1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/page_pool/helpers.h> 42 #include <net/selftests.h> 43 #include <net/tso.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/icmp.h> 47 #include <linux/spinlock.h> 48 #include <linux/workqueue.h> 49 #include <linux/bitops.h> 50 #include <linux/io.h> 51 #include <linux/irq.h> 52 #include <linux/clk.h> 53 #include <linux/crc32.h> 54 #include <linux/platform_device.h> 55 #include <linux/mdio.h> 56 #include <linux/phy.h> 57 #include <linux/fec.h> 58 #include <linux/of.h> 59 #include <linux/of_device.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/gpio/consumer.h> 66 #include <linux/prefetch.h> 67 #include <linux/mfd/syscon.h> 68 #include <linux/regmap.h> 69 #include <soc/imx/cpuidle.h> 70 #include <linux/filter.h> 71 #include <linux/bpf.h> 72 #include <linux/bpf_trace.h> 73 74 #include <asm/cacheflush.h> 75 76 #include "fec.h" 77 78 static void set_multicast_list(struct net_device *ndev); 79 static void fec_enet_itr_coal_set(struct net_device *ndev); 80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 81 int cpu, struct xdp_buff *xdp, 82 u32 dma_sync_len); 83 84 #define DRIVER_NAME "fec" 85 86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 87 88 /* Pause frame feild and FIFO threshold */ 89 #define FEC_ENET_FCE (1 << 5) 90 #define FEC_ENET_RSEM_V 0x84 91 #define FEC_ENET_RSFL_V 16 92 #define FEC_ENET_RAEM_V 0x8 93 #define FEC_ENET_RAFL_V 0x8 94 #define FEC_ENET_OPD_V 0xFFF0 95 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 96 97 #define FEC_ENET_XDP_PASS 0 98 #define FEC_ENET_XDP_CONSUMED BIT(0) 99 #define FEC_ENET_XDP_TX BIT(1) 100 #define FEC_ENET_XDP_REDIR BIT(2) 101 102 struct fec_devinfo { 103 u32 quirks; 104 }; 105 106 static const struct fec_devinfo fec_imx25_info = { 107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 109 }; 110 111 static const struct fec_devinfo fec_imx27_info = { 112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 113 FEC_QUIRK_HAS_MDIO_C45, 114 }; 115 116 static const struct fec_devinfo fec_imx28_info = { 117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 121 }; 122 123 static const struct fec_devinfo fec_imx6q_info = { 124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 129 }; 130 131 static const struct fec_devinfo fec_mvf600_info = { 132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 133 FEC_QUIRK_HAS_MDIO_C45, 134 }; 135 136 static const struct fec_devinfo fec_imx6x_info = { 137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 143 FEC_QUIRK_HAS_MDIO_C45, 144 }; 145 146 static const struct fec_devinfo fec_imx6ul_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 152 FEC_QUIRK_HAS_MDIO_C45, 153 }; 154 155 static const struct fec_devinfo fec_imx8mq_info = { 156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 163 FEC_QUIRK_HAS_MDIO_C45, 164 }; 165 166 static const struct fec_devinfo fec_imx8qm_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 174 }; 175 176 static const struct fec_devinfo fec_s32v234_info = { 177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 181 FEC_QUIRK_HAS_MDIO_C45, 182 }; 183 184 static struct platform_device_id fec_devtype[] = { 185 { 186 /* keep it for coldfire */ 187 .name = DRIVER_NAME, 188 .driver_data = 0, 189 }, { 190 .name = "imx25-fec", 191 .driver_data = (kernel_ulong_t)&fec_imx25_info, 192 }, { 193 .name = "imx27-fec", 194 .driver_data = (kernel_ulong_t)&fec_imx27_info, 195 }, { 196 .name = "imx28-fec", 197 .driver_data = (kernel_ulong_t)&fec_imx28_info, 198 }, { 199 .name = "imx6q-fec", 200 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 201 }, { 202 .name = "mvf600-fec", 203 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 204 }, { 205 .name = "imx6sx-fec", 206 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 207 }, { 208 .name = "imx6ul-fec", 209 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 210 }, { 211 .name = "imx8mq-fec", 212 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 213 }, { 214 .name = "imx8qm-fec", 215 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 216 }, { 217 .name = "s32v234-fec", 218 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 219 }, { 220 /* sentinel */ 221 } 222 }; 223 MODULE_DEVICE_TABLE(platform, fec_devtype); 224 225 enum imx_fec_type { 226 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 227 IMX27_FEC, /* runs on i.mx27/35/51 */ 228 IMX28_FEC, 229 IMX6Q_FEC, 230 MVF600_FEC, 231 IMX6SX_FEC, 232 IMX6UL_FEC, 233 IMX8MQ_FEC, 234 IMX8QM_FEC, 235 S32V234_FEC, 236 }; 237 238 static const struct of_device_id fec_dt_ids[] = { 239 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 240 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 241 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 242 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 243 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 244 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 245 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 246 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 247 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 248 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 249 { /* sentinel */ } 250 }; 251 MODULE_DEVICE_TABLE(of, fec_dt_ids); 252 253 static unsigned char macaddr[ETH_ALEN]; 254 module_param_array(macaddr, byte, NULL, 0); 255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 256 257 #if defined(CONFIG_M5272) 258 /* 259 * Some hardware gets it MAC address out of local flash memory. 260 * if this is non-zero then assume it is the address to get MAC from. 261 */ 262 #if defined(CONFIG_NETtel) 263 #define FEC_FLASHMAC 0xf0006006 264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 265 #define FEC_FLASHMAC 0xf0006000 266 #elif defined(CONFIG_CANCam) 267 #define FEC_FLASHMAC 0xf0020000 268 #elif defined (CONFIG_M5272C3) 269 #define FEC_FLASHMAC (0xffe04000 + 4) 270 #elif defined(CONFIG_MOD5272) 271 #define FEC_FLASHMAC 0xffc0406b 272 #else 273 #define FEC_FLASHMAC 0 274 #endif 275 #endif /* CONFIG_M5272 */ 276 277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 278 * 279 * 2048 byte skbufs are allocated. However, alignment requirements 280 * varies between FEC variants. Worst case is 64, so round down by 64. 281 */ 282 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 283 #define PKT_MINBUF_SIZE 64 284 285 /* FEC receive acceleration */ 286 #define FEC_RACC_IPDIS BIT(1) 287 #define FEC_RACC_PRODIS BIT(2) 288 #define FEC_RACC_SHIFT16 BIT(7) 289 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 290 291 /* MIB Control Register */ 292 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 293 294 /* 295 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 296 * size bits. Other FEC hardware does not, so we need to take that into 297 * account when setting it. 298 */ 299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 300 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 301 defined(CONFIG_ARM64) 302 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 303 #else 304 #define OPT_FRAME_SIZE 0 305 #endif 306 307 /* FEC MII MMFR bits definition */ 308 #define FEC_MMFR_ST (1 << 30) 309 #define FEC_MMFR_ST_C45 (0) 310 #define FEC_MMFR_OP_READ (2 << 28) 311 #define FEC_MMFR_OP_READ_C45 (3 << 28) 312 #define FEC_MMFR_OP_WRITE (1 << 28) 313 #define FEC_MMFR_OP_ADDR_WRITE (0) 314 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 315 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 316 #define FEC_MMFR_TA (2 << 16) 317 #define FEC_MMFR_DATA(v) (v & 0xffff) 318 /* FEC ECR bits definition */ 319 #define FEC_ECR_RESET BIT(0) 320 #define FEC_ECR_ETHEREN BIT(1) 321 #define FEC_ECR_MAGICEN BIT(2) 322 #define FEC_ECR_SLEEP BIT(3) 323 #define FEC_ECR_EN1588 BIT(4) 324 #define FEC_ECR_BYTESWP BIT(8) 325 /* FEC RCR bits definition */ 326 #define FEC_RCR_LOOP BIT(0) 327 #define FEC_RCR_HALFDPX BIT(1) 328 #define FEC_RCR_MII BIT(2) 329 #define FEC_RCR_PROMISC BIT(3) 330 #define FEC_RCR_BC_REJ BIT(4) 331 #define FEC_RCR_FLOWCTL BIT(5) 332 #define FEC_RCR_RMII BIT(8) 333 #define FEC_RCR_10BASET BIT(9) 334 /* TX WMARK bits */ 335 #define FEC_TXWMRK_STRFWD BIT(8) 336 337 #define FEC_MII_TIMEOUT 30000 /* us */ 338 339 /* Transmitter timeout */ 340 #define TX_TIMEOUT (2 * HZ) 341 342 #define FEC_PAUSE_FLAG_AUTONEG 0x1 343 #define FEC_PAUSE_FLAG_ENABLE 0x2 344 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 345 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 346 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 347 348 /* Max number of allowed TCP segments for software TSO */ 349 #define FEC_MAX_TSO_SEGS 100 350 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 351 352 #define IS_TSO_HEADER(txq, addr) \ 353 ((addr >= txq->tso_hdrs_dma) && \ 354 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 355 356 static int mii_cnt; 357 358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 359 struct bufdesc_prop *bd) 360 { 361 return (bdp >= bd->last) ? bd->base 362 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 363 } 364 365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 366 struct bufdesc_prop *bd) 367 { 368 return (bdp <= bd->base) ? bd->last 369 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 370 } 371 372 static int fec_enet_get_bd_index(struct bufdesc *bdp, 373 struct bufdesc_prop *bd) 374 { 375 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 376 } 377 378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 379 { 380 int entries; 381 382 entries = (((const char *)txq->dirty_tx - 383 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 384 385 return entries >= 0 ? entries : entries + txq->bd.ring_size; 386 } 387 388 static void swap_buffer(void *bufaddr, int len) 389 { 390 int i; 391 unsigned int *buf = bufaddr; 392 393 for (i = 0; i < len; i += 4, buf++) 394 swab32s(buf); 395 } 396 397 static void fec_dump(struct net_device *ndev) 398 { 399 struct fec_enet_private *fep = netdev_priv(ndev); 400 struct bufdesc *bdp; 401 struct fec_enet_priv_tx_q *txq; 402 int index = 0; 403 404 netdev_info(ndev, "TX ring dump\n"); 405 pr_info("Nr SC addr len SKB\n"); 406 407 txq = fep->tx_queue[0]; 408 bdp = txq->bd.base; 409 410 do { 411 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 412 index, 413 bdp == txq->bd.cur ? 'S' : ' ', 414 bdp == txq->dirty_tx ? 'H' : ' ', 415 fec16_to_cpu(bdp->cbd_sc), 416 fec32_to_cpu(bdp->cbd_bufaddr), 417 fec16_to_cpu(bdp->cbd_datlen), 418 txq->tx_buf[index].buf_p); 419 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 420 index++; 421 } while (bdp != txq->bd.base); 422 } 423 424 static inline bool is_ipv4_pkt(struct sk_buff *skb) 425 { 426 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 427 } 428 429 static int 430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 431 { 432 /* Only run for packets requiring a checksum. */ 433 if (skb->ip_summed != CHECKSUM_PARTIAL) 434 return 0; 435 436 if (unlikely(skb_cow_head(skb, 0))) 437 return -1; 438 439 if (is_ipv4_pkt(skb)) 440 ip_hdr(skb)->check = 0; 441 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 442 443 return 0; 444 } 445 446 static int 447 fec_enet_create_page_pool(struct fec_enet_private *fep, 448 struct fec_enet_priv_rx_q *rxq, int size) 449 { 450 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 451 struct page_pool_params pp_params = { 452 .order = 0, 453 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 454 .pool_size = size, 455 .nid = dev_to_node(&fep->pdev->dev), 456 .dev = &fep->pdev->dev, 457 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 458 .offset = FEC_ENET_XDP_HEADROOM, 459 .max_len = FEC_ENET_RX_FRSIZE, 460 }; 461 int err; 462 463 rxq->page_pool = page_pool_create(&pp_params); 464 if (IS_ERR(rxq->page_pool)) { 465 err = PTR_ERR(rxq->page_pool); 466 rxq->page_pool = NULL; 467 return err; 468 } 469 470 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 471 if (err < 0) 472 goto err_free_pp; 473 474 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 475 rxq->page_pool); 476 if (err) 477 goto err_unregister_rxq; 478 479 return 0; 480 481 err_unregister_rxq: 482 xdp_rxq_info_unreg(&rxq->xdp_rxq); 483 err_free_pp: 484 page_pool_destroy(rxq->page_pool); 485 rxq->page_pool = NULL; 486 return err; 487 } 488 489 static struct bufdesc * 490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 491 struct sk_buff *skb, 492 struct net_device *ndev) 493 { 494 struct fec_enet_private *fep = netdev_priv(ndev); 495 struct bufdesc *bdp = txq->bd.cur; 496 struct bufdesc_ex *ebdp; 497 int nr_frags = skb_shinfo(skb)->nr_frags; 498 int frag, frag_len; 499 unsigned short status; 500 unsigned int estatus = 0; 501 skb_frag_t *this_frag; 502 unsigned int index; 503 void *bufaddr; 504 dma_addr_t addr; 505 int i; 506 507 for (frag = 0; frag < nr_frags; frag++) { 508 this_frag = &skb_shinfo(skb)->frags[frag]; 509 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 510 ebdp = (struct bufdesc_ex *)bdp; 511 512 status = fec16_to_cpu(bdp->cbd_sc); 513 status &= ~BD_ENET_TX_STATS; 514 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 515 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 516 517 /* Handle the last BD specially */ 518 if (frag == nr_frags - 1) { 519 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 520 if (fep->bufdesc_ex) { 521 estatus |= BD_ENET_TX_INT; 522 if (unlikely(skb_shinfo(skb)->tx_flags & 523 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 524 estatus |= BD_ENET_TX_TS; 525 } 526 } 527 528 if (fep->bufdesc_ex) { 529 if (fep->quirks & FEC_QUIRK_HAS_AVB) 530 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 531 if (skb->ip_summed == CHECKSUM_PARTIAL) 532 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 533 534 ebdp->cbd_bdu = 0; 535 ebdp->cbd_esc = cpu_to_fec32(estatus); 536 } 537 538 bufaddr = skb_frag_address(this_frag); 539 540 index = fec_enet_get_bd_index(bdp, &txq->bd); 541 if (((unsigned long) bufaddr) & fep->tx_align || 542 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 543 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 544 bufaddr = txq->tx_bounce[index]; 545 546 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 547 swap_buffer(bufaddr, frag_len); 548 } 549 550 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 551 DMA_TO_DEVICE); 552 if (dma_mapping_error(&fep->pdev->dev, addr)) { 553 if (net_ratelimit()) 554 netdev_err(ndev, "Tx DMA memory map failed\n"); 555 goto dma_mapping_error; 556 } 557 558 bdp->cbd_bufaddr = cpu_to_fec32(addr); 559 bdp->cbd_datlen = cpu_to_fec16(frag_len); 560 /* Make sure the updates to rest of the descriptor are 561 * performed before transferring ownership. 562 */ 563 wmb(); 564 bdp->cbd_sc = cpu_to_fec16(status); 565 } 566 567 return bdp; 568 dma_mapping_error: 569 bdp = txq->bd.cur; 570 for (i = 0; i < frag; i++) { 571 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 572 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 573 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 574 } 575 return ERR_PTR(-ENOMEM); 576 } 577 578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 579 struct sk_buff *skb, struct net_device *ndev) 580 { 581 struct fec_enet_private *fep = netdev_priv(ndev); 582 int nr_frags = skb_shinfo(skb)->nr_frags; 583 struct bufdesc *bdp, *last_bdp; 584 void *bufaddr; 585 dma_addr_t addr; 586 unsigned short status; 587 unsigned short buflen; 588 unsigned int estatus = 0; 589 unsigned int index; 590 int entries_free; 591 592 entries_free = fec_enet_get_free_txdesc_num(txq); 593 if (entries_free < MAX_SKB_FRAGS + 1) { 594 dev_kfree_skb_any(skb); 595 if (net_ratelimit()) 596 netdev_err(ndev, "NOT enough BD for SG!\n"); 597 return NETDEV_TX_OK; 598 } 599 600 /* Protocol checksum off-load for TCP and UDP. */ 601 if (fec_enet_clear_csum(skb, ndev)) { 602 dev_kfree_skb_any(skb); 603 return NETDEV_TX_OK; 604 } 605 606 /* Fill in a Tx ring entry */ 607 bdp = txq->bd.cur; 608 last_bdp = bdp; 609 status = fec16_to_cpu(bdp->cbd_sc); 610 status &= ~BD_ENET_TX_STATS; 611 612 /* Set buffer length and buffer pointer */ 613 bufaddr = skb->data; 614 buflen = skb_headlen(skb); 615 616 index = fec_enet_get_bd_index(bdp, &txq->bd); 617 if (((unsigned long) bufaddr) & fep->tx_align || 618 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 619 memcpy(txq->tx_bounce[index], skb->data, buflen); 620 bufaddr = txq->tx_bounce[index]; 621 622 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 623 swap_buffer(bufaddr, buflen); 624 } 625 626 /* Push the data cache so the CPM does not get stale memory data. */ 627 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 628 if (dma_mapping_error(&fep->pdev->dev, addr)) { 629 dev_kfree_skb_any(skb); 630 if (net_ratelimit()) 631 netdev_err(ndev, "Tx DMA memory map failed\n"); 632 return NETDEV_TX_OK; 633 } 634 635 if (nr_frags) { 636 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 637 if (IS_ERR(last_bdp)) { 638 dma_unmap_single(&fep->pdev->dev, addr, 639 buflen, DMA_TO_DEVICE); 640 dev_kfree_skb_any(skb); 641 return NETDEV_TX_OK; 642 } 643 } else { 644 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 645 if (fep->bufdesc_ex) { 646 estatus = BD_ENET_TX_INT; 647 if (unlikely(skb_shinfo(skb)->tx_flags & 648 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 649 estatus |= BD_ENET_TX_TS; 650 } 651 } 652 bdp->cbd_bufaddr = cpu_to_fec32(addr); 653 bdp->cbd_datlen = cpu_to_fec16(buflen); 654 655 if (fep->bufdesc_ex) { 656 657 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 658 659 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 660 fep->hwts_tx_en)) 661 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 662 663 if (fep->quirks & FEC_QUIRK_HAS_AVB) 664 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 665 666 if (skb->ip_summed == CHECKSUM_PARTIAL) 667 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 668 669 ebdp->cbd_bdu = 0; 670 ebdp->cbd_esc = cpu_to_fec32(estatus); 671 } 672 673 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 674 /* Save skb pointer */ 675 txq->tx_buf[index].buf_p = skb; 676 677 /* Make sure the updates to rest of the descriptor are performed before 678 * transferring ownership. 679 */ 680 wmb(); 681 682 /* Send it on its way. Tell FEC it's ready, interrupt when done, 683 * it's the last BD of the frame, and to put the CRC on the end. 684 */ 685 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 686 bdp->cbd_sc = cpu_to_fec16(status); 687 688 /* If this was the last BD in the ring, start at the beginning again. */ 689 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 690 691 skb_tx_timestamp(skb); 692 693 /* Make sure the update to bdp is performed before txq->bd.cur. */ 694 wmb(); 695 txq->bd.cur = bdp; 696 697 /* Trigger transmission start */ 698 writel(0, txq->bd.reg_desc_active); 699 700 return 0; 701 } 702 703 static int 704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 705 struct net_device *ndev, 706 struct bufdesc *bdp, int index, char *data, 707 int size, bool last_tcp, bool is_last) 708 { 709 struct fec_enet_private *fep = netdev_priv(ndev); 710 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 711 unsigned short status; 712 unsigned int estatus = 0; 713 dma_addr_t addr; 714 715 status = fec16_to_cpu(bdp->cbd_sc); 716 status &= ~BD_ENET_TX_STATS; 717 718 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 719 720 if (((unsigned long) data) & fep->tx_align || 721 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 722 memcpy(txq->tx_bounce[index], data, size); 723 data = txq->tx_bounce[index]; 724 725 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 726 swap_buffer(data, size); 727 } 728 729 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 730 if (dma_mapping_error(&fep->pdev->dev, addr)) { 731 dev_kfree_skb_any(skb); 732 if (net_ratelimit()) 733 netdev_err(ndev, "Tx DMA memory map failed\n"); 734 return NETDEV_TX_OK; 735 } 736 737 bdp->cbd_datlen = cpu_to_fec16(size); 738 bdp->cbd_bufaddr = cpu_to_fec32(addr); 739 740 if (fep->bufdesc_ex) { 741 if (fep->quirks & FEC_QUIRK_HAS_AVB) 742 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 743 if (skb->ip_summed == CHECKSUM_PARTIAL) 744 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 745 ebdp->cbd_bdu = 0; 746 ebdp->cbd_esc = cpu_to_fec32(estatus); 747 } 748 749 /* Handle the last BD specially */ 750 if (last_tcp) 751 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 752 if (is_last) { 753 status |= BD_ENET_TX_INTR; 754 if (fep->bufdesc_ex) 755 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 756 } 757 758 bdp->cbd_sc = cpu_to_fec16(status); 759 760 return 0; 761 } 762 763 static int 764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 765 struct sk_buff *skb, struct net_device *ndev, 766 struct bufdesc *bdp, int index) 767 { 768 struct fec_enet_private *fep = netdev_priv(ndev); 769 int hdr_len = skb_tcp_all_headers(skb); 770 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 771 void *bufaddr; 772 unsigned long dmabuf; 773 unsigned short status; 774 unsigned int estatus = 0; 775 776 status = fec16_to_cpu(bdp->cbd_sc); 777 status &= ~BD_ENET_TX_STATS; 778 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 779 780 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 781 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 782 if (((unsigned long)bufaddr) & fep->tx_align || 783 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 784 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 785 bufaddr = txq->tx_bounce[index]; 786 787 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 788 swap_buffer(bufaddr, hdr_len); 789 790 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 791 hdr_len, DMA_TO_DEVICE); 792 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 793 dev_kfree_skb_any(skb); 794 if (net_ratelimit()) 795 netdev_err(ndev, "Tx DMA memory map failed\n"); 796 return NETDEV_TX_OK; 797 } 798 } 799 800 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 801 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 802 803 if (fep->bufdesc_ex) { 804 if (fep->quirks & FEC_QUIRK_HAS_AVB) 805 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 806 if (skb->ip_summed == CHECKSUM_PARTIAL) 807 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 808 ebdp->cbd_bdu = 0; 809 ebdp->cbd_esc = cpu_to_fec32(estatus); 810 } 811 812 bdp->cbd_sc = cpu_to_fec16(status); 813 814 return 0; 815 } 816 817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 818 struct sk_buff *skb, 819 struct net_device *ndev) 820 { 821 struct fec_enet_private *fep = netdev_priv(ndev); 822 int hdr_len, total_len, data_left; 823 struct bufdesc *bdp = txq->bd.cur; 824 struct tso_t tso; 825 unsigned int index = 0; 826 int ret; 827 828 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 829 dev_kfree_skb_any(skb); 830 if (net_ratelimit()) 831 netdev_err(ndev, "NOT enough BD for TSO!\n"); 832 return NETDEV_TX_OK; 833 } 834 835 /* Protocol checksum off-load for TCP and UDP. */ 836 if (fec_enet_clear_csum(skb, ndev)) { 837 dev_kfree_skb_any(skb); 838 return NETDEV_TX_OK; 839 } 840 841 /* Initialize the TSO handler, and prepare the first payload */ 842 hdr_len = tso_start(skb, &tso); 843 844 total_len = skb->len - hdr_len; 845 while (total_len > 0) { 846 char *hdr; 847 848 index = fec_enet_get_bd_index(bdp, &txq->bd); 849 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 850 total_len -= data_left; 851 852 /* prepare packet headers: MAC + IP + TCP */ 853 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 854 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 855 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 856 if (ret) 857 goto err_release; 858 859 while (data_left > 0) { 860 int size; 861 862 size = min_t(int, tso.size, data_left); 863 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 864 index = fec_enet_get_bd_index(bdp, &txq->bd); 865 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 866 bdp, index, 867 tso.data, size, 868 size == data_left, 869 total_len == 0); 870 if (ret) 871 goto err_release; 872 873 data_left -= size; 874 tso_build_data(skb, &tso, size); 875 } 876 877 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 878 } 879 880 /* Save skb pointer */ 881 txq->tx_buf[index].buf_p = skb; 882 883 skb_tx_timestamp(skb); 884 txq->bd.cur = bdp; 885 886 /* Trigger transmission start */ 887 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 888 !readl(txq->bd.reg_desc_active) || 889 !readl(txq->bd.reg_desc_active) || 890 !readl(txq->bd.reg_desc_active) || 891 !readl(txq->bd.reg_desc_active)) 892 writel(0, txq->bd.reg_desc_active); 893 894 return 0; 895 896 err_release: 897 /* TODO: Release all used data descriptors for TSO */ 898 return ret; 899 } 900 901 static netdev_tx_t 902 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 903 { 904 struct fec_enet_private *fep = netdev_priv(ndev); 905 int entries_free; 906 unsigned short queue; 907 struct fec_enet_priv_tx_q *txq; 908 struct netdev_queue *nq; 909 int ret; 910 911 queue = skb_get_queue_mapping(skb); 912 txq = fep->tx_queue[queue]; 913 nq = netdev_get_tx_queue(ndev, queue); 914 915 if (skb_is_gso(skb)) 916 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 917 else 918 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 919 if (ret) 920 return ret; 921 922 entries_free = fec_enet_get_free_txdesc_num(txq); 923 if (entries_free <= txq->tx_stop_threshold) 924 netif_tx_stop_queue(nq); 925 926 return NETDEV_TX_OK; 927 } 928 929 /* Init RX & TX buffer descriptors 930 */ 931 static void fec_enet_bd_init(struct net_device *dev) 932 { 933 struct fec_enet_private *fep = netdev_priv(dev); 934 struct fec_enet_priv_tx_q *txq; 935 struct fec_enet_priv_rx_q *rxq; 936 struct bufdesc *bdp; 937 unsigned int i; 938 unsigned int q; 939 940 for (q = 0; q < fep->num_rx_queues; q++) { 941 /* Initialize the receive buffer descriptors. */ 942 rxq = fep->rx_queue[q]; 943 bdp = rxq->bd.base; 944 945 for (i = 0; i < rxq->bd.ring_size; i++) { 946 947 /* Initialize the BD for every fragment in the page. */ 948 if (bdp->cbd_bufaddr) 949 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 950 else 951 bdp->cbd_sc = cpu_to_fec16(0); 952 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 953 } 954 955 /* Set the last buffer to wrap */ 956 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 957 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 958 959 rxq->bd.cur = rxq->bd.base; 960 } 961 962 for (q = 0; q < fep->num_tx_queues; q++) { 963 /* ...and the same for transmit */ 964 txq = fep->tx_queue[q]; 965 bdp = txq->bd.base; 966 txq->bd.cur = bdp; 967 968 for (i = 0; i < txq->bd.ring_size; i++) { 969 /* Initialize the BD for every fragment in the page. */ 970 bdp->cbd_sc = cpu_to_fec16(0); 971 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 972 if (bdp->cbd_bufaddr && 973 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 974 dma_unmap_single(&fep->pdev->dev, 975 fec32_to_cpu(bdp->cbd_bufaddr), 976 fec16_to_cpu(bdp->cbd_datlen), 977 DMA_TO_DEVICE); 978 if (txq->tx_buf[i].buf_p) 979 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 980 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 981 if (bdp->cbd_bufaddr) 982 dma_unmap_single(&fep->pdev->dev, 983 fec32_to_cpu(bdp->cbd_bufaddr), 984 fec16_to_cpu(bdp->cbd_datlen), 985 DMA_TO_DEVICE); 986 987 if (txq->tx_buf[i].buf_p) 988 xdp_return_frame(txq->tx_buf[i].buf_p); 989 } else { 990 struct page *page = txq->tx_buf[i].buf_p; 991 992 if (page) 993 page_pool_put_page(page->pp, page, 0, false); 994 } 995 996 txq->tx_buf[i].buf_p = NULL; 997 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 998 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 999 bdp->cbd_bufaddr = cpu_to_fec32(0); 1000 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1001 } 1002 1003 /* Set the last buffer to wrap */ 1004 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 1005 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 1006 txq->dirty_tx = bdp; 1007 } 1008 } 1009 1010 static void fec_enet_active_rxring(struct net_device *ndev) 1011 { 1012 struct fec_enet_private *fep = netdev_priv(ndev); 1013 int i; 1014 1015 for (i = 0; i < fep->num_rx_queues; i++) 1016 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1017 } 1018 1019 static void fec_enet_enable_ring(struct net_device *ndev) 1020 { 1021 struct fec_enet_private *fep = netdev_priv(ndev); 1022 struct fec_enet_priv_tx_q *txq; 1023 struct fec_enet_priv_rx_q *rxq; 1024 int i; 1025 1026 for (i = 0; i < fep->num_rx_queues; i++) { 1027 rxq = fep->rx_queue[i]; 1028 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1029 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1030 1031 /* enable DMA1/2 */ 1032 if (i) 1033 writel(RCMR_MATCHEN | RCMR_CMP(i), 1034 fep->hwp + FEC_RCMR(i)); 1035 } 1036 1037 for (i = 0; i < fep->num_tx_queues; i++) { 1038 txq = fep->tx_queue[i]; 1039 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1040 1041 /* enable DMA1/2 */ 1042 if (i) 1043 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1044 fep->hwp + FEC_DMA_CFG(i)); 1045 } 1046 } 1047 1048 /* 1049 * This function is called to start or restart the FEC during a link 1050 * change, transmit timeout, or to reconfigure the FEC. The network 1051 * packet processing for this device must be stopped before this call. 1052 */ 1053 static void 1054 fec_restart(struct net_device *ndev) 1055 { 1056 struct fec_enet_private *fep = netdev_priv(ndev); 1057 u32 temp_mac[2]; 1058 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1059 u32 ecntl = FEC_ECR_ETHEREN; 1060 1061 /* Whack a reset. We should wait for this. 1062 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1063 * instead of reset MAC itself. 1064 */ 1065 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1066 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1067 writel(0, fep->hwp + FEC_ECNTRL); 1068 } else { 1069 writel(1, fep->hwp + FEC_ECNTRL); 1070 udelay(10); 1071 } 1072 1073 /* 1074 * enet-mac reset will reset mac address registers too, 1075 * so need to reconfigure it. 1076 */ 1077 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1078 writel((__force u32)cpu_to_be32(temp_mac[0]), 1079 fep->hwp + FEC_ADDR_LOW); 1080 writel((__force u32)cpu_to_be32(temp_mac[1]), 1081 fep->hwp + FEC_ADDR_HIGH); 1082 1083 /* Clear any outstanding interrupt, except MDIO. */ 1084 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1085 1086 fec_enet_bd_init(ndev); 1087 1088 fec_enet_enable_ring(ndev); 1089 1090 /* Enable MII mode */ 1091 if (fep->full_duplex == DUPLEX_FULL) { 1092 /* FD enable */ 1093 writel(0x04, fep->hwp + FEC_X_CNTRL); 1094 } else { 1095 /* No Rcv on Xmit */ 1096 rcntl |= 0x02; 1097 writel(0x0, fep->hwp + FEC_X_CNTRL); 1098 } 1099 1100 /* Set MII speed */ 1101 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1102 1103 #if !defined(CONFIG_M5272) 1104 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1105 u32 val = readl(fep->hwp + FEC_RACC); 1106 1107 /* align IP header */ 1108 val |= FEC_RACC_SHIFT16; 1109 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1110 /* set RX checksum */ 1111 val |= FEC_RACC_OPTIONS; 1112 else 1113 val &= ~FEC_RACC_OPTIONS; 1114 writel(val, fep->hwp + FEC_RACC); 1115 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1116 } 1117 #endif 1118 1119 /* 1120 * The phy interface and speed need to get configured 1121 * differently on enet-mac. 1122 */ 1123 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1124 /* Enable flow control and length check */ 1125 rcntl |= 0x40000000 | 0x00000020; 1126 1127 /* RGMII, RMII or MII */ 1128 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1129 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1130 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1131 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1132 rcntl |= (1 << 6); 1133 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1134 rcntl |= FEC_RCR_RMII; 1135 else 1136 rcntl &= ~FEC_RCR_RMII; 1137 1138 /* 1G, 100M or 10M */ 1139 if (ndev->phydev) { 1140 if (ndev->phydev->speed == SPEED_1000) 1141 ecntl |= (1 << 5); 1142 else if (ndev->phydev->speed == SPEED_100) 1143 rcntl &= ~FEC_RCR_10BASET; 1144 else 1145 rcntl |= FEC_RCR_10BASET; 1146 } 1147 } else { 1148 #ifdef FEC_MIIGSK_ENR 1149 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1150 u32 cfgr; 1151 /* disable the gasket and wait */ 1152 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1153 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1154 udelay(1); 1155 1156 /* 1157 * configure the gasket: 1158 * RMII, 50 MHz, no loopback, no echo 1159 * MII, 25 MHz, no loopback, no echo 1160 */ 1161 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1162 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1163 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1164 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1165 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1166 1167 /* re-enable the gasket */ 1168 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1169 } 1170 #endif 1171 } 1172 1173 #if !defined(CONFIG_M5272) 1174 /* enable pause frame*/ 1175 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1176 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1177 ndev->phydev && ndev->phydev->pause)) { 1178 rcntl |= FEC_ENET_FCE; 1179 1180 /* set FIFO threshold parameter to reduce overrun */ 1181 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1182 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1183 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1184 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1185 1186 /* OPD */ 1187 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1188 } else { 1189 rcntl &= ~FEC_ENET_FCE; 1190 } 1191 #endif /* !defined(CONFIG_M5272) */ 1192 1193 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1194 1195 /* Setup multicast filter. */ 1196 set_multicast_list(ndev); 1197 #ifndef CONFIG_M5272 1198 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1199 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1200 #endif 1201 1202 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1203 /* enable ENET endian swap */ 1204 ecntl |= FEC_ECR_BYTESWP; 1205 /* enable ENET store and forward mode */ 1206 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK); 1207 } 1208 1209 if (fep->bufdesc_ex) 1210 ecntl |= FEC_ECR_EN1588; 1211 1212 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1213 fep->rgmii_txc_dly) 1214 ecntl |= FEC_ENET_TXC_DLY; 1215 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1216 fep->rgmii_rxc_dly) 1217 ecntl |= FEC_ENET_RXC_DLY; 1218 1219 #ifndef CONFIG_M5272 1220 /* Enable the MIB statistic event counters */ 1221 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1222 #endif 1223 1224 /* And last, enable the transmit and receive processing */ 1225 writel(ecntl, fep->hwp + FEC_ECNTRL); 1226 fec_enet_active_rxring(ndev); 1227 1228 if (fep->bufdesc_ex) 1229 fec_ptp_start_cyclecounter(ndev); 1230 1231 /* Enable interrupts we wish to service */ 1232 if (fep->link) 1233 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1234 else 1235 writel(0, fep->hwp + FEC_IMASK); 1236 1237 /* Init the interrupt coalescing */ 1238 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1239 fec_enet_itr_coal_set(ndev); 1240 } 1241 1242 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1243 { 1244 if (!(of_machine_is_compatible("fsl,imx8qm") || 1245 of_machine_is_compatible("fsl,imx8qxp") || 1246 of_machine_is_compatible("fsl,imx8dxl"))) 1247 return 0; 1248 1249 return imx_scu_get_handle(&fep->ipc_handle); 1250 } 1251 1252 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1253 { 1254 struct device_node *np = fep->pdev->dev.of_node; 1255 u32 rsrc_id, val; 1256 int idx; 1257 1258 if (!np || !fep->ipc_handle) 1259 return; 1260 1261 idx = of_alias_get_id(np, "ethernet"); 1262 if (idx < 0) 1263 idx = 0; 1264 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1265 1266 val = enabled ? 1 : 0; 1267 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1268 } 1269 1270 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1271 { 1272 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1273 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1274 1275 if (stop_gpr->gpr) { 1276 if (enabled) 1277 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1278 BIT(stop_gpr->bit), 1279 BIT(stop_gpr->bit)); 1280 else 1281 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1282 BIT(stop_gpr->bit), 0); 1283 } else if (pdata && pdata->sleep_mode_enable) { 1284 pdata->sleep_mode_enable(enabled); 1285 } else { 1286 fec_enet_ipg_stop_set(fep, enabled); 1287 } 1288 } 1289 1290 static void fec_irqs_disable(struct net_device *ndev) 1291 { 1292 struct fec_enet_private *fep = netdev_priv(ndev); 1293 1294 writel(0, fep->hwp + FEC_IMASK); 1295 } 1296 1297 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1298 { 1299 struct fec_enet_private *fep = netdev_priv(ndev); 1300 1301 writel(0, fep->hwp + FEC_IMASK); 1302 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1303 } 1304 1305 static void 1306 fec_stop(struct net_device *ndev) 1307 { 1308 struct fec_enet_private *fep = netdev_priv(ndev); 1309 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII; 1310 u32 val; 1311 1312 /* We cannot expect a graceful transmit stop without link !!! */ 1313 if (fep->link) { 1314 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1315 udelay(10); 1316 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1317 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1318 } 1319 1320 /* Whack a reset. We should wait for this. 1321 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1322 * instead of reset MAC itself. 1323 */ 1324 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1325 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1326 writel(0, fep->hwp + FEC_ECNTRL); 1327 } else { 1328 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL); 1329 udelay(10); 1330 } 1331 } else { 1332 val = readl(fep->hwp + FEC_ECNTRL); 1333 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1334 writel(val, fep->hwp + FEC_ECNTRL); 1335 } 1336 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1337 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1338 1339 /* We have to keep ENET enabled to have MII interrupt stay working */ 1340 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1341 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1342 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL); 1343 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1344 } 1345 1346 if (fep->bufdesc_ex) { 1347 val = readl(fep->hwp + FEC_ECNTRL); 1348 val |= FEC_ECR_EN1588; 1349 writel(val, fep->hwp + FEC_ECNTRL); 1350 } 1351 } 1352 1353 static void 1354 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1355 { 1356 struct fec_enet_private *fep = netdev_priv(ndev); 1357 1358 fec_dump(ndev); 1359 1360 ndev->stats.tx_errors++; 1361 1362 schedule_work(&fep->tx_timeout_work); 1363 } 1364 1365 static void fec_enet_timeout_work(struct work_struct *work) 1366 { 1367 struct fec_enet_private *fep = 1368 container_of(work, struct fec_enet_private, tx_timeout_work); 1369 struct net_device *ndev = fep->netdev; 1370 1371 rtnl_lock(); 1372 if (netif_device_present(ndev) || netif_running(ndev)) { 1373 napi_disable(&fep->napi); 1374 netif_tx_lock_bh(ndev); 1375 fec_restart(ndev); 1376 netif_tx_wake_all_queues(ndev); 1377 netif_tx_unlock_bh(ndev); 1378 napi_enable(&fep->napi); 1379 } 1380 rtnl_unlock(); 1381 } 1382 1383 static void 1384 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1385 struct skb_shared_hwtstamps *hwtstamps) 1386 { 1387 unsigned long flags; 1388 u64 ns; 1389 1390 spin_lock_irqsave(&fep->tmreg_lock, flags); 1391 ns = timecounter_cyc2time(&fep->tc, ts); 1392 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1393 1394 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1395 hwtstamps->hwtstamp = ns_to_ktime(ns); 1396 } 1397 1398 static void 1399 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget) 1400 { 1401 struct fec_enet_private *fep; 1402 struct xdp_frame *xdpf; 1403 struct bufdesc *bdp; 1404 unsigned short status; 1405 struct sk_buff *skb; 1406 struct fec_enet_priv_tx_q *txq; 1407 struct netdev_queue *nq; 1408 int index = 0; 1409 int entries_free; 1410 struct page *page; 1411 int frame_len; 1412 1413 fep = netdev_priv(ndev); 1414 1415 txq = fep->tx_queue[queue_id]; 1416 /* get next bdp of dirty_tx */ 1417 nq = netdev_get_tx_queue(ndev, queue_id); 1418 bdp = txq->dirty_tx; 1419 1420 /* get next bdp of dirty_tx */ 1421 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1422 1423 while (bdp != READ_ONCE(txq->bd.cur)) { 1424 /* Order the load of bd.cur and cbd_sc */ 1425 rmb(); 1426 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1427 if (status & BD_ENET_TX_READY) 1428 break; 1429 1430 index = fec_enet_get_bd_index(bdp, &txq->bd); 1431 1432 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1433 skb = txq->tx_buf[index].buf_p; 1434 if (bdp->cbd_bufaddr && 1435 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1436 dma_unmap_single(&fep->pdev->dev, 1437 fec32_to_cpu(bdp->cbd_bufaddr), 1438 fec16_to_cpu(bdp->cbd_datlen), 1439 DMA_TO_DEVICE); 1440 bdp->cbd_bufaddr = cpu_to_fec32(0); 1441 if (!skb) 1442 goto tx_buf_done; 1443 } else { 1444 /* Tx processing cannot call any XDP (or page pool) APIs if 1445 * the "budget" is 0. Because NAPI is called with budget of 1446 * 0 (such as netpoll) indicates we may be in an IRQ context, 1447 * however, we can't use the page pool from IRQ context. 1448 */ 1449 if (unlikely(!budget)) 1450 break; 1451 1452 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1453 xdpf = txq->tx_buf[index].buf_p; 1454 if (bdp->cbd_bufaddr) 1455 dma_unmap_single(&fep->pdev->dev, 1456 fec32_to_cpu(bdp->cbd_bufaddr), 1457 fec16_to_cpu(bdp->cbd_datlen), 1458 DMA_TO_DEVICE); 1459 } else { 1460 page = txq->tx_buf[index].buf_p; 1461 } 1462 1463 bdp->cbd_bufaddr = cpu_to_fec32(0); 1464 if (unlikely(!txq->tx_buf[index].buf_p)) { 1465 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1466 goto tx_buf_done; 1467 } 1468 1469 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1470 } 1471 1472 /* Check for errors. */ 1473 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1474 BD_ENET_TX_RL | BD_ENET_TX_UN | 1475 BD_ENET_TX_CSL)) { 1476 ndev->stats.tx_errors++; 1477 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1478 ndev->stats.tx_heartbeat_errors++; 1479 if (status & BD_ENET_TX_LC) /* Late collision */ 1480 ndev->stats.tx_window_errors++; 1481 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1482 ndev->stats.tx_aborted_errors++; 1483 if (status & BD_ENET_TX_UN) /* Underrun */ 1484 ndev->stats.tx_fifo_errors++; 1485 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1486 ndev->stats.tx_carrier_errors++; 1487 } else { 1488 ndev->stats.tx_packets++; 1489 1490 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1491 ndev->stats.tx_bytes += skb->len; 1492 else 1493 ndev->stats.tx_bytes += frame_len; 1494 } 1495 1496 /* Deferred means some collisions occurred during transmit, 1497 * but we eventually sent the packet OK. 1498 */ 1499 if (status & BD_ENET_TX_DEF) 1500 ndev->stats.collisions++; 1501 1502 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1503 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1504 * are to time stamp the packet, so we still need to check time 1505 * stamping enabled flag. 1506 */ 1507 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1508 fep->hwts_tx_en) && fep->bufdesc_ex) { 1509 struct skb_shared_hwtstamps shhwtstamps; 1510 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1511 1512 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1513 skb_tstamp_tx(skb, &shhwtstamps); 1514 } 1515 1516 /* Free the sk buffer associated with this last transmit */ 1517 napi_consume_skb(skb, budget); 1518 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1519 xdp_return_frame_rx_napi(xdpf); 1520 } else { /* recycle pages of XDP_TX frames */ 1521 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */ 1522 page_pool_put_page(page->pp, page, 0, true); 1523 } 1524 1525 txq->tx_buf[index].buf_p = NULL; 1526 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1527 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1528 1529 tx_buf_done: 1530 /* Make sure the update to bdp and tx_buf are performed 1531 * before dirty_tx 1532 */ 1533 wmb(); 1534 txq->dirty_tx = bdp; 1535 1536 /* Update pointer to next buffer descriptor to be transmitted */ 1537 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1538 1539 /* Since we have freed up a buffer, the ring is no longer full 1540 */ 1541 if (netif_tx_queue_stopped(nq)) { 1542 entries_free = fec_enet_get_free_txdesc_num(txq); 1543 if (entries_free >= txq->tx_wake_threshold) 1544 netif_tx_wake_queue(nq); 1545 } 1546 } 1547 1548 /* ERR006358: Keep the transmitter going */ 1549 if (bdp != txq->bd.cur && 1550 readl(txq->bd.reg_desc_active) == 0) 1551 writel(0, txq->bd.reg_desc_active); 1552 } 1553 1554 static void fec_enet_tx(struct net_device *ndev, int budget) 1555 { 1556 struct fec_enet_private *fep = netdev_priv(ndev); 1557 int i; 1558 1559 /* Make sure that AVB queues are processed first. */ 1560 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1561 fec_enet_tx_queue(ndev, i, budget); 1562 } 1563 1564 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1565 struct bufdesc *bdp, int index) 1566 { 1567 struct page *new_page; 1568 dma_addr_t phys_addr; 1569 1570 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1571 WARN_ON(!new_page); 1572 rxq->rx_skb_info[index].page = new_page; 1573 1574 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1575 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1576 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1577 } 1578 1579 static u32 1580 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1581 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu) 1582 { 1583 unsigned int sync, len = xdp->data_end - xdp->data; 1584 u32 ret = FEC_ENET_XDP_PASS; 1585 struct page *page; 1586 int err; 1587 u32 act; 1588 1589 act = bpf_prog_run_xdp(prog, xdp); 1590 1591 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover 1592 * max len CPU touch 1593 */ 1594 sync = xdp->data_end - xdp->data; 1595 sync = max(sync, len); 1596 1597 switch (act) { 1598 case XDP_PASS: 1599 rxq->stats[RX_XDP_PASS]++; 1600 ret = FEC_ENET_XDP_PASS; 1601 break; 1602 1603 case XDP_REDIRECT: 1604 rxq->stats[RX_XDP_REDIRECT]++; 1605 err = xdp_do_redirect(fep->netdev, xdp, prog); 1606 if (unlikely(err)) 1607 goto xdp_err; 1608 1609 ret = FEC_ENET_XDP_REDIR; 1610 break; 1611 1612 case XDP_TX: 1613 rxq->stats[RX_XDP_TX]++; 1614 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync); 1615 if (unlikely(err)) { 1616 rxq->stats[RX_XDP_TX_ERRORS]++; 1617 goto xdp_err; 1618 } 1619 1620 ret = FEC_ENET_XDP_TX; 1621 break; 1622 1623 default: 1624 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1625 fallthrough; 1626 1627 case XDP_ABORTED: 1628 fallthrough; /* handle aborts by dropping packet */ 1629 1630 case XDP_DROP: 1631 rxq->stats[RX_XDP_DROP]++; 1632 xdp_err: 1633 ret = FEC_ENET_XDP_CONSUMED; 1634 page = virt_to_head_page(xdp->data); 1635 page_pool_put_page(rxq->page_pool, page, sync, true); 1636 if (act != XDP_DROP) 1637 trace_xdp_exception(fep->netdev, prog, act); 1638 break; 1639 } 1640 1641 return ret; 1642 } 1643 1644 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1645 * When we update through the ring, if the next incoming buffer has 1646 * not been given to the system, we just set the empty indicator, 1647 * effectively tossing the packet. 1648 */ 1649 static int 1650 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1651 { 1652 struct fec_enet_private *fep = netdev_priv(ndev); 1653 struct fec_enet_priv_rx_q *rxq; 1654 struct bufdesc *bdp; 1655 unsigned short status; 1656 struct sk_buff *skb; 1657 ushort pkt_len; 1658 __u8 *data; 1659 int pkt_received = 0; 1660 struct bufdesc_ex *ebdp = NULL; 1661 bool vlan_packet_rcvd = false; 1662 u16 vlan_tag; 1663 int index = 0; 1664 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1665 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1666 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1667 u32 data_start = FEC_ENET_XDP_HEADROOM; 1668 int cpu = smp_processor_id(); 1669 struct xdp_buff xdp; 1670 struct page *page; 1671 u32 sub_len = 4; 1672 1673 #if !defined(CONFIG_M5272) 1674 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1675 * FEC_RACC_SHIFT16 is set by default in the probe function. 1676 */ 1677 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1678 data_start += 2; 1679 sub_len += 2; 1680 } 1681 #endif 1682 1683 #ifdef CONFIG_M532x 1684 flush_cache_all(); 1685 #endif 1686 rxq = fep->rx_queue[queue_id]; 1687 1688 /* First, grab all of the stats for the incoming packet. 1689 * These get messed up if we get called due to a busy condition. 1690 */ 1691 bdp = rxq->bd.cur; 1692 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1693 1694 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1695 1696 if (pkt_received >= budget) 1697 break; 1698 pkt_received++; 1699 1700 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1701 1702 /* Check for errors. */ 1703 status ^= BD_ENET_RX_LAST; 1704 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1705 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1706 BD_ENET_RX_CL)) { 1707 ndev->stats.rx_errors++; 1708 if (status & BD_ENET_RX_OV) { 1709 /* FIFO overrun */ 1710 ndev->stats.rx_fifo_errors++; 1711 goto rx_processing_done; 1712 } 1713 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1714 | BD_ENET_RX_LAST)) { 1715 /* Frame too long or too short. */ 1716 ndev->stats.rx_length_errors++; 1717 if (status & BD_ENET_RX_LAST) 1718 netdev_err(ndev, "rcv is not +last\n"); 1719 } 1720 if (status & BD_ENET_RX_CR) /* CRC Error */ 1721 ndev->stats.rx_crc_errors++; 1722 /* Report late collisions as a frame error. */ 1723 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1724 ndev->stats.rx_frame_errors++; 1725 goto rx_processing_done; 1726 } 1727 1728 /* Process the incoming frame. */ 1729 ndev->stats.rx_packets++; 1730 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1731 ndev->stats.rx_bytes += pkt_len; 1732 1733 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1734 page = rxq->rx_skb_info[index].page; 1735 dma_sync_single_for_cpu(&fep->pdev->dev, 1736 fec32_to_cpu(bdp->cbd_bufaddr), 1737 pkt_len, 1738 DMA_FROM_DEVICE); 1739 prefetch(page_address(page)); 1740 fec_enet_update_cbd(rxq, bdp, index); 1741 1742 if (xdp_prog) { 1743 xdp_buff_clear_frags_flag(&xdp); 1744 /* subtract 16bit shift and FCS */ 1745 xdp_prepare_buff(&xdp, page_address(page), 1746 data_start, pkt_len - sub_len, false); 1747 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu); 1748 xdp_result |= ret; 1749 if (ret != FEC_ENET_XDP_PASS) 1750 goto rx_processing_done; 1751 } 1752 1753 /* The packet length includes FCS, but we don't want to 1754 * include that when passing upstream as it messes up 1755 * bridging applications. 1756 */ 1757 skb = build_skb(page_address(page), PAGE_SIZE); 1758 if (unlikely(!skb)) { 1759 page_pool_recycle_direct(rxq->page_pool, page); 1760 ndev->stats.rx_dropped++; 1761 1762 netdev_err_once(ndev, "build_skb failed!\n"); 1763 goto rx_processing_done; 1764 } 1765 1766 skb_reserve(skb, data_start); 1767 skb_put(skb, pkt_len - sub_len); 1768 skb_mark_for_recycle(skb); 1769 1770 if (unlikely(need_swap)) { 1771 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1772 swap_buffer(data, pkt_len); 1773 } 1774 data = skb->data; 1775 1776 /* Extract the enhanced buffer descriptor */ 1777 ebdp = NULL; 1778 if (fep->bufdesc_ex) 1779 ebdp = (struct bufdesc_ex *)bdp; 1780 1781 /* If this is a VLAN packet remove the VLAN Tag */ 1782 vlan_packet_rcvd = false; 1783 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1784 fep->bufdesc_ex && 1785 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1786 /* Push and remove the vlan tag */ 1787 struct vlan_hdr *vlan_header = 1788 (struct vlan_hdr *) (data + ETH_HLEN); 1789 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1790 1791 vlan_packet_rcvd = true; 1792 1793 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1794 skb_pull(skb, VLAN_HLEN); 1795 } 1796 1797 skb->protocol = eth_type_trans(skb, ndev); 1798 1799 /* Get receive timestamp from the skb */ 1800 if (fep->hwts_rx_en && fep->bufdesc_ex) 1801 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1802 skb_hwtstamps(skb)); 1803 1804 if (fep->bufdesc_ex && 1805 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1806 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1807 /* don't check it */ 1808 skb->ip_summed = CHECKSUM_UNNECESSARY; 1809 } else { 1810 skb_checksum_none_assert(skb); 1811 } 1812 } 1813 1814 /* Handle received VLAN packets */ 1815 if (vlan_packet_rcvd) 1816 __vlan_hwaccel_put_tag(skb, 1817 htons(ETH_P_8021Q), 1818 vlan_tag); 1819 1820 skb_record_rx_queue(skb, queue_id); 1821 napi_gro_receive(&fep->napi, skb); 1822 1823 rx_processing_done: 1824 /* Clear the status flags for this buffer */ 1825 status &= ~BD_ENET_RX_STATS; 1826 1827 /* Mark the buffer empty */ 1828 status |= BD_ENET_RX_EMPTY; 1829 1830 if (fep->bufdesc_ex) { 1831 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1832 1833 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1834 ebdp->cbd_prot = 0; 1835 ebdp->cbd_bdu = 0; 1836 } 1837 /* Make sure the updates to rest of the descriptor are 1838 * performed before transferring ownership. 1839 */ 1840 wmb(); 1841 bdp->cbd_sc = cpu_to_fec16(status); 1842 1843 /* Update BD pointer to next entry */ 1844 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1845 1846 /* Doing this here will keep the FEC running while we process 1847 * incoming frames. On a heavily loaded network, we should be 1848 * able to keep up at the expense of system resources. 1849 */ 1850 writel(0, rxq->bd.reg_desc_active); 1851 } 1852 rxq->bd.cur = bdp; 1853 1854 if (xdp_result & FEC_ENET_XDP_REDIR) 1855 xdp_do_flush_map(); 1856 1857 return pkt_received; 1858 } 1859 1860 static int fec_enet_rx(struct net_device *ndev, int budget) 1861 { 1862 struct fec_enet_private *fep = netdev_priv(ndev); 1863 int i, done = 0; 1864 1865 /* Make sure that AVB queues are processed first. */ 1866 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1867 done += fec_enet_rx_queue(ndev, budget - done, i); 1868 1869 return done; 1870 } 1871 1872 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1873 { 1874 uint int_events; 1875 1876 int_events = readl(fep->hwp + FEC_IEVENT); 1877 1878 /* Don't clear MDIO events, we poll for those */ 1879 int_events &= ~FEC_ENET_MII; 1880 1881 writel(int_events, fep->hwp + FEC_IEVENT); 1882 1883 return int_events != 0; 1884 } 1885 1886 static irqreturn_t 1887 fec_enet_interrupt(int irq, void *dev_id) 1888 { 1889 struct net_device *ndev = dev_id; 1890 struct fec_enet_private *fep = netdev_priv(ndev); 1891 irqreturn_t ret = IRQ_NONE; 1892 1893 if (fec_enet_collect_events(fep) && fep->link) { 1894 ret = IRQ_HANDLED; 1895 1896 if (napi_schedule_prep(&fep->napi)) { 1897 /* Disable interrupts */ 1898 writel(0, fep->hwp + FEC_IMASK); 1899 __napi_schedule(&fep->napi); 1900 } 1901 } 1902 1903 return ret; 1904 } 1905 1906 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1907 { 1908 struct net_device *ndev = napi->dev; 1909 struct fec_enet_private *fep = netdev_priv(ndev); 1910 int done = 0; 1911 1912 do { 1913 done += fec_enet_rx(ndev, budget - done); 1914 fec_enet_tx(ndev, budget); 1915 } while ((done < budget) && fec_enet_collect_events(fep)); 1916 1917 if (done < budget) { 1918 napi_complete_done(napi, done); 1919 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1920 } 1921 1922 return done; 1923 } 1924 1925 /* ------------------------------------------------------------------------- */ 1926 static int fec_get_mac(struct net_device *ndev) 1927 { 1928 struct fec_enet_private *fep = netdev_priv(ndev); 1929 unsigned char *iap, tmpaddr[ETH_ALEN]; 1930 int ret; 1931 1932 /* 1933 * try to get mac address in following order: 1934 * 1935 * 1) module parameter via kernel command line in form 1936 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1937 */ 1938 iap = macaddr; 1939 1940 /* 1941 * 2) from device tree data 1942 */ 1943 if (!is_valid_ether_addr(iap)) { 1944 struct device_node *np = fep->pdev->dev.of_node; 1945 if (np) { 1946 ret = of_get_mac_address(np, tmpaddr); 1947 if (!ret) 1948 iap = tmpaddr; 1949 else if (ret == -EPROBE_DEFER) 1950 return ret; 1951 } 1952 } 1953 1954 /* 1955 * 3) from flash or fuse (via platform data) 1956 */ 1957 if (!is_valid_ether_addr(iap)) { 1958 #ifdef CONFIG_M5272 1959 if (FEC_FLASHMAC) 1960 iap = (unsigned char *)FEC_FLASHMAC; 1961 #else 1962 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1963 1964 if (pdata) 1965 iap = (unsigned char *)&pdata->mac; 1966 #endif 1967 } 1968 1969 /* 1970 * 4) FEC mac registers set by bootloader 1971 */ 1972 if (!is_valid_ether_addr(iap)) { 1973 *((__be32 *) &tmpaddr[0]) = 1974 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1975 *((__be16 *) &tmpaddr[4]) = 1976 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1977 iap = &tmpaddr[0]; 1978 } 1979 1980 /* 1981 * 5) random mac address 1982 */ 1983 if (!is_valid_ether_addr(iap)) { 1984 /* Report it and use a random ethernet address instead */ 1985 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1986 eth_hw_addr_random(ndev); 1987 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1988 ndev->dev_addr); 1989 return 0; 1990 } 1991 1992 /* Adjust MAC if using macaddr */ 1993 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1994 1995 return 0; 1996 } 1997 1998 /* ------------------------------------------------------------------------- */ 1999 2000 /* 2001 * Phy section 2002 */ 2003 static void fec_enet_adjust_link(struct net_device *ndev) 2004 { 2005 struct fec_enet_private *fep = netdev_priv(ndev); 2006 struct phy_device *phy_dev = ndev->phydev; 2007 int status_change = 0; 2008 2009 /* 2010 * If the netdev is down, or is going down, we're not interested 2011 * in link state events, so just mark our idea of the link as down 2012 * and ignore the event. 2013 */ 2014 if (!netif_running(ndev) || !netif_device_present(ndev)) { 2015 fep->link = 0; 2016 } else if (phy_dev->link) { 2017 if (!fep->link) { 2018 fep->link = phy_dev->link; 2019 status_change = 1; 2020 } 2021 2022 if (fep->full_duplex != phy_dev->duplex) { 2023 fep->full_duplex = phy_dev->duplex; 2024 status_change = 1; 2025 } 2026 2027 if (phy_dev->speed != fep->speed) { 2028 fep->speed = phy_dev->speed; 2029 status_change = 1; 2030 } 2031 2032 /* if any of the above changed restart the FEC */ 2033 if (status_change) { 2034 netif_stop_queue(ndev); 2035 napi_disable(&fep->napi); 2036 netif_tx_lock_bh(ndev); 2037 fec_restart(ndev); 2038 netif_tx_wake_all_queues(ndev); 2039 netif_tx_unlock_bh(ndev); 2040 napi_enable(&fep->napi); 2041 } 2042 } else { 2043 if (fep->link) { 2044 netif_stop_queue(ndev); 2045 napi_disable(&fep->napi); 2046 netif_tx_lock_bh(ndev); 2047 fec_stop(ndev); 2048 netif_tx_unlock_bh(ndev); 2049 napi_enable(&fep->napi); 2050 fep->link = phy_dev->link; 2051 status_change = 1; 2052 } 2053 } 2054 2055 if (status_change) 2056 phy_print_status(phy_dev); 2057 } 2058 2059 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2060 { 2061 uint ievent; 2062 int ret; 2063 2064 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2065 ievent & FEC_ENET_MII, 2, 30000); 2066 2067 if (!ret) 2068 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2069 2070 return ret; 2071 } 2072 2073 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2074 { 2075 struct fec_enet_private *fep = bus->priv; 2076 struct device *dev = &fep->pdev->dev; 2077 int ret = 0, frame_start, frame_addr, frame_op; 2078 2079 ret = pm_runtime_resume_and_get(dev); 2080 if (ret < 0) 2081 return ret; 2082 2083 /* C22 read */ 2084 frame_op = FEC_MMFR_OP_READ; 2085 frame_start = FEC_MMFR_ST; 2086 frame_addr = regnum; 2087 2088 /* start a read op */ 2089 writel(frame_start | frame_op | 2090 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2091 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2092 2093 /* wait for end of transfer */ 2094 ret = fec_enet_mdio_wait(fep); 2095 if (ret) { 2096 netdev_err(fep->netdev, "MDIO read timeout\n"); 2097 goto out; 2098 } 2099 2100 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2101 2102 out: 2103 pm_runtime_mark_last_busy(dev); 2104 pm_runtime_put_autosuspend(dev); 2105 2106 return ret; 2107 } 2108 2109 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2110 int devad, int regnum) 2111 { 2112 struct fec_enet_private *fep = bus->priv; 2113 struct device *dev = &fep->pdev->dev; 2114 int ret = 0, frame_start, frame_op; 2115 2116 ret = pm_runtime_resume_and_get(dev); 2117 if (ret < 0) 2118 return ret; 2119 2120 frame_start = FEC_MMFR_ST_C45; 2121 2122 /* write address */ 2123 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2124 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2125 FEC_MMFR_TA | (regnum & 0xFFFF), 2126 fep->hwp + FEC_MII_DATA); 2127 2128 /* wait for end of transfer */ 2129 ret = fec_enet_mdio_wait(fep); 2130 if (ret) { 2131 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2132 goto out; 2133 } 2134 2135 frame_op = FEC_MMFR_OP_READ_C45; 2136 2137 /* start a read op */ 2138 writel(frame_start | frame_op | 2139 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2140 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2141 2142 /* wait for end of transfer */ 2143 ret = fec_enet_mdio_wait(fep); 2144 if (ret) { 2145 netdev_err(fep->netdev, "MDIO read timeout\n"); 2146 goto out; 2147 } 2148 2149 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2150 2151 out: 2152 pm_runtime_mark_last_busy(dev); 2153 pm_runtime_put_autosuspend(dev); 2154 2155 return ret; 2156 } 2157 2158 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2159 u16 value) 2160 { 2161 struct fec_enet_private *fep = bus->priv; 2162 struct device *dev = &fep->pdev->dev; 2163 int ret, frame_start, frame_addr; 2164 2165 ret = pm_runtime_resume_and_get(dev); 2166 if (ret < 0) 2167 return ret; 2168 2169 /* C22 write */ 2170 frame_start = FEC_MMFR_ST; 2171 frame_addr = regnum; 2172 2173 /* start a write op */ 2174 writel(frame_start | FEC_MMFR_OP_WRITE | 2175 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2176 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2177 fep->hwp + FEC_MII_DATA); 2178 2179 /* wait for end of transfer */ 2180 ret = fec_enet_mdio_wait(fep); 2181 if (ret) 2182 netdev_err(fep->netdev, "MDIO write timeout\n"); 2183 2184 pm_runtime_mark_last_busy(dev); 2185 pm_runtime_put_autosuspend(dev); 2186 2187 return ret; 2188 } 2189 2190 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2191 int devad, int regnum, u16 value) 2192 { 2193 struct fec_enet_private *fep = bus->priv; 2194 struct device *dev = &fep->pdev->dev; 2195 int ret, frame_start; 2196 2197 ret = pm_runtime_resume_and_get(dev); 2198 if (ret < 0) 2199 return ret; 2200 2201 frame_start = FEC_MMFR_ST_C45; 2202 2203 /* write address */ 2204 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2205 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2206 FEC_MMFR_TA | (regnum & 0xFFFF), 2207 fep->hwp + FEC_MII_DATA); 2208 2209 /* wait for end of transfer */ 2210 ret = fec_enet_mdio_wait(fep); 2211 if (ret) { 2212 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2213 goto out; 2214 } 2215 2216 /* start a write op */ 2217 writel(frame_start | FEC_MMFR_OP_WRITE | 2218 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2219 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2220 fep->hwp + FEC_MII_DATA); 2221 2222 /* wait for end of transfer */ 2223 ret = fec_enet_mdio_wait(fep); 2224 if (ret) 2225 netdev_err(fep->netdev, "MDIO write timeout\n"); 2226 2227 out: 2228 pm_runtime_mark_last_busy(dev); 2229 pm_runtime_put_autosuspend(dev); 2230 2231 return ret; 2232 } 2233 2234 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2235 { 2236 struct fec_enet_private *fep = netdev_priv(ndev); 2237 struct phy_device *phy_dev = ndev->phydev; 2238 2239 if (phy_dev) { 2240 phy_reset_after_clk_enable(phy_dev); 2241 } else if (fep->phy_node) { 2242 /* 2243 * If the PHY still is not bound to the MAC, but there is 2244 * OF PHY node and a matching PHY device instance already, 2245 * use the OF PHY node to obtain the PHY device instance, 2246 * and then use that PHY device instance when triggering 2247 * the PHY reset. 2248 */ 2249 phy_dev = of_phy_find_device(fep->phy_node); 2250 phy_reset_after_clk_enable(phy_dev); 2251 put_device(&phy_dev->mdio.dev); 2252 } 2253 } 2254 2255 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2256 { 2257 struct fec_enet_private *fep = netdev_priv(ndev); 2258 int ret; 2259 2260 if (enable) { 2261 ret = clk_prepare_enable(fep->clk_enet_out); 2262 if (ret) 2263 return ret; 2264 2265 if (fep->clk_ptp) { 2266 mutex_lock(&fep->ptp_clk_mutex); 2267 ret = clk_prepare_enable(fep->clk_ptp); 2268 if (ret) { 2269 mutex_unlock(&fep->ptp_clk_mutex); 2270 goto failed_clk_ptp; 2271 } else { 2272 fep->ptp_clk_on = true; 2273 } 2274 mutex_unlock(&fep->ptp_clk_mutex); 2275 } 2276 2277 ret = clk_prepare_enable(fep->clk_ref); 2278 if (ret) 2279 goto failed_clk_ref; 2280 2281 ret = clk_prepare_enable(fep->clk_2x_txclk); 2282 if (ret) 2283 goto failed_clk_2x_txclk; 2284 2285 fec_enet_phy_reset_after_clk_enable(ndev); 2286 } else { 2287 clk_disable_unprepare(fep->clk_enet_out); 2288 if (fep->clk_ptp) { 2289 mutex_lock(&fep->ptp_clk_mutex); 2290 clk_disable_unprepare(fep->clk_ptp); 2291 fep->ptp_clk_on = false; 2292 mutex_unlock(&fep->ptp_clk_mutex); 2293 } 2294 clk_disable_unprepare(fep->clk_ref); 2295 clk_disable_unprepare(fep->clk_2x_txclk); 2296 } 2297 2298 return 0; 2299 2300 failed_clk_2x_txclk: 2301 if (fep->clk_ref) 2302 clk_disable_unprepare(fep->clk_ref); 2303 failed_clk_ref: 2304 if (fep->clk_ptp) { 2305 mutex_lock(&fep->ptp_clk_mutex); 2306 clk_disable_unprepare(fep->clk_ptp); 2307 fep->ptp_clk_on = false; 2308 mutex_unlock(&fep->ptp_clk_mutex); 2309 } 2310 failed_clk_ptp: 2311 clk_disable_unprepare(fep->clk_enet_out); 2312 2313 return ret; 2314 } 2315 2316 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2317 struct device_node *np) 2318 { 2319 u32 rgmii_tx_delay, rgmii_rx_delay; 2320 2321 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2322 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2323 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2324 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2325 return -EINVAL; 2326 } else if (rgmii_tx_delay == 2000) { 2327 fep->rgmii_txc_dly = true; 2328 } 2329 } 2330 2331 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2332 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2333 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2334 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2335 return -EINVAL; 2336 } else if (rgmii_rx_delay == 2000) { 2337 fep->rgmii_rxc_dly = true; 2338 } 2339 } 2340 2341 return 0; 2342 } 2343 2344 static int fec_enet_mii_probe(struct net_device *ndev) 2345 { 2346 struct fec_enet_private *fep = netdev_priv(ndev); 2347 struct phy_device *phy_dev = NULL; 2348 char mdio_bus_id[MII_BUS_ID_SIZE]; 2349 char phy_name[MII_BUS_ID_SIZE + 3]; 2350 int phy_id; 2351 int dev_id = fep->dev_id; 2352 2353 if (fep->phy_node) { 2354 phy_dev = of_phy_connect(ndev, fep->phy_node, 2355 &fec_enet_adjust_link, 0, 2356 fep->phy_interface); 2357 if (!phy_dev) { 2358 netdev_err(ndev, "Unable to connect to phy\n"); 2359 return -ENODEV; 2360 } 2361 } else { 2362 /* check for attached phy */ 2363 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2364 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2365 continue; 2366 if (dev_id--) 2367 continue; 2368 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2369 break; 2370 } 2371 2372 if (phy_id >= PHY_MAX_ADDR) { 2373 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2374 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2375 phy_id = 0; 2376 } 2377 2378 snprintf(phy_name, sizeof(phy_name), 2379 PHY_ID_FMT, mdio_bus_id, phy_id); 2380 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2381 fep->phy_interface); 2382 } 2383 2384 if (IS_ERR(phy_dev)) { 2385 netdev_err(ndev, "could not attach to PHY\n"); 2386 return PTR_ERR(phy_dev); 2387 } 2388 2389 /* mask with MAC supported features */ 2390 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2391 phy_set_max_speed(phy_dev, 1000); 2392 phy_remove_link_mode(phy_dev, 2393 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2394 #if !defined(CONFIG_M5272) 2395 phy_support_sym_pause(phy_dev); 2396 #endif 2397 } 2398 else 2399 phy_set_max_speed(phy_dev, 100); 2400 2401 fep->link = 0; 2402 fep->full_duplex = 0; 2403 2404 phy_attached_info(phy_dev); 2405 2406 return 0; 2407 } 2408 2409 static int fec_enet_mii_init(struct platform_device *pdev) 2410 { 2411 static struct mii_bus *fec0_mii_bus; 2412 struct net_device *ndev = platform_get_drvdata(pdev); 2413 struct fec_enet_private *fep = netdev_priv(ndev); 2414 bool suppress_preamble = false; 2415 struct phy_device *phydev; 2416 struct device_node *node; 2417 int err = -ENXIO; 2418 u32 mii_speed, holdtime; 2419 u32 bus_freq; 2420 int addr; 2421 2422 /* 2423 * The i.MX28 dual fec interfaces are not equal. 2424 * Here are the differences: 2425 * 2426 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2427 * - fec0 acts as the 1588 time master while fec1 is slave 2428 * - external phys can only be configured by fec0 2429 * 2430 * That is to say fec1 can not work independently. It only works 2431 * when fec0 is working. The reason behind this design is that the 2432 * second interface is added primarily for Switch mode. 2433 * 2434 * Because of the last point above, both phys are attached on fec0 2435 * mdio interface in board design, and need to be configured by 2436 * fec0 mii_bus. 2437 */ 2438 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2439 /* fec1 uses fec0 mii_bus */ 2440 if (mii_cnt && fec0_mii_bus) { 2441 fep->mii_bus = fec0_mii_bus; 2442 mii_cnt++; 2443 return 0; 2444 } 2445 return -ENOENT; 2446 } 2447 2448 bus_freq = 2500000; /* 2.5MHz by default */ 2449 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2450 if (node) { 2451 of_property_read_u32(node, "clock-frequency", &bus_freq); 2452 suppress_preamble = of_property_read_bool(node, 2453 "suppress-preamble"); 2454 } 2455 2456 /* 2457 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2458 * 2459 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2460 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2461 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2462 * document. 2463 */ 2464 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2465 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2466 mii_speed--; 2467 if (mii_speed > 63) { 2468 dev_err(&pdev->dev, 2469 "fec clock (%lu) too fast to get right mii speed\n", 2470 clk_get_rate(fep->clk_ipg)); 2471 err = -EINVAL; 2472 goto err_out; 2473 } 2474 2475 /* 2476 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2477 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2478 * versions are RAZ there, so just ignore the difference and write the 2479 * register always. 2480 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2481 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2482 * output. 2483 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2484 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2485 * holdtime cannot result in a value greater than 3. 2486 */ 2487 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2488 2489 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2490 2491 if (suppress_preamble) 2492 fep->phy_speed |= BIT(7); 2493 2494 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2495 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2496 * MII event generation condition: 2497 * - writing MSCR: 2498 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2499 * mscr_reg_data_in[7:0] != 0 2500 * - writing MMFR: 2501 * - mscr[7:0]_not_zero 2502 */ 2503 writel(0, fep->hwp + FEC_MII_DATA); 2504 } 2505 2506 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2507 2508 /* Clear any pending transaction complete indication */ 2509 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2510 2511 fep->mii_bus = mdiobus_alloc(); 2512 if (fep->mii_bus == NULL) { 2513 err = -ENOMEM; 2514 goto err_out; 2515 } 2516 2517 fep->mii_bus->name = "fec_enet_mii_bus"; 2518 fep->mii_bus->read = fec_enet_mdio_read_c22; 2519 fep->mii_bus->write = fec_enet_mdio_write_c22; 2520 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2521 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2522 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2523 } 2524 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2525 pdev->name, fep->dev_id + 1); 2526 fep->mii_bus->priv = fep; 2527 fep->mii_bus->parent = &pdev->dev; 2528 2529 err = of_mdiobus_register(fep->mii_bus, node); 2530 if (err) 2531 goto err_out_free_mdiobus; 2532 of_node_put(node); 2533 2534 /* find all the PHY devices on the bus and set mac_managed_pm to true */ 2535 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 2536 phydev = mdiobus_get_phy(fep->mii_bus, addr); 2537 if (phydev) 2538 phydev->mac_managed_pm = true; 2539 } 2540 2541 mii_cnt++; 2542 2543 /* save fec0 mii_bus */ 2544 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2545 fec0_mii_bus = fep->mii_bus; 2546 2547 return 0; 2548 2549 err_out_free_mdiobus: 2550 mdiobus_free(fep->mii_bus); 2551 err_out: 2552 of_node_put(node); 2553 return err; 2554 } 2555 2556 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2557 { 2558 if (--mii_cnt == 0) { 2559 mdiobus_unregister(fep->mii_bus); 2560 mdiobus_free(fep->mii_bus); 2561 } 2562 } 2563 2564 static void fec_enet_get_drvinfo(struct net_device *ndev, 2565 struct ethtool_drvinfo *info) 2566 { 2567 struct fec_enet_private *fep = netdev_priv(ndev); 2568 2569 strscpy(info->driver, fep->pdev->dev.driver->name, 2570 sizeof(info->driver)); 2571 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2572 } 2573 2574 static int fec_enet_get_regs_len(struct net_device *ndev) 2575 { 2576 struct fec_enet_private *fep = netdev_priv(ndev); 2577 struct resource *r; 2578 int s = 0; 2579 2580 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2581 if (r) 2582 s = resource_size(r); 2583 2584 return s; 2585 } 2586 2587 /* List of registers that can be safety be read to dump them with ethtool */ 2588 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2589 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2590 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2591 static __u32 fec_enet_register_version = 2; 2592 static u32 fec_enet_register_offset[] = { 2593 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2594 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2595 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2596 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2597 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2598 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2599 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2600 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2601 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2602 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2603 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2604 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2605 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2606 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2607 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2608 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2609 RMON_T_P_GTE2048, RMON_T_OCTETS, 2610 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2611 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2612 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2613 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2614 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2615 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2616 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2617 RMON_R_P_GTE2048, RMON_R_OCTETS, 2618 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2619 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2620 }; 2621 /* for i.MX6ul */ 2622 static u32 fec_enet_register_offset_6ul[] = { 2623 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2624 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2625 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2626 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2627 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2628 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2629 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2630 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2631 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2632 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2633 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2634 RMON_T_P_GTE2048, RMON_T_OCTETS, 2635 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2636 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2637 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2638 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2639 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2640 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2641 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2642 RMON_R_P_GTE2048, RMON_R_OCTETS, 2643 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2644 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2645 }; 2646 #else 2647 static __u32 fec_enet_register_version = 1; 2648 static u32 fec_enet_register_offset[] = { 2649 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2650 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2651 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2652 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2653 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2654 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2655 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2656 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2657 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2658 }; 2659 #endif 2660 2661 static void fec_enet_get_regs(struct net_device *ndev, 2662 struct ethtool_regs *regs, void *regbuf) 2663 { 2664 struct fec_enet_private *fep = netdev_priv(ndev); 2665 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2666 struct device *dev = &fep->pdev->dev; 2667 u32 *buf = (u32 *)regbuf; 2668 u32 i, off; 2669 int ret; 2670 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2671 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2672 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2673 u32 *reg_list; 2674 u32 reg_cnt; 2675 2676 if (!of_machine_is_compatible("fsl,imx6ul")) { 2677 reg_list = fec_enet_register_offset; 2678 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2679 } else { 2680 reg_list = fec_enet_register_offset_6ul; 2681 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2682 } 2683 #else 2684 /* coldfire */ 2685 static u32 *reg_list = fec_enet_register_offset; 2686 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2687 #endif 2688 ret = pm_runtime_resume_and_get(dev); 2689 if (ret < 0) 2690 return; 2691 2692 regs->version = fec_enet_register_version; 2693 2694 memset(buf, 0, regs->len); 2695 2696 for (i = 0; i < reg_cnt; i++) { 2697 off = reg_list[i]; 2698 2699 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2700 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2701 continue; 2702 2703 off >>= 2; 2704 buf[off] = readl(&theregs[off]); 2705 } 2706 2707 pm_runtime_mark_last_busy(dev); 2708 pm_runtime_put_autosuspend(dev); 2709 } 2710 2711 static int fec_enet_get_ts_info(struct net_device *ndev, 2712 struct ethtool_ts_info *info) 2713 { 2714 struct fec_enet_private *fep = netdev_priv(ndev); 2715 2716 if (fep->bufdesc_ex) { 2717 2718 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2719 SOF_TIMESTAMPING_RX_SOFTWARE | 2720 SOF_TIMESTAMPING_SOFTWARE | 2721 SOF_TIMESTAMPING_TX_HARDWARE | 2722 SOF_TIMESTAMPING_RX_HARDWARE | 2723 SOF_TIMESTAMPING_RAW_HARDWARE; 2724 if (fep->ptp_clock) 2725 info->phc_index = ptp_clock_index(fep->ptp_clock); 2726 else 2727 info->phc_index = -1; 2728 2729 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2730 (1 << HWTSTAMP_TX_ON); 2731 2732 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2733 (1 << HWTSTAMP_FILTER_ALL); 2734 return 0; 2735 } else { 2736 return ethtool_op_get_ts_info(ndev, info); 2737 } 2738 } 2739 2740 #if !defined(CONFIG_M5272) 2741 2742 static void fec_enet_get_pauseparam(struct net_device *ndev, 2743 struct ethtool_pauseparam *pause) 2744 { 2745 struct fec_enet_private *fep = netdev_priv(ndev); 2746 2747 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2748 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2749 pause->rx_pause = pause->tx_pause; 2750 } 2751 2752 static int fec_enet_set_pauseparam(struct net_device *ndev, 2753 struct ethtool_pauseparam *pause) 2754 { 2755 struct fec_enet_private *fep = netdev_priv(ndev); 2756 2757 if (!ndev->phydev) 2758 return -ENODEV; 2759 2760 if (pause->tx_pause != pause->rx_pause) { 2761 netdev_info(ndev, 2762 "hardware only support enable/disable both tx and rx"); 2763 return -EINVAL; 2764 } 2765 2766 fep->pause_flag = 0; 2767 2768 /* tx pause must be same as rx pause */ 2769 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2770 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2771 2772 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2773 pause->autoneg); 2774 2775 if (pause->autoneg) { 2776 if (netif_running(ndev)) 2777 fec_stop(ndev); 2778 phy_start_aneg(ndev->phydev); 2779 } 2780 if (netif_running(ndev)) { 2781 napi_disable(&fep->napi); 2782 netif_tx_lock_bh(ndev); 2783 fec_restart(ndev); 2784 netif_tx_wake_all_queues(ndev); 2785 netif_tx_unlock_bh(ndev); 2786 napi_enable(&fep->napi); 2787 } 2788 2789 return 0; 2790 } 2791 2792 static const struct fec_stat { 2793 char name[ETH_GSTRING_LEN]; 2794 u16 offset; 2795 } fec_stats[] = { 2796 /* RMON TX */ 2797 { "tx_dropped", RMON_T_DROP }, 2798 { "tx_packets", RMON_T_PACKETS }, 2799 { "tx_broadcast", RMON_T_BC_PKT }, 2800 { "tx_multicast", RMON_T_MC_PKT }, 2801 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2802 { "tx_undersize", RMON_T_UNDERSIZE }, 2803 { "tx_oversize", RMON_T_OVERSIZE }, 2804 { "tx_fragment", RMON_T_FRAG }, 2805 { "tx_jabber", RMON_T_JAB }, 2806 { "tx_collision", RMON_T_COL }, 2807 { "tx_64byte", RMON_T_P64 }, 2808 { "tx_65to127byte", RMON_T_P65TO127 }, 2809 { "tx_128to255byte", RMON_T_P128TO255 }, 2810 { "tx_256to511byte", RMON_T_P256TO511 }, 2811 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2812 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2813 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2814 { "tx_octets", RMON_T_OCTETS }, 2815 2816 /* IEEE TX */ 2817 { "IEEE_tx_drop", IEEE_T_DROP }, 2818 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2819 { "IEEE_tx_1col", IEEE_T_1COL }, 2820 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2821 { "IEEE_tx_def", IEEE_T_DEF }, 2822 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2823 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2824 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2825 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2826 { "IEEE_tx_sqe", IEEE_T_SQE }, 2827 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2828 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2829 2830 /* RMON RX */ 2831 { "rx_packets", RMON_R_PACKETS }, 2832 { "rx_broadcast", RMON_R_BC_PKT }, 2833 { "rx_multicast", RMON_R_MC_PKT }, 2834 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2835 { "rx_undersize", RMON_R_UNDERSIZE }, 2836 { "rx_oversize", RMON_R_OVERSIZE }, 2837 { "rx_fragment", RMON_R_FRAG }, 2838 { "rx_jabber", RMON_R_JAB }, 2839 { "rx_64byte", RMON_R_P64 }, 2840 { "rx_65to127byte", RMON_R_P65TO127 }, 2841 { "rx_128to255byte", RMON_R_P128TO255 }, 2842 { "rx_256to511byte", RMON_R_P256TO511 }, 2843 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2844 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2845 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2846 { "rx_octets", RMON_R_OCTETS }, 2847 2848 /* IEEE RX */ 2849 { "IEEE_rx_drop", IEEE_R_DROP }, 2850 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2851 { "IEEE_rx_crc", IEEE_R_CRC }, 2852 { "IEEE_rx_align", IEEE_R_ALIGN }, 2853 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2854 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2855 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2856 }; 2857 2858 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2859 2860 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2861 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2862 "rx_xdp_pass", /* RX_XDP_PASS, */ 2863 "rx_xdp_drop", /* RX_XDP_DROP, */ 2864 "rx_xdp_tx", /* RX_XDP_TX, */ 2865 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2866 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2867 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2868 }; 2869 2870 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2871 { 2872 struct fec_enet_private *fep = netdev_priv(dev); 2873 int i; 2874 2875 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2876 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2877 } 2878 2879 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2880 { 2881 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2882 struct fec_enet_priv_rx_q *rxq; 2883 int i, j; 2884 2885 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2886 rxq = fep->rx_queue[i]; 2887 2888 for (j = 0; j < XDP_STATS_TOTAL; j++) 2889 xdp_stats[j] += rxq->stats[j]; 2890 } 2891 2892 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2893 } 2894 2895 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2896 { 2897 #ifdef CONFIG_PAGE_POOL_STATS 2898 struct page_pool_stats stats = {}; 2899 struct fec_enet_priv_rx_q *rxq; 2900 int i; 2901 2902 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2903 rxq = fep->rx_queue[i]; 2904 2905 if (!rxq->page_pool) 2906 continue; 2907 2908 page_pool_get_stats(rxq->page_pool, &stats); 2909 } 2910 2911 page_pool_ethtool_stats_get(data, &stats); 2912 #endif 2913 } 2914 2915 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2916 struct ethtool_stats *stats, u64 *data) 2917 { 2918 struct fec_enet_private *fep = netdev_priv(dev); 2919 2920 if (netif_running(dev)) 2921 fec_enet_update_ethtool_stats(dev); 2922 2923 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2924 data += FEC_STATS_SIZE / sizeof(u64); 2925 2926 fec_enet_get_xdp_stats(fep, data); 2927 data += XDP_STATS_TOTAL; 2928 2929 fec_enet_page_pool_stats(fep, data); 2930 } 2931 2932 static void fec_enet_get_strings(struct net_device *netdev, 2933 u32 stringset, u8 *data) 2934 { 2935 int i; 2936 switch (stringset) { 2937 case ETH_SS_STATS: 2938 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2939 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2940 data += ETH_GSTRING_LEN; 2941 } 2942 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2943 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2944 data += ETH_GSTRING_LEN; 2945 } 2946 page_pool_ethtool_stats_get_strings(data); 2947 2948 break; 2949 case ETH_SS_TEST: 2950 net_selftest_get_strings(data); 2951 break; 2952 } 2953 } 2954 2955 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2956 { 2957 int count; 2958 2959 switch (sset) { 2960 case ETH_SS_STATS: 2961 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2962 count += page_pool_ethtool_stats_get_count(); 2963 return count; 2964 2965 case ETH_SS_TEST: 2966 return net_selftest_get_count(); 2967 default: 2968 return -EOPNOTSUPP; 2969 } 2970 } 2971 2972 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2973 { 2974 struct fec_enet_private *fep = netdev_priv(dev); 2975 struct fec_enet_priv_rx_q *rxq; 2976 int i, j; 2977 2978 /* Disable MIB statistics counters */ 2979 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2980 2981 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2982 writel(0, fep->hwp + fec_stats[i].offset); 2983 2984 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2985 rxq = fep->rx_queue[i]; 2986 for (j = 0; j < XDP_STATS_TOTAL; j++) 2987 rxq->stats[j] = 0; 2988 } 2989 2990 /* Don't disable MIB statistics counters */ 2991 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2992 } 2993 2994 #else /* !defined(CONFIG_M5272) */ 2995 #define FEC_STATS_SIZE 0 2996 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2997 { 2998 } 2999 3000 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 3001 { 3002 } 3003 #endif /* !defined(CONFIG_M5272) */ 3004 3005 /* ITR clock source is enet system clock (clk_ahb). 3006 * TCTT unit is cycle_ns * 64 cycle 3007 * So, the ICTT value = X us / (cycle_ns * 64) 3008 */ 3009 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 3010 { 3011 struct fec_enet_private *fep = netdev_priv(ndev); 3012 3013 return us * (fep->itr_clk_rate / 64000) / 1000; 3014 } 3015 3016 /* Set threshold for interrupt coalescing */ 3017 static void fec_enet_itr_coal_set(struct net_device *ndev) 3018 { 3019 struct fec_enet_private *fep = netdev_priv(ndev); 3020 int rx_itr, tx_itr; 3021 3022 /* Must be greater than zero to avoid unpredictable behavior */ 3023 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 3024 !fep->tx_time_itr || !fep->tx_pkts_itr) 3025 return; 3026 3027 /* Select enet system clock as Interrupt Coalescing 3028 * timer Clock Source 3029 */ 3030 rx_itr = FEC_ITR_CLK_SEL; 3031 tx_itr = FEC_ITR_CLK_SEL; 3032 3033 /* set ICFT and ICTT */ 3034 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3035 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 3036 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3037 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 3038 3039 rx_itr |= FEC_ITR_EN; 3040 tx_itr |= FEC_ITR_EN; 3041 3042 writel(tx_itr, fep->hwp + FEC_TXIC0); 3043 writel(rx_itr, fep->hwp + FEC_RXIC0); 3044 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3045 writel(tx_itr, fep->hwp + FEC_TXIC1); 3046 writel(rx_itr, fep->hwp + FEC_RXIC1); 3047 writel(tx_itr, fep->hwp + FEC_TXIC2); 3048 writel(rx_itr, fep->hwp + FEC_RXIC2); 3049 } 3050 } 3051 3052 static int fec_enet_get_coalesce(struct net_device *ndev, 3053 struct ethtool_coalesce *ec, 3054 struct kernel_ethtool_coalesce *kernel_coal, 3055 struct netlink_ext_ack *extack) 3056 { 3057 struct fec_enet_private *fep = netdev_priv(ndev); 3058 3059 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3060 return -EOPNOTSUPP; 3061 3062 ec->rx_coalesce_usecs = fep->rx_time_itr; 3063 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3064 3065 ec->tx_coalesce_usecs = fep->tx_time_itr; 3066 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3067 3068 return 0; 3069 } 3070 3071 static int fec_enet_set_coalesce(struct net_device *ndev, 3072 struct ethtool_coalesce *ec, 3073 struct kernel_ethtool_coalesce *kernel_coal, 3074 struct netlink_ext_ack *extack) 3075 { 3076 struct fec_enet_private *fep = netdev_priv(ndev); 3077 struct device *dev = &fep->pdev->dev; 3078 unsigned int cycle; 3079 3080 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3081 return -EOPNOTSUPP; 3082 3083 if (ec->rx_max_coalesced_frames > 255) { 3084 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3085 return -EINVAL; 3086 } 3087 3088 if (ec->tx_max_coalesced_frames > 255) { 3089 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3090 return -EINVAL; 3091 } 3092 3093 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3094 if (cycle > 0xFFFF) { 3095 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3096 return -EINVAL; 3097 } 3098 3099 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3100 if (cycle > 0xFFFF) { 3101 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3102 return -EINVAL; 3103 } 3104 3105 fep->rx_time_itr = ec->rx_coalesce_usecs; 3106 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3107 3108 fep->tx_time_itr = ec->tx_coalesce_usecs; 3109 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3110 3111 fec_enet_itr_coal_set(ndev); 3112 3113 return 0; 3114 } 3115 3116 /* LPI Sleep Ts count base on tx clk (clk_ref). 3117 * The lpi sleep cnt value = X us / (cycle_ns). 3118 */ 3119 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3120 { 3121 struct fec_enet_private *fep = netdev_priv(ndev); 3122 3123 return us * (fep->clk_ref_rate / 1000) / 1000; 3124 } 3125 3126 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3127 { 3128 struct fec_enet_private *fep = netdev_priv(ndev); 3129 struct ethtool_eee *p = &fep->eee; 3130 unsigned int sleep_cycle, wake_cycle; 3131 int ret = 0; 3132 3133 if (enable) { 3134 ret = phy_init_eee(ndev->phydev, false); 3135 if (ret) 3136 return ret; 3137 3138 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3139 wake_cycle = sleep_cycle; 3140 } else { 3141 sleep_cycle = 0; 3142 wake_cycle = 0; 3143 } 3144 3145 p->tx_lpi_enabled = enable; 3146 p->eee_enabled = enable; 3147 p->eee_active = enable; 3148 3149 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3150 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3151 3152 return 0; 3153 } 3154 3155 static int 3156 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3157 { 3158 struct fec_enet_private *fep = netdev_priv(ndev); 3159 struct ethtool_eee *p = &fep->eee; 3160 3161 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3162 return -EOPNOTSUPP; 3163 3164 if (!netif_running(ndev)) 3165 return -ENETDOWN; 3166 3167 edata->eee_enabled = p->eee_enabled; 3168 edata->eee_active = p->eee_active; 3169 edata->tx_lpi_timer = p->tx_lpi_timer; 3170 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3171 3172 return phy_ethtool_get_eee(ndev->phydev, edata); 3173 } 3174 3175 static int 3176 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3177 { 3178 struct fec_enet_private *fep = netdev_priv(ndev); 3179 struct ethtool_eee *p = &fep->eee; 3180 int ret = 0; 3181 3182 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3183 return -EOPNOTSUPP; 3184 3185 if (!netif_running(ndev)) 3186 return -ENETDOWN; 3187 3188 p->tx_lpi_timer = edata->tx_lpi_timer; 3189 3190 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3191 !edata->tx_lpi_timer) 3192 ret = fec_enet_eee_mode_set(ndev, false); 3193 else 3194 ret = fec_enet_eee_mode_set(ndev, true); 3195 3196 if (ret) 3197 return ret; 3198 3199 return phy_ethtool_set_eee(ndev->phydev, edata); 3200 } 3201 3202 static void 3203 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3204 { 3205 struct fec_enet_private *fep = netdev_priv(ndev); 3206 3207 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3208 wol->supported = WAKE_MAGIC; 3209 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3210 } else { 3211 wol->supported = wol->wolopts = 0; 3212 } 3213 } 3214 3215 static int 3216 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3217 { 3218 struct fec_enet_private *fep = netdev_priv(ndev); 3219 3220 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3221 return -EINVAL; 3222 3223 if (wol->wolopts & ~WAKE_MAGIC) 3224 return -EINVAL; 3225 3226 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3227 if (device_may_wakeup(&ndev->dev)) 3228 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3229 else 3230 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3231 3232 return 0; 3233 } 3234 3235 static const struct ethtool_ops fec_enet_ethtool_ops = { 3236 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3237 ETHTOOL_COALESCE_MAX_FRAMES, 3238 .get_drvinfo = fec_enet_get_drvinfo, 3239 .get_regs_len = fec_enet_get_regs_len, 3240 .get_regs = fec_enet_get_regs, 3241 .nway_reset = phy_ethtool_nway_reset, 3242 .get_link = ethtool_op_get_link, 3243 .get_coalesce = fec_enet_get_coalesce, 3244 .set_coalesce = fec_enet_set_coalesce, 3245 #ifndef CONFIG_M5272 3246 .get_pauseparam = fec_enet_get_pauseparam, 3247 .set_pauseparam = fec_enet_set_pauseparam, 3248 .get_strings = fec_enet_get_strings, 3249 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3250 .get_sset_count = fec_enet_get_sset_count, 3251 #endif 3252 .get_ts_info = fec_enet_get_ts_info, 3253 .get_wol = fec_enet_get_wol, 3254 .set_wol = fec_enet_set_wol, 3255 .get_eee = fec_enet_get_eee, 3256 .set_eee = fec_enet_set_eee, 3257 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3258 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3259 .self_test = net_selftest, 3260 }; 3261 3262 static void fec_enet_free_buffers(struct net_device *ndev) 3263 { 3264 struct fec_enet_private *fep = netdev_priv(ndev); 3265 unsigned int i; 3266 struct fec_enet_priv_tx_q *txq; 3267 struct fec_enet_priv_rx_q *rxq; 3268 unsigned int q; 3269 3270 for (q = 0; q < fep->num_rx_queues; q++) { 3271 rxq = fep->rx_queue[q]; 3272 for (i = 0; i < rxq->bd.ring_size; i++) 3273 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3274 3275 for (i = 0; i < XDP_STATS_TOTAL; i++) 3276 rxq->stats[i] = 0; 3277 3278 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3279 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3280 page_pool_destroy(rxq->page_pool); 3281 rxq->page_pool = NULL; 3282 } 3283 3284 for (q = 0; q < fep->num_tx_queues; q++) { 3285 txq = fep->tx_queue[q]; 3286 for (i = 0; i < txq->bd.ring_size; i++) { 3287 kfree(txq->tx_bounce[i]); 3288 txq->tx_bounce[i] = NULL; 3289 3290 if (!txq->tx_buf[i].buf_p) { 3291 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3292 continue; 3293 } 3294 3295 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3296 dev_kfree_skb(txq->tx_buf[i].buf_p); 3297 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 3298 xdp_return_frame(txq->tx_buf[i].buf_p); 3299 } else { 3300 struct page *page = txq->tx_buf[i].buf_p; 3301 3302 page_pool_put_page(page->pp, page, 0, false); 3303 } 3304 3305 txq->tx_buf[i].buf_p = NULL; 3306 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3307 } 3308 } 3309 } 3310 3311 static void fec_enet_free_queue(struct net_device *ndev) 3312 { 3313 struct fec_enet_private *fep = netdev_priv(ndev); 3314 int i; 3315 struct fec_enet_priv_tx_q *txq; 3316 3317 for (i = 0; i < fep->num_tx_queues; i++) 3318 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3319 txq = fep->tx_queue[i]; 3320 dma_free_coherent(&fep->pdev->dev, 3321 txq->bd.ring_size * TSO_HEADER_SIZE, 3322 txq->tso_hdrs, 3323 txq->tso_hdrs_dma); 3324 } 3325 3326 for (i = 0; i < fep->num_rx_queues; i++) 3327 kfree(fep->rx_queue[i]); 3328 for (i = 0; i < fep->num_tx_queues; i++) 3329 kfree(fep->tx_queue[i]); 3330 } 3331 3332 static int fec_enet_alloc_queue(struct net_device *ndev) 3333 { 3334 struct fec_enet_private *fep = netdev_priv(ndev); 3335 int i; 3336 int ret = 0; 3337 struct fec_enet_priv_tx_q *txq; 3338 3339 for (i = 0; i < fep->num_tx_queues; i++) { 3340 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3341 if (!txq) { 3342 ret = -ENOMEM; 3343 goto alloc_failed; 3344 } 3345 3346 fep->tx_queue[i] = txq; 3347 txq->bd.ring_size = TX_RING_SIZE; 3348 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3349 3350 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3351 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3352 3353 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3354 txq->bd.ring_size * TSO_HEADER_SIZE, 3355 &txq->tso_hdrs_dma, 3356 GFP_KERNEL); 3357 if (!txq->tso_hdrs) { 3358 ret = -ENOMEM; 3359 goto alloc_failed; 3360 } 3361 } 3362 3363 for (i = 0; i < fep->num_rx_queues; i++) { 3364 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3365 GFP_KERNEL); 3366 if (!fep->rx_queue[i]) { 3367 ret = -ENOMEM; 3368 goto alloc_failed; 3369 } 3370 3371 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3372 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3373 } 3374 return ret; 3375 3376 alloc_failed: 3377 fec_enet_free_queue(ndev); 3378 return ret; 3379 } 3380 3381 static int 3382 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3383 { 3384 struct fec_enet_private *fep = netdev_priv(ndev); 3385 struct fec_enet_priv_rx_q *rxq; 3386 dma_addr_t phys_addr; 3387 struct bufdesc *bdp; 3388 struct page *page; 3389 int i, err; 3390 3391 rxq = fep->rx_queue[queue]; 3392 bdp = rxq->bd.base; 3393 3394 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3395 if (err < 0) { 3396 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3397 return err; 3398 } 3399 3400 for (i = 0; i < rxq->bd.ring_size; i++) { 3401 page = page_pool_dev_alloc_pages(rxq->page_pool); 3402 if (!page) 3403 goto err_alloc; 3404 3405 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3406 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3407 3408 rxq->rx_skb_info[i].page = page; 3409 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3410 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3411 3412 if (fep->bufdesc_ex) { 3413 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3414 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3415 } 3416 3417 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3418 } 3419 3420 /* Set the last buffer to wrap. */ 3421 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3422 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3423 return 0; 3424 3425 err_alloc: 3426 fec_enet_free_buffers(ndev); 3427 return -ENOMEM; 3428 } 3429 3430 static int 3431 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3432 { 3433 struct fec_enet_private *fep = netdev_priv(ndev); 3434 unsigned int i; 3435 struct bufdesc *bdp; 3436 struct fec_enet_priv_tx_q *txq; 3437 3438 txq = fep->tx_queue[queue]; 3439 bdp = txq->bd.base; 3440 for (i = 0; i < txq->bd.ring_size; i++) { 3441 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3442 if (!txq->tx_bounce[i]) 3443 goto err_alloc; 3444 3445 bdp->cbd_sc = cpu_to_fec16(0); 3446 bdp->cbd_bufaddr = cpu_to_fec32(0); 3447 3448 if (fep->bufdesc_ex) { 3449 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3450 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3451 } 3452 3453 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3454 } 3455 3456 /* Set the last buffer to wrap. */ 3457 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3458 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3459 3460 return 0; 3461 3462 err_alloc: 3463 fec_enet_free_buffers(ndev); 3464 return -ENOMEM; 3465 } 3466 3467 static int fec_enet_alloc_buffers(struct net_device *ndev) 3468 { 3469 struct fec_enet_private *fep = netdev_priv(ndev); 3470 unsigned int i; 3471 3472 for (i = 0; i < fep->num_rx_queues; i++) 3473 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3474 return -ENOMEM; 3475 3476 for (i = 0; i < fep->num_tx_queues; i++) 3477 if (fec_enet_alloc_txq_buffers(ndev, i)) 3478 return -ENOMEM; 3479 return 0; 3480 } 3481 3482 static int 3483 fec_enet_open(struct net_device *ndev) 3484 { 3485 struct fec_enet_private *fep = netdev_priv(ndev); 3486 int ret; 3487 bool reset_again; 3488 3489 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3490 if (ret < 0) 3491 return ret; 3492 3493 pinctrl_pm_select_default_state(&fep->pdev->dev); 3494 ret = fec_enet_clk_enable(ndev, true); 3495 if (ret) 3496 goto clk_enable; 3497 3498 /* During the first fec_enet_open call the PHY isn't probed at this 3499 * point. Therefore the phy_reset_after_clk_enable() call within 3500 * fec_enet_clk_enable() fails. As we need this reset in order to be 3501 * sure the PHY is working correctly we check if we need to reset again 3502 * later when the PHY is probed 3503 */ 3504 if (ndev->phydev && ndev->phydev->drv) 3505 reset_again = false; 3506 else 3507 reset_again = true; 3508 3509 /* I should reset the ring buffers here, but I don't yet know 3510 * a simple way to do that. 3511 */ 3512 3513 ret = fec_enet_alloc_buffers(ndev); 3514 if (ret) 3515 goto err_enet_alloc; 3516 3517 /* Init MAC prior to mii bus probe */ 3518 fec_restart(ndev); 3519 3520 /* Call phy_reset_after_clk_enable() again if it failed during 3521 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3522 */ 3523 if (reset_again) 3524 fec_enet_phy_reset_after_clk_enable(ndev); 3525 3526 /* Probe and connect to PHY when open the interface */ 3527 ret = fec_enet_mii_probe(ndev); 3528 if (ret) 3529 goto err_enet_mii_probe; 3530 3531 if (fep->quirks & FEC_QUIRK_ERR006687) 3532 imx6q_cpuidle_fec_irqs_used(); 3533 3534 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3535 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3536 3537 napi_enable(&fep->napi); 3538 phy_start(ndev->phydev); 3539 netif_tx_start_all_queues(ndev); 3540 3541 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3542 FEC_WOL_FLAG_ENABLE); 3543 3544 return 0; 3545 3546 err_enet_mii_probe: 3547 fec_enet_free_buffers(ndev); 3548 err_enet_alloc: 3549 fec_enet_clk_enable(ndev, false); 3550 clk_enable: 3551 pm_runtime_mark_last_busy(&fep->pdev->dev); 3552 pm_runtime_put_autosuspend(&fep->pdev->dev); 3553 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3554 return ret; 3555 } 3556 3557 static int 3558 fec_enet_close(struct net_device *ndev) 3559 { 3560 struct fec_enet_private *fep = netdev_priv(ndev); 3561 3562 phy_stop(ndev->phydev); 3563 3564 if (netif_device_present(ndev)) { 3565 napi_disable(&fep->napi); 3566 netif_tx_disable(ndev); 3567 fec_stop(ndev); 3568 } 3569 3570 phy_disconnect(ndev->phydev); 3571 3572 if (fep->quirks & FEC_QUIRK_ERR006687) 3573 imx6q_cpuidle_fec_irqs_unused(); 3574 3575 fec_enet_update_ethtool_stats(ndev); 3576 3577 fec_enet_clk_enable(ndev, false); 3578 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3579 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3580 3581 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3582 pm_runtime_mark_last_busy(&fep->pdev->dev); 3583 pm_runtime_put_autosuspend(&fep->pdev->dev); 3584 3585 fec_enet_free_buffers(ndev); 3586 3587 return 0; 3588 } 3589 3590 /* Set or clear the multicast filter for this adaptor. 3591 * Skeleton taken from sunlance driver. 3592 * The CPM Ethernet implementation allows Multicast as well as individual 3593 * MAC address filtering. Some of the drivers check to make sure it is 3594 * a group multicast address, and discard those that are not. I guess I 3595 * will do the same for now, but just remove the test if you want 3596 * individual filtering as well (do the upper net layers want or support 3597 * this kind of feature?). 3598 */ 3599 3600 #define FEC_HASH_BITS 6 /* #bits in hash */ 3601 3602 static void set_multicast_list(struct net_device *ndev) 3603 { 3604 struct fec_enet_private *fep = netdev_priv(ndev); 3605 struct netdev_hw_addr *ha; 3606 unsigned int crc, tmp; 3607 unsigned char hash; 3608 unsigned int hash_high = 0, hash_low = 0; 3609 3610 if (ndev->flags & IFF_PROMISC) { 3611 tmp = readl(fep->hwp + FEC_R_CNTRL); 3612 tmp |= 0x8; 3613 writel(tmp, fep->hwp + FEC_R_CNTRL); 3614 return; 3615 } 3616 3617 tmp = readl(fep->hwp + FEC_R_CNTRL); 3618 tmp &= ~0x8; 3619 writel(tmp, fep->hwp + FEC_R_CNTRL); 3620 3621 if (ndev->flags & IFF_ALLMULTI) { 3622 /* Catch all multicast addresses, so set the 3623 * filter to all 1's 3624 */ 3625 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3626 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3627 3628 return; 3629 } 3630 3631 /* Add the addresses in hash register */ 3632 netdev_for_each_mc_addr(ha, ndev) { 3633 /* calculate crc32 value of mac address */ 3634 crc = ether_crc_le(ndev->addr_len, ha->addr); 3635 3636 /* only upper 6 bits (FEC_HASH_BITS) are used 3637 * which point to specific bit in the hash registers 3638 */ 3639 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3640 3641 if (hash > 31) 3642 hash_high |= 1 << (hash - 32); 3643 else 3644 hash_low |= 1 << hash; 3645 } 3646 3647 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3648 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3649 } 3650 3651 /* Set a MAC change in hardware. */ 3652 static int 3653 fec_set_mac_address(struct net_device *ndev, void *p) 3654 { 3655 struct fec_enet_private *fep = netdev_priv(ndev); 3656 struct sockaddr *addr = p; 3657 3658 if (addr) { 3659 if (!is_valid_ether_addr(addr->sa_data)) 3660 return -EADDRNOTAVAIL; 3661 eth_hw_addr_set(ndev, addr->sa_data); 3662 } 3663 3664 /* Add netif status check here to avoid system hang in below case: 3665 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3666 * After ethx down, fec all clocks are gated off and then register 3667 * access causes system hang. 3668 */ 3669 if (!netif_running(ndev)) 3670 return 0; 3671 3672 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3673 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3674 fep->hwp + FEC_ADDR_LOW); 3675 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3676 fep->hwp + FEC_ADDR_HIGH); 3677 return 0; 3678 } 3679 3680 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3681 netdev_features_t features) 3682 { 3683 struct fec_enet_private *fep = netdev_priv(netdev); 3684 netdev_features_t changed = features ^ netdev->features; 3685 3686 netdev->features = features; 3687 3688 /* Receive checksum has been changed */ 3689 if (changed & NETIF_F_RXCSUM) { 3690 if (features & NETIF_F_RXCSUM) 3691 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3692 else 3693 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3694 } 3695 } 3696 3697 static int fec_set_features(struct net_device *netdev, 3698 netdev_features_t features) 3699 { 3700 struct fec_enet_private *fep = netdev_priv(netdev); 3701 netdev_features_t changed = features ^ netdev->features; 3702 3703 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3704 napi_disable(&fep->napi); 3705 netif_tx_lock_bh(netdev); 3706 fec_stop(netdev); 3707 fec_enet_set_netdev_features(netdev, features); 3708 fec_restart(netdev); 3709 netif_tx_wake_all_queues(netdev); 3710 netif_tx_unlock_bh(netdev); 3711 napi_enable(&fep->napi); 3712 } else { 3713 fec_enet_set_netdev_features(netdev, features); 3714 } 3715 3716 return 0; 3717 } 3718 3719 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3720 struct net_device *sb_dev) 3721 { 3722 struct fec_enet_private *fep = netdev_priv(ndev); 3723 u16 vlan_tag = 0; 3724 3725 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3726 return netdev_pick_tx(ndev, skb, NULL); 3727 3728 /* VLAN is present in the payload.*/ 3729 if (eth_type_vlan(skb->protocol)) { 3730 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 3731 3732 vlan_tag = ntohs(vhdr->h_vlan_TCI); 3733 /* VLAN is present in the skb but not yet pushed in the payload.*/ 3734 } else if (skb_vlan_tag_present(skb)) { 3735 vlan_tag = skb->vlan_tci; 3736 } else { 3737 return vlan_tag; 3738 } 3739 3740 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3741 } 3742 3743 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3744 { 3745 struct fec_enet_private *fep = netdev_priv(dev); 3746 bool is_run = netif_running(dev); 3747 struct bpf_prog *old_prog; 3748 3749 switch (bpf->command) { 3750 case XDP_SETUP_PROG: 3751 /* No need to support the SoCs that require to 3752 * do the frame swap because the performance wouldn't be 3753 * better than the skb mode. 3754 */ 3755 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3756 return -EOPNOTSUPP; 3757 3758 if (!bpf->prog) 3759 xdp_features_clear_redirect_target(dev); 3760 3761 if (is_run) { 3762 napi_disable(&fep->napi); 3763 netif_tx_disable(dev); 3764 } 3765 3766 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3767 if (old_prog) 3768 bpf_prog_put(old_prog); 3769 3770 fec_restart(dev); 3771 3772 if (is_run) { 3773 napi_enable(&fep->napi); 3774 netif_tx_start_all_queues(dev); 3775 } 3776 3777 if (bpf->prog) 3778 xdp_features_set_redirect_target(dev, false); 3779 3780 return 0; 3781 3782 case XDP_SETUP_XSK_POOL: 3783 return -EOPNOTSUPP; 3784 3785 default: 3786 return -EOPNOTSUPP; 3787 } 3788 } 3789 3790 static int 3791 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3792 { 3793 if (unlikely(index < 0)) 3794 return 0; 3795 3796 return (index % fep->num_tx_queues); 3797 } 3798 3799 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3800 struct fec_enet_priv_tx_q *txq, 3801 void *frame, u32 dma_sync_len, 3802 bool ndo_xmit) 3803 { 3804 unsigned int index, status, estatus; 3805 struct bufdesc *bdp; 3806 dma_addr_t dma_addr; 3807 int entries_free; 3808 u16 frame_len; 3809 3810 entries_free = fec_enet_get_free_txdesc_num(txq); 3811 if (entries_free < MAX_SKB_FRAGS + 1) { 3812 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3813 return -EBUSY; 3814 } 3815 3816 /* Fill in a Tx ring entry */ 3817 bdp = txq->bd.cur; 3818 status = fec16_to_cpu(bdp->cbd_sc); 3819 status &= ~BD_ENET_TX_STATS; 3820 3821 index = fec_enet_get_bd_index(bdp, &txq->bd); 3822 3823 if (ndo_xmit) { 3824 struct xdp_frame *xdpf = frame; 3825 3826 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 3827 xdpf->len, DMA_TO_DEVICE); 3828 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3829 return -ENOMEM; 3830 3831 frame_len = xdpf->len; 3832 txq->tx_buf[index].buf_p = xdpf; 3833 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3834 } else { 3835 struct xdp_buff *xdpb = frame; 3836 struct page *page; 3837 3838 page = virt_to_page(xdpb->data); 3839 dma_addr = page_pool_get_dma_addr(page) + 3840 (xdpb->data - xdpb->data_hard_start); 3841 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 3842 dma_sync_len, DMA_BIDIRECTIONAL); 3843 frame_len = xdpb->data_end - xdpb->data; 3844 txq->tx_buf[index].buf_p = page; 3845 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 3846 } 3847 3848 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3849 if (fep->bufdesc_ex) 3850 estatus = BD_ENET_TX_INT; 3851 3852 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3853 bdp->cbd_datlen = cpu_to_fec16(frame_len); 3854 3855 if (fep->bufdesc_ex) { 3856 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3857 3858 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3859 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3860 3861 ebdp->cbd_bdu = 0; 3862 ebdp->cbd_esc = cpu_to_fec32(estatus); 3863 } 3864 3865 /* Make sure the updates to rest of the descriptor are performed before 3866 * transferring ownership. 3867 */ 3868 dma_wmb(); 3869 3870 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3871 * it's the last BD of the frame, and to put the CRC on the end. 3872 */ 3873 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3874 bdp->cbd_sc = cpu_to_fec16(status); 3875 3876 /* If this was the last BD in the ring, start at the beginning again. */ 3877 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3878 3879 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3880 dma_wmb(); 3881 3882 txq->bd.cur = bdp; 3883 3884 /* Trigger transmission start */ 3885 writel(0, txq->bd.reg_desc_active); 3886 3887 return 0; 3888 } 3889 3890 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 3891 int cpu, struct xdp_buff *xdp, 3892 u32 dma_sync_len) 3893 { 3894 struct fec_enet_priv_tx_q *txq; 3895 struct netdev_queue *nq; 3896 int queue, ret; 3897 3898 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3899 txq = fep->tx_queue[queue]; 3900 nq = netdev_get_tx_queue(fep->netdev, queue); 3901 3902 __netif_tx_lock(nq, cpu); 3903 3904 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3905 txq_trans_cond_update(nq); 3906 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 3907 3908 __netif_tx_unlock(nq); 3909 3910 return ret; 3911 } 3912 3913 static int fec_enet_xdp_xmit(struct net_device *dev, 3914 int num_frames, 3915 struct xdp_frame **frames, 3916 u32 flags) 3917 { 3918 struct fec_enet_private *fep = netdev_priv(dev); 3919 struct fec_enet_priv_tx_q *txq; 3920 int cpu = smp_processor_id(); 3921 unsigned int sent_frames = 0; 3922 struct netdev_queue *nq; 3923 unsigned int queue; 3924 int i; 3925 3926 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3927 txq = fep->tx_queue[queue]; 3928 nq = netdev_get_tx_queue(fep->netdev, queue); 3929 3930 __netif_tx_lock(nq, cpu); 3931 3932 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3933 txq_trans_cond_update(nq); 3934 for (i = 0; i < num_frames; i++) { 3935 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 3936 break; 3937 sent_frames++; 3938 } 3939 3940 __netif_tx_unlock(nq); 3941 3942 return sent_frames; 3943 } 3944 3945 static int fec_hwtstamp_get(struct net_device *ndev, 3946 struct kernel_hwtstamp_config *config) 3947 { 3948 struct fec_enet_private *fep = netdev_priv(ndev); 3949 3950 if (!netif_running(ndev)) 3951 return -EINVAL; 3952 3953 if (!fep->bufdesc_ex) 3954 return -EOPNOTSUPP; 3955 3956 fec_ptp_get(ndev, config); 3957 3958 return 0; 3959 } 3960 3961 static int fec_hwtstamp_set(struct net_device *ndev, 3962 struct kernel_hwtstamp_config *config, 3963 struct netlink_ext_ack *extack) 3964 { 3965 struct fec_enet_private *fep = netdev_priv(ndev); 3966 3967 if (!netif_running(ndev)) 3968 return -EINVAL; 3969 3970 if (!fep->bufdesc_ex) 3971 return -EOPNOTSUPP; 3972 3973 return fec_ptp_set(ndev, config, extack); 3974 } 3975 3976 static const struct net_device_ops fec_netdev_ops = { 3977 .ndo_open = fec_enet_open, 3978 .ndo_stop = fec_enet_close, 3979 .ndo_start_xmit = fec_enet_start_xmit, 3980 .ndo_select_queue = fec_enet_select_queue, 3981 .ndo_set_rx_mode = set_multicast_list, 3982 .ndo_validate_addr = eth_validate_addr, 3983 .ndo_tx_timeout = fec_timeout, 3984 .ndo_set_mac_address = fec_set_mac_address, 3985 .ndo_eth_ioctl = phy_do_ioctl_running, 3986 .ndo_set_features = fec_set_features, 3987 .ndo_bpf = fec_enet_bpf, 3988 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3989 .ndo_hwtstamp_get = fec_hwtstamp_get, 3990 .ndo_hwtstamp_set = fec_hwtstamp_set, 3991 }; 3992 3993 static const unsigned short offset_des_active_rxq[] = { 3994 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3995 }; 3996 3997 static const unsigned short offset_des_active_txq[] = { 3998 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3999 }; 4000 4001 /* 4002 * XXX: We need to clean up on failure exits here. 4003 * 4004 */ 4005 static int fec_enet_init(struct net_device *ndev) 4006 { 4007 struct fec_enet_private *fep = netdev_priv(ndev); 4008 struct bufdesc *cbd_base; 4009 dma_addr_t bd_dma; 4010 int bd_size; 4011 unsigned int i; 4012 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4013 sizeof(struct bufdesc); 4014 unsigned dsize_log2 = __fls(dsize); 4015 int ret; 4016 4017 WARN_ON(dsize != (1 << dsize_log2)); 4018 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4019 fep->rx_align = 0xf; 4020 fep->tx_align = 0xf; 4021 #else 4022 fep->rx_align = 0x3; 4023 fep->tx_align = 0x3; 4024 #endif 4025 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4026 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4027 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4028 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4029 4030 /* Check mask of the streaming and coherent API */ 4031 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4032 if (ret < 0) { 4033 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4034 return ret; 4035 } 4036 4037 ret = fec_enet_alloc_queue(ndev); 4038 if (ret) 4039 return ret; 4040 4041 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4042 4043 /* Allocate memory for buffer descriptors. */ 4044 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 4045 GFP_KERNEL); 4046 if (!cbd_base) { 4047 ret = -ENOMEM; 4048 goto free_queue_mem; 4049 } 4050 4051 /* Get the Ethernet address */ 4052 ret = fec_get_mac(ndev); 4053 if (ret) 4054 goto free_queue_mem; 4055 4056 /* Set receive and transmit descriptor base. */ 4057 for (i = 0; i < fep->num_rx_queues; i++) { 4058 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4059 unsigned size = dsize * rxq->bd.ring_size; 4060 4061 rxq->bd.qid = i; 4062 rxq->bd.base = cbd_base; 4063 rxq->bd.cur = cbd_base; 4064 rxq->bd.dma = bd_dma; 4065 rxq->bd.dsize = dsize; 4066 rxq->bd.dsize_log2 = dsize_log2; 4067 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4068 bd_dma += size; 4069 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4070 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4071 } 4072 4073 for (i = 0; i < fep->num_tx_queues; i++) { 4074 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4075 unsigned size = dsize * txq->bd.ring_size; 4076 4077 txq->bd.qid = i; 4078 txq->bd.base = cbd_base; 4079 txq->bd.cur = cbd_base; 4080 txq->bd.dma = bd_dma; 4081 txq->bd.dsize = dsize; 4082 txq->bd.dsize_log2 = dsize_log2; 4083 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4084 bd_dma += size; 4085 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4086 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4087 } 4088 4089 4090 /* The FEC Ethernet specific entries in the device structure */ 4091 ndev->watchdog_timeo = TX_TIMEOUT; 4092 ndev->netdev_ops = &fec_netdev_ops; 4093 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4094 4095 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4096 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4097 4098 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4099 /* enable hw VLAN support */ 4100 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4101 4102 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4103 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4104 4105 /* enable hw accelerator */ 4106 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4107 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4108 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4109 } 4110 4111 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4112 fep->tx_align = 0; 4113 fep->rx_align = 0x3f; 4114 } 4115 4116 ndev->hw_features = ndev->features; 4117 4118 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4119 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4120 NETDEV_XDP_ACT_REDIRECT; 4121 4122 fec_restart(ndev); 4123 4124 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4125 fec_enet_clear_ethtool_stats(ndev); 4126 else 4127 fec_enet_update_ethtool_stats(ndev); 4128 4129 return 0; 4130 4131 free_queue_mem: 4132 fec_enet_free_queue(ndev); 4133 return ret; 4134 } 4135 4136 static void fec_enet_deinit(struct net_device *ndev) 4137 { 4138 struct fec_enet_private *fep = netdev_priv(ndev); 4139 4140 netif_napi_del(&fep->napi); 4141 fec_enet_free_queue(ndev); 4142 } 4143 4144 #ifdef CONFIG_OF 4145 static int fec_reset_phy(struct platform_device *pdev) 4146 { 4147 struct gpio_desc *phy_reset; 4148 int msec = 1, phy_post_delay = 0; 4149 struct device_node *np = pdev->dev.of_node; 4150 int err; 4151 4152 if (!np) 4153 return 0; 4154 4155 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4156 /* A sane reset duration should not be longer than 1s */ 4157 if (!err && msec > 1000) 4158 msec = 1; 4159 4160 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4161 /* valid reset duration should be less than 1s */ 4162 if (!err && phy_post_delay > 1000) 4163 return -EINVAL; 4164 4165 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4166 GPIOD_OUT_HIGH); 4167 if (IS_ERR(phy_reset)) 4168 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4169 "failed to get phy-reset-gpios\n"); 4170 4171 if (!phy_reset) 4172 return 0; 4173 4174 if (msec > 20) 4175 msleep(msec); 4176 else 4177 usleep_range(msec * 1000, msec * 1000 + 1000); 4178 4179 gpiod_set_value_cansleep(phy_reset, 0); 4180 4181 if (!phy_post_delay) 4182 return 0; 4183 4184 if (phy_post_delay > 20) 4185 msleep(phy_post_delay); 4186 else 4187 usleep_range(phy_post_delay * 1000, 4188 phy_post_delay * 1000 + 1000); 4189 4190 return 0; 4191 } 4192 #else /* CONFIG_OF */ 4193 static int fec_reset_phy(struct platform_device *pdev) 4194 { 4195 /* 4196 * In case of platform probe, the reset has been done 4197 * by machine code. 4198 */ 4199 return 0; 4200 } 4201 #endif /* CONFIG_OF */ 4202 4203 static void 4204 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4205 { 4206 struct device_node *np = pdev->dev.of_node; 4207 4208 *num_tx = *num_rx = 1; 4209 4210 if (!np || !of_device_is_available(np)) 4211 return; 4212 4213 /* parse the num of tx and rx queues */ 4214 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4215 4216 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4217 4218 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4219 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4220 *num_tx); 4221 *num_tx = 1; 4222 return; 4223 } 4224 4225 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4226 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4227 *num_rx); 4228 *num_rx = 1; 4229 return; 4230 } 4231 4232 } 4233 4234 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4235 { 4236 int irq_cnt = platform_irq_count(pdev); 4237 4238 if (irq_cnt > FEC_IRQ_NUM) 4239 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4240 else if (irq_cnt == 2) 4241 irq_cnt = 1; /* last for pps */ 4242 else if (irq_cnt <= 0) 4243 irq_cnt = 1; /* At least 1 irq is needed */ 4244 return irq_cnt; 4245 } 4246 4247 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4248 { 4249 struct net_device *ndev = platform_get_drvdata(pdev); 4250 struct fec_enet_private *fep = netdev_priv(ndev); 4251 4252 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4253 fep->wake_irq = fep->irq[2]; 4254 else 4255 fep->wake_irq = fep->irq[0]; 4256 } 4257 4258 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4259 struct device_node *np) 4260 { 4261 struct device_node *gpr_np; 4262 u32 out_val[3]; 4263 int ret = 0; 4264 4265 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4266 if (!gpr_np) 4267 return 0; 4268 4269 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4270 ARRAY_SIZE(out_val)); 4271 if (ret) { 4272 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4273 goto out; 4274 } 4275 4276 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4277 if (IS_ERR(fep->stop_gpr.gpr)) { 4278 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4279 ret = PTR_ERR(fep->stop_gpr.gpr); 4280 fep->stop_gpr.gpr = NULL; 4281 goto out; 4282 } 4283 4284 fep->stop_gpr.reg = out_val[1]; 4285 fep->stop_gpr.bit = out_val[2]; 4286 4287 out: 4288 of_node_put(gpr_np); 4289 4290 return ret; 4291 } 4292 4293 static int 4294 fec_probe(struct platform_device *pdev) 4295 { 4296 struct fec_enet_private *fep; 4297 struct fec_platform_data *pdata; 4298 phy_interface_t interface; 4299 struct net_device *ndev; 4300 int i, irq, ret = 0; 4301 const struct of_device_id *of_id; 4302 static int dev_id; 4303 struct device_node *np = pdev->dev.of_node, *phy_node; 4304 int num_tx_qs; 4305 int num_rx_qs; 4306 char irq_name[8]; 4307 int irq_cnt; 4308 struct fec_devinfo *dev_info; 4309 4310 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4311 4312 /* Init network device */ 4313 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4314 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4315 if (!ndev) 4316 return -ENOMEM; 4317 4318 SET_NETDEV_DEV(ndev, &pdev->dev); 4319 4320 /* setup board info structure */ 4321 fep = netdev_priv(ndev); 4322 4323 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4324 if (of_id) 4325 pdev->id_entry = of_id->data; 4326 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4327 if (dev_info) 4328 fep->quirks = dev_info->quirks; 4329 4330 fep->netdev = ndev; 4331 fep->num_rx_queues = num_rx_qs; 4332 fep->num_tx_queues = num_tx_qs; 4333 4334 #if !defined(CONFIG_M5272) 4335 /* default enable pause frame auto negotiation */ 4336 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4337 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4338 #endif 4339 4340 /* Select default pin state */ 4341 pinctrl_pm_select_default_state(&pdev->dev); 4342 4343 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4344 if (IS_ERR(fep->hwp)) { 4345 ret = PTR_ERR(fep->hwp); 4346 goto failed_ioremap; 4347 } 4348 4349 fep->pdev = pdev; 4350 fep->dev_id = dev_id++; 4351 4352 platform_set_drvdata(pdev, ndev); 4353 4354 if ((of_machine_is_compatible("fsl,imx6q") || 4355 of_machine_is_compatible("fsl,imx6dl")) && 4356 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4357 fep->quirks |= FEC_QUIRK_ERR006687; 4358 4359 ret = fec_enet_ipc_handle_init(fep); 4360 if (ret) 4361 goto failed_ipc_init; 4362 4363 if (of_property_read_bool(np, "fsl,magic-packet")) 4364 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4365 4366 ret = fec_enet_init_stop_mode(fep, np); 4367 if (ret) 4368 goto failed_stop_mode; 4369 4370 phy_node = of_parse_phandle(np, "phy-handle", 0); 4371 if (!phy_node && of_phy_is_fixed_link(np)) { 4372 ret = of_phy_register_fixed_link(np); 4373 if (ret < 0) { 4374 dev_err(&pdev->dev, 4375 "broken fixed-link specification\n"); 4376 goto failed_phy; 4377 } 4378 phy_node = of_node_get(np); 4379 } 4380 fep->phy_node = phy_node; 4381 4382 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4383 if (ret) { 4384 pdata = dev_get_platdata(&pdev->dev); 4385 if (pdata) 4386 fep->phy_interface = pdata->phy; 4387 else 4388 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4389 } else { 4390 fep->phy_interface = interface; 4391 } 4392 4393 ret = fec_enet_parse_rgmii_delay(fep, np); 4394 if (ret) 4395 goto failed_rgmii_delay; 4396 4397 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4398 if (IS_ERR(fep->clk_ipg)) { 4399 ret = PTR_ERR(fep->clk_ipg); 4400 goto failed_clk; 4401 } 4402 4403 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4404 if (IS_ERR(fep->clk_ahb)) { 4405 ret = PTR_ERR(fep->clk_ahb); 4406 goto failed_clk; 4407 } 4408 4409 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4410 4411 /* enet_out is optional, depends on board */ 4412 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4413 if (IS_ERR(fep->clk_enet_out)) { 4414 ret = PTR_ERR(fep->clk_enet_out); 4415 goto failed_clk; 4416 } 4417 4418 fep->ptp_clk_on = false; 4419 mutex_init(&fep->ptp_clk_mutex); 4420 4421 /* clk_ref is optional, depends on board */ 4422 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4423 if (IS_ERR(fep->clk_ref)) { 4424 ret = PTR_ERR(fep->clk_ref); 4425 goto failed_clk; 4426 } 4427 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4428 4429 /* clk_2x_txclk is optional, depends on board */ 4430 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4431 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4432 if (IS_ERR(fep->clk_2x_txclk)) 4433 fep->clk_2x_txclk = NULL; 4434 } 4435 4436 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4437 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4438 if (IS_ERR(fep->clk_ptp)) { 4439 fep->clk_ptp = NULL; 4440 fep->bufdesc_ex = false; 4441 } 4442 4443 ret = fec_enet_clk_enable(ndev, true); 4444 if (ret) 4445 goto failed_clk; 4446 4447 ret = clk_prepare_enable(fep->clk_ipg); 4448 if (ret) 4449 goto failed_clk_ipg; 4450 ret = clk_prepare_enable(fep->clk_ahb); 4451 if (ret) 4452 goto failed_clk_ahb; 4453 4454 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4455 if (!IS_ERR(fep->reg_phy)) { 4456 ret = regulator_enable(fep->reg_phy); 4457 if (ret) { 4458 dev_err(&pdev->dev, 4459 "Failed to enable phy regulator: %d\n", ret); 4460 goto failed_regulator; 4461 } 4462 } else { 4463 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4464 ret = -EPROBE_DEFER; 4465 goto failed_regulator; 4466 } 4467 fep->reg_phy = NULL; 4468 } 4469 4470 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4471 pm_runtime_use_autosuspend(&pdev->dev); 4472 pm_runtime_get_noresume(&pdev->dev); 4473 pm_runtime_set_active(&pdev->dev); 4474 pm_runtime_enable(&pdev->dev); 4475 4476 ret = fec_reset_phy(pdev); 4477 if (ret) 4478 goto failed_reset; 4479 4480 irq_cnt = fec_enet_get_irq_cnt(pdev); 4481 if (fep->bufdesc_ex) 4482 fec_ptp_init(pdev, irq_cnt); 4483 4484 ret = fec_enet_init(ndev); 4485 if (ret) 4486 goto failed_init; 4487 4488 for (i = 0; i < irq_cnt; i++) { 4489 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4490 irq = platform_get_irq_byname_optional(pdev, irq_name); 4491 if (irq < 0) 4492 irq = platform_get_irq(pdev, i); 4493 if (irq < 0) { 4494 ret = irq; 4495 goto failed_irq; 4496 } 4497 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4498 0, pdev->name, ndev); 4499 if (ret) 4500 goto failed_irq; 4501 4502 fep->irq[i] = irq; 4503 } 4504 4505 /* Decide which interrupt line is wakeup capable */ 4506 fec_enet_get_wakeup_irq(pdev); 4507 4508 ret = fec_enet_mii_init(pdev); 4509 if (ret) 4510 goto failed_mii_init; 4511 4512 /* Carrier starts down, phylib will bring it up */ 4513 netif_carrier_off(ndev); 4514 fec_enet_clk_enable(ndev, false); 4515 pinctrl_pm_select_sleep_state(&pdev->dev); 4516 4517 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4518 4519 ret = register_netdev(ndev); 4520 if (ret) 4521 goto failed_register; 4522 4523 device_init_wakeup(&ndev->dev, fep->wol_flag & 4524 FEC_WOL_HAS_MAGIC_PACKET); 4525 4526 if (fep->bufdesc_ex && fep->ptp_clock) 4527 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4528 4529 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4530 4531 pm_runtime_mark_last_busy(&pdev->dev); 4532 pm_runtime_put_autosuspend(&pdev->dev); 4533 4534 return 0; 4535 4536 failed_register: 4537 fec_enet_mii_remove(fep); 4538 failed_mii_init: 4539 failed_irq: 4540 fec_enet_deinit(ndev); 4541 failed_init: 4542 fec_ptp_stop(pdev); 4543 failed_reset: 4544 pm_runtime_put_noidle(&pdev->dev); 4545 pm_runtime_disable(&pdev->dev); 4546 if (fep->reg_phy) 4547 regulator_disable(fep->reg_phy); 4548 failed_regulator: 4549 clk_disable_unprepare(fep->clk_ahb); 4550 failed_clk_ahb: 4551 clk_disable_unprepare(fep->clk_ipg); 4552 failed_clk_ipg: 4553 fec_enet_clk_enable(ndev, false); 4554 failed_clk: 4555 failed_rgmii_delay: 4556 if (of_phy_is_fixed_link(np)) 4557 of_phy_deregister_fixed_link(np); 4558 of_node_put(phy_node); 4559 failed_stop_mode: 4560 failed_ipc_init: 4561 failed_phy: 4562 dev_id--; 4563 failed_ioremap: 4564 free_netdev(ndev); 4565 4566 return ret; 4567 } 4568 4569 static void 4570 fec_drv_remove(struct platform_device *pdev) 4571 { 4572 struct net_device *ndev = platform_get_drvdata(pdev); 4573 struct fec_enet_private *fep = netdev_priv(ndev); 4574 struct device_node *np = pdev->dev.of_node; 4575 int ret; 4576 4577 ret = pm_runtime_get_sync(&pdev->dev); 4578 if (ret < 0) 4579 dev_err(&pdev->dev, 4580 "Failed to resume device in remove callback (%pe)\n", 4581 ERR_PTR(ret)); 4582 4583 cancel_work_sync(&fep->tx_timeout_work); 4584 fec_ptp_stop(pdev); 4585 unregister_netdev(ndev); 4586 fec_enet_mii_remove(fep); 4587 if (fep->reg_phy) 4588 regulator_disable(fep->reg_phy); 4589 4590 if (of_phy_is_fixed_link(np)) 4591 of_phy_deregister_fixed_link(np); 4592 of_node_put(fep->phy_node); 4593 4594 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4595 * disabling them again. 4596 */ 4597 if (ret >= 0) { 4598 clk_disable_unprepare(fep->clk_ahb); 4599 clk_disable_unprepare(fep->clk_ipg); 4600 } 4601 pm_runtime_put_noidle(&pdev->dev); 4602 pm_runtime_disable(&pdev->dev); 4603 4604 fec_enet_deinit(ndev); 4605 free_netdev(ndev); 4606 } 4607 4608 static int __maybe_unused fec_suspend(struct device *dev) 4609 { 4610 struct net_device *ndev = dev_get_drvdata(dev); 4611 struct fec_enet_private *fep = netdev_priv(ndev); 4612 int ret; 4613 4614 rtnl_lock(); 4615 if (netif_running(ndev)) { 4616 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4617 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4618 phy_stop(ndev->phydev); 4619 napi_disable(&fep->napi); 4620 netif_tx_lock_bh(ndev); 4621 netif_device_detach(ndev); 4622 netif_tx_unlock_bh(ndev); 4623 fec_stop(ndev); 4624 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4625 fec_irqs_disable(ndev); 4626 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4627 } else { 4628 fec_irqs_disable_except_wakeup(ndev); 4629 if (fep->wake_irq > 0) { 4630 disable_irq(fep->wake_irq); 4631 enable_irq_wake(fep->wake_irq); 4632 } 4633 fec_enet_stop_mode(fep, true); 4634 } 4635 /* It's safe to disable clocks since interrupts are masked */ 4636 fec_enet_clk_enable(ndev, false); 4637 4638 fep->rpm_active = !pm_runtime_status_suspended(dev); 4639 if (fep->rpm_active) { 4640 ret = pm_runtime_force_suspend(dev); 4641 if (ret < 0) { 4642 rtnl_unlock(); 4643 return ret; 4644 } 4645 } 4646 } 4647 rtnl_unlock(); 4648 4649 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4650 regulator_disable(fep->reg_phy); 4651 4652 /* SOC supply clock to phy, when clock is disabled, phy link down 4653 * SOC control phy regulator, when regulator is disabled, phy link down 4654 */ 4655 if (fep->clk_enet_out || fep->reg_phy) 4656 fep->link = 0; 4657 4658 return 0; 4659 } 4660 4661 static int __maybe_unused fec_resume(struct device *dev) 4662 { 4663 struct net_device *ndev = dev_get_drvdata(dev); 4664 struct fec_enet_private *fep = netdev_priv(ndev); 4665 int ret; 4666 int val; 4667 4668 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4669 ret = regulator_enable(fep->reg_phy); 4670 if (ret) 4671 return ret; 4672 } 4673 4674 rtnl_lock(); 4675 if (netif_running(ndev)) { 4676 if (fep->rpm_active) 4677 pm_runtime_force_resume(dev); 4678 4679 ret = fec_enet_clk_enable(ndev, true); 4680 if (ret) { 4681 rtnl_unlock(); 4682 goto failed_clk; 4683 } 4684 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4685 fec_enet_stop_mode(fep, false); 4686 if (fep->wake_irq) { 4687 disable_irq_wake(fep->wake_irq); 4688 enable_irq(fep->wake_irq); 4689 } 4690 4691 val = readl(fep->hwp + FEC_ECNTRL); 4692 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4693 writel(val, fep->hwp + FEC_ECNTRL); 4694 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4695 } else { 4696 pinctrl_pm_select_default_state(&fep->pdev->dev); 4697 } 4698 fec_restart(ndev); 4699 netif_tx_lock_bh(ndev); 4700 netif_device_attach(ndev); 4701 netif_tx_unlock_bh(ndev); 4702 napi_enable(&fep->napi); 4703 phy_init_hw(ndev->phydev); 4704 phy_start(ndev->phydev); 4705 } 4706 rtnl_unlock(); 4707 4708 return 0; 4709 4710 failed_clk: 4711 if (fep->reg_phy) 4712 regulator_disable(fep->reg_phy); 4713 return ret; 4714 } 4715 4716 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4717 { 4718 struct net_device *ndev = dev_get_drvdata(dev); 4719 struct fec_enet_private *fep = netdev_priv(ndev); 4720 4721 clk_disable_unprepare(fep->clk_ahb); 4722 clk_disable_unprepare(fep->clk_ipg); 4723 4724 return 0; 4725 } 4726 4727 static int __maybe_unused fec_runtime_resume(struct device *dev) 4728 { 4729 struct net_device *ndev = dev_get_drvdata(dev); 4730 struct fec_enet_private *fep = netdev_priv(ndev); 4731 int ret; 4732 4733 ret = clk_prepare_enable(fep->clk_ahb); 4734 if (ret) 4735 return ret; 4736 ret = clk_prepare_enable(fep->clk_ipg); 4737 if (ret) 4738 goto failed_clk_ipg; 4739 4740 return 0; 4741 4742 failed_clk_ipg: 4743 clk_disable_unprepare(fep->clk_ahb); 4744 return ret; 4745 } 4746 4747 static const struct dev_pm_ops fec_pm_ops = { 4748 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4749 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4750 }; 4751 4752 static struct platform_driver fec_driver = { 4753 .driver = { 4754 .name = DRIVER_NAME, 4755 .pm = &fec_pm_ops, 4756 .of_match_table = fec_dt_ids, 4757 .suppress_bind_attrs = true, 4758 }, 4759 .id_table = fec_devtype, 4760 .probe = fec_probe, 4761 .remove_new = fec_drv_remove, 4762 }; 4763 4764 module_platform_driver(fec_driver); 4765 4766 MODULE_LICENSE("GPL"); 4767