1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95 				FEC_QUIRK_SINGLE_MDIO,
96 	}, {
97 		.name = "imx6q-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101 	}, {
102 		.name = "mvf600-fec",
103 		.driver_data = FEC_QUIRK_ENET_MAC,
104 	}, {
105 		.name = "imx6sx-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110 	}, {
111 		/* sentinel */
112 	}
113 };
114 MODULE_DEVICE_TABLE(platform, fec_devtype);
115 
116 enum imx_fec_type {
117 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
118 	IMX27_FEC,	/* runs on i.mx27/35/51 */
119 	IMX28_FEC,
120 	IMX6Q_FEC,
121 	MVF600_FEC,
122 	IMX6SX_FEC,
123 };
124 
125 static const struct of_device_id fec_dt_ids[] = {
126 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132 	{ /* sentinel */ }
133 };
134 MODULE_DEVICE_TABLE(of, fec_dt_ids);
135 
136 static unsigned char macaddr[ETH_ALEN];
137 module_param_array(macaddr, byte, NULL, 0);
138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139 
140 #if defined(CONFIG_M5272)
141 /*
142  * Some hardware gets it MAC address out of local flash memory.
143  * if this is non-zero then assume it is the address to get MAC from.
144  */
145 #if defined(CONFIG_NETtel)
146 #define	FEC_FLASHMAC	0xf0006006
147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148 #define	FEC_FLASHMAC	0xf0006000
149 #elif defined(CONFIG_CANCam)
150 #define	FEC_FLASHMAC	0xf0020000
151 #elif defined (CONFIG_M5272C3)
152 #define	FEC_FLASHMAC	(0xffe04000 + 4)
153 #elif defined(CONFIG_MOD5272)
154 #define FEC_FLASHMAC	0xffc0406b
155 #else
156 #define	FEC_FLASHMAC	0
157 #endif
158 #endif /* CONFIG_M5272 */
159 
160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161  */
162 #define PKT_MAXBUF_SIZE		1522
163 #define PKT_MINBUF_SIZE		64
164 #define PKT_MAXBLR_SIZE		1536
165 
166 /* FEC receive acceleration */
167 #define FEC_RACC_IPDIS		(1 << 1)
168 #define FEC_RACC_PRODIS		(1 << 2)
169 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170 
171 /*
172  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173  * size bits. Other FEC hardware does not, so we need to take that into
174  * account when setting it.
175  */
176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
179 #else
180 #define	OPT_FRAME_SIZE	0
181 #endif
182 
183 /* FEC MII MMFR bits definition */
184 #define FEC_MMFR_ST		(1 << 30)
185 #define FEC_MMFR_OP_READ	(2 << 28)
186 #define FEC_MMFR_OP_WRITE	(1 << 28)
187 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
188 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
189 #define FEC_MMFR_TA		(2 << 16)
190 #define FEC_MMFR_DATA(v)	(v & 0xffff)
191 
192 #define FEC_MII_TIMEOUT		30000 /* us */
193 
194 /* Transmitter timeout */
195 #define TX_TIMEOUT (2 * HZ)
196 
197 #define FEC_PAUSE_FLAG_AUTONEG	0x1
198 #define FEC_PAUSE_FLAG_ENABLE	0x2
199 
200 #define COPYBREAK_DEFAULT	256
201 
202 #define TSO_HEADER_SIZE		128
203 /* Max number of allowed TCP segments for software TSO */
204 #define FEC_MAX_TSO_SEGS	100
205 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
206 
207 #define IS_TSO_HEADER(txq, addr) \
208 	((addr >= txq->tso_hdrs_dma) && \
209 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
210 
211 static int mii_cnt;
212 
213 static inline
214 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
215 				      struct fec_enet_private *fep,
216 				      int queue_id)
217 {
218 	struct bufdesc *new_bd = bdp + 1;
219 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
220 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
221 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
222 	struct bufdesc_ex *ex_base;
223 	struct bufdesc *base;
224 	int ring_size;
225 
226 	if (bdp >= txq->tx_bd_base) {
227 		base = txq->tx_bd_base;
228 		ring_size = txq->tx_ring_size;
229 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
230 	} else {
231 		base = rxq->rx_bd_base;
232 		ring_size = rxq->rx_ring_size;
233 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
234 	}
235 
236 	if (fep->bufdesc_ex)
237 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
238 			ex_base : ex_new_bd);
239 	else
240 		return (new_bd >= (base + ring_size)) ?
241 			base : new_bd;
242 }
243 
244 static inline
245 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
246 				      struct fec_enet_private *fep,
247 				      int queue_id)
248 {
249 	struct bufdesc *new_bd = bdp - 1;
250 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
251 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
252 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
253 	struct bufdesc_ex *ex_base;
254 	struct bufdesc *base;
255 	int ring_size;
256 
257 	if (bdp >= txq->tx_bd_base) {
258 		base = txq->tx_bd_base;
259 		ring_size = txq->tx_ring_size;
260 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
261 	} else {
262 		base = rxq->rx_bd_base;
263 		ring_size = rxq->rx_ring_size;
264 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
265 	}
266 
267 	if (fep->bufdesc_ex)
268 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
269 			(ex_new_bd + ring_size) : ex_new_bd);
270 	else
271 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
272 }
273 
274 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
275 				struct fec_enet_private *fep)
276 {
277 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
278 }
279 
280 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
281 					struct fec_enet_priv_tx_q *txq)
282 {
283 	int entries;
284 
285 	entries = ((const char *)txq->dirty_tx -
286 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
287 
288 	return entries > 0 ? entries : entries + txq->tx_ring_size;
289 }
290 
291 static void swap_buffer(void *bufaddr, int len)
292 {
293 	int i;
294 	unsigned int *buf = bufaddr;
295 
296 	for (i = 0; i < len; i += 4, buf++)
297 		swab32s(buf);
298 }
299 
300 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
301 {
302 	int i;
303 	unsigned int *src = src_buf;
304 	unsigned int *dst = dst_buf;
305 
306 	for (i = 0; i < len; i += 4, src++, dst++)
307 		*dst = swab32p(src);
308 }
309 
310 static void fec_dump(struct net_device *ndev)
311 {
312 	struct fec_enet_private *fep = netdev_priv(ndev);
313 	struct bufdesc *bdp;
314 	struct fec_enet_priv_tx_q *txq;
315 	int index = 0;
316 
317 	netdev_info(ndev, "TX ring dump\n");
318 	pr_info("Nr     SC     addr       len  SKB\n");
319 
320 	txq = fep->tx_queue[0];
321 	bdp = txq->tx_bd_base;
322 
323 	do {
324 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
325 			index,
326 			bdp == txq->cur_tx ? 'S' : ' ',
327 			bdp == txq->dirty_tx ? 'H' : ' ',
328 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
329 			txq->tx_skbuff[index]);
330 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
331 		index++;
332 	} while (bdp != txq->tx_bd_base);
333 }
334 
335 static inline bool is_ipv4_pkt(struct sk_buff *skb)
336 {
337 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
338 }
339 
340 static int
341 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
342 {
343 	/* Only run for packets requiring a checksum. */
344 	if (skb->ip_summed != CHECKSUM_PARTIAL)
345 		return 0;
346 
347 	if (unlikely(skb_cow_head(skb, 0)))
348 		return -1;
349 
350 	if (is_ipv4_pkt(skb))
351 		ip_hdr(skb)->check = 0;
352 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
353 
354 	return 0;
355 }
356 
357 static int
358 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
359 			     struct sk_buff *skb,
360 			     struct net_device *ndev)
361 {
362 	struct fec_enet_private *fep = netdev_priv(ndev);
363 	struct bufdesc *bdp = txq->cur_tx;
364 	struct bufdesc_ex *ebdp;
365 	int nr_frags = skb_shinfo(skb)->nr_frags;
366 	unsigned short queue = skb_get_queue_mapping(skb);
367 	int frag, frag_len;
368 	unsigned short status;
369 	unsigned int estatus = 0;
370 	skb_frag_t *this_frag;
371 	unsigned int index;
372 	void *bufaddr;
373 	dma_addr_t addr;
374 	int i;
375 
376 	for (frag = 0; frag < nr_frags; frag++) {
377 		this_frag = &skb_shinfo(skb)->frags[frag];
378 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
379 		ebdp = (struct bufdesc_ex *)bdp;
380 
381 		status = bdp->cbd_sc;
382 		status &= ~BD_ENET_TX_STATS;
383 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
384 		frag_len = skb_shinfo(skb)->frags[frag].size;
385 
386 		/* Handle the last BD specially */
387 		if (frag == nr_frags - 1) {
388 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
389 			if (fep->bufdesc_ex) {
390 				estatus |= BD_ENET_TX_INT;
391 				if (unlikely(skb_shinfo(skb)->tx_flags &
392 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
393 					estatus |= BD_ENET_TX_TS;
394 			}
395 		}
396 
397 		if (fep->bufdesc_ex) {
398 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
399 				estatus |= FEC_TX_BD_FTYPE(queue);
400 			if (skb->ip_summed == CHECKSUM_PARTIAL)
401 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
402 			ebdp->cbd_bdu = 0;
403 			ebdp->cbd_esc = estatus;
404 		}
405 
406 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
407 
408 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
409 		if (((unsigned long) bufaddr) & fep->tx_align ||
410 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
411 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
412 			bufaddr = txq->tx_bounce[index];
413 
414 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
415 				swap_buffer(bufaddr, frag_len);
416 		}
417 
418 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
419 				      DMA_TO_DEVICE);
420 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
421 			dev_kfree_skb_any(skb);
422 			if (net_ratelimit())
423 				netdev_err(ndev, "Tx DMA memory map failed\n");
424 			goto dma_mapping_error;
425 		}
426 
427 		bdp->cbd_bufaddr = addr;
428 		bdp->cbd_datlen = frag_len;
429 		bdp->cbd_sc = status;
430 	}
431 
432 	txq->cur_tx = bdp;
433 
434 	return 0;
435 
436 dma_mapping_error:
437 	bdp = txq->cur_tx;
438 	for (i = 0; i < frag; i++) {
439 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
440 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
441 				bdp->cbd_datlen, DMA_TO_DEVICE);
442 	}
443 	return NETDEV_TX_OK;
444 }
445 
446 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
447 				   struct sk_buff *skb, struct net_device *ndev)
448 {
449 	struct fec_enet_private *fep = netdev_priv(ndev);
450 	int nr_frags = skb_shinfo(skb)->nr_frags;
451 	struct bufdesc *bdp, *last_bdp;
452 	void *bufaddr;
453 	dma_addr_t addr;
454 	unsigned short status;
455 	unsigned short buflen;
456 	unsigned short queue;
457 	unsigned int estatus = 0;
458 	unsigned int index;
459 	int entries_free;
460 	int ret;
461 
462 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
463 	if (entries_free < MAX_SKB_FRAGS + 1) {
464 		dev_kfree_skb_any(skb);
465 		if (net_ratelimit())
466 			netdev_err(ndev, "NOT enough BD for SG!\n");
467 		return NETDEV_TX_OK;
468 	}
469 
470 	/* Protocol checksum off-load for TCP and UDP. */
471 	if (fec_enet_clear_csum(skb, ndev)) {
472 		dev_kfree_skb_any(skb);
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Fill in a Tx ring entry */
477 	bdp = txq->cur_tx;
478 	status = bdp->cbd_sc;
479 	status &= ~BD_ENET_TX_STATS;
480 
481 	/* Set buffer length and buffer pointer */
482 	bufaddr = skb->data;
483 	buflen = skb_headlen(skb);
484 
485 	queue = skb_get_queue_mapping(skb);
486 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
487 	if (((unsigned long) bufaddr) & fep->tx_align ||
488 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
489 		memcpy(txq->tx_bounce[index], skb->data, buflen);
490 		bufaddr = txq->tx_bounce[index];
491 
492 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
493 			swap_buffer(bufaddr, buflen);
494 	}
495 
496 	/* Push the data cache so the CPM does not get stale memory data. */
497 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
498 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
499 		dev_kfree_skb_any(skb);
500 		if (net_ratelimit())
501 			netdev_err(ndev, "Tx DMA memory map failed\n");
502 		return NETDEV_TX_OK;
503 	}
504 
505 	if (nr_frags) {
506 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
507 		if (ret)
508 			return ret;
509 	} else {
510 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
511 		if (fep->bufdesc_ex) {
512 			estatus = BD_ENET_TX_INT;
513 			if (unlikely(skb_shinfo(skb)->tx_flags &
514 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
515 				estatus |= BD_ENET_TX_TS;
516 		}
517 	}
518 
519 	if (fep->bufdesc_ex) {
520 
521 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
522 
523 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
524 			fep->hwts_tx_en))
525 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
526 
527 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
528 			estatus |= FEC_TX_BD_FTYPE(queue);
529 
530 		if (skb->ip_summed == CHECKSUM_PARTIAL)
531 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
532 
533 		ebdp->cbd_bdu = 0;
534 		ebdp->cbd_esc = estatus;
535 	}
536 
537 	last_bdp = txq->cur_tx;
538 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
539 	/* Save skb pointer */
540 	txq->tx_skbuff[index] = skb;
541 
542 	bdp->cbd_datlen = buflen;
543 	bdp->cbd_bufaddr = addr;
544 
545 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
546 	 * it's the last BD of the frame, and to put the CRC on the end.
547 	 */
548 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
549 	bdp->cbd_sc = status;
550 
551 	/* If this was the last BD in the ring, start at the beginning again. */
552 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
553 
554 	skb_tx_timestamp(skb);
555 
556 	txq->cur_tx = bdp;
557 
558 	/* Trigger transmission start */
559 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
560 
561 	return 0;
562 }
563 
564 static int
565 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
566 			  struct net_device *ndev,
567 			  struct bufdesc *bdp, int index, char *data,
568 			  int size, bool last_tcp, bool is_last)
569 {
570 	struct fec_enet_private *fep = netdev_priv(ndev);
571 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
572 	unsigned short queue = skb_get_queue_mapping(skb);
573 	unsigned short status;
574 	unsigned int estatus = 0;
575 	dma_addr_t addr;
576 
577 	status = bdp->cbd_sc;
578 	status &= ~BD_ENET_TX_STATS;
579 
580 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
581 
582 	if (((unsigned long) data) & fep->tx_align ||
583 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
584 		memcpy(txq->tx_bounce[index], data, size);
585 		data = txq->tx_bounce[index];
586 
587 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
588 			swap_buffer(data, size);
589 	}
590 
591 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
592 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
593 		dev_kfree_skb_any(skb);
594 		if (net_ratelimit())
595 			netdev_err(ndev, "Tx DMA memory map failed\n");
596 		return NETDEV_TX_BUSY;
597 	}
598 
599 	bdp->cbd_datlen = size;
600 	bdp->cbd_bufaddr = addr;
601 
602 	if (fep->bufdesc_ex) {
603 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
604 			estatus |= FEC_TX_BD_FTYPE(queue);
605 		if (skb->ip_summed == CHECKSUM_PARTIAL)
606 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
607 		ebdp->cbd_bdu = 0;
608 		ebdp->cbd_esc = estatus;
609 	}
610 
611 	/* Handle the last BD specially */
612 	if (last_tcp)
613 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
614 	if (is_last) {
615 		status |= BD_ENET_TX_INTR;
616 		if (fep->bufdesc_ex)
617 			ebdp->cbd_esc |= BD_ENET_TX_INT;
618 	}
619 
620 	bdp->cbd_sc = status;
621 
622 	return 0;
623 }
624 
625 static int
626 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
627 			 struct sk_buff *skb, struct net_device *ndev,
628 			 struct bufdesc *bdp, int index)
629 {
630 	struct fec_enet_private *fep = netdev_priv(ndev);
631 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
632 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
633 	unsigned short queue = skb_get_queue_mapping(skb);
634 	void *bufaddr;
635 	unsigned long dmabuf;
636 	unsigned short status;
637 	unsigned int estatus = 0;
638 
639 	status = bdp->cbd_sc;
640 	status &= ~BD_ENET_TX_STATS;
641 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
642 
643 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
644 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
645 	if (((unsigned long)bufaddr) & fep->tx_align ||
646 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
647 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
648 		bufaddr = txq->tx_bounce[index];
649 
650 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
651 			swap_buffer(bufaddr, hdr_len);
652 
653 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
654 					hdr_len, DMA_TO_DEVICE);
655 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
656 			dev_kfree_skb_any(skb);
657 			if (net_ratelimit())
658 				netdev_err(ndev, "Tx DMA memory map failed\n");
659 			return NETDEV_TX_BUSY;
660 		}
661 	}
662 
663 	bdp->cbd_bufaddr = dmabuf;
664 	bdp->cbd_datlen = hdr_len;
665 
666 	if (fep->bufdesc_ex) {
667 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
668 			estatus |= FEC_TX_BD_FTYPE(queue);
669 		if (skb->ip_summed == CHECKSUM_PARTIAL)
670 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
671 		ebdp->cbd_bdu = 0;
672 		ebdp->cbd_esc = estatus;
673 	}
674 
675 	bdp->cbd_sc = status;
676 
677 	return 0;
678 }
679 
680 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
681 				   struct sk_buff *skb,
682 				   struct net_device *ndev)
683 {
684 	struct fec_enet_private *fep = netdev_priv(ndev);
685 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
686 	int total_len, data_left;
687 	struct bufdesc *bdp = txq->cur_tx;
688 	unsigned short queue = skb_get_queue_mapping(skb);
689 	struct tso_t tso;
690 	unsigned int index = 0;
691 	int ret;
692 
693 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
694 		dev_kfree_skb_any(skb);
695 		if (net_ratelimit())
696 			netdev_err(ndev, "NOT enough BD for TSO!\n");
697 		return NETDEV_TX_OK;
698 	}
699 
700 	/* Protocol checksum off-load for TCP and UDP. */
701 	if (fec_enet_clear_csum(skb, ndev)) {
702 		dev_kfree_skb_any(skb);
703 		return NETDEV_TX_OK;
704 	}
705 
706 	/* Initialize the TSO handler, and prepare the first payload */
707 	tso_start(skb, &tso);
708 
709 	total_len = skb->len - hdr_len;
710 	while (total_len > 0) {
711 		char *hdr;
712 
713 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
714 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
715 		total_len -= data_left;
716 
717 		/* prepare packet headers: MAC + IP + TCP */
718 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
719 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
720 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
721 		if (ret)
722 			goto err_release;
723 
724 		while (data_left > 0) {
725 			int size;
726 
727 			size = min_t(int, tso.size, data_left);
728 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
729 			index = fec_enet_get_bd_index(txq->tx_bd_base,
730 						      bdp, fep);
731 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
732 							bdp, index,
733 							tso.data, size,
734 							size == data_left,
735 							total_len == 0);
736 			if (ret)
737 				goto err_release;
738 
739 			data_left -= size;
740 			tso_build_data(skb, &tso, size);
741 		}
742 
743 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
744 	}
745 
746 	/* Save skb pointer */
747 	txq->tx_skbuff[index] = skb;
748 
749 	skb_tx_timestamp(skb);
750 	txq->cur_tx = bdp;
751 
752 	/* Trigger transmission start */
753 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
754 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
755 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
756 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
757 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
758 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
759 
760 	return 0;
761 
762 err_release:
763 	/* TODO: Release all used data descriptors for TSO */
764 	return ret;
765 }
766 
767 static netdev_tx_t
768 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
769 {
770 	struct fec_enet_private *fep = netdev_priv(ndev);
771 	int entries_free;
772 	unsigned short queue;
773 	struct fec_enet_priv_tx_q *txq;
774 	struct netdev_queue *nq;
775 	int ret;
776 
777 	queue = skb_get_queue_mapping(skb);
778 	txq = fep->tx_queue[queue];
779 	nq = netdev_get_tx_queue(ndev, queue);
780 
781 	if (skb_is_gso(skb))
782 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
783 	else
784 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
785 	if (ret)
786 		return ret;
787 
788 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
789 	if (entries_free <= txq->tx_stop_threshold)
790 		netif_tx_stop_queue(nq);
791 
792 	return NETDEV_TX_OK;
793 }
794 
795 /* Init RX & TX buffer descriptors
796  */
797 static void fec_enet_bd_init(struct net_device *dev)
798 {
799 	struct fec_enet_private *fep = netdev_priv(dev);
800 	struct fec_enet_priv_tx_q *txq;
801 	struct fec_enet_priv_rx_q *rxq;
802 	struct bufdesc *bdp;
803 	unsigned int i;
804 	unsigned int q;
805 
806 	for (q = 0; q < fep->num_rx_queues; q++) {
807 		/* Initialize the receive buffer descriptors. */
808 		rxq = fep->rx_queue[q];
809 		bdp = rxq->rx_bd_base;
810 
811 		for (i = 0; i < rxq->rx_ring_size; i++) {
812 
813 			/* Initialize the BD for every fragment in the page. */
814 			if (bdp->cbd_bufaddr)
815 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
816 			else
817 				bdp->cbd_sc = 0;
818 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
819 		}
820 
821 		/* Set the last buffer to wrap */
822 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
823 		bdp->cbd_sc |= BD_SC_WRAP;
824 
825 		rxq->cur_rx = rxq->rx_bd_base;
826 	}
827 
828 	for (q = 0; q < fep->num_tx_queues; q++) {
829 		/* ...and the same for transmit */
830 		txq = fep->tx_queue[q];
831 		bdp = txq->tx_bd_base;
832 		txq->cur_tx = bdp;
833 
834 		for (i = 0; i < txq->tx_ring_size; i++) {
835 			/* Initialize the BD for every fragment in the page. */
836 			bdp->cbd_sc = 0;
837 			if (txq->tx_skbuff[i]) {
838 				dev_kfree_skb_any(txq->tx_skbuff[i]);
839 				txq->tx_skbuff[i] = NULL;
840 			}
841 			bdp->cbd_bufaddr = 0;
842 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
843 		}
844 
845 		/* Set the last buffer to wrap */
846 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
847 		bdp->cbd_sc |= BD_SC_WRAP;
848 		txq->dirty_tx = bdp;
849 	}
850 }
851 
852 static void fec_enet_active_rxring(struct net_device *ndev)
853 {
854 	struct fec_enet_private *fep = netdev_priv(ndev);
855 	int i;
856 
857 	for (i = 0; i < fep->num_rx_queues; i++)
858 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
859 }
860 
861 static void fec_enet_enable_ring(struct net_device *ndev)
862 {
863 	struct fec_enet_private *fep = netdev_priv(ndev);
864 	struct fec_enet_priv_tx_q *txq;
865 	struct fec_enet_priv_rx_q *rxq;
866 	int i;
867 
868 	for (i = 0; i < fep->num_rx_queues; i++) {
869 		rxq = fep->rx_queue[i];
870 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
871 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
872 
873 		/* enable DMA1/2 */
874 		if (i)
875 			writel(RCMR_MATCHEN | RCMR_CMP(i),
876 			       fep->hwp + FEC_RCMR(i));
877 	}
878 
879 	for (i = 0; i < fep->num_tx_queues; i++) {
880 		txq = fep->tx_queue[i];
881 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
886 			       fep->hwp + FEC_DMA_CFG(i));
887 	}
888 }
889 
890 static void fec_enet_reset_skb(struct net_device *ndev)
891 {
892 	struct fec_enet_private *fep = netdev_priv(ndev);
893 	struct fec_enet_priv_tx_q *txq;
894 	int i, j;
895 
896 	for (i = 0; i < fep->num_tx_queues; i++) {
897 		txq = fep->tx_queue[i];
898 
899 		for (j = 0; j < txq->tx_ring_size; j++) {
900 			if (txq->tx_skbuff[j]) {
901 				dev_kfree_skb_any(txq->tx_skbuff[j]);
902 				txq->tx_skbuff[j] = NULL;
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * This function is called to start or restart the FEC during a link
910  * change, transmit timeout, or to reconfigure the FEC.  The network
911  * packet processing for this device must be stopped before this call.
912  */
913 static void
914 fec_restart(struct net_device *ndev)
915 {
916 	struct fec_enet_private *fep = netdev_priv(ndev);
917 	u32 val;
918 	u32 temp_mac[2];
919 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
920 	u32 ecntl = 0x2; /* ETHEREN */
921 
922 	/* Whack a reset.  We should wait for this.
923 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
924 	 * instead of reset MAC itself.
925 	 */
926 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
927 		writel(0, fep->hwp + FEC_ECNTRL);
928 	} else {
929 		writel(1, fep->hwp + FEC_ECNTRL);
930 		udelay(10);
931 	}
932 
933 	/*
934 	 * enet-mac reset will reset mac address registers too,
935 	 * so need to reconfigure it.
936 	 */
937 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
938 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
939 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
940 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
941 	}
942 
943 	/* Clear any outstanding interrupt. */
944 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
945 
946 	fec_enet_bd_init(ndev);
947 
948 	fec_enet_enable_ring(ndev);
949 
950 	/* Reset tx SKB buffers. */
951 	fec_enet_reset_skb(ndev);
952 
953 	/* Enable MII mode */
954 	if (fep->full_duplex == DUPLEX_FULL) {
955 		/* FD enable */
956 		writel(0x04, fep->hwp + FEC_X_CNTRL);
957 	} else {
958 		/* No Rcv on Xmit */
959 		rcntl |= 0x02;
960 		writel(0x0, fep->hwp + FEC_X_CNTRL);
961 	}
962 
963 	/* Set MII speed */
964 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
965 
966 #if !defined(CONFIG_M5272)
967 	/* set RX checksum */
968 	val = readl(fep->hwp + FEC_RACC);
969 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
970 		val |= FEC_RACC_OPTIONS;
971 	else
972 		val &= ~FEC_RACC_OPTIONS;
973 	writel(val, fep->hwp + FEC_RACC);
974 #endif
975 
976 	/*
977 	 * The phy interface and speed need to get configured
978 	 * differently on enet-mac.
979 	 */
980 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
981 		/* Enable flow control and length check */
982 		rcntl |= 0x40000000 | 0x00000020;
983 
984 		/* RGMII, RMII or MII */
985 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
986 			rcntl |= (1 << 6);
987 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
988 			rcntl |= (1 << 8);
989 		else
990 			rcntl &= ~(1 << 8);
991 
992 		/* 1G, 100M or 10M */
993 		if (fep->phy_dev) {
994 			if (fep->phy_dev->speed == SPEED_1000)
995 				ecntl |= (1 << 5);
996 			else if (fep->phy_dev->speed == SPEED_100)
997 				rcntl &= ~(1 << 9);
998 			else
999 				rcntl |= (1 << 9);
1000 		}
1001 	} else {
1002 #ifdef FEC_MIIGSK_ENR
1003 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004 			u32 cfgr;
1005 			/* disable the gasket and wait */
1006 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008 				udelay(1);
1009 
1010 			/*
1011 			 * configure the gasket:
1012 			 *   RMII, 50 MHz, no loopback, no echo
1013 			 *   MII, 25 MHz, no loopback, no echo
1014 			 */
1015 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1018 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020 
1021 			/* re-enable the gasket */
1022 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023 		}
1024 #endif
1025 	}
1026 
1027 #if !defined(CONFIG_M5272)
1028 	/* enable pause frame*/
1029 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031 	     fep->phy_dev && fep->phy_dev->pause)) {
1032 		rcntl |= FEC_ENET_FCE;
1033 
1034 		/* set FIFO threshold parameter to reduce overrun */
1035 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039 
1040 		/* OPD */
1041 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042 	} else {
1043 		rcntl &= ~FEC_ENET_FCE;
1044 	}
1045 #endif /* !defined(CONFIG_M5272) */
1046 
1047 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048 
1049 	/* Setup multicast filter. */
1050 	set_multicast_list(ndev);
1051 #ifndef CONFIG_M5272
1052 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054 #endif
1055 
1056 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057 		/* enable ENET endian swap */
1058 		ecntl |= (1 << 8);
1059 		/* enable ENET store and forward mode */
1060 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1061 	}
1062 
1063 	if (fep->bufdesc_ex)
1064 		ecntl |= (1 << 4);
1065 
1066 #ifndef CONFIG_M5272
1067 	/* Enable the MIB statistic event counters */
1068 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069 #endif
1070 
1071 	/* And last, enable the transmit and receive processing */
1072 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1073 	fec_enet_active_rxring(ndev);
1074 
1075 	if (fep->bufdesc_ex)
1076 		fec_ptp_start_cyclecounter(ndev);
1077 
1078 	/* Enable interrupts we wish to service */
1079 	if (fep->link)
1080 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081 	else
1082 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083 
1084 	/* Init the interrupt coalescing */
1085 	fec_enet_itr_coal_init(ndev);
1086 
1087 }
1088 
1089 static void
1090 fec_stop(struct net_device *ndev)
1091 {
1092 	struct fec_enet_private *fep = netdev_priv(ndev);
1093 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1094 
1095 	/* We cannot expect a graceful transmit stop without link !!! */
1096 	if (fep->link) {
1097 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1098 		udelay(10);
1099 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1100 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1101 	}
1102 
1103 	/* Whack a reset.  We should wait for this.
1104 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1105 	 * instead of reset MAC itself.
1106 	 */
1107 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1108 		writel(0, fep->hwp + FEC_ECNTRL);
1109 	} else {
1110 		writel(1, fep->hwp + FEC_ECNTRL);
1111 		udelay(10);
1112 	}
1113 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1114 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1115 
1116 	/* We have to keep ENET enabled to have MII interrupt stay working */
1117 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1118 		writel(2, fep->hwp + FEC_ECNTRL);
1119 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1120 	}
1121 }
1122 
1123 
1124 static void
1125 fec_timeout(struct net_device *ndev)
1126 {
1127 	struct fec_enet_private *fep = netdev_priv(ndev);
1128 
1129 	fec_dump(ndev);
1130 
1131 	ndev->stats.tx_errors++;
1132 
1133 	schedule_work(&fep->tx_timeout_work);
1134 }
1135 
1136 static void fec_enet_timeout_work(struct work_struct *work)
1137 {
1138 	struct fec_enet_private *fep =
1139 		container_of(work, struct fec_enet_private, tx_timeout_work);
1140 	struct net_device *ndev = fep->netdev;
1141 
1142 	rtnl_lock();
1143 	if (netif_device_present(ndev) || netif_running(ndev)) {
1144 		napi_disable(&fep->napi);
1145 		netif_tx_lock_bh(ndev);
1146 		fec_restart(ndev);
1147 		netif_wake_queue(ndev);
1148 		netif_tx_unlock_bh(ndev);
1149 		napi_enable(&fep->napi);
1150 	}
1151 	rtnl_unlock();
1152 }
1153 
1154 static void
1155 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1156 	struct skb_shared_hwtstamps *hwtstamps)
1157 {
1158 	unsigned long flags;
1159 	u64 ns;
1160 
1161 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1162 	ns = timecounter_cyc2time(&fep->tc, ts);
1163 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1164 
1165 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1166 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1167 }
1168 
1169 static void
1170 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1171 {
1172 	struct	fec_enet_private *fep;
1173 	struct bufdesc *bdp;
1174 	unsigned short status;
1175 	struct	sk_buff	*skb;
1176 	struct fec_enet_priv_tx_q *txq;
1177 	struct netdev_queue *nq;
1178 	int	index = 0;
1179 	int	entries_free;
1180 
1181 	fep = netdev_priv(ndev);
1182 
1183 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1184 
1185 	txq = fep->tx_queue[queue_id];
1186 	/* get next bdp of dirty_tx */
1187 	nq = netdev_get_tx_queue(ndev, queue_id);
1188 	bdp = txq->dirty_tx;
1189 
1190 	/* get next bdp of dirty_tx */
1191 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1192 
1193 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1194 
1195 		/* current queue is empty */
1196 		if (bdp == txq->cur_tx)
1197 			break;
1198 
1199 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1200 
1201 		skb = txq->tx_skbuff[index];
1202 		txq->tx_skbuff[index] = NULL;
1203 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1204 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1205 					bdp->cbd_datlen, DMA_TO_DEVICE);
1206 		bdp->cbd_bufaddr = 0;
1207 		if (!skb) {
1208 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1209 			continue;
1210 		}
1211 
1212 		/* Check for errors. */
1213 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1214 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1215 				   BD_ENET_TX_CSL)) {
1216 			ndev->stats.tx_errors++;
1217 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1218 				ndev->stats.tx_heartbeat_errors++;
1219 			if (status & BD_ENET_TX_LC)  /* Late collision */
1220 				ndev->stats.tx_window_errors++;
1221 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1222 				ndev->stats.tx_aborted_errors++;
1223 			if (status & BD_ENET_TX_UN)  /* Underrun */
1224 				ndev->stats.tx_fifo_errors++;
1225 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1226 				ndev->stats.tx_carrier_errors++;
1227 		} else {
1228 			ndev->stats.tx_packets++;
1229 			ndev->stats.tx_bytes += skb->len;
1230 		}
1231 
1232 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1233 			fep->bufdesc_ex) {
1234 			struct skb_shared_hwtstamps shhwtstamps;
1235 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1236 
1237 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1238 			skb_tstamp_tx(skb, &shhwtstamps);
1239 		}
1240 
1241 		/* Deferred means some collisions occurred during transmit,
1242 		 * but we eventually sent the packet OK.
1243 		 */
1244 		if (status & BD_ENET_TX_DEF)
1245 			ndev->stats.collisions++;
1246 
1247 		/* Free the sk buffer associated with this last transmit */
1248 		dev_kfree_skb_any(skb);
1249 
1250 		txq->dirty_tx = bdp;
1251 
1252 		/* Update pointer to next buffer descriptor to be transmitted */
1253 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1254 
1255 		/* Since we have freed up a buffer, the ring is no longer full
1256 		 */
1257 		if (netif_queue_stopped(ndev)) {
1258 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1259 			if (entries_free >= txq->tx_wake_threshold)
1260 				netif_tx_wake_queue(nq);
1261 		}
1262 	}
1263 
1264 	/* ERR006538: Keep the transmitter going */
1265 	if (bdp != txq->cur_tx &&
1266 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1267 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1268 }
1269 
1270 static void
1271 fec_enet_tx(struct net_device *ndev)
1272 {
1273 	struct fec_enet_private *fep = netdev_priv(ndev);
1274 	u16 queue_id;
1275 	/* First process class A queue, then Class B and Best Effort queue */
1276 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1277 		clear_bit(queue_id, &fep->work_tx);
1278 		fec_enet_tx_queue(ndev, queue_id);
1279 	}
1280 	return;
1281 }
1282 
1283 static int
1284 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1285 {
1286 	struct  fec_enet_private *fep = netdev_priv(ndev);
1287 	int off;
1288 
1289 	off = ((unsigned long)skb->data) & fep->rx_align;
1290 	if (off)
1291 		skb_reserve(skb, fep->rx_align + 1 - off);
1292 
1293 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1294 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1295 					  DMA_FROM_DEVICE);
1296 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1297 		if (net_ratelimit())
1298 			netdev_err(ndev, "Rx DMA memory map failed\n");
1299 		return -ENOMEM;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1306 			       struct bufdesc *bdp, u32 length, bool swap)
1307 {
1308 	struct  fec_enet_private *fep = netdev_priv(ndev);
1309 	struct sk_buff *new_skb;
1310 
1311 	if (length > fep->rx_copybreak)
1312 		return false;
1313 
1314 	new_skb = netdev_alloc_skb(ndev, length);
1315 	if (!new_skb)
1316 		return false;
1317 
1318 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1319 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1320 				DMA_FROM_DEVICE);
1321 	if (!swap)
1322 		memcpy(new_skb->data, (*skb)->data, length);
1323 	else
1324 		swap_buffer2(new_skb->data, (*skb)->data, length);
1325 	*skb = new_skb;
1326 
1327 	return true;
1328 }
1329 
1330 /* During a receive, the cur_rx points to the current incoming buffer.
1331  * When we update through the ring, if the next incoming buffer has
1332  * not been given to the system, we just set the empty indicator,
1333  * effectively tossing the packet.
1334  */
1335 static int
1336 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1337 {
1338 	struct fec_enet_private *fep = netdev_priv(ndev);
1339 	struct fec_enet_priv_rx_q *rxq;
1340 	struct bufdesc *bdp;
1341 	unsigned short status;
1342 	struct  sk_buff *skb_new = NULL;
1343 	struct  sk_buff *skb;
1344 	ushort	pkt_len;
1345 	__u8 *data;
1346 	int	pkt_received = 0;
1347 	struct	bufdesc_ex *ebdp = NULL;
1348 	bool	vlan_packet_rcvd = false;
1349 	u16	vlan_tag;
1350 	int	index = 0;
1351 	bool	is_copybreak;
1352 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1353 
1354 #ifdef CONFIG_M532x
1355 	flush_cache_all();
1356 #endif
1357 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1358 	rxq = fep->rx_queue[queue_id];
1359 
1360 	/* First, grab all of the stats for the incoming packet.
1361 	 * These get messed up if we get called due to a busy condition.
1362 	 */
1363 	bdp = rxq->cur_rx;
1364 
1365 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1366 
1367 		if (pkt_received >= budget)
1368 			break;
1369 		pkt_received++;
1370 
1371 		/* Since we have allocated space to hold a complete frame,
1372 		 * the last indicator should be set.
1373 		 */
1374 		if ((status & BD_ENET_RX_LAST) == 0)
1375 			netdev_err(ndev, "rcv is not +last\n");
1376 
1377 
1378 		/* Check for errors. */
1379 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1380 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1381 			ndev->stats.rx_errors++;
1382 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1383 				/* Frame too long or too short. */
1384 				ndev->stats.rx_length_errors++;
1385 			}
1386 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1387 				ndev->stats.rx_frame_errors++;
1388 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1389 				ndev->stats.rx_crc_errors++;
1390 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1391 				ndev->stats.rx_fifo_errors++;
1392 		}
1393 
1394 		/* Report late collisions as a frame error.
1395 		 * On this error, the BD is closed, but we don't know what we
1396 		 * have in the buffer.  So, just drop this frame on the floor.
1397 		 */
1398 		if (status & BD_ENET_RX_CL) {
1399 			ndev->stats.rx_errors++;
1400 			ndev->stats.rx_frame_errors++;
1401 			goto rx_processing_done;
1402 		}
1403 
1404 		/* Process the incoming frame. */
1405 		ndev->stats.rx_packets++;
1406 		pkt_len = bdp->cbd_datlen;
1407 		ndev->stats.rx_bytes += pkt_len;
1408 
1409 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1410 		skb = rxq->rx_skbuff[index];
1411 
1412 		/* The packet length includes FCS, but we don't want to
1413 		 * include that when passing upstream as it messes up
1414 		 * bridging applications.
1415 		 */
1416 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1417 						  need_swap);
1418 		if (!is_copybreak) {
1419 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1420 			if (unlikely(!skb_new)) {
1421 				ndev->stats.rx_dropped++;
1422 				goto rx_processing_done;
1423 			}
1424 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1425 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1426 					 DMA_FROM_DEVICE);
1427 		}
1428 
1429 		prefetch(skb->data - NET_IP_ALIGN);
1430 		skb_put(skb, pkt_len - 4);
1431 		data = skb->data;
1432 		if (!is_copybreak && need_swap)
1433 			swap_buffer(data, pkt_len);
1434 
1435 		/* Extract the enhanced buffer descriptor */
1436 		ebdp = NULL;
1437 		if (fep->bufdesc_ex)
1438 			ebdp = (struct bufdesc_ex *)bdp;
1439 
1440 		/* If this is a VLAN packet remove the VLAN Tag */
1441 		vlan_packet_rcvd = false;
1442 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1443 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1444 			/* Push and remove the vlan tag */
1445 			struct vlan_hdr *vlan_header =
1446 					(struct vlan_hdr *) (data + ETH_HLEN);
1447 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1448 
1449 			vlan_packet_rcvd = true;
1450 
1451 			skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1452 						       data, (2 * ETH_ALEN));
1453 			skb_pull(skb, VLAN_HLEN);
1454 		}
1455 
1456 		skb->protocol = eth_type_trans(skb, ndev);
1457 
1458 		/* Get receive timestamp from the skb */
1459 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1460 			fec_enet_hwtstamp(fep, ebdp->ts,
1461 					  skb_hwtstamps(skb));
1462 
1463 		if (fep->bufdesc_ex &&
1464 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1465 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1466 				/* don't check it */
1467 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1468 			} else {
1469 				skb_checksum_none_assert(skb);
1470 			}
1471 		}
1472 
1473 		/* Handle received VLAN packets */
1474 		if (vlan_packet_rcvd)
1475 			__vlan_hwaccel_put_tag(skb,
1476 					       htons(ETH_P_8021Q),
1477 					       vlan_tag);
1478 
1479 		napi_gro_receive(&fep->napi, skb);
1480 
1481 		if (is_copybreak) {
1482 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1483 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1484 						   DMA_FROM_DEVICE);
1485 		} else {
1486 			rxq->rx_skbuff[index] = skb_new;
1487 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1488 		}
1489 
1490 rx_processing_done:
1491 		/* Clear the status flags for this buffer */
1492 		status &= ~BD_ENET_RX_STATS;
1493 
1494 		/* Mark the buffer empty */
1495 		status |= BD_ENET_RX_EMPTY;
1496 		bdp->cbd_sc = status;
1497 
1498 		if (fep->bufdesc_ex) {
1499 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1500 
1501 			ebdp->cbd_esc = BD_ENET_RX_INT;
1502 			ebdp->cbd_prot = 0;
1503 			ebdp->cbd_bdu = 0;
1504 		}
1505 
1506 		/* Update BD pointer to next entry */
1507 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1508 
1509 		/* Doing this here will keep the FEC running while we process
1510 		 * incoming frames.  On a heavily loaded network, we should be
1511 		 * able to keep up at the expense of system resources.
1512 		 */
1513 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1514 	}
1515 	rxq->cur_rx = bdp;
1516 	return pkt_received;
1517 }
1518 
1519 static int
1520 fec_enet_rx(struct net_device *ndev, int budget)
1521 {
1522 	int     pkt_received = 0;
1523 	u16	queue_id;
1524 	struct fec_enet_private *fep = netdev_priv(ndev);
1525 
1526 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1527 		clear_bit(queue_id, &fep->work_rx);
1528 		pkt_received += fec_enet_rx_queue(ndev,
1529 					budget - pkt_received, queue_id);
1530 	}
1531 	return pkt_received;
1532 }
1533 
1534 static bool
1535 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1536 {
1537 	if (int_events == 0)
1538 		return false;
1539 
1540 	if (int_events & FEC_ENET_RXF)
1541 		fep->work_rx |= (1 << 2);
1542 	if (int_events & FEC_ENET_RXF_1)
1543 		fep->work_rx |= (1 << 0);
1544 	if (int_events & FEC_ENET_RXF_2)
1545 		fep->work_rx |= (1 << 1);
1546 
1547 	if (int_events & FEC_ENET_TXF)
1548 		fep->work_tx |= (1 << 2);
1549 	if (int_events & FEC_ENET_TXF_1)
1550 		fep->work_tx |= (1 << 0);
1551 	if (int_events & FEC_ENET_TXF_2)
1552 		fep->work_tx |= (1 << 1);
1553 
1554 	return true;
1555 }
1556 
1557 static irqreturn_t
1558 fec_enet_interrupt(int irq, void *dev_id)
1559 {
1560 	struct net_device *ndev = dev_id;
1561 	struct fec_enet_private *fep = netdev_priv(ndev);
1562 	uint int_events;
1563 	irqreturn_t ret = IRQ_NONE;
1564 
1565 	int_events = readl(fep->hwp + FEC_IEVENT);
1566 	writel(int_events, fep->hwp + FEC_IEVENT);
1567 	fec_enet_collect_events(fep, int_events);
1568 
1569 	if (fep->work_tx || fep->work_rx) {
1570 		ret = IRQ_HANDLED;
1571 
1572 		if (napi_schedule_prep(&fep->napi)) {
1573 			/* Disable the NAPI interrupts */
1574 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1575 			__napi_schedule(&fep->napi);
1576 		}
1577 	}
1578 
1579 	if (int_events & FEC_ENET_MII) {
1580 		ret = IRQ_HANDLED;
1581 		complete(&fep->mdio_done);
1582 	}
1583 
1584 	if (fep->ptp_clock)
1585 		fec_ptp_check_pps_event(fep);
1586 
1587 	return ret;
1588 }
1589 
1590 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1591 {
1592 	struct net_device *ndev = napi->dev;
1593 	struct fec_enet_private *fep = netdev_priv(ndev);
1594 	int pkts;
1595 
1596 	pkts = fec_enet_rx(ndev, budget);
1597 
1598 	fec_enet_tx(ndev);
1599 
1600 	if (pkts < budget) {
1601 		napi_complete(napi);
1602 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1603 	}
1604 	return pkts;
1605 }
1606 
1607 /* ------------------------------------------------------------------------- */
1608 static void fec_get_mac(struct net_device *ndev)
1609 {
1610 	struct fec_enet_private *fep = netdev_priv(ndev);
1611 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1612 	unsigned char *iap, tmpaddr[ETH_ALEN];
1613 
1614 	/*
1615 	 * try to get mac address in following order:
1616 	 *
1617 	 * 1) module parameter via kernel command line in form
1618 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1619 	 */
1620 	iap = macaddr;
1621 
1622 	/*
1623 	 * 2) from device tree data
1624 	 */
1625 	if (!is_valid_ether_addr(iap)) {
1626 		struct device_node *np = fep->pdev->dev.of_node;
1627 		if (np) {
1628 			const char *mac = of_get_mac_address(np);
1629 			if (mac)
1630 				iap = (unsigned char *) mac;
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * 3) from flash or fuse (via platform data)
1636 	 */
1637 	if (!is_valid_ether_addr(iap)) {
1638 #ifdef CONFIG_M5272
1639 		if (FEC_FLASHMAC)
1640 			iap = (unsigned char *)FEC_FLASHMAC;
1641 #else
1642 		if (pdata)
1643 			iap = (unsigned char *)&pdata->mac;
1644 #endif
1645 	}
1646 
1647 	/*
1648 	 * 4) FEC mac registers set by bootloader
1649 	 */
1650 	if (!is_valid_ether_addr(iap)) {
1651 		*((__be32 *) &tmpaddr[0]) =
1652 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1653 		*((__be16 *) &tmpaddr[4]) =
1654 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1655 		iap = &tmpaddr[0];
1656 	}
1657 
1658 	/*
1659 	 * 5) random mac address
1660 	 */
1661 	if (!is_valid_ether_addr(iap)) {
1662 		/* Report it and use a random ethernet address instead */
1663 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1664 		eth_hw_addr_random(ndev);
1665 		netdev_info(ndev, "Using random MAC address: %pM\n",
1666 			    ndev->dev_addr);
1667 		return;
1668 	}
1669 
1670 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1671 
1672 	/* Adjust MAC if using macaddr */
1673 	if (iap == macaddr)
1674 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1675 }
1676 
1677 /* ------------------------------------------------------------------------- */
1678 
1679 /*
1680  * Phy section
1681  */
1682 static void fec_enet_adjust_link(struct net_device *ndev)
1683 {
1684 	struct fec_enet_private *fep = netdev_priv(ndev);
1685 	struct phy_device *phy_dev = fep->phy_dev;
1686 	int status_change = 0;
1687 
1688 	/* Prevent a state halted on mii error */
1689 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1690 		phy_dev->state = PHY_RESUMING;
1691 		return;
1692 	}
1693 
1694 	/*
1695 	 * If the netdev is down, or is going down, we're not interested
1696 	 * in link state events, so just mark our idea of the link as down
1697 	 * and ignore the event.
1698 	 */
1699 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1700 		fep->link = 0;
1701 	} else if (phy_dev->link) {
1702 		if (!fep->link) {
1703 			fep->link = phy_dev->link;
1704 			status_change = 1;
1705 		}
1706 
1707 		if (fep->full_duplex != phy_dev->duplex) {
1708 			fep->full_duplex = phy_dev->duplex;
1709 			status_change = 1;
1710 		}
1711 
1712 		if (phy_dev->speed != fep->speed) {
1713 			fep->speed = phy_dev->speed;
1714 			status_change = 1;
1715 		}
1716 
1717 		/* if any of the above changed restart the FEC */
1718 		if (status_change) {
1719 			napi_disable(&fep->napi);
1720 			netif_tx_lock_bh(ndev);
1721 			fec_restart(ndev);
1722 			netif_wake_queue(ndev);
1723 			netif_tx_unlock_bh(ndev);
1724 			napi_enable(&fep->napi);
1725 		}
1726 	} else {
1727 		if (fep->link) {
1728 			napi_disable(&fep->napi);
1729 			netif_tx_lock_bh(ndev);
1730 			fec_stop(ndev);
1731 			netif_tx_unlock_bh(ndev);
1732 			napi_enable(&fep->napi);
1733 			fep->link = phy_dev->link;
1734 			status_change = 1;
1735 		}
1736 	}
1737 
1738 	if (status_change)
1739 		phy_print_status(phy_dev);
1740 }
1741 
1742 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1743 {
1744 	struct fec_enet_private *fep = bus->priv;
1745 	unsigned long time_left;
1746 
1747 	fep->mii_timeout = 0;
1748 	init_completion(&fep->mdio_done);
1749 
1750 	/* start a read op */
1751 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1752 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1753 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1754 
1755 	/* wait for end of transfer */
1756 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1757 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1758 	if (time_left == 0) {
1759 		fep->mii_timeout = 1;
1760 		netdev_err(fep->netdev, "MDIO read timeout\n");
1761 		return -ETIMEDOUT;
1762 	}
1763 
1764 	/* return value */
1765 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1766 }
1767 
1768 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1769 			   u16 value)
1770 {
1771 	struct fec_enet_private *fep = bus->priv;
1772 	unsigned long time_left;
1773 
1774 	fep->mii_timeout = 0;
1775 	init_completion(&fep->mdio_done);
1776 
1777 	/* start a write op */
1778 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1779 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1780 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1781 		fep->hwp + FEC_MII_DATA);
1782 
1783 	/* wait for end of transfer */
1784 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1785 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1786 	if (time_left == 0) {
1787 		fep->mii_timeout = 1;
1788 		netdev_err(fep->netdev, "MDIO write timeout\n");
1789 		return -ETIMEDOUT;
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1796 {
1797 	struct fec_enet_private *fep = netdev_priv(ndev);
1798 	int ret;
1799 
1800 	if (enable) {
1801 		ret = clk_prepare_enable(fep->clk_ahb);
1802 		if (ret)
1803 			return ret;
1804 		ret = clk_prepare_enable(fep->clk_ipg);
1805 		if (ret)
1806 			goto failed_clk_ipg;
1807 		if (fep->clk_enet_out) {
1808 			ret = clk_prepare_enable(fep->clk_enet_out);
1809 			if (ret)
1810 				goto failed_clk_enet_out;
1811 		}
1812 		if (fep->clk_ptp) {
1813 			mutex_lock(&fep->ptp_clk_mutex);
1814 			ret = clk_prepare_enable(fep->clk_ptp);
1815 			if (ret) {
1816 				mutex_unlock(&fep->ptp_clk_mutex);
1817 				goto failed_clk_ptp;
1818 			} else {
1819 				fep->ptp_clk_on = true;
1820 			}
1821 			mutex_unlock(&fep->ptp_clk_mutex);
1822 		}
1823 		if (fep->clk_ref) {
1824 			ret = clk_prepare_enable(fep->clk_ref);
1825 			if (ret)
1826 				goto failed_clk_ref;
1827 		}
1828 	} else {
1829 		clk_disable_unprepare(fep->clk_ahb);
1830 		clk_disable_unprepare(fep->clk_ipg);
1831 		if (fep->clk_enet_out)
1832 			clk_disable_unprepare(fep->clk_enet_out);
1833 		if (fep->clk_ptp) {
1834 			mutex_lock(&fep->ptp_clk_mutex);
1835 			clk_disable_unprepare(fep->clk_ptp);
1836 			fep->ptp_clk_on = false;
1837 			mutex_unlock(&fep->ptp_clk_mutex);
1838 		}
1839 		if (fep->clk_ref)
1840 			clk_disable_unprepare(fep->clk_ref);
1841 	}
1842 
1843 	return 0;
1844 
1845 failed_clk_ref:
1846 	if (fep->clk_ref)
1847 		clk_disable_unprepare(fep->clk_ref);
1848 failed_clk_ptp:
1849 	if (fep->clk_enet_out)
1850 		clk_disable_unprepare(fep->clk_enet_out);
1851 failed_clk_enet_out:
1852 		clk_disable_unprepare(fep->clk_ipg);
1853 failed_clk_ipg:
1854 		clk_disable_unprepare(fep->clk_ahb);
1855 
1856 	return ret;
1857 }
1858 
1859 static int fec_enet_mii_probe(struct net_device *ndev)
1860 {
1861 	struct fec_enet_private *fep = netdev_priv(ndev);
1862 	struct phy_device *phy_dev = NULL;
1863 	char mdio_bus_id[MII_BUS_ID_SIZE];
1864 	char phy_name[MII_BUS_ID_SIZE + 3];
1865 	int phy_id;
1866 	int dev_id = fep->dev_id;
1867 
1868 	fep->phy_dev = NULL;
1869 
1870 	if (fep->phy_node) {
1871 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1872 					 &fec_enet_adjust_link, 0,
1873 					 fep->phy_interface);
1874 		if (!phy_dev)
1875 			return -ENODEV;
1876 	} else {
1877 		/* check for attached phy */
1878 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1879 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1880 				continue;
1881 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1882 				continue;
1883 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1884 				continue;
1885 			if (dev_id--)
1886 				continue;
1887 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1888 			break;
1889 		}
1890 
1891 		if (phy_id >= PHY_MAX_ADDR) {
1892 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1893 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1894 			phy_id = 0;
1895 		}
1896 
1897 		snprintf(phy_name, sizeof(phy_name),
1898 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1899 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1900 				      fep->phy_interface);
1901 	}
1902 
1903 	if (IS_ERR(phy_dev)) {
1904 		netdev_err(ndev, "could not attach to PHY\n");
1905 		return PTR_ERR(phy_dev);
1906 	}
1907 
1908 	/* mask with MAC supported features */
1909 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1910 		phy_dev->supported &= PHY_GBIT_FEATURES;
1911 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1912 #if !defined(CONFIG_M5272)
1913 		phy_dev->supported |= SUPPORTED_Pause;
1914 #endif
1915 	}
1916 	else
1917 		phy_dev->supported &= PHY_BASIC_FEATURES;
1918 
1919 	phy_dev->advertising = phy_dev->supported;
1920 
1921 	fep->phy_dev = phy_dev;
1922 	fep->link = 0;
1923 	fep->full_duplex = 0;
1924 
1925 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1926 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1927 		    fep->phy_dev->irq);
1928 
1929 	return 0;
1930 }
1931 
1932 static int fec_enet_mii_init(struct platform_device *pdev)
1933 {
1934 	static struct mii_bus *fec0_mii_bus;
1935 	struct net_device *ndev = platform_get_drvdata(pdev);
1936 	struct fec_enet_private *fep = netdev_priv(ndev);
1937 	struct device_node *node;
1938 	int err = -ENXIO, i;
1939 
1940 	/*
1941 	 * The i.MX28 dual fec interfaces are not equal.
1942 	 * Here are the differences:
1943 	 *
1944 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1945 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1946 	 *  - external phys can only be configured by fec0
1947 	 *
1948 	 * That is to say fec1 can not work independently. It only works
1949 	 * when fec0 is working. The reason behind this design is that the
1950 	 * second interface is added primarily for Switch mode.
1951 	 *
1952 	 * Because of the last point above, both phys are attached on fec0
1953 	 * mdio interface in board design, and need to be configured by
1954 	 * fec0 mii_bus.
1955 	 */
1956 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1957 		/* fec1 uses fec0 mii_bus */
1958 		if (mii_cnt && fec0_mii_bus) {
1959 			fep->mii_bus = fec0_mii_bus;
1960 			mii_cnt++;
1961 			return 0;
1962 		}
1963 		return -ENOENT;
1964 	}
1965 
1966 	fep->mii_timeout = 0;
1967 
1968 	/*
1969 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1970 	 *
1971 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1972 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1973 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1974 	 * document.
1975 	 */
1976 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1977 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1978 		fep->phy_speed--;
1979 	fep->phy_speed <<= 1;
1980 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1981 
1982 	fep->mii_bus = mdiobus_alloc();
1983 	if (fep->mii_bus == NULL) {
1984 		err = -ENOMEM;
1985 		goto err_out;
1986 	}
1987 
1988 	fep->mii_bus->name = "fec_enet_mii_bus";
1989 	fep->mii_bus->read = fec_enet_mdio_read;
1990 	fep->mii_bus->write = fec_enet_mdio_write;
1991 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1992 		pdev->name, fep->dev_id + 1);
1993 	fep->mii_bus->priv = fep;
1994 	fep->mii_bus->parent = &pdev->dev;
1995 
1996 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1997 	if (!fep->mii_bus->irq) {
1998 		err = -ENOMEM;
1999 		goto err_out_free_mdiobus;
2000 	}
2001 
2002 	for (i = 0; i < PHY_MAX_ADDR; i++)
2003 		fep->mii_bus->irq[i] = PHY_POLL;
2004 
2005 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2006 	if (node) {
2007 		err = of_mdiobus_register(fep->mii_bus, node);
2008 		of_node_put(node);
2009 	} else {
2010 		err = mdiobus_register(fep->mii_bus);
2011 	}
2012 
2013 	if (err)
2014 		goto err_out_free_mdio_irq;
2015 
2016 	mii_cnt++;
2017 
2018 	/* save fec0 mii_bus */
2019 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2020 		fec0_mii_bus = fep->mii_bus;
2021 
2022 	return 0;
2023 
2024 err_out_free_mdio_irq:
2025 	kfree(fep->mii_bus->irq);
2026 err_out_free_mdiobus:
2027 	mdiobus_free(fep->mii_bus);
2028 err_out:
2029 	return err;
2030 }
2031 
2032 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2033 {
2034 	if (--mii_cnt == 0) {
2035 		mdiobus_unregister(fep->mii_bus);
2036 		kfree(fep->mii_bus->irq);
2037 		mdiobus_free(fep->mii_bus);
2038 	}
2039 }
2040 
2041 static int fec_enet_get_settings(struct net_device *ndev,
2042 				  struct ethtool_cmd *cmd)
2043 {
2044 	struct fec_enet_private *fep = netdev_priv(ndev);
2045 	struct phy_device *phydev = fep->phy_dev;
2046 
2047 	if (!phydev)
2048 		return -ENODEV;
2049 
2050 	return phy_ethtool_gset(phydev, cmd);
2051 }
2052 
2053 static int fec_enet_set_settings(struct net_device *ndev,
2054 				 struct ethtool_cmd *cmd)
2055 {
2056 	struct fec_enet_private *fep = netdev_priv(ndev);
2057 	struct phy_device *phydev = fep->phy_dev;
2058 
2059 	if (!phydev)
2060 		return -ENODEV;
2061 
2062 	return phy_ethtool_sset(phydev, cmd);
2063 }
2064 
2065 static void fec_enet_get_drvinfo(struct net_device *ndev,
2066 				 struct ethtool_drvinfo *info)
2067 {
2068 	struct fec_enet_private *fep = netdev_priv(ndev);
2069 
2070 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2071 		sizeof(info->driver));
2072 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2073 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2074 }
2075 
2076 static int fec_enet_get_ts_info(struct net_device *ndev,
2077 				struct ethtool_ts_info *info)
2078 {
2079 	struct fec_enet_private *fep = netdev_priv(ndev);
2080 
2081 	if (fep->bufdesc_ex) {
2082 
2083 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2084 					SOF_TIMESTAMPING_RX_SOFTWARE |
2085 					SOF_TIMESTAMPING_SOFTWARE |
2086 					SOF_TIMESTAMPING_TX_HARDWARE |
2087 					SOF_TIMESTAMPING_RX_HARDWARE |
2088 					SOF_TIMESTAMPING_RAW_HARDWARE;
2089 		if (fep->ptp_clock)
2090 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2091 		else
2092 			info->phc_index = -1;
2093 
2094 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2095 				 (1 << HWTSTAMP_TX_ON);
2096 
2097 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2098 				   (1 << HWTSTAMP_FILTER_ALL);
2099 		return 0;
2100 	} else {
2101 		return ethtool_op_get_ts_info(ndev, info);
2102 	}
2103 }
2104 
2105 #if !defined(CONFIG_M5272)
2106 
2107 static void fec_enet_get_pauseparam(struct net_device *ndev,
2108 				    struct ethtool_pauseparam *pause)
2109 {
2110 	struct fec_enet_private *fep = netdev_priv(ndev);
2111 
2112 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2113 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2114 	pause->rx_pause = pause->tx_pause;
2115 }
2116 
2117 static int fec_enet_set_pauseparam(struct net_device *ndev,
2118 				   struct ethtool_pauseparam *pause)
2119 {
2120 	struct fec_enet_private *fep = netdev_priv(ndev);
2121 
2122 	if (!fep->phy_dev)
2123 		return -ENODEV;
2124 
2125 	if (pause->tx_pause != pause->rx_pause) {
2126 		netdev_info(ndev,
2127 			"hardware only support enable/disable both tx and rx");
2128 		return -EINVAL;
2129 	}
2130 
2131 	fep->pause_flag = 0;
2132 
2133 	/* tx pause must be same as rx pause */
2134 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2135 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2136 
2137 	if (pause->rx_pause || pause->autoneg) {
2138 		fep->phy_dev->supported |= ADVERTISED_Pause;
2139 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2140 	} else {
2141 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2142 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2143 	}
2144 
2145 	if (pause->autoneg) {
2146 		if (netif_running(ndev))
2147 			fec_stop(ndev);
2148 		phy_start_aneg(fep->phy_dev);
2149 	}
2150 	if (netif_running(ndev)) {
2151 		napi_disable(&fep->napi);
2152 		netif_tx_lock_bh(ndev);
2153 		fec_restart(ndev);
2154 		netif_wake_queue(ndev);
2155 		netif_tx_unlock_bh(ndev);
2156 		napi_enable(&fep->napi);
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 static const struct fec_stat {
2163 	char name[ETH_GSTRING_LEN];
2164 	u16 offset;
2165 } fec_stats[] = {
2166 	/* RMON TX */
2167 	{ "tx_dropped", RMON_T_DROP },
2168 	{ "tx_packets", RMON_T_PACKETS },
2169 	{ "tx_broadcast", RMON_T_BC_PKT },
2170 	{ "tx_multicast", RMON_T_MC_PKT },
2171 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2172 	{ "tx_undersize", RMON_T_UNDERSIZE },
2173 	{ "tx_oversize", RMON_T_OVERSIZE },
2174 	{ "tx_fragment", RMON_T_FRAG },
2175 	{ "tx_jabber", RMON_T_JAB },
2176 	{ "tx_collision", RMON_T_COL },
2177 	{ "tx_64byte", RMON_T_P64 },
2178 	{ "tx_65to127byte", RMON_T_P65TO127 },
2179 	{ "tx_128to255byte", RMON_T_P128TO255 },
2180 	{ "tx_256to511byte", RMON_T_P256TO511 },
2181 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2182 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2183 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2184 	{ "tx_octets", RMON_T_OCTETS },
2185 
2186 	/* IEEE TX */
2187 	{ "IEEE_tx_drop", IEEE_T_DROP },
2188 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2189 	{ "IEEE_tx_1col", IEEE_T_1COL },
2190 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2191 	{ "IEEE_tx_def", IEEE_T_DEF },
2192 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2193 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2194 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2195 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2196 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2197 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2198 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2199 
2200 	/* RMON RX */
2201 	{ "rx_packets", RMON_R_PACKETS },
2202 	{ "rx_broadcast", RMON_R_BC_PKT },
2203 	{ "rx_multicast", RMON_R_MC_PKT },
2204 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2205 	{ "rx_undersize", RMON_R_UNDERSIZE },
2206 	{ "rx_oversize", RMON_R_OVERSIZE },
2207 	{ "rx_fragment", RMON_R_FRAG },
2208 	{ "rx_jabber", RMON_R_JAB },
2209 	{ "rx_64byte", RMON_R_P64 },
2210 	{ "rx_65to127byte", RMON_R_P65TO127 },
2211 	{ "rx_128to255byte", RMON_R_P128TO255 },
2212 	{ "rx_256to511byte", RMON_R_P256TO511 },
2213 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2214 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2215 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2216 	{ "rx_octets", RMON_R_OCTETS },
2217 
2218 	/* IEEE RX */
2219 	{ "IEEE_rx_drop", IEEE_R_DROP },
2220 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2221 	{ "IEEE_rx_crc", IEEE_R_CRC },
2222 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2223 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2224 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2225 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2226 };
2227 
2228 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2229 	struct ethtool_stats *stats, u64 *data)
2230 {
2231 	struct fec_enet_private *fep = netdev_priv(dev);
2232 	int i;
2233 
2234 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2235 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2236 }
2237 
2238 static void fec_enet_get_strings(struct net_device *netdev,
2239 	u32 stringset, u8 *data)
2240 {
2241 	int i;
2242 	switch (stringset) {
2243 	case ETH_SS_STATS:
2244 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2245 			memcpy(data + i * ETH_GSTRING_LEN,
2246 				fec_stats[i].name, ETH_GSTRING_LEN);
2247 		break;
2248 	}
2249 }
2250 
2251 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2252 {
2253 	switch (sset) {
2254 	case ETH_SS_STATS:
2255 		return ARRAY_SIZE(fec_stats);
2256 	default:
2257 		return -EOPNOTSUPP;
2258 	}
2259 }
2260 #endif /* !defined(CONFIG_M5272) */
2261 
2262 static int fec_enet_nway_reset(struct net_device *dev)
2263 {
2264 	struct fec_enet_private *fep = netdev_priv(dev);
2265 	struct phy_device *phydev = fep->phy_dev;
2266 
2267 	if (!phydev)
2268 		return -ENODEV;
2269 
2270 	return genphy_restart_aneg(phydev);
2271 }
2272 
2273 /* ITR clock source is enet system clock (clk_ahb).
2274  * TCTT unit is cycle_ns * 64 cycle
2275  * So, the ICTT value = X us / (cycle_ns * 64)
2276  */
2277 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2278 {
2279 	struct fec_enet_private *fep = netdev_priv(ndev);
2280 
2281 	return us * (fep->itr_clk_rate / 64000) / 1000;
2282 }
2283 
2284 /* Set threshold for interrupt coalescing */
2285 static void fec_enet_itr_coal_set(struct net_device *ndev)
2286 {
2287 	struct fec_enet_private *fep = netdev_priv(ndev);
2288 	int rx_itr, tx_itr;
2289 
2290 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2291 		return;
2292 
2293 	/* Must be greater than zero to avoid unpredictable behavior */
2294 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2295 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2296 		return;
2297 
2298 	/* Select enet system clock as Interrupt Coalescing
2299 	 * timer Clock Source
2300 	 */
2301 	rx_itr = FEC_ITR_CLK_SEL;
2302 	tx_itr = FEC_ITR_CLK_SEL;
2303 
2304 	/* set ICFT and ICTT */
2305 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2306 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2307 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2308 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2309 
2310 	rx_itr |= FEC_ITR_EN;
2311 	tx_itr |= FEC_ITR_EN;
2312 
2313 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2314 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2315 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2316 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2317 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2318 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2319 }
2320 
2321 static int
2322 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2323 {
2324 	struct fec_enet_private *fep = netdev_priv(ndev);
2325 
2326 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2327 		return -EOPNOTSUPP;
2328 
2329 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2330 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2331 
2332 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2333 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2334 
2335 	return 0;
2336 }
2337 
2338 static int
2339 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2340 {
2341 	struct fec_enet_private *fep = netdev_priv(ndev);
2342 	unsigned int cycle;
2343 
2344 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2345 		return -EOPNOTSUPP;
2346 
2347 	if (ec->rx_max_coalesced_frames > 255) {
2348 		pr_err("Rx coalesced frames exceed hardware limiation");
2349 		return -EINVAL;
2350 	}
2351 
2352 	if (ec->tx_max_coalesced_frames > 255) {
2353 		pr_err("Tx coalesced frame exceed hardware limiation");
2354 		return -EINVAL;
2355 	}
2356 
2357 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2358 	if (cycle > 0xFFFF) {
2359 		pr_err("Rx coalesed usec exceeed hardware limiation");
2360 		return -EINVAL;
2361 	}
2362 
2363 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2364 	if (cycle > 0xFFFF) {
2365 		pr_err("Rx coalesed usec exceeed hardware limiation");
2366 		return -EINVAL;
2367 	}
2368 
2369 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2370 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2371 
2372 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2373 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2374 
2375 	fec_enet_itr_coal_set(ndev);
2376 
2377 	return 0;
2378 }
2379 
2380 static void fec_enet_itr_coal_init(struct net_device *ndev)
2381 {
2382 	struct ethtool_coalesce ec;
2383 
2384 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2385 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2386 
2387 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2388 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2389 
2390 	fec_enet_set_coalesce(ndev, &ec);
2391 }
2392 
2393 static int fec_enet_get_tunable(struct net_device *netdev,
2394 				const struct ethtool_tunable *tuna,
2395 				void *data)
2396 {
2397 	struct fec_enet_private *fep = netdev_priv(netdev);
2398 	int ret = 0;
2399 
2400 	switch (tuna->id) {
2401 	case ETHTOOL_RX_COPYBREAK:
2402 		*(u32 *)data = fep->rx_copybreak;
2403 		break;
2404 	default:
2405 		ret = -EINVAL;
2406 		break;
2407 	}
2408 
2409 	return ret;
2410 }
2411 
2412 static int fec_enet_set_tunable(struct net_device *netdev,
2413 				const struct ethtool_tunable *tuna,
2414 				const void *data)
2415 {
2416 	struct fec_enet_private *fep = netdev_priv(netdev);
2417 	int ret = 0;
2418 
2419 	switch (tuna->id) {
2420 	case ETHTOOL_RX_COPYBREAK:
2421 		fep->rx_copybreak = *(u32 *)data;
2422 		break;
2423 	default:
2424 		ret = -EINVAL;
2425 		break;
2426 	}
2427 
2428 	return ret;
2429 }
2430 
2431 static const struct ethtool_ops fec_enet_ethtool_ops = {
2432 	.get_settings		= fec_enet_get_settings,
2433 	.set_settings		= fec_enet_set_settings,
2434 	.get_drvinfo		= fec_enet_get_drvinfo,
2435 	.nway_reset		= fec_enet_nway_reset,
2436 	.get_link		= ethtool_op_get_link,
2437 	.get_coalesce		= fec_enet_get_coalesce,
2438 	.set_coalesce		= fec_enet_set_coalesce,
2439 #ifndef CONFIG_M5272
2440 	.get_pauseparam		= fec_enet_get_pauseparam,
2441 	.set_pauseparam		= fec_enet_set_pauseparam,
2442 	.get_strings		= fec_enet_get_strings,
2443 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2444 	.get_sset_count		= fec_enet_get_sset_count,
2445 #endif
2446 	.get_ts_info		= fec_enet_get_ts_info,
2447 	.get_tunable		= fec_enet_get_tunable,
2448 	.set_tunable		= fec_enet_set_tunable,
2449 };
2450 
2451 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2452 {
2453 	struct fec_enet_private *fep = netdev_priv(ndev);
2454 	struct phy_device *phydev = fep->phy_dev;
2455 
2456 	if (!netif_running(ndev))
2457 		return -EINVAL;
2458 
2459 	if (!phydev)
2460 		return -ENODEV;
2461 
2462 	if (fep->bufdesc_ex) {
2463 		if (cmd == SIOCSHWTSTAMP)
2464 			return fec_ptp_set(ndev, rq);
2465 		if (cmd == SIOCGHWTSTAMP)
2466 			return fec_ptp_get(ndev, rq);
2467 	}
2468 
2469 	return phy_mii_ioctl(phydev, rq, cmd);
2470 }
2471 
2472 static void fec_enet_free_buffers(struct net_device *ndev)
2473 {
2474 	struct fec_enet_private *fep = netdev_priv(ndev);
2475 	unsigned int i;
2476 	struct sk_buff *skb;
2477 	struct bufdesc	*bdp;
2478 	struct fec_enet_priv_tx_q *txq;
2479 	struct fec_enet_priv_rx_q *rxq;
2480 	unsigned int q;
2481 
2482 	for (q = 0; q < fep->num_rx_queues; q++) {
2483 		rxq = fep->rx_queue[q];
2484 		bdp = rxq->rx_bd_base;
2485 		for (i = 0; i < rxq->rx_ring_size; i++) {
2486 			skb = rxq->rx_skbuff[i];
2487 			rxq->rx_skbuff[i] = NULL;
2488 			if (skb) {
2489 				dma_unmap_single(&fep->pdev->dev,
2490 						 bdp->cbd_bufaddr,
2491 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2492 						 DMA_FROM_DEVICE);
2493 				dev_kfree_skb(skb);
2494 			}
2495 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2496 		}
2497 	}
2498 
2499 	for (q = 0; q < fep->num_tx_queues; q++) {
2500 		txq = fep->tx_queue[q];
2501 		bdp = txq->tx_bd_base;
2502 		for (i = 0; i < txq->tx_ring_size; i++) {
2503 			kfree(txq->tx_bounce[i]);
2504 			txq->tx_bounce[i] = NULL;
2505 			skb = txq->tx_skbuff[i];
2506 			txq->tx_skbuff[i] = NULL;
2507 			dev_kfree_skb(skb);
2508 		}
2509 	}
2510 }
2511 
2512 static void fec_enet_free_queue(struct net_device *ndev)
2513 {
2514 	struct fec_enet_private *fep = netdev_priv(ndev);
2515 	int i;
2516 	struct fec_enet_priv_tx_q *txq;
2517 
2518 	for (i = 0; i < fep->num_tx_queues; i++)
2519 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2520 			txq = fep->tx_queue[i];
2521 			dma_free_coherent(NULL,
2522 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2523 					  txq->tso_hdrs,
2524 					  txq->tso_hdrs_dma);
2525 		}
2526 
2527 	for (i = 0; i < fep->num_rx_queues; i++)
2528 		if (fep->rx_queue[i])
2529 			kfree(fep->rx_queue[i]);
2530 
2531 	for (i = 0; i < fep->num_tx_queues; i++)
2532 		if (fep->tx_queue[i])
2533 			kfree(fep->tx_queue[i]);
2534 }
2535 
2536 static int fec_enet_alloc_queue(struct net_device *ndev)
2537 {
2538 	struct fec_enet_private *fep = netdev_priv(ndev);
2539 	int i;
2540 	int ret = 0;
2541 	struct fec_enet_priv_tx_q *txq;
2542 
2543 	for (i = 0; i < fep->num_tx_queues; i++) {
2544 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2545 		if (!txq) {
2546 			ret = -ENOMEM;
2547 			goto alloc_failed;
2548 		}
2549 
2550 		fep->tx_queue[i] = txq;
2551 		txq->tx_ring_size = TX_RING_SIZE;
2552 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2553 
2554 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2555 		txq->tx_wake_threshold =
2556 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2557 
2558 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2559 					txq->tx_ring_size * TSO_HEADER_SIZE,
2560 					&txq->tso_hdrs_dma,
2561 					GFP_KERNEL);
2562 		if (!txq->tso_hdrs) {
2563 			ret = -ENOMEM;
2564 			goto alloc_failed;
2565 		}
2566 	}
2567 
2568 	for (i = 0; i < fep->num_rx_queues; i++) {
2569 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2570 					   GFP_KERNEL);
2571 		if (!fep->rx_queue[i]) {
2572 			ret = -ENOMEM;
2573 			goto alloc_failed;
2574 		}
2575 
2576 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2577 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2578 	}
2579 	return ret;
2580 
2581 alloc_failed:
2582 	fec_enet_free_queue(ndev);
2583 	return ret;
2584 }
2585 
2586 static int
2587 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2588 {
2589 	struct fec_enet_private *fep = netdev_priv(ndev);
2590 	unsigned int i;
2591 	struct sk_buff *skb;
2592 	struct bufdesc	*bdp;
2593 	struct fec_enet_priv_rx_q *rxq;
2594 
2595 	rxq = fep->rx_queue[queue];
2596 	bdp = rxq->rx_bd_base;
2597 	for (i = 0; i < rxq->rx_ring_size; i++) {
2598 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2599 		if (!skb)
2600 			goto err_alloc;
2601 
2602 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2603 			dev_kfree_skb(skb);
2604 			goto err_alloc;
2605 		}
2606 
2607 		rxq->rx_skbuff[i] = skb;
2608 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2609 
2610 		if (fep->bufdesc_ex) {
2611 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2612 			ebdp->cbd_esc = BD_ENET_RX_INT;
2613 		}
2614 
2615 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2616 	}
2617 
2618 	/* Set the last buffer to wrap. */
2619 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2620 	bdp->cbd_sc |= BD_SC_WRAP;
2621 	return 0;
2622 
2623  err_alloc:
2624 	fec_enet_free_buffers(ndev);
2625 	return -ENOMEM;
2626 }
2627 
2628 static int
2629 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2630 {
2631 	struct fec_enet_private *fep = netdev_priv(ndev);
2632 	unsigned int i;
2633 	struct bufdesc  *bdp;
2634 	struct fec_enet_priv_tx_q *txq;
2635 
2636 	txq = fep->tx_queue[queue];
2637 	bdp = txq->tx_bd_base;
2638 	for (i = 0; i < txq->tx_ring_size; i++) {
2639 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2640 		if (!txq->tx_bounce[i])
2641 			goto err_alloc;
2642 
2643 		bdp->cbd_sc = 0;
2644 		bdp->cbd_bufaddr = 0;
2645 
2646 		if (fep->bufdesc_ex) {
2647 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2648 			ebdp->cbd_esc = BD_ENET_TX_INT;
2649 		}
2650 
2651 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2652 	}
2653 
2654 	/* Set the last buffer to wrap. */
2655 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2656 	bdp->cbd_sc |= BD_SC_WRAP;
2657 
2658 	return 0;
2659 
2660  err_alloc:
2661 	fec_enet_free_buffers(ndev);
2662 	return -ENOMEM;
2663 }
2664 
2665 static int fec_enet_alloc_buffers(struct net_device *ndev)
2666 {
2667 	struct fec_enet_private *fep = netdev_priv(ndev);
2668 	unsigned int i;
2669 
2670 	for (i = 0; i < fep->num_rx_queues; i++)
2671 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2672 			return -ENOMEM;
2673 
2674 	for (i = 0; i < fep->num_tx_queues; i++)
2675 		if (fec_enet_alloc_txq_buffers(ndev, i))
2676 			return -ENOMEM;
2677 	return 0;
2678 }
2679 
2680 static int
2681 fec_enet_open(struct net_device *ndev)
2682 {
2683 	struct fec_enet_private *fep = netdev_priv(ndev);
2684 	int ret;
2685 
2686 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2687 	ret = fec_enet_clk_enable(ndev, true);
2688 	if (ret)
2689 		return ret;
2690 
2691 	/* I should reset the ring buffers here, but I don't yet know
2692 	 * a simple way to do that.
2693 	 */
2694 
2695 	ret = fec_enet_alloc_buffers(ndev);
2696 	if (ret)
2697 		goto err_enet_alloc;
2698 
2699 	/* Probe and connect to PHY when open the interface */
2700 	ret = fec_enet_mii_probe(ndev);
2701 	if (ret)
2702 		goto err_enet_mii_probe;
2703 
2704 	fec_restart(ndev);
2705 	napi_enable(&fep->napi);
2706 	phy_start(fep->phy_dev);
2707 	netif_tx_start_all_queues(ndev);
2708 
2709 	return 0;
2710 
2711 err_enet_mii_probe:
2712 	fec_enet_free_buffers(ndev);
2713 err_enet_alloc:
2714 	fec_enet_clk_enable(ndev, false);
2715 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2716 	return ret;
2717 }
2718 
2719 static int
2720 fec_enet_close(struct net_device *ndev)
2721 {
2722 	struct fec_enet_private *fep = netdev_priv(ndev);
2723 
2724 	phy_stop(fep->phy_dev);
2725 
2726 	if (netif_device_present(ndev)) {
2727 		napi_disable(&fep->napi);
2728 		netif_tx_disable(ndev);
2729 		fec_stop(ndev);
2730 	}
2731 
2732 	phy_disconnect(fep->phy_dev);
2733 	fep->phy_dev = NULL;
2734 
2735 	fec_enet_clk_enable(ndev, false);
2736 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2737 	fec_enet_free_buffers(ndev);
2738 
2739 	return 0;
2740 }
2741 
2742 /* Set or clear the multicast filter for this adaptor.
2743  * Skeleton taken from sunlance driver.
2744  * The CPM Ethernet implementation allows Multicast as well as individual
2745  * MAC address filtering.  Some of the drivers check to make sure it is
2746  * a group multicast address, and discard those that are not.  I guess I
2747  * will do the same for now, but just remove the test if you want
2748  * individual filtering as well (do the upper net layers want or support
2749  * this kind of feature?).
2750  */
2751 
2752 #define HASH_BITS	6		/* #bits in hash */
2753 #define CRC32_POLY	0xEDB88320
2754 
2755 static void set_multicast_list(struct net_device *ndev)
2756 {
2757 	struct fec_enet_private *fep = netdev_priv(ndev);
2758 	struct netdev_hw_addr *ha;
2759 	unsigned int i, bit, data, crc, tmp;
2760 	unsigned char hash;
2761 
2762 	if (ndev->flags & IFF_PROMISC) {
2763 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2764 		tmp |= 0x8;
2765 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2766 		return;
2767 	}
2768 
2769 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2770 	tmp &= ~0x8;
2771 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2772 
2773 	if (ndev->flags & IFF_ALLMULTI) {
2774 		/* Catch all multicast addresses, so set the
2775 		 * filter to all 1's
2776 		 */
2777 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2778 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2779 
2780 		return;
2781 	}
2782 
2783 	/* Clear filter and add the addresses in hash register
2784 	 */
2785 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2786 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2787 
2788 	netdev_for_each_mc_addr(ha, ndev) {
2789 		/* calculate crc32 value of mac address */
2790 		crc = 0xffffffff;
2791 
2792 		for (i = 0; i < ndev->addr_len; i++) {
2793 			data = ha->addr[i];
2794 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2795 				crc = (crc >> 1) ^
2796 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2797 			}
2798 		}
2799 
2800 		/* only upper 6 bits (HASH_BITS) are used
2801 		 * which point to specific bit in he hash registers
2802 		 */
2803 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2804 
2805 		if (hash > 31) {
2806 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2807 			tmp |= 1 << (hash - 32);
2808 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2809 		} else {
2810 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2811 			tmp |= 1 << hash;
2812 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2813 		}
2814 	}
2815 }
2816 
2817 /* Set a MAC change in hardware. */
2818 static int
2819 fec_set_mac_address(struct net_device *ndev, void *p)
2820 {
2821 	struct fec_enet_private *fep = netdev_priv(ndev);
2822 	struct sockaddr *addr = p;
2823 
2824 	if (addr) {
2825 		if (!is_valid_ether_addr(addr->sa_data))
2826 			return -EADDRNOTAVAIL;
2827 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2828 	}
2829 
2830 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2831 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2832 		fep->hwp + FEC_ADDR_LOW);
2833 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2834 		fep->hwp + FEC_ADDR_HIGH);
2835 	return 0;
2836 }
2837 
2838 #ifdef CONFIG_NET_POLL_CONTROLLER
2839 /**
2840  * fec_poll_controller - FEC Poll controller function
2841  * @dev: The FEC network adapter
2842  *
2843  * Polled functionality used by netconsole and others in non interrupt mode
2844  *
2845  */
2846 static void fec_poll_controller(struct net_device *dev)
2847 {
2848 	int i;
2849 	struct fec_enet_private *fep = netdev_priv(dev);
2850 
2851 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2852 		if (fep->irq[i] > 0) {
2853 			disable_irq(fep->irq[i]);
2854 			fec_enet_interrupt(fep->irq[i], dev);
2855 			enable_irq(fep->irq[i]);
2856 		}
2857 	}
2858 }
2859 #endif
2860 
2861 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2862 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2863 	netdev_features_t features)
2864 {
2865 	struct fec_enet_private *fep = netdev_priv(netdev);
2866 	netdev_features_t changed = features ^ netdev->features;
2867 
2868 	netdev->features = features;
2869 
2870 	/* Receive checksum has been changed */
2871 	if (changed & NETIF_F_RXCSUM) {
2872 		if (features & NETIF_F_RXCSUM)
2873 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2874 		else
2875 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2876 	}
2877 }
2878 
2879 static int fec_set_features(struct net_device *netdev,
2880 	netdev_features_t features)
2881 {
2882 	struct fec_enet_private *fep = netdev_priv(netdev);
2883 	netdev_features_t changed = features ^ netdev->features;
2884 
2885 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2886 		napi_disable(&fep->napi);
2887 		netif_tx_lock_bh(netdev);
2888 		fec_stop(netdev);
2889 		fec_enet_set_netdev_features(netdev, features);
2890 		fec_restart(netdev);
2891 		netif_tx_wake_all_queues(netdev);
2892 		netif_tx_unlock_bh(netdev);
2893 		napi_enable(&fep->napi);
2894 	} else {
2895 		fec_enet_set_netdev_features(netdev, features);
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 static const struct net_device_ops fec_netdev_ops = {
2902 	.ndo_open		= fec_enet_open,
2903 	.ndo_stop		= fec_enet_close,
2904 	.ndo_start_xmit		= fec_enet_start_xmit,
2905 	.ndo_set_rx_mode	= set_multicast_list,
2906 	.ndo_change_mtu		= eth_change_mtu,
2907 	.ndo_validate_addr	= eth_validate_addr,
2908 	.ndo_tx_timeout		= fec_timeout,
2909 	.ndo_set_mac_address	= fec_set_mac_address,
2910 	.ndo_do_ioctl		= fec_enet_ioctl,
2911 #ifdef CONFIG_NET_POLL_CONTROLLER
2912 	.ndo_poll_controller	= fec_poll_controller,
2913 #endif
2914 	.ndo_set_features	= fec_set_features,
2915 };
2916 
2917  /*
2918   * XXX:  We need to clean up on failure exits here.
2919   *
2920   */
2921 static int fec_enet_init(struct net_device *ndev)
2922 {
2923 	struct fec_enet_private *fep = netdev_priv(ndev);
2924 	struct fec_enet_priv_tx_q *txq;
2925 	struct fec_enet_priv_rx_q *rxq;
2926 	struct bufdesc *cbd_base;
2927 	dma_addr_t bd_dma;
2928 	int bd_size;
2929 	unsigned int i;
2930 
2931 #if defined(CONFIG_ARM)
2932 	fep->rx_align = 0xf;
2933 	fep->tx_align = 0xf;
2934 #else
2935 	fep->rx_align = 0x3;
2936 	fep->tx_align = 0x3;
2937 #endif
2938 
2939 	fec_enet_alloc_queue(ndev);
2940 
2941 	if (fep->bufdesc_ex)
2942 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2943 	else
2944 		fep->bufdesc_size = sizeof(struct bufdesc);
2945 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2946 			fep->bufdesc_size;
2947 
2948 	/* Allocate memory for buffer descriptors. */
2949 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2950 				      GFP_KERNEL);
2951 	if (!cbd_base) {
2952 		return -ENOMEM;
2953 	}
2954 
2955 	memset(cbd_base, 0, bd_size);
2956 
2957 	/* Get the Ethernet address */
2958 	fec_get_mac(ndev);
2959 	/* make sure MAC we just acquired is programmed into the hw */
2960 	fec_set_mac_address(ndev, NULL);
2961 
2962 	/* Set receive and transmit descriptor base. */
2963 	for (i = 0; i < fep->num_rx_queues; i++) {
2964 		rxq = fep->rx_queue[i];
2965 		rxq->index = i;
2966 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2967 		rxq->bd_dma = bd_dma;
2968 		if (fep->bufdesc_ex) {
2969 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
2970 			cbd_base = (struct bufdesc *)
2971 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
2972 		} else {
2973 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
2974 			cbd_base += rxq->rx_ring_size;
2975 		}
2976 	}
2977 
2978 	for (i = 0; i < fep->num_tx_queues; i++) {
2979 		txq = fep->tx_queue[i];
2980 		txq->index = i;
2981 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
2982 		txq->bd_dma = bd_dma;
2983 		if (fep->bufdesc_ex) {
2984 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
2985 			cbd_base = (struct bufdesc *)
2986 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
2987 		} else {
2988 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
2989 			cbd_base += txq->tx_ring_size;
2990 		}
2991 	}
2992 
2993 
2994 	/* The FEC Ethernet specific entries in the device structure */
2995 	ndev->watchdog_timeo = TX_TIMEOUT;
2996 	ndev->netdev_ops = &fec_netdev_ops;
2997 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2998 
2999 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3000 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3001 
3002 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3003 		/* enable hw VLAN support */
3004 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3005 
3006 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3007 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3008 
3009 		/* enable hw accelerator */
3010 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3011 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3012 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3013 	}
3014 
3015 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3016 		fep->tx_align = 0;
3017 		fep->rx_align = 0x3f;
3018 	}
3019 
3020 	ndev->hw_features = ndev->features;
3021 
3022 	fec_restart(ndev);
3023 
3024 	return 0;
3025 }
3026 
3027 #ifdef CONFIG_OF
3028 static void fec_reset_phy(struct platform_device *pdev)
3029 {
3030 	int err, phy_reset;
3031 	int msec = 1;
3032 	struct device_node *np = pdev->dev.of_node;
3033 
3034 	if (!np)
3035 		return;
3036 
3037 	of_property_read_u32(np, "phy-reset-duration", &msec);
3038 	/* A sane reset duration should not be longer than 1s */
3039 	if (msec > 1000)
3040 		msec = 1;
3041 
3042 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3043 	if (!gpio_is_valid(phy_reset))
3044 		return;
3045 
3046 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3047 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3048 	if (err) {
3049 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3050 		return;
3051 	}
3052 	msleep(msec);
3053 	gpio_set_value(phy_reset, 1);
3054 }
3055 #else /* CONFIG_OF */
3056 static void fec_reset_phy(struct platform_device *pdev)
3057 {
3058 	/*
3059 	 * In case of platform probe, the reset has been done
3060 	 * by machine code.
3061 	 */
3062 }
3063 #endif /* CONFIG_OF */
3064 
3065 static void
3066 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3067 {
3068 	struct device_node *np = pdev->dev.of_node;
3069 	int err;
3070 
3071 	*num_tx = *num_rx = 1;
3072 
3073 	if (!np || !of_device_is_available(np))
3074 		return;
3075 
3076 	/* parse the num of tx and rx queues */
3077 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3078 	if (err)
3079 		*num_tx = 1;
3080 
3081 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3082 	if (err)
3083 		*num_rx = 1;
3084 
3085 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3086 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3087 			 *num_tx);
3088 		*num_tx = 1;
3089 		return;
3090 	}
3091 
3092 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3093 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3094 			 *num_rx);
3095 		*num_rx = 1;
3096 		return;
3097 	}
3098 
3099 }
3100 
3101 static int
3102 fec_probe(struct platform_device *pdev)
3103 {
3104 	struct fec_enet_private *fep;
3105 	struct fec_platform_data *pdata;
3106 	struct net_device *ndev;
3107 	int i, irq, ret = 0;
3108 	struct resource *r;
3109 	const struct of_device_id *of_id;
3110 	static int dev_id;
3111 	struct device_node *np = pdev->dev.of_node, *phy_node;
3112 	int num_tx_qs;
3113 	int num_rx_qs;
3114 
3115 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3116 
3117 	/* Init network device */
3118 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3119 				  num_tx_qs, num_rx_qs);
3120 	if (!ndev)
3121 		return -ENOMEM;
3122 
3123 	SET_NETDEV_DEV(ndev, &pdev->dev);
3124 
3125 	/* setup board info structure */
3126 	fep = netdev_priv(ndev);
3127 
3128 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3129 	if (of_id)
3130 		pdev->id_entry = of_id->data;
3131 	fep->quirks = pdev->id_entry->driver_data;
3132 
3133 	fep->netdev = ndev;
3134 	fep->num_rx_queues = num_rx_qs;
3135 	fep->num_tx_queues = num_tx_qs;
3136 
3137 #if !defined(CONFIG_M5272)
3138 	/* default enable pause frame auto negotiation */
3139 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3140 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3141 #endif
3142 
3143 	/* Select default pin state */
3144 	pinctrl_pm_select_default_state(&pdev->dev);
3145 
3146 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3147 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3148 	if (IS_ERR(fep->hwp)) {
3149 		ret = PTR_ERR(fep->hwp);
3150 		goto failed_ioremap;
3151 	}
3152 
3153 	fep->pdev = pdev;
3154 	fep->dev_id = dev_id++;
3155 
3156 	platform_set_drvdata(pdev, ndev);
3157 
3158 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3159 	if (!phy_node && of_phy_is_fixed_link(np)) {
3160 		ret = of_phy_register_fixed_link(np);
3161 		if (ret < 0) {
3162 			dev_err(&pdev->dev,
3163 				"broken fixed-link specification\n");
3164 			goto failed_phy;
3165 		}
3166 		phy_node = of_node_get(np);
3167 	}
3168 	fep->phy_node = phy_node;
3169 
3170 	ret = of_get_phy_mode(pdev->dev.of_node);
3171 	if (ret < 0) {
3172 		pdata = dev_get_platdata(&pdev->dev);
3173 		if (pdata)
3174 			fep->phy_interface = pdata->phy;
3175 		else
3176 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3177 	} else {
3178 		fep->phy_interface = ret;
3179 	}
3180 
3181 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3182 	if (IS_ERR(fep->clk_ipg)) {
3183 		ret = PTR_ERR(fep->clk_ipg);
3184 		goto failed_clk;
3185 	}
3186 
3187 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3188 	if (IS_ERR(fep->clk_ahb)) {
3189 		ret = PTR_ERR(fep->clk_ahb);
3190 		goto failed_clk;
3191 	}
3192 
3193 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3194 
3195 	/* enet_out is optional, depends on board */
3196 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3197 	if (IS_ERR(fep->clk_enet_out))
3198 		fep->clk_enet_out = NULL;
3199 
3200 	fep->ptp_clk_on = false;
3201 	mutex_init(&fep->ptp_clk_mutex);
3202 
3203 	/* clk_ref is optional, depends on board */
3204 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3205 	if (IS_ERR(fep->clk_ref))
3206 		fep->clk_ref = NULL;
3207 
3208 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3209 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3210 	if (IS_ERR(fep->clk_ptp)) {
3211 		fep->clk_ptp = NULL;
3212 		fep->bufdesc_ex = false;
3213 	}
3214 
3215 	ret = fec_enet_clk_enable(ndev, true);
3216 	if (ret)
3217 		goto failed_clk;
3218 
3219 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3220 	if (!IS_ERR(fep->reg_phy)) {
3221 		ret = regulator_enable(fep->reg_phy);
3222 		if (ret) {
3223 			dev_err(&pdev->dev,
3224 				"Failed to enable phy regulator: %d\n", ret);
3225 			goto failed_regulator;
3226 		}
3227 	} else {
3228 		fep->reg_phy = NULL;
3229 	}
3230 
3231 	fec_reset_phy(pdev);
3232 
3233 	if (fep->bufdesc_ex)
3234 		fec_ptp_init(pdev);
3235 
3236 	ret = fec_enet_init(ndev);
3237 	if (ret)
3238 		goto failed_init;
3239 
3240 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3241 		irq = platform_get_irq(pdev, i);
3242 		if (irq < 0) {
3243 			if (i)
3244 				break;
3245 			ret = irq;
3246 			goto failed_irq;
3247 		}
3248 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3249 				       0, pdev->name, ndev);
3250 		if (ret)
3251 			goto failed_irq;
3252 	}
3253 
3254 	init_completion(&fep->mdio_done);
3255 	ret = fec_enet_mii_init(pdev);
3256 	if (ret)
3257 		goto failed_mii_init;
3258 
3259 	/* Carrier starts down, phylib will bring it up */
3260 	netif_carrier_off(ndev);
3261 	fec_enet_clk_enable(ndev, false);
3262 	pinctrl_pm_select_sleep_state(&pdev->dev);
3263 
3264 	ret = register_netdev(ndev);
3265 	if (ret)
3266 		goto failed_register;
3267 
3268 	if (fep->bufdesc_ex && fep->ptp_clock)
3269 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3270 
3271 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3272 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3273 	return 0;
3274 
3275 failed_register:
3276 	fec_enet_mii_remove(fep);
3277 failed_mii_init:
3278 failed_irq:
3279 failed_init:
3280 	if (fep->reg_phy)
3281 		regulator_disable(fep->reg_phy);
3282 failed_regulator:
3283 	fec_enet_clk_enable(ndev, false);
3284 failed_clk:
3285 failed_phy:
3286 	of_node_put(phy_node);
3287 failed_ioremap:
3288 	free_netdev(ndev);
3289 
3290 	return ret;
3291 }
3292 
3293 static int
3294 fec_drv_remove(struct platform_device *pdev)
3295 {
3296 	struct net_device *ndev = platform_get_drvdata(pdev);
3297 	struct fec_enet_private *fep = netdev_priv(ndev);
3298 
3299 	cancel_delayed_work_sync(&fep->time_keep);
3300 	cancel_work_sync(&fep->tx_timeout_work);
3301 	unregister_netdev(ndev);
3302 	fec_enet_mii_remove(fep);
3303 	if (fep->reg_phy)
3304 		regulator_disable(fep->reg_phy);
3305 	if (fep->ptp_clock)
3306 		ptp_clock_unregister(fep->ptp_clock);
3307 	fec_enet_clk_enable(ndev, false);
3308 	of_node_put(fep->phy_node);
3309 	free_netdev(ndev);
3310 
3311 	return 0;
3312 }
3313 
3314 static int __maybe_unused fec_suspend(struct device *dev)
3315 {
3316 	struct net_device *ndev = dev_get_drvdata(dev);
3317 	struct fec_enet_private *fep = netdev_priv(ndev);
3318 
3319 	rtnl_lock();
3320 	if (netif_running(ndev)) {
3321 		phy_stop(fep->phy_dev);
3322 		napi_disable(&fep->napi);
3323 		netif_tx_lock_bh(ndev);
3324 		netif_device_detach(ndev);
3325 		netif_tx_unlock_bh(ndev);
3326 		fec_stop(ndev);
3327 		fec_enet_clk_enable(ndev, false);
3328 		pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3329 	}
3330 	rtnl_unlock();
3331 
3332 	if (fep->reg_phy)
3333 		regulator_disable(fep->reg_phy);
3334 
3335 	/* SOC supply clock to phy, when clock is disabled, phy link down
3336 	 * SOC control phy regulator, when regulator is disabled, phy link down
3337 	 */
3338 	if (fep->clk_enet_out || fep->reg_phy)
3339 		fep->link = 0;
3340 
3341 	return 0;
3342 }
3343 
3344 static int __maybe_unused fec_resume(struct device *dev)
3345 {
3346 	struct net_device *ndev = dev_get_drvdata(dev);
3347 	struct fec_enet_private *fep = netdev_priv(ndev);
3348 	int ret;
3349 
3350 	if (fep->reg_phy) {
3351 		ret = regulator_enable(fep->reg_phy);
3352 		if (ret)
3353 			return ret;
3354 	}
3355 
3356 	rtnl_lock();
3357 	if (netif_running(ndev)) {
3358 		pinctrl_pm_select_default_state(&fep->pdev->dev);
3359 		ret = fec_enet_clk_enable(ndev, true);
3360 		if (ret) {
3361 			rtnl_unlock();
3362 			goto failed_clk;
3363 		}
3364 		fec_restart(ndev);
3365 		netif_tx_lock_bh(ndev);
3366 		netif_device_attach(ndev);
3367 		netif_tx_unlock_bh(ndev);
3368 		napi_enable(&fep->napi);
3369 		phy_start(fep->phy_dev);
3370 	}
3371 	rtnl_unlock();
3372 
3373 	return 0;
3374 
3375 failed_clk:
3376 	if (fep->reg_phy)
3377 		regulator_disable(fep->reg_phy);
3378 	return ret;
3379 }
3380 
3381 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3382 
3383 static struct platform_driver fec_driver = {
3384 	.driver	= {
3385 		.name	= DRIVER_NAME,
3386 		.pm	= &fec_pm_ops,
3387 		.of_match_table = fec_dt_ids,
3388 	},
3389 	.id_table = fec_devtype,
3390 	.probe	= fec_probe,
3391 	.remove	= fec_drv_remove,
3392 };
3393 
3394 module_platform_driver(fec_driver);
3395 
3396 MODULE_ALIAS("platform:"DRIVER_NAME);
3397 MODULE_LICENSE("GPL");
3398