1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/gpio/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_set(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 108 }; 109 110 static const struct fec_devinfo fec_imx28_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 112 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 113 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 114 FEC_QUIRK_NO_HARD_RESET, 115 }; 116 117 static const struct fec_devinfo fec_imx6q_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 122 FEC_QUIRK_HAS_PMQOS, 123 }; 124 125 static const struct fec_devinfo fec_mvf600_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 127 }; 128 129 static const struct fec_devinfo fec_imx6x_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 131 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 132 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 133 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 134 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 135 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 136 }; 137 138 static const struct fec_devinfo fec_imx6ul_info = { 139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 142 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 143 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 144 }; 145 146 static const struct fec_devinfo fec_imx8mq_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 150 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 151 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 152 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 153 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 154 }; 155 156 static const struct fec_devinfo fec_imx8qm_info = { 157 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 158 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 159 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 160 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 161 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 162 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 163 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 164 }; 165 166 static const struct fec_devinfo fec_s32v234_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, 171 }; 172 173 static struct platform_device_id fec_devtype[] = { 174 { 175 /* keep it for coldfire */ 176 .name = DRIVER_NAME, 177 .driver_data = 0, 178 }, { 179 .name = "imx25-fec", 180 .driver_data = (kernel_ulong_t)&fec_imx25_info, 181 }, { 182 .name = "imx27-fec", 183 .driver_data = (kernel_ulong_t)&fec_imx27_info, 184 }, { 185 .name = "imx28-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx28_info, 187 }, { 188 .name = "imx6q-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 190 }, { 191 .name = "mvf600-fec", 192 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 193 }, { 194 .name = "imx6sx-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 196 }, { 197 .name = "imx6ul-fec", 198 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 199 }, { 200 .name = "imx8mq-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 202 }, { 203 .name = "imx8qm-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 205 }, { 206 .name = "s32v234-fec", 207 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 208 }, { 209 /* sentinel */ 210 } 211 }; 212 MODULE_DEVICE_TABLE(platform, fec_devtype); 213 214 enum imx_fec_type { 215 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 216 IMX27_FEC, /* runs on i.mx27/35/51 */ 217 IMX28_FEC, 218 IMX6Q_FEC, 219 MVF600_FEC, 220 IMX6SX_FEC, 221 IMX6UL_FEC, 222 IMX8MQ_FEC, 223 IMX8QM_FEC, 224 S32V234_FEC, 225 }; 226 227 static const struct of_device_id fec_dt_ids[] = { 228 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 229 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 230 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 231 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 232 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 233 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 234 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 235 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 236 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 237 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 238 { /* sentinel */ } 239 }; 240 MODULE_DEVICE_TABLE(of, fec_dt_ids); 241 242 static unsigned char macaddr[ETH_ALEN]; 243 module_param_array(macaddr, byte, NULL, 0); 244 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 245 246 #if defined(CONFIG_M5272) 247 /* 248 * Some hardware gets it MAC address out of local flash memory. 249 * if this is non-zero then assume it is the address to get MAC from. 250 */ 251 #if defined(CONFIG_NETtel) 252 #define FEC_FLASHMAC 0xf0006006 253 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 254 #define FEC_FLASHMAC 0xf0006000 255 #elif defined(CONFIG_CANCam) 256 #define FEC_FLASHMAC 0xf0020000 257 #elif defined (CONFIG_M5272C3) 258 #define FEC_FLASHMAC (0xffe04000 + 4) 259 #elif defined(CONFIG_MOD5272) 260 #define FEC_FLASHMAC 0xffc0406b 261 #else 262 #define FEC_FLASHMAC 0 263 #endif 264 #endif /* CONFIG_M5272 */ 265 266 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 267 * 268 * 2048 byte skbufs are allocated. However, alignment requirements 269 * varies between FEC variants. Worst case is 64, so round down by 64. 270 */ 271 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 272 #define PKT_MINBUF_SIZE 64 273 274 /* FEC receive acceleration */ 275 #define FEC_RACC_IPDIS (1 << 1) 276 #define FEC_RACC_PRODIS (1 << 2) 277 #define FEC_RACC_SHIFT16 BIT(7) 278 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 279 280 /* MIB Control Register */ 281 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 282 283 /* 284 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 285 * size bits. Other FEC hardware does not, so we need to take that into 286 * account when setting it. 287 */ 288 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 289 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 290 defined(CONFIG_ARM64) 291 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 292 #else 293 #define OPT_FRAME_SIZE 0 294 #endif 295 296 /* FEC MII MMFR bits definition */ 297 #define FEC_MMFR_ST (1 << 30) 298 #define FEC_MMFR_ST_C45 (0) 299 #define FEC_MMFR_OP_READ (2 << 28) 300 #define FEC_MMFR_OP_READ_C45 (3 << 28) 301 #define FEC_MMFR_OP_WRITE (1 << 28) 302 #define FEC_MMFR_OP_ADDR_WRITE (0) 303 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 304 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 305 #define FEC_MMFR_TA (2 << 16) 306 #define FEC_MMFR_DATA(v) (v & 0xffff) 307 /* FEC ECR bits definition */ 308 #define FEC_ECR_MAGICEN (1 << 2) 309 #define FEC_ECR_SLEEP (1 << 3) 310 311 #define FEC_MII_TIMEOUT 30000 /* us */ 312 313 /* Transmitter timeout */ 314 #define TX_TIMEOUT (2 * HZ) 315 316 #define FEC_PAUSE_FLAG_AUTONEG 0x1 317 #define FEC_PAUSE_FLAG_ENABLE 0x2 318 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 319 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 320 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 321 322 #define COPYBREAK_DEFAULT 256 323 324 /* Max number of allowed TCP segments for software TSO */ 325 #define FEC_MAX_TSO_SEGS 100 326 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 327 328 #define IS_TSO_HEADER(txq, addr) \ 329 ((addr >= txq->tso_hdrs_dma) && \ 330 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 331 332 static int mii_cnt; 333 334 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 335 struct bufdesc_prop *bd) 336 { 337 return (bdp >= bd->last) ? bd->base 338 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 339 } 340 341 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 342 struct bufdesc_prop *bd) 343 { 344 return (bdp <= bd->base) ? bd->last 345 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 346 } 347 348 static int fec_enet_get_bd_index(struct bufdesc *bdp, 349 struct bufdesc_prop *bd) 350 { 351 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 352 } 353 354 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 355 { 356 int entries; 357 358 entries = (((const char *)txq->dirty_tx - 359 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 360 361 return entries >= 0 ? entries : entries + txq->bd.ring_size; 362 } 363 364 static void swap_buffer(void *bufaddr, int len) 365 { 366 int i; 367 unsigned int *buf = bufaddr; 368 369 for (i = 0; i < len; i += 4, buf++) 370 swab32s(buf); 371 } 372 373 static void fec_dump(struct net_device *ndev) 374 { 375 struct fec_enet_private *fep = netdev_priv(ndev); 376 struct bufdesc *bdp; 377 struct fec_enet_priv_tx_q *txq; 378 int index = 0; 379 380 netdev_info(ndev, "TX ring dump\n"); 381 pr_info("Nr SC addr len SKB\n"); 382 383 txq = fep->tx_queue[0]; 384 bdp = txq->bd.base; 385 386 do { 387 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 388 index, 389 bdp == txq->bd.cur ? 'S' : ' ', 390 bdp == txq->dirty_tx ? 'H' : ' ', 391 fec16_to_cpu(bdp->cbd_sc), 392 fec32_to_cpu(bdp->cbd_bufaddr), 393 fec16_to_cpu(bdp->cbd_datlen), 394 txq->tx_skbuff[index]); 395 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 396 index++; 397 } while (bdp != txq->bd.base); 398 } 399 400 static inline bool is_ipv4_pkt(struct sk_buff *skb) 401 { 402 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 403 } 404 405 static int 406 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 407 { 408 /* Only run for packets requiring a checksum. */ 409 if (skb->ip_summed != CHECKSUM_PARTIAL) 410 return 0; 411 412 if (unlikely(skb_cow_head(skb, 0))) 413 return -1; 414 415 if (is_ipv4_pkt(skb)) 416 ip_hdr(skb)->check = 0; 417 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 418 419 return 0; 420 } 421 422 static int 423 fec_enet_create_page_pool(struct fec_enet_private *fep, 424 struct fec_enet_priv_rx_q *rxq, int size) 425 { 426 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 427 struct page_pool_params pp_params = { 428 .order = 0, 429 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 430 .pool_size = size, 431 .nid = dev_to_node(&fep->pdev->dev), 432 .dev = &fep->pdev->dev, 433 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 434 .offset = FEC_ENET_XDP_HEADROOM, 435 .max_len = FEC_ENET_RX_FRSIZE, 436 }; 437 int err; 438 439 rxq->page_pool = page_pool_create(&pp_params); 440 if (IS_ERR(rxq->page_pool)) { 441 err = PTR_ERR(rxq->page_pool); 442 rxq->page_pool = NULL; 443 return err; 444 } 445 446 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 447 if (err < 0) 448 goto err_free_pp; 449 450 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 451 rxq->page_pool); 452 if (err) 453 goto err_unregister_rxq; 454 455 return 0; 456 457 err_unregister_rxq: 458 xdp_rxq_info_unreg(&rxq->xdp_rxq); 459 err_free_pp: 460 page_pool_destroy(rxq->page_pool); 461 rxq->page_pool = NULL; 462 return err; 463 } 464 465 static struct bufdesc * 466 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 467 struct sk_buff *skb, 468 struct net_device *ndev) 469 { 470 struct fec_enet_private *fep = netdev_priv(ndev); 471 struct bufdesc *bdp = txq->bd.cur; 472 struct bufdesc_ex *ebdp; 473 int nr_frags = skb_shinfo(skb)->nr_frags; 474 int frag, frag_len; 475 unsigned short status; 476 unsigned int estatus = 0; 477 skb_frag_t *this_frag; 478 unsigned int index; 479 void *bufaddr; 480 dma_addr_t addr; 481 int i; 482 483 for (frag = 0; frag < nr_frags; frag++) { 484 this_frag = &skb_shinfo(skb)->frags[frag]; 485 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 486 ebdp = (struct bufdesc_ex *)bdp; 487 488 status = fec16_to_cpu(bdp->cbd_sc); 489 status &= ~BD_ENET_TX_STATS; 490 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 491 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 492 493 /* Handle the last BD specially */ 494 if (frag == nr_frags - 1) { 495 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 496 if (fep->bufdesc_ex) { 497 estatus |= BD_ENET_TX_INT; 498 if (unlikely(skb_shinfo(skb)->tx_flags & 499 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 500 estatus |= BD_ENET_TX_TS; 501 } 502 } 503 504 if (fep->bufdesc_ex) { 505 if (fep->quirks & FEC_QUIRK_HAS_AVB) 506 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 507 if (skb->ip_summed == CHECKSUM_PARTIAL) 508 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 509 510 ebdp->cbd_bdu = 0; 511 ebdp->cbd_esc = cpu_to_fec32(estatus); 512 } 513 514 bufaddr = skb_frag_address(this_frag); 515 516 index = fec_enet_get_bd_index(bdp, &txq->bd); 517 if (((unsigned long) bufaddr) & fep->tx_align || 518 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 519 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 520 bufaddr = txq->tx_bounce[index]; 521 522 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 523 swap_buffer(bufaddr, frag_len); 524 } 525 526 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 527 DMA_TO_DEVICE); 528 if (dma_mapping_error(&fep->pdev->dev, addr)) { 529 if (net_ratelimit()) 530 netdev_err(ndev, "Tx DMA memory map failed\n"); 531 goto dma_mapping_error; 532 } 533 534 bdp->cbd_bufaddr = cpu_to_fec32(addr); 535 bdp->cbd_datlen = cpu_to_fec16(frag_len); 536 /* Make sure the updates to rest of the descriptor are 537 * performed before transferring ownership. 538 */ 539 wmb(); 540 bdp->cbd_sc = cpu_to_fec16(status); 541 } 542 543 return bdp; 544 dma_mapping_error: 545 bdp = txq->bd.cur; 546 for (i = 0; i < frag; i++) { 547 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 548 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 549 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 550 } 551 return ERR_PTR(-ENOMEM); 552 } 553 554 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 555 struct sk_buff *skb, struct net_device *ndev) 556 { 557 struct fec_enet_private *fep = netdev_priv(ndev); 558 int nr_frags = skb_shinfo(skb)->nr_frags; 559 struct bufdesc *bdp, *last_bdp; 560 void *bufaddr; 561 dma_addr_t addr; 562 unsigned short status; 563 unsigned short buflen; 564 unsigned int estatus = 0; 565 unsigned int index; 566 int entries_free; 567 568 entries_free = fec_enet_get_free_txdesc_num(txq); 569 if (entries_free < MAX_SKB_FRAGS + 1) { 570 dev_kfree_skb_any(skb); 571 if (net_ratelimit()) 572 netdev_err(ndev, "NOT enough BD for SG!\n"); 573 return NETDEV_TX_OK; 574 } 575 576 /* Protocol checksum off-load for TCP and UDP. */ 577 if (fec_enet_clear_csum(skb, ndev)) { 578 dev_kfree_skb_any(skb); 579 return NETDEV_TX_OK; 580 } 581 582 /* Fill in a Tx ring entry */ 583 bdp = txq->bd.cur; 584 last_bdp = bdp; 585 status = fec16_to_cpu(bdp->cbd_sc); 586 status &= ~BD_ENET_TX_STATS; 587 588 /* Set buffer length and buffer pointer */ 589 bufaddr = skb->data; 590 buflen = skb_headlen(skb); 591 592 index = fec_enet_get_bd_index(bdp, &txq->bd); 593 if (((unsigned long) bufaddr) & fep->tx_align || 594 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 595 memcpy(txq->tx_bounce[index], skb->data, buflen); 596 bufaddr = txq->tx_bounce[index]; 597 598 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 599 swap_buffer(bufaddr, buflen); 600 } 601 602 /* Push the data cache so the CPM does not get stale memory data. */ 603 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 604 if (dma_mapping_error(&fep->pdev->dev, addr)) { 605 dev_kfree_skb_any(skb); 606 if (net_ratelimit()) 607 netdev_err(ndev, "Tx DMA memory map failed\n"); 608 return NETDEV_TX_OK; 609 } 610 611 if (nr_frags) { 612 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 613 if (IS_ERR(last_bdp)) { 614 dma_unmap_single(&fep->pdev->dev, addr, 615 buflen, DMA_TO_DEVICE); 616 dev_kfree_skb_any(skb); 617 return NETDEV_TX_OK; 618 } 619 } else { 620 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 621 if (fep->bufdesc_ex) { 622 estatus = BD_ENET_TX_INT; 623 if (unlikely(skb_shinfo(skb)->tx_flags & 624 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 625 estatus |= BD_ENET_TX_TS; 626 } 627 } 628 bdp->cbd_bufaddr = cpu_to_fec32(addr); 629 bdp->cbd_datlen = cpu_to_fec16(buflen); 630 631 if (fep->bufdesc_ex) { 632 633 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 634 635 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 636 fep->hwts_tx_en)) 637 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 638 639 if (fep->quirks & FEC_QUIRK_HAS_AVB) 640 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 641 642 if (skb->ip_summed == CHECKSUM_PARTIAL) 643 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 644 645 ebdp->cbd_bdu = 0; 646 ebdp->cbd_esc = cpu_to_fec32(estatus); 647 } 648 649 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 650 /* Save skb pointer */ 651 txq->tx_skbuff[index] = skb; 652 653 /* Make sure the updates to rest of the descriptor are performed before 654 * transferring ownership. 655 */ 656 wmb(); 657 658 /* Send it on its way. Tell FEC it's ready, interrupt when done, 659 * it's the last BD of the frame, and to put the CRC on the end. 660 */ 661 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 662 bdp->cbd_sc = cpu_to_fec16(status); 663 664 /* If this was the last BD in the ring, start at the beginning again. */ 665 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 666 667 skb_tx_timestamp(skb); 668 669 /* Make sure the update to bdp and tx_skbuff are performed before 670 * txq->bd.cur. 671 */ 672 wmb(); 673 txq->bd.cur = bdp; 674 675 /* Trigger transmission start */ 676 writel(0, txq->bd.reg_desc_active); 677 678 return 0; 679 } 680 681 static int 682 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 683 struct net_device *ndev, 684 struct bufdesc *bdp, int index, char *data, 685 int size, bool last_tcp, bool is_last) 686 { 687 struct fec_enet_private *fep = netdev_priv(ndev); 688 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 689 unsigned short status; 690 unsigned int estatus = 0; 691 dma_addr_t addr; 692 693 status = fec16_to_cpu(bdp->cbd_sc); 694 status &= ~BD_ENET_TX_STATS; 695 696 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 697 698 if (((unsigned long) data) & fep->tx_align || 699 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 700 memcpy(txq->tx_bounce[index], data, size); 701 data = txq->tx_bounce[index]; 702 703 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 704 swap_buffer(data, size); 705 } 706 707 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 708 if (dma_mapping_error(&fep->pdev->dev, addr)) { 709 dev_kfree_skb_any(skb); 710 if (net_ratelimit()) 711 netdev_err(ndev, "Tx DMA memory map failed\n"); 712 return NETDEV_TX_OK; 713 } 714 715 bdp->cbd_datlen = cpu_to_fec16(size); 716 bdp->cbd_bufaddr = cpu_to_fec32(addr); 717 718 if (fep->bufdesc_ex) { 719 if (fep->quirks & FEC_QUIRK_HAS_AVB) 720 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 721 if (skb->ip_summed == CHECKSUM_PARTIAL) 722 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 723 ebdp->cbd_bdu = 0; 724 ebdp->cbd_esc = cpu_to_fec32(estatus); 725 } 726 727 /* Handle the last BD specially */ 728 if (last_tcp) 729 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 730 if (is_last) { 731 status |= BD_ENET_TX_INTR; 732 if (fep->bufdesc_ex) 733 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 734 } 735 736 bdp->cbd_sc = cpu_to_fec16(status); 737 738 return 0; 739 } 740 741 static int 742 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 743 struct sk_buff *skb, struct net_device *ndev, 744 struct bufdesc *bdp, int index) 745 { 746 struct fec_enet_private *fep = netdev_priv(ndev); 747 int hdr_len = skb_tcp_all_headers(skb); 748 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 749 void *bufaddr; 750 unsigned long dmabuf; 751 unsigned short status; 752 unsigned int estatus = 0; 753 754 status = fec16_to_cpu(bdp->cbd_sc); 755 status &= ~BD_ENET_TX_STATS; 756 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 757 758 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 759 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 760 if (((unsigned long)bufaddr) & fep->tx_align || 761 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 762 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 763 bufaddr = txq->tx_bounce[index]; 764 765 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 766 swap_buffer(bufaddr, hdr_len); 767 768 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 769 hdr_len, DMA_TO_DEVICE); 770 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 771 dev_kfree_skb_any(skb); 772 if (net_ratelimit()) 773 netdev_err(ndev, "Tx DMA memory map failed\n"); 774 return NETDEV_TX_OK; 775 } 776 } 777 778 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 779 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 780 781 if (fep->bufdesc_ex) { 782 if (fep->quirks & FEC_QUIRK_HAS_AVB) 783 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 784 if (skb->ip_summed == CHECKSUM_PARTIAL) 785 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 786 ebdp->cbd_bdu = 0; 787 ebdp->cbd_esc = cpu_to_fec32(estatus); 788 } 789 790 bdp->cbd_sc = cpu_to_fec16(status); 791 792 return 0; 793 } 794 795 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 796 struct sk_buff *skb, 797 struct net_device *ndev) 798 { 799 struct fec_enet_private *fep = netdev_priv(ndev); 800 int hdr_len, total_len, data_left; 801 struct bufdesc *bdp = txq->bd.cur; 802 struct tso_t tso; 803 unsigned int index = 0; 804 int ret; 805 806 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 807 dev_kfree_skb_any(skb); 808 if (net_ratelimit()) 809 netdev_err(ndev, "NOT enough BD for TSO!\n"); 810 return NETDEV_TX_OK; 811 } 812 813 /* Protocol checksum off-load for TCP and UDP. */ 814 if (fec_enet_clear_csum(skb, ndev)) { 815 dev_kfree_skb_any(skb); 816 return NETDEV_TX_OK; 817 } 818 819 /* Initialize the TSO handler, and prepare the first payload */ 820 hdr_len = tso_start(skb, &tso); 821 822 total_len = skb->len - hdr_len; 823 while (total_len > 0) { 824 char *hdr; 825 826 index = fec_enet_get_bd_index(bdp, &txq->bd); 827 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 828 total_len -= data_left; 829 830 /* prepare packet headers: MAC + IP + TCP */ 831 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 832 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 833 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 834 if (ret) 835 goto err_release; 836 837 while (data_left > 0) { 838 int size; 839 840 size = min_t(int, tso.size, data_left); 841 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 842 index = fec_enet_get_bd_index(bdp, &txq->bd); 843 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 844 bdp, index, 845 tso.data, size, 846 size == data_left, 847 total_len == 0); 848 if (ret) 849 goto err_release; 850 851 data_left -= size; 852 tso_build_data(skb, &tso, size); 853 } 854 855 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 856 } 857 858 /* Save skb pointer */ 859 txq->tx_skbuff[index] = skb; 860 861 skb_tx_timestamp(skb); 862 txq->bd.cur = bdp; 863 864 /* Trigger transmission start */ 865 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 866 !readl(txq->bd.reg_desc_active) || 867 !readl(txq->bd.reg_desc_active) || 868 !readl(txq->bd.reg_desc_active) || 869 !readl(txq->bd.reg_desc_active)) 870 writel(0, txq->bd.reg_desc_active); 871 872 return 0; 873 874 err_release: 875 /* TODO: Release all used data descriptors for TSO */ 876 return ret; 877 } 878 879 static netdev_tx_t 880 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 881 { 882 struct fec_enet_private *fep = netdev_priv(ndev); 883 int entries_free; 884 unsigned short queue; 885 struct fec_enet_priv_tx_q *txq; 886 struct netdev_queue *nq; 887 int ret; 888 889 queue = skb_get_queue_mapping(skb); 890 txq = fep->tx_queue[queue]; 891 nq = netdev_get_tx_queue(ndev, queue); 892 893 if (skb_is_gso(skb)) 894 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 895 else 896 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 897 if (ret) 898 return ret; 899 900 entries_free = fec_enet_get_free_txdesc_num(txq); 901 if (entries_free <= txq->tx_stop_threshold) 902 netif_tx_stop_queue(nq); 903 904 return NETDEV_TX_OK; 905 } 906 907 /* Init RX & TX buffer descriptors 908 */ 909 static void fec_enet_bd_init(struct net_device *dev) 910 { 911 struct fec_enet_private *fep = netdev_priv(dev); 912 struct fec_enet_priv_tx_q *txq; 913 struct fec_enet_priv_rx_q *rxq; 914 struct bufdesc *bdp; 915 unsigned int i; 916 unsigned int q; 917 918 for (q = 0; q < fep->num_rx_queues; q++) { 919 /* Initialize the receive buffer descriptors. */ 920 rxq = fep->rx_queue[q]; 921 bdp = rxq->bd.base; 922 923 for (i = 0; i < rxq->bd.ring_size; i++) { 924 925 /* Initialize the BD for every fragment in the page. */ 926 if (bdp->cbd_bufaddr) 927 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 928 else 929 bdp->cbd_sc = cpu_to_fec16(0); 930 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 931 } 932 933 /* Set the last buffer to wrap */ 934 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 935 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 936 937 rxq->bd.cur = rxq->bd.base; 938 } 939 940 for (q = 0; q < fep->num_tx_queues; q++) { 941 /* ...and the same for transmit */ 942 txq = fep->tx_queue[q]; 943 bdp = txq->bd.base; 944 txq->bd.cur = bdp; 945 946 for (i = 0; i < txq->bd.ring_size; i++) { 947 /* Initialize the BD for every fragment in the page. */ 948 bdp->cbd_sc = cpu_to_fec16(0); 949 if (bdp->cbd_bufaddr && 950 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 951 dma_unmap_single(&fep->pdev->dev, 952 fec32_to_cpu(bdp->cbd_bufaddr), 953 fec16_to_cpu(bdp->cbd_datlen), 954 DMA_TO_DEVICE); 955 if (txq->tx_skbuff[i]) { 956 dev_kfree_skb_any(txq->tx_skbuff[i]); 957 txq->tx_skbuff[i] = NULL; 958 } 959 bdp->cbd_bufaddr = cpu_to_fec32(0); 960 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 961 } 962 963 /* Set the last buffer to wrap */ 964 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 965 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 966 txq->dirty_tx = bdp; 967 } 968 } 969 970 static void fec_enet_active_rxring(struct net_device *ndev) 971 { 972 struct fec_enet_private *fep = netdev_priv(ndev); 973 int i; 974 975 for (i = 0; i < fep->num_rx_queues; i++) 976 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 977 } 978 979 static void fec_enet_enable_ring(struct net_device *ndev) 980 { 981 struct fec_enet_private *fep = netdev_priv(ndev); 982 struct fec_enet_priv_tx_q *txq; 983 struct fec_enet_priv_rx_q *rxq; 984 int i; 985 986 for (i = 0; i < fep->num_rx_queues; i++) { 987 rxq = fep->rx_queue[i]; 988 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 989 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 990 991 /* enable DMA1/2 */ 992 if (i) 993 writel(RCMR_MATCHEN | RCMR_CMP(i), 994 fep->hwp + FEC_RCMR(i)); 995 } 996 997 for (i = 0; i < fep->num_tx_queues; i++) { 998 txq = fep->tx_queue[i]; 999 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1000 1001 /* enable DMA1/2 */ 1002 if (i) 1003 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1004 fep->hwp + FEC_DMA_CFG(i)); 1005 } 1006 } 1007 1008 static void fec_enet_reset_skb(struct net_device *ndev) 1009 { 1010 struct fec_enet_private *fep = netdev_priv(ndev); 1011 struct fec_enet_priv_tx_q *txq; 1012 int i, j; 1013 1014 for (i = 0; i < fep->num_tx_queues; i++) { 1015 txq = fep->tx_queue[i]; 1016 1017 for (j = 0; j < txq->bd.ring_size; j++) { 1018 if (txq->tx_skbuff[j]) { 1019 dev_kfree_skb_any(txq->tx_skbuff[j]); 1020 txq->tx_skbuff[j] = NULL; 1021 } 1022 } 1023 } 1024 } 1025 1026 /* 1027 * This function is called to start or restart the FEC during a link 1028 * change, transmit timeout, or to reconfigure the FEC. The network 1029 * packet processing for this device must be stopped before this call. 1030 */ 1031 static void 1032 fec_restart(struct net_device *ndev) 1033 { 1034 struct fec_enet_private *fep = netdev_priv(ndev); 1035 u32 temp_mac[2]; 1036 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1037 u32 ecntl = 0x2; /* ETHEREN */ 1038 1039 /* Whack a reset. We should wait for this. 1040 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1041 * instead of reset MAC itself. 1042 */ 1043 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1044 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1045 writel(0, fep->hwp + FEC_ECNTRL); 1046 } else { 1047 writel(1, fep->hwp + FEC_ECNTRL); 1048 udelay(10); 1049 } 1050 1051 /* 1052 * enet-mac reset will reset mac address registers too, 1053 * so need to reconfigure it. 1054 */ 1055 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1056 writel((__force u32)cpu_to_be32(temp_mac[0]), 1057 fep->hwp + FEC_ADDR_LOW); 1058 writel((__force u32)cpu_to_be32(temp_mac[1]), 1059 fep->hwp + FEC_ADDR_HIGH); 1060 1061 /* Clear any outstanding interrupt, except MDIO. */ 1062 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1063 1064 fec_enet_bd_init(ndev); 1065 1066 fec_enet_enable_ring(ndev); 1067 1068 /* Reset tx SKB buffers. */ 1069 fec_enet_reset_skb(ndev); 1070 1071 /* Enable MII mode */ 1072 if (fep->full_duplex == DUPLEX_FULL) { 1073 /* FD enable */ 1074 writel(0x04, fep->hwp + FEC_X_CNTRL); 1075 } else { 1076 /* No Rcv on Xmit */ 1077 rcntl |= 0x02; 1078 writel(0x0, fep->hwp + FEC_X_CNTRL); 1079 } 1080 1081 /* Set MII speed */ 1082 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1083 1084 #if !defined(CONFIG_M5272) 1085 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1086 u32 val = readl(fep->hwp + FEC_RACC); 1087 1088 /* align IP header */ 1089 val |= FEC_RACC_SHIFT16; 1090 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1091 /* set RX checksum */ 1092 val |= FEC_RACC_OPTIONS; 1093 else 1094 val &= ~FEC_RACC_OPTIONS; 1095 writel(val, fep->hwp + FEC_RACC); 1096 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1097 } 1098 #endif 1099 1100 /* 1101 * The phy interface and speed need to get configured 1102 * differently on enet-mac. 1103 */ 1104 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1105 /* Enable flow control and length check */ 1106 rcntl |= 0x40000000 | 0x00000020; 1107 1108 /* RGMII, RMII or MII */ 1109 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1110 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1111 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1112 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1113 rcntl |= (1 << 6); 1114 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1115 rcntl |= (1 << 8); 1116 else 1117 rcntl &= ~(1 << 8); 1118 1119 /* 1G, 100M or 10M */ 1120 if (ndev->phydev) { 1121 if (ndev->phydev->speed == SPEED_1000) 1122 ecntl |= (1 << 5); 1123 else if (ndev->phydev->speed == SPEED_100) 1124 rcntl &= ~(1 << 9); 1125 else 1126 rcntl |= (1 << 9); 1127 } 1128 } else { 1129 #ifdef FEC_MIIGSK_ENR 1130 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1131 u32 cfgr; 1132 /* disable the gasket and wait */ 1133 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1134 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1135 udelay(1); 1136 1137 /* 1138 * configure the gasket: 1139 * RMII, 50 MHz, no loopback, no echo 1140 * MII, 25 MHz, no loopback, no echo 1141 */ 1142 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1143 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1144 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1145 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1146 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1147 1148 /* re-enable the gasket */ 1149 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1150 } 1151 #endif 1152 } 1153 1154 #if !defined(CONFIG_M5272) 1155 /* enable pause frame*/ 1156 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1157 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1158 ndev->phydev && ndev->phydev->pause)) { 1159 rcntl |= FEC_ENET_FCE; 1160 1161 /* set FIFO threshold parameter to reduce overrun */ 1162 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1163 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1164 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1165 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1166 1167 /* OPD */ 1168 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1169 } else { 1170 rcntl &= ~FEC_ENET_FCE; 1171 } 1172 #endif /* !defined(CONFIG_M5272) */ 1173 1174 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1175 1176 /* Setup multicast filter. */ 1177 set_multicast_list(ndev); 1178 #ifndef CONFIG_M5272 1179 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1180 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1181 #endif 1182 1183 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1184 /* enable ENET endian swap */ 1185 ecntl |= (1 << 8); 1186 /* enable ENET store and forward mode */ 1187 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1188 } 1189 1190 if (fep->bufdesc_ex) 1191 ecntl |= (1 << 4); 1192 1193 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1194 fep->rgmii_txc_dly) 1195 ecntl |= FEC_ENET_TXC_DLY; 1196 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1197 fep->rgmii_rxc_dly) 1198 ecntl |= FEC_ENET_RXC_DLY; 1199 1200 #ifndef CONFIG_M5272 1201 /* Enable the MIB statistic event counters */ 1202 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1203 #endif 1204 1205 /* And last, enable the transmit and receive processing */ 1206 writel(ecntl, fep->hwp + FEC_ECNTRL); 1207 fec_enet_active_rxring(ndev); 1208 1209 if (fep->bufdesc_ex) 1210 fec_ptp_start_cyclecounter(ndev); 1211 1212 /* Enable interrupts we wish to service */ 1213 if (fep->link) 1214 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1215 else 1216 writel(0, fep->hwp + FEC_IMASK); 1217 1218 /* Init the interrupt coalescing */ 1219 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1220 fec_enet_itr_coal_set(ndev); 1221 } 1222 1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1224 { 1225 if (!(of_machine_is_compatible("fsl,imx8qm") || 1226 of_machine_is_compatible("fsl,imx8qxp") || 1227 of_machine_is_compatible("fsl,imx8dxl"))) 1228 return 0; 1229 1230 return imx_scu_get_handle(&fep->ipc_handle); 1231 } 1232 1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1234 { 1235 struct device_node *np = fep->pdev->dev.of_node; 1236 u32 rsrc_id, val; 1237 int idx; 1238 1239 if (!np || !fep->ipc_handle) 1240 return; 1241 1242 idx = of_alias_get_id(np, "ethernet"); 1243 if (idx < 0) 1244 idx = 0; 1245 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1246 1247 val = enabled ? 1 : 0; 1248 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1249 } 1250 1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1252 { 1253 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1254 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1255 1256 if (stop_gpr->gpr) { 1257 if (enabled) 1258 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1259 BIT(stop_gpr->bit), 1260 BIT(stop_gpr->bit)); 1261 else 1262 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1263 BIT(stop_gpr->bit), 0); 1264 } else if (pdata && pdata->sleep_mode_enable) { 1265 pdata->sleep_mode_enable(enabled); 1266 } else { 1267 fec_enet_ipg_stop_set(fep, enabled); 1268 } 1269 } 1270 1271 static void fec_irqs_disable(struct net_device *ndev) 1272 { 1273 struct fec_enet_private *fep = netdev_priv(ndev); 1274 1275 writel(0, fep->hwp + FEC_IMASK); 1276 } 1277 1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1279 { 1280 struct fec_enet_private *fep = netdev_priv(ndev); 1281 1282 writel(0, fep->hwp + FEC_IMASK); 1283 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1284 } 1285 1286 static void 1287 fec_stop(struct net_device *ndev) 1288 { 1289 struct fec_enet_private *fep = netdev_priv(ndev); 1290 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1291 u32 val; 1292 1293 /* We cannot expect a graceful transmit stop without link !!! */ 1294 if (fep->link) { 1295 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1296 udelay(10); 1297 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1298 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1299 } 1300 1301 /* Whack a reset. We should wait for this. 1302 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1303 * instead of reset MAC itself. 1304 */ 1305 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1306 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1307 writel(0, fep->hwp + FEC_ECNTRL); 1308 } else { 1309 writel(1, fep->hwp + FEC_ECNTRL); 1310 udelay(10); 1311 } 1312 } else { 1313 val = readl(fep->hwp + FEC_ECNTRL); 1314 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1315 writel(val, fep->hwp + FEC_ECNTRL); 1316 } 1317 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1318 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1319 1320 /* We have to keep ENET enabled to have MII interrupt stay working */ 1321 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1322 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1323 writel(2, fep->hwp + FEC_ECNTRL); 1324 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1325 } 1326 } 1327 1328 1329 static void 1330 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1331 { 1332 struct fec_enet_private *fep = netdev_priv(ndev); 1333 1334 fec_dump(ndev); 1335 1336 ndev->stats.tx_errors++; 1337 1338 schedule_work(&fep->tx_timeout_work); 1339 } 1340 1341 static void fec_enet_timeout_work(struct work_struct *work) 1342 { 1343 struct fec_enet_private *fep = 1344 container_of(work, struct fec_enet_private, tx_timeout_work); 1345 struct net_device *ndev = fep->netdev; 1346 1347 rtnl_lock(); 1348 if (netif_device_present(ndev) || netif_running(ndev)) { 1349 napi_disable(&fep->napi); 1350 netif_tx_lock_bh(ndev); 1351 fec_restart(ndev); 1352 netif_tx_wake_all_queues(ndev); 1353 netif_tx_unlock_bh(ndev); 1354 napi_enable(&fep->napi); 1355 } 1356 rtnl_unlock(); 1357 } 1358 1359 static void 1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1361 struct skb_shared_hwtstamps *hwtstamps) 1362 { 1363 unsigned long flags; 1364 u64 ns; 1365 1366 spin_lock_irqsave(&fep->tmreg_lock, flags); 1367 ns = timecounter_cyc2time(&fep->tc, ts); 1368 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1369 1370 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1371 hwtstamps->hwtstamp = ns_to_ktime(ns); 1372 } 1373 1374 static void 1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1376 { 1377 struct fec_enet_private *fep; 1378 struct bufdesc *bdp; 1379 unsigned short status; 1380 struct sk_buff *skb; 1381 struct fec_enet_priv_tx_q *txq; 1382 struct netdev_queue *nq; 1383 int index = 0; 1384 int entries_free; 1385 1386 fep = netdev_priv(ndev); 1387 1388 txq = fep->tx_queue[queue_id]; 1389 /* get next bdp of dirty_tx */ 1390 nq = netdev_get_tx_queue(ndev, queue_id); 1391 bdp = txq->dirty_tx; 1392 1393 /* get next bdp of dirty_tx */ 1394 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1395 1396 while (bdp != READ_ONCE(txq->bd.cur)) { 1397 /* Order the load of bd.cur and cbd_sc */ 1398 rmb(); 1399 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1400 if (status & BD_ENET_TX_READY) 1401 break; 1402 1403 index = fec_enet_get_bd_index(bdp, &txq->bd); 1404 1405 skb = txq->tx_skbuff[index]; 1406 txq->tx_skbuff[index] = NULL; 1407 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1408 dma_unmap_single(&fep->pdev->dev, 1409 fec32_to_cpu(bdp->cbd_bufaddr), 1410 fec16_to_cpu(bdp->cbd_datlen), 1411 DMA_TO_DEVICE); 1412 bdp->cbd_bufaddr = cpu_to_fec32(0); 1413 if (!skb) 1414 goto skb_done; 1415 1416 /* Check for errors. */ 1417 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1418 BD_ENET_TX_RL | BD_ENET_TX_UN | 1419 BD_ENET_TX_CSL)) { 1420 ndev->stats.tx_errors++; 1421 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1422 ndev->stats.tx_heartbeat_errors++; 1423 if (status & BD_ENET_TX_LC) /* Late collision */ 1424 ndev->stats.tx_window_errors++; 1425 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1426 ndev->stats.tx_aborted_errors++; 1427 if (status & BD_ENET_TX_UN) /* Underrun */ 1428 ndev->stats.tx_fifo_errors++; 1429 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1430 ndev->stats.tx_carrier_errors++; 1431 } else { 1432 ndev->stats.tx_packets++; 1433 ndev->stats.tx_bytes += skb->len; 1434 } 1435 1436 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1437 * are to time stamp the packet, so we still need to check time 1438 * stamping enabled flag. 1439 */ 1440 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1441 fep->hwts_tx_en) && 1442 fep->bufdesc_ex) { 1443 struct skb_shared_hwtstamps shhwtstamps; 1444 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1445 1446 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1447 skb_tstamp_tx(skb, &shhwtstamps); 1448 } 1449 1450 /* Deferred means some collisions occurred during transmit, 1451 * but we eventually sent the packet OK. 1452 */ 1453 if (status & BD_ENET_TX_DEF) 1454 ndev->stats.collisions++; 1455 1456 /* Free the sk buffer associated with this last transmit */ 1457 dev_kfree_skb_any(skb); 1458 skb_done: 1459 /* Make sure the update to bdp and tx_skbuff are performed 1460 * before dirty_tx 1461 */ 1462 wmb(); 1463 txq->dirty_tx = bdp; 1464 1465 /* Update pointer to next buffer descriptor to be transmitted */ 1466 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1467 1468 /* Since we have freed up a buffer, the ring is no longer full 1469 */ 1470 if (netif_tx_queue_stopped(nq)) { 1471 entries_free = fec_enet_get_free_txdesc_num(txq); 1472 if (entries_free >= txq->tx_wake_threshold) 1473 netif_tx_wake_queue(nq); 1474 } 1475 } 1476 1477 /* ERR006358: Keep the transmitter going */ 1478 if (bdp != txq->bd.cur && 1479 readl(txq->bd.reg_desc_active) == 0) 1480 writel(0, txq->bd.reg_desc_active); 1481 } 1482 1483 static void fec_enet_tx(struct net_device *ndev) 1484 { 1485 struct fec_enet_private *fep = netdev_priv(ndev); 1486 int i; 1487 1488 /* Make sure that AVB queues are processed first. */ 1489 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1490 fec_enet_tx_queue(ndev, i); 1491 } 1492 1493 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1494 struct bufdesc *bdp, int index) 1495 { 1496 struct page *new_page; 1497 dma_addr_t phys_addr; 1498 1499 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1500 WARN_ON(!new_page); 1501 rxq->rx_skb_info[index].page = new_page; 1502 1503 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1504 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1505 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1506 } 1507 1508 static u32 1509 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1510 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1511 { 1512 unsigned int sync, len = xdp->data_end - xdp->data; 1513 u32 ret = FEC_ENET_XDP_PASS; 1514 struct page *page; 1515 int err; 1516 u32 act; 1517 1518 act = bpf_prog_run_xdp(prog, xdp); 1519 1520 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1521 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1522 sync = max(sync, len); 1523 1524 switch (act) { 1525 case XDP_PASS: 1526 rxq->stats[RX_XDP_PASS]++; 1527 ret = FEC_ENET_XDP_PASS; 1528 break; 1529 1530 case XDP_REDIRECT: 1531 rxq->stats[RX_XDP_REDIRECT]++; 1532 err = xdp_do_redirect(fep->netdev, xdp, prog); 1533 if (!err) { 1534 ret = FEC_ENET_XDP_REDIR; 1535 } else { 1536 ret = FEC_ENET_XDP_CONSUMED; 1537 page = virt_to_head_page(xdp->data); 1538 page_pool_put_page(rxq->page_pool, page, sync, true); 1539 } 1540 break; 1541 1542 default: 1543 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1544 fallthrough; 1545 1546 case XDP_TX: 1547 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1548 fallthrough; 1549 1550 case XDP_ABORTED: 1551 fallthrough; /* handle aborts by dropping packet */ 1552 1553 case XDP_DROP: 1554 rxq->stats[RX_XDP_DROP]++; 1555 ret = FEC_ENET_XDP_CONSUMED; 1556 page = virt_to_head_page(xdp->data); 1557 page_pool_put_page(rxq->page_pool, page, sync, true); 1558 break; 1559 } 1560 1561 return ret; 1562 } 1563 1564 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1565 * When we update through the ring, if the next incoming buffer has 1566 * not been given to the system, we just set the empty indicator, 1567 * effectively tossing the packet. 1568 */ 1569 static int 1570 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1571 { 1572 struct fec_enet_private *fep = netdev_priv(ndev); 1573 struct fec_enet_priv_rx_q *rxq; 1574 struct bufdesc *bdp; 1575 unsigned short status; 1576 struct sk_buff *skb; 1577 ushort pkt_len; 1578 __u8 *data; 1579 int pkt_received = 0; 1580 struct bufdesc_ex *ebdp = NULL; 1581 bool vlan_packet_rcvd = false; 1582 u16 vlan_tag; 1583 int index = 0; 1584 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1585 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1586 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1587 u32 data_start = FEC_ENET_XDP_HEADROOM; 1588 struct xdp_buff xdp; 1589 struct page *page; 1590 u32 sub_len = 4; 1591 1592 #if !defined(CONFIG_M5272) 1593 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1594 * FEC_RACC_SHIFT16 is set by default in the probe function. 1595 */ 1596 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1597 data_start += 2; 1598 sub_len += 2; 1599 } 1600 #endif 1601 1602 #ifdef CONFIG_M532x 1603 flush_cache_all(); 1604 #endif 1605 rxq = fep->rx_queue[queue_id]; 1606 1607 /* First, grab all of the stats for the incoming packet. 1608 * These get messed up if we get called due to a busy condition. 1609 */ 1610 bdp = rxq->bd.cur; 1611 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1612 1613 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1614 1615 if (pkt_received >= budget) 1616 break; 1617 pkt_received++; 1618 1619 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1620 1621 /* Check for errors. */ 1622 status ^= BD_ENET_RX_LAST; 1623 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1624 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1625 BD_ENET_RX_CL)) { 1626 ndev->stats.rx_errors++; 1627 if (status & BD_ENET_RX_OV) { 1628 /* FIFO overrun */ 1629 ndev->stats.rx_fifo_errors++; 1630 goto rx_processing_done; 1631 } 1632 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1633 | BD_ENET_RX_LAST)) { 1634 /* Frame too long or too short. */ 1635 ndev->stats.rx_length_errors++; 1636 if (status & BD_ENET_RX_LAST) 1637 netdev_err(ndev, "rcv is not +last\n"); 1638 } 1639 if (status & BD_ENET_RX_CR) /* CRC Error */ 1640 ndev->stats.rx_crc_errors++; 1641 /* Report late collisions as a frame error. */ 1642 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1643 ndev->stats.rx_frame_errors++; 1644 goto rx_processing_done; 1645 } 1646 1647 /* Process the incoming frame. */ 1648 ndev->stats.rx_packets++; 1649 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1650 ndev->stats.rx_bytes += pkt_len; 1651 1652 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1653 page = rxq->rx_skb_info[index].page; 1654 dma_sync_single_for_cpu(&fep->pdev->dev, 1655 fec32_to_cpu(bdp->cbd_bufaddr), 1656 pkt_len, 1657 DMA_FROM_DEVICE); 1658 prefetch(page_address(page)); 1659 fec_enet_update_cbd(rxq, bdp, index); 1660 1661 if (xdp_prog) { 1662 xdp_buff_clear_frags_flag(&xdp); 1663 /* subtract 16bit shift and FCS */ 1664 xdp_prepare_buff(&xdp, page_address(page), 1665 data_start, pkt_len - sub_len, false); 1666 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1667 xdp_result |= ret; 1668 if (ret != FEC_ENET_XDP_PASS) 1669 goto rx_processing_done; 1670 } 1671 1672 /* The packet length includes FCS, but we don't want to 1673 * include that when passing upstream as it messes up 1674 * bridging applications. 1675 */ 1676 skb = build_skb(page_address(page), PAGE_SIZE); 1677 if (unlikely(!skb)) { 1678 page_pool_recycle_direct(rxq->page_pool, page); 1679 ndev->stats.rx_dropped++; 1680 1681 netdev_err_once(ndev, "build_skb failed!\n"); 1682 goto rx_processing_done; 1683 } 1684 1685 skb_reserve(skb, data_start); 1686 skb_put(skb, pkt_len - sub_len); 1687 skb_mark_for_recycle(skb); 1688 1689 if (unlikely(need_swap)) { 1690 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1691 swap_buffer(data, pkt_len); 1692 } 1693 data = skb->data; 1694 1695 /* Extract the enhanced buffer descriptor */ 1696 ebdp = NULL; 1697 if (fep->bufdesc_ex) 1698 ebdp = (struct bufdesc_ex *)bdp; 1699 1700 /* If this is a VLAN packet remove the VLAN Tag */ 1701 vlan_packet_rcvd = false; 1702 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1703 fep->bufdesc_ex && 1704 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1705 /* Push and remove the vlan tag */ 1706 struct vlan_hdr *vlan_header = 1707 (struct vlan_hdr *) (data + ETH_HLEN); 1708 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1709 1710 vlan_packet_rcvd = true; 1711 1712 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1713 skb_pull(skb, VLAN_HLEN); 1714 } 1715 1716 skb->protocol = eth_type_trans(skb, ndev); 1717 1718 /* Get receive timestamp from the skb */ 1719 if (fep->hwts_rx_en && fep->bufdesc_ex) 1720 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1721 skb_hwtstamps(skb)); 1722 1723 if (fep->bufdesc_ex && 1724 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1725 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1726 /* don't check it */ 1727 skb->ip_summed = CHECKSUM_UNNECESSARY; 1728 } else { 1729 skb_checksum_none_assert(skb); 1730 } 1731 } 1732 1733 /* Handle received VLAN packets */ 1734 if (vlan_packet_rcvd) 1735 __vlan_hwaccel_put_tag(skb, 1736 htons(ETH_P_8021Q), 1737 vlan_tag); 1738 1739 skb_record_rx_queue(skb, queue_id); 1740 napi_gro_receive(&fep->napi, skb); 1741 1742 rx_processing_done: 1743 /* Clear the status flags for this buffer */ 1744 status &= ~BD_ENET_RX_STATS; 1745 1746 /* Mark the buffer empty */ 1747 status |= BD_ENET_RX_EMPTY; 1748 1749 if (fep->bufdesc_ex) { 1750 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1751 1752 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1753 ebdp->cbd_prot = 0; 1754 ebdp->cbd_bdu = 0; 1755 } 1756 /* Make sure the updates to rest of the descriptor are 1757 * performed before transferring ownership. 1758 */ 1759 wmb(); 1760 bdp->cbd_sc = cpu_to_fec16(status); 1761 1762 /* Update BD pointer to next entry */ 1763 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1764 1765 /* Doing this here will keep the FEC running while we process 1766 * incoming frames. On a heavily loaded network, we should be 1767 * able to keep up at the expense of system resources. 1768 */ 1769 writel(0, rxq->bd.reg_desc_active); 1770 } 1771 rxq->bd.cur = bdp; 1772 1773 if (xdp_result & FEC_ENET_XDP_REDIR) 1774 xdp_do_flush_map(); 1775 1776 return pkt_received; 1777 } 1778 1779 static int fec_enet_rx(struct net_device *ndev, int budget) 1780 { 1781 struct fec_enet_private *fep = netdev_priv(ndev); 1782 int i, done = 0; 1783 1784 /* Make sure that AVB queues are processed first. */ 1785 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1786 done += fec_enet_rx_queue(ndev, budget - done, i); 1787 1788 return done; 1789 } 1790 1791 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1792 { 1793 uint int_events; 1794 1795 int_events = readl(fep->hwp + FEC_IEVENT); 1796 1797 /* Don't clear MDIO events, we poll for those */ 1798 int_events &= ~FEC_ENET_MII; 1799 1800 writel(int_events, fep->hwp + FEC_IEVENT); 1801 1802 return int_events != 0; 1803 } 1804 1805 static irqreturn_t 1806 fec_enet_interrupt(int irq, void *dev_id) 1807 { 1808 struct net_device *ndev = dev_id; 1809 struct fec_enet_private *fep = netdev_priv(ndev); 1810 irqreturn_t ret = IRQ_NONE; 1811 1812 if (fec_enet_collect_events(fep) && fep->link) { 1813 ret = IRQ_HANDLED; 1814 1815 if (napi_schedule_prep(&fep->napi)) { 1816 /* Disable interrupts */ 1817 writel(0, fep->hwp + FEC_IMASK); 1818 __napi_schedule(&fep->napi); 1819 } 1820 } 1821 1822 return ret; 1823 } 1824 1825 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1826 { 1827 struct net_device *ndev = napi->dev; 1828 struct fec_enet_private *fep = netdev_priv(ndev); 1829 int done = 0; 1830 1831 do { 1832 done += fec_enet_rx(ndev, budget - done); 1833 fec_enet_tx(ndev); 1834 } while ((done < budget) && fec_enet_collect_events(fep)); 1835 1836 if (done < budget) { 1837 napi_complete_done(napi, done); 1838 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1839 } 1840 1841 return done; 1842 } 1843 1844 /* ------------------------------------------------------------------------- */ 1845 static int fec_get_mac(struct net_device *ndev) 1846 { 1847 struct fec_enet_private *fep = netdev_priv(ndev); 1848 unsigned char *iap, tmpaddr[ETH_ALEN]; 1849 int ret; 1850 1851 /* 1852 * try to get mac address in following order: 1853 * 1854 * 1) module parameter via kernel command line in form 1855 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1856 */ 1857 iap = macaddr; 1858 1859 /* 1860 * 2) from device tree data 1861 */ 1862 if (!is_valid_ether_addr(iap)) { 1863 struct device_node *np = fep->pdev->dev.of_node; 1864 if (np) { 1865 ret = of_get_mac_address(np, tmpaddr); 1866 if (!ret) 1867 iap = tmpaddr; 1868 else if (ret == -EPROBE_DEFER) 1869 return ret; 1870 } 1871 } 1872 1873 /* 1874 * 3) from flash or fuse (via platform data) 1875 */ 1876 if (!is_valid_ether_addr(iap)) { 1877 #ifdef CONFIG_M5272 1878 if (FEC_FLASHMAC) 1879 iap = (unsigned char *)FEC_FLASHMAC; 1880 #else 1881 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1882 1883 if (pdata) 1884 iap = (unsigned char *)&pdata->mac; 1885 #endif 1886 } 1887 1888 /* 1889 * 4) FEC mac registers set by bootloader 1890 */ 1891 if (!is_valid_ether_addr(iap)) { 1892 *((__be32 *) &tmpaddr[0]) = 1893 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1894 *((__be16 *) &tmpaddr[4]) = 1895 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1896 iap = &tmpaddr[0]; 1897 } 1898 1899 /* 1900 * 5) random mac address 1901 */ 1902 if (!is_valid_ether_addr(iap)) { 1903 /* Report it and use a random ethernet address instead */ 1904 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1905 eth_hw_addr_random(ndev); 1906 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1907 ndev->dev_addr); 1908 return 0; 1909 } 1910 1911 /* Adjust MAC if using macaddr */ 1912 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1913 1914 return 0; 1915 } 1916 1917 /* ------------------------------------------------------------------------- */ 1918 1919 /* 1920 * Phy section 1921 */ 1922 static void fec_enet_adjust_link(struct net_device *ndev) 1923 { 1924 struct fec_enet_private *fep = netdev_priv(ndev); 1925 struct phy_device *phy_dev = ndev->phydev; 1926 int status_change = 0; 1927 1928 /* 1929 * If the netdev is down, or is going down, we're not interested 1930 * in link state events, so just mark our idea of the link as down 1931 * and ignore the event. 1932 */ 1933 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1934 fep->link = 0; 1935 } else if (phy_dev->link) { 1936 if (!fep->link) { 1937 fep->link = phy_dev->link; 1938 status_change = 1; 1939 } 1940 1941 if (fep->full_duplex != phy_dev->duplex) { 1942 fep->full_duplex = phy_dev->duplex; 1943 status_change = 1; 1944 } 1945 1946 if (phy_dev->speed != fep->speed) { 1947 fep->speed = phy_dev->speed; 1948 status_change = 1; 1949 } 1950 1951 /* if any of the above changed restart the FEC */ 1952 if (status_change) { 1953 napi_disable(&fep->napi); 1954 netif_tx_lock_bh(ndev); 1955 fec_restart(ndev); 1956 netif_tx_wake_all_queues(ndev); 1957 netif_tx_unlock_bh(ndev); 1958 napi_enable(&fep->napi); 1959 } 1960 } else { 1961 if (fep->link) { 1962 napi_disable(&fep->napi); 1963 netif_tx_lock_bh(ndev); 1964 fec_stop(ndev); 1965 netif_tx_unlock_bh(ndev); 1966 napi_enable(&fep->napi); 1967 fep->link = phy_dev->link; 1968 status_change = 1; 1969 } 1970 } 1971 1972 if (status_change) 1973 phy_print_status(phy_dev); 1974 } 1975 1976 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1977 { 1978 uint ievent; 1979 int ret; 1980 1981 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1982 ievent & FEC_ENET_MII, 2, 30000); 1983 1984 if (!ret) 1985 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1986 1987 return ret; 1988 } 1989 1990 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 1991 { 1992 struct fec_enet_private *fep = bus->priv; 1993 struct device *dev = &fep->pdev->dev; 1994 int ret = 0, frame_start, frame_addr, frame_op; 1995 1996 ret = pm_runtime_resume_and_get(dev); 1997 if (ret < 0) 1998 return ret; 1999 2000 /* C22 read */ 2001 frame_op = FEC_MMFR_OP_READ; 2002 frame_start = FEC_MMFR_ST; 2003 frame_addr = regnum; 2004 2005 /* start a read op */ 2006 writel(frame_start | frame_op | 2007 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2008 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2009 2010 /* wait for end of transfer */ 2011 ret = fec_enet_mdio_wait(fep); 2012 if (ret) { 2013 netdev_err(fep->netdev, "MDIO read timeout\n"); 2014 goto out; 2015 } 2016 2017 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2018 2019 out: 2020 pm_runtime_mark_last_busy(dev); 2021 pm_runtime_put_autosuspend(dev); 2022 2023 return ret; 2024 } 2025 2026 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2027 int devad, int regnum) 2028 { 2029 struct fec_enet_private *fep = bus->priv; 2030 struct device *dev = &fep->pdev->dev; 2031 int ret = 0, frame_start, frame_op; 2032 2033 ret = pm_runtime_resume_and_get(dev); 2034 if (ret < 0) 2035 return ret; 2036 2037 frame_start = FEC_MMFR_ST_C45; 2038 2039 /* write address */ 2040 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2041 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2042 FEC_MMFR_TA | (regnum & 0xFFFF), 2043 fep->hwp + FEC_MII_DATA); 2044 2045 /* wait for end of transfer */ 2046 ret = fec_enet_mdio_wait(fep); 2047 if (ret) { 2048 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2049 goto out; 2050 } 2051 2052 frame_op = FEC_MMFR_OP_READ_C45; 2053 2054 /* start a read op */ 2055 writel(frame_start | frame_op | 2056 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2057 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2058 2059 /* wait for end of transfer */ 2060 ret = fec_enet_mdio_wait(fep); 2061 if (ret) { 2062 netdev_err(fep->netdev, "MDIO read timeout\n"); 2063 goto out; 2064 } 2065 2066 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2067 2068 out: 2069 pm_runtime_mark_last_busy(dev); 2070 pm_runtime_put_autosuspend(dev); 2071 2072 return ret; 2073 } 2074 2075 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2076 u16 value) 2077 { 2078 struct fec_enet_private *fep = bus->priv; 2079 struct device *dev = &fep->pdev->dev; 2080 int ret, frame_start, frame_addr; 2081 2082 ret = pm_runtime_resume_and_get(dev); 2083 if (ret < 0) 2084 return ret; 2085 2086 /* C22 write */ 2087 frame_start = FEC_MMFR_ST; 2088 frame_addr = regnum; 2089 2090 /* start a write op */ 2091 writel(frame_start | FEC_MMFR_OP_WRITE | 2092 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2093 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2094 fep->hwp + FEC_MII_DATA); 2095 2096 /* wait for end of transfer */ 2097 ret = fec_enet_mdio_wait(fep); 2098 if (ret) 2099 netdev_err(fep->netdev, "MDIO write timeout\n"); 2100 2101 pm_runtime_mark_last_busy(dev); 2102 pm_runtime_put_autosuspend(dev); 2103 2104 return ret; 2105 } 2106 2107 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2108 int devad, int regnum, u16 value) 2109 { 2110 struct fec_enet_private *fep = bus->priv; 2111 struct device *dev = &fep->pdev->dev; 2112 int ret, frame_start; 2113 2114 ret = pm_runtime_resume_and_get(dev); 2115 if (ret < 0) 2116 return ret; 2117 2118 frame_start = FEC_MMFR_ST_C45; 2119 2120 /* write address */ 2121 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2122 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2123 FEC_MMFR_TA | (regnum & 0xFFFF), 2124 fep->hwp + FEC_MII_DATA); 2125 2126 /* wait for end of transfer */ 2127 ret = fec_enet_mdio_wait(fep); 2128 if (ret) { 2129 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2130 goto out; 2131 } 2132 2133 /* start a write op */ 2134 writel(frame_start | FEC_MMFR_OP_WRITE | 2135 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2136 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2137 fep->hwp + FEC_MII_DATA); 2138 2139 /* wait for end of transfer */ 2140 ret = fec_enet_mdio_wait(fep); 2141 if (ret) 2142 netdev_err(fep->netdev, "MDIO write timeout\n"); 2143 2144 out: 2145 pm_runtime_mark_last_busy(dev); 2146 pm_runtime_put_autosuspend(dev); 2147 2148 return ret; 2149 } 2150 2151 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2152 { 2153 struct fec_enet_private *fep = netdev_priv(ndev); 2154 struct phy_device *phy_dev = ndev->phydev; 2155 2156 if (phy_dev) { 2157 phy_reset_after_clk_enable(phy_dev); 2158 } else if (fep->phy_node) { 2159 /* 2160 * If the PHY still is not bound to the MAC, but there is 2161 * OF PHY node and a matching PHY device instance already, 2162 * use the OF PHY node to obtain the PHY device instance, 2163 * and then use that PHY device instance when triggering 2164 * the PHY reset. 2165 */ 2166 phy_dev = of_phy_find_device(fep->phy_node); 2167 phy_reset_after_clk_enable(phy_dev); 2168 put_device(&phy_dev->mdio.dev); 2169 } 2170 } 2171 2172 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2173 { 2174 struct fec_enet_private *fep = netdev_priv(ndev); 2175 int ret; 2176 2177 if (enable) { 2178 ret = clk_prepare_enable(fep->clk_enet_out); 2179 if (ret) 2180 return ret; 2181 2182 if (fep->clk_ptp) { 2183 mutex_lock(&fep->ptp_clk_mutex); 2184 ret = clk_prepare_enable(fep->clk_ptp); 2185 if (ret) { 2186 mutex_unlock(&fep->ptp_clk_mutex); 2187 goto failed_clk_ptp; 2188 } else { 2189 fep->ptp_clk_on = true; 2190 } 2191 mutex_unlock(&fep->ptp_clk_mutex); 2192 } 2193 2194 ret = clk_prepare_enable(fep->clk_ref); 2195 if (ret) 2196 goto failed_clk_ref; 2197 2198 ret = clk_prepare_enable(fep->clk_2x_txclk); 2199 if (ret) 2200 goto failed_clk_2x_txclk; 2201 2202 fec_enet_phy_reset_after_clk_enable(ndev); 2203 } else { 2204 clk_disable_unprepare(fep->clk_enet_out); 2205 if (fep->clk_ptp) { 2206 mutex_lock(&fep->ptp_clk_mutex); 2207 clk_disable_unprepare(fep->clk_ptp); 2208 fep->ptp_clk_on = false; 2209 mutex_unlock(&fep->ptp_clk_mutex); 2210 } 2211 clk_disable_unprepare(fep->clk_ref); 2212 clk_disable_unprepare(fep->clk_2x_txclk); 2213 } 2214 2215 return 0; 2216 2217 failed_clk_2x_txclk: 2218 if (fep->clk_ref) 2219 clk_disable_unprepare(fep->clk_ref); 2220 failed_clk_ref: 2221 if (fep->clk_ptp) { 2222 mutex_lock(&fep->ptp_clk_mutex); 2223 clk_disable_unprepare(fep->clk_ptp); 2224 fep->ptp_clk_on = false; 2225 mutex_unlock(&fep->ptp_clk_mutex); 2226 } 2227 failed_clk_ptp: 2228 clk_disable_unprepare(fep->clk_enet_out); 2229 2230 return ret; 2231 } 2232 2233 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2234 struct device_node *np) 2235 { 2236 u32 rgmii_tx_delay, rgmii_rx_delay; 2237 2238 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2239 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2240 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2241 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2242 return -EINVAL; 2243 } else if (rgmii_tx_delay == 2000) { 2244 fep->rgmii_txc_dly = true; 2245 } 2246 } 2247 2248 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2249 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2250 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2251 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2252 return -EINVAL; 2253 } else if (rgmii_rx_delay == 2000) { 2254 fep->rgmii_rxc_dly = true; 2255 } 2256 } 2257 2258 return 0; 2259 } 2260 2261 static int fec_enet_mii_probe(struct net_device *ndev) 2262 { 2263 struct fec_enet_private *fep = netdev_priv(ndev); 2264 struct phy_device *phy_dev = NULL; 2265 char mdio_bus_id[MII_BUS_ID_SIZE]; 2266 char phy_name[MII_BUS_ID_SIZE + 3]; 2267 int phy_id; 2268 int dev_id = fep->dev_id; 2269 2270 if (fep->phy_node) { 2271 phy_dev = of_phy_connect(ndev, fep->phy_node, 2272 &fec_enet_adjust_link, 0, 2273 fep->phy_interface); 2274 if (!phy_dev) { 2275 netdev_err(ndev, "Unable to connect to phy\n"); 2276 return -ENODEV; 2277 } 2278 } else { 2279 /* check for attached phy */ 2280 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2281 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2282 continue; 2283 if (dev_id--) 2284 continue; 2285 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2286 break; 2287 } 2288 2289 if (phy_id >= PHY_MAX_ADDR) { 2290 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2291 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2292 phy_id = 0; 2293 } 2294 2295 snprintf(phy_name, sizeof(phy_name), 2296 PHY_ID_FMT, mdio_bus_id, phy_id); 2297 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2298 fep->phy_interface); 2299 } 2300 2301 if (IS_ERR(phy_dev)) { 2302 netdev_err(ndev, "could not attach to PHY\n"); 2303 return PTR_ERR(phy_dev); 2304 } 2305 2306 /* mask with MAC supported features */ 2307 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2308 phy_set_max_speed(phy_dev, 1000); 2309 phy_remove_link_mode(phy_dev, 2310 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2311 #if !defined(CONFIG_M5272) 2312 phy_support_sym_pause(phy_dev); 2313 #endif 2314 } 2315 else 2316 phy_set_max_speed(phy_dev, 100); 2317 2318 fep->link = 0; 2319 fep->full_duplex = 0; 2320 2321 phy_dev->mac_managed_pm = true; 2322 2323 phy_attached_info(phy_dev); 2324 2325 return 0; 2326 } 2327 2328 static int fec_enet_mii_init(struct platform_device *pdev) 2329 { 2330 static struct mii_bus *fec0_mii_bus; 2331 struct net_device *ndev = platform_get_drvdata(pdev); 2332 struct fec_enet_private *fep = netdev_priv(ndev); 2333 bool suppress_preamble = false; 2334 struct device_node *node; 2335 int err = -ENXIO; 2336 u32 mii_speed, holdtime; 2337 u32 bus_freq; 2338 2339 /* 2340 * The i.MX28 dual fec interfaces are not equal. 2341 * Here are the differences: 2342 * 2343 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2344 * - fec0 acts as the 1588 time master while fec1 is slave 2345 * - external phys can only be configured by fec0 2346 * 2347 * That is to say fec1 can not work independently. It only works 2348 * when fec0 is working. The reason behind this design is that the 2349 * second interface is added primarily for Switch mode. 2350 * 2351 * Because of the last point above, both phys are attached on fec0 2352 * mdio interface in board design, and need to be configured by 2353 * fec0 mii_bus. 2354 */ 2355 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2356 /* fec1 uses fec0 mii_bus */ 2357 if (mii_cnt && fec0_mii_bus) { 2358 fep->mii_bus = fec0_mii_bus; 2359 mii_cnt++; 2360 return 0; 2361 } 2362 return -ENOENT; 2363 } 2364 2365 bus_freq = 2500000; /* 2.5MHz by default */ 2366 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2367 if (node) { 2368 of_property_read_u32(node, "clock-frequency", &bus_freq); 2369 suppress_preamble = of_property_read_bool(node, 2370 "suppress-preamble"); 2371 } 2372 2373 /* 2374 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2375 * 2376 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2377 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2378 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2379 * document. 2380 */ 2381 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2382 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2383 mii_speed--; 2384 if (mii_speed > 63) { 2385 dev_err(&pdev->dev, 2386 "fec clock (%lu) too fast to get right mii speed\n", 2387 clk_get_rate(fep->clk_ipg)); 2388 err = -EINVAL; 2389 goto err_out; 2390 } 2391 2392 /* 2393 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2394 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2395 * versions are RAZ there, so just ignore the difference and write the 2396 * register always. 2397 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2398 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2399 * output. 2400 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2401 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2402 * holdtime cannot result in a value greater than 3. 2403 */ 2404 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2405 2406 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2407 2408 if (suppress_preamble) 2409 fep->phy_speed |= BIT(7); 2410 2411 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2412 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2413 * MII event generation condition: 2414 * - writing MSCR: 2415 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2416 * mscr_reg_data_in[7:0] != 0 2417 * - writing MMFR: 2418 * - mscr[7:0]_not_zero 2419 */ 2420 writel(0, fep->hwp + FEC_MII_DATA); 2421 } 2422 2423 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2424 2425 /* Clear any pending transaction complete indication */ 2426 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2427 2428 fep->mii_bus = mdiobus_alloc(); 2429 if (fep->mii_bus == NULL) { 2430 err = -ENOMEM; 2431 goto err_out; 2432 } 2433 2434 fep->mii_bus->name = "fec_enet_mii_bus"; 2435 fep->mii_bus->read = fec_enet_mdio_read_c22; 2436 fep->mii_bus->write = fec_enet_mdio_write_c22; 2437 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2438 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2439 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2440 pdev->name, fep->dev_id + 1); 2441 fep->mii_bus->priv = fep; 2442 fep->mii_bus->parent = &pdev->dev; 2443 2444 err = of_mdiobus_register(fep->mii_bus, node); 2445 if (err) 2446 goto err_out_free_mdiobus; 2447 of_node_put(node); 2448 2449 mii_cnt++; 2450 2451 /* save fec0 mii_bus */ 2452 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2453 fec0_mii_bus = fep->mii_bus; 2454 2455 return 0; 2456 2457 err_out_free_mdiobus: 2458 mdiobus_free(fep->mii_bus); 2459 err_out: 2460 of_node_put(node); 2461 return err; 2462 } 2463 2464 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2465 { 2466 if (--mii_cnt == 0) { 2467 mdiobus_unregister(fep->mii_bus); 2468 mdiobus_free(fep->mii_bus); 2469 } 2470 } 2471 2472 static void fec_enet_get_drvinfo(struct net_device *ndev, 2473 struct ethtool_drvinfo *info) 2474 { 2475 struct fec_enet_private *fep = netdev_priv(ndev); 2476 2477 strscpy(info->driver, fep->pdev->dev.driver->name, 2478 sizeof(info->driver)); 2479 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2480 } 2481 2482 static int fec_enet_get_regs_len(struct net_device *ndev) 2483 { 2484 struct fec_enet_private *fep = netdev_priv(ndev); 2485 struct resource *r; 2486 int s = 0; 2487 2488 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2489 if (r) 2490 s = resource_size(r); 2491 2492 return s; 2493 } 2494 2495 /* List of registers that can be safety be read to dump them with ethtool */ 2496 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2497 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2498 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2499 static __u32 fec_enet_register_version = 2; 2500 static u32 fec_enet_register_offset[] = { 2501 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2502 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2503 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2504 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2505 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2506 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2507 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2508 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2509 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2510 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2511 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2512 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2513 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2514 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2515 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2516 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2517 RMON_T_P_GTE2048, RMON_T_OCTETS, 2518 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2519 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2520 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2521 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2522 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2523 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2524 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2525 RMON_R_P_GTE2048, RMON_R_OCTETS, 2526 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2527 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2528 }; 2529 /* for i.MX6ul */ 2530 static u32 fec_enet_register_offset_6ul[] = { 2531 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2532 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2533 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2534 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2535 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2536 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2537 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2538 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2539 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2540 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2541 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2542 RMON_T_P_GTE2048, RMON_T_OCTETS, 2543 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2544 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2545 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2546 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2547 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2548 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2549 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2550 RMON_R_P_GTE2048, RMON_R_OCTETS, 2551 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2552 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2553 }; 2554 #else 2555 static __u32 fec_enet_register_version = 1; 2556 static u32 fec_enet_register_offset[] = { 2557 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2558 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2559 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2560 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2561 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2562 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2563 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2564 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2565 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2566 }; 2567 #endif 2568 2569 static void fec_enet_get_regs(struct net_device *ndev, 2570 struct ethtool_regs *regs, void *regbuf) 2571 { 2572 struct fec_enet_private *fep = netdev_priv(ndev); 2573 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2574 struct device *dev = &fep->pdev->dev; 2575 u32 *buf = (u32 *)regbuf; 2576 u32 i, off; 2577 int ret; 2578 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2579 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2580 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2581 u32 *reg_list; 2582 u32 reg_cnt; 2583 2584 if (!of_machine_is_compatible("fsl,imx6ul")) { 2585 reg_list = fec_enet_register_offset; 2586 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2587 } else { 2588 reg_list = fec_enet_register_offset_6ul; 2589 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2590 } 2591 #else 2592 /* coldfire */ 2593 static u32 *reg_list = fec_enet_register_offset; 2594 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2595 #endif 2596 ret = pm_runtime_resume_and_get(dev); 2597 if (ret < 0) 2598 return; 2599 2600 regs->version = fec_enet_register_version; 2601 2602 memset(buf, 0, regs->len); 2603 2604 for (i = 0; i < reg_cnt; i++) { 2605 off = reg_list[i]; 2606 2607 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2608 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2609 continue; 2610 2611 off >>= 2; 2612 buf[off] = readl(&theregs[off]); 2613 } 2614 2615 pm_runtime_mark_last_busy(dev); 2616 pm_runtime_put_autosuspend(dev); 2617 } 2618 2619 static int fec_enet_get_ts_info(struct net_device *ndev, 2620 struct ethtool_ts_info *info) 2621 { 2622 struct fec_enet_private *fep = netdev_priv(ndev); 2623 2624 if (fep->bufdesc_ex) { 2625 2626 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2627 SOF_TIMESTAMPING_RX_SOFTWARE | 2628 SOF_TIMESTAMPING_SOFTWARE | 2629 SOF_TIMESTAMPING_TX_HARDWARE | 2630 SOF_TIMESTAMPING_RX_HARDWARE | 2631 SOF_TIMESTAMPING_RAW_HARDWARE; 2632 if (fep->ptp_clock) 2633 info->phc_index = ptp_clock_index(fep->ptp_clock); 2634 else 2635 info->phc_index = -1; 2636 2637 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2638 (1 << HWTSTAMP_TX_ON); 2639 2640 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2641 (1 << HWTSTAMP_FILTER_ALL); 2642 return 0; 2643 } else { 2644 return ethtool_op_get_ts_info(ndev, info); 2645 } 2646 } 2647 2648 #if !defined(CONFIG_M5272) 2649 2650 static void fec_enet_get_pauseparam(struct net_device *ndev, 2651 struct ethtool_pauseparam *pause) 2652 { 2653 struct fec_enet_private *fep = netdev_priv(ndev); 2654 2655 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2656 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2657 pause->rx_pause = pause->tx_pause; 2658 } 2659 2660 static int fec_enet_set_pauseparam(struct net_device *ndev, 2661 struct ethtool_pauseparam *pause) 2662 { 2663 struct fec_enet_private *fep = netdev_priv(ndev); 2664 2665 if (!ndev->phydev) 2666 return -ENODEV; 2667 2668 if (pause->tx_pause != pause->rx_pause) { 2669 netdev_info(ndev, 2670 "hardware only support enable/disable both tx and rx"); 2671 return -EINVAL; 2672 } 2673 2674 fep->pause_flag = 0; 2675 2676 /* tx pause must be same as rx pause */ 2677 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2678 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2679 2680 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2681 pause->autoneg); 2682 2683 if (pause->autoneg) { 2684 if (netif_running(ndev)) 2685 fec_stop(ndev); 2686 phy_start_aneg(ndev->phydev); 2687 } 2688 if (netif_running(ndev)) { 2689 napi_disable(&fep->napi); 2690 netif_tx_lock_bh(ndev); 2691 fec_restart(ndev); 2692 netif_tx_wake_all_queues(ndev); 2693 netif_tx_unlock_bh(ndev); 2694 napi_enable(&fep->napi); 2695 } 2696 2697 return 0; 2698 } 2699 2700 static const struct fec_stat { 2701 char name[ETH_GSTRING_LEN]; 2702 u16 offset; 2703 } fec_stats[] = { 2704 /* RMON TX */ 2705 { "tx_dropped", RMON_T_DROP }, 2706 { "tx_packets", RMON_T_PACKETS }, 2707 { "tx_broadcast", RMON_T_BC_PKT }, 2708 { "tx_multicast", RMON_T_MC_PKT }, 2709 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2710 { "tx_undersize", RMON_T_UNDERSIZE }, 2711 { "tx_oversize", RMON_T_OVERSIZE }, 2712 { "tx_fragment", RMON_T_FRAG }, 2713 { "tx_jabber", RMON_T_JAB }, 2714 { "tx_collision", RMON_T_COL }, 2715 { "tx_64byte", RMON_T_P64 }, 2716 { "tx_65to127byte", RMON_T_P65TO127 }, 2717 { "tx_128to255byte", RMON_T_P128TO255 }, 2718 { "tx_256to511byte", RMON_T_P256TO511 }, 2719 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2720 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2721 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2722 { "tx_octets", RMON_T_OCTETS }, 2723 2724 /* IEEE TX */ 2725 { "IEEE_tx_drop", IEEE_T_DROP }, 2726 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2727 { "IEEE_tx_1col", IEEE_T_1COL }, 2728 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2729 { "IEEE_tx_def", IEEE_T_DEF }, 2730 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2731 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2732 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2733 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2734 { "IEEE_tx_sqe", IEEE_T_SQE }, 2735 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2736 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2737 2738 /* RMON RX */ 2739 { "rx_packets", RMON_R_PACKETS }, 2740 { "rx_broadcast", RMON_R_BC_PKT }, 2741 { "rx_multicast", RMON_R_MC_PKT }, 2742 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2743 { "rx_undersize", RMON_R_UNDERSIZE }, 2744 { "rx_oversize", RMON_R_OVERSIZE }, 2745 { "rx_fragment", RMON_R_FRAG }, 2746 { "rx_jabber", RMON_R_JAB }, 2747 { "rx_64byte", RMON_R_P64 }, 2748 { "rx_65to127byte", RMON_R_P65TO127 }, 2749 { "rx_128to255byte", RMON_R_P128TO255 }, 2750 { "rx_256to511byte", RMON_R_P256TO511 }, 2751 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2752 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2753 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2754 { "rx_octets", RMON_R_OCTETS }, 2755 2756 /* IEEE RX */ 2757 { "IEEE_rx_drop", IEEE_R_DROP }, 2758 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2759 { "IEEE_rx_crc", IEEE_R_CRC }, 2760 { "IEEE_rx_align", IEEE_R_ALIGN }, 2761 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2762 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2763 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2764 }; 2765 2766 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2767 2768 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2769 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2770 "rx_xdp_pass", /* RX_XDP_PASS, */ 2771 "rx_xdp_drop", /* RX_XDP_DROP, */ 2772 "rx_xdp_tx", /* RX_XDP_TX, */ 2773 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2774 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2775 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2776 }; 2777 2778 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2779 { 2780 struct fec_enet_private *fep = netdev_priv(dev); 2781 int i; 2782 2783 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2784 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2785 } 2786 2787 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2788 { 2789 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2790 struct fec_enet_priv_rx_q *rxq; 2791 int i, j; 2792 2793 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2794 rxq = fep->rx_queue[i]; 2795 2796 for (j = 0; j < XDP_STATS_TOTAL; j++) 2797 xdp_stats[j] += rxq->stats[j]; 2798 } 2799 2800 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2801 } 2802 2803 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2804 { 2805 struct page_pool_stats stats = {}; 2806 struct fec_enet_priv_rx_q *rxq; 2807 int i; 2808 2809 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2810 rxq = fep->rx_queue[i]; 2811 2812 if (!rxq->page_pool) 2813 continue; 2814 2815 page_pool_get_stats(rxq->page_pool, &stats); 2816 } 2817 2818 page_pool_ethtool_stats_get(data, &stats); 2819 } 2820 2821 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2822 struct ethtool_stats *stats, u64 *data) 2823 { 2824 struct fec_enet_private *fep = netdev_priv(dev); 2825 2826 if (netif_running(dev)) 2827 fec_enet_update_ethtool_stats(dev); 2828 2829 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2830 data += FEC_STATS_SIZE / sizeof(u64); 2831 2832 fec_enet_get_xdp_stats(fep, data); 2833 data += XDP_STATS_TOTAL; 2834 2835 fec_enet_page_pool_stats(fep, data); 2836 } 2837 2838 static void fec_enet_get_strings(struct net_device *netdev, 2839 u32 stringset, u8 *data) 2840 { 2841 int i; 2842 switch (stringset) { 2843 case ETH_SS_STATS: 2844 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2845 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2846 data += ETH_GSTRING_LEN; 2847 } 2848 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2849 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2850 data += ETH_GSTRING_LEN; 2851 } 2852 page_pool_ethtool_stats_get_strings(data); 2853 2854 break; 2855 case ETH_SS_TEST: 2856 net_selftest_get_strings(data); 2857 break; 2858 } 2859 } 2860 2861 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2862 { 2863 int count; 2864 2865 switch (sset) { 2866 case ETH_SS_STATS: 2867 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2868 count += page_pool_ethtool_stats_get_count(); 2869 return count; 2870 2871 case ETH_SS_TEST: 2872 return net_selftest_get_count(); 2873 default: 2874 return -EOPNOTSUPP; 2875 } 2876 } 2877 2878 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2879 { 2880 struct fec_enet_private *fep = netdev_priv(dev); 2881 struct fec_enet_priv_rx_q *rxq; 2882 int i, j; 2883 2884 /* Disable MIB statistics counters */ 2885 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2886 2887 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2888 writel(0, fep->hwp + fec_stats[i].offset); 2889 2890 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2891 rxq = fep->rx_queue[i]; 2892 for (j = 0; j < XDP_STATS_TOTAL; j++) 2893 rxq->stats[j] = 0; 2894 } 2895 2896 /* Don't disable MIB statistics counters */ 2897 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2898 } 2899 2900 #else /* !defined(CONFIG_M5272) */ 2901 #define FEC_STATS_SIZE 0 2902 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2903 { 2904 } 2905 2906 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2907 { 2908 } 2909 #endif /* !defined(CONFIG_M5272) */ 2910 2911 /* ITR clock source is enet system clock (clk_ahb). 2912 * TCTT unit is cycle_ns * 64 cycle 2913 * So, the ICTT value = X us / (cycle_ns * 64) 2914 */ 2915 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2916 { 2917 struct fec_enet_private *fep = netdev_priv(ndev); 2918 2919 return us * (fep->itr_clk_rate / 64000) / 1000; 2920 } 2921 2922 /* Set threshold for interrupt coalescing */ 2923 static void fec_enet_itr_coal_set(struct net_device *ndev) 2924 { 2925 struct fec_enet_private *fep = netdev_priv(ndev); 2926 int rx_itr, tx_itr; 2927 2928 /* Must be greater than zero to avoid unpredictable behavior */ 2929 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2930 !fep->tx_time_itr || !fep->tx_pkts_itr) 2931 return; 2932 2933 /* Select enet system clock as Interrupt Coalescing 2934 * timer Clock Source 2935 */ 2936 rx_itr = FEC_ITR_CLK_SEL; 2937 tx_itr = FEC_ITR_CLK_SEL; 2938 2939 /* set ICFT and ICTT */ 2940 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2941 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2942 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2943 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2944 2945 rx_itr |= FEC_ITR_EN; 2946 tx_itr |= FEC_ITR_EN; 2947 2948 writel(tx_itr, fep->hwp + FEC_TXIC0); 2949 writel(rx_itr, fep->hwp + FEC_RXIC0); 2950 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2951 writel(tx_itr, fep->hwp + FEC_TXIC1); 2952 writel(rx_itr, fep->hwp + FEC_RXIC1); 2953 writel(tx_itr, fep->hwp + FEC_TXIC2); 2954 writel(rx_itr, fep->hwp + FEC_RXIC2); 2955 } 2956 } 2957 2958 static int fec_enet_get_coalesce(struct net_device *ndev, 2959 struct ethtool_coalesce *ec, 2960 struct kernel_ethtool_coalesce *kernel_coal, 2961 struct netlink_ext_ack *extack) 2962 { 2963 struct fec_enet_private *fep = netdev_priv(ndev); 2964 2965 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2966 return -EOPNOTSUPP; 2967 2968 ec->rx_coalesce_usecs = fep->rx_time_itr; 2969 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2970 2971 ec->tx_coalesce_usecs = fep->tx_time_itr; 2972 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2973 2974 return 0; 2975 } 2976 2977 static int fec_enet_set_coalesce(struct net_device *ndev, 2978 struct ethtool_coalesce *ec, 2979 struct kernel_ethtool_coalesce *kernel_coal, 2980 struct netlink_ext_ack *extack) 2981 { 2982 struct fec_enet_private *fep = netdev_priv(ndev); 2983 struct device *dev = &fep->pdev->dev; 2984 unsigned int cycle; 2985 2986 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2987 return -EOPNOTSUPP; 2988 2989 if (ec->rx_max_coalesced_frames > 255) { 2990 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2991 return -EINVAL; 2992 } 2993 2994 if (ec->tx_max_coalesced_frames > 255) { 2995 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2996 return -EINVAL; 2997 } 2998 2999 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3000 if (cycle > 0xFFFF) { 3001 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3002 return -EINVAL; 3003 } 3004 3005 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3006 if (cycle > 0xFFFF) { 3007 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3008 return -EINVAL; 3009 } 3010 3011 fep->rx_time_itr = ec->rx_coalesce_usecs; 3012 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3013 3014 fep->tx_time_itr = ec->tx_coalesce_usecs; 3015 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3016 3017 fec_enet_itr_coal_set(ndev); 3018 3019 return 0; 3020 } 3021 3022 static int fec_enet_get_tunable(struct net_device *netdev, 3023 const struct ethtool_tunable *tuna, 3024 void *data) 3025 { 3026 struct fec_enet_private *fep = netdev_priv(netdev); 3027 int ret = 0; 3028 3029 switch (tuna->id) { 3030 case ETHTOOL_RX_COPYBREAK: 3031 *(u32 *)data = fep->rx_copybreak; 3032 break; 3033 default: 3034 ret = -EINVAL; 3035 break; 3036 } 3037 3038 return ret; 3039 } 3040 3041 static int fec_enet_set_tunable(struct net_device *netdev, 3042 const struct ethtool_tunable *tuna, 3043 const void *data) 3044 { 3045 struct fec_enet_private *fep = netdev_priv(netdev); 3046 int ret = 0; 3047 3048 switch (tuna->id) { 3049 case ETHTOOL_RX_COPYBREAK: 3050 fep->rx_copybreak = *(u32 *)data; 3051 break; 3052 default: 3053 ret = -EINVAL; 3054 break; 3055 } 3056 3057 return ret; 3058 } 3059 3060 /* LPI Sleep Ts count base on tx clk (clk_ref). 3061 * The lpi sleep cnt value = X us / (cycle_ns). 3062 */ 3063 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3064 { 3065 struct fec_enet_private *fep = netdev_priv(ndev); 3066 3067 return us * (fep->clk_ref_rate / 1000) / 1000; 3068 } 3069 3070 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3071 { 3072 struct fec_enet_private *fep = netdev_priv(ndev); 3073 struct ethtool_eee *p = &fep->eee; 3074 unsigned int sleep_cycle, wake_cycle; 3075 int ret = 0; 3076 3077 if (enable) { 3078 ret = phy_init_eee(ndev->phydev, false); 3079 if (ret) 3080 return ret; 3081 3082 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3083 wake_cycle = sleep_cycle; 3084 } else { 3085 sleep_cycle = 0; 3086 wake_cycle = 0; 3087 } 3088 3089 p->tx_lpi_enabled = enable; 3090 p->eee_enabled = enable; 3091 p->eee_active = enable; 3092 3093 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3094 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3095 3096 return 0; 3097 } 3098 3099 static int 3100 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3101 { 3102 struct fec_enet_private *fep = netdev_priv(ndev); 3103 struct ethtool_eee *p = &fep->eee; 3104 3105 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3106 return -EOPNOTSUPP; 3107 3108 if (!netif_running(ndev)) 3109 return -ENETDOWN; 3110 3111 edata->eee_enabled = p->eee_enabled; 3112 edata->eee_active = p->eee_active; 3113 edata->tx_lpi_timer = p->tx_lpi_timer; 3114 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3115 3116 return phy_ethtool_get_eee(ndev->phydev, edata); 3117 } 3118 3119 static int 3120 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3121 { 3122 struct fec_enet_private *fep = netdev_priv(ndev); 3123 struct ethtool_eee *p = &fep->eee; 3124 int ret = 0; 3125 3126 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3127 return -EOPNOTSUPP; 3128 3129 if (!netif_running(ndev)) 3130 return -ENETDOWN; 3131 3132 p->tx_lpi_timer = edata->tx_lpi_timer; 3133 3134 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3135 !edata->tx_lpi_timer) 3136 ret = fec_enet_eee_mode_set(ndev, false); 3137 else 3138 ret = fec_enet_eee_mode_set(ndev, true); 3139 3140 if (ret) 3141 return ret; 3142 3143 return phy_ethtool_set_eee(ndev->phydev, edata); 3144 } 3145 3146 static void 3147 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3148 { 3149 struct fec_enet_private *fep = netdev_priv(ndev); 3150 3151 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3152 wol->supported = WAKE_MAGIC; 3153 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3154 } else { 3155 wol->supported = wol->wolopts = 0; 3156 } 3157 } 3158 3159 static int 3160 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3161 { 3162 struct fec_enet_private *fep = netdev_priv(ndev); 3163 3164 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3165 return -EINVAL; 3166 3167 if (wol->wolopts & ~WAKE_MAGIC) 3168 return -EINVAL; 3169 3170 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3171 if (device_may_wakeup(&ndev->dev)) 3172 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3173 else 3174 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3175 3176 return 0; 3177 } 3178 3179 static const struct ethtool_ops fec_enet_ethtool_ops = { 3180 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3181 ETHTOOL_COALESCE_MAX_FRAMES, 3182 .get_drvinfo = fec_enet_get_drvinfo, 3183 .get_regs_len = fec_enet_get_regs_len, 3184 .get_regs = fec_enet_get_regs, 3185 .nway_reset = phy_ethtool_nway_reset, 3186 .get_link = ethtool_op_get_link, 3187 .get_coalesce = fec_enet_get_coalesce, 3188 .set_coalesce = fec_enet_set_coalesce, 3189 #ifndef CONFIG_M5272 3190 .get_pauseparam = fec_enet_get_pauseparam, 3191 .set_pauseparam = fec_enet_set_pauseparam, 3192 .get_strings = fec_enet_get_strings, 3193 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3194 .get_sset_count = fec_enet_get_sset_count, 3195 #endif 3196 .get_ts_info = fec_enet_get_ts_info, 3197 .get_tunable = fec_enet_get_tunable, 3198 .set_tunable = fec_enet_set_tunable, 3199 .get_wol = fec_enet_get_wol, 3200 .set_wol = fec_enet_set_wol, 3201 .get_eee = fec_enet_get_eee, 3202 .set_eee = fec_enet_set_eee, 3203 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3204 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3205 .self_test = net_selftest, 3206 }; 3207 3208 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3209 { 3210 struct fec_enet_private *fep = netdev_priv(ndev); 3211 struct phy_device *phydev = ndev->phydev; 3212 3213 if (!netif_running(ndev)) 3214 return -EINVAL; 3215 3216 if (!phydev) 3217 return -ENODEV; 3218 3219 if (fep->bufdesc_ex) { 3220 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3221 3222 if (cmd == SIOCSHWTSTAMP) { 3223 if (use_fec_hwts) 3224 return fec_ptp_set(ndev, rq); 3225 fec_ptp_disable_hwts(ndev); 3226 } else if (cmd == SIOCGHWTSTAMP) { 3227 if (use_fec_hwts) 3228 return fec_ptp_get(ndev, rq); 3229 } 3230 } 3231 3232 return phy_mii_ioctl(phydev, rq, cmd); 3233 } 3234 3235 static void fec_enet_free_buffers(struct net_device *ndev) 3236 { 3237 struct fec_enet_private *fep = netdev_priv(ndev); 3238 unsigned int i; 3239 struct sk_buff *skb; 3240 struct fec_enet_priv_tx_q *txq; 3241 struct fec_enet_priv_rx_q *rxq; 3242 unsigned int q; 3243 3244 for (q = 0; q < fep->num_rx_queues; q++) { 3245 rxq = fep->rx_queue[q]; 3246 for (i = 0; i < rxq->bd.ring_size; i++) 3247 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3248 3249 for (i = 0; i < XDP_STATS_TOTAL; i++) 3250 rxq->stats[i] = 0; 3251 3252 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3253 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3254 page_pool_destroy(rxq->page_pool); 3255 rxq->page_pool = NULL; 3256 } 3257 3258 for (q = 0; q < fep->num_tx_queues; q++) { 3259 txq = fep->tx_queue[q]; 3260 for (i = 0; i < txq->bd.ring_size; i++) { 3261 kfree(txq->tx_bounce[i]); 3262 txq->tx_bounce[i] = NULL; 3263 skb = txq->tx_skbuff[i]; 3264 txq->tx_skbuff[i] = NULL; 3265 dev_kfree_skb(skb); 3266 } 3267 } 3268 } 3269 3270 static void fec_enet_free_queue(struct net_device *ndev) 3271 { 3272 struct fec_enet_private *fep = netdev_priv(ndev); 3273 int i; 3274 struct fec_enet_priv_tx_q *txq; 3275 3276 for (i = 0; i < fep->num_tx_queues; i++) 3277 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3278 txq = fep->tx_queue[i]; 3279 dma_free_coherent(&fep->pdev->dev, 3280 txq->bd.ring_size * TSO_HEADER_SIZE, 3281 txq->tso_hdrs, 3282 txq->tso_hdrs_dma); 3283 } 3284 3285 for (i = 0; i < fep->num_rx_queues; i++) 3286 kfree(fep->rx_queue[i]); 3287 for (i = 0; i < fep->num_tx_queues; i++) 3288 kfree(fep->tx_queue[i]); 3289 } 3290 3291 static int fec_enet_alloc_queue(struct net_device *ndev) 3292 { 3293 struct fec_enet_private *fep = netdev_priv(ndev); 3294 int i; 3295 int ret = 0; 3296 struct fec_enet_priv_tx_q *txq; 3297 3298 for (i = 0; i < fep->num_tx_queues; i++) { 3299 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3300 if (!txq) { 3301 ret = -ENOMEM; 3302 goto alloc_failed; 3303 } 3304 3305 fep->tx_queue[i] = txq; 3306 txq->bd.ring_size = TX_RING_SIZE; 3307 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3308 3309 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3310 txq->tx_wake_threshold = 3311 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3312 3313 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3314 txq->bd.ring_size * TSO_HEADER_SIZE, 3315 &txq->tso_hdrs_dma, 3316 GFP_KERNEL); 3317 if (!txq->tso_hdrs) { 3318 ret = -ENOMEM; 3319 goto alloc_failed; 3320 } 3321 } 3322 3323 for (i = 0; i < fep->num_rx_queues; i++) { 3324 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3325 GFP_KERNEL); 3326 if (!fep->rx_queue[i]) { 3327 ret = -ENOMEM; 3328 goto alloc_failed; 3329 } 3330 3331 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3332 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3333 } 3334 return ret; 3335 3336 alloc_failed: 3337 fec_enet_free_queue(ndev); 3338 return ret; 3339 } 3340 3341 static int 3342 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3343 { 3344 struct fec_enet_private *fep = netdev_priv(ndev); 3345 struct fec_enet_priv_rx_q *rxq; 3346 dma_addr_t phys_addr; 3347 struct bufdesc *bdp; 3348 struct page *page; 3349 int i, err; 3350 3351 rxq = fep->rx_queue[queue]; 3352 bdp = rxq->bd.base; 3353 3354 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3355 if (err < 0) { 3356 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3357 return err; 3358 } 3359 3360 for (i = 0; i < rxq->bd.ring_size; i++) { 3361 page = page_pool_dev_alloc_pages(rxq->page_pool); 3362 if (!page) 3363 goto err_alloc; 3364 3365 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3366 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3367 3368 rxq->rx_skb_info[i].page = page; 3369 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3370 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3371 3372 if (fep->bufdesc_ex) { 3373 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3374 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3375 } 3376 3377 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3378 } 3379 3380 /* Set the last buffer to wrap. */ 3381 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3382 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3383 return 0; 3384 3385 err_alloc: 3386 fec_enet_free_buffers(ndev); 3387 return -ENOMEM; 3388 } 3389 3390 static int 3391 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3392 { 3393 struct fec_enet_private *fep = netdev_priv(ndev); 3394 unsigned int i; 3395 struct bufdesc *bdp; 3396 struct fec_enet_priv_tx_q *txq; 3397 3398 txq = fep->tx_queue[queue]; 3399 bdp = txq->bd.base; 3400 for (i = 0; i < txq->bd.ring_size; i++) { 3401 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3402 if (!txq->tx_bounce[i]) 3403 goto err_alloc; 3404 3405 bdp->cbd_sc = cpu_to_fec16(0); 3406 bdp->cbd_bufaddr = cpu_to_fec32(0); 3407 3408 if (fep->bufdesc_ex) { 3409 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3410 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3411 } 3412 3413 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3414 } 3415 3416 /* Set the last buffer to wrap. */ 3417 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3418 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3419 3420 return 0; 3421 3422 err_alloc: 3423 fec_enet_free_buffers(ndev); 3424 return -ENOMEM; 3425 } 3426 3427 static int fec_enet_alloc_buffers(struct net_device *ndev) 3428 { 3429 struct fec_enet_private *fep = netdev_priv(ndev); 3430 unsigned int i; 3431 3432 for (i = 0; i < fep->num_rx_queues; i++) 3433 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3434 return -ENOMEM; 3435 3436 for (i = 0; i < fep->num_tx_queues; i++) 3437 if (fec_enet_alloc_txq_buffers(ndev, i)) 3438 return -ENOMEM; 3439 return 0; 3440 } 3441 3442 static int 3443 fec_enet_open(struct net_device *ndev) 3444 { 3445 struct fec_enet_private *fep = netdev_priv(ndev); 3446 int ret; 3447 bool reset_again; 3448 3449 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3450 if (ret < 0) 3451 return ret; 3452 3453 pinctrl_pm_select_default_state(&fep->pdev->dev); 3454 ret = fec_enet_clk_enable(ndev, true); 3455 if (ret) 3456 goto clk_enable; 3457 3458 /* During the first fec_enet_open call the PHY isn't probed at this 3459 * point. Therefore the phy_reset_after_clk_enable() call within 3460 * fec_enet_clk_enable() fails. As we need this reset in order to be 3461 * sure the PHY is working correctly we check if we need to reset again 3462 * later when the PHY is probed 3463 */ 3464 if (ndev->phydev && ndev->phydev->drv) 3465 reset_again = false; 3466 else 3467 reset_again = true; 3468 3469 /* I should reset the ring buffers here, but I don't yet know 3470 * a simple way to do that. 3471 */ 3472 3473 ret = fec_enet_alloc_buffers(ndev); 3474 if (ret) 3475 goto err_enet_alloc; 3476 3477 /* Init MAC prior to mii bus probe */ 3478 fec_restart(ndev); 3479 3480 /* Call phy_reset_after_clk_enable() again if it failed during 3481 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3482 */ 3483 if (reset_again) 3484 fec_enet_phy_reset_after_clk_enable(ndev); 3485 3486 /* Probe and connect to PHY when open the interface */ 3487 ret = fec_enet_mii_probe(ndev); 3488 if (ret) 3489 goto err_enet_mii_probe; 3490 3491 if (fep->quirks & FEC_QUIRK_ERR006687) 3492 imx6q_cpuidle_fec_irqs_used(); 3493 3494 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3495 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3496 3497 napi_enable(&fep->napi); 3498 phy_start(ndev->phydev); 3499 netif_tx_start_all_queues(ndev); 3500 3501 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3502 FEC_WOL_FLAG_ENABLE); 3503 3504 return 0; 3505 3506 err_enet_mii_probe: 3507 fec_enet_free_buffers(ndev); 3508 err_enet_alloc: 3509 fec_enet_clk_enable(ndev, false); 3510 clk_enable: 3511 pm_runtime_mark_last_busy(&fep->pdev->dev); 3512 pm_runtime_put_autosuspend(&fep->pdev->dev); 3513 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3514 return ret; 3515 } 3516 3517 static int 3518 fec_enet_close(struct net_device *ndev) 3519 { 3520 struct fec_enet_private *fep = netdev_priv(ndev); 3521 3522 phy_stop(ndev->phydev); 3523 3524 if (netif_device_present(ndev)) { 3525 napi_disable(&fep->napi); 3526 netif_tx_disable(ndev); 3527 fec_stop(ndev); 3528 } 3529 3530 phy_disconnect(ndev->phydev); 3531 3532 if (fep->quirks & FEC_QUIRK_ERR006687) 3533 imx6q_cpuidle_fec_irqs_unused(); 3534 3535 fec_enet_update_ethtool_stats(ndev); 3536 3537 fec_enet_clk_enable(ndev, false); 3538 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3539 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3540 3541 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3542 pm_runtime_mark_last_busy(&fep->pdev->dev); 3543 pm_runtime_put_autosuspend(&fep->pdev->dev); 3544 3545 fec_enet_free_buffers(ndev); 3546 3547 return 0; 3548 } 3549 3550 /* Set or clear the multicast filter for this adaptor. 3551 * Skeleton taken from sunlance driver. 3552 * The CPM Ethernet implementation allows Multicast as well as individual 3553 * MAC address filtering. Some of the drivers check to make sure it is 3554 * a group multicast address, and discard those that are not. I guess I 3555 * will do the same for now, but just remove the test if you want 3556 * individual filtering as well (do the upper net layers want or support 3557 * this kind of feature?). 3558 */ 3559 3560 #define FEC_HASH_BITS 6 /* #bits in hash */ 3561 3562 static void set_multicast_list(struct net_device *ndev) 3563 { 3564 struct fec_enet_private *fep = netdev_priv(ndev); 3565 struct netdev_hw_addr *ha; 3566 unsigned int crc, tmp; 3567 unsigned char hash; 3568 unsigned int hash_high = 0, hash_low = 0; 3569 3570 if (ndev->flags & IFF_PROMISC) { 3571 tmp = readl(fep->hwp + FEC_R_CNTRL); 3572 tmp |= 0x8; 3573 writel(tmp, fep->hwp + FEC_R_CNTRL); 3574 return; 3575 } 3576 3577 tmp = readl(fep->hwp + FEC_R_CNTRL); 3578 tmp &= ~0x8; 3579 writel(tmp, fep->hwp + FEC_R_CNTRL); 3580 3581 if (ndev->flags & IFF_ALLMULTI) { 3582 /* Catch all multicast addresses, so set the 3583 * filter to all 1's 3584 */ 3585 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3586 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3587 3588 return; 3589 } 3590 3591 /* Add the addresses in hash register */ 3592 netdev_for_each_mc_addr(ha, ndev) { 3593 /* calculate crc32 value of mac address */ 3594 crc = ether_crc_le(ndev->addr_len, ha->addr); 3595 3596 /* only upper 6 bits (FEC_HASH_BITS) are used 3597 * which point to specific bit in the hash registers 3598 */ 3599 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3600 3601 if (hash > 31) 3602 hash_high |= 1 << (hash - 32); 3603 else 3604 hash_low |= 1 << hash; 3605 } 3606 3607 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3608 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3609 } 3610 3611 /* Set a MAC change in hardware. */ 3612 static int 3613 fec_set_mac_address(struct net_device *ndev, void *p) 3614 { 3615 struct fec_enet_private *fep = netdev_priv(ndev); 3616 struct sockaddr *addr = p; 3617 3618 if (addr) { 3619 if (!is_valid_ether_addr(addr->sa_data)) 3620 return -EADDRNOTAVAIL; 3621 eth_hw_addr_set(ndev, addr->sa_data); 3622 } 3623 3624 /* Add netif status check here to avoid system hang in below case: 3625 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3626 * After ethx down, fec all clocks are gated off and then register 3627 * access causes system hang. 3628 */ 3629 if (!netif_running(ndev)) 3630 return 0; 3631 3632 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3633 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3634 fep->hwp + FEC_ADDR_LOW); 3635 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3636 fep->hwp + FEC_ADDR_HIGH); 3637 return 0; 3638 } 3639 3640 #ifdef CONFIG_NET_POLL_CONTROLLER 3641 /** 3642 * fec_poll_controller - FEC Poll controller function 3643 * @dev: The FEC network adapter 3644 * 3645 * Polled functionality used by netconsole and others in non interrupt mode 3646 * 3647 */ 3648 static void fec_poll_controller(struct net_device *dev) 3649 { 3650 int i; 3651 struct fec_enet_private *fep = netdev_priv(dev); 3652 3653 for (i = 0; i < FEC_IRQ_NUM; i++) { 3654 if (fep->irq[i] > 0) { 3655 disable_irq(fep->irq[i]); 3656 fec_enet_interrupt(fep->irq[i], dev); 3657 enable_irq(fep->irq[i]); 3658 } 3659 } 3660 } 3661 #endif 3662 3663 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3664 netdev_features_t features) 3665 { 3666 struct fec_enet_private *fep = netdev_priv(netdev); 3667 netdev_features_t changed = features ^ netdev->features; 3668 3669 netdev->features = features; 3670 3671 /* Receive checksum has been changed */ 3672 if (changed & NETIF_F_RXCSUM) { 3673 if (features & NETIF_F_RXCSUM) 3674 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3675 else 3676 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3677 } 3678 } 3679 3680 static int fec_set_features(struct net_device *netdev, 3681 netdev_features_t features) 3682 { 3683 struct fec_enet_private *fep = netdev_priv(netdev); 3684 netdev_features_t changed = features ^ netdev->features; 3685 3686 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3687 napi_disable(&fep->napi); 3688 netif_tx_lock_bh(netdev); 3689 fec_stop(netdev); 3690 fec_enet_set_netdev_features(netdev, features); 3691 fec_restart(netdev); 3692 netif_tx_wake_all_queues(netdev); 3693 netif_tx_unlock_bh(netdev); 3694 napi_enable(&fep->napi); 3695 } else { 3696 fec_enet_set_netdev_features(netdev, features); 3697 } 3698 3699 return 0; 3700 } 3701 3702 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3703 { 3704 struct vlan_ethhdr *vhdr; 3705 unsigned short vlan_TCI = 0; 3706 3707 if (skb->protocol == htons(ETH_P_ALL)) { 3708 vhdr = (struct vlan_ethhdr *)(skb->data); 3709 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3710 } 3711 3712 return vlan_TCI; 3713 } 3714 3715 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3716 struct net_device *sb_dev) 3717 { 3718 struct fec_enet_private *fep = netdev_priv(ndev); 3719 u16 vlan_tag; 3720 3721 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3722 return netdev_pick_tx(ndev, skb, NULL); 3723 3724 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3725 if (!vlan_tag) 3726 return vlan_tag; 3727 3728 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3729 } 3730 3731 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3732 { 3733 struct fec_enet_private *fep = netdev_priv(dev); 3734 bool is_run = netif_running(dev); 3735 struct bpf_prog *old_prog; 3736 3737 switch (bpf->command) { 3738 case XDP_SETUP_PROG: 3739 /* No need to support the SoCs that require to 3740 * do the frame swap because the performance wouldn't be 3741 * better than the skb mode. 3742 */ 3743 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3744 return -EOPNOTSUPP; 3745 3746 if (is_run) { 3747 napi_disable(&fep->napi); 3748 netif_tx_disable(dev); 3749 } 3750 3751 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3752 fec_restart(dev); 3753 3754 if (is_run) { 3755 napi_enable(&fep->napi); 3756 netif_tx_start_all_queues(dev); 3757 } 3758 3759 if (old_prog) 3760 bpf_prog_put(old_prog); 3761 3762 return 0; 3763 3764 case XDP_SETUP_XSK_POOL: 3765 return -EOPNOTSUPP; 3766 3767 default: 3768 return -EOPNOTSUPP; 3769 } 3770 } 3771 3772 static int 3773 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3774 { 3775 if (unlikely(index < 0)) 3776 return 0; 3777 3778 return (index % fep->num_tx_queues); 3779 } 3780 3781 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3782 struct fec_enet_priv_tx_q *txq, 3783 struct xdp_frame *frame) 3784 { 3785 unsigned int index, status, estatus; 3786 struct bufdesc *bdp, *last_bdp; 3787 dma_addr_t dma_addr; 3788 int entries_free; 3789 3790 entries_free = fec_enet_get_free_txdesc_num(txq); 3791 if (entries_free < MAX_SKB_FRAGS + 1) { 3792 netdev_err(fep->netdev, "NOT enough BD for SG!\n"); 3793 return NETDEV_TX_OK; 3794 } 3795 3796 /* Fill in a Tx ring entry */ 3797 bdp = txq->bd.cur; 3798 last_bdp = bdp; 3799 status = fec16_to_cpu(bdp->cbd_sc); 3800 status &= ~BD_ENET_TX_STATS; 3801 3802 index = fec_enet_get_bd_index(bdp, &txq->bd); 3803 3804 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3805 frame->len, DMA_TO_DEVICE); 3806 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3807 return FEC_ENET_XDP_CONSUMED; 3808 3809 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3810 if (fep->bufdesc_ex) 3811 estatus = BD_ENET_TX_INT; 3812 3813 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3814 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3815 3816 if (fep->bufdesc_ex) { 3817 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3818 3819 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3820 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3821 3822 ebdp->cbd_bdu = 0; 3823 ebdp->cbd_esc = cpu_to_fec32(estatus); 3824 } 3825 3826 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 3827 txq->tx_skbuff[index] = NULL; 3828 3829 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3830 * it's the last BD of the frame, and to put the CRC on the end. 3831 */ 3832 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3833 bdp->cbd_sc = cpu_to_fec16(status); 3834 3835 /* If this was the last BD in the ring, start at the beginning again. */ 3836 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 3837 3838 txq->bd.cur = bdp; 3839 3840 return 0; 3841 } 3842 3843 static int fec_enet_xdp_xmit(struct net_device *dev, 3844 int num_frames, 3845 struct xdp_frame **frames, 3846 u32 flags) 3847 { 3848 struct fec_enet_private *fep = netdev_priv(dev); 3849 struct fec_enet_priv_tx_q *txq; 3850 int cpu = smp_processor_id(); 3851 struct netdev_queue *nq; 3852 unsigned int queue; 3853 int i; 3854 3855 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3856 txq = fep->tx_queue[queue]; 3857 nq = netdev_get_tx_queue(fep->netdev, queue); 3858 3859 __netif_tx_lock(nq, cpu); 3860 3861 for (i = 0; i < num_frames; i++) 3862 fec_enet_txq_xmit_frame(fep, txq, frames[i]); 3863 3864 /* Make sure the update to bdp and tx_skbuff are performed. */ 3865 wmb(); 3866 3867 /* Trigger transmission start */ 3868 writel(0, txq->bd.reg_desc_active); 3869 3870 __netif_tx_unlock(nq); 3871 3872 return num_frames; 3873 } 3874 3875 static const struct net_device_ops fec_netdev_ops = { 3876 .ndo_open = fec_enet_open, 3877 .ndo_stop = fec_enet_close, 3878 .ndo_start_xmit = fec_enet_start_xmit, 3879 .ndo_select_queue = fec_enet_select_queue, 3880 .ndo_set_rx_mode = set_multicast_list, 3881 .ndo_validate_addr = eth_validate_addr, 3882 .ndo_tx_timeout = fec_timeout, 3883 .ndo_set_mac_address = fec_set_mac_address, 3884 .ndo_eth_ioctl = fec_enet_ioctl, 3885 #ifdef CONFIG_NET_POLL_CONTROLLER 3886 .ndo_poll_controller = fec_poll_controller, 3887 #endif 3888 .ndo_set_features = fec_set_features, 3889 .ndo_bpf = fec_enet_bpf, 3890 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3891 }; 3892 3893 static const unsigned short offset_des_active_rxq[] = { 3894 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3895 }; 3896 3897 static const unsigned short offset_des_active_txq[] = { 3898 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3899 }; 3900 3901 /* 3902 * XXX: We need to clean up on failure exits here. 3903 * 3904 */ 3905 static int fec_enet_init(struct net_device *ndev) 3906 { 3907 struct fec_enet_private *fep = netdev_priv(ndev); 3908 struct bufdesc *cbd_base; 3909 dma_addr_t bd_dma; 3910 int bd_size; 3911 unsigned int i; 3912 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3913 sizeof(struct bufdesc); 3914 unsigned dsize_log2 = __fls(dsize); 3915 int ret; 3916 3917 WARN_ON(dsize != (1 << dsize_log2)); 3918 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3919 fep->rx_align = 0xf; 3920 fep->tx_align = 0xf; 3921 #else 3922 fep->rx_align = 0x3; 3923 fep->tx_align = 0x3; 3924 #endif 3925 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3926 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3927 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 3928 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 3929 3930 /* Check mask of the streaming and coherent API */ 3931 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3932 if (ret < 0) { 3933 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3934 return ret; 3935 } 3936 3937 ret = fec_enet_alloc_queue(ndev); 3938 if (ret) 3939 return ret; 3940 3941 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3942 3943 /* Allocate memory for buffer descriptors. */ 3944 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3945 GFP_KERNEL); 3946 if (!cbd_base) { 3947 ret = -ENOMEM; 3948 goto free_queue_mem; 3949 } 3950 3951 /* Get the Ethernet address */ 3952 ret = fec_get_mac(ndev); 3953 if (ret) 3954 goto free_queue_mem; 3955 3956 /* make sure MAC we just acquired is programmed into the hw */ 3957 fec_set_mac_address(ndev, NULL); 3958 3959 /* Set receive and transmit descriptor base. */ 3960 for (i = 0; i < fep->num_rx_queues; i++) { 3961 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3962 unsigned size = dsize * rxq->bd.ring_size; 3963 3964 rxq->bd.qid = i; 3965 rxq->bd.base = cbd_base; 3966 rxq->bd.cur = cbd_base; 3967 rxq->bd.dma = bd_dma; 3968 rxq->bd.dsize = dsize; 3969 rxq->bd.dsize_log2 = dsize_log2; 3970 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3971 bd_dma += size; 3972 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3973 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3974 } 3975 3976 for (i = 0; i < fep->num_tx_queues; i++) { 3977 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3978 unsigned size = dsize * txq->bd.ring_size; 3979 3980 txq->bd.qid = i; 3981 txq->bd.base = cbd_base; 3982 txq->bd.cur = cbd_base; 3983 txq->bd.dma = bd_dma; 3984 txq->bd.dsize = dsize; 3985 txq->bd.dsize_log2 = dsize_log2; 3986 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3987 bd_dma += size; 3988 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3989 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3990 } 3991 3992 3993 /* The FEC Ethernet specific entries in the device structure */ 3994 ndev->watchdog_timeo = TX_TIMEOUT; 3995 ndev->netdev_ops = &fec_netdev_ops; 3996 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3997 3998 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3999 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4000 4001 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4002 /* enable hw VLAN support */ 4003 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4004 4005 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4006 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4007 4008 /* enable hw accelerator */ 4009 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4010 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4011 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4012 } 4013 4014 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4015 fep->tx_align = 0; 4016 fep->rx_align = 0x3f; 4017 } 4018 4019 ndev->hw_features = ndev->features; 4020 4021 fec_restart(ndev); 4022 4023 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4024 fec_enet_clear_ethtool_stats(ndev); 4025 else 4026 fec_enet_update_ethtool_stats(ndev); 4027 4028 return 0; 4029 4030 free_queue_mem: 4031 fec_enet_free_queue(ndev); 4032 return ret; 4033 } 4034 4035 #ifdef CONFIG_OF 4036 static int fec_reset_phy(struct platform_device *pdev) 4037 { 4038 struct gpio_desc *phy_reset; 4039 int msec = 1, phy_post_delay = 0; 4040 struct device_node *np = pdev->dev.of_node; 4041 int err; 4042 4043 if (!np) 4044 return 0; 4045 4046 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4047 /* A sane reset duration should not be longer than 1s */ 4048 if (!err && msec > 1000) 4049 msec = 1; 4050 4051 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4052 /* valid reset duration should be less than 1s */ 4053 if (!err && phy_post_delay > 1000) 4054 return -EINVAL; 4055 4056 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4057 GPIOD_OUT_HIGH); 4058 if (IS_ERR(phy_reset)) 4059 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4060 "failed to get phy-reset-gpios\n"); 4061 4062 if (!phy_reset) 4063 return 0; 4064 4065 if (msec > 20) 4066 msleep(msec); 4067 else 4068 usleep_range(msec * 1000, msec * 1000 + 1000); 4069 4070 gpiod_set_value_cansleep(phy_reset, 0); 4071 4072 if (!phy_post_delay) 4073 return 0; 4074 4075 if (phy_post_delay > 20) 4076 msleep(phy_post_delay); 4077 else 4078 usleep_range(phy_post_delay * 1000, 4079 phy_post_delay * 1000 + 1000); 4080 4081 return 0; 4082 } 4083 #else /* CONFIG_OF */ 4084 static int fec_reset_phy(struct platform_device *pdev) 4085 { 4086 /* 4087 * In case of platform probe, the reset has been done 4088 * by machine code. 4089 */ 4090 return 0; 4091 } 4092 #endif /* CONFIG_OF */ 4093 4094 static void 4095 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4096 { 4097 struct device_node *np = pdev->dev.of_node; 4098 4099 *num_tx = *num_rx = 1; 4100 4101 if (!np || !of_device_is_available(np)) 4102 return; 4103 4104 /* parse the num of tx and rx queues */ 4105 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4106 4107 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4108 4109 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4110 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4111 *num_tx); 4112 *num_tx = 1; 4113 return; 4114 } 4115 4116 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4117 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4118 *num_rx); 4119 *num_rx = 1; 4120 return; 4121 } 4122 4123 } 4124 4125 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4126 { 4127 int irq_cnt = platform_irq_count(pdev); 4128 4129 if (irq_cnt > FEC_IRQ_NUM) 4130 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4131 else if (irq_cnt == 2) 4132 irq_cnt = 1; /* last for pps */ 4133 else if (irq_cnt <= 0) 4134 irq_cnt = 1; /* At least 1 irq is needed */ 4135 return irq_cnt; 4136 } 4137 4138 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4139 { 4140 struct net_device *ndev = platform_get_drvdata(pdev); 4141 struct fec_enet_private *fep = netdev_priv(ndev); 4142 4143 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4144 fep->wake_irq = fep->irq[2]; 4145 else 4146 fep->wake_irq = fep->irq[0]; 4147 } 4148 4149 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4150 struct device_node *np) 4151 { 4152 struct device_node *gpr_np; 4153 u32 out_val[3]; 4154 int ret = 0; 4155 4156 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4157 if (!gpr_np) 4158 return 0; 4159 4160 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4161 ARRAY_SIZE(out_val)); 4162 if (ret) { 4163 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4164 goto out; 4165 } 4166 4167 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4168 if (IS_ERR(fep->stop_gpr.gpr)) { 4169 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4170 ret = PTR_ERR(fep->stop_gpr.gpr); 4171 fep->stop_gpr.gpr = NULL; 4172 goto out; 4173 } 4174 4175 fep->stop_gpr.reg = out_val[1]; 4176 fep->stop_gpr.bit = out_val[2]; 4177 4178 out: 4179 of_node_put(gpr_np); 4180 4181 return ret; 4182 } 4183 4184 static int 4185 fec_probe(struct platform_device *pdev) 4186 { 4187 struct fec_enet_private *fep; 4188 struct fec_platform_data *pdata; 4189 phy_interface_t interface; 4190 struct net_device *ndev; 4191 int i, irq, ret = 0; 4192 const struct of_device_id *of_id; 4193 static int dev_id; 4194 struct device_node *np = pdev->dev.of_node, *phy_node; 4195 int num_tx_qs; 4196 int num_rx_qs; 4197 char irq_name[8]; 4198 int irq_cnt; 4199 struct fec_devinfo *dev_info; 4200 4201 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4202 4203 /* Init network device */ 4204 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4205 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4206 if (!ndev) 4207 return -ENOMEM; 4208 4209 SET_NETDEV_DEV(ndev, &pdev->dev); 4210 4211 /* setup board info structure */ 4212 fep = netdev_priv(ndev); 4213 4214 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4215 if (of_id) 4216 pdev->id_entry = of_id->data; 4217 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4218 if (dev_info) 4219 fep->quirks = dev_info->quirks; 4220 4221 fep->netdev = ndev; 4222 fep->num_rx_queues = num_rx_qs; 4223 fep->num_tx_queues = num_tx_qs; 4224 4225 #if !defined(CONFIG_M5272) 4226 /* default enable pause frame auto negotiation */ 4227 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4228 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4229 #endif 4230 4231 /* Select default pin state */ 4232 pinctrl_pm_select_default_state(&pdev->dev); 4233 4234 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4235 if (IS_ERR(fep->hwp)) { 4236 ret = PTR_ERR(fep->hwp); 4237 goto failed_ioremap; 4238 } 4239 4240 fep->pdev = pdev; 4241 fep->dev_id = dev_id++; 4242 4243 platform_set_drvdata(pdev, ndev); 4244 4245 if ((of_machine_is_compatible("fsl,imx6q") || 4246 of_machine_is_compatible("fsl,imx6dl")) && 4247 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4248 fep->quirks |= FEC_QUIRK_ERR006687; 4249 4250 ret = fec_enet_ipc_handle_init(fep); 4251 if (ret) 4252 goto failed_ipc_init; 4253 4254 if (of_property_read_bool(np, "fsl,magic-packet")) 4255 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4256 4257 ret = fec_enet_init_stop_mode(fep, np); 4258 if (ret) 4259 goto failed_stop_mode; 4260 4261 phy_node = of_parse_phandle(np, "phy-handle", 0); 4262 if (!phy_node && of_phy_is_fixed_link(np)) { 4263 ret = of_phy_register_fixed_link(np); 4264 if (ret < 0) { 4265 dev_err(&pdev->dev, 4266 "broken fixed-link specification\n"); 4267 goto failed_phy; 4268 } 4269 phy_node = of_node_get(np); 4270 } 4271 fep->phy_node = phy_node; 4272 4273 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4274 if (ret) { 4275 pdata = dev_get_platdata(&pdev->dev); 4276 if (pdata) 4277 fep->phy_interface = pdata->phy; 4278 else 4279 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4280 } else { 4281 fep->phy_interface = interface; 4282 } 4283 4284 ret = fec_enet_parse_rgmii_delay(fep, np); 4285 if (ret) 4286 goto failed_rgmii_delay; 4287 4288 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4289 if (IS_ERR(fep->clk_ipg)) { 4290 ret = PTR_ERR(fep->clk_ipg); 4291 goto failed_clk; 4292 } 4293 4294 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4295 if (IS_ERR(fep->clk_ahb)) { 4296 ret = PTR_ERR(fep->clk_ahb); 4297 goto failed_clk; 4298 } 4299 4300 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4301 4302 /* enet_out is optional, depends on board */ 4303 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4304 if (IS_ERR(fep->clk_enet_out)) { 4305 ret = PTR_ERR(fep->clk_enet_out); 4306 goto failed_clk; 4307 } 4308 4309 fep->ptp_clk_on = false; 4310 mutex_init(&fep->ptp_clk_mutex); 4311 4312 /* clk_ref is optional, depends on board */ 4313 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4314 if (IS_ERR(fep->clk_ref)) { 4315 ret = PTR_ERR(fep->clk_ref); 4316 goto failed_clk; 4317 } 4318 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4319 4320 /* clk_2x_txclk is optional, depends on board */ 4321 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4322 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4323 if (IS_ERR(fep->clk_2x_txclk)) 4324 fep->clk_2x_txclk = NULL; 4325 } 4326 4327 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4328 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4329 if (IS_ERR(fep->clk_ptp)) { 4330 fep->clk_ptp = NULL; 4331 fep->bufdesc_ex = false; 4332 } 4333 4334 ret = fec_enet_clk_enable(ndev, true); 4335 if (ret) 4336 goto failed_clk; 4337 4338 ret = clk_prepare_enable(fep->clk_ipg); 4339 if (ret) 4340 goto failed_clk_ipg; 4341 ret = clk_prepare_enable(fep->clk_ahb); 4342 if (ret) 4343 goto failed_clk_ahb; 4344 4345 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4346 if (!IS_ERR(fep->reg_phy)) { 4347 ret = regulator_enable(fep->reg_phy); 4348 if (ret) { 4349 dev_err(&pdev->dev, 4350 "Failed to enable phy regulator: %d\n", ret); 4351 goto failed_regulator; 4352 } 4353 } else { 4354 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4355 ret = -EPROBE_DEFER; 4356 goto failed_regulator; 4357 } 4358 fep->reg_phy = NULL; 4359 } 4360 4361 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4362 pm_runtime_use_autosuspend(&pdev->dev); 4363 pm_runtime_get_noresume(&pdev->dev); 4364 pm_runtime_set_active(&pdev->dev); 4365 pm_runtime_enable(&pdev->dev); 4366 4367 ret = fec_reset_phy(pdev); 4368 if (ret) 4369 goto failed_reset; 4370 4371 irq_cnt = fec_enet_get_irq_cnt(pdev); 4372 if (fep->bufdesc_ex) 4373 fec_ptp_init(pdev, irq_cnt); 4374 4375 ret = fec_enet_init(ndev); 4376 if (ret) 4377 goto failed_init; 4378 4379 for (i = 0; i < irq_cnt; i++) { 4380 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4381 irq = platform_get_irq_byname_optional(pdev, irq_name); 4382 if (irq < 0) 4383 irq = platform_get_irq(pdev, i); 4384 if (irq < 0) { 4385 ret = irq; 4386 goto failed_irq; 4387 } 4388 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4389 0, pdev->name, ndev); 4390 if (ret) 4391 goto failed_irq; 4392 4393 fep->irq[i] = irq; 4394 } 4395 4396 /* Decide which interrupt line is wakeup capable */ 4397 fec_enet_get_wakeup_irq(pdev); 4398 4399 ret = fec_enet_mii_init(pdev); 4400 if (ret) 4401 goto failed_mii_init; 4402 4403 /* Carrier starts down, phylib will bring it up */ 4404 netif_carrier_off(ndev); 4405 fec_enet_clk_enable(ndev, false); 4406 pinctrl_pm_select_sleep_state(&pdev->dev); 4407 4408 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4409 4410 ret = register_netdev(ndev); 4411 if (ret) 4412 goto failed_register; 4413 4414 device_init_wakeup(&ndev->dev, fep->wol_flag & 4415 FEC_WOL_HAS_MAGIC_PACKET); 4416 4417 if (fep->bufdesc_ex && fep->ptp_clock) 4418 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4419 4420 fep->rx_copybreak = COPYBREAK_DEFAULT; 4421 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4422 4423 pm_runtime_mark_last_busy(&pdev->dev); 4424 pm_runtime_put_autosuspend(&pdev->dev); 4425 4426 return 0; 4427 4428 failed_register: 4429 fec_enet_mii_remove(fep); 4430 failed_mii_init: 4431 failed_irq: 4432 failed_init: 4433 fec_ptp_stop(pdev); 4434 failed_reset: 4435 pm_runtime_put_noidle(&pdev->dev); 4436 pm_runtime_disable(&pdev->dev); 4437 if (fep->reg_phy) 4438 regulator_disable(fep->reg_phy); 4439 failed_regulator: 4440 clk_disable_unprepare(fep->clk_ahb); 4441 failed_clk_ahb: 4442 clk_disable_unprepare(fep->clk_ipg); 4443 failed_clk_ipg: 4444 fec_enet_clk_enable(ndev, false); 4445 failed_clk: 4446 failed_rgmii_delay: 4447 if (of_phy_is_fixed_link(np)) 4448 of_phy_deregister_fixed_link(np); 4449 of_node_put(phy_node); 4450 failed_stop_mode: 4451 failed_ipc_init: 4452 failed_phy: 4453 dev_id--; 4454 failed_ioremap: 4455 free_netdev(ndev); 4456 4457 return ret; 4458 } 4459 4460 static int 4461 fec_drv_remove(struct platform_device *pdev) 4462 { 4463 struct net_device *ndev = platform_get_drvdata(pdev); 4464 struct fec_enet_private *fep = netdev_priv(ndev); 4465 struct device_node *np = pdev->dev.of_node; 4466 int ret; 4467 4468 ret = pm_runtime_resume_and_get(&pdev->dev); 4469 if (ret < 0) 4470 return ret; 4471 4472 cancel_work_sync(&fep->tx_timeout_work); 4473 fec_ptp_stop(pdev); 4474 unregister_netdev(ndev); 4475 fec_enet_mii_remove(fep); 4476 if (fep->reg_phy) 4477 regulator_disable(fep->reg_phy); 4478 4479 if (of_phy_is_fixed_link(np)) 4480 of_phy_deregister_fixed_link(np); 4481 of_node_put(fep->phy_node); 4482 4483 clk_disable_unprepare(fep->clk_ahb); 4484 clk_disable_unprepare(fep->clk_ipg); 4485 pm_runtime_put_noidle(&pdev->dev); 4486 pm_runtime_disable(&pdev->dev); 4487 4488 free_netdev(ndev); 4489 return 0; 4490 } 4491 4492 static int __maybe_unused fec_suspend(struct device *dev) 4493 { 4494 struct net_device *ndev = dev_get_drvdata(dev); 4495 struct fec_enet_private *fep = netdev_priv(ndev); 4496 int ret; 4497 4498 rtnl_lock(); 4499 if (netif_running(ndev)) { 4500 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4501 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4502 phy_stop(ndev->phydev); 4503 napi_disable(&fep->napi); 4504 netif_tx_lock_bh(ndev); 4505 netif_device_detach(ndev); 4506 netif_tx_unlock_bh(ndev); 4507 fec_stop(ndev); 4508 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4509 fec_irqs_disable(ndev); 4510 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4511 } else { 4512 fec_irqs_disable_except_wakeup(ndev); 4513 if (fep->wake_irq > 0) { 4514 disable_irq(fep->wake_irq); 4515 enable_irq_wake(fep->wake_irq); 4516 } 4517 fec_enet_stop_mode(fep, true); 4518 } 4519 /* It's safe to disable clocks since interrupts are masked */ 4520 fec_enet_clk_enable(ndev, false); 4521 4522 fep->rpm_active = !pm_runtime_status_suspended(dev); 4523 if (fep->rpm_active) { 4524 ret = pm_runtime_force_suspend(dev); 4525 if (ret < 0) { 4526 rtnl_unlock(); 4527 return ret; 4528 } 4529 } 4530 } 4531 rtnl_unlock(); 4532 4533 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4534 regulator_disable(fep->reg_phy); 4535 4536 /* SOC supply clock to phy, when clock is disabled, phy link down 4537 * SOC control phy regulator, when regulator is disabled, phy link down 4538 */ 4539 if (fep->clk_enet_out || fep->reg_phy) 4540 fep->link = 0; 4541 4542 return 0; 4543 } 4544 4545 static int __maybe_unused fec_resume(struct device *dev) 4546 { 4547 struct net_device *ndev = dev_get_drvdata(dev); 4548 struct fec_enet_private *fep = netdev_priv(ndev); 4549 int ret; 4550 int val; 4551 4552 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4553 ret = regulator_enable(fep->reg_phy); 4554 if (ret) 4555 return ret; 4556 } 4557 4558 rtnl_lock(); 4559 if (netif_running(ndev)) { 4560 if (fep->rpm_active) 4561 pm_runtime_force_resume(dev); 4562 4563 ret = fec_enet_clk_enable(ndev, true); 4564 if (ret) { 4565 rtnl_unlock(); 4566 goto failed_clk; 4567 } 4568 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4569 fec_enet_stop_mode(fep, false); 4570 if (fep->wake_irq) { 4571 disable_irq_wake(fep->wake_irq); 4572 enable_irq(fep->wake_irq); 4573 } 4574 4575 val = readl(fep->hwp + FEC_ECNTRL); 4576 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4577 writel(val, fep->hwp + FEC_ECNTRL); 4578 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4579 } else { 4580 pinctrl_pm_select_default_state(&fep->pdev->dev); 4581 } 4582 fec_restart(ndev); 4583 netif_tx_lock_bh(ndev); 4584 netif_device_attach(ndev); 4585 netif_tx_unlock_bh(ndev); 4586 napi_enable(&fep->napi); 4587 phy_init_hw(ndev->phydev); 4588 phy_start(ndev->phydev); 4589 } 4590 rtnl_unlock(); 4591 4592 return 0; 4593 4594 failed_clk: 4595 if (fep->reg_phy) 4596 regulator_disable(fep->reg_phy); 4597 return ret; 4598 } 4599 4600 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4601 { 4602 struct net_device *ndev = dev_get_drvdata(dev); 4603 struct fec_enet_private *fep = netdev_priv(ndev); 4604 4605 clk_disable_unprepare(fep->clk_ahb); 4606 clk_disable_unprepare(fep->clk_ipg); 4607 4608 return 0; 4609 } 4610 4611 static int __maybe_unused fec_runtime_resume(struct device *dev) 4612 { 4613 struct net_device *ndev = dev_get_drvdata(dev); 4614 struct fec_enet_private *fep = netdev_priv(ndev); 4615 int ret; 4616 4617 ret = clk_prepare_enable(fep->clk_ahb); 4618 if (ret) 4619 return ret; 4620 ret = clk_prepare_enable(fep->clk_ipg); 4621 if (ret) 4622 goto failed_clk_ipg; 4623 4624 return 0; 4625 4626 failed_clk_ipg: 4627 clk_disable_unprepare(fep->clk_ahb); 4628 return ret; 4629 } 4630 4631 static const struct dev_pm_ops fec_pm_ops = { 4632 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4633 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4634 }; 4635 4636 static struct platform_driver fec_driver = { 4637 .driver = { 4638 .name = DRIVER_NAME, 4639 .pm = &fec_pm_ops, 4640 .of_match_table = fec_dt_ids, 4641 .suppress_bind_attrs = true, 4642 }, 4643 .id_table = fec_devtype, 4644 .probe = fec_probe, 4645 .remove = fec_drv_remove, 4646 }; 4647 4648 module_platform_driver(fec_driver); 4649 4650 MODULE_LICENSE("GPL"); 4651