xref: /openbmc/linux/drivers/net/ethernet/freescale/fec_main.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 /* Pause frame feild and FIFO threshold */
79 #define FEC_ENET_FCE	(1 << 5)
80 #define FEC_ENET_RSEM_V	0x84
81 #define FEC_ENET_RSFL_V	16
82 #define FEC_ENET_RAEM_V	0x8
83 #define FEC_ENET_RAFL_V	0x8
84 #define FEC_ENET_OPD_V	0xFFF0
85 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
86 
87 struct fec_devinfo {
88 	u32 quirks;
89 };
90 
91 static const struct fec_devinfo fec_imx25_info = {
92 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
93 		  FEC_QUIRK_HAS_FRREG,
94 };
95 
96 static const struct fec_devinfo fec_imx27_info = {
97 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx28_info = {
101 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
102 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
103 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII,
104 };
105 
106 static const struct fec_devinfo fec_imx6q_info = {
107 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
108 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
109 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
110 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
111 };
112 
113 static const struct fec_devinfo fec_mvf600_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
115 };
116 
117 static const struct fec_devinfo fec_imx6x_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
121 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
123 		  FEC_QUIRK_CLEAR_SETUP_MII,
124 };
125 
126 static const struct fec_devinfo fec_imx6ul_info = {
127 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
128 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
129 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
130 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
132 };
133 
134 static struct platform_device_id fec_devtype[] = {
135 	{
136 		/* keep it for coldfire */
137 		.name = DRIVER_NAME,
138 		.driver_data = 0,
139 	}, {
140 		.name = "imx25-fec",
141 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
142 	}, {
143 		.name = "imx27-fec",
144 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
145 	}, {
146 		.name = "imx28-fec",
147 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
148 	}, {
149 		.name = "imx6q-fec",
150 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
151 	}, {
152 		.name = "mvf600-fec",
153 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
154 	}, {
155 		.name = "imx6sx-fec",
156 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
157 	}, {
158 		.name = "imx6ul-fec",
159 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
160 	}, {
161 		/* sentinel */
162 	}
163 };
164 MODULE_DEVICE_TABLE(platform, fec_devtype);
165 
166 enum imx_fec_type {
167 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
168 	IMX27_FEC,	/* runs on i.mx27/35/51 */
169 	IMX28_FEC,
170 	IMX6Q_FEC,
171 	MVF600_FEC,
172 	IMX6SX_FEC,
173 	IMX6UL_FEC,
174 };
175 
176 static const struct of_device_id fec_dt_ids[] = {
177 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
178 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
179 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
180 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
181 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
182 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
183 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
184 	{ /* sentinel */ }
185 };
186 MODULE_DEVICE_TABLE(of, fec_dt_ids);
187 
188 static unsigned char macaddr[ETH_ALEN];
189 module_param_array(macaddr, byte, NULL, 0);
190 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
191 
192 #if defined(CONFIG_M5272)
193 /*
194  * Some hardware gets it MAC address out of local flash memory.
195  * if this is non-zero then assume it is the address to get MAC from.
196  */
197 #if defined(CONFIG_NETtel)
198 #define	FEC_FLASHMAC	0xf0006006
199 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
200 #define	FEC_FLASHMAC	0xf0006000
201 #elif defined(CONFIG_CANCam)
202 #define	FEC_FLASHMAC	0xf0020000
203 #elif defined (CONFIG_M5272C3)
204 #define	FEC_FLASHMAC	(0xffe04000 + 4)
205 #elif defined(CONFIG_MOD5272)
206 #define FEC_FLASHMAC	0xffc0406b
207 #else
208 #define	FEC_FLASHMAC	0
209 #endif
210 #endif /* CONFIG_M5272 */
211 
212 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
213  *
214  * 2048 byte skbufs are allocated. However, alignment requirements
215  * varies between FEC variants. Worst case is 64, so round down by 64.
216  */
217 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
218 #define PKT_MINBUF_SIZE		64
219 
220 /* FEC receive acceleration */
221 #define FEC_RACC_IPDIS		(1 << 1)
222 #define FEC_RACC_PRODIS		(1 << 2)
223 #define FEC_RACC_SHIFT16	BIT(7)
224 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
225 
226 /* MIB Control Register */
227 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
228 
229 /*
230  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
231  * size bits. Other FEC hardware does not, so we need to take that into
232  * account when setting it.
233  */
234 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
235     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
236     defined(CONFIG_ARM64)
237 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
238 #else
239 #define	OPT_FRAME_SIZE	0
240 #endif
241 
242 /* FEC MII MMFR bits definition */
243 #define FEC_MMFR_ST		(1 << 30)
244 #define FEC_MMFR_ST_C45		(0)
245 #define FEC_MMFR_OP_READ	(2 << 28)
246 #define FEC_MMFR_OP_READ_C45	(3 << 28)
247 #define FEC_MMFR_OP_WRITE	(1 << 28)
248 #define FEC_MMFR_OP_ADDR_WRITE	(0)
249 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
250 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
251 #define FEC_MMFR_TA		(2 << 16)
252 #define FEC_MMFR_DATA(v)	(v & 0xffff)
253 /* FEC ECR bits definition */
254 #define FEC_ECR_MAGICEN		(1 << 2)
255 #define FEC_ECR_SLEEP		(1 << 3)
256 
257 #define FEC_MII_TIMEOUT		30000 /* us */
258 
259 /* Transmitter timeout */
260 #define TX_TIMEOUT (2 * HZ)
261 
262 #define FEC_PAUSE_FLAG_AUTONEG	0x1
263 #define FEC_PAUSE_FLAG_ENABLE	0x2
264 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
265 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
266 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
267 
268 #define COPYBREAK_DEFAULT	256
269 
270 /* Max number of allowed TCP segments for software TSO */
271 #define FEC_MAX_TSO_SEGS	100
272 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
273 
274 #define IS_TSO_HEADER(txq, addr) \
275 	((addr >= txq->tso_hdrs_dma) && \
276 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
277 
278 static int mii_cnt;
279 
280 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
281 					     struct bufdesc_prop *bd)
282 {
283 	return (bdp >= bd->last) ? bd->base
284 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
285 }
286 
287 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
288 					     struct bufdesc_prop *bd)
289 {
290 	return (bdp <= bd->base) ? bd->last
291 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
292 }
293 
294 static int fec_enet_get_bd_index(struct bufdesc *bdp,
295 				 struct bufdesc_prop *bd)
296 {
297 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
298 }
299 
300 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
301 {
302 	int entries;
303 
304 	entries = (((const char *)txq->dirty_tx -
305 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
306 
307 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
308 }
309 
310 static void swap_buffer(void *bufaddr, int len)
311 {
312 	int i;
313 	unsigned int *buf = bufaddr;
314 
315 	for (i = 0; i < len; i += 4, buf++)
316 		swab32s(buf);
317 }
318 
319 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
320 {
321 	int i;
322 	unsigned int *src = src_buf;
323 	unsigned int *dst = dst_buf;
324 
325 	for (i = 0; i < len; i += 4, src++, dst++)
326 		*dst = swab32p(src);
327 }
328 
329 static void fec_dump(struct net_device *ndev)
330 {
331 	struct fec_enet_private *fep = netdev_priv(ndev);
332 	struct bufdesc *bdp;
333 	struct fec_enet_priv_tx_q *txq;
334 	int index = 0;
335 
336 	netdev_info(ndev, "TX ring dump\n");
337 	pr_info("Nr     SC     addr       len  SKB\n");
338 
339 	txq = fep->tx_queue[0];
340 	bdp = txq->bd.base;
341 
342 	do {
343 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
344 			index,
345 			bdp == txq->bd.cur ? 'S' : ' ',
346 			bdp == txq->dirty_tx ? 'H' : ' ',
347 			fec16_to_cpu(bdp->cbd_sc),
348 			fec32_to_cpu(bdp->cbd_bufaddr),
349 			fec16_to_cpu(bdp->cbd_datlen),
350 			txq->tx_skbuff[index]);
351 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
352 		index++;
353 	} while (bdp != txq->bd.base);
354 }
355 
356 static inline bool is_ipv4_pkt(struct sk_buff *skb)
357 {
358 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
359 }
360 
361 static int
362 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
363 {
364 	/* Only run for packets requiring a checksum. */
365 	if (skb->ip_summed != CHECKSUM_PARTIAL)
366 		return 0;
367 
368 	if (unlikely(skb_cow_head(skb, 0)))
369 		return -1;
370 
371 	if (is_ipv4_pkt(skb))
372 		ip_hdr(skb)->check = 0;
373 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
374 
375 	return 0;
376 }
377 
378 static struct bufdesc *
379 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
380 			     struct sk_buff *skb,
381 			     struct net_device *ndev)
382 {
383 	struct fec_enet_private *fep = netdev_priv(ndev);
384 	struct bufdesc *bdp = txq->bd.cur;
385 	struct bufdesc_ex *ebdp;
386 	int nr_frags = skb_shinfo(skb)->nr_frags;
387 	int frag, frag_len;
388 	unsigned short status;
389 	unsigned int estatus = 0;
390 	skb_frag_t *this_frag;
391 	unsigned int index;
392 	void *bufaddr;
393 	dma_addr_t addr;
394 	int i;
395 
396 	for (frag = 0; frag < nr_frags; frag++) {
397 		this_frag = &skb_shinfo(skb)->frags[frag];
398 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
399 		ebdp = (struct bufdesc_ex *)bdp;
400 
401 		status = fec16_to_cpu(bdp->cbd_sc);
402 		status &= ~BD_ENET_TX_STATS;
403 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
404 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
405 
406 		/* Handle the last BD specially */
407 		if (frag == nr_frags - 1) {
408 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
409 			if (fep->bufdesc_ex) {
410 				estatus |= BD_ENET_TX_INT;
411 				if (unlikely(skb_shinfo(skb)->tx_flags &
412 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
413 					estatus |= BD_ENET_TX_TS;
414 			}
415 		}
416 
417 		if (fep->bufdesc_ex) {
418 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
419 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
420 			if (skb->ip_summed == CHECKSUM_PARTIAL)
421 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
422 			ebdp->cbd_bdu = 0;
423 			ebdp->cbd_esc = cpu_to_fec32(estatus);
424 		}
425 
426 		bufaddr = skb_frag_address(this_frag);
427 
428 		index = fec_enet_get_bd_index(bdp, &txq->bd);
429 		if (((unsigned long) bufaddr) & fep->tx_align ||
430 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
431 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
432 			bufaddr = txq->tx_bounce[index];
433 
434 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
435 				swap_buffer(bufaddr, frag_len);
436 		}
437 
438 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
439 				      DMA_TO_DEVICE);
440 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
441 			if (net_ratelimit())
442 				netdev_err(ndev, "Tx DMA memory map failed\n");
443 			goto dma_mapping_error;
444 		}
445 
446 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
447 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
448 		/* Make sure the updates to rest of the descriptor are
449 		 * performed before transferring ownership.
450 		 */
451 		wmb();
452 		bdp->cbd_sc = cpu_to_fec16(status);
453 	}
454 
455 	return bdp;
456 dma_mapping_error:
457 	bdp = txq->bd.cur;
458 	for (i = 0; i < frag; i++) {
459 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
460 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
461 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
462 	}
463 	return ERR_PTR(-ENOMEM);
464 }
465 
466 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
467 				   struct sk_buff *skb, struct net_device *ndev)
468 {
469 	struct fec_enet_private *fep = netdev_priv(ndev);
470 	int nr_frags = skb_shinfo(skb)->nr_frags;
471 	struct bufdesc *bdp, *last_bdp;
472 	void *bufaddr;
473 	dma_addr_t addr;
474 	unsigned short status;
475 	unsigned short buflen;
476 	unsigned int estatus = 0;
477 	unsigned int index;
478 	int entries_free;
479 
480 	entries_free = fec_enet_get_free_txdesc_num(txq);
481 	if (entries_free < MAX_SKB_FRAGS + 1) {
482 		dev_kfree_skb_any(skb);
483 		if (net_ratelimit())
484 			netdev_err(ndev, "NOT enough BD for SG!\n");
485 		return NETDEV_TX_OK;
486 	}
487 
488 	/* Protocol checksum off-load for TCP and UDP. */
489 	if (fec_enet_clear_csum(skb, ndev)) {
490 		dev_kfree_skb_any(skb);
491 		return NETDEV_TX_OK;
492 	}
493 
494 	/* Fill in a Tx ring entry */
495 	bdp = txq->bd.cur;
496 	last_bdp = bdp;
497 	status = fec16_to_cpu(bdp->cbd_sc);
498 	status &= ~BD_ENET_TX_STATS;
499 
500 	/* Set buffer length and buffer pointer */
501 	bufaddr = skb->data;
502 	buflen = skb_headlen(skb);
503 
504 	index = fec_enet_get_bd_index(bdp, &txq->bd);
505 	if (((unsigned long) bufaddr) & fep->tx_align ||
506 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
507 		memcpy(txq->tx_bounce[index], skb->data, buflen);
508 		bufaddr = txq->tx_bounce[index];
509 
510 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
511 			swap_buffer(bufaddr, buflen);
512 	}
513 
514 	/* Push the data cache so the CPM does not get stale memory data. */
515 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
516 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
517 		dev_kfree_skb_any(skb);
518 		if (net_ratelimit())
519 			netdev_err(ndev, "Tx DMA memory map failed\n");
520 		return NETDEV_TX_OK;
521 	}
522 
523 	if (nr_frags) {
524 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
525 		if (IS_ERR(last_bdp)) {
526 			dma_unmap_single(&fep->pdev->dev, addr,
527 					 buflen, DMA_TO_DEVICE);
528 			dev_kfree_skb_any(skb);
529 			return NETDEV_TX_OK;
530 		}
531 	} else {
532 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
533 		if (fep->bufdesc_ex) {
534 			estatus = BD_ENET_TX_INT;
535 			if (unlikely(skb_shinfo(skb)->tx_flags &
536 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
537 				estatus |= BD_ENET_TX_TS;
538 		}
539 	}
540 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
541 	bdp->cbd_datlen = cpu_to_fec16(buflen);
542 
543 	if (fep->bufdesc_ex) {
544 
545 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
546 
547 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
548 			fep->hwts_tx_en))
549 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
550 
551 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
552 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
553 
554 		if (skb->ip_summed == CHECKSUM_PARTIAL)
555 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
556 
557 		ebdp->cbd_bdu = 0;
558 		ebdp->cbd_esc = cpu_to_fec32(estatus);
559 	}
560 
561 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
562 	/* Save skb pointer */
563 	txq->tx_skbuff[index] = skb;
564 
565 	/* Make sure the updates to rest of the descriptor are performed before
566 	 * transferring ownership.
567 	 */
568 	wmb();
569 
570 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
571 	 * it's the last BD of the frame, and to put the CRC on the end.
572 	 */
573 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
574 	bdp->cbd_sc = cpu_to_fec16(status);
575 
576 	/* If this was the last BD in the ring, start at the beginning again. */
577 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
578 
579 	skb_tx_timestamp(skb);
580 
581 	/* Make sure the update to bdp and tx_skbuff are performed before
582 	 * txq->bd.cur.
583 	 */
584 	wmb();
585 	txq->bd.cur = bdp;
586 
587 	/* Trigger transmission start */
588 	writel(0, txq->bd.reg_desc_active);
589 
590 	return 0;
591 }
592 
593 static int
594 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
595 			  struct net_device *ndev,
596 			  struct bufdesc *bdp, int index, char *data,
597 			  int size, bool last_tcp, bool is_last)
598 {
599 	struct fec_enet_private *fep = netdev_priv(ndev);
600 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
601 	unsigned short status;
602 	unsigned int estatus = 0;
603 	dma_addr_t addr;
604 
605 	status = fec16_to_cpu(bdp->cbd_sc);
606 	status &= ~BD_ENET_TX_STATS;
607 
608 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
609 
610 	if (((unsigned long) data) & fep->tx_align ||
611 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
612 		memcpy(txq->tx_bounce[index], data, size);
613 		data = txq->tx_bounce[index];
614 
615 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
616 			swap_buffer(data, size);
617 	}
618 
619 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
620 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
621 		dev_kfree_skb_any(skb);
622 		if (net_ratelimit())
623 			netdev_err(ndev, "Tx DMA memory map failed\n");
624 		return NETDEV_TX_BUSY;
625 	}
626 
627 	bdp->cbd_datlen = cpu_to_fec16(size);
628 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
629 
630 	if (fep->bufdesc_ex) {
631 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
632 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
633 		if (skb->ip_summed == CHECKSUM_PARTIAL)
634 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
635 		ebdp->cbd_bdu = 0;
636 		ebdp->cbd_esc = cpu_to_fec32(estatus);
637 	}
638 
639 	/* Handle the last BD specially */
640 	if (last_tcp)
641 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
642 	if (is_last) {
643 		status |= BD_ENET_TX_INTR;
644 		if (fep->bufdesc_ex)
645 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
646 	}
647 
648 	bdp->cbd_sc = cpu_to_fec16(status);
649 
650 	return 0;
651 }
652 
653 static int
654 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
655 			 struct sk_buff *skb, struct net_device *ndev,
656 			 struct bufdesc *bdp, int index)
657 {
658 	struct fec_enet_private *fep = netdev_priv(ndev);
659 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
660 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
661 	void *bufaddr;
662 	unsigned long dmabuf;
663 	unsigned short status;
664 	unsigned int estatus = 0;
665 
666 	status = fec16_to_cpu(bdp->cbd_sc);
667 	status &= ~BD_ENET_TX_STATS;
668 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
669 
670 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
671 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
672 	if (((unsigned long)bufaddr) & fep->tx_align ||
673 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
674 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
675 		bufaddr = txq->tx_bounce[index];
676 
677 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
678 			swap_buffer(bufaddr, hdr_len);
679 
680 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
681 					hdr_len, DMA_TO_DEVICE);
682 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
683 			dev_kfree_skb_any(skb);
684 			if (net_ratelimit())
685 				netdev_err(ndev, "Tx DMA memory map failed\n");
686 			return NETDEV_TX_BUSY;
687 		}
688 	}
689 
690 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
691 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
692 
693 	if (fep->bufdesc_ex) {
694 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
695 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
696 		if (skb->ip_summed == CHECKSUM_PARTIAL)
697 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
698 		ebdp->cbd_bdu = 0;
699 		ebdp->cbd_esc = cpu_to_fec32(estatus);
700 	}
701 
702 	bdp->cbd_sc = cpu_to_fec16(status);
703 
704 	return 0;
705 }
706 
707 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
708 				   struct sk_buff *skb,
709 				   struct net_device *ndev)
710 {
711 	struct fec_enet_private *fep = netdev_priv(ndev);
712 	int hdr_len, total_len, data_left;
713 	struct bufdesc *bdp = txq->bd.cur;
714 	struct tso_t tso;
715 	unsigned int index = 0;
716 	int ret;
717 
718 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
719 		dev_kfree_skb_any(skb);
720 		if (net_ratelimit())
721 			netdev_err(ndev, "NOT enough BD for TSO!\n");
722 		return NETDEV_TX_OK;
723 	}
724 
725 	/* Protocol checksum off-load for TCP and UDP. */
726 	if (fec_enet_clear_csum(skb, ndev)) {
727 		dev_kfree_skb_any(skb);
728 		return NETDEV_TX_OK;
729 	}
730 
731 	/* Initialize the TSO handler, and prepare the first payload */
732 	hdr_len = tso_start(skb, &tso);
733 
734 	total_len = skb->len - hdr_len;
735 	while (total_len > 0) {
736 		char *hdr;
737 
738 		index = fec_enet_get_bd_index(bdp, &txq->bd);
739 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
740 		total_len -= data_left;
741 
742 		/* prepare packet headers: MAC + IP + TCP */
743 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
744 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
745 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
746 		if (ret)
747 			goto err_release;
748 
749 		while (data_left > 0) {
750 			int size;
751 
752 			size = min_t(int, tso.size, data_left);
753 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
754 			index = fec_enet_get_bd_index(bdp, &txq->bd);
755 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
756 							bdp, index,
757 							tso.data, size,
758 							size == data_left,
759 							total_len == 0);
760 			if (ret)
761 				goto err_release;
762 
763 			data_left -= size;
764 			tso_build_data(skb, &tso, size);
765 		}
766 
767 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
768 	}
769 
770 	/* Save skb pointer */
771 	txq->tx_skbuff[index] = skb;
772 
773 	skb_tx_timestamp(skb);
774 	txq->bd.cur = bdp;
775 
776 	/* Trigger transmission start */
777 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
778 	    !readl(txq->bd.reg_desc_active) ||
779 	    !readl(txq->bd.reg_desc_active) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active))
782 		writel(0, txq->bd.reg_desc_active);
783 
784 	return 0;
785 
786 err_release:
787 	/* TODO: Release all used data descriptors for TSO */
788 	return ret;
789 }
790 
791 static netdev_tx_t
792 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
793 {
794 	struct fec_enet_private *fep = netdev_priv(ndev);
795 	int entries_free;
796 	unsigned short queue;
797 	struct fec_enet_priv_tx_q *txq;
798 	struct netdev_queue *nq;
799 	int ret;
800 
801 	queue = skb_get_queue_mapping(skb);
802 	txq = fep->tx_queue[queue];
803 	nq = netdev_get_tx_queue(ndev, queue);
804 
805 	if (skb_is_gso(skb))
806 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
807 	else
808 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
809 	if (ret)
810 		return ret;
811 
812 	entries_free = fec_enet_get_free_txdesc_num(txq);
813 	if (entries_free <= txq->tx_stop_threshold)
814 		netif_tx_stop_queue(nq);
815 
816 	return NETDEV_TX_OK;
817 }
818 
819 /* Init RX & TX buffer descriptors
820  */
821 static void fec_enet_bd_init(struct net_device *dev)
822 {
823 	struct fec_enet_private *fep = netdev_priv(dev);
824 	struct fec_enet_priv_tx_q *txq;
825 	struct fec_enet_priv_rx_q *rxq;
826 	struct bufdesc *bdp;
827 	unsigned int i;
828 	unsigned int q;
829 
830 	for (q = 0; q < fep->num_rx_queues; q++) {
831 		/* Initialize the receive buffer descriptors. */
832 		rxq = fep->rx_queue[q];
833 		bdp = rxq->bd.base;
834 
835 		for (i = 0; i < rxq->bd.ring_size; i++) {
836 
837 			/* Initialize the BD for every fragment in the page. */
838 			if (bdp->cbd_bufaddr)
839 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
840 			else
841 				bdp->cbd_sc = cpu_to_fec16(0);
842 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
843 		}
844 
845 		/* Set the last buffer to wrap */
846 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
847 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
848 
849 		rxq->bd.cur = rxq->bd.base;
850 	}
851 
852 	for (q = 0; q < fep->num_tx_queues; q++) {
853 		/* ...and the same for transmit */
854 		txq = fep->tx_queue[q];
855 		bdp = txq->bd.base;
856 		txq->bd.cur = bdp;
857 
858 		for (i = 0; i < txq->bd.ring_size; i++) {
859 			/* Initialize the BD for every fragment in the page. */
860 			bdp->cbd_sc = cpu_to_fec16(0);
861 			if (bdp->cbd_bufaddr &&
862 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
863 				dma_unmap_single(&fep->pdev->dev,
864 						 fec32_to_cpu(bdp->cbd_bufaddr),
865 						 fec16_to_cpu(bdp->cbd_datlen),
866 						 DMA_TO_DEVICE);
867 			if (txq->tx_skbuff[i]) {
868 				dev_kfree_skb_any(txq->tx_skbuff[i]);
869 				txq->tx_skbuff[i] = NULL;
870 			}
871 			bdp->cbd_bufaddr = cpu_to_fec32(0);
872 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
873 		}
874 
875 		/* Set the last buffer to wrap */
876 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
877 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
878 		txq->dirty_tx = bdp;
879 	}
880 }
881 
882 static void fec_enet_active_rxring(struct net_device *ndev)
883 {
884 	struct fec_enet_private *fep = netdev_priv(ndev);
885 	int i;
886 
887 	for (i = 0; i < fep->num_rx_queues; i++)
888 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
889 }
890 
891 static void fec_enet_enable_ring(struct net_device *ndev)
892 {
893 	struct fec_enet_private *fep = netdev_priv(ndev);
894 	struct fec_enet_priv_tx_q *txq;
895 	struct fec_enet_priv_rx_q *rxq;
896 	int i;
897 
898 	for (i = 0; i < fep->num_rx_queues; i++) {
899 		rxq = fep->rx_queue[i];
900 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
901 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
902 
903 		/* enable DMA1/2 */
904 		if (i)
905 			writel(RCMR_MATCHEN | RCMR_CMP(i),
906 			       fep->hwp + FEC_RCMR(i));
907 	}
908 
909 	for (i = 0; i < fep->num_tx_queues; i++) {
910 		txq = fep->tx_queue[i];
911 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
912 
913 		/* enable DMA1/2 */
914 		if (i)
915 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
916 			       fep->hwp + FEC_DMA_CFG(i));
917 	}
918 }
919 
920 static void fec_enet_reset_skb(struct net_device *ndev)
921 {
922 	struct fec_enet_private *fep = netdev_priv(ndev);
923 	struct fec_enet_priv_tx_q *txq;
924 	int i, j;
925 
926 	for (i = 0; i < fep->num_tx_queues; i++) {
927 		txq = fep->tx_queue[i];
928 
929 		for (j = 0; j < txq->bd.ring_size; j++) {
930 			if (txq->tx_skbuff[j]) {
931 				dev_kfree_skb_any(txq->tx_skbuff[j]);
932 				txq->tx_skbuff[j] = NULL;
933 			}
934 		}
935 	}
936 }
937 
938 /*
939  * This function is called to start or restart the FEC during a link
940  * change, transmit timeout, or to reconfigure the FEC.  The network
941  * packet processing for this device must be stopped before this call.
942  */
943 static void
944 fec_restart(struct net_device *ndev)
945 {
946 	struct fec_enet_private *fep = netdev_priv(ndev);
947 	u32 val;
948 	u32 temp_mac[2];
949 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
950 	u32 ecntl = 0x2; /* ETHEREN */
951 
952 	/* Whack a reset.  We should wait for this.
953 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
954 	 * instead of reset MAC itself.
955 	 */
956 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
957 		writel(0, fep->hwp + FEC_ECNTRL);
958 	} else {
959 		writel(1, fep->hwp + FEC_ECNTRL);
960 		udelay(10);
961 	}
962 
963 	/*
964 	 * enet-mac reset will reset mac address registers too,
965 	 * so need to reconfigure it.
966 	 */
967 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
968 	writel((__force u32)cpu_to_be32(temp_mac[0]),
969 	       fep->hwp + FEC_ADDR_LOW);
970 	writel((__force u32)cpu_to_be32(temp_mac[1]),
971 	       fep->hwp + FEC_ADDR_HIGH);
972 
973 	/* Clear any outstanding interrupt, except MDIO. */
974 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
975 
976 	fec_enet_bd_init(ndev);
977 
978 	fec_enet_enable_ring(ndev);
979 
980 	/* Reset tx SKB buffers. */
981 	fec_enet_reset_skb(ndev);
982 
983 	/* Enable MII mode */
984 	if (fep->full_duplex == DUPLEX_FULL) {
985 		/* FD enable */
986 		writel(0x04, fep->hwp + FEC_X_CNTRL);
987 	} else {
988 		/* No Rcv on Xmit */
989 		rcntl |= 0x02;
990 		writel(0x0, fep->hwp + FEC_X_CNTRL);
991 	}
992 
993 	/* Set MII speed */
994 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
995 
996 #if !defined(CONFIG_M5272)
997 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
998 		val = readl(fep->hwp + FEC_RACC);
999 		/* align IP header */
1000 		val |= FEC_RACC_SHIFT16;
1001 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1002 			/* set RX checksum */
1003 			val |= FEC_RACC_OPTIONS;
1004 		else
1005 			val &= ~FEC_RACC_OPTIONS;
1006 		writel(val, fep->hwp + FEC_RACC);
1007 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1008 	}
1009 #endif
1010 
1011 	/*
1012 	 * The phy interface and speed need to get configured
1013 	 * differently on enet-mac.
1014 	 */
1015 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1016 		/* Enable flow control and length check */
1017 		rcntl |= 0x40000000 | 0x00000020;
1018 
1019 		/* RGMII, RMII or MII */
1020 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1021 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1022 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1024 			rcntl |= (1 << 6);
1025 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1026 			rcntl |= (1 << 8);
1027 		else
1028 			rcntl &= ~(1 << 8);
1029 
1030 		/* 1G, 100M or 10M */
1031 		if (ndev->phydev) {
1032 			if (ndev->phydev->speed == SPEED_1000)
1033 				ecntl |= (1 << 5);
1034 			else if (ndev->phydev->speed == SPEED_100)
1035 				rcntl &= ~(1 << 9);
1036 			else
1037 				rcntl |= (1 << 9);
1038 		}
1039 	} else {
1040 #ifdef FEC_MIIGSK_ENR
1041 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1042 			u32 cfgr;
1043 			/* disable the gasket and wait */
1044 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1045 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1046 				udelay(1);
1047 
1048 			/*
1049 			 * configure the gasket:
1050 			 *   RMII, 50 MHz, no loopback, no echo
1051 			 *   MII, 25 MHz, no loopback, no echo
1052 			 */
1053 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1054 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1055 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1056 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1057 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1058 
1059 			/* re-enable the gasket */
1060 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1061 		}
1062 #endif
1063 	}
1064 
1065 #if !defined(CONFIG_M5272)
1066 	/* enable pause frame*/
1067 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1068 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1069 	     ndev->phydev && ndev->phydev->pause)) {
1070 		rcntl |= FEC_ENET_FCE;
1071 
1072 		/* set FIFO threshold parameter to reduce overrun */
1073 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1074 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1075 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1076 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1077 
1078 		/* OPD */
1079 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1080 	} else {
1081 		rcntl &= ~FEC_ENET_FCE;
1082 	}
1083 #endif /* !defined(CONFIG_M5272) */
1084 
1085 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1086 
1087 	/* Setup multicast filter. */
1088 	set_multicast_list(ndev);
1089 #ifndef CONFIG_M5272
1090 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1091 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1092 #endif
1093 
1094 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1095 		/* enable ENET endian swap */
1096 		ecntl |= (1 << 8);
1097 		/* enable ENET store and forward mode */
1098 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1099 	}
1100 
1101 	if (fep->bufdesc_ex)
1102 		ecntl |= (1 << 4);
1103 
1104 #ifndef CONFIG_M5272
1105 	/* Enable the MIB statistic event counters */
1106 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1107 #endif
1108 
1109 	/* And last, enable the transmit and receive processing */
1110 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1111 	fec_enet_active_rxring(ndev);
1112 
1113 	if (fep->bufdesc_ex)
1114 		fec_ptp_start_cyclecounter(ndev);
1115 
1116 	/* Enable interrupts we wish to service */
1117 	if (fep->link)
1118 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1119 	else
1120 		writel(0, fep->hwp + FEC_IMASK);
1121 
1122 	/* Init the interrupt coalescing */
1123 	fec_enet_itr_coal_init(ndev);
1124 
1125 }
1126 
1127 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1128 {
1129 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1130 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1131 
1132 	if (stop_gpr->gpr) {
1133 		if (enabled)
1134 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1135 					   BIT(stop_gpr->bit),
1136 					   BIT(stop_gpr->bit));
1137 		else
1138 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1139 					   BIT(stop_gpr->bit), 0);
1140 	} else if (pdata && pdata->sleep_mode_enable) {
1141 		pdata->sleep_mode_enable(enabled);
1142 	}
1143 }
1144 
1145 static void
1146 fec_stop(struct net_device *ndev)
1147 {
1148 	struct fec_enet_private *fep = netdev_priv(ndev);
1149 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1150 	u32 val;
1151 
1152 	/* We cannot expect a graceful transmit stop without link !!! */
1153 	if (fep->link) {
1154 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1155 		udelay(10);
1156 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1157 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1158 	}
1159 
1160 	/* Whack a reset.  We should wait for this.
1161 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1162 	 * instead of reset MAC itself.
1163 	 */
1164 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1165 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1166 			writel(0, fep->hwp + FEC_ECNTRL);
1167 		} else {
1168 			writel(1, fep->hwp + FEC_ECNTRL);
1169 			udelay(10);
1170 		}
1171 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1172 	} else {
1173 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1174 		val = readl(fep->hwp + FEC_ECNTRL);
1175 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1176 		writel(val, fep->hwp + FEC_ECNTRL);
1177 		fec_enet_stop_mode(fep, true);
1178 	}
1179 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1180 
1181 	/* We have to keep ENET enabled to have MII interrupt stay working */
1182 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1183 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1184 		writel(2, fep->hwp + FEC_ECNTRL);
1185 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1186 	}
1187 }
1188 
1189 
1190 static void
1191 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1192 {
1193 	struct fec_enet_private *fep = netdev_priv(ndev);
1194 
1195 	fec_dump(ndev);
1196 
1197 	ndev->stats.tx_errors++;
1198 
1199 	schedule_work(&fep->tx_timeout_work);
1200 }
1201 
1202 static void fec_enet_timeout_work(struct work_struct *work)
1203 {
1204 	struct fec_enet_private *fep =
1205 		container_of(work, struct fec_enet_private, tx_timeout_work);
1206 	struct net_device *ndev = fep->netdev;
1207 
1208 	rtnl_lock();
1209 	if (netif_device_present(ndev) || netif_running(ndev)) {
1210 		napi_disable(&fep->napi);
1211 		netif_tx_lock_bh(ndev);
1212 		fec_restart(ndev);
1213 		netif_tx_wake_all_queues(ndev);
1214 		netif_tx_unlock_bh(ndev);
1215 		napi_enable(&fep->napi);
1216 	}
1217 	rtnl_unlock();
1218 }
1219 
1220 static void
1221 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1222 	struct skb_shared_hwtstamps *hwtstamps)
1223 {
1224 	unsigned long flags;
1225 	u64 ns;
1226 
1227 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1228 	ns = timecounter_cyc2time(&fep->tc, ts);
1229 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1230 
1231 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1232 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1233 }
1234 
1235 static void
1236 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1237 {
1238 	struct	fec_enet_private *fep;
1239 	struct bufdesc *bdp;
1240 	unsigned short status;
1241 	struct	sk_buff	*skb;
1242 	struct fec_enet_priv_tx_q *txq;
1243 	struct netdev_queue *nq;
1244 	int	index = 0;
1245 	int	entries_free;
1246 
1247 	fep = netdev_priv(ndev);
1248 
1249 	txq = fep->tx_queue[queue_id];
1250 	/* get next bdp of dirty_tx */
1251 	nq = netdev_get_tx_queue(ndev, queue_id);
1252 	bdp = txq->dirty_tx;
1253 
1254 	/* get next bdp of dirty_tx */
1255 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1256 
1257 	while (bdp != READ_ONCE(txq->bd.cur)) {
1258 		/* Order the load of bd.cur and cbd_sc */
1259 		rmb();
1260 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1261 		if (status & BD_ENET_TX_READY)
1262 			break;
1263 
1264 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1265 
1266 		skb = txq->tx_skbuff[index];
1267 		txq->tx_skbuff[index] = NULL;
1268 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1269 			dma_unmap_single(&fep->pdev->dev,
1270 					 fec32_to_cpu(bdp->cbd_bufaddr),
1271 					 fec16_to_cpu(bdp->cbd_datlen),
1272 					 DMA_TO_DEVICE);
1273 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1274 		if (!skb)
1275 			goto skb_done;
1276 
1277 		/* Check for errors. */
1278 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1279 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1280 				   BD_ENET_TX_CSL)) {
1281 			ndev->stats.tx_errors++;
1282 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1283 				ndev->stats.tx_heartbeat_errors++;
1284 			if (status & BD_ENET_TX_LC)  /* Late collision */
1285 				ndev->stats.tx_window_errors++;
1286 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1287 				ndev->stats.tx_aborted_errors++;
1288 			if (status & BD_ENET_TX_UN)  /* Underrun */
1289 				ndev->stats.tx_fifo_errors++;
1290 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1291 				ndev->stats.tx_carrier_errors++;
1292 		} else {
1293 			ndev->stats.tx_packets++;
1294 			ndev->stats.tx_bytes += skb->len;
1295 		}
1296 
1297 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1298 		 * are to time stamp the packet, so we still need to check time
1299 		 * stamping enabled flag.
1300 		 */
1301 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1302 			     fep->hwts_tx_en) &&
1303 		    fep->bufdesc_ex) {
1304 			struct skb_shared_hwtstamps shhwtstamps;
1305 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1306 
1307 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1308 			skb_tstamp_tx(skb, &shhwtstamps);
1309 		}
1310 
1311 		/* Deferred means some collisions occurred during transmit,
1312 		 * but we eventually sent the packet OK.
1313 		 */
1314 		if (status & BD_ENET_TX_DEF)
1315 			ndev->stats.collisions++;
1316 
1317 		/* Free the sk buffer associated with this last transmit */
1318 		dev_kfree_skb_any(skb);
1319 skb_done:
1320 		/* Make sure the update to bdp and tx_skbuff are performed
1321 		 * before dirty_tx
1322 		 */
1323 		wmb();
1324 		txq->dirty_tx = bdp;
1325 
1326 		/* Update pointer to next buffer descriptor to be transmitted */
1327 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1328 
1329 		/* Since we have freed up a buffer, the ring is no longer full
1330 		 */
1331 		if (netif_tx_queue_stopped(nq)) {
1332 			entries_free = fec_enet_get_free_txdesc_num(txq);
1333 			if (entries_free >= txq->tx_wake_threshold)
1334 				netif_tx_wake_queue(nq);
1335 		}
1336 	}
1337 
1338 	/* ERR006358: Keep the transmitter going */
1339 	if (bdp != txq->bd.cur &&
1340 	    readl(txq->bd.reg_desc_active) == 0)
1341 		writel(0, txq->bd.reg_desc_active);
1342 }
1343 
1344 static void fec_enet_tx(struct net_device *ndev)
1345 {
1346 	struct fec_enet_private *fep = netdev_priv(ndev);
1347 	int i;
1348 
1349 	/* Make sure that AVB queues are processed first. */
1350 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1351 		fec_enet_tx_queue(ndev, i);
1352 }
1353 
1354 static int
1355 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1356 {
1357 	struct  fec_enet_private *fep = netdev_priv(ndev);
1358 	int off;
1359 
1360 	off = ((unsigned long)skb->data) & fep->rx_align;
1361 	if (off)
1362 		skb_reserve(skb, fep->rx_align + 1 - off);
1363 
1364 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1365 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1366 		if (net_ratelimit())
1367 			netdev_err(ndev, "Rx DMA memory map failed\n");
1368 		return -ENOMEM;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1375 			       struct bufdesc *bdp, u32 length, bool swap)
1376 {
1377 	struct  fec_enet_private *fep = netdev_priv(ndev);
1378 	struct sk_buff *new_skb;
1379 
1380 	if (length > fep->rx_copybreak)
1381 		return false;
1382 
1383 	new_skb = netdev_alloc_skb(ndev, length);
1384 	if (!new_skb)
1385 		return false;
1386 
1387 	dma_sync_single_for_cpu(&fep->pdev->dev,
1388 				fec32_to_cpu(bdp->cbd_bufaddr),
1389 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1390 				DMA_FROM_DEVICE);
1391 	if (!swap)
1392 		memcpy(new_skb->data, (*skb)->data, length);
1393 	else
1394 		swap_buffer2(new_skb->data, (*skb)->data, length);
1395 	*skb = new_skb;
1396 
1397 	return true;
1398 }
1399 
1400 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1401  * When we update through the ring, if the next incoming buffer has
1402  * not been given to the system, we just set the empty indicator,
1403  * effectively tossing the packet.
1404  */
1405 static int
1406 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1407 {
1408 	struct fec_enet_private *fep = netdev_priv(ndev);
1409 	struct fec_enet_priv_rx_q *rxq;
1410 	struct bufdesc *bdp;
1411 	unsigned short status;
1412 	struct  sk_buff *skb_new = NULL;
1413 	struct  sk_buff *skb;
1414 	ushort	pkt_len;
1415 	__u8 *data;
1416 	int	pkt_received = 0;
1417 	struct	bufdesc_ex *ebdp = NULL;
1418 	bool	vlan_packet_rcvd = false;
1419 	u16	vlan_tag;
1420 	int	index = 0;
1421 	bool	is_copybreak;
1422 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1423 
1424 #ifdef CONFIG_M532x
1425 	flush_cache_all();
1426 #endif
1427 	rxq = fep->rx_queue[queue_id];
1428 
1429 	/* First, grab all of the stats for the incoming packet.
1430 	 * These get messed up if we get called due to a busy condition.
1431 	 */
1432 	bdp = rxq->bd.cur;
1433 
1434 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1435 
1436 		if (pkt_received >= budget)
1437 			break;
1438 		pkt_received++;
1439 
1440 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1441 
1442 		/* Check for errors. */
1443 		status ^= BD_ENET_RX_LAST;
1444 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1445 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1446 			   BD_ENET_RX_CL)) {
1447 			ndev->stats.rx_errors++;
1448 			if (status & BD_ENET_RX_OV) {
1449 				/* FIFO overrun */
1450 				ndev->stats.rx_fifo_errors++;
1451 				goto rx_processing_done;
1452 			}
1453 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1454 						| BD_ENET_RX_LAST)) {
1455 				/* Frame too long or too short. */
1456 				ndev->stats.rx_length_errors++;
1457 				if (status & BD_ENET_RX_LAST)
1458 					netdev_err(ndev, "rcv is not +last\n");
1459 			}
1460 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1461 				ndev->stats.rx_crc_errors++;
1462 			/* Report late collisions as a frame error. */
1463 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1464 				ndev->stats.rx_frame_errors++;
1465 			goto rx_processing_done;
1466 		}
1467 
1468 		/* Process the incoming frame. */
1469 		ndev->stats.rx_packets++;
1470 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1471 		ndev->stats.rx_bytes += pkt_len;
1472 
1473 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1474 		skb = rxq->rx_skbuff[index];
1475 
1476 		/* The packet length includes FCS, but we don't want to
1477 		 * include that when passing upstream as it messes up
1478 		 * bridging applications.
1479 		 */
1480 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1481 						  need_swap);
1482 		if (!is_copybreak) {
1483 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1484 			if (unlikely(!skb_new)) {
1485 				ndev->stats.rx_dropped++;
1486 				goto rx_processing_done;
1487 			}
1488 			dma_unmap_single(&fep->pdev->dev,
1489 					 fec32_to_cpu(bdp->cbd_bufaddr),
1490 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1491 					 DMA_FROM_DEVICE);
1492 		}
1493 
1494 		prefetch(skb->data - NET_IP_ALIGN);
1495 		skb_put(skb, pkt_len - 4);
1496 		data = skb->data;
1497 
1498 		if (!is_copybreak && need_swap)
1499 			swap_buffer(data, pkt_len);
1500 
1501 #if !defined(CONFIG_M5272)
1502 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1503 			data = skb_pull_inline(skb, 2);
1504 #endif
1505 
1506 		/* Extract the enhanced buffer descriptor */
1507 		ebdp = NULL;
1508 		if (fep->bufdesc_ex)
1509 			ebdp = (struct bufdesc_ex *)bdp;
1510 
1511 		/* If this is a VLAN packet remove the VLAN Tag */
1512 		vlan_packet_rcvd = false;
1513 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1514 		    fep->bufdesc_ex &&
1515 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1516 			/* Push and remove the vlan tag */
1517 			struct vlan_hdr *vlan_header =
1518 					(struct vlan_hdr *) (data + ETH_HLEN);
1519 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1520 
1521 			vlan_packet_rcvd = true;
1522 
1523 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1524 			skb_pull(skb, VLAN_HLEN);
1525 		}
1526 
1527 		skb->protocol = eth_type_trans(skb, ndev);
1528 
1529 		/* Get receive timestamp from the skb */
1530 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1531 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1532 					  skb_hwtstamps(skb));
1533 
1534 		if (fep->bufdesc_ex &&
1535 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1536 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1537 				/* don't check it */
1538 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1539 			} else {
1540 				skb_checksum_none_assert(skb);
1541 			}
1542 		}
1543 
1544 		/* Handle received VLAN packets */
1545 		if (vlan_packet_rcvd)
1546 			__vlan_hwaccel_put_tag(skb,
1547 					       htons(ETH_P_8021Q),
1548 					       vlan_tag);
1549 
1550 		skb_record_rx_queue(skb, queue_id);
1551 		napi_gro_receive(&fep->napi, skb);
1552 
1553 		if (is_copybreak) {
1554 			dma_sync_single_for_device(&fep->pdev->dev,
1555 						   fec32_to_cpu(bdp->cbd_bufaddr),
1556 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1557 						   DMA_FROM_DEVICE);
1558 		} else {
1559 			rxq->rx_skbuff[index] = skb_new;
1560 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1561 		}
1562 
1563 rx_processing_done:
1564 		/* Clear the status flags for this buffer */
1565 		status &= ~BD_ENET_RX_STATS;
1566 
1567 		/* Mark the buffer empty */
1568 		status |= BD_ENET_RX_EMPTY;
1569 
1570 		if (fep->bufdesc_ex) {
1571 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1572 
1573 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1574 			ebdp->cbd_prot = 0;
1575 			ebdp->cbd_bdu = 0;
1576 		}
1577 		/* Make sure the updates to rest of the descriptor are
1578 		 * performed before transferring ownership.
1579 		 */
1580 		wmb();
1581 		bdp->cbd_sc = cpu_to_fec16(status);
1582 
1583 		/* Update BD pointer to next entry */
1584 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1585 
1586 		/* Doing this here will keep the FEC running while we process
1587 		 * incoming frames.  On a heavily loaded network, we should be
1588 		 * able to keep up at the expense of system resources.
1589 		 */
1590 		writel(0, rxq->bd.reg_desc_active);
1591 	}
1592 	rxq->bd.cur = bdp;
1593 	return pkt_received;
1594 }
1595 
1596 static int fec_enet_rx(struct net_device *ndev, int budget)
1597 {
1598 	struct fec_enet_private *fep = netdev_priv(ndev);
1599 	int i, done = 0;
1600 
1601 	/* Make sure that AVB queues are processed first. */
1602 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1603 		done += fec_enet_rx_queue(ndev, budget - done, i);
1604 
1605 	return done;
1606 }
1607 
1608 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1609 {
1610 	uint int_events;
1611 
1612 	int_events = readl(fep->hwp + FEC_IEVENT);
1613 
1614 	/* Don't clear MDIO events, we poll for those */
1615 	int_events &= ~FEC_ENET_MII;
1616 
1617 	writel(int_events, fep->hwp + FEC_IEVENT);
1618 
1619 	return int_events != 0;
1620 }
1621 
1622 static irqreturn_t
1623 fec_enet_interrupt(int irq, void *dev_id)
1624 {
1625 	struct net_device *ndev = dev_id;
1626 	struct fec_enet_private *fep = netdev_priv(ndev);
1627 	irqreturn_t ret = IRQ_NONE;
1628 
1629 	if (fec_enet_collect_events(fep) && fep->link) {
1630 		ret = IRQ_HANDLED;
1631 
1632 		if (napi_schedule_prep(&fep->napi)) {
1633 			/* Disable interrupts */
1634 			writel(0, fep->hwp + FEC_IMASK);
1635 			__napi_schedule(&fep->napi);
1636 		}
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1643 {
1644 	struct net_device *ndev = napi->dev;
1645 	struct fec_enet_private *fep = netdev_priv(ndev);
1646 	int done = 0;
1647 
1648 	do {
1649 		done += fec_enet_rx(ndev, budget - done);
1650 		fec_enet_tx(ndev);
1651 	} while ((done < budget) && fec_enet_collect_events(fep));
1652 
1653 	if (done < budget) {
1654 		napi_complete_done(napi, done);
1655 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1656 	}
1657 
1658 	return done;
1659 }
1660 
1661 /* ------------------------------------------------------------------------- */
1662 static void fec_get_mac(struct net_device *ndev)
1663 {
1664 	struct fec_enet_private *fep = netdev_priv(ndev);
1665 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1666 	unsigned char *iap, tmpaddr[ETH_ALEN];
1667 
1668 	/*
1669 	 * try to get mac address in following order:
1670 	 *
1671 	 * 1) module parameter via kernel command line in form
1672 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1673 	 */
1674 	iap = macaddr;
1675 
1676 	/*
1677 	 * 2) from device tree data
1678 	 */
1679 	if (!is_valid_ether_addr(iap)) {
1680 		struct device_node *np = fep->pdev->dev.of_node;
1681 		if (np) {
1682 			const char *mac = of_get_mac_address(np);
1683 			if (!IS_ERR(mac))
1684 				iap = (unsigned char *) mac;
1685 		}
1686 	}
1687 
1688 	/*
1689 	 * 3) from flash or fuse (via platform data)
1690 	 */
1691 	if (!is_valid_ether_addr(iap)) {
1692 #ifdef CONFIG_M5272
1693 		if (FEC_FLASHMAC)
1694 			iap = (unsigned char *)FEC_FLASHMAC;
1695 #else
1696 		if (pdata)
1697 			iap = (unsigned char *)&pdata->mac;
1698 #endif
1699 	}
1700 
1701 	/*
1702 	 * 4) FEC mac registers set by bootloader
1703 	 */
1704 	if (!is_valid_ether_addr(iap)) {
1705 		*((__be32 *) &tmpaddr[0]) =
1706 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1707 		*((__be16 *) &tmpaddr[4]) =
1708 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1709 		iap = &tmpaddr[0];
1710 	}
1711 
1712 	/*
1713 	 * 5) random mac address
1714 	 */
1715 	if (!is_valid_ether_addr(iap)) {
1716 		/* Report it and use a random ethernet address instead */
1717 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1718 		eth_hw_addr_random(ndev);
1719 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1720 			 ndev->dev_addr);
1721 		return;
1722 	}
1723 
1724 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1725 
1726 	/* Adjust MAC if using macaddr */
1727 	if (iap == macaddr)
1728 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1729 }
1730 
1731 /* ------------------------------------------------------------------------- */
1732 
1733 /*
1734  * Phy section
1735  */
1736 static void fec_enet_adjust_link(struct net_device *ndev)
1737 {
1738 	struct fec_enet_private *fep = netdev_priv(ndev);
1739 	struct phy_device *phy_dev = ndev->phydev;
1740 	int status_change = 0;
1741 
1742 	/*
1743 	 * If the netdev is down, or is going down, we're not interested
1744 	 * in link state events, so just mark our idea of the link as down
1745 	 * and ignore the event.
1746 	 */
1747 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1748 		fep->link = 0;
1749 	} else if (phy_dev->link) {
1750 		if (!fep->link) {
1751 			fep->link = phy_dev->link;
1752 			status_change = 1;
1753 		}
1754 
1755 		if (fep->full_duplex != phy_dev->duplex) {
1756 			fep->full_duplex = phy_dev->duplex;
1757 			status_change = 1;
1758 		}
1759 
1760 		if (phy_dev->speed != fep->speed) {
1761 			fep->speed = phy_dev->speed;
1762 			status_change = 1;
1763 		}
1764 
1765 		/* if any of the above changed restart the FEC */
1766 		if (status_change) {
1767 			napi_disable(&fep->napi);
1768 			netif_tx_lock_bh(ndev);
1769 			fec_restart(ndev);
1770 			netif_tx_wake_all_queues(ndev);
1771 			netif_tx_unlock_bh(ndev);
1772 			napi_enable(&fep->napi);
1773 		}
1774 	} else {
1775 		if (fep->link) {
1776 			napi_disable(&fep->napi);
1777 			netif_tx_lock_bh(ndev);
1778 			fec_stop(ndev);
1779 			netif_tx_unlock_bh(ndev);
1780 			napi_enable(&fep->napi);
1781 			fep->link = phy_dev->link;
1782 			status_change = 1;
1783 		}
1784 	}
1785 
1786 	if (status_change)
1787 		phy_print_status(phy_dev);
1788 }
1789 
1790 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1791 {
1792 	uint ievent;
1793 	int ret;
1794 
1795 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1796 					ievent & FEC_ENET_MII, 2, 30000);
1797 
1798 	if (!ret)
1799 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1800 
1801 	return ret;
1802 }
1803 
1804 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1805 {
1806 	struct fec_enet_private *fep = bus->priv;
1807 	struct device *dev = &fep->pdev->dev;
1808 	int ret = 0, frame_start, frame_addr, frame_op;
1809 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1810 
1811 	ret = pm_runtime_resume_and_get(dev);
1812 	if (ret < 0)
1813 		return ret;
1814 
1815 	if (is_c45) {
1816 		frame_start = FEC_MMFR_ST_C45;
1817 
1818 		/* write address */
1819 		frame_addr = (regnum >> 16);
1820 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1821 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1822 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1823 		       fep->hwp + FEC_MII_DATA);
1824 
1825 		/* wait for end of transfer */
1826 		ret = fec_enet_mdio_wait(fep);
1827 		if (ret) {
1828 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1829 			goto out;
1830 		}
1831 
1832 		frame_op = FEC_MMFR_OP_READ_C45;
1833 
1834 	} else {
1835 		/* C22 read */
1836 		frame_op = FEC_MMFR_OP_READ;
1837 		frame_start = FEC_MMFR_ST;
1838 		frame_addr = regnum;
1839 	}
1840 
1841 	/* start a read op */
1842 	writel(frame_start | frame_op |
1843 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1844 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1845 
1846 	/* wait for end of transfer */
1847 	ret = fec_enet_mdio_wait(fep);
1848 	if (ret) {
1849 		netdev_err(fep->netdev, "MDIO read timeout\n");
1850 		goto out;
1851 	}
1852 
1853 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1854 
1855 out:
1856 	pm_runtime_mark_last_busy(dev);
1857 	pm_runtime_put_autosuspend(dev);
1858 
1859 	return ret;
1860 }
1861 
1862 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1863 			   u16 value)
1864 {
1865 	struct fec_enet_private *fep = bus->priv;
1866 	struct device *dev = &fep->pdev->dev;
1867 	int ret, frame_start, frame_addr;
1868 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1869 
1870 	ret = pm_runtime_resume_and_get(dev);
1871 	if (ret < 0)
1872 		return ret;
1873 
1874 	if (is_c45) {
1875 		frame_start = FEC_MMFR_ST_C45;
1876 
1877 		/* write address */
1878 		frame_addr = (regnum >> 16);
1879 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1880 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1881 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1882 		       fep->hwp + FEC_MII_DATA);
1883 
1884 		/* wait for end of transfer */
1885 		ret = fec_enet_mdio_wait(fep);
1886 		if (ret) {
1887 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1888 			goto out;
1889 		}
1890 	} else {
1891 		/* C22 write */
1892 		frame_start = FEC_MMFR_ST;
1893 		frame_addr = regnum;
1894 	}
1895 
1896 	/* start a write op */
1897 	writel(frame_start | FEC_MMFR_OP_WRITE |
1898 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1899 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1900 		fep->hwp + FEC_MII_DATA);
1901 
1902 	/* wait for end of transfer */
1903 	ret = fec_enet_mdio_wait(fep);
1904 	if (ret)
1905 		netdev_err(fep->netdev, "MDIO write timeout\n");
1906 
1907 out:
1908 	pm_runtime_mark_last_busy(dev);
1909 	pm_runtime_put_autosuspend(dev);
1910 
1911 	return ret;
1912 }
1913 
1914 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1915 {
1916 	struct fec_enet_private *fep = netdev_priv(ndev);
1917 	struct phy_device *phy_dev = ndev->phydev;
1918 
1919 	if (phy_dev) {
1920 		phy_reset_after_clk_enable(phy_dev);
1921 	} else if (fep->phy_node) {
1922 		/*
1923 		 * If the PHY still is not bound to the MAC, but there is
1924 		 * OF PHY node and a matching PHY device instance already,
1925 		 * use the OF PHY node to obtain the PHY device instance,
1926 		 * and then use that PHY device instance when triggering
1927 		 * the PHY reset.
1928 		 */
1929 		phy_dev = of_phy_find_device(fep->phy_node);
1930 		phy_reset_after_clk_enable(phy_dev);
1931 		put_device(&phy_dev->mdio.dev);
1932 	}
1933 }
1934 
1935 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1936 {
1937 	struct fec_enet_private *fep = netdev_priv(ndev);
1938 	int ret;
1939 
1940 	if (enable) {
1941 		ret = clk_prepare_enable(fep->clk_enet_out);
1942 		if (ret)
1943 			return ret;
1944 
1945 		if (fep->clk_ptp) {
1946 			mutex_lock(&fep->ptp_clk_mutex);
1947 			ret = clk_prepare_enable(fep->clk_ptp);
1948 			if (ret) {
1949 				mutex_unlock(&fep->ptp_clk_mutex);
1950 				goto failed_clk_ptp;
1951 			} else {
1952 				fep->ptp_clk_on = true;
1953 			}
1954 			mutex_unlock(&fep->ptp_clk_mutex);
1955 		}
1956 
1957 		ret = clk_prepare_enable(fep->clk_ref);
1958 		if (ret)
1959 			goto failed_clk_ref;
1960 
1961 		fec_enet_phy_reset_after_clk_enable(ndev);
1962 	} else {
1963 		clk_disable_unprepare(fep->clk_enet_out);
1964 		if (fep->clk_ptp) {
1965 			mutex_lock(&fep->ptp_clk_mutex);
1966 			clk_disable_unprepare(fep->clk_ptp);
1967 			fep->ptp_clk_on = false;
1968 			mutex_unlock(&fep->ptp_clk_mutex);
1969 		}
1970 		clk_disable_unprepare(fep->clk_ref);
1971 	}
1972 
1973 	return 0;
1974 
1975 failed_clk_ref:
1976 	if (fep->clk_ptp) {
1977 		mutex_lock(&fep->ptp_clk_mutex);
1978 		clk_disable_unprepare(fep->clk_ptp);
1979 		fep->ptp_clk_on = false;
1980 		mutex_unlock(&fep->ptp_clk_mutex);
1981 	}
1982 failed_clk_ptp:
1983 	clk_disable_unprepare(fep->clk_enet_out);
1984 
1985 	return ret;
1986 }
1987 
1988 static int fec_enet_mii_probe(struct net_device *ndev)
1989 {
1990 	struct fec_enet_private *fep = netdev_priv(ndev);
1991 	struct phy_device *phy_dev = NULL;
1992 	char mdio_bus_id[MII_BUS_ID_SIZE];
1993 	char phy_name[MII_BUS_ID_SIZE + 3];
1994 	int phy_id;
1995 	int dev_id = fep->dev_id;
1996 
1997 	if (fep->phy_node) {
1998 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1999 					 &fec_enet_adjust_link, 0,
2000 					 fep->phy_interface);
2001 		if (!phy_dev) {
2002 			netdev_err(ndev, "Unable to connect to phy\n");
2003 			return -ENODEV;
2004 		}
2005 	} else {
2006 		/* check for attached phy */
2007 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2008 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2009 				continue;
2010 			if (dev_id--)
2011 				continue;
2012 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2013 			break;
2014 		}
2015 
2016 		if (phy_id >= PHY_MAX_ADDR) {
2017 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2018 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2019 			phy_id = 0;
2020 		}
2021 
2022 		snprintf(phy_name, sizeof(phy_name),
2023 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2024 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2025 				      fep->phy_interface);
2026 	}
2027 
2028 	if (IS_ERR(phy_dev)) {
2029 		netdev_err(ndev, "could not attach to PHY\n");
2030 		return PTR_ERR(phy_dev);
2031 	}
2032 
2033 	/* mask with MAC supported features */
2034 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2035 		phy_set_max_speed(phy_dev, 1000);
2036 		phy_remove_link_mode(phy_dev,
2037 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2038 #if !defined(CONFIG_M5272)
2039 		phy_support_sym_pause(phy_dev);
2040 #endif
2041 	}
2042 	else
2043 		phy_set_max_speed(phy_dev, 100);
2044 
2045 	fep->link = 0;
2046 	fep->full_duplex = 0;
2047 
2048 	phy_attached_info(phy_dev);
2049 
2050 	return 0;
2051 }
2052 
2053 static int fec_enet_mii_init(struct platform_device *pdev)
2054 {
2055 	static struct mii_bus *fec0_mii_bus;
2056 	struct net_device *ndev = platform_get_drvdata(pdev);
2057 	struct fec_enet_private *fep = netdev_priv(ndev);
2058 	bool suppress_preamble = false;
2059 	struct device_node *node;
2060 	int err = -ENXIO;
2061 	u32 mii_speed, holdtime;
2062 	u32 bus_freq;
2063 
2064 	/*
2065 	 * The i.MX28 dual fec interfaces are not equal.
2066 	 * Here are the differences:
2067 	 *
2068 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2069 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2070 	 *  - external phys can only be configured by fec0
2071 	 *
2072 	 * That is to say fec1 can not work independently. It only works
2073 	 * when fec0 is working. The reason behind this design is that the
2074 	 * second interface is added primarily for Switch mode.
2075 	 *
2076 	 * Because of the last point above, both phys are attached on fec0
2077 	 * mdio interface in board design, and need to be configured by
2078 	 * fec0 mii_bus.
2079 	 */
2080 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2081 		/* fec1 uses fec0 mii_bus */
2082 		if (mii_cnt && fec0_mii_bus) {
2083 			fep->mii_bus = fec0_mii_bus;
2084 			mii_cnt++;
2085 			return 0;
2086 		}
2087 		return -ENOENT;
2088 	}
2089 
2090 	bus_freq = 2500000; /* 2.5MHz by default */
2091 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2092 	if (node) {
2093 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2094 		suppress_preamble = of_property_read_bool(node,
2095 							  "suppress-preamble");
2096 	}
2097 
2098 	/*
2099 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2100 	 *
2101 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2102 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2103 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2104 	 * document.
2105 	 */
2106 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2107 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2108 		mii_speed--;
2109 	if (mii_speed > 63) {
2110 		dev_err(&pdev->dev,
2111 			"fec clock (%lu) too fast to get right mii speed\n",
2112 			clk_get_rate(fep->clk_ipg));
2113 		err = -EINVAL;
2114 		goto err_out;
2115 	}
2116 
2117 	/*
2118 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2119 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2120 	 * versions are RAZ there, so just ignore the difference and write the
2121 	 * register always.
2122 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2123 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2124 	 * output.
2125 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2126 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2127 	 * holdtime cannot result in a value greater than 3.
2128 	 */
2129 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2130 
2131 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2132 
2133 	if (suppress_preamble)
2134 		fep->phy_speed |= BIT(7);
2135 
2136 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2137 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2138 		 * MII event generation condition:
2139 		 * - writing MSCR:
2140 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2141 		 *	  mscr_reg_data_in[7:0] != 0
2142 		 * - writing MMFR:
2143 		 *	- mscr[7:0]_not_zero
2144 		 */
2145 		writel(0, fep->hwp + FEC_MII_DATA);
2146 	}
2147 
2148 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2149 
2150 	/* Clear any pending transaction complete indication */
2151 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2152 
2153 	fep->mii_bus = mdiobus_alloc();
2154 	if (fep->mii_bus == NULL) {
2155 		err = -ENOMEM;
2156 		goto err_out;
2157 	}
2158 
2159 	fep->mii_bus->name = "fec_enet_mii_bus";
2160 	fep->mii_bus->read = fec_enet_mdio_read;
2161 	fep->mii_bus->write = fec_enet_mdio_write;
2162 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2163 		pdev->name, fep->dev_id + 1);
2164 	fep->mii_bus->priv = fep;
2165 	fep->mii_bus->parent = &pdev->dev;
2166 
2167 	err = of_mdiobus_register(fep->mii_bus, node);
2168 	of_node_put(node);
2169 	if (err)
2170 		goto err_out_free_mdiobus;
2171 
2172 	mii_cnt++;
2173 
2174 	/* save fec0 mii_bus */
2175 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2176 		fec0_mii_bus = fep->mii_bus;
2177 
2178 	return 0;
2179 
2180 err_out_free_mdiobus:
2181 	mdiobus_free(fep->mii_bus);
2182 err_out:
2183 	return err;
2184 }
2185 
2186 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2187 {
2188 	if (--mii_cnt == 0) {
2189 		mdiobus_unregister(fep->mii_bus);
2190 		mdiobus_free(fep->mii_bus);
2191 	}
2192 }
2193 
2194 static void fec_enet_get_drvinfo(struct net_device *ndev,
2195 				 struct ethtool_drvinfo *info)
2196 {
2197 	struct fec_enet_private *fep = netdev_priv(ndev);
2198 
2199 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2200 		sizeof(info->driver));
2201 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2202 }
2203 
2204 static int fec_enet_get_regs_len(struct net_device *ndev)
2205 {
2206 	struct fec_enet_private *fep = netdev_priv(ndev);
2207 	struct resource *r;
2208 	int s = 0;
2209 
2210 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2211 	if (r)
2212 		s = resource_size(r);
2213 
2214 	return s;
2215 }
2216 
2217 /* List of registers that can be safety be read to dump them with ethtool */
2218 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2219 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2220 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2221 static __u32 fec_enet_register_version = 2;
2222 static u32 fec_enet_register_offset[] = {
2223 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2224 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2225 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2226 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2227 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2228 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2229 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2230 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2231 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2232 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2233 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2234 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2235 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2236 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2237 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2238 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2239 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2240 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2241 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2242 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2243 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2244 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2245 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2246 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2247 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2248 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2249 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2250 };
2251 #else
2252 static __u32 fec_enet_register_version = 1;
2253 static u32 fec_enet_register_offset[] = {
2254 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2255 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2256 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2257 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2258 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2259 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2260 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2261 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2262 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2263 };
2264 #endif
2265 
2266 static void fec_enet_get_regs(struct net_device *ndev,
2267 			      struct ethtool_regs *regs, void *regbuf)
2268 {
2269 	struct fec_enet_private *fep = netdev_priv(ndev);
2270 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2271 	struct device *dev = &fep->pdev->dev;
2272 	u32 *buf = (u32 *)regbuf;
2273 	u32 i, off;
2274 	int ret;
2275 
2276 	ret = pm_runtime_resume_and_get(dev);
2277 	if (ret < 0)
2278 		return;
2279 
2280 	regs->version = fec_enet_register_version;
2281 
2282 	memset(buf, 0, regs->len);
2283 
2284 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2285 		off = fec_enet_register_offset[i];
2286 
2287 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2288 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2289 			continue;
2290 
2291 		off >>= 2;
2292 		buf[off] = readl(&theregs[off]);
2293 	}
2294 
2295 	pm_runtime_mark_last_busy(dev);
2296 	pm_runtime_put_autosuspend(dev);
2297 }
2298 
2299 static int fec_enet_get_ts_info(struct net_device *ndev,
2300 				struct ethtool_ts_info *info)
2301 {
2302 	struct fec_enet_private *fep = netdev_priv(ndev);
2303 
2304 	if (fep->bufdesc_ex) {
2305 
2306 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2307 					SOF_TIMESTAMPING_RX_SOFTWARE |
2308 					SOF_TIMESTAMPING_SOFTWARE |
2309 					SOF_TIMESTAMPING_TX_HARDWARE |
2310 					SOF_TIMESTAMPING_RX_HARDWARE |
2311 					SOF_TIMESTAMPING_RAW_HARDWARE;
2312 		if (fep->ptp_clock)
2313 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2314 		else
2315 			info->phc_index = -1;
2316 
2317 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2318 				 (1 << HWTSTAMP_TX_ON);
2319 
2320 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2321 				   (1 << HWTSTAMP_FILTER_ALL);
2322 		return 0;
2323 	} else {
2324 		return ethtool_op_get_ts_info(ndev, info);
2325 	}
2326 }
2327 
2328 #if !defined(CONFIG_M5272)
2329 
2330 static void fec_enet_get_pauseparam(struct net_device *ndev,
2331 				    struct ethtool_pauseparam *pause)
2332 {
2333 	struct fec_enet_private *fep = netdev_priv(ndev);
2334 
2335 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2336 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2337 	pause->rx_pause = pause->tx_pause;
2338 }
2339 
2340 static int fec_enet_set_pauseparam(struct net_device *ndev,
2341 				   struct ethtool_pauseparam *pause)
2342 {
2343 	struct fec_enet_private *fep = netdev_priv(ndev);
2344 
2345 	if (!ndev->phydev)
2346 		return -ENODEV;
2347 
2348 	if (pause->tx_pause != pause->rx_pause) {
2349 		netdev_info(ndev,
2350 			"hardware only support enable/disable both tx and rx");
2351 		return -EINVAL;
2352 	}
2353 
2354 	fep->pause_flag = 0;
2355 
2356 	/* tx pause must be same as rx pause */
2357 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2358 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2359 
2360 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2361 			  pause->autoneg);
2362 
2363 	if (pause->autoneg) {
2364 		if (netif_running(ndev))
2365 			fec_stop(ndev);
2366 		phy_start_aneg(ndev->phydev);
2367 	}
2368 	if (netif_running(ndev)) {
2369 		napi_disable(&fep->napi);
2370 		netif_tx_lock_bh(ndev);
2371 		fec_restart(ndev);
2372 		netif_tx_wake_all_queues(ndev);
2373 		netif_tx_unlock_bh(ndev);
2374 		napi_enable(&fep->napi);
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static const struct fec_stat {
2381 	char name[ETH_GSTRING_LEN];
2382 	u16 offset;
2383 } fec_stats[] = {
2384 	/* RMON TX */
2385 	{ "tx_dropped", RMON_T_DROP },
2386 	{ "tx_packets", RMON_T_PACKETS },
2387 	{ "tx_broadcast", RMON_T_BC_PKT },
2388 	{ "tx_multicast", RMON_T_MC_PKT },
2389 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2390 	{ "tx_undersize", RMON_T_UNDERSIZE },
2391 	{ "tx_oversize", RMON_T_OVERSIZE },
2392 	{ "tx_fragment", RMON_T_FRAG },
2393 	{ "tx_jabber", RMON_T_JAB },
2394 	{ "tx_collision", RMON_T_COL },
2395 	{ "tx_64byte", RMON_T_P64 },
2396 	{ "tx_65to127byte", RMON_T_P65TO127 },
2397 	{ "tx_128to255byte", RMON_T_P128TO255 },
2398 	{ "tx_256to511byte", RMON_T_P256TO511 },
2399 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2400 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2401 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2402 	{ "tx_octets", RMON_T_OCTETS },
2403 
2404 	/* IEEE TX */
2405 	{ "IEEE_tx_drop", IEEE_T_DROP },
2406 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2407 	{ "IEEE_tx_1col", IEEE_T_1COL },
2408 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2409 	{ "IEEE_tx_def", IEEE_T_DEF },
2410 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2411 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2412 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2413 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2414 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2415 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2416 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2417 
2418 	/* RMON RX */
2419 	{ "rx_packets", RMON_R_PACKETS },
2420 	{ "rx_broadcast", RMON_R_BC_PKT },
2421 	{ "rx_multicast", RMON_R_MC_PKT },
2422 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2423 	{ "rx_undersize", RMON_R_UNDERSIZE },
2424 	{ "rx_oversize", RMON_R_OVERSIZE },
2425 	{ "rx_fragment", RMON_R_FRAG },
2426 	{ "rx_jabber", RMON_R_JAB },
2427 	{ "rx_64byte", RMON_R_P64 },
2428 	{ "rx_65to127byte", RMON_R_P65TO127 },
2429 	{ "rx_128to255byte", RMON_R_P128TO255 },
2430 	{ "rx_256to511byte", RMON_R_P256TO511 },
2431 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2432 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2433 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2434 	{ "rx_octets", RMON_R_OCTETS },
2435 
2436 	/* IEEE RX */
2437 	{ "IEEE_rx_drop", IEEE_R_DROP },
2438 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2439 	{ "IEEE_rx_crc", IEEE_R_CRC },
2440 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2441 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2442 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2443 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2444 };
2445 
2446 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2447 
2448 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2449 {
2450 	struct fec_enet_private *fep = netdev_priv(dev);
2451 	int i;
2452 
2453 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2454 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2455 }
2456 
2457 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2458 				       struct ethtool_stats *stats, u64 *data)
2459 {
2460 	struct fec_enet_private *fep = netdev_priv(dev);
2461 
2462 	if (netif_running(dev))
2463 		fec_enet_update_ethtool_stats(dev);
2464 
2465 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2466 }
2467 
2468 static void fec_enet_get_strings(struct net_device *netdev,
2469 	u32 stringset, u8 *data)
2470 {
2471 	int i;
2472 	switch (stringset) {
2473 	case ETH_SS_STATS:
2474 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2475 			memcpy(data + i * ETH_GSTRING_LEN,
2476 				fec_stats[i].name, ETH_GSTRING_LEN);
2477 		break;
2478 	}
2479 }
2480 
2481 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2482 {
2483 	switch (sset) {
2484 	case ETH_SS_STATS:
2485 		return ARRAY_SIZE(fec_stats);
2486 	default:
2487 		return -EOPNOTSUPP;
2488 	}
2489 }
2490 
2491 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2492 {
2493 	struct fec_enet_private *fep = netdev_priv(dev);
2494 	int i;
2495 
2496 	/* Disable MIB statistics counters */
2497 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2498 
2499 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2500 		writel(0, fep->hwp + fec_stats[i].offset);
2501 
2502 	/* Don't disable MIB statistics counters */
2503 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2504 }
2505 
2506 #else	/* !defined(CONFIG_M5272) */
2507 #define FEC_STATS_SIZE	0
2508 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2509 {
2510 }
2511 
2512 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2513 {
2514 }
2515 #endif /* !defined(CONFIG_M5272) */
2516 
2517 /* ITR clock source is enet system clock (clk_ahb).
2518  * TCTT unit is cycle_ns * 64 cycle
2519  * So, the ICTT value = X us / (cycle_ns * 64)
2520  */
2521 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2522 {
2523 	struct fec_enet_private *fep = netdev_priv(ndev);
2524 
2525 	return us * (fep->itr_clk_rate / 64000) / 1000;
2526 }
2527 
2528 /* Set threshold for interrupt coalescing */
2529 static void fec_enet_itr_coal_set(struct net_device *ndev)
2530 {
2531 	struct fec_enet_private *fep = netdev_priv(ndev);
2532 	int rx_itr, tx_itr;
2533 
2534 	/* Must be greater than zero to avoid unpredictable behavior */
2535 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2536 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2537 		return;
2538 
2539 	/* Select enet system clock as Interrupt Coalescing
2540 	 * timer Clock Source
2541 	 */
2542 	rx_itr = FEC_ITR_CLK_SEL;
2543 	tx_itr = FEC_ITR_CLK_SEL;
2544 
2545 	/* set ICFT and ICTT */
2546 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2547 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2548 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2549 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2550 
2551 	rx_itr |= FEC_ITR_EN;
2552 	tx_itr |= FEC_ITR_EN;
2553 
2554 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2555 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2556 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2557 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2558 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2559 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2560 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2561 	}
2562 }
2563 
2564 static int
2565 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2566 {
2567 	struct fec_enet_private *fep = netdev_priv(ndev);
2568 
2569 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2570 		return -EOPNOTSUPP;
2571 
2572 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2573 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2574 
2575 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2576 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2577 
2578 	return 0;
2579 }
2580 
2581 static int
2582 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2583 {
2584 	struct fec_enet_private *fep = netdev_priv(ndev);
2585 	struct device *dev = &fep->pdev->dev;
2586 	unsigned int cycle;
2587 
2588 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2589 		return -EOPNOTSUPP;
2590 
2591 	if (ec->rx_max_coalesced_frames > 255) {
2592 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2593 		return -EINVAL;
2594 	}
2595 
2596 	if (ec->tx_max_coalesced_frames > 255) {
2597 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2598 		return -EINVAL;
2599 	}
2600 
2601 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2602 	if (cycle > 0xFFFF) {
2603 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2604 		return -EINVAL;
2605 	}
2606 
2607 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2608 	if (cycle > 0xFFFF) {
2609 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2610 		return -EINVAL;
2611 	}
2612 
2613 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2614 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2615 
2616 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2617 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2618 
2619 	fec_enet_itr_coal_set(ndev);
2620 
2621 	return 0;
2622 }
2623 
2624 static void fec_enet_itr_coal_init(struct net_device *ndev)
2625 {
2626 	struct ethtool_coalesce ec;
2627 
2628 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2629 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2630 
2631 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2632 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2633 
2634 	fec_enet_set_coalesce(ndev, &ec);
2635 }
2636 
2637 static int fec_enet_get_tunable(struct net_device *netdev,
2638 				const struct ethtool_tunable *tuna,
2639 				void *data)
2640 {
2641 	struct fec_enet_private *fep = netdev_priv(netdev);
2642 	int ret = 0;
2643 
2644 	switch (tuna->id) {
2645 	case ETHTOOL_RX_COPYBREAK:
2646 		*(u32 *)data = fep->rx_copybreak;
2647 		break;
2648 	default:
2649 		ret = -EINVAL;
2650 		break;
2651 	}
2652 
2653 	return ret;
2654 }
2655 
2656 static int fec_enet_set_tunable(struct net_device *netdev,
2657 				const struct ethtool_tunable *tuna,
2658 				const void *data)
2659 {
2660 	struct fec_enet_private *fep = netdev_priv(netdev);
2661 	int ret = 0;
2662 
2663 	switch (tuna->id) {
2664 	case ETHTOOL_RX_COPYBREAK:
2665 		fep->rx_copybreak = *(u32 *)data;
2666 		break;
2667 	default:
2668 		ret = -EINVAL;
2669 		break;
2670 	}
2671 
2672 	return ret;
2673 }
2674 
2675 static void
2676 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2677 {
2678 	struct fec_enet_private *fep = netdev_priv(ndev);
2679 
2680 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2681 		wol->supported = WAKE_MAGIC;
2682 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2683 	} else {
2684 		wol->supported = wol->wolopts = 0;
2685 	}
2686 }
2687 
2688 static int
2689 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2690 {
2691 	struct fec_enet_private *fep = netdev_priv(ndev);
2692 
2693 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2694 		return -EINVAL;
2695 
2696 	if (wol->wolopts & ~WAKE_MAGIC)
2697 		return -EINVAL;
2698 
2699 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2700 	if (device_may_wakeup(&ndev->dev)) {
2701 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2702 		if (fep->irq[0] > 0)
2703 			enable_irq_wake(fep->irq[0]);
2704 	} else {
2705 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2706 		if (fep->irq[0] > 0)
2707 			disable_irq_wake(fep->irq[0]);
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 static const struct ethtool_ops fec_enet_ethtool_ops = {
2714 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2715 				     ETHTOOL_COALESCE_MAX_FRAMES,
2716 	.get_drvinfo		= fec_enet_get_drvinfo,
2717 	.get_regs_len		= fec_enet_get_regs_len,
2718 	.get_regs		= fec_enet_get_regs,
2719 	.nway_reset		= phy_ethtool_nway_reset,
2720 	.get_link		= ethtool_op_get_link,
2721 	.get_coalesce		= fec_enet_get_coalesce,
2722 	.set_coalesce		= fec_enet_set_coalesce,
2723 #ifndef CONFIG_M5272
2724 	.get_pauseparam		= fec_enet_get_pauseparam,
2725 	.set_pauseparam		= fec_enet_set_pauseparam,
2726 	.get_strings		= fec_enet_get_strings,
2727 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2728 	.get_sset_count		= fec_enet_get_sset_count,
2729 #endif
2730 	.get_ts_info		= fec_enet_get_ts_info,
2731 	.get_tunable		= fec_enet_get_tunable,
2732 	.set_tunable		= fec_enet_set_tunable,
2733 	.get_wol		= fec_enet_get_wol,
2734 	.set_wol		= fec_enet_set_wol,
2735 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2736 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2737 };
2738 
2739 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2740 {
2741 	struct fec_enet_private *fep = netdev_priv(ndev);
2742 	struct phy_device *phydev = ndev->phydev;
2743 
2744 	if (!netif_running(ndev))
2745 		return -EINVAL;
2746 
2747 	if (!phydev)
2748 		return -ENODEV;
2749 
2750 	if (fep->bufdesc_ex) {
2751 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2752 
2753 		if (cmd == SIOCSHWTSTAMP) {
2754 			if (use_fec_hwts)
2755 				return fec_ptp_set(ndev, rq);
2756 			fec_ptp_disable_hwts(ndev);
2757 		} else if (cmd == SIOCGHWTSTAMP) {
2758 			if (use_fec_hwts)
2759 				return fec_ptp_get(ndev, rq);
2760 		}
2761 	}
2762 
2763 	return phy_mii_ioctl(phydev, rq, cmd);
2764 }
2765 
2766 static void fec_enet_free_buffers(struct net_device *ndev)
2767 {
2768 	struct fec_enet_private *fep = netdev_priv(ndev);
2769 	unsigned int i;
2770 	struct sk_buff *skb;
2771 	struct bufdesc	*bdp;
2772 	struct fec_enet_priv_tx_q *txq;
2773 	struct fec_enet_priv_rx_q *rxq;
2774 	unsigned int q;
2775 
2776 	for (q = 0; q < fep->num_rx_queues; q++) {
2777 		rxq = fep->rx_queue[q];
2778 		bdp = rxq->bd.base;
2779 		for (i = 0; i < rxq->bd.ring_size; i++) {
2780 			skb = rxq->rx_skbuff[i];
2781 			rxq->rx_skbuff[i] = NULL;
2782 			if (skb) {
2783 				dma_unmap_single(&fep->pdev->dev,
2784 						 fec32_to_cpu(bdp->cbd_bufaddr),
2785 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2786 						 DMA_FROM_DEVICE);
2787 				dev_kfree_skb(skb);
2788 			}
2789 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2790 		}
2791 	}
2792 
2793 	for (q = 0; q < fep->num_tx_queues; q++) {
2794 		txq = fep->tx_queue[q];
2795 		for (i = 0; i < txq->bd.ring_size; i++) {
2796 			kfree(txq->tx_bounce[i]);
2797 			txq->tx_bounce[i] = NULL;
2798 			skb = txq->tx_skbuff[i];
2799 			txq->tx_skbuff[i] = NULL;
2800 			dev_kfree_skb(skb);
2801 		}
2802 	}
2803 }
2804 
2805 static void fec_enet_free_queue(struct net_device *ndev)
2806 {
2807 	struct fec_enet_private *fep = netdev_priv(ndev);
2808 	int i;
2809 	struct fec_enet_priv_tx_q *txq;
2810 
2811 	for (i = 0; i < fep->num_tx_queues; i++)
2812 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2813 			txq = fep->tx_queue[i];
2814 			dma_free_coherent(&fep->pdev->dev,
2815 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2816 					  txq->tso_hdrs,
2817 					  txq->tso_hdrs_dma);
2818 		}
2819 
2820 	for (i = 0; i < fep->num_rx_queues; i++)
2821 		kfree(fep->rx_queue[i]);
2822 	for (i = 0; i < fep->num_tx_queues; i++)
2823 		kfree(fep->tx_queue[i]);
2824 }
2825 
2826 static int fec_enet_alloc_queue(struct net_device *ndev)
2827 {
2828 	struct fec_enet_private *fep = netdev_priv(ndev);
2829 	int i;
2830 	int ret = 0;
2831 	struct fec_enet_priv_tx_q *txq;
2832 
2833 	for (i = 0; i < fep->num_tx_queues; i++) {
2834 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2835 		if (!txq) {
2836 			ret = -ENOMEM;
2837 			goto alloc_failed;
2838 		}
2839 
2840 		fep->tx_queue[i] = txq;
2841 		txq->bd.ring_size = TX_RING_SIZE;
2842 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2843 
2844 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2845 		txq->tx_wake_threshold =
2846 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2847 
2848 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2849 					txq->bd.ring_size * TSO_HEADER_SIZE,
2850 					&txq->tso_hdrs_dma,
2851 					GFP_KERNEL);
2852 		if (!txq->tso_hdrs) {
2853 			ret = -ENOMEM;
2854 			goto alloc_failed;
2855 		}
2856 	}
2857 
2858 	for (i = 0; i < fep->num_rx_queues; i++) {
2859 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2860 					   GFP_KERNEL);
2861 		if (!fep->rx_queue[i]) {
2862 			ret = -ENOMEM;
2863 			goto alloc_failed;
2864 		}
2865 
2866 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2867 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2868 	}
2869 	return ret;
2870 
2871 alloc_failed:
2872 	fec_enet_free_queue(ndev);
2873 	return ret;
2874 }
2875 
2876 static int
2877 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2878 {
2879 	struct fec_enet_private *fep = netdev_priv(ndev);
2880 	unsigned int i;
2881 	struct sk_buff *skb;
2882 	struct bufdesc	*bdp;
2883 	struct fec_enet_priv_rx_q *rxq;
2884 
2885 	rxq = fep->rx_queue[queue];
2886 	bdp = rxq->bd.base;
2887 	for (i = 0; i < rxq->bd.ring_size; i++) {
2888 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2889 		if (!skb)
2890 			goto err_alloc;
2891 
2892 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2893 			dev_kfree_skb(skb);
2894 			goto err_alloc;
2895 		}
2896 
2897 		rxq->rx_skbuff[i] = skb;
2898 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2899 
2900 		if (fep->bufdesc_ex) {
2901 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2902 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2903 		}
2904 
2905 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2906 	}
2907 
2908 	/* Set the last buffer to wrap. */
2909 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2910 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2911 	return 0;
2912 
2913  err_alloc:
2914 	fec_enet_free_buffers(ndev);
2915 	return -ENOMEM;
2916 }
2917 
2918 static int
2919 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2920 {
2921 	struct fec_enet_private *fep = netdev_priv(ndev);
2922 	unsigned int i;
2923 	struct bufdesc  *bdp;
2924 	struct fec_enet_priv_tx_q *txq;
2925 
2926 	txq = fep->tx_queue[queue];
2927 	bdp = txq->bd.base;
2928 	for (i = 0; i < txq->bd.ring_size; i++) {
2929 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2930 		if (!txq->tx_bounce[i])
2931 			goto err_alloc;
2932 
2933 		bdp->cbd_sc = cpu_to_fec16(0);
2934 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2935 
2936 		if (fep->bufdesc_ex) {
2937 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2938 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2939 		}
2940 
2941 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2942 	}
2943 
2944 	/* Set the last buffer to wrap. */
2945 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2946 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2947 
2948 	return 0;
2949 
2950  err_alloc:
2951 	fec_enet_free_buffers(ndev);
2952 	return -ENOMEM;
2953 }
2954 
2955 static int fec_enet_alloc_buffers(struct net_device *ndev)
2956 {
2957 	struct fec_enet_private *fep = netdev_priv(ndev);
2958 	unsigned int i;
2959 
2960 	for (i = 0; i < fep->num_rx_queues; i++)
2961 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2962 			return -ENOMEM;
2963 
2964 	for (i = 0; i < fep->num_tx_queues; i++)
2965 		if (fec_enet_alloc_txq_buffers(ndev, i))
2966 			return -ENOMEM;
2967 	return 0;
2968 }
2969 
2970 static int
2971 fec_enet_open(struct net_device *ndev)
2972 {
2973 	struct fec_enet_private *fep = netdev_priv(ndev);
2974 	int ret;
2975 	bool reset_again;
2976 
2977 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
2978 	if (ret < 0)
2979 		return ret;
2980 
2981 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2982 	ret = fec_enet_clk_enable(ndev, true);
2983 	if (ret)
2984 		goto clk_enable;
2985 
2986 	/* During the first fec_enet_open call the PHY isn't probed at this
2987 	 * point. Therefore the phy_reset_after_clk_enable() call within
2988 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2989 	 * sure the PHY is working correctly we check if we need to reset again
2990 	 * later when the PHY is probed
2991 	 */
2992 	if (ndev->phydev && ndev->phydev->drv)
2993 		reset_again = false;
2994 	else
2995 		reset_again = true;
2996 
2997 	/* I should reset the ring buffers here, but I don't yet know
2998 	 * a simple way to do that.
2999 	 */
3000 
3001 	ret = fec_enet_alloc_buffers(ndev);
3002 	if (ret)
3003 		goto err_enet_alloc;
3004 
3005 	/* Init MAC prior to mii bus probe */
3006 	fec_restart(ndev);
3007 
3008 	/* Call phy_reset_after_clk_enable() again if it failed during
3009 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3010 	 */
3011 	if (reset_again)
3012 		fec_enet_phy_reset_after_clk_enable(ndev);
3013 
3014 	/* Probe and connect to PHY when open the interface */
3015 	ret = fec_enet_mii_probe(ndev);
3016 	if (ret)
3017 		goto err_enet_mii_probe;
3018 
3019 	if (fep->quirks & FEC_QUIRK_ERR006687)
3020 		imx6q_cpuidle_fec_irqs_used();
3021 
3022 	napi_enable(&fep->napi);
3023 	phy_start(ndev->phydev);
3024 	netif_tx_start_all_queues(ndev);
3025 
3026 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3027 				 FEC_WOL_FLAG_ENABLE);
3028 
3029 	return 0;
3030 
3031 err_enet_mii_probe:
3032 	fec_enet_free_buffers(ndev);
3033 err_enet_alloc:
3034 	fec_enet_clk_enable(ndev, false);
3035 clk_enable:
3036 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3037 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3038 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3039 	return ret;
3040 }
3041 
3042 static int
3043 fec_enet_close(struct net_device *ndev)
3044 {
3045 	struct fec_enet_private *fep = netdev_priv(ndev);
3046 
3047 	phy_stop(ndev->phydev);
3048 
3049 	if (netif_device_present(ndev)) {
3050 		napi_disable(&fep->napi);
3051 		netif_tx_disable(ndev);
3052 		fec_stop(ndev);
3053 	}
3054 
3055 	phy_disconnect(ndev->phydev);
3056 
3057 	if (fep->quirks & FEC_QUIRK_ERR006687)
3058 		imx6q_cpuidle_fec_irqs_unused();
3059 
3060 	fec_enet_update_ethtool_stats(ndev);
3061 
3062 	fec_enet_clk_enable(ndev, false);
3063 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3064 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3065 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3066 
3067 	fec_enet_free_buffers(ndev);
3068 
3069 	return 0;
3070 }
3071 
3072 /* Set or clear the multicast filter for this adaptor.
3073  * Skeleton taken from sunlance driver.
3074  * The CPM Ethernet implementation allows Multicast as well as individual
3075  * MAC address filtering.  Some of the drivers check to make sure it is
3076  * a group multicast address, and discard those that are not.  I guess I
3077  * will do the same for now, but just remove the test if you want
3078  * individual filtering as well (do the upper net layers want or support
3079  * this kind of feature?).
3080  */
3081 
3082 #define FEC_HASH_BITS	6		/* #bits in hash */
3083 
3084 static void set_multicast_list(struct net_device *ndev)
3085 {
3086 	struct fec_enet_private *fep = netdev_priv(ndev);
3087 	struct netdev_hw_addr *ha;
3088 	unsigned int crc, tmp;
3089 	unsigned char hash;
3090 	unsigned int hash_high = 0, hash_low = 0;
3091 
3092 	if (ndev->flags & IFF_PROMISC) {
3093 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3094 		tmp |= 0x8;
3095 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3096 		return;
3097 	}
3098 
3099 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3100 	tmp &= ~0x8;
3101 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3102 
3103 	if (ndev->flags & IFF_ALLMULTI) {
3104 		/* Catch all multicast addresses, so set the
3105 		 * filter to all 1's
3106 		 */
3107 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3108 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3109 
3110 		return;
3111 	}
3112 
3113 	/* Add the addresses in hash register */
3114 	netdev_for_each_mc_addr(ha, ndev) {
3115 		/* calculate crc32 value of mac address */
3116 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3117 
3118 		/* only upper 6 bits (FEC_HASH_BITS) are used
3119 		 * which point to specific bit in the hash registers
3120 		 */
3121 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3122 
3123 		if (hash > 31)
3124 			hash_high |= 1 << (hash - 32);
3125 		else
3126 			hash_low |= 1 << hash;
3127 	}
3128 
3129 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3130 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3131 }
3132 
3133 /* Set a MAC change in hardware. */
3134 static int
3135 fec_set_mac_address(struct net_device *ndev, void *p)
3136 {
3137 	struct fec_enet_private *fep = netdev_priv(ndev);
3138 	struct sockaddr *addr = p;
3139 
3140 	if (addr) {
3141 		if (!is_valid_ether_addr(addr->sa_data))
3142 			return -EADDRNOTAVAIL;
3143 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3144 	}
3145 
3146 	/* Add netif status check here to avoid system hang in below case:
3147 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3148 	 * After ethx down, fec all clocks are gated off and then register
3149 	 * access causes system hang.
3150 	 */
3151 	if (!netif_running(ndev))
3152 		return 0;
3153 
3154 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3155 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3156 		fep->hwp + FEC_ADDR_LOW);
3157 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3158 		fep->hwp + FEC_ADDR_HIGH);
3159 	return 0;
3160 }
3161 
3162 #ifdef CONFIG_NET_POLL_CONTROLLER
3163 /**
3164  * fec_poll_controller - FEC Poll controller function
3165  * @dev: The FEC network adapter
3166  *
3167  * Polled functionality used by netconsole and others in non interrupt mode
3168  *
3169  */
3170 static void fec_poll_controller(struct net_device *dev)
3171 {
3172 	int i;
3173 	struct fec_enet_private *fep = netdev_priv(dev);
3174 
3175 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3176 		if (fep->irq[i] > 0) {
3177 			disable_irq(fep->irq[i]);
3178 			fec_enet_interrupt(fep->irq[i], dev);
3179 			enable_irq(fep->irq[i]);
3180 		}
3181 	}
3182 }
3183 #endif
3184 
3185 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3186 	netdev_features_t features)
3187 {
3188 	struct fec_enet_private *fep = netdev_priv(netdev);
3189 	netdev_features_t changed = features ^ netdev->features;
3190 
3191 	netdev->features = features;
3192 
3193 	/* Receive checksum has been changed */
3194 	if (changed & NETIF_F_RXCSUM) {
3195 		if (features & NETIF_F_RXCSUM)
3196 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3197 		else
3198 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3199 	}
3200 }
3201 
3202 static int fec_set_features(struct net_device *netdev,
3203 	netdev_features_t features)
3204 {
3205 	struct fec_enet_private *fep = netdev_priv(netdev);
3206 	netdev_features_t changed = features ^ netdev->features;
3207 
3208 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3209 		napi_disable(&fep->napi);
3210 		netif_tx_lock_bh(netdev);
3211 		fec_stop(netdev);
3212 		fec_enet_set_netdev_features(netdev, features);
3213 		fec_restart(netdev);
3214 		netif_tx_wake_all_queues(netdev);
3215 		netif_tx_unlock_bh(netdev);
3216 		napi_enable(&fep->napi);
3217 	} else {
3218 		fec_enet_set_netdev_features(netdev, features);
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 static const struct net_device_ops fec_netdev_ops = {
3225 	.ndo_open		= fec_enet_open,
3226 	.ndo_stop		= fec_enet_close,
3227 	.ndo_start_xmit		= fec_enet_start_xmit,
3228 	.ndo_set_rx_mode	= set_multicast_list,
3229 	.ndo_validate_addr	= eth_validate_addr,
3230 	.ndo_tx_timeout		= fec_timeout,
3231 	.ndo_set_mac_address	= fec_set_mac_address,
3232 	.ndo_do_ioctl		= fec_enet_ioctl,
3233 #ifdef CONFIG_NET_POLL_CONTROLLER
3234 	.ndo_poll_controller	= fec_poll_controller,
3235 #endif
3236 	.ndo_set_features	= fec_set_features,
3237 };
3238 
3239 static const unsigned short offset_des_active_rxq[] = {
3240 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3241 };
3242 
3243 static const unsigned short offset_des_active_txq[] = {
3244 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3245 };
3246 
3247  /*
3248   * XXX:  We need to clean up on failure exits here.
3249   *
3250   */
3251 static int fec_enet_init(struct net_device *ndev)
3252 {
3253 	struct fec_enet_private *fep = netdev_priv(ndev);
3254 	struct bufdesc *cbd_base;
3255 	dma_addr_t bd_dma;
3256 	int bd_size;
3257 	unsigned int i;
3258 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3259 			sizeof(struct bufdesc);
3260 	unsigned dsize_log2 = __fls(dsize);
3261 	int ret;
3262 
3263 	WARN_ON(dsize != (1 << dsize_log2));
3264 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3265 	fep->rx_align = 0xf;
3266 	fep->tx_align = 0xf;
3267 #else
3268 	fep->rx_align = 0x3;
3269 	fep->tx_align = 0x3;
3270 #endif
3271 
3272 	/* Check mask of the streaming and coherent API */
3273 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3274 	if (ret < 0) {
3275 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3276 		return ret;
3277 	}
3278 
3279 	fec_enet_alloc_queue(ndev);
3280 
3281 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3282 
3283 	/* Allocate memory for buffer descriptors. */
3284 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3285 				       GFP_KERNEL);
3286 	if (!cbd_base) {
3287 		return -ENOMEM;
3288 	}
3289 
3290 	/* Get the Ethernet address */
3291 	fec_get_mac(ndev);
3292 	/* make sure MAC we just acquired is programmed into the hw */
3293 	fec_set_mac_address(ndev, NULL);
3294 
3295 	/* Set receive and transmit descriptor base. */
3296 	for (i = 0; i < fep->num_rx_queues; i++) {
3297 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3298 		unsigned size = dsize * rxq->bd.ring_size;
3299 
3300 		rxq->bd.qid = i;
3301 		rxq->bd.base = cbd_base;
3302 		rxq->bd.cur = cbd_base;
3303 		rxq->bd.dma = bd_dma;
3304 		rxq->bd.dsize = dsize;
3305 		rxq->bd.dsize_log2 = dsize_log2;
3306 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3307 		bd_dma += size;
3308 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3309 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3310 	}
3311 
3312 	for (i = 0; i < fep->num_tx_queues; i++) {
3313 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3314 		unsigned size = dsize * txq->bd.ring_size;
3315 
3316 		txq->bd.qid = i;
3317 		txq->bd.base = cbd_base;
3318 		txq->bd.cur = cbd_base;
3319 		txq->bd.dma = bd_dma;
3320 		txq->bd.dsize = dsize;
3321 		txq->bd.dsize_log2 = dsize_log2;
3322 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3323 		bd_dma += size;
3324 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3325 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3326 	}
3327 
3328 
3329 	/* The FEC Ethernet specific entries in the device structure */
3330 	ndev->watchdog_timeo = TX_TIMEOUT;
3331 	ndev->netdev_ops = &fec_netdev_ops;
3332 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3333 
3334 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3335 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3336 
3337 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3338 		/* enable hw VLAN support */
3339 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3340 
3341 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3342 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3343 
3344 		/* enable hw accelerator */
3345 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3346 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3347 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3348 	}
3349 
3350 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3351 		fep->tx_align = 0;
3352 		fep->rx_align = 0x3f;
3353 	}
3354 
3355 	ndev->hw_features = ndev->features;
3356 
3357 	fec_restart(ndev);
3358 
3359 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3360 		fec_enet_clear_ethtool_stats(ndev);
3361 	else
3362 		fec_enet_update_ethtool_stats(ndev);
3363 
3364 	return 0;
3365 }
3366 
3367 #ifdef CONFIG_OF
3368 static int fec_reset_phy(struct platform_device *pdev)
3369 {
3370 	int err, phy_reset;
3371 	bool active_high = false;
3372 	int msec = 1, phy_post_delay = 0;
3373 	struct device_node *np = pdev->dev.of_node;
3374 
3375 	if (!np)
3376 		return 0;
3377 
3378 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3379 	/* A sane reset duration should not be longer than 1s */
3380 	if (!err && msec > 1000)
3381 		msec = 1;
3382 
3383 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3384 	if (phy_reset == -EPROBE_DEFER)
3385 		return phy_reset;
3386 	else if (!gpio_is_valid(phy_reset))
3387 		return 0;
3388 
3389 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3390 	/* valid reset duration should be less than 1s */
3391 	if (!err && phy_post_delay > 1000)
3392 		return -EINVAL;
3393 
3394 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3395 
3396 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3397 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3398 			"phy-reset");
3399 	if (err) {
3400 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3401 		return err;
3402 	}
3403 
3404 	if (msec > 20)
3405 		msleep(msec);
3406 	else
3407 		usleep_range(msec * 1000, msec * 1000 + 1000);
3408 
3409 	gpio_set_value_cansleep(phy_reset, !active_high);
3410 
3411 	if (!phy_post_delay)
3412 		return 0;
3413 
3414 	if (phy_post_delay > 20)
3415 		msleep(phy_post_delay);
3416 	else
3417 		usleep_range(phy_post_delay * 1000,
3418 			     phy_post_delay * 1000 + 1000);
3419 
3420 	return 0;
3421 }
3422 #else /* CONFIG_OF */
3423 static int fec_reset_phy(struct platform_device *pdev)
3424 {
3425 	/*
3426 	 * In case of platform probe, the reset has been done
3427 	 * by machine code.
3428 	 */
3429 	return 0;
3430 }
3431 #endif /* CONFIG_OF */
3432 
3433 static void
3434 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3435 {
3436 	struct device_node *np = pdev->dev.of_node;
3437 
3438 	*num_tx = *num_rx = 1;
3439 
3440 	if (!np || !of_device_is_available(np))
3441 		return;
3442 
3443 	/* parse the num of tx and rx queues */
3444 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3445 
3446 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3447 
3448 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3449 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3450 			 *num_tx);
3451 		*num_tx = 1;
3452 		return;
3453 	}
3454 
3455 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3456 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3457 			 *num_rx);
3458 		*num_rx = 1;
3459 		return;
3460 	}
3461 
3462 }
3463 
3464 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3465 {
3466 	int irq_cnt = platform_irq_count(pdev);
3467 
3468 	if (irq_cnt > FEC_IRQ_NUM)
3469 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3470 	else if (irq_cnt == 2)
3471 		irq_cnt = 1;	/* last for pps */
3472 	else if (irq_cnt <= 0)
3473 		irq_cnt = 1;	/* At least 1 irq is needed */
3474 	return irq_cnt;
3475 }
3476 
3477 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3478 				   struct device_node *np)
3479 {
3480 	struct device_node *gpr_np;
3481 	u32 out_val[3];
3482 	int ret = 0;
3483 
3484 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3485 	if (!gpr_np)
3486 		return 0;
3487 
3488 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3489 					 ARRAY_SIZE(out_val));
3490 	if (ret) {
3491 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3492 		return ret;
3493 	}
3494 
3495 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3496 	if (IS_ERR(fep->stop_gpr.gpr)) {
3497 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3498 		ret = PTR_ERR(fep->stop_gpr.gpr);
3499 		fep->stop_gpr.gpr = NULL;
3500 		goto out;
3501 	}
3502 
3503 	fep->stop_gpr.reg = out_val[1];
3504 	fep->stop_gpr.bit = out_val[2];
3505 
3506 out:
3507 	of_node_put(gpr_np);
3508 
3509 	return ret;
3510 }
3511 
3512 static int
3513 fec_probe(struct platform_device *pdev)
3514 {
3515 	struct fec_enet_private *fep;
3516 	struct fec_platform_data *pdata;
3517 	phy_interface_t interface;
3518 	struct net_device *ndev;
3519 	int i, irq, ret = 0;
3520 	const struct of_device_id *of_id;
3521 	static int dev_id;
3522 	struct device_node *np = pdev->dev.of_node, *phy_node;
3523 	int num_tx_qs;
3524 	int num_rx_qs;
3525 	char irq_name[8];
3526 	int irq_cnt;
3527 	struct fec_devinfo *dev_info;
3528 
3529 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3530 
3531 	/* Init network device */
3532 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3533 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3534 	if (!ndev)
3535 		return -ENOMEM;
3536 
3537 	SET_NETDEV_DEV(ndev, &pdev->dev);
3538 
3539 	/* setup board info structure */
3540 	fep = netdev_priv(ndev);
3541 
3542 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3543 	if (of_id)
3544 		pdev->id_entry = of_id->data;
3545 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3546 	if (dev_info)
3547 		fep->quirks = dev_info->quirks;
3548 
3549 	fep->netdev = ndev;
3550 	fep->num_rx_queues = num_rx_qs;
3551 	fep->num_tx_queues = num_tx_qs;
3552 
3553 #if !defined(CONFIG_M5272)
3554 	/* default enable pause frame auto negotiation */
3555 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3556 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3557 #endif
3558 
3559 	/* Select default pin state */
3560 	pinctrl_pm_select_default_state(&pdev->dev);
3561 
3562 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3563 	if (IS_ERR(fep->hwp)) {
3564 		ret = PTR_ERR(fep->hwp);
3565 		goto failed_ioremap;
3566 	}
3567 
3568 	fep->pdev = pdev;
3569 	fep->dev_id = dev_id++;
3570 
3571 	platform_set_drvdata(pdev, ndev);
3572 
3573 	if ((of_machine_is_compatible("fsl,imx6q") ||
3574 	     of_machine_is_compatible("fsl,imx6dl")) &&
3575 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3576 		fep->quirks |= FEC_QUIRK_ERR006687;
3577 
3578 	if (of_get_property(np, "fsl,magic-packet", NULL))
3579 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3580 
3581 	ret = fec_enet_init_stop_mode(fep, np);
3582 	if (ret)
3583 		goto failed_stop_mode;
3584 
3585 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3586 	if (!phy_node && of_phy_is_fixed_link(np)) {
3587 		ret = of_phy_register_fixed_link(np);
3588 		if (ret < 0) {
3589 			dev_err(&pdev->dev,
3590 				"broken fixed-link specification\n");
3591 			goto failed_phy;
3592 		}
3593 		phy_node = of_node_get(np);
3594 	}
3595 	fep->phy_node = phy_node;
3596 
3597 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3598 	if (ret) {
3599 		pdata = dev_get_platdata(&pdev->dev);
3600 		if (pdata)
3601 			fep->phy_interface = pdata->phy;
3602 		else
3603 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3604 	} else {
3605 		fep->phy_interface = interface;
3606 	}
3607 
3608 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3609 	if (IS_ERR(fep->clk_ipg)) {
3610 		ret = PTR_ERR(fep->clk_ipg);
3611 		goto failed_clk;
3612 	}
3613 
3614 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3615 	if (IS_ERR(fep->clk_ahb)) {
3616 		ret = PTR_ERR(fep->clk_ahb);
3617 		goto failed_clk;
3618 	}
3619 
3620 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3621 
3622 	/* enet_out is optional, depends on board */
3623 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3624 	if (IS_ERR(fep->clk_enet_out))
3625 		fep->clk_enet_out = NULL;
3626 
3627 	fep->ptp_clk_on = false;
3628 	mutex_init(&fep->ptp_clk_mutex);
3629 
3630 	/* clk_ref is optional, depends on board */
3631 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3632 	if (IS_ERR(fep->clk_ref))
3633 		fep->clk_ref = NULL;
3634 
3635 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3636 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3637 	if (IS_ERR(fep->clk_ptp)) {
3638 		fep->clk_ptp = NULL;
3639 		fep->bufdesc_ex = false;
3640 	}
3641 
3642 	ret = fec_enet_clk_enable(ndev, true);
3643 	if (ret)
3644 		goto failed_clk;
3645 
3646 	ret = clk_prepare_enable(fep->clk_ipg);
3647 	if (ret)
3648 		goto failed_clk_ipg;
3649 	ret = clk_prepare_enable(fep->clk_ahb);
3650 	if (ret)
3651 		goto failed_clk_ahb;
3652 
3653 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3654 	if (!IS_ERR(fep->reg_phy)) {
3655 		ret = regulator_enable(fep->reg_phy);
3656 		if (ret) {
3657 			dev_err(&pdev->dev,
3658 				"Failed to enable phy regulator: %d\n", ret);
3659 			goto failed_regulator;
3660 		}
3661 	} else {
3662 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3663 			ret = -EPROBE_DEFER;
3664 			goto failed_regulator;
3665 		}
3666 		fep->reg_phy = NULL;
3667 	}
3668 
3669 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3670 	pm_runtime_use_autosuspend(&pdev->dev);
3671 	pm_runtime_get_noresume(&pdev->dev);
3672 	pm_runtime_set_active(&pdev->dev);
3673 	pm_runtime_enable(&pdev->dev);
3674 
3675 	ret = fec_reset_phy(pdev);
3676 	if (ret)
3677 		goto failed_reset;
3678 
3679 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3680 	if (fep->bufdesc_ex)
3681 		fec_ptp_init(pdev, irq_cnt);
3682 
3683 	ret = fec_enet_init(ndev);
3684 	if (ret)
3685 		goto failed_init;
3686 
3687 	for (i = 0; i < irq_cnt; i++) {
3688 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3689 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3690 		if (irq < 0)
3691 			irq = platform_get_irq(pdev, i);
3692 		if (irq < 0) {
3693 			ret = irq;
3694 			goto failed_irq;
3695 		}
3696 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3697 				       0, pdev->name, ndev);
3698 		if (ret)
3699 			goto failed_irq;
3700 
3701 		fep->irq[i] = irq;
3702 	}
3703 
3704 	ret = fec_enet_mii_init(pdev);
3705 	if (ret)
3706 		goto failed_mii_init;
3707 
3708 	/* Carrier starts down, phylib will bring it up */
3709 	netif_carrier_off(ndev);
3710 	fec_enet_clk_enable(ndev, false);
3711 	pinctrl_pm_select_sleep_state(&pdev->dev);
3712 
3713 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3714 
3715 	ret = register_netdev(ndev);
3716 	if (ret)
3717 		goto failed_register;
3718 
3719 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3720 			   FEC_WOL_HAS_MAGIC_PACKET);
3721 
3722 	if (fep->bufdesc_ex && fep->ptp_clock)
3723 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3724 
3725 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3726 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3727 
3728 	pm_runtime_mark_last_busy(&pdev->dev);
3729 	pm_runtime_put_autosuspend(&pdev->dev);
3730 
3731 	return 0;
3732 
3733 failed_register:
3734 	fec_enet_mii_remove(fep);
3735 failed_mii_init:
3736 failed_irq:
3737 failed_init:
3738 	fec_ptp_stop(pdev);
3739 failed_reset:
3740 	pm_runtime_put_noidle(&pdev->dev);
3741 	pm_runtime_disable(&pdev->dev);
3742 	if (fep->reg_phy)
3743 		regulator_disable(fep->reg_phy);
3744 failed_regulator:
3745 	clk_disable_unprepare(fep->clk_ahb);
3746 failed_clk_ahb:
3747 	clk_disable_unprepare(fep->clk_ipg);
3748 failed_clk_ipg:
3749 	fec_enet_clk_enable(ndev, false);
3750 failed_clk:
3751 	if (of_phy_is_fixed_link(np))
3752 		of_phy_deregister_fixed_link(np);
3753 	of_node_put(phy_node);
3754 failed_stop_mode:
3755 failed_phy:
3756 	dev_id--;
3757 failed_ioremap:
3758 	free_netdev(ndev);
3759 
3760 	return ret;
3761 }
3762 
3763 static int
3764 fec_drv_remove(struct platform_device *pdev)
3765 {
3766 	struct net_device *ndev = platform_get_drvdata(pdev);
3767 	struct fec_enet_private *fep = netdev_priv(ndev);
3768 	struct device_node *np = pdev->dev.of_node;
3769 	int ret;
3770 
3771 	ret = pm_runtime_resume_and_get(&pdev->dev);
3772 	if (ret < 0)
3773 		return ret;
3774 
3775 	cancel_work_sync(&fep->tx_timeout_work);
3776 	fec_ptp_stop(pdev);
3777 	unregister_netdev(ndev);
3778 	fec_enet_mii_remove(fep);
3779 	if (fep->reg_phy)
3780 		regulator_disable(fep->reg_phy);
3781 
3782 	if (of_phy_is_fixed_link(np))
3783 		of_phy_deregister_fixed_link(np);
3784 	of_node_put(fep->phy_node);
3785 	free_netdev(ndev);
3786 
3787 	clk_disable_unprepare(fep->clk_ahb);
3788 	clk_disable_unprepare(fep->clk_ipg);
3789 	pm_runtime_put_noidle(&pdev->dev);
3790 	pm_runtime_disable(&pdev->dev);
3791 
3792 	return 0;
3793 }
3794 
3795 static int __maybe_unused fec_suspend(struct device *dev)
3796 {
3797 	struct net_device *ndev = dev_get_drvdata(dev);
3798 	struct fec_enet_private *fep = netdev_priv(ndev);
3799 
3800 	rtnl_lock();
3801 	if (netif_running(ndev)) {
3802 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3803 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3804 		phy_stop(ndev->phydev);
3805 		napi_disable(&fep->napi);
3806 		netif_tx_lock_bh(ndev);
3807 		netif_device_detach(ndev);
3808 		netif_tx_unlock_bh(ndev);
3809 		fec_stop(ndev);
3810 		fec_enet_clk_enable(ndev, false);
3811 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3812 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3813 	}
3814 	rtnl_unlock();
3815 
3816 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3817 		regulator_disable(fep->reg_phy);
3818 
3819 	/* SOC supply clock to phy, when clock is disabled, phy link down
3820 	 * SOC control phy regulator, when regulator is disabled, phy link down
3821 	 */
3822 	if (fep->clk_enet_out || fep->reg_phy)
3823 		fep->link = 0;
3824 
3825 	return 0;
3826 }
3827 
3828 static int __maybe_unused fec_resume(struct device *dev)
3829 {
3830 	struct net_device *ndev = dev_get_drvdata(dev);
3831 	struct fec_enet_private *fep = netdev_priv(ndev);
3832 	int ret;
3833 	int val;
3834 
3835 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3836 		ret = regulator_enable(fep->reg_phy);
3837 		if (ret)
3838 			return ret;
3839 	}
3840 
3841 	rtnl_lock();
3842 	if (netif_running(ndev)) {
3843 		ret = fec_enet_clk_enable(ndev, true);
3844 		if (ret) {
3845 			rtnl_unlock();
3846 			goto failed_clk;
3847 		}
3848 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3849 			fec_enet_stop_mode(fep, false);
3850 
3851 			val = readl(fep->hwp + FEC_ECNTRL);
3852 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3853 			writel(val, fep->hwp + FEC_ECNTRL);
3854 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3855 		} else {
3856 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3857 		}
3858 		fec_restart(ndev);
3859 		netif_tx_lock_bh(ndev);
3860 		netif_device_attach(ndev);
3861 		netif_tx_unlock_bh(ndev);
3862 		napi_enable(&fep->napi);
3863 		phy_start(ndev->phydev);
3864 	}
3865 	rtnl_unlock();
3866 
3867 	return 0;
3868 
3869 failed_clk:
3870 	if (fep->reg_phy)
3871 		regulator_disable(fep->reg_phy);
3872 	return ret;
3873 }
3874 
3875 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3876 {
3877 	struct net_device *ndev = dev_get_drvdata(dev);
3878 	struct fec_enet_private *fep = netdev_priv(ndev);
3879 
3880 	clk_disable_unprepare(fep->clk_ahb);
3881 	clk_disable_unprepare(fep->clk_ipg);
3882 
3883 	return 0;
3884 }
3885 
3886 static int __maybe_unused fec_runtime_resume(struct device *dev)
3887 {
3888 	struct net_device *ndev = dev_get_drvdata(dev);
3889 	struct fec_enet_private *fep = netdev_priv(ndev);
3890 	int ret;
3891 
3892 	ret = clk_prepare_enable(fep->clk_ahb);
3893 	if (ret)
3894 		return ret;
3895 	ret = clk_prepare_enable(fep->clk_ipg);
3896 	if (ret)
3897 		goto failed_clk_ipg;
3898 
3899 	return 0;
3900 
3901 failed_clk_ipg:
3902 	clk_disable_unprepare(fep->clk_ahb);
3903 	return ret;
3904 }
3905 
3906 static const struct dev_pm_ops fec_pm_ops = {
3907 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3908 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3909 };
3910 
3911 static struct platform_driver fec_driver = {
3912 	.driver	= {
3913 		.name	= DRIVER_NAME,
3914 		.pm	= &fec_pm_ops,
3915 		.of_match_table = fec_dt_ids,
3916 		.suppress_bind_attrs = true,
3917 	},
3918 	.id_table = fec_devtype,
3919 	.probe	= fec_probe,
3920 	.remove	= fec_drv_remove,
3921 };
3922 
3923 module_platform_driver(fec_driver);
3924 
3925 MODULE_ALIAS("platform:"DRIVER_NAME);
3926 MODULE_LICENSE("GPL");
3927