			ERR_PTR(ret));
4582 
4583 	cancel_work_sync(&fep->tx_timeout_work);
4584 	fec_ptp_stop(pdev);
4585 	unregister_netdev(ndev);
4586 	fec_enet_mii_remove(fep);
4587 	if (fep->reg_phy)
4588 		regulator_disable(fep->reg_phy);
4589 
4590 	if (of_phy_is_fixed_link(np))
4591 		of_phy_deregister_fixed_link(np);
4592 	of_node_put(fep->phy_node);
4593 
4594 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4595 	 * disabling them again.
4596 	 */
4597 	if (ret >= 0) {
4598 		clk_disable_unprepare(fep->clk_ahb);
4599 		clk_disable_unprepare(fep->clk_ipg);
4600 	}
4601 	pm_runtime_put_noidle(&pdev->dev);
4602 	pm_runtime_disable(&pdev->dev);
4603 
4604 	fec_enet_deinit(ndev);
4605 	free_netdev(ndev);
4606 }
4607 
4608 static int __maybe_unused fec_suspend(struct device *dev)
4609 {
4610 	struct net_device *ndev = dev_get_drvdata(dev);
4611 	struct fec_enet_private *fep = netdev_priv(ndev);
4612 	int ret;
4613 
4614 	rtnl_lock();
4615 	if (netif_running(ndev)) {
4616 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4617 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4618 		phy_stop(ndev->phydev);
4619 		napi_disable(&fep->napi);
4620 		netif_tx_lock_bh(ndev);
4621 		netif_device_detach(ndev);
4622 		netif_tx_unlock_bh(ndev);
4623 		fec_stop(ndev);
4624 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4625 			fec_irqs_disable(ndev);
4626 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4627 		} else {
4628 			fec_irqs_disable_except_wakeup(ndev);
4629 			if (fep->wake_irq > 0) {
4630 				disable_irq(fep->wake_irq);
4631 				enable_irq_wake(fep->wake_irq);
4632 			}
4633 			fec_enet_stop_mode(fep, true);
4634 		}
4635 		/* It's safe to disable clocks since interrupts are masked */
4636 		fec_enet_clk_enable(ndev, false);
4637 
4638 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4639 		if (fep->rpm_active) {
4640 			ret = pm_runtime_force_suspend(dev);
4641 			if (ret < 0) {
4642 				rtnl_unlock();
4643 				return ret;
4644 			}
4645 		}
4646 	}
4647 	rtnl_unlock();
4648 
4649 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4650 		regulator_disable(fep->reg_phy);
4651 
4652 	/* SOC supply clock to phy, when clock is disabled, phy link down
4653 	 * SOC control phy regulator, when regulator is disabled, phy link down
4654 	 */
4655 	if (fep->clk_enet_out || fep->reg_phy)
4656 		fep->link = 0;
4657 
4658 	return 0;
4659 }
4660 
4661 static int __maybe_unused fec_resume(struct device *dev)
4662 {
4663 	struct net_device *ndev = dev_get_drvdata(dev);
4664 	struct fec_enet_private *fep = netdev_priv(ndev);
4665 	int ret;
4666 	int val;
4667 
4668 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4669 		ret = regulator_enable(fep->reg_phy);
4670 		if (ret)
4671 			return ret;
4672 	}
4673 
4674 	rtnl_lock();
4675 	if (netif_running(ndev)) {
4676 		if (fep->rpm_active)
4677 			pm_runtime_force_resume(dev);
4678 
4679 		ret = fec_enet_clk_enable(ndev, true);
4680 		if (ret) {
4681 			rtnl_unlock();
4682 			goto failed_clk;
4683 		}
4684 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4685 			fec_enet_stop_mode(fep, false);
4686 			if (fep->wake_irq) {
4687 				disable_irq_wake(fep->wake_irq);
4688 				enable_irq(fep->wake_irq);
4689 			}
4690 
4691 			val = readl(fep->hwp + FEC_ECNTRL);
4692 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4693 			writel(val, fep->hwp + FEC_ECNTRL);
4694 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4695 		} else {
4696 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4697 		}
4698 		fec_restart(ndev);
4699 		netif_tx_lock_bh(ndev);
4700 		netif_device_attach(ndev);
4701 		netif_tx_unlock_bh(ndev);
4702 		napi_enable(&fep->napi);
4703 		phy_init_hw(ndev->phydev);
4704 		phy_start(ndev->phydev);
4705 	}
4706 	rtnl_unlock();
4707 
4708 	return 0;
4709 
4710 failed_clk:
4711 	if (fep->reg_phy)
4712 		regulator_disable(fep->reg_phy);
4713 	return ret;
4714 }
4715 
4716 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4717 {
4718 	struct net_device *ndev = dev_get_drvdata(dev);
4719 	struct fec_enet_private *fep = netdev_priv(ndev);
4720 
4721 	clk_disable_unprepare(fep->clk_ahb);
4722 	clk_disable_unprepare(fep->clk_ipg);
4723 
4724 	return 0;
4725 }
4726 
4727 static int __maybe_unused fec_runtime_resume(struct device *dev)
4728 {
4729 	struct net_device *ndev = dev_get_drvdata(dev);
4730 	struct fec_enet_private *fep = netdev_priv(ndev);
4731 	int ret;
4732 
4733 	ret = clk_prepare_enable(fep->clk_ahb);
4734 	if (ret)
4735 		return ret;
4736 	ret = clk_prepare_enable(fep->clk_ipg);
4737 	if (ret)
4738 		goto failed_clk_ipg;
4739 
4740 	return 0;
4741 
4742 failed_clk_ipg:
4743 	clk_disable_unprepare(fep->clk_ahb);
4744 	return ret;
4745 }
4746 
4747 static const struct dev_pm_ops fec_pm_ops = {
4748 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4749 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4750 };
4751 
4752 static struct platform_driver fec_driver = {
4753 	.driver	= {
4754 		.name	= DRIVER_NAME,
4755 		.pm	= &fec_pm_ops,
4756 		.of_match_table = fec_dt_ids,
4757 		.suppress_bind_attrs = true,
4758 	},
4759 	.id_table = fec_devtype,
4760 	.probe	= fec_probe,
4761 	.remove_new = fec_drv_remove,
4762 };
4763 
4764 module_platform_driver(fec_driver);
4765 
4766 MODULE_LICENSE("GPL");
4767