1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/pinctrl/consumer.h>
57 #include <linux/regulator/consumer.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 #if defined(CONFIG_ARM)
64 #define FEC_ALIGNMENT	0xf
65 #else
66 #define FEC_ALIGNMENT	0x3
67 #endif
68 
69 #define DRIVER_NAME	"fec"
70 #define FEC_NAPI_WEIGHT	64
71 
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE	(1 << 5)
74 #define FEC_ENET_RSEM_V	0x84
75 #define FEC_ENET_RSFL_V	16
76 #define FEC_ENET_RAEM_V	0x8
77 #define FEC_ENET_RAFL_V	0x8
78 #define FEC_ENET_OPD_V	0xFFF0
79 
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC		(1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET		(1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
92 
93 static struct platform_device_id fec_devtype[] = {
94 	{
95 		/* keep it for coldfire */
96 		.name = DRIVER_NAME,
97 		.driver_data = 0,
98 	}, {
99 		.name = "imx25-fec",
100 		.driver_data = FEC_QUIRK_USE_GASKET,
101 	}, {
102 		.name = "imx27-fec",
103 		.driver_data = 0,
104 	}, {
105 		.name = "imx28-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
107 	}, {
108 		.name = "imx6q-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM,
111 	}, {
112 		.name = "mvf-fec",
113 		.driver_data = FEC_QUIRK_ENET_MAC,
114 	}, {
115 		/* sentinel */
116 	}
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119 
120 enum imx_fec_type {
121 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
122 	IMX27_FEC,	/* runs on i.mx27/35/51 */
123 	IMX28_FEC,
124 	IMX6Q_FEC,
125 	MVF_FEC,
126 };
127 
128 static const struct of_device_id fec_dt_ids[] = {
129 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
130 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
131 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
132 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
133 	{ .compatible = "fsl,mvf-fec", .data = &fec_devtype[MVF_FEC], },
134 	{ /* sentinel */ }
135 };
136 MODULE_DEVICE_TABLE(of, fec_dt_ids);
137 
138 static unsigned char macaddr[ETH_ALEN];
139 module_param_array(macaddr, byte, NULL, 0);
140 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
141 
142 #if defined(CONFIG_M5272)
143 /*
144  * Some hardware gets it MAC address out of local flash memory.
145  * if this is non-zero then assume it is the address to get MAC from.
146  */
147 #if defined(CONFIG_NETtel)
148 #define	FEC_FLASHMAC	0xf0006006
149 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
150 #define	FEC_FLASHMAC	0xf0006000
151 #elif defined(CONFIG_CANCam)
152 #define	FEC_FLASHMAC	0xf0020000
153 #elif defined (CONFIG_M5272C3)
154 #define	FEC_FLASHMAC	(0xffe04000 + 4)
155 #elif defined(CONFIG_MOD5272)
156 #define FEC_FLASHMAC	0xffc0406b
157 #else
158 #define	FEC_FLASHMAC	0
159 #endif
160 #endif /* CONFIG_M5272 */
161 
162 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
163 #error "FEC: descriptor ring size constants too large"
164 #endif
165 
166 /* Interrupt events/masks. */
167 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
168 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
169 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
170 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
171 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
172 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
173 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
174 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
175 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
176 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
177 
178 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
179 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
180 
181 /* The FEC stores dest/src/type, data, and checksum for receive packets.
182  */
183 #define PKT_MAXBUF_SIZE		1518
184 #define PKT_MINBUF_SIZE		64
185 #define PKT_MAXBLR_SIZE		1520
186 
187 /* FEC receive acceleration */
188 #define FEC_RACC_IPDIS		(1 << 1)
189 #define FEC_RACC_PRODIS		(1 << 2)
190 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
191 
192 /*
193  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194  * size bits. Other FEC hardware does not, so we need to take that into
195  * account when setting it.
196  */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
200 #else
201 #define	OPT_FRAME_SIZE	0
202 #endif
203 
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST		(1 << 30)
206 #define FEC_MMFR_OP_READ	(2 << 28)
207 #define FEC_MMFR_OP_WRITE	(1 << 28)
208 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
210 #define FEC_MMFR_TA		(2 << 16)
211 #define FEC_MMFR_DATA(v)	(v & 0xffff)
212 
213 #define FEC_MII_TIMEOUT		30000 /* us */
214 
215 /* Transmitter timeout */
216 #define TX_TIMEOUT (2 * HZ)
217 
218 #define FEC_PAUSE_FLAG_AUTONEG	0x1
219 #define FEC_PAUSE_FLAG_ENABLE	0x2
220 
221 static int mii_cnt;
222 
223 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, int is_ex)
224 {
225 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
226 	if (is_ex)
227 		return (struct bufdesc *)(ex + 1);
228 	else
229 		return bdp + 1;
230 }
231 
232 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, int is_ex)
233 {
234 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
235 	if (is_ex)
236 		return (struct bufdesc *)(ex - 1);
237 	else
238 		return bdp - 1;
239 }
240 
241 static void *swap_buffer(void *bufaddr, int len)
242 {
243 	int i;
244 	unsigned int *buf = bufaddr;
245 
246 	for (i = 0; i < (len + 3) / 4; i++, buf++)
247 		*buf = cpu_to_be32(*buf);
248 
249 	return bufaddr;
250 }
251 
252 static int
253 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
254 {
255 	/* Only run for packets requiring a checksum. */
256 	if (skb->ip_summed != CHECKSUM_PARTIAL)
257 		return 0;
258 
259 	if (unlikely(skb_cow_head(skb, 0)))
260 		return -1;
261 
262 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
263 
264 	return 0;
265 }
266 
267 static netdev_tx_t
268 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
269 {
270 	struct fec_enet_private *fep = netdev_priv(ndev);
271 	const struct platform_device_id *id_entry =
272 				platform_get_device_id(fep->pdev);
273 	struct bufdesc *bdp;
274 	void *bufaddr;
275 	unsigned short	status;
276 	unsigned int index;
277 
278 	if (!fep->link) {
279 		/* Link is down or auto-negotiation is in progress. */
280 		return NETDEV_TX_BUSY;
281 	}
282 
283 	/* Fill in a Tx ring entry */
284 	bdp = fep->cur_tx;
285 
286 	status = bdp->cbd_sc;
287 
288 	if (status & BD_ENET_TX_READY) {
289 		/* Ooops.  All transmit buffers are full.  Bail out.
290 		 * This should not happen, since ndev->tbusy should be set.
291 		 */
292 		netdev_err(ndev, "tx queue full!\n");
293 		return NETDEV_TX_BUSY;
294 	}
295 
296 	/* Protocol checksum off-load for TCP and UDP. */
297 	if (fec_enet_clear_csum(skb, ndev)) {
298 		kfree_skb(skb);
299 		return NETDEV_TX_OK;
300 	}
301 
302 	/* Clear all of the status flags */
303 	status &= ~BD_ENET_TX_STATS;
304 
305 	/* Set buffer length and buffer pointer */
306 	bufaddr = skb->data;
307 	bdp->cbd_datlen = skb->len;
308 
309 	/*
310 	 * On some FEC implementations data must be aligned on
311 	 * 4-byte boundaries. Use bounce buffers to copy data
312 	 * and get it aligned. Ugh.
313 	 */
314 	if (fep->bufdesc_ex)
315 		index = (struct bufdesc_ex *)bdp -
316 			(struct bufdesc_ex *)fep->tx_bd_base;
317 	else
318 		index = bdp - fep->tx_bd_base;
319 
320 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
321 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
322 		bufaddr = fep->tx_bounce[index];
323 	}
324 
325 	/*
326 	 * Some design made an incorrect assumption on endian mode of
327 	 * the system that it's running on. As the result, driver has to
328 	 * swap every frame going to and coming from the controller.
329 	 */
330 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
331 		swap_buffer(bufaddr, skb->len);
332 
333 	/* Save skb pointer */
334 	fep->tx_skbuff[index] = skb;
335 
336 	/* Push the data cache so the CPM does not get stale memory
337 	 * data.
338 	 */
339 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
340 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
341 
342 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
343 	 * it's the last BD of the frame, and to put the CRC on the end.
344 	 */
345 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
346 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
347 	bdp->cbd_sc = status;
348 
349 	if (fep->bufdesc_ex) {
350 
351 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
352 		ebdp->cbd_bdu = 0;
353 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
354 			fep->hwts_tx_en)) {
355 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
356 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
357 		} else {
358 			ebdp->cbd_esc = BD_ENET_TX_INT;
359 
360 			/* Enable protocol checksum flags
361 			 * We do not bother with the IP Checksum bits as they
362 			 * are done by the kernel
363 			 */
364 			if (skb->ip_summed == CHECKSUM_PARTIAL)
365 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
366 		}
367 	}
368 	/* If this was the last BD in the ring, start at the beginning again. */
369 	if (status & BD_ENET_TX_WRAP)
370 		bdp = fep->tx_bd_base;
371 	else
372 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
373 
374 	fep->cur_tx = bdp;
375 
376 	if (fep->cur_tx == fep->dirty_tx)
377 		netif_stop_queue(ndev);
378 
379 	/* Trigger transmission start */
380 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
381 
382 	skb_tx_timestamp(skb);
383 
384 	return NETDEV_TX_OK;
385 }
386 
387 /* Init RX & TX buffer descriptors
388  */
389 static void fec_enet_bd_init(struct net_device *dev)
390 {
391 	struct fec_enet_private *fep = netdev_priv(dev);
392 	struct bufdesc *bdp;
393 	unsigned int i;
394 
395 	/* Initialize the receive buffer descriptors. */
396 	bdp = fep->rx_bd_base;
397 	for (i = 0; i < RX_RING_SIZE; i++) {
398 
399 		/* Initialize the BD for every fragment in the page. */
400 		if (bdp->cbd_bufaddr)
401 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
402 		else
403 			bdp->cbd_sc = 0;
404 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
405 	}
406 
407 	/* Set the last buffer to wrap */
408 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
409 	bdp->cbd_sc |= BD_SC_WRAP;
410 
411 	fep->cur_rx = fep->rx_bd_base;
412 
413 	/* ...and the same for transmit */
414 	bdp = fep->tx_bd_base;
415 	fep->cur_tx = bdp;
416 	for (i = 0; i < TX_RING_SIZE; i++) {
417 
418 		/* Initialize the BD for every fragment in the page. */
419 		bdp->cbd_sc = 0;
420 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
421 			dev_kfree_skb_any(fep->tx_skbuff[i]);
422 			fep->tx_skbuff[i] = NULL;
423 		}
424 		bdp->cbd_bufaddr = 0;
425 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
426 	}
427 
428 	/* Set the last buffer to wrap */
429 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
430 	bdp->cbd_sc |= BD_SC_WRAP;
431 	fep->dirty_tx = bdp;
432 }
433 
434 /* This function is called to start or restart the FEC during a link
435  * change.  This only happens when switching between half and full
436  * duplex.
437  */
438 static void
439 fec_restart(struct net_device *ndev, int duplex)
440 {
441 	struct fec_enet_private *fep = netdev_priv(ndev);
442 	const struct platform_device_id *id_entry =
443 				platform_get_device_id(fep->pdev);
444 	int i;
445 	u32 val;
446 	u32 temp_mac[2];
447 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
448 	u32 ecntl = 0x2; /* ETHEREN */
449 
450 	if (netif_running(ndev)) {
451 		netif_device_detach(ndev);
452 		napi_disable(&fep->napi);
453 		netif_stop_queue(ndev);
454 		netif_tx_lock(ndev);
455 	}
456 
457 	/* Whack a reset.  We should wait for this. */
458 	writel(1, fep->hwp + FEC_ECNTRL);
459 	udelay(10);
460 
461 	/*
462 	 * enet-mac reset will reset mac address registers too,
463 	 * so need to reconfigure it.
464 	 */
465 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
466 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
467 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
468 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
469 	}
470 
471 	/* Clear any outstanding interrupt. */
472 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
473 
474 	/* Reset all multicast.	*/
475 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
476 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
477 #ifndef CONFIG_M5272
478 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
479 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
480 #endif
481 
482 	/* Set maximum receive buffer size. */
483 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
484 
485 	fec_enet_bd_init(ndev);
486 
487 	/* Set receive and transmit descriptor base. */
488 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
489 	if (fep->bufdesc_ex)
490 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
491 			* RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
492 	else
493 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
494 			* RX_RING_SIZE,	fep->hwp + FEC_X_DES_START);
495 
496 
497 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
498 		if (fep->tx_skbuff[i]) {
499 			dev_kfree_skb_any(fep->tx_skbuff[i]);
500 			fep->tx_skbuff[i] = NULL;
501 		}
502 	}
503 
504 	/* Enable MII mode */
505 	if (duplex) {
506 		/* FD enable */
507 		writel(0x04, fep->hwp + FEC_X_CNTRL);
508 	} else {
509 		/* No Rcv on Xmit */
510 		rcntl |= 0x02;
511 		writel(0x0, fep->hwp + FEC_X_CNTRL);
512 	}
513 
514 	fep->full_duplex = duplex;
515 
516 	/* Set MII speed */
517 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
518 
519 	/* set RX checksum */
520 	val = readl(fep->hwp + FEC_RACC);
521 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
522 		val |= FEC_RACC_OPTIONS;
523 	else
524 		val &= ~FEC_RACC_OPTIONS;
525 	writel(val, fep->hwp + FEC_RACC);
526 
527 	/*
528 	 * The phy interface and speed need to get configured
529 	 * differently on enet-mac.
530 	 */
531 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
532 		/* Enable flow control and length check */
533 		rcntl |= 0x40000000 | 0x00000020;
534 
535 		/* RGMII, RMII or MII */
536 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
537 			rcntl |= (1 << 6);
538 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
539 			rcntl |= (1 << 8);
540 		else
541 			rcntl &= ~(1 << 8);
542 
543 		/* 1G, 100M or 10M */
544 		if (fep->phy_dev) {
545 			if (fep->phy_dev->speed == SPEED_1000)
546 				ecntl |= (1 << 5);
547 			else if (fep->phy_dev->speed == SPEED_100)
548 				rcntl &= ~(1 << 9);
549 			else
550 				rcntl |= (1 << 9);
551 		}
552 	} else {
553 #ifdef FEC_MIIGSK_ENR
554 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
555 			u32 cfgr;
556 			/* disable the gasket and wait */
557 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
558 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
559 				udelay(1);
560 
561 			/*
562 			 * configure the gasket:
563 			 *   RMII, 50 MHz, no loopback, no echo
564 			 *   MII, 25 MHz, no loopback, no echo
565 			 */
566 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
567 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
568 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
569 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
570 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
571 
572 			/* re-enable the gasket */
573 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
574 		}
575 #endif
576 	}
577 
578 	/* enable pause frame*/
579 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
580 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
581 	     fep->phy_dev && fep->phy_dev->pause)) {
582 		rcntl |= FEC_ENET_FCE;
583 
584 		/* set FIFO threshold parameter to reduce overrun */
585 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
586 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
587 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
588 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
589 
590 		/* OPD */
591 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
592 	} else {
593 		rcntl &= ~FEC_ENET_FCE;
594 	}
595 
596 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
597 
598 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
599 		/* enable ENET endian swap */
600 		ecntl |= (1 << 8);
601 		/* enable ENET store and forward mode */
602 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
603 	}
604 
605 	if (fep->bufdesc_ex)
606 		ecntl |= (1 << 4);
607 
608 	/* And last, enable the transmit and receive processing */
609 	writel(ecntl, fep->hwp + FEC_ECNTRL);
610 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
611 
612 	if (fep->bufdesc_ex)
613 		fec_ptp_start_cyclecounter(ndev);
614 
615 	/* Enable interrupts we wish to service */
616 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
617 
618 	if (netif_running(ndev)) {
619 		netif_device_attach(ndev);
620 		napi_enable(&fep->napi);
621 		netif_wake_queue(ndev);
622 		netif_tx_unlock(ndev);
623 	}
624 }
625 
626 static void
627 fec_stop(struct net_device *ndev)
628 {
629 	struct fec_enet_private *fep = netdev_priv(ndev);
630 	const struct platform_device_id *id_entry =
631 				platform_get_device_id(fep->pdev);
632 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
633 
634 	/* We cannot expect a graceful transmit stop without link !!! */
635 	if (fep->link) {
636 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
637 		udelay(10);
638 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
639 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
640 	}
641 
642 	/* Whack a reset.  We should wait for this. */
643 	writel(1, fep->hwp + FEC_ECNTRL);
644 	udelay(10);
645 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
646 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
647 
648 	/* We have to keep ENET enabled to have MII interrupt stay working */
649 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
650 		writel(2, fep->hwp + FEC_ECNTRL);
651 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
652 	}
653 }
654 
655 
656 static void
657 fec_timeout(struct net_device *ndev)
658 {
659 	struct fec_enet_private *fep = netdev_priv(ndev);
660 
661 	ndev->stats.tx_errors++;
662 
663 	fep->delay_work.timeout = true;
664 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
665 }
666 
667 static void fec_enet_work(struct work_struct *work)
668 {
669 	struct fec_enet_private *fep =
670 		container_of(work,
671 			     struct fec_enet_private,
672 			     delay_work.delay_work.work);
673 
674 	if (fep->delay_work.timeout) {
675 		fep->delay_work.timeout = false;
676 		fec_restart(fep->netdev, fep->full_duplex);
677 		netif_wake_queue(fep->netdev);
678 	}
679 }
680 
681 static void
682 fec_enet_tx(struct net_device *ndev)
683 {
684 	struct	fec_enet_private *fep;
685 	struct bufdesc *bdp;
686 	unsigned short status;
687 	struct	sk_buff	*skb;
688 	int	index = 0;
689 
690 	fep = netdev_priv(ndev);
691 	bdp = fep->dirty_tx;
692 
693 	/* get next bdp of dirty_tx */
694 	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
695 		bdp = fep->tx_bd_base;
696 	else
697 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
698 
699 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
700 
701 		/* current queue is empty */
702 		if (bdp == fep->cur_tx)
703 			break;
704 
705 		if (fep->bufdesc_ex)
706 			index = (struct bufdesc_ex *)bdp -
707 				(struct bufdesc_ex *)fep->tx_bd_base;
708 		else
709 			index = bdp - fep->tx_bd_base;
710 
711 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
712 				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
713 		bdp->cbd_bufaddr = 0;
714 
715 		skb = fep->tx_skbuff[index];
716 
717 		/* Check for errors. */
718 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
719 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
720 				   BD_ENET_TX_CSL)) {
721 			ndev->stats.tx_errors++;
722 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
723 				ndev->stats.tx_heartbeat_errors++;
724 			if (status & BD_ENET_TX_LC)  /* Late collision */
725 				ndev->stats.tx_window_errors++;
726 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
727 				ndev->stats.tx_aborted_errors++;
728 			if (status & BD_ENET_TX_UN)  /* Underrun */
729 				ndev->stats.tx_fifo_errors++;
730 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
731 				ndev->stats.tx_carrier_errors++;
732 		} else {
733 			ndev->stats.tx_packets++;
734 		}
735 
736 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
737 			fep->bufdesc_ex) {
738 			struct skb_shared_hwtstamps shhwtstamps;
739 			unsigned long flags;
740 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
741 
742 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
743 			spin_lock_irqsave(&fep->tmreg_lock, flags);
744 			shhwtstamps.hwtstamp = ns_to_ktime(
745 				timecounter_cyc2time(&fep->tc, ebdp->ts));
746 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
747 			skb_tstamp_tx(skb, &shhwtstamps);
748 		}
749 
750 		if (status & BD_ENET_TX_READY)
751 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
752 
753 		/* Deferred means some collisions occurred during transmit,
754 		 * but we eventually sent the packet OK.
755 		 */
756 		if (status & BD_ENET_TX_DEF)
757 			ndev->stats.collisions++;
758 
759 		/* Free the sk buffer associated with this last transmit */
760 		dev_kfree_skb_any(skb);
761 		fep->tx_skbuff[index] = NULL;
762 
763 		fep->dirty_tx = bdp;
764 
765 		/* Update pointer to next buffer descriptor to be transmitted */
766 		if (status & BD_ENET_TX_WRAP)
767 			bdp = fep->tx_bd_base;
768 		else
769 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
770 
771 		/* Since we have freed up a buffer, the ring is no longer full
772 		 */
773 		if (fep->dirty_tx != fep->cur_tx) {
774 			if (netif_queue_stopped(ndev))
775 				netif_wake_queue(ndev);
776 		}
777 	}
778 	return;
779 }
780 
781 
782 /* During a receive, the cur_rx points to the current incoming buffer.
783  * When we update through the ring, if the next incoming buffer has
784  * not been given to the system, we just set the empty indicator,
785  * effectively tossing the packet.
786  */
787 static int
788 fec_enet_rx(struct net_device *ndev, int budget)
789 {
790 	struct fec_enet_private *fep = netdev_priv(ndev);
791 	const struct platform_device_id *id_entry =
792 				platform_get_device_id(fep->pdev);
793 	struct bufdesc *bdp;
794 	unsigned short status;
795 	struct	sk_buff	*skb;
796 	ushort	pkt_len;
797 	__u8 *data;
798 	int	pkt_received = 0;
799 
800 #ifdef CONFIG_M532x
801 	flush_cache_all();
802 #endif
803 
804 	/* First, grab all of the stats for the incoming packet.
805 	 * These get messed up if we get called due to a busy condition.
806 	 */
807 	bdp = fep->cur_rx;
808 
809 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
810 
811 		if (pkt_received >= budget)
812 			break;
813 		pkt_received++;
814 
815 		/* Since we have allocated space to hold a complete frame,
816 		 * the last indicator should be set.
817 		 */
818 		if ((status & BD_ENET_RX_LAST) == 0)
819 			netdev_err(ndev, "rcv is not +last\n");
820 
821 		if (!fep->opened)
822 			goto rx_processing_done;
823 
824 		/* Check for errors. */
825 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
826 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
827 			ndev->stats.rx_errors++;
828 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
829 				/* Frame too long or too short. */
830 				ndev->stats.rx_length_errors++;
831 			}
832 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
833 				ndev->stats.rx_frame_errors++;
834 			if (status & BD_ENET_RX_CR)	/* CRC Error */
835 				ndev->stats.rx_crc_errors++;
836 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
837 				ndev->stats.rx_fifo_errors++;
838 		}
839 
840 		/* Report late collisions as a frame error.
841 		 * On this error, the BD is closed, but we don't know what we
842 		 * have in the buffer.  So, just drop this frame on the floor.
843 		 */
844 		if (status & BD_ENET_RX_CL) {
845 			ndev->stats.rx_errors++;
846 			ndev->stats.rx_frame_errors++;
847 			goto rx_processing_done;
848 		}
849 
850 		/* Process the incoming frame. */
851 		ndev->stats.rx_packets++;
852 		pkt_len = bdp->cbd_datlen;
853 		ndev->stats.rx_bytes += pkt_len;
854 		data = (__u8*)__va(bdp->cbd_bufaddr);
855 
856 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
857 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
858 
859 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
860 			swap_buffer(data, pkt_len);
861 
862 		/* This does 16 byte alignment, exactly what we need.
863 		 * The packet length includes FCS, but we don't want to
864 		 * include that when passing upstream as it messes up
865 		 * bridging applications.
866 		 */
867 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
868 
869 		if (unlikely(!skb)) {
870 			ndev->stats.rx_dropped++;
871 		} else {
872 			skb_reserve(skb, NET_IP_ALIGN);
873 			skb_put(skb, pkt_len - 4);	/* Make room */
874 			skb_copy_to_linear_data(skb, data, pkt_len - 4);
875 			skb->protocol = eth_type_trans(skb, ndev);
876 
877 			/* Get receive timestamp from the skb */
878 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
879 				struct skb_shared_hwtstamps *shhwtstamps =
880 							    skb_hwtstamps(skb);
881 				unsigned long flags;
882 				struct bufdesc_ex *ebdp =
883 					(struct bufdesc_ex *)bdp;
884 
885 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
886 
887 				spin_lock_irqsave(&fep->tmreg_lock, flags);
888 				shhwtstamps->hwtstamp = ns_to_ktime(
889 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
890 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
891 			}
892 
893 			if (fep->bufdesc_ex &&
894 				(fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
895 				struct bufdesc_ex *ebdp =
896 					(struct bufdesc_ex *)bdp;
897 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
898 					/* don't check it */
899 					skb->ip_summed = CHECKSUM_UNNECESSARY;
900 				} else {
901 					skb_checksum_none_assert(skb);
902 				}
903 			}
904 
905 			if (!skb_defer_rx_timestamp(skb))
906 				napi_gro_receive(&fep->napi, skb);
907 		}
908 
909 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
910 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
911 rx_processing_done:
912 		/* Clear the status flags for this buffer */
913 		status &= ~BD_ENET_RX_STATS;
914 
915 		/* Mark the buffer empty */
916 		status |= BD_ENET_RX_EMPTY;
917 		bdp->cbd_sc = status;
918 
919 		if (fep->bufdesc_ex) {
920 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
921 
922 			ebdp->cbd_esc = BD_ENET_RX_INT;
923 			ebdp->cbd_prot = 0;
924 			ebdp->cbd_bdu = 0;
925 		}
926 
927 		/* Update BD pointer to next entry */
928 		if (status & BD_ENET_RX_WRAP)
929 			bdp = fep->rx_bd_base;
930 		else
931 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
932 		/* Doing this here will keep the FEC running while we process
933 		 * incoming frames.  On a heavily loaded network, we should be
934 		 * able to keep up at the expense of system resources.
935 		 */
936 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
937 	}
938 	fep->cur_rx = bdp;
939 
940 	return pkt_received;
941 }
942 
943 static irqreturn_t
944 fec_enet_interrupt(int irq, void *dev_id)
945 {
946 	struct net_device *ndev = dev_id;
947 	struct fec_enet_private *fep = netdev_priv(ndev);
948 	uint int_events;
949 	irqreturn_t ret = IRQ_NONE;
950 
951 	do {
952 		int_events = readl(fep->hwp + FEC_IEVENT);
953 		writel(int_events, fep->hwp + FEC_IEVENT);
954 
955 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
956 			ret = IRQ_HANDLED;
957 
958 			/* Disable the RX interrupt */
959 			if (napi_schedule_prep(&fep->napi)) {
960 				writel(FEC_RX_DISABLED_IMASK,
961 					fep->hwp + FEC_IMASK);
962 				__napi_schedule(&fep->napi);
963 			}
964 		}
965 
966 		if (int_events & FEC_ENET_MII) {
967 			ret = IRQ_HANDLED;
968 			complete(&fep->mdio_done);
969 		}
970 	} while (int_events);
971 
972 	return ret;
973 }
974 
975 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
976 {
977 	struct net_device *ndev = napi->dev;
978 	int pkts = fec_enet_rx(ndev, budget);
979 	struct fec_enet_private *fep = netdev_priv(ndev);
980 
981 	fec_enet_tx(ndev);
982 
983 	if (pkts < budget) {
984 		napi_complete(napi);
985 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
986 	}
987 	return pkts;
988 }
989 
990 /* ------------------------------------------------------------------------- */
991 static void fec_get_mac(struct net_device *ndev)
992 {
993 	struct fec_enet_private *fep = netdev_priv(ndev);
994 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
995 	unsigned char *iap, tmpaddr[ETH_ALEN];
996 
997 	/*
998 	 * try to get mac address in following order:
999 	 *
1000 	 * 1) module parameter via kernel command line in form
1001 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1002 	 */
1003 	iap = macaddr;
1004 
1005 	/*
1006 	 * 2) from device tree data
1007 	 */
1008 	if (!is_valid_ether_addr(iap)) {
1009 		struct device_node *np = fep->pdev->dev.of_node;
1010 		if (np) {
1011 			const char *mac = of_get_mac_address(np);
1012 			if (mac)
1013 				iap = (unsigned char *) mac;
1014 		}
1015 	}
1016 
1017 	/*
1018 	 * 3) from flash or fuse (via platform data)
1019 	 */
1020 	if (!is_valid_ether_addr(iap)) {
1021 #ifdef CONFIG_M5272
1022 		if (FEC_FLASHMAC)
1023 			iap = (unsigned char *)FEC_FLASHMAC;
1024 #else
1025 		if (pdata)
1026 			iap = (unsigned char *)&pdata->mac;
1027 #endif
1028 	}
1029 
1030 	/*
1031 	 * 4) FEC mac registers set by bootloader
1032 	 */
1033 	if (!is_valid_ether_addr(iap)) {
1034 		*((unsigned long *) &tmpaddr[0]) =
1035 			be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
1036 		*((unsigned short *) &tmpaddr[4]) =
1037 			be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1038 		iap = &tmpaddr[0];
1039 	}
1040 
1041 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1042 
1043 	/* Adjust MAC if using macaddr */
1044 	if (iap == macaddr)
1045 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1046 }
1047 
1048 /* ------------------------------------------------------------------------- */
1049 
1050 /*
1051  * Phy section
1052  */
1053 static void fec_enet_adjust_link(struct net_device *ndev)
1054 {
1055 	struct fec_enet_private *fep = netdev_priv(ndev);
1056 	struct phy_device *phy_dev = fep->phy_dev;
1057 	int status_change = 0;
1058 
1059 	/* Prevent a state halted on mii error */
1060 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1061 		phy_dev->state = PHY_RESUMING;
1062 		return;
1063 	}
1064 
1065 	if (phy_dev->link) {
1066 		if (!fep->link) {
1067 			fep->link = phy_dev->link;
1068 			status_change = 1;
1069 		}
1070 
1071 		if (fep->full_duplex != phy_dev->duplex)
1072 			status_change = 1;
1073 
1074 		if (phy_dev->speed != fep->speed) {
1075 			fep->speed = phy_dev->speed;
1076 			status_change = 1;
1077 		}
1078 
1079 		/* if any of the above changed restart the FEC */
1080 		if (status_change)
1081 			fec_restart(ndev, phy_dev->duplex);
1082 	} else {
1083 		if (fep->link) {
1084 			fec_stop(ndev);
1085 			fep->link = phy_dev->link;
1086 			status_change = 1;
1087 		}
1088 	}
1089 
1090 	if (status_change)
1091 		phy_print_status(phy_dev);
1092 }
1093 
1094 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1095 {
1096 	struct fec_enet_private *fep = bus->priv;
1097 	unsigned long time_left;
1098 
1099 	fep->mii_timeout = 0;
1100 	init_completion(&fep->mdio_done);
1101 
1102 	/* start a read op */
1103 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1104 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1105 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1106 
1107 	/* wait for end of transfer */
1108 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1109 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1110 	if (time_left == 0) {
1111 		fep->mii_timeout = 1;
1112 		netdev_err(fep->netdev, "MDIO read timeout\n");
1113 		return -ETIMEDOUT;
1114 	}
1115 
1116 	/* return value */
1117 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1118 }
1119 
1120 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1121 			   u16 value)
1122 {
1123 	struct fec_enet_private *fep = bus->priv;
1124 	unsigned long time_left;
1125 
1126 	fep->mii_timeout = 0;
1127 	init_completion(&fep->mdio_done);
1128 
1129 	/* start a write op */
1130 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1131 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1132 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1133 		fep->hwp + FEC_MII_DATA);
1134 
1135 	/* wait for end of transfer */
1136 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1137 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1138 	if (time_left == 0) {
1139 		fep->mii_timeout = 1;
1140 		netdev_err(fep->netdev, "MDIO write timeout\n");
1141 		return -ETIMEDOUT;
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 static int fec_enet_mdio_reset(struct mii_bus *bus)
1148 {
1149 	return 0;
1150 }
1151 
1152 static int fec_enet_mii_probe(struct net_device *ndev)
1153 {
1154 	struct fec_enet_private *fep = netdev_priv(ndev);
1155 	const struct platform_device_id *id_entry =
1156 				platform_get_device_id(fep->pdev);
1157 	struct phy_device *phy_dev = NULL;
1158 	char mdio_bus_id[MII_BUS_ID_SIZE];
1159 	char phy_name[MII_BUS_ID_SIZE + 3];
1160 	int phy_id;
1161 	int dev_id = fep->dev_id;
1162 
1163 	fep->phy_dev = NULL;
1164 
1165 	/* check for attached phy */
1166 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1167 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1168 			continue;
1169 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1170 			continue;
1171 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1172 			continue;
1173 		if (dev_id--)
1174 			continue;
1175 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1176 		break;
1177 	}
1178 
1179 	if (phy_id >= PHY_MAX_ADDR) {
1180 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1181 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1182 		phy_id = 0;
1183 	}
1184 
1185 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1186 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1187 			      fep->phy_interface);
1188 	if (IS_ERR(phy_dev)) {
1189 		netdev_err(ndev, "could not attach to PHY\n");
1190 		return PTR_ERR(phy_dev);
1191 	}
1192 
1193 	/* mask with MAC supported features */
1194 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1195 		phy_dev->supported &= PHY_GBIT_FEATURES;
1196 		phy_dev->supported |= SUPPORTED_Pause;
1197 	}
1198 	else
1199 		phy_dev->supported &= PHY_BASIC_FEATURES;
1200 
1201 	phy_dev->advertising = phy_dev->supported;
1202 
1203 	fep->phy_dev = phy_dev;
1204 	fep->link = 0;
1205 	fep->full_duplex = 0;
1206 
1207 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1208 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1209 		    fep->phy_dev->irq);
1210 
1211 	return 0;
1212 }
1213 
1214 static int fec_enet_mii_init(struct platform_device *pdev)
1215 {
1216 	static struct mii_bus *fec0_mii_bus;
1217 	struct net_device *ndev = platform_get_drvdata(pdev);
1218 	struct fec_enet_private *fep = netdev_priv(ndev);
1219 	const struct platform_device_id *id_entry =
1220 				platform_get_device_id(fep->pdev);
1221 	int err = -ENXIO, i;
1222 
1223 	/*
1224 	 * The dual fec interfaces are not equivalent with enet-mac.
1225 	 * Here are the differences:
1226 	 *
1227 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1228 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1229 	 *  - external phys can only be configured by fec0
1230 	 *
1231 	 * That is to say fec1 can not work independently. It only works
1232 	 * when fec0 is working. The reason behind this design is that the
1233 	 * second interface is added primarily for Switch mode.
1234 	 *
1235 	 * Because of the last point above, both phys are attached on fec0
1236 	 * mdio interface in board design, and need to be configured by
1237 	 * fec0 mii_bus.
1238 	 */
1239 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1240 		/* fec1 uses fec0 mii_bus */
1241 		if (mii_cnt && fec0_mii_bus) {
1242 			fep->mii_bus = fec0_mii_bus;
1243 			mii_cnt++;
1244 			return 0;
1245 		}
1246 		return -ENOENT;
1247 	}
1248 
1249 	fep->mii_timeout = 0;
1250 
1251 	/*
1252 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1253 	 *
1254 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1255 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1256 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1257 	 * document.
1258 	 */
1259 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1260 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1261 		fep->phy_speed--;
1262 	fep->phy_speed <<= 1;
1263 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1264 
1265 	fep->mii_bus = mdiobus_alloc();
1266 	if (fep->mii_bus == NULL) {
1267 		err = -ENOMEM;
1268 		goto err_out;
1269 	}
1270 
1271 	fep->mii_bus->name = "fec_enet_mii_bus";
1272 	fep->mii_bus->read = fec_enet_mdio_read;
1273 	fep->mii_bus->write = fec_enet_mdio_write;
1274 	fep->mii_bus->reset = fec_enet_mdio_reset;
1275 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1276 		pdev->name, fep->dev_id + 1);
1277 	fep->mii_bus->priv = fep;
1278 	fep->mii_bus->parent = &pdev->dev;
1279 
1280 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1281 	if (!fep->mii_bus->irq) {
1282 		err = -ENOMEM;
1283 		goto err_out_free_mdiobus;
1284 	}
1285 
1286 	for (i = 0; i < PHY_MAX_ADDR; i++)
1287 		fep->mii_bus->irq[i] = PHY_POLL;
1288 
1289 	if (mdiobus_register(fep->mii_bus))
1290 		goto err_out_free_mdio_irq;
1291 
1292 	mii_cnt++;
1293 
1294 	/* save fec0 mii_bus */
1295 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1296 		fec0_mii_bus = fep->mii_bus;
1297 
1298 	return 0;
1299 
1300 err_out_free_mdio_irq:
1301 	kfree(fep->mii_bus->irq);
1302 err_out_free_mdiobus:
1303 	mdiobus_free(fep->mii_bus);
1304 err_out:
1305 	return err;
1306 }
1307 
1308 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1309 {
1310 	if (--mii_cnt == 0) {
1311 		mdiobus_unregister(fep->mii_bus);
1312 		kfree(fep->mii_bus->irq);
1313 		mdiobus_free(fep->mii_bus);
1314 	}
1315 }
1316 
1317 static int fec_enet_get_settings(struct net_device *ndev,
1318 				  struct ethtool_cmd *cmd)
1319 {
1320 	struct fec_enet_private *fep = netdev_priv(ndev);
1321 	struct phy_device *phydev = fep->phy_dev;
1322 
1323 	if (!phydev)
1324 		return -ENODEV;
1325 
1326 	return phy_ethtool_gset(phydev, cmd);
1327 }
1328 
1329 static int fec_enet_set_settings(struct net_device *ndev,
1330 				 struct ethtool_cmd *cmd)
1331 {
1332 	struct fec_enet_private *fep = netdev_priv(ndev);
1333 	struct phy_device *phydev = fep->phy_dev;
1334 
1335 	if (!phydev)
1336 		return -ENODEV;
1337 
1338 	return phy_ethtool_sset(phydev, cmd);
1339 }
1340 
1341 static void fec_enet_get_drvinfo(struct net_device *ndev,
1342 				 struct ethtool_drvinfo *info)
1343 {
1344 	struct fec_enet_private *fep = netdev_priv(ndev);
1345 
1346 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1347 		sizeof(info->driver));
1348 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1349 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1350 }
1351 
1352 static int fec_enet_get_ts_info(struct net_device *ndev,
1353 				struct ethtool_ts_info *info)
1354 {
1355 	struct fec_enet_private *fep = netdev_priv(ndev);
1356 
1357 	if (fep->bufdesc_ex) {
1358 
1359 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1360 					SOF_TIMESTAMPING_RX_SOFTWARE |
1361 					SOF_TIMESTAMPING_SOFTWARE |
1362 					SOF_TIMESTAMPING_TX_HARDWARE |
1363 					SOF_TIMESTAMPING_RX_HARDWARE |
1364 					SOF_TIMESTAMPING_RAW_HARDWARE;
1365 		if (fep->ptp_clock)
1366 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1367 		else
1368 			info->phc_index = -1;
1369 
1370 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1371 				 (1 << HWTSTAMP_TX_ON);
1372 
1373 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1374 				   (1 << HWTSTAMP_FILTER_ALL);
1375 		return 0;
1376 	} else {
1377 		return ethtool_op_get_ts_info(ndev, info);
1378 	}
1379 }
1380 
1381 static void fec_enet_get_pauseparam(struct net_device *ndev,
1382 				    struct ethtool_pauseparam *pause)
1383 {
1384 	struct fec_enet_private *fep = netdev_priv(ndev);
1385 
1386 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1387 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1388 	pause->rx_pause = pause->tx_pause;
1389 }
1390 
1391 static int fec_enet_set_pauseparam(struct net_device *ndev,
1392 				   struct ethtool_pauseparam *pause)
1393 {
1394 	struct fec_enet_private *fep = netdev_priv(ndev);
1395 
1396 	if (pause->tx_pause != pause->rx_pause) {
1397 		netdev_info(ndev,
1398 			"hardware only support enable/disable both tx and rx");
1399 		return -EINVAL;
1400 	}
1401 
1402 	fep->pause_flag = 0;
1403 
1404 	/* tx pause must be same as rx pause */
1405 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1406 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1407 
1408 	if (pause->rx_pause || pause->autoneg) {
1409 		fep->phy_dev->supported |= ADVERTISED_Pause;
1410 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1411 	} else {
1412 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1413 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1414 	}
1415 
1416 	if (pause->autoneg) {
1417 		if (netif_running(ndev))
1418 			fec_stop(ndev);
1419 		phy_start_aneg(fep->phy_dev);
1420 	}
1421 	if (netif_running(ndev))
1422 		fec_restart(ndev, 0);
1423 
1424 	return 0;
1425 }
1426 
1427 static const struct ethtool_ops fec_enet_ethtool_ops = {
1428 	.get_pauseparam		= fec_enet_get_pauseparam,
1429 	.set_pauseparam		= fec_enet_set_pauseparam,
1430 	.get_settings		= fec_enet_get_settings,
1431 	.set_settings		= fec_enet_set_settings,
1432 	.get_drvinfo		= fec_enet_get_drvinfo,
1433 	.get_link		= ethtool_op_get_link,
1434 	.get_ts_info		= fec_enet_get_ts_info,
1435 };
1436 
1437 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1438 {
1439 	struct fec_enet_private *fep = netdev_priv(ndev);
1440 	struct phy_device *phydev = fep->phy_dev;
1441 
1442 	if (!netif_running(ndev))
1443 		return -EINVAL;
1444 
1445 	if (!phydev)
1446 		return -ENODEV;
1447 
1448 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1449 		return fec_ptp_ioctl(ndev, rq, cmd);
1450 
1451 	return phy_mii_ioctl(phydev, rq, cmd);
1452 }
1453 
1454 static void fec_enet_free_buffers(struct net_device *ndev)
1455 {
1456 	struct fec_enet_private *fep = netdev_priv(ndev);
1457 	unsigned int i;
1458 	struct sk_buff *skb;
1459 	struct bufdesc	*bdp;
1460 
1461 	bdp = fep->rx_bd_base;
1462 	for (i = 0; i < RX_RING_SIZE; i++) {
1463 		skb = fep->rx_skbuff[i];
1464 
1465 		if (bdp->cbd_bufaddr)
1466 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1467 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1468 		if (skb)
1469 			dev_kfree_skb(skb);
1470 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1471 	}
1472 
1473 	bdp = fep->tx_bd_base;
1474 	for (i = 0; i < TX_RING_SIZE; i++)
1475 		kfree(fep->tx_bounce[i]);
1476 }
1477 
1478 static int fec_enet_alloc_buffers(struct net_device *ndev)
1479 {
1480 	struct fec_enet_private *fep = netdev_priv(ndev);
1481 	unsigned int i;
1482 	struct sk_buff *skb;
1483 	struct bufdesc	*bdp;
1484 
1485 	bdp = fep->rx_bd_base;
1486 	for (i = 0; i < RX_RING_SIZE; i++) {
1487 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1488 		if (!skb) {
1489 			fec_enet_free_buffers(ndev);
1490 			return -ENOMEM;
1491 		}
1492 		fep->rx_skbuff[i] = skb;
1493 
1494 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1495 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1496 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1497 
1498 		if (fep->bufdesc_ex) {
1499 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1500 			ebdp->cbd_esc = BD_ENET_RX_INT;
1501 		}
1502 
1503 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1504 	}
1505 
1506 	/* Set the last buffer to wrap. */
1507 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1508 	bdp->cbd_sc |= BD_SC_WRAP;
1509 
1510 	bdp = fep->tx_bd_base;
1511 	for (i = 0; i < TX_RING_SIZE; i++) {
1512 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1513 
1514 		bdp->cbd_sc = 0;
1515 		bdp->cbd_bufaddr = 0;
1516 
1517 		if (fep->bufdesc_ex) {
1518 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519 			ebdp->cbd_esc = BD_ENET_TX_INT;
1520 		}
1521 
1522 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1523 	}
1524 
1525 	/* Set the last buffer to wrap. */
1526 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1527 	bdp->cbd_sc |= BD_SC_WRAP;
1528 
1529 	return 0;
1530 }
1531 
1532 static int
1533 fec_enet_open(struct net_device *ndev)
1534 {
1535 	struct fec_enet_private *fep = netdev_priv(ndev);
1536 	int ret;
1537 
1538 	napi_enable(&fep->napi);
1539 
1540 	/* I should reset the ring buffers here, but I don't yet know
1541 	 * a simple way to do that.
1542 	 */
1543 
1544 	ret = fec_enet_alloc_buffers(ndev);
1545 	if (ret)
1546 		return ret;
1547 
1548 	/* Probe and connect to PHY when open the interface */
1549 	ret = fec_enet_mii_probe(ndev);
1550 	if (ret) {
1551 		fec_enet_free_buffers(ndev);
1552 		return ret;
1553 	}
1554 	phy_start(fep->phy_dev);
1555 	netif_start_queue(ndev);
1556 	fep->opened = 1;
1557 	return 0;
1558 }
1559 
1560 static int
1561 fec_enet_close(struct net_device *ndev)
1562 {
1563 	struct fec_enet_private *fep = netdev_priv(ndev);
1564 
1565 	/* Don't know what to do yet. */
1566 	napi_disable(&fep->napi);
1567 	fep->opened = 0;
1568 	netif_stop_queue(ndev);
1569 	fec_stop(ndev);
1570 
1571 	if (fep->phy_dev) {
1572 		phy_stop(fep->phy_dev);
1573 		phy_disconnect(fep->phy_dev);
1574 	}
1575 
1576 	fec_enet_free_buffers(ndev);
1577 
1578 	return 0;
1579 }
1580 
1581 /* Set or clear the multicast filter for this adaptor.
1582  * Skeleton taken from sunlance driver.
1583  * The CPM Ethernet implementation allows Multicast as well as individual
1584  * MAC address filtering.  Some of the drivers check to make sure it is
1585  * a group multicast address, and discard those that are not.  I guess I
1586  * will do the same for now, but just remove the test if you want
1587  * individual filtering as well (do the upper net layers want or support
1588  * this kind of feature?).
1589  */
1590 
1591 #define HASH_BITS	6		/* #bits in hash */
1592 #define CRC32_POLY	0xEDB88320
1593 
1594 static void set_multicast_list(struct net_device *ndev)
1595 {
1596 	struct fec_enet_private *fep = netdev_priv(ndev);
1597 	struct netdev_hw_addr *ha;
1598 	unsigned int i, bit, data, crc, tmp;
1599 	unsigned char hash;
1600 
1601 	if (ndev->flags & IFF_PROMISC) {
1602 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1603 		tmp |= 0x8;
1604 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1605 		return;
1606 	}
1607 
1608 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1609 	tmp &= ~0x8;
1610 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1611 
1612 	if (ndev->flags & IFF_ALLMULTI) {
1613 		/* Catch all multicast addresses, so set the
1614 		 * filter to all 1's
1615 		 */
1616 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1617 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1618 
1619 		return;
1620 	}
1621 
1622 	/* Clear filter and add the addresses in hash register
1623 	 */
1624 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1625 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1626 
1627 	netdev_for_each_mc_addr(ha, ndev) {
1628 		/* calculate crc32 value of mac address */
1629 		crc = 0xffffffff;
1630 
1631 		for (i = 0; i < ndev->addr_len; i++) {
1632 			data = ha->addr[i];
1633 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1634 				crc = (crc >> 1) ^
1635 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1636 			}
1637 		}
1638 
1639 		/* only upper 6 bits (HASH_BITS) are used
1640 		 * which point to specific bit in he hash registers
1641 		 */
1642 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1643 
1644 		if (hash > 31) {
1645 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1646 			tmp |= 1 << (hash - 32);
1647 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1648 		} else {
1649 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1650 			tmp |= 1 << hash;
1651 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1652 		}
1653 	}
1654 }
1655 
1656 /* Set a MAC change in hardware. */
1657 static int
1658 fec_set_mac_address(struct net_device *ndev, void *p)
1659 {
1660 	struct fec_enet_private *fep = netdev_priv(ndev);
1661 	struct sockaddr *addr = p;
1662 
1663 	if (!is_valid_ether_addr(addr->sa_data))
1664 		return -EADDRNOTAVAIL;
1665 
1666 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1667 
1668 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1669 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1670 		fep->hwp + FEC_ADDR_LOW);
1671 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1672 		fep->hwp + FEC_ADDR_HIGH);
1673 	return 0;
1674 }
1675 
1676 #ifdef CONFIG_NET_POLL_CONTROLLER
1677 /**
1678  * fec_poll_controller - FEC Poll controller function
1679  * @dev: The FEC network adapter
1680  *
1681  * Polled functionality used by netconsole and others in non interrupt mode
1682  *
1683  */
1684 static void fec_poll_controller(struct net_device *dev)
1685 {
1686 	int i;
1687 	struct fec_enet_private *fep = netdev_priv(dev);
1688 
1689 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1690 		if (fep->irq[i] > 0) {
1691 			disable_irq(fep->irq[i]);
1692 			fec_enet_interrupt(fep->irq[i], dev);
1693 			enable_irq(fep->irq[i]);
1694 		}
1695 	}
1696 }
1697 #endif
1698 
1699 static int fec_set_features(struct net_device *netdev,
1700 	netdev_features_t features)
1701 {
1702 	struct fec_enet_private *fep = netdev_priv(netdev);
1703 	netdev_features_t changed = features ^ netdev->features;
1704 
1705 	netdev->features = features;
1706 
1707 	/* Receive checksum has been changed */
1708 	if (changed & NETIF_F_RXCSUM) {
1709 		if (features & NETIF_F_RXCSUM)
1710 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1711 		else
1712 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1713 
1714 		if (netif_running(netdev)) {
1715 			fec_stop(netdev);
1716 			fec_restart(netdev, fep->phy_dev->duplex);
1717 			netif_wake_queue(netdev);
1718 		} else {
1719 			fec_restart(netdev, fep->phy_dev->duplex);
1720 		}
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static const struct net_device_ops fec_netdev_ops = {
1727 	.ndo_open		= fec_enet_open,
1728 	.ndo_stop		= fec_enet_close,
1729 	.ndo_start_xmit		= fec_enet_start_xmit,
1730 	.ndo_set_rx_mode	= set_multicast_list,
1731 	.ndo_change_mtu		= eth_change_mtu,
1732 	.ndo_validate_addr	= eth_validate_addr,
1733 	.ndo_tx_timeout		= fec_timeout,
1734 	.ndo_set_mac_address	= fec_set_mac_address,
1735 	.ndo_do_ioctl		= fec_enet_ioctl,
1736 #ifdef CONFIG_NET_POLL_CONTROLLER
1737 	.ndo_poll_controller	= fec_poll_controller,
1738 #endif
1739 	.ndo_set_features	= fec_set_features,
1740 };
1741 
1742  /*
1743   * XXX:  We need to clean up on failure exits here.
1744   *
1745   */
1746 static int fec_enet_init(struct net_device *ndev)
1747 {
1748 	struct fec_enet_private *fep = netdev_priv(ndev);
1749 	const struct platform_device_id *id_entry =
1750 				platform_get_device_id(fep->pdev);
1751 	struct bufdesc *cbd_base;
1752 
1753 	/* Allocate memory for buffer descriptors. */
1754 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1755 				      GFP_KERNEL);
1756 	if (!cbd_base)
1757 		return -ENOMEM;
1758 
1759 	memset(cbd_base, 0, PAGE_SIZE);
1760 
1761 	fep->netdev = ndev;
1762 
1763 	/* Get the Ethernet address */
1764 	fec_get_mac(ndev);
1765 
1766 	/* Set receive and transmit descriptor base. */
1767 	fep->rx_bd_base = cbd_base;
1768 	if (fep->bufdesc_ex)
1769 		fep->tx_bd_base = (struct bufdesc *)
1770 			(((struct bufdesc_ex *)cbd_base) + RX_RING_SIZE);
1771 	else
1772 		fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1773 
1774 	/* The FEC Ethernet specific entries in the device structure */
1775 	ndev->watchdog_timeo = TX_TIMEOUT;
1776 	ndev->netdev_ops = &fec_netdev_ops;
1777 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
1778 
1779 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
1780 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, FEC_NAPI_WEIGHT);
1781 
1782 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
1783 		/* enable hw accelerator */
1784 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1785 				| NETIF_F_RXCSUM);
1786 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1787 				| NETIF_F_RXCSUM);
1788 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1789 	}
1790 
1791 	fec_restart(ndev, 0);
1792 
1793 	return 0;
1794 }
1795 
1796 #ifdef CONFIG_OF
1797 static void fec_reset_phy(struct platform_device *pdev)
1798 {
1799 	int err, phy_reset;
1800 	int msec = 1;
1801 	struct device_node *np = pdev->dev.of_node;
1802 
1803 	if (!np)
1804 		return;
1805 
1806 	of_property_read_u32(np, "phy-reset-duration", &msec);
1807 	/* A sane reset duration should not be longer than 1s */
1808 	if (msec > 1000)
1809 		msec = 1;
1810 
1811 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1812 	if (!gpio_is_valid(phy_reset))
1813 		return;
1814 
1815 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
1816 				    GPIOF_OUT_INIT_LOW, "phy-reset");
1817 	if (err) {
1818 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
1819 		return;
1820 	}
1821 	msleep(msec);
1822 	gpio_set_value(phy_reset, 1);
1823 }
1824 #else /* CONFIG_OF */
1825 static void fec_reset_phy(struct platform_device *pdev)
1826 {
1827 	/*
1828 	 * In case of platform probe, the reset has been done
1829 	 * by machine code.
1830 	 */
1831 }
1832 #endif /* CONFIG_OF */
1833 
1834 static int
1835 fec_probe(struct platform_device *pdev)
1836 {
1837 	struct fec_enet_private *fep;
1838 	struct fec_platform_data *pdata;
1839 	struct net_device *ndev;
1840 	int i, irq, ret = 0;
1841 	struct resource *r;
1842 	const struct of_device_id *of_id;
1843 	static int dev_id;
1844 	struct pinctrl *pinctrl;
1845 	struct regulator *reg_phy;
1846 
1847 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
1848 	if (of_id)
1849 		pdev->id_entry = of_id->data;
1850 
1851 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1852 	if (!r)
1853 		return -ENXIO;
1854 
1855 	/* Init network device */
1856 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1857 	if (!ndev)
1858 		return -ENOMEM;
1859 
1860 	SET_NETDEV_DEV(ndev, &pdev->dev);
1861 
1862 	/* setup board info structure */
1863 	fep = netdev_priv(ndev);
1864 
1865 	/* default enable pause frame auto negotiation */
1866 	if (pdev->id_entry &&
1867 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
1868 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
1869 
1870 	fep->hwp = devm_request_and_ioremap(&pdev->dev, r);
1871 	fep->pdev = pdev;
1872 	fep->dev_id = dev_id++;
1873 
1874 	fep->bufdesc_ex = 0;
1875 
1876 	if (!fep->hwp) {
1877 		ret = -ENOMEM;
1878 		goto failed_ioremap;
1879 	}
1880 
1881 	platform_set_drvdata(pdev, ndev);
1882 
1883 	ret = of_get_phy_mode(pdev->dev.of_node);
1884 	if (ret < 0) {
1885 		pdata = pdev->dev.platform_data;
1886 		if (pdata)
1887 			fep->phy_interface = pdata->phy;
1888 		else
1889 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
1890 	} else {
1891 		fep->phy_interface = ret;
1892 	}
1893 
1894 	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1895 	if (IS_ERR(pinctrl)) {
1896 		ret = PTR_ERR(pinctrl);
1897 		goto failed_pin;
1898 	}
1899 
1900 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1901 	if (IS_ERR(fep->clk_ipg)) {
1902 		ret = PTR_ERR(fep->clk_ipg);
1903 		goto failed_clk;
1904 	}
1905 
1906 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1907 	if (IS_ERR(fep->clk_ahb)) {
1908 		ret = PTR_ERR(fep->clk_ahb);
1909 		goto failed_clk;
1910 	}
1911 
1912 	/* enet_out is optional, depends on board */
1913 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
1914 	if (IS_ERR(fep->clk_enet_out))
1915 		fep->clk_enet_out = NULL;
1916 
1917 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
1918 	fep->bufdesc_ex =
1919 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
1920 	if (IS_ERR(fep->clk_ptp)) {
1921 		fep->clk_ptp = NULL;
1922 		fep->bufdesc_ex = 0;
1923 	}
1924 
1925 	clk_prepare_enable(fep->clk_ahb);
1926 	clk_prepare_enable(fep->clk_ipg);
1927 	clk_prepare_enable(fep->clk_enet_out);
1928 	clk_prepare_enable(fep->clk_ptp);
1929 
1930 	reg_phy = devm_regulator_get(&pdev->dev, "phy");
1931 	if (!IS_ERR(reg_phy)) {
1932 		ret = regulator_enable(reg_phy);
1933 		if (ret) {
1934 			dev_err(&pdev->dev,
1935 				"Failed to enable phy regulator: %d\n", ret);
1936 			goto failed_regulator;
1937 		}
1938 	}
1939 
1940 	fec_reset_phy(pdev);
1941 
1942 	if (fep->bufdesc_ex)
1943 		fec_ptp_init(ndev, pdev);
1944 
1945 	ret = fec_enet_init(ndev);
1946 	if (ret)
1947 		goto failed_init;
1948 
1949 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1950 		irq = platform_get_irq(pdev, i);
1951 		if (irq < 0) {
1952 			if (i)
1953 				break;
1954 			ret = irq;
1955 			goto failed_irq;
1956 		}
1957 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1958 		if (ret) {
1959 			while (--i >= 0) {
1960 				irq = platform_get_irq(pdev, i);
1961 				free_irq(irq, ndev);
1962 			}
1963 			goto failed_irq;
1964 		}
1965 	}
1966 
1967 	ret = fec_enet_mii_init(pdev);
1968 	if (ret)
1969 		goto failed_mii_init;
1970 
1971 	/* Carrier starts down, phylib will bring it up */
1972 	netif_carrier_off(ndev);
1973 
1974 	ret = register_netdev(ndev);
1975 	if (ret)
1976 		goto failed_register;
1977 
1978 	if (fep->bufdesc_ex && fep->ptp_clock)
1979 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
1980 
1981 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
1982 	return 0;
1983 
1984 failed_register:
1985 	fec_enet_mii_remove(fep);
1986 failed_mii_init:
1987 failed_init:
1988 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1989 		irq = platform_get_irq(pdev, i);
1990 		if (irq > 0)
1991 			free_irq(irq, ndev);
1992 	}
1993 failed_irq:
1994 failed_regulator:
1995 	clk_disable_unprepare(fep->clk_ahb);
1996 	clk_disable_unprepare(fep->clk_ipg);
1997 	clk_disable_unprepare(fep->clk_enet_out);
1998 	clk_disable_unprepare(fep->clk_ptp);
1999 failed_pin:
2000 failed_clk:
2001 failed_ioremap:
2002 	free_netdev(ndev);
2003 
2004 	return ret;
2005 }
2006 
2007 static int
2008 fec_drv_remove(struct platform_device *pdev)
2009 {
2010 	struct net_device *ndev = platform_get_drvdata(pdev);
2011 	struct fec_enet_private *fep = netdev_priv(ndev);
2012 	int i;
2013 
2014 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2015 	unregister_netdev(ndev);
2016 	fec_enet_mii_remove(fep);
2017 	del_timer_sync(&fep->time_keep);
2018 	clk_disable_unprepare(fep->clk_ptp);
2019 	if (fep->ptp_clock)
2020 		ptp_clock_unregister(fep->ptp_clock);
2021 	clk_disable_unprepare(fep->clk_enet_out);
2022 	clk_disable_unprepare(fep->clk_ahb);
2023 	clk_disable_unprepare(fep->clk_ipg);
2024 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2025 		int irq = platform_get_irq(pdev, i);
2026 		if (irq > 0)
2027 			free_irq(irq, ndev);
2028 	}
2029 	free_netdev(ndev);
2030 
2031 	platform_set_drvdata(pdev, NULL);
2032 
2033 	return 0;
2034 }
2035 
2036 #ifdef CONFIG_PM_SLEEP
2037 static int
2038 fec_suspend(struct device *dev)
2039 {
2040 	struct net_device *ndev = dev_get_drvdata(dev);
2041 	struct fec_enet_private *fep = netdev_priv(ndev);
2042 
2043 	if (netif_running(ndev)) {
2044 		fec_stop(ndev);
2045 		netif_device_detach(ndev);
2046 	}
2047 	clk_disable_unprepare(fep->clk_enet_out);
2048 	clk_disable_unprepare(fep->clk_ahb);
2049 	clk_disable_unprepare(fep->clk_ipg);
2050 
2051 	return 0;
2052 }
2053 
2054 static int
2055 fec_resume(struct device *dev)
2056 {
2057 	struct net_device *ndev = dev_get_drvdata(dev);
2058 	struct fec_enet_private *fep = netdev_priv(ndev);
2059 
2060 	clk_prepare_enable(fep->clk_enet_out);
2061 	clk_prepare_enable(fep->clk_ahb);
2062 	clk_prepare_enable(fep->clk_ipg);
2063 	if (netif_running(ndev)) {
2064 		fec_restart(ndev, fep->full_duplex);
2065 		netif_device_attach(ndev);
2066 	}
2067 
2068 	return 0;
2069 }
2070 #endif /* CONFIG_PM_SLEEP */
2071 
2072 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2073 
2074 static struct platform_driver fec_driver = {
2075 	.driver	= {
2076 		.name	= DRIVER_NAME,
2077 		.owner	= THIS_MODULE,
2078 		.pm	= &fec_pm_ops,
2079 		.of_match_table = fec_dt_ids,
2080 	},
2081 	.id_table = fec_devtype,
2082 	.probe	= fec_probe,
2083 	.remove	= fec_drv_remove,
2084 };
2085 
2086 module_platform_driver(fec_driver);
2087 
2088 MODULE_LICENSE("GPL");
2089