1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_set(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 108 }; 109 110 static const struct fec_devinfo fec_imx28_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 112 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 113 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 114 FEC_QUIRK_NO_HARD_RESET, 115 }; 116 117 static const struct fec_devinfo fec_imx6q_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 122 FEC_QUIRK_HAS_PMQOS, 123 }; 124 125 static const struct fec_devinfo fec_mvf600_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 127 }; 128 129 static const struct fec_devinfo fec_imx6x_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 131 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 132 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 133 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 134 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 135 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 136 }; 137 138 static const struct fec_devinfo fec_imx6ul_info = { 139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 142 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 143 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 144 }; 145 146 static const struct fec_devinfo fec_imx8mq_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 150 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 151 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 152 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 153 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 154 }; 155 156 static const struct fec_devinfo fec_imx8qm_info = { 157 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 158 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 159 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 160 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 161 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 162 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 163 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 164 }; 165 166 static const struct fec_devinfo fec_s32v234_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, 171 }; 172 173 static struct platform_device_id fec_devtype[] = { 174 { 175 /* keep it for coldfire */ 176 .name = DRIVER_NAME, 177 .driver_data = 0, 178 }, { 179 .name = "imx25-fec", 180 .driver_data = (kernel_ulong_t)&fec_imx25_info, 181 }, { 182 .name = "imx27-fec", 183 .driver_data = (kernel_ulong_t)&fec_imx27_info, 184 }, { 185 .name = "imx28-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx28_info, 187 }, { 188 .name = "imx6q-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 190 }, { 191 .name = "mvf600-fec", 192 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 193 }, { 194 .name = "imx6sx-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 196 }, { 197 .name = "imx6ul-fec", 198 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 199 }, { 200 .name = "imx8mq-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 202 }, { 203 .name = "imx8qm-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 205 }, { 206 .name = "s32v234-fec", 207 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 208 }, { 209 /* sentinel */ 210 } 211 }; 212 MODULE_DEVICE_TABLE(platform, fec_devtype); 213 214 enum imx_fec_type { 215 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 216 IMX27_FEC, /* runs on i.mx27/35/51 */ 217 IMX28_FEC, 218 IMX6Q_FEC, 219 MVF600_FEC, 220 IMX6SX_FEC, 221 IMX6UL_FEC, 222 IMX8MQ_FEC, 223 IMX8QM_FEC, 224 S32V234_FEC, 225 }; 226 227 static const struct of_device_id fec_dt_ids[] = { 228 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 229 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 230 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 231 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 232 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 233 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 234 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 235 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 236 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 237 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 238 { /* sentinel */ } 239 }; 240 MODULE_DEVICE_TABLE(of, fec_dt_ids); 241 242 static unsigned char macaddr[ETH_ALEN]; 243 module_param_array(macaddr, byte, NULL, 0); 244 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 245 246 #if defined(CONFIG_M5272) 247 /* 248 * Some hardware gets it MAC address out of local flash memory. 249 * if this is non-zero then assume it is the address to get MAC from. 250 */ 251 #if defined(CONFIG_NETtel) 252 #define FEC_FLASHMAC 0xf0006006 253 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 254 #define FEC_FLASHMAC 0xf0006000 255 #elif defined(CONFIG_CANCam) 256 #define FEC_FLASHMAC 0xf0020000 257 #elif defined (CONFIG_M5272C3) 258 #define FEC_FLASHMAC (0xffe04000 + 4) 259 #elif defined(CONFIG_MOD5272) 260 #define FEC_FLASHMAC 0xffc0406b 261 #else 262 #define FEC_FLASHMAC 0 263 #endif 264 #endif /* CONFIG_M5272 */ 265 266 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 267 * 268 * 2048 byte skbufs are allocated. However, alignment requirements 269 * varies between FEC variants. Worst case is 64, so round down by 64. 270 */ 271 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 272 #define PKT_MINBUF_SIZE 64 273 274 /* FEC receive acceleration */ 275 #define FEC_RACC_IPDIS (1 << 1) 276 #define FEC_RACC_PRODIS (1 << 2) 277 #define FEC_RACC_SHIFT16 BIT(7) 278 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 279 280 /* MIB Control Register */ 281 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 282 283 /* 284 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 285 * size bits. Other FEC hardware does not, so we need to take that into 286 * account when setting it. 287 */ 288 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 289 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 290 defined(CONFIG_ARM64) 291 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 292 #else 293 #define OPT_FRAME_SIZE 0 294 #endif 295 296 /* FEC MII MMFR bits definition */ 297 #define FEC_MMFR_ST (1 << 30) 298 #define FEC_MMFR_ST_C45 (0) 299 #define FEC_MMFR_OP_READ (2 << 28) 300 #define FEC_MMFR_OP_READ_C45 (3 << 28) 301 #define FEC_MMFR_OP_WRITE (1 << 28) 302 #define FEC_MMFR_OP_ADDR_WRITE (0) 303 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 304 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 305 #define FEC_MMFR_TA (2 << 16) 306 #define FEC_MMFR_DATA(v) (v & 0xffff) 307 /* FEC ECR bits definition */ 308 #define FEC_ECR_MAGICEN (1 << 2) 309 #define FEC_ECR_SLEEP (1 << 3) 310 311 #define FEC_MII_TIMEOUT 30000 /* us */ 312 313 /* Transmitter timeout */ 314 #define TX_TIMEOUT (2 * HZ) 315 316 #define FEC_PAUSE_FLAG_AUTONEG 0x1 317 #define FEC_PAUSE_FLAG_ENABLE 0x2 318 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 319 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 320 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 321 322 #define COPYBREAK_DEFAULT 256 323 324 /* Max number of allowed TCP segments for software TSO */ 325 #define FEC_MAX_TSO_SEGS 100 326 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 327 328 #define IS_TSO_HEADER(txq, addr) \ 329 ((addr >= txq->tso_hdrs_dma) && \ 330 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 331 332 static int mii_cnt; 333 334 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 335 struct bufdesc_prop *bd) 336 { 337 return (bdp >= bd->last) ? bd->base 338 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 339 } 340 341 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 342 struct bufdesc_prop *bd) 343 { 344 return (bdp <= bd->base) ? bd->last 345 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 346 } 347 348 static int fec_enet_get_bd_index(struct bufdesc *bdp, 349 struct bufdesc_prop *bd) 350 { 351 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 352 } 353 354 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 355 { 356 int entries; 357 358 entries = (((const char *)txq->dirty_tx - 359 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 360 361 return entries >= 0 ? entries : entries + txq->bd.ring_size; 362 } 363 364 static void swap_buffer(void *bufaddr, int len) 365 { 366 int i; 367 unsigned int *buf = bufaddr; 368 369 for (i = 0; i < len; i += 4, buf++) 370 swab32s(buf); 371 } 372 373 static void fec_dump(struct net_device *ndev) 374 { 375 struct fec_enet_private *fep = netdev_priv(ndev); 376 struct bufdesc *bdp; 377 struct fec_enet_priv_tx_q *txq; 378 int index = 0; 379 380 netdev_info(ndev, "TX ring dump\n"); 381 pr_info("Nr SC addr len SKB\n"); 382 383 txq = fep->tx_queue[0]; 384 bdp = txq->bd.base; 385 386 do { 387 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 388 index, 389 bdp == txq->bd.cur ? 'S' : ' ', 390 bdp == txq->dirty_tx ? 'H' : ' ', 391 fec16_to_cpu(bdp->cbd_sc), 392 fec32_to_cpu(bdp->cbd_bufaddr), 393 fec16_to_cpu(bdp->cbd_datlen), 394 txq->tx_skbuff[index]); 395 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 396 index++; 397 } while (bdp != txq->bd.base); 398 } 399 400 static inline bool is_ipv4_pkt(struct sk_buff *skb) 401 { 402 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 403 } 404 405 static int 406 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 407 { 408 /* Only run for packets requiring a checksum. */ 409 if (skb->ip_summed != CHECKSUM_PARTIAL) 410 return 0; 411 412 if (unlikely(skb_cow_head(skb, 0))) 413 return -1; 414 415 if (is_ipv4_pkt(skb)) 416 ip_hdr(skb)->check = 0; 417 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 418 419 return 0; 420 } 421 422 static int 423 fec_enet_create_page_pool(struct fec_enet_private *fep, 424 struct fec_enet_priv_rx_q *rxq, int size) 425 { 426 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 427 struct page_pool_params pp_params = { 428 .order = 0, 429 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 430 .pool_size = size, 431 .nid = dev_to_node(&fep->pdev->dev), 432 .dev = &fep->pdev->dev, 433 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 434 .offset = FEC_ENET_XDP_HEADROOM, 435 .max_len = FEC_ENET_RX_FRSIZE, 436 }; 437 int err; 438 439 rxq->page_pool = page_pool_create(&pp_params); 440 if (IS_ERR(rxq->page_pool)) { 441 err = PTR_ERR(rxq->page_pool); 442 rxq->page_pool = NULL; 443 return err; 444 } 445 446 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 447 if (err < 0) 448 goto err_free_pp; 449 450 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 451 rxq->page_pool); 452 if (err) 453 goto err_unregister_rxq; 454 455 return 0; 456 457 err_unregister_rxq: 458 xdp_rxq_info_unreg(&rxq->xdp_rxq); 459 err_free_pp: 460 page_pool_destroy(rxq->page_pool); 461 rxq->page_pool = NULL; 462 return err; 463 } 464 465 static struct bufdesc * 466 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 467 struct sk_buff *skb, 468 struct net_device *ndev) 469 { 470 struct fec_enet_private *fep = netdev_priv(ndev); 471 struct bufdesc *bdp = txq->bd.cur; 472 struct bufdesc_ex *ebdp; 473 int nr_frags = skb_shinfo(skb)->nr_frags; 474 int frag, frag_len; 475 unsigned short status; 476 unsigned int estatus = 0; 477 skb_frag_t *this_frag; 478 unsigned int index; 479 void *bufaddr; 480 dma_addr_t addr; 481 int i; 482 483 for (frag = 0; frag < nr_frags; frag++) { 484 this_frag = &skb_shinfo(skb)->frags[frag]; 485 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 486 ebdp = (struct bufdesc_ex *)bdp; 487 488 status = fec16_to_cpu(bdp->cbd_sc); 489 status &= ~BD_ENET_TX_STATS; 490 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 491 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 492 493 /* Handle the last BD specially */ 494 if (frag == nr_frags - 1) { 495 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 496 if (fep->bufdesc_ex) { 497 estatus |= BD_ENET_TX_INT; 498 if (unlikely(skb_shinfo(skb)->tx_flags & 499 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 500 estatus |= BD_ENET_TX_TS; 501 } 502 } 503 504 if (fep->bufdesc_ex) { 505 if (fep->quirks & FEC_QUIRK_HAS_AVB) 506 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 507 if (skb->ip_summed == CHECKSUM_PARTIAL) 508 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 509 510 ebdp->cbd_bdu = 0; 511 ebdp->cbd_esc = cpu_to_fec32(estatus); 512 } 513 514 bufaddr = skb_frag_address(this_frag); 515 516 index = fec_enet_get_bd_index(bdp, &txq->bd); 517 if (((unsigned long) bufaddr) & fep->tx_align || 518 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 519 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 520 bufaddr = txq->tx_bounce[index]; 521 522 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 523 swap_buffer(bufaddr, frag_len); 524 } 525 526 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 527 DMA_TO_DEVICE); 528 if (dma_mapping_error(&fep->pdev->dev, addr)) { 529 if (net_ratelimit()) 530 netdev_err(ndev, "Tx DMA memory map failed\n"); 531 goto dma_mapping_error; 532 } 533 534 bdp->cbd_bufaddr = cpu_to_fec32(addr); 535 bdp->cbd_datlen = cpu_to_fec16(frag_len); 536 /* Make sure the updates to rest of the descriptor are 537 * performed before transferring ownership. 538 */ 539 wmb(); 540 bdp->cbd_sc = cpu_to_fec16(status); 541 } 542 543 return bdp; 544 dma_mapping_error: 545 bdp = txq->bd.cur; 546 for (i = 0; i < frag; i++) { 547 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 548 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 549 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 550 } 551 return ERR_PTR(-ENOMEM); 552 } 553 554 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 555 struct sk_buff *skb, struct net_device *ndev) 556 { 557 struct fec_enet_private *fep = netdev_priv(ndev); 558 int nr_frags = skb_shinfo(skb)->nr_frags; 559 struct bufdesc *bdp, *last_bdp; 560 void *bufaddr; 561 dma_addr_t addr; 562 unsigned short status; 563 unsigned short buflen; 564 unsigned int estatus = 0; 565 unsigned int index; 566 int entries_free; 567 568 entries_free = fec_enet_get_free_txdesc_num(txq); 569 if (entries_free < MAX_SKB_FRAGS + 1) { 570 dev_kfree_skb_any(skb); 571 if (net_ratelimit()) 572 netdev_err(ndev, "NOT enough BD for SG!\n"); 573 return NETDEV_TX_OK; 574 } 575 576 /* Protocol checksum off-load for TCP and UDP. */ 577 if (fec_enet_clear_csum(skb, ndev)) { 578 dev_kfree_skb_any(skb); 579 return NETDEV_TX_OK; 580 } 581 582 /* Fill in a Tx ring entry */ 583 bdp = txq->bd.cur; 584 last_bdp = bdp; 585 status = fec16_to_cpu(bdp->cbd_sc); 586 status &= ~BD_ENET_TX_STATS; 587 588 /* Set buffer length and buffer pointer */ 589 bufaddr = skb->data; 590 buflen = skb_headlen(skb); 591 592 index = fec_enet_get_bd_index(bdp, &txq->bd); 593 if (((unsigned long) bufaddr) & fep->tx_align || 594 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 595 memcpy(txq->tx_bounce[index], skb->data, buflen); 596 bufaddr = txq->tx_bounce[index]; 597 598 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 599 swap_buffer(bufaddr, buflen); 600 } 601 602 /* Push the data cache so the CPM does not get stale memory data. */ 603 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 604 if (dma_mapping_error(&fep->pdev->dev, addr)) { 605 dev_kfree_skb_any(skb); 606 if (net_ratelimit()) 607 netdev_err(ndev, "Tx DMA memory map failed\n"); 608 return NETDEV_TX_OK; 609 } 610 611 if (nr_frags) { 612 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 613 if (IS_ERR(last_bdp)) { 614 dma_unmap_single(&fep->pdev->dev, addr, 615 buflen, DMA_TO_DEVICE); 616 dev_kfree_skb_any(skb); 617 return NETDEV_TX_OK; 618 } 619 } else { 620 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 621 if (fep->bufdesc_ex) { 622 estatus = BD_ENET_TX_INT; 623 if (unlikely(skb_shinfo(skb)->tx_flags & 624 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 625 estatus |= BD_ENET_TX_TS; 626 } 627 } 628 bdp->cbd_bufaddr = cpu_to_fec32(addr); 629 bdp->cbd_datlen = cpu_to_fec16(buflen); 630 631 if (fep->bufdesc_ex) { 632 633 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 634 635 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 636 fep->hwts_tx_en)) 637 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 638 639 if (fep->quirks & FEC_QUIRK_HAS_AVB) 640 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 641 642 if (skb->ip_summed == CHECKSUM_PARTIAL) 643 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 644 645 ebdp->cbd_bdu = 0; 646 ebdp->cbd_esc = cpu_to_fec32(estatus); 647 } 648 649 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 650 /* Save skb pointer */ 651 txq->tx_skbuff[index] = skb; 652 653 /* Make sure the updates to rest of the descriptor are performed before 654 * transferring ownership. 655 */ 656 wmb(); 657 658 /* Send it on its way. Tell FEC it's ready, interrupt when done, 659 * it's the last BD of the frame, and to put the CRC on the end. 660 */ 661 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 662 bdp->cbd_sc = cpu_to_fec16(status); 663 664 /* If this was the last BD in the ring, start at the beginning again. */ 665 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 666 667 skb_tx_timestamp(skb); 668 669 /* Make sure the update to bdp and tx_skbuff are performed before 670 * txq->bd.cur. 671 */ 672 wmb(); 673 txq->bd.cur = bdp; 674 675 /* Trigger transmission start */ 676 writel(0, txq->bd.reg_desc_active); 677 678 return 0; 679 } 680 681 static int 682 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 683 struct net_device *ndev, 684 struct bufdesc *bdp, int index, char *data, 685 int size, bool last_tcp, bool is_last) 686 { 687 struct fec_enet_private *fep = netdev_priv(ndev); 688 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 689 unsigned short status; 690 unsigned int estatus = 0; 691 dma_addr_t addr; 692 693 status = fec16_to_cpu(bdp->cbd_sc); 694 status &= ~BD_ENET_TX_STATS; 695 696 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 697 698 if (((unsigned long) data) & fep->tx_align || 699 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 700 memcpy(txq->tx_bounce[index], data, size); 701 data = txq->tx_bounce[index]; 702 703 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 704 swap_buffer(data, size); 705 } 706 707 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 708 if (dma_mapping_error(&fep->pdev->dev, addr)) { 709 dev_kfree_skb_any(skb); 710 if (net_ratelimit()) 711 netdev_err(ndev, "Tx DMA memory map failed\n"); 712 return NETDEV_TX_OK; 713 } 714 715 bdp->cbd_datlen = cpu_to_fec16(size); 716 bdp->cbd_bufaddr = cpu_to_fec32(addr); 717 718 if (fep->bufdesc_ex) { 719 if (fep->quirks & FEC_QUIRK_HAS_AVB) 720 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 721 if (skb->ip_summed == CHECKSUM_PARTIAL) 722 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 723 ebdp->cbd_bdu = 0; 724 ebdp->cbd_esc = cpu_to_fec32(estatus); 725 } 726 727 /* Handle the last BD specially */ 728 if (last_tcp) 729 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 730 if (is_last) { 731 status |= BD_ENET_TX_INTR; 732 if (fep->bufdesc_ex) 733 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 734 } 735 736 bdp->cbd_sc = cpu_to_fec16(status); 737 738 return 0; 739 } 740 741 static int 742 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 743 struct sk_buff *skb, struct net_device *ndev, 744 struct bufdesc *bdp, int index) 745 { 746 struct fec_enet_private *fep = netdev_priv(ndev); 747 int hdr_len = skb_tcp_all_headers(skb); 748 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 749 void *bufaddr; 750 unsigned long dmabuf; 751 unsigned short status; 752 unsigned int estatus = 0; 753 754 status = fec16_to_cpu(bdp->cbd_sc); 755 status &= ~BD_ENET_TX_STATS; 756 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 757 758 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 759 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 760 if (((unsigned long)bufaddr) & fep->tx_align || 761 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 762 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 763 bufaddr = txq->tx_bounce[index]; 764 765 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 766 swap_buffer(bufaddr, hdr_len); 767 768 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 769 hdr_len, DMA_TO_DEVICE); 770 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 771 dev_kfree_skb_any(skb); 772 if (net_ratelimit()) 773 netdev_err(ndev, "Tx DMA memory map failed\n"); 774 return NETDEV_TX_OK; 775 } 776 } 777 778 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 779 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 780 781 if (fep->bufdesc_ex) { 782 if (fep->quirks & FEC_QUIRK_HAS_AVB) 783 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 784 if (skb->ip_summed == CHECKSUM_PARTIAL) 785 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 786 ebdp->cbd_bdu = 0; 787 ebdp->cbd_esc = cpu_to_fec32(estatus); 788 } 789 790 bdp->cbd_sc = cpu_to_fec16(status); 791 792 return 0; 793 } 794 795 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 796 struct sk_buff *skb, 797 struct net_device *ndev) 798 { 799 struct fec_enet_private *fep = netdev_priv(ndev); 800 int hdr_len, total_len, data_left; 801 struct bufdesc *bdp = txq->bd.cur; 802 struct tso_t tso; 803 unsigned int index = 0; 804 int ret; 805 806 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 807 dev_kfree_skb_any(skb); 808 if (net_ratelimit()) 809 netdev_err(ndev, "NOT enough BD for TSO!\n"); 810 return NETDEV_TX_OK; 811 } 812 813 /* Protocol checksum off-load for TCP and UDP. */ 814 if (fec_enet_clear_csum(skb, ndev)) { 815 dev_kfree_skb_any(skb); 816 return NETDEV_TX_OK; 817 } 818 819 /* Initialize the TSO handler, and prepare the first payload */ 820 hdr_len = tso_start(skb, &tso); 821 822 total_len = skb->len - hdr_len; 823 while (total_len > 0) { 824 char *hdr; 825 826 index = fec_enet_get_bd_index(bdp, &txq->bd); 827 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 828 total_len -= data_left; 829 830 /* prepare packet headers: MAC + IP + TCP */ 831 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 832 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 833 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 834 if (ret) 835 goto err_release; 836 837 while (data_left > 0) { 838 int size; 839 840 size = min_t(int, tso.size, data_left); 841 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 842 index = fec_enet_get_bd_index(bdp, &txq->bd); 843 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 844 bdp, index, 845 tso.data, size, 846 size == data_left, 847 total_len == 0); 848 if (ret) 849 goto err_release; 850 851 data_left -= size; 852 tso_build_data(skb, &tso, size); 853 } 854 855 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 856 } 857 858 /* Save skb pointer */ 859 txq->tx_skbuff[index] = skb; 860 861 skb_tx_timestamp(skb); 862 txq->bd.cur = bdp; 863 864 /* Trigger transmission start */ 865 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 866 !readl(txq->bd.reg_desc_active) || 867 !readl(txq->bd.reg_desc_active) || 868 !readl(txq->bd.reg_desc_active) || 869 !readl(txq->bd.reg_desc_active)) 870 writel(0, txq->bd.reg_desc_active); 871 872 return 0; 873 874 err_release: 875 /* TODO: Release all used data descriptors for TSO */ 876 return ret; 877 } 878 879 static netdev_tx_t 880 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 881 { 882 struct fec_enet_private *fep = netdev_priv(ndev); 883 int entries_free; 884 unsigned short queue; 885 struct fec_enet_priv_tx_q *txq; 886 struct netdev_queue *nq; 887 int ret; 888 889 queue = skb_get_queue_mapping(skb); 890 txq = fep->tx_queue[queue]; 891 nq = netdev_get_tx_queue(ndev, queue); 892 893 if (skb_is_gso(skb)) 894 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 895 else 896 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 897 if (ret) 898 return ret; 899 900 entries_free = fec_enet_get_free_txdesc_num(txq); 901 if (entries_free <= txq->tx_stop_threshold) 902 netif_tx_stop_queue(nq); 903 904 return NETDEV_TX_OK; 905 } 906 907 /* Init RX & TX buffer descriptors 908 */ 909 static void fec_enet_bd_init(struct net_device *dev) 910 { 911 struct fec_enet_private *fep = netdev_priv(dev); 912 struct fec_enet_priv_tx_q *txq; 913 struct fec_enet_priv_rx_q *rxq; 914 struct bufdesc *bdp; 915 unsigned int i; 916 unsigned int q; 917 918 for (q = 0; q < fep->num_rx_queues; q++) { 919 /* Initialize the receive buffer descriptors. */ 920 rxq = fep->rx_queue[q]; 921 bdp = rxq->bd.base; 922 923 for (i = 0; i < rxq->bd.ring_size; i++) { 924 925 /* Initialize the BD for every fragment in the page. */ 926 if (bdp->cbd_bufaddr) 927 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 928 else 929 bdp->cbd_sc = cpu_to_fec16(0); 930 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 931 } 932 933 /* Set the last buffer to wrap */ 934 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 935 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 936 937 rxq->bd.cur = rxq->bd.base; 938 } 939 940 for (q = 0; q < fep->num_tx_queues; q++) { 941 /* ...and the same for transmit */ 942 txq = fep->tx_queue[q]; 943 bdp = txq->bd.base; 944 txq->bd.cur = bdp; 945 946 for (i = 0; i < txq->bd.ring_size; i++) { 947 /* Initialize the BD for every fragment in the page. */ 948 bdp->cbd_sc = cpu_to_fec16(0); 949 if (bdp->cbd_bufaddr && 950 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 951 dma_unmap_single(&fep->pdev->dev, 952 fec32_to_cpu(bdp->cbd_bufaddr), 953 fec16_to_cpu(bdp->cbd_datlen), 954 DMA_TO_DEVICE); 955 if (txq->tx_skbuff[i]) { 956 dev_kfree_skb_any(txq->tx_skbuff[i]); 957 txq->tx_skbuff[i] = NULL; 958 } 959 bdp->cbd_bufaddr = cpu_to_fec32(0); 960 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 961 } 962 963 /* Set the last buffer to wrap */ 964 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 965 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 966 txq->dirty_tx = bdp; 967 } 968 } 969 970 static void fec_enet_active_rxring(struct net_device *ndev) 971 { 972 struct fec_enet_private *fep = netdev_priv(ndev); 973 int i; 974 975 for (i = 0; i < fep->num_rx_queues; i++) 976 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 977 } 978 979 static void fec_enet_enable_ring(struct net_device *ndev) 980 { 981 struct fec_enet_private *fep = netdev_priv(ndev); 982 struct fec_enet_priv_tx_q *txq; 983 struct fec_enet_priv_rx_q *rxq; 984 int i; 985 986 for (i = 0; i < fep->num_rx_queues; i++) { 987 rxq = fep->rx_queue[i]; 988 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 989 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 990 991 /* enable DMA1/2 */ 992 if (i) 993 writel(RCMR_MATCHEN | RCMR_CMP(i), 994 fep->hwp + FEC_RCMR(i)); 995 } 996 997 for (i = 0; i < fep->num_tx_queues; i++) { 998 txq = fep->tx_queue[i]; 999 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1000 1001 /* enable DMA1/2 */ 1002 if (i) 1003 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1004 fep->hwp + FEC_DMA_CFG(i)); 1005 } 1006 } 1007 1008 static void fec_enet_reset_skb(struct net_device *ndev) 1009 { 1010 struct fec_enet_private *fep = netdev_priv(ndev); 1011 struct fec_enet_priv_tx_q *txq; 1012 int i, j; 1013 1014 for (i = 0; i < fep->num_tx_queues; i++) { 1015 txq = fep->tx_queue[i]; 1016 1017 for (j = 0; j < txq->bd.ring_size; j++) { 1018 if (txq->tx_skbuff[j]) { 1019 dev_kfree_skb_any(txq->tx_skbuff[j]); 1020 txq->tx_skbuff[j] = NULL; 1021 } 1022 } 1023 } 1024 } 1025 1026 /* 1027 * This function is called to start or restart the FEC during a link 1028 * change, transmit timeout, or to reconfigure the FEC. The network 1029 * packet processing for this device must be stopped before this call. 1030 */ 1031 static void 1032 fec_restart(struct net_device *ndev) 1033 { 1034 struct fec_enet_private *fep = netdev_priv(ndev); 1035 u32 temp_mac[2]; 1036 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1037 u32 ecntl = 0x2; /* ETHEREN */ 1038 1039 /* Whack a reset. We should wait for this. 1040 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1041 * instead of reset MAC itself. 1042 */ 1043 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1044 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1045 writel(0, fep->hwp + FEC_ECNTRL); 1046 } else { 1047 writel(1, fep->hwp + FEC_ECNTRL); 1048 udelay(10); 1049 } 1050 1051 /* 1052 * enet-mac reset will reset mac address registers too, 1053 * so need to reconfigure it. 1054 */ 1055 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1056 writel((__force u32)cpu_to_be32(temp_mac[0]), 1057 fep->hwp + FEC_ADDR_LOW); 1058 writel((__force u32)cpu_to_be32(temp_mac[1]), 1059 fep->hwp + FEC_ADDR_HIGH); 1060 1061 /* Clear any outstanding interrupt, except MDIO. */ 1062 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1063 1064 fec_enet_bd_init(ndev); 1065 1066 fec_enet_enable_ring(ndev); 1067 1068 /* Reset tx SKB buffers. */ 1069 fec_enet_reset_skb(ndev); 1070 1071 /* Enable MII mode */ 1072 if (fep->full_duplex == DUPLEX_FULL) { 1073 /* FD enable */ 1074 writel(0x04, fep->hwp + FEC_X_CNTRL); 1075 } else { 1076 /* No Rcv on Xmit */ 1077 rcntl |= 0x02; 1078 writel(0x0, fep->hwp + FEC_X_CNTRL); 1079 } 1080 1081 /* Set MII speed */ 1082 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1083 1084 #if !defined(CONFIG_M5272) 1085 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1086 u32 val = readl(fep->hwp + FEC_RACC); 1087 1088 /* align IP header */ 1089 val |= FEC_RACC_SHIFT16; 1090 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1091 /* set RX checksum */ 1092 val |= FEC_RACC_OPTIONS; 1093 else 1094 val &= ~FEC_RACC_OPTIONS; 1095 writel(val, fep->hwp + FEC_RACC); 1096 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1097 } 1098 #endif 1099 1100 /* 1101 * The phy interface and speed need to get configured 1102 * differently on enet-mac. 1103 */ 1104 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1105 /* Enable flow control and length check */ 1106 rcntl |= 0x40000000 | 0x00000020; 1107 1108 /* RGMII, RMII or MII */ 1109 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1110 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1111 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1112 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1113 rcntl |= (1 << 6); 1114 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1115 rcntl |= (1 << 8); 1116 else 1117 rcntl &= ~(1 << 8); 1118 1119 /* 1G, 100M or 10M */ 1120 if (ndev->phydev) { 1121 if (ndev->phydev->speed == SPEED_1000) 1122 ecntl |= (1 << 5); 1123 else if (ndev->phydev->speed == SPEED_100) 1124 rcntl &= ~(1 << 9); 1125 else 1126 rcntl |= (1 << 9); 1127 } 1128 } else { 1129 #ifdef FEC_MIIGSK_ENR 1130 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1131 u32 cfgr; 1132 /* disable the gasket and wait */ 1133 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1134 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1135 udelay(1); 1136 1137 /* 1138 * configure the gasket: 1139 * RMII, 50 MHz, no loopback, no echo 1140 * MII, 25 MHz, no loopback, no echo 1141 */ 1142 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1143 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1144 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1145 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1146 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1147 1148 /* re-enable the gasket */ 1149 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1150 } 1151 #endif 1152 } 1153 1154 #if !defined(CONFIG_M5272) 1155 /* enable pause frame*/ 1156 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1157 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1158 ndev->phydev && ndev->phydev->pause)) { 1159 rcntl |= FEC_ENET_FCE; 1160 1161 /* set FIFO threshold parameter to reduce overrun */ 1162 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1163 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1164 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1165 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1166 1167 /* OPD */ 1168 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1169 } else { 1170 rcntl &= ~FEC_ENET_FCE; 1171 } 1172 #endif /* !defined(CONFIG_M5272) */ 1173 1174 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1175 1176 /* Setup multicast filter. */ 1177 set_multicast_list(ndev); 1178 #ifndef CONFIG_M5272 1179 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1180 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1181 #endif 1182 1183 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1184 /* enable ENET endian swap */ 1185 ecntl |= (1 << 8); 1186 /* enable ENET store and forward mode */ 1187 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1188 } 1189 1190 if (fep->bufdesc_ex) 1191 ecntl |= (1 << 4); 1192 1193 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1194 fep->rgmii_txc_dly) 1195 ecntl |= FEC_ENET_TXC_DLY; 1196 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1197 fep->rgmii_rxc_dly) 1198 ecntl |= FEC_ENET_RXC_DLY; 1199 1200 #ifndef CONFIG_M5272 1201 /* Enable the MIB statistic event counters */ 1202 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1203 #endif 1204 1205 /* And last, enable the transmit and receive processing */ 1206 writel(ecntl, fep->hwp + FEC_ECNTRL); 1207 fec_enet_active_rxring(ndev); 1208 1209 if (fep->bufdesc_ex) 1210 fec_ptp_start_cyclecounter(ndev); 1211 1212 /* Enable interrupts we wish to service */ 1213 if (fep->link) 1214 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1215 else 1216 writel(0, fep->hwp + FEC_IMASK); 1217 1218 /* Init the interrupt coalescing */ 1219 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1220 fec_enet_itr_coal_set(ndev); 1221 } 1222 1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1224 { 1225 if (!(of_machine_is_compatible("fsl,imx8qm") || 1226 of_machine_is_compatible("fsl,imx8qxp") || 1227 of_machine_is_compatible("fsl,imx8dxl"))) 1228 return 0; 1229 1230 return imx_scu_get_handle(&fep->ipc_handle); 1231 } 1232 1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1234 { 1235 struct device_node *np = fep->pdev->dev.of_node; 1236 u32 rsrc_id, val; 1237 int idx; 1238 1239 if (!np || !fep->ipc_handle) 1240 return; 1241 1242 idx = of_alias_get_id(np, "ethernet"); 1243 if (idx < 0) 1244 idx = 0; 1245 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1246 1247 val = enabled ? 1 : 0; 1248 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1249 } 1250 1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1252 { 1253 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1254 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1255 1256 if (stop_gpr->gpr) { 1257 if (enabled) 1258 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1259 BIT(stop_gpr->bit), 1260 BIT(stop_gpr->bit)); 1261 else 1262 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1263 BIT(stop_gpr->bit), 0); 1264 } else if (pdata && pdata->sleep_mode_enable) { 1265 pdata->sleep_mode_enable(enabled); 1266 } else { 1267 fec_enet_ipg_stop_set(fep, enabled); 1268 } 1269 } 1270 1271 static void fec_irqs_disable(struct net_device *ndev) 1272 { 1273 struct fec_enet_private *fep = netdev_priv(ndev); 1274 1275 writel(0, fep->hwp + FEC_IMASK); 1276 } 1277 1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1279 { 1280 struct fec_enet_private *fep = netdev_priv(ndev); 1281 1282 writel(0, fep->hwp + FEC_IMASK); 1283 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1284 } 1285 1286 static void 1287 fec_stop(struct net_device *ndev) 1288 { 1289 struct fec_enet_private *fep = netdev_priv(ndev); 1290 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1291 u32 val; 1292 1293 /* We cannot expect a graceful transmit stop without link !!! */ 1294 if (fep->link) { 1295 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1296 udelay(10); 1297 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1298 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1299 } 1300 1301 /* Whack a reset. We should wait for this. 1302 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1303 * instead of reset MAC itself. 1304 */ 1305 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1306 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1307 writel(0, fep->hwp + FEC_ECNTRL); 1308 } else { 1309 writel(1, fep->hwp + FEC_ECNTRL); 1310 udelay(10); 1311 } 1312 } else { 1313 val = readl(fep->hwp + FEC_ECNTRL); 1314 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1315 writel(val, fep->hwp + FEC_ECNTRL); 1316 } 1317 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1318 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1319 1320 /* We have to keep ENET enabled to have MII interrupt stay working */ 1321 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1322 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1323 writel(2, fep->hwp + FEC_ECNTRL); 1324 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1325 } 1326 } 1327 1328 1329 static void 1330 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1331 { 1332 struct fec_enet_private *fep = netdev_priv(ndev); 1333 1334 fec_dump(ndev); 1335 1336 ndev->stats.tx_errors++; 1337 1338 schedule_work(&fep->tx_timeout_work); 1339 } 1340 1341 static void fec_enet_timeout_work(struct work_struct *work) 1342 { 1343 struct fec_enet_private *fep = 1344 container_of(work, struct fec_enet_private, tx_timeout_work); 1345 struct net_device *ndev = fep->netdev; 1346 1347 rtnl_lock(); 1348 if (netif_device_present(ndev) || netif_running(ndev)) { 1349 napi_disable(&fep->napi); 1350 netif_tx_lock_bh(ndev); 1351 fec_restart(ndev); 1352 netif_tx_wake_all_queues(ndev); 1353 netif_tx_unlock_bh(ndev); 1354 napi_enable(&fep->napi); 1355 } 1356 rtnl_unlock(); 1357 } 1358 1359 static void 1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1361 struct skb_shared_hwtstamps *hwtstamps) 1362 { 1363 unsigned long flags; 1364 u64 ns; 1365 1366 spin_lock_irqsave(&fep->tmreg_lock, flags); 1367 ns = timecounter_cyc2time(&fep->tc, ts); 1368 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1369 1370 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1371 hwtstamps->hwtstamp = ns_to_ktime(ns); 1372 } 1373 1374 static void 1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1376 { 1377 struct fec_enet_private *fep; 1378 struct bufdesc *bdp; 1379 unsigned short status; 1380 struct sk_buff *skb; 1381 struct fec_enet_priv_tx_q *txq; 1382 struct netdev_queue *nq; 1383 int index = 0; 1384 int entries_free; 1385 1386 fep = netdev_priv(ndev); 1387 1388 txq = fep->tx_queue[queue_id]; 1389 /* get next bdp of dirty_tx */ 1390 nq = netdev_get_tx_queue(ndev, queue_id); 1391 bdp = txq->dirty_tx; 1392 1393 /* get next bdp of dirty_tx */ 1394 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1395 1396 while (bdp != READ_ONCE(txq->bd.cur)) { 1397 /* Order the load of bd.cur and cbd_sc */ 1398 rmb(); 1399 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1400 if (status & BD_ENET_TX_READY) 1401 break; 1402 1403 index = fec_enet_get_bd_index(bdp, &txq->bd); 1404 1405 skb = txq->tx_skbuff[index]; 1406 txq->tx_skbuff[index] = NULL; 1407 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1408 dma_unmap_single(&fep->pdev->dev, 1409 fec32_to_cpu(bdp->cbd_bufaddr), 1410 fec16_to_cpu(bdp->cbd_datlen), 1411 DMA_TO_DEVICE); 1412 bdp->cbd_bufaddr = cpu_to_fec32(0); 1413 if (!skb) 1414 goto skb_done; 1415 1416 /* Check for errors. */ 1417 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1418 BD_ENET_TX_RL | BD_ENET_TX_UN | 1419 BD_ENET_TX_CSL)) { 1420 ndev->stats.tx_errors++; 1421 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1422 ndev->stats.tx_heartbeat_errors++; 1423 if (status & BD_ENET_TX_LC) /* Late collision */ 1424 ndev->stats.tx_window_errors++; 1425 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1426 ndev->stats.tx_aborted_errors++; 1427 if (status & BD_ENET_TX_UN) /* Underrun */ 1428 ndev->stats.tx_fifo_errors++; 1429 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1430 ndev->stats.tx_carrier_errors++; 1431 } else { 1432 ndev->stats.tx_packets++; 1433 ndev->stats.tx_bytes += skb->len; 1434 } 1435 1436 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1437 * are to time stamp the packet, so we still need to check time 1438 * stamping enabled flag. 1439 */ 1440 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1441 fep->hwts_tx_en) && 1442 fep->bufdesc_ex) { 1443 struct skb_shared_hwtstamps shhwtstamps; 1444 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1445 1446 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1447 skb_tstamp_tx(skb, &shhwtstamps); 1448 } 1449 1450 /* Deferred means some collisions occurred during transmit, 1451 * but we eventually sent the packet OK. 1452 */ 1453 if (status & BD_ENET_TX_DEF) 1454 ndev->stats.collisions++; 1455 1456 /* Free the sk buffer associated with this last transmit */ 1457 dev_kfree_skb_any(skb); 1458 skb_done: 1459 /* Make sure the update to bdp and tx_skbuff are performed 1460 * before dirty_tx 1461 */ 1462 wmb(); 1463 txq->dirty_tx = bdp; 1464 1465 /* Update pointer to next buffer descriptor to be transmitted */ 1466 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1467 1468 /* Since we have freed up a buffer, the ring is no longer full 1469 */ 1470 if (netif_tx_queue_stopped(nq)) { 1471 entries_free = fec_enet_get_free_txdesc_num(txq); 1472 if (entries_free >= txq->tx_wake_threshold) 1473 netif_tx_wake_queue(nq); 1474 } 1475 } 1476 1477 /* ERR006358: Keep the transmitter going */ 1478 if (bdp != txq->bd.cur && 1479 readl(txq->bd.reg_desc_active) == 0) 1480 writel(0, txq->bd.reg_desc_active); 1481 } 1482 1483 static void fec_enet_tx(struct net_device *ndev) 1484 { 1485 struct fec_enet_private *fep = netdev_priv(ndev); 1486 int i; 1487 1488 /* Make sure that AVB queues are processed first. */ 1489 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1490 fec_enet_tx_queue(ndev, i); 1491 } 1492 1493 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1494 struct bufdesc *bdp, int index) 1495 { 1496 struct page *new_page; 1497 dma_addr_t phys_addr; 1498 1499 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1500 WARN_ON(!new_page); 1501 rxq->rx_skb_info[index].page = new_page; 1502 1503 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1504 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1505 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1506 } 1507 1508 static u32 1509 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1510 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1511 { 1512 unsigned int sync, len = xdp->data_end - xdp->data; 1513 u32 ret = FEC_ENET_XDP_PASS; 1514 struct page *page; 1515 int err; 1516 u32 act; 1517 1518 act = bpf_prog_run_xdp(prog, xdp); 1519 1520 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1521 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1522 sync = max(sync, len); 1523 1524 switch (act) { 1525 case XDP_PASS: 1526 rxq->stats[RX_XDP_PASS]++; 1527 ret = FEC_ENET_XDP_PASS; 1528 break; 1529 1530 case XDP_REDIRECT: 1531 rxq->stats[RX_XDP_REDIRECT]++; 1532 err = xdp_do_redirect(fep->netdev, xdp, prog); 1533 if (!err) { 1534 ret = FEC_ENET_XDP_REDIR; 1535 } else { 1536 ret = FEC_ENET_XDP_CONSUMED; 1537 page = virt_to_head_page(xdp->data); 1538 page_pool_put_page(rxq->page_pool, page, sync, true); 1539 } 1540 break; 1541 1542 default: 1543 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1544 fallthrough; 1545 1546 case XDP_TX: 1547 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1548 fallthrough; 1549 1550 case XDP_ABORTED: 1551 fallthrough; /* handle aborts by dropping packet */ 1552 1553 case XDP_DROP: 1554 rxq->stats[RX_XDP_DROP]++; 1555 ret = FEC_ENET_XDP_CONSUMED; 1556 page = virt_to_head_page(xdp->data); 1557 page_pool_put_page(rxq->page_pool, page, sync, true); 1558 break; 1559 } 1560 1561 return ret; 1562 } 1563 1564 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1565 * When we update through the ring, if the next incoming buffer has 1566 * not been given to the system, we just set the empty indicator, 1567 * effectively tossing the packet. 1568 */ 1569 static int 1570 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1571 { 1572 struct fec_enet_private *fep = netdev_priv(ndev); 1573 struct fec_enet_priv_rx_q *rxq; 1574 struct bufdesc *bdp; 1575 unsigned short status; 1576 struct sk_buff *skb; 1577 ushort pkt_len; 1578 __u8 *data; 1579 int pkt_received = 0; 1580 struct bufdesc_ex *ebdp = NULL; 1581 bool vlan_packet_rcvd = false; 1582 u16 vlan_tag; 1583 int index = 0; 1584 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1585 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1586 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1587 u32 data_start = FEC_ENET_XDP_HEADROOM; 1588 struct xdp_buff xdp; 1589 struct page *page; 1590 u32 sub_len = 4; 1591 1592 #if !defined(CONFIG_M5272) 1593 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1594 * FEC_RACC_SHIFT16 is set by default in the probe function. 1595 */ 1596 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1597 data_start += 2; 1598 sub_len += 2; 1599 } 1600 #endif 1601 1602 #ifdef CONFIG_M532x 1603 flush_cache_all(); 1604 #endif 1605 rxq = fep->rx_queue[queue_id]; 1606 1607 /* First, grab all of the stats for the incoming packet. 1608 * These get messed up if we get called due to a busy condition. 1609 */ 1610 bdp = rxq->bd.cur; 1611 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1612 1613 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1614 1615 if (pkt_received >= budget) 1616 break; 1617 pkt_received++; 1618 1619 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1620 1621 /* Check for errors. */ 1622 status ^= BD_ENET_RX_LAST; 1623 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1624 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1625 BD_ENET_RX_CL)) { 1626 ndev->stats.rx_errors++; 1627 if (status & BD_ENET_RX_OV) { 1628 /* FIFO overrun */ 1629 ndev->stats.rx_fifo_errors++; 1630 goto rx_processing_done; 1631 } 1632 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1633 | BD_ENET_RX_LAST)) { 1634 /* Frame too long or too short. */ 1635 ndev->stats.rx_length_errors++; 1636 if (status & BD_ENET_RX_LAST) 1637 netdev_err(ndev, "rcv is not +last\n"); 1638 } 1639 if (status & BD_ENET_RX_CR) /* CRC Error */ 1640 ndev->stats.rx_crc_errors++; 1641 /* Report late collisions as a frame error. */ 1642 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1643 ndev->stats.rx_frame_errors++; 1644 goto rx_processing_done; 1645 } 1646 1647 /* Process the incoming frame. */ 1648 ndev->stats.rx_packets++; 1649 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1650 ndev->stats.rx_bytes += pkt_len; 1651 1652 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1653 page = rxq->rx_skb_info[index].page; 1654 dma_sync_single_for_cpu(&fep->pdev->dev, 1655 fec32_to_cpu(bdp->cbd_bufaddr), 1656 pkt_len, 1657 DMA_FROM_DEVICE); 1658 prefetch(page_address(page)); 1659 fec_enet_update_cbd(rxq, bdp, index); 1660 1661 if (xdp_prog) { 1662 xdp_buff_clear_frags_flag(&xdp); 1663 /* subtract 16bit shift and FCS */ 1664 xdp_prepare_buff(&xdp, page_address(page), 1665 data_start, pkt_len - sub_len, false); 1666 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1667 xdp_result |= ret; 1668 if (ret != FEC_ENET_XDP_PASS) 1669 goto rx_processing_done; 1670 } 1671 1672 /* The packet length includes FCS, but we don't want to 1673 * include that when passing upstream as it messes up 1674 * bridging applications. 1675 */ 1676 skb = build_skb(page_address(page), PAGE_SIZE); 1677 if (unlikely(!skb)) { 1678 page_pool_recycle_direct(rxq->page_pool, page); 1679 ndev->stats.rx_dropped++; 1680 1681 netdev_err_once(ndev, "build_skb failed!\n"); 1682 goto rx_processing_done; 1683 } 1684 1685 skb_reserve(skb, data_start); 1686 skb_put(skb, pkt_len - sub_len); 1687 skb_mark_for_recycle(skb); 1688 1689 if (unlikely(need_swap)) { 1690 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1691 swap_buffer(data, pkt_len); 1692 } 1693 data = skb->data; 1694 1695 /* Extract the enhanced buffer descriptor */ 1696 ebdp = NULL; 1697 if (fep->bufdesc_ex) 1698 ebdp = (struct bufdesc_ex *)bdp; 1699 1700 /* If this is a VLAN packet remove the VLAN Tag */ 1701 vlan_packet_rcvd = false; 1702 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1703 fep->bufdesc_ex && 1704 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1705 /* Push and remove the vlan tag */ 1706 struct vlan_hdr *vlan_header = 1707 (struct vlan_hdr *) (data + ETH_HLEN); 1708 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1709 1710 vlan_packet_rcvd = true; 1711 1712 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1713 skb_pull(skb, VLAN_HLEN); 1714 } 1715 1716 skb->protocol = eth_type_trans(skb, ndev); 1717 1718 /* Get receive timestamp from the skb */ 1719 if (fep->hwts_rx_en && fep->bufdesc_ex) 1720 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1721 skb_hwtstamps(skb)); 1722 1723 if (fep->bufdesc_ex && 1724 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1725 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1726 /* don't check it */ 1727 skb->ip_summed = CHECKSUM_UNNECESSARY; 1728 } else { 1729 skb_checksum_none_assert(skb); 1730 } 1731 } 1732 1733 /* Handle received VLAN packets */ 1734 if (vlan_packet_rcvd) 1735 __vlan_hwaccel_put_tag(skb, 1736 htons(ETH_P_8021Q), 1737 vlan_tag); 1738 1739 skb_record_rx_queue(skb, queue_id); 1740 napi_gro_receive(&fep->napi, skb); 1741 1742 rx_processing_done: 1743 /* Clear the status flags for this buffer */ 1744 status &= ~BD_ENET_RX_STATS; 1745 1746 /* Mark the buffer empty */ 1747 status |= BD_ENET_RX_EMPTY; 1748 1749 if (fep->bufdesc_ex) { 1750 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1751 1752 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1753 ebdp->cbd_prot = 0; 1754 ebdp->cbd_bdu = 0; 1755 } 1756 /* Make sure the updates to rest of the descriptor are 1757 * performed before transferring ownership. 1758 */ 1759 wmb(); 1760 bdp->cbd_sc = cpu_to_fec16(status); 1761 1762 /* Update BD pointer to next entry */ 1763 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1764 1765 /* Doing this here will keep the FEC running while we process 1766 * incoming frames. On a heavily loaded network, we should be 1767 * able to keep up at the expense of system resources. 1768 */ 1769 writel(0, rxq->bd.reg_desc_active); 1770 } 1771 rxq->bd.cur = bdp; 1772 1773 if (xdp_result & FEC_ENET_XDP_REDIR) 1774 xdp_do_flush_map(); 1775 1776 return pkt_received; 1777 } 1778 1779 static int fec_enet_rx(struct net_device *ndev, int budget) 1780 { 1781 struct fec_enet_private *fep = netdev_priv(ndev); 1782 int i, done = 0; 1783 1784 /* Make sure that AVB queues are processed first. */ 1785 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1786 done += fec_enet_rx_queue(ndev, budget - done, i); 1787 1788 return done; 1789 } 1790 1791 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1792 { 1793 uint int_events; 1794 1795 int_events = readl(fep->hwp + FEC_IEVENT); 1796 1797 /* Don't clear MDIO events, we poll for those */ 1798 int_events &= ~FEC_ENET_MII; 1799 1800 writel(int_events, fep->hwp + FEC_IEVENT); 1801 1802 return int_events != 0; 1803 } 1804 1805 static irqreturn_t 1806 fec_enet_interrupt(int irq, void *dev_id) 1807 { 1808 struct net_device *ndev = dev_id; 1809 struct fec_enet_private *fep = netdev_priv(ndev); 1810 irqreturn_t ret = IRQ_NONE; 1811 1812 if (fec_enet_collect_events(fep) && fep->link) { 1813 ret = IRQ_HANDLED; 1814 1815 if (napi_schedule_prep(&fep->napi)) { 1816 /* Disable interrupts */ 1817 writel(0, fep->hwp + FEC_IMASK); 1818 __napi_schedule(&fep->napi); 1819 } 1820 } 1821 1822 return ret; 1823 } 1824 1825 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1826 { 1827 struct net_device *ndev = napi->dev; 1828 struct fec_enet_private *fep = netdev_priv(ndev); 1829 int done = 0; 1830 1831 do { 1832 done += fec_enet_rx(ndev, budget - done); 1833 fec_enet_tx(ndev); 1834 } while ((done < budget) && fec_enet_collect_events(fep)); 1835 1836 if (done < budget) { 1837 napi_complete_done(napi, done); 1838 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1839 } 1840 1841 return done; 1842 } 1843 1844 /* ------------------------------------------------------------------------- */ 1845 static int fec_get_mac(struct net_device *ndev) 1846 { 1847 struct fec_enet_private *fep = netdev_priv(ndev); 1848 unsigned char *iap, tmpaddr[ETH_ALEN]; 1849 int ret; 1850 1851 /* 1852 * try to get mac address in following order: 1853 * 1854 * 1) module parameter via kernel command line in form 1855 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1856 */ 1857 iap = macaddr; 1858 1859 /* 1860 * 2) from device tree data 1861 */ 1862 if (!is_valid_ether_addr(iap)) { 1863 struct device_node *np = fep->pdev->dev.of_node; 1864 if (np) { 1865 ret = of_get_mac_address(np, tmpaddr); 1866 if (!ret) 1867 iap = tmpaddr; 1868 else if (ret == -EPROBE_DEFER) 1869 return ret; 1870 } 1871 } 1872 1873 /* 1874 * 3) from flash or fuse (via platform data) 1875 */ 1876 if (!is_valid_ether_addr(iap)) { 1877 #ifdef CONFIG_M5272 1878 if (FEC_FLASHMAC) 1879 iap = (unsigned char *)FEC_FLASHMAC; 1880 #else 1881 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1882 1883 if (pdata) 1884 iap = (unsigned char *)&pdata->mac; 1885 #endif 1886 } 1887 1888 /* 1889 * 4) FEC mac registers set by bootloader 1890 */ 1891 if (!is_valid_ether_addr(iap)) { 1892 *((__be32 *) &tmpaddr[0]) = 1893 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1894 *((__be16 *) &tmpaddr[4]) = 1895 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1896 iap = &tmpaddr[0]; 1897 } 1898 1899 /* 1900 * 5) random mac address 1901 */ 1902 if (!is_valid_ether_addr(iap)) { 1903 /* Report it and use a random ethernet address instead */ 1904 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1905 eth_hw_addr_random(ndev); 1906 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1907 ndev->dev_addr); 1908 return 0; 1909 } 1910 1911 /* Adjust MAC if using macaddr */ 1912 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1913 1914 return 0; 1915 } 1916 1917 /* ------------------------------------------------------------------------- */ 1918 1919 /* 1920 * Phy section 1921 */ 1922 static void fec_enet_adjust_link(struct net_device *ndev) 1923 { 1924 struct fec_enet_private *fep = netdev_priv(ndev); 1925 struct phy_device *phy_dev = ndev->phydev; 1926 int status_change = 0; 1927 1928 /* 1929 * If the netdev is down, or is going down, we're not interested 1930 * in link state events, so just mark our idea of the link as down 1931 * and ignore the event. 1932 */ 1933 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1934 fep->link = 0; 1935 } else if (phy_dev->link) { 1936 if (!fep->link) { 1937 fep->link = phy_dev->link; 1938 status_change = 1; 1939 } 1940 1941 if (fep->full_duplex != phy_dev->duplex) { 1942 fep->full_duplex = phy_dev->duplex; 1943 status_change = 1; 1944 } 1945 1946 if (phy_dev->speed != fep->speed) { 1947 fep->speed = phy_dev->speed; 1948 status_change = 1; 1949 } 1950 1951 /* if any of the above changed restart the FEC */ 1952 if (status_change) { 1953 napi_disable(&fep->napi); 1954 netif_tx_lock_bh(ndev); 1955 fec_restart(ndev); 1956 netif_tx_wake_all_queues(ndev); 1957 netif_tx_unlock_bh(ndev); 1958 napi_enable(&fep->napi); 1959 } 1960 } else { 1961 if (fep->link) { 1962 napi_disable(&fep->napi); 1963 netif_tx_lock_bh(ndev); 1964 fec_stop(ndev); 1965 netif_tx_unlock_bh(ndev); 1966 napi_enable(&fep->napi); 1967 fep->link = phy_dev->link; 1968 status_change = 1; 1969 } 1970 } 1971 1972 if (status_change) 1973 phy_print_status(phy_dev); 1974 } 1975 1976 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1977 { 1978 uint ievent; 1979 int ret; 1980 1981 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1982 ievent & FEC_ENET_MII, 2, 30000); 1983 1984 if (!ret) 1985 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1986 1987 return ret; 1988 } 1989 1990 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1991 { 1992 struct fec_enet_private *fep = bus->priv; 1993 struct device *dev = &fep->pdev->dev; 1994 int ret = 0, frame_start, frame_addr, frame_op; 1995 bool is_c45 = !!(regnum & MII_ADDR_C45); 1996 1997 ret = pm_runtime_resume_and_get(dev); 1998 if (ret < 0) 1999 return ret; 2000 2001 if (is_c45) { 2002 frame_start = FEC_MMFR_ST_C45; 2003 2004 /* write address */ 2005 frame_addr = (regnum >> 16); 2006 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2007 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2008 FEC_MMFR_TA | (regnum & 0xFFFF), 2009 fep->hwp + FEC_MII_DATA); 2010 2011 /* wait for end of transfer */ 2012 ret = fec_enet_mdio_wait(fep); 2013 if (ret) { 2014 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2015 goto out; 2016 } 2017 2018 frame_op = FEC_MMFR_OP_READ_C45; 2019 2020 } else { 2021 /* C22 read */ 2022 frame_op = FEC_MMFR_OP_READ; 2023 frame_start = FEC_MMFR_ST; 2024 frame_addr = regnum; 2025 } 2026 2027 /* start a read op */ 2028 writel(frame_start | frame_op | 2029 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2030 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2031 2032 /* wait for end of transfer */ 2033 ret = fec_enet_mdio_wait(fep); 2034 if (ret) { 2035 netdev_err(fep->netdev, "MDIO read timeout\n"); 2036 goto out; 2037 } 2038 2039 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2040 2041 out: 2042 pm_runtime_mark_last_busy(dev); 2043 pm_runtime_put_autosuspend(dev); 2044 2045 return ret; 2046 } 2047 2048 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 2049 u16 value) 2050 { 2051 struct fec_enet_private *fep = bus->priv; 2052 struct device *dev = &fep->pdev->dev; 2053 int ret, frame_start, frame_addr; 2054 bool is_c45 = !!(regnum & MII_ADDR_C45); 2055 2056 ret = pm_runtime_resume_and_get(dev); 2057 if (ret < 0) 2058 return ret; 2059 2060 if (is_c45) { 2061 frame_start = FEC_MMFR_ST_C45; 2062 2063 /* write address */ 2064 frame_addr = (regnum >> 16); 2065 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2066 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2067 FEC_MMFR_TA | (regnum & 0xFFFF), 2068 fep->hwp + FEC_MII_DATA); 2069 2070 /* wait for end of transfer */ 2071 ret = fec_enet_mdio_wait(fep); 2072 if (ret) { 2073 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2074 goto out; 2075 } 2076 } else { 2077 /* C22 write */ 2078 frame_start = FEC_MMFR_ST; 2079 frame_addr = regnum; 2080 } 2081 2082 /* start a write op */ 2083 writel(frame_start | FEC_MMFR_OP_WRITE | 2084 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2085 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2086 fep->hwp + FEC_MII_DATA); 2087 2088 /* wait for end of transfer */ 2089 ret = fec_enet_mdio_wait(fep); 2090 if (ret) 2091 netdev_err(fep->netdev, "MDIO write timeout\n"); 2092 2093 out: 2094 pm_runtime_mark_last_busy(dev); 2095 pm_runtime_put_autosuspend(dev); 2096 2097 return ret; 2098 } 2099 2100 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2101 { 2102 struct fec_enet_private *fep = netdev_priv(ndev); 2103 struct phy_device *phy_dev = ndev->phydev; 2104 2105 if (phy_dev) { 2106 phy_reset_after_clk_enable(phy_dev); 2107 } else if (fep->phy_node) { 2108 /* 2109 * If the PHY still is not bound to the MAC, but there is 2110 * OF PHY node and a matching PHY device instance already, 2111 * use the OF PHY node to obtain the PHY device instance, 2112 * and then use that PHY device instance when triggering 2113 * the PHY reset. 2114 */ 2115 phy_dev = of_phy_find_device(fep->phy_node); 2116 phy_reset_after_clk_enable(phy_dev); 2117 put_device(&phy_dev->mdio.dev); 2118 } 2119 } 2120 2121 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2122 { 2123 struct fec_enet_private *fep = netdev_priv(ndev); 2124 int ret; 2125 2126 if (enable) { 2127 ret = clk_prepare_enable(fep->clk_enet_out); 2128 if (ret) 2129 return ret; 2130 2131 if (fep->clk_ptp) { 2132 mutex_lock(&fep->ptp_clk_mutex); 2133 ret = clk_prepare_enable(fep->clk_ptp); 2134 if (ret) { 2135 mutex_unlock(&fep->ptp_clk_mutex); 2136 goto failed_clk_ptp; 2137 } else { 2138 fep->ptp_clk_on = true; 2139 } 2140 mutex_unlock(&fep->ptp_clk_mutex); 2141 } 2142 2143 ret = clk_prepare_enable(fep->clk_ref); 2144 if (ret) 2145 goto failed_clk_ref; 2146 2147 ret = clk_prepare_enable(fep->clk_2x_txclk); 2148 if (ret) 2149 goto failed_clk_2x_txclk; 2150 2151 fec_enet_phy_reset_after_clk_enable(ndev); 2152 } else { 2153 clk_disable_unprepare(fep->clk_enet_out); 2154 if (fep->clk_ptp) { 2155 mutex_lock(&fep->ptp_clk_mutex); 2156 clk_disable_unprepare(fep->clk_ptp); 2157 fep->ptp_clk_on = false; 2158 mutex_unlock(&fep->ptp_clk_mutex); 2159 } 2160 clk_disable_unprepare(fep->clk_ref); 2161 clk_disable_unprepare(fep->clk_2x_txclk); 2162 } 2163 2164 return 0; 2165 2166 failed_clk_2x_txclk: 2167 if (fep->clk_ref) 2168 clk_disable_unprepare(fep->clk_ref); 2169 failed_clk_ref: 2170 if (fep->clk_ptp) { 2171 mutex_lock(&fep->ptp_clk_mutex); 2172 clk_disable_unprepare(fep->clk_ptp); 2173 fep->ptp_clk_on = false; 2174 mutex_unlock(&fep->ptp_clk_mutex); 2175 } 2176 failed_clk_ptp: 2177 clk_disable_unprepare(fep->clk_enet_out); 2178 2179 return ret; 2180 } 2181 2182 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2183 struct device_node *np) 2184 { 2185 u32 rgmii_tx_delay, rgmii_rx_delay; 2186 2187 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2188 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2189 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2190 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2191 return -EINVAL; 2192 } else if (rgmii_tx_delay == 2000) { 2193 fep->rgmii_txc_dly = true; 2194 } 2195 } 2196 2197 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2198 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2199 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2200 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2201 return -EINVAL; 2202 } else if (rgmii_rx_delay == 2000) { 2203 fep->rgmii_rxc_dly = true; 2204 } 2205 } 2206 2207 return 0; 2208 } 2209 2210 static int fec_enet_mii_probe(struct net_device *ndev) 2211 { 2212 struct fec_enet_private *fep = netdev_priv(ndev); 2213 struct phy_device *phy_dev = NULL; 2214 char mdio_bus_id[MII_BUS_ID_SIZE]; 2215 char phy_name[MII_BUS_ID_SIZE + 3]; 2216 int phy_id; 2217 int dev_id = fep->dev_id; 2218 2219 if (fep->phy_node) { 2220 phy_dev = of_phy_connect(ndev, fep->phy_node, 2221 &fec_enet_adjust_link, 0, 2222 fep->phy_interface); 2223 if (!phy_dev) { 2224 netdev_err(ndev, "Unable to connect to phy\n"); 2225 return -ENODEV; 2226 } 2227 } else { 2228 /* check for attached phy */ 2229 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2230 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2231 continue; 2232 if (dev_id--) 2233 continue; 2234 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2235 break; 2236 } 2237 2238 if (phy_id >= PHY_MAX_ADDR) { 2239 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2240 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2241 phy_id = 0; 2242 } 2243 2244 snprintf(phy_name, sizeof(phy_name), 2245 PHY_ID_FMT, mdio_bus_id, phy_id); 2246 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2247 fep->phy_interface); 2248 } 2249 2250 if (IS_ERR(phy_dev)) { 2251 netdev_err(ndev, "could not attach to PHY\n"); 2252 return PTR_ERR(phy_dev); 2253 } 2254 2255 /* mask with MAC supported features */ 2256 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2257 phy_set_max_speed(phy_dev, 1000); 2258 phy_remove_link_mode(phy_dev, 2259 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2260 #if !defined(CONFIG_M5272) 2261 phy_support_sym_pause(phy_dev); 2262 #endif 2263 } 2264 else 2265 phy_set_max_speed(phy_dev, 100); 2266 2267 fep->link = 0; 2268 fep->full_duplex = 0; 2269 2270 phy_dev->mac_managed_pm = true; 2271 2272 phy_attached_info(phy_dev); 2273 2274 return 0; 2275 } 2276 2277 static int fec_enet_mii_init(struct platform_device *pdev) 2278 { 2279 static struct mii_bus *fec0_mii_bus; 2280 struct net_device *ndev = platform_get_drvdata(pdev); 2281 struct fec_enet_private *fep = netdev_priv(ndev); 2282 bool suppress_preamble = false; 2283 struct device_node *node; 2284 int err = -ENXIO; 2285 u32 mii_speed, holdtime; 2286 u32 bus_freq; 2287 2288 /* 2289 * The i.MX28 dual fec interfaces are not equal. 2290 * Here are the differences: 2291 * 2292 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2293 * - fec0 acts as the 1588 time master while fec1 is slave 2294 * - external phys can only be configured by fec0 2295 * 2296 * That is to say fec1 can not work independently. It only works 2297 * when fec0 is working. The reason behind this design is that the 2298 * second interface is added primarily for Switch mode. 2299 * 2300 * Because of the last point above, both phys are attached on fec0 2301 * mdio interface in board design, and need to be configured by 2302 * fec0 mii_bus. 2303 */ 2304 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2305 /* fec1 uses fec0 mii_bus */ 2306 if (mii_cnt && fec0_mii_bus) { 2307 fep->mii_bus = fec0_mii_bus; 2308 mii_cnt++; 2309 return 0; 2310 } 2311 return -ENOENT; 2312 } 2313 2314 bus_freq = 2500000; /* 2.5MHz by default */ 2315 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2316 if (node) { 2317 of_property_read_u32(node, "clock-frequency", &bus_freq); 2318 suppress_preamble = of_property_read_bool(node, 2319 "suppress-preamble"); 2320 } 2321 2322 /* 2323 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2324 * 2325 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2326 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2327 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2328 * document. 2329 */ 2330 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2331 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2332 mii_speed--; 2333 if (mii_speed > 63) { 2334 dev_err(&pdev->dev, 2335 "fec clock (%lu) too fast to get right mii speed\n", 2336 clk_get_rate(fep->clk_ipg)); 2337 err = -EINVAL; 2338 goto err_out; 2339 } 2340 2341 /* 2342 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2343 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2344 * versions are RAZ there, so just ignore the difference and write the 2345 * register always. 2346 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2347 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2348 * output. 2349 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2350 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2351 * holdtime cannot result in a value greater than 3. 2352 */ 2353 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2354 2355 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2356 2357 if (suppress_preamble) 2358 fep->phy_speed |= BIT(7); 2359 2360 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2361 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2362 * MII event generation condition: 2363 * - writing MSCR: 2364 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2365 * mscr_reg_data_in[7:0] != 0 2366 * - writing MMFR: 2367 * - mscr[7:0]_not_zero 2368 */ 2369 writel(0, fep->hwp + FEC_MII_DATA); 2370 } 2371 2372 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2373 2374 /* Clear any pending transaction complete indication */ 2375 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2376 2377 fep->mii_bus = mdiobus_alloc(); 2378 if (fep->mii_bus == NULL) { 2379 err = -ENOMEM; 2380 goto err_out; 2381 } 2382 2383 fep->mii_bus->name = "fec_enet_mii_bus"; 2384 fep->mii_bus->read = fec_enet_mdio_read; 2385 fep->mii_bus->write = fec_enet_mdio_write; 2386 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2387 pdev->name, fep->dev_id + 1); 2388 fep->mii_bus->priv = fep; 2389 fep->mii_bus->parent = &pdev->dev; 2390 2391 err = of_mdiobus_register(fep->mii_bus, node); 2392 if (err) 2393 goto err_out_free_mdiobus; 2394 of_node_put(node); 2395 2396 mii_cnt++; 2397 2398 /* save fec0 mii_bus */ 2399 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2400 fec0_mii_bus = fep->mii_bus; 2401 2402 return 0; 2403 2404 err_out_free_mdiobus: 2405 mdiobus_free(fep->mii_bus); 2406 err_out: 2407 of_node_put(node); 2408 return err; 2409 } 2410 2411 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2412 { 2413 if (--mii_cnt == 0) { 2414 mdiobus_unregister(fep->mii_bus); 2415 mdiobus_free(fep->mii_bus); 2416 } 2417 } 2418 2419 static void fec_enet_get_drvinfo(struct net_device *ndev, 2420 struct ethtool_drvinfo *info) 2421 { 2422 struct fec_enet_private *fep = netdev_priv(ndev); 2423 2424 strscpy(info->driver, fep->pdev->dev.driver->name, 2425 sizeof(info->driver)); 2426 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2427 } 2428 2429 static int fec_enet_get_regs_len(struct net_device *ndev) 2430 { 2431 struct fec_enet_private *fep = netdev_priv(ndev); 2432 struct resource *r; 2433 int s = 0; 2434 2435 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2436 if (r) 2437 s = resource_size(r); 2438 2439 return s; 2440 } 2441 2442 /* List of registers that can be safety be read to dump them with ethtool */ 2443 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2444 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2445 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2446 static __u32 fec_enet_register_version = 2; 2447 static u32 fec_enet_register_offset[] = { 2448 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2449 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2450 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2451 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2452 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2453 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2454 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2455 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2456 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2457 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2458 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2459 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2460 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2461 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2462 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2463 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2464 RMON_T_P_GTE2048, RMON_T_OCTETS, 2465 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2466 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2467 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2468 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2469 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2470 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2471 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2472 RMON_R_P_GTE2048, RMON_R_OCTETS, 2473 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2474 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2475 }; 2476 /* for i.MX6ul */ 2477 static u32 fec_enet_register_offset_6ul[] = { 2478 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2479 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2480 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2481 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2482 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2483 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2484 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2485 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2486 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2487 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2488 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2489 RMON_T_P_GTE2048, RMON_T_OCTETS, 2490 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2491 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2492 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2493 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2494 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2495 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2496 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2497 RMON_R_P_GTE2048, RMON_R_OCTETS, 2498 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2499 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2500 }; 2501 #else 2502 static __u32 fec_enet_register_version = 1; 2503 static u32 fec_enet_register_offset[] = { 2504 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2505 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2506 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2507 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2508 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2509 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2510 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2511 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2512 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2513 }; 2514 #endif 2515 2516 static void fec_enet_get_regs(struct net_device *ndev, 2517 struct ethtool_regs *regs, void *regbuf) 2518 { 2519 struct fec_enet_private *fep = netdev_priv(ndev); 2520 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2521 struct device *dev = &fep->pdev->dev; 2522 u32 *buf = (u32 *)regbuf; 2523 u32 i, off; 2524 int ret; 2525 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2526 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2527 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2528 u32 *reg_list; 2529 u32 reg_cnt; 2530 2531 if (!of_machine_is_compatible("fsl,imx6ul")) { 2532 reg_list = fec_enet_register_offset; 2533 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2534 } else { 2535 reg_list = fec_enet_register_offset_6ul; 2536 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2537 } 2538 #else 2539 /* coldfire */ 2540 static u32 *reg_list = fec_enet_register_offset; 2541 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2542 #endif 2543 ret = pm_runtime_resume_and_get(dev); 2544 if (ret < 0) 2545 return; 2546 2547 regs->version = fec_enet_register_version; 2548 2549 memset(buf, 0, regs->len); 2550 2551 for (i = 0; i < reg_cnt; i++) { 2552 off = reg_list[i]; 2553 2554 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2555 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2556 continue; 2557 2558 off >>= 2; 2559 buf[off] = readl(&theregs[off]); 2560 } 2561 2562 pm_runtime_mark_last_busy(dev); 2563 pm_runtime_put_autosuspend(dev); 2564 } 2565 2566 static int fec_enet_get_ts_info(struct net_device *ndev, 2567 struct ethtool_ts_info *info) 2568 { 2569 struct fec_enet_private *fep = netdev_priv(ndev); 2570 2571 if (fep->bufdesc_ex) { 2572 2573 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2574 SOF_TIMESTAMPING_RX_SOFTWARE | 2575 SOF_TIMESTAMPING_SOFTWARE | 2576 SOF_TIMESTAMPING_TX_HARDWARE | 2577 SOF_TIMESTAMPING_RX_HARDWARE | 2578 SOF_TIMESTAMPING_RAW_HARDWARE; 2579 if (fep->ptp_clock) 2580 info->phc_index = ptp_clock_index(fep->ptp_clock); 2581 else 2582 info->phc_index = -1; 2583 2584 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2585 (1 << HWTSTAMP_TX_ON); 2586 2587 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2588 (1 << HWTSTAMP_FILTER_ALL); 2589 return 0; 2590 } else { 2591 return ethtool_op_get_ts_info(ndev, info); 2592 } 2593 } 2594 2595 #if !defined(CONFIG_M5272) 2596 2597 static void fec_enet_get_pauseparam(struct net_device *ndev, 2598 struct ethtool_pauseparam *pause) 2599 { 2600 struct fec_enet_private *fep = netdev_priv(ndev); 2601 2602 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2603 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2604 pause->rx_pause = pause->tx_pause; 2605 } 2606 2607 static int fec_enet_set_pauseparam(struct net_device *ndev, 2608 struct ethtool_pauseparam *pause) 2609 { 2610 struct fec_enet_private *fep = netdev_priv(ndev); 2611 2612 if (!ndev->phydev) 2613 return -ENODEV; 2614 2615 if (pause->tx_pause != pause->rx_pause) { 2616 netdev_info(ndev, 2617 "hardware only support enable/disable both tx and rx"); 2618 return -EINVAL; 2619 } 2620 2621 fep->pause_flag = 0; 2622 2623 /* tx pause must be same as rx pause */ 2624 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2625 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2626 2627 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2628 pause->autoneg); 2629 2630 if (pause->autoneg) { 2631 if (netif_running(ndev)) 2632 fec_stop(ndev); 2633 phy_start_aneg(ndev->phydev); 2634 } 2635 if (netif_running(ndev)) { 2636 napi_disable(&fep->napi); 2637 netif_tx_lock_bh(ndev); 2638 fec_restart(ndev); 2639 netif_tx_wake_all_queues(ndev); 2640 netif_tx_unlock_bh(ndev); 2641 napi_enable(&fep->napi); 2642 } 2643 2644 return 0; 2645 } 2646 2647 static const struct fec_stat { 2648 char name[ETH_GSTRING_LEN]; 2649 u16 offset; 2650 } fec_stats[] = { 2651 /* RMON TX */ 2652 { "tx_dropped", RMON_T_DROP }, 2653 { "tx_packets", RMON_T_PACKETS }, 2654 { "tx_broadcast", RMON_T_BC_PKT }, 2655 { "tx_multicast", RMON_T_MC_PKT }, 2656 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2657 { "tx_undersize", RMON_T_UNDERSIZE }, 2658 { "tx_oversize", RMON_T_OVERSIZE }, 2659 { "tx_fragment", RMON_T_FRAG }, 2660 { "tx_jabber", RMON_T_JAB }, 2661 { "tx_collision", RMON_T_COL }, 2662 { "tx_64byte", RMON_T_P64 }, 2663 { "tx_65to127byte", RMON_T_P65TO127 }, 2664 { "tx_128to255byte", RMON_T_P128TO255 }, 2665 { "tx_256to511byte", RMON_T_P256TO511 }, 2666 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2667 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2668 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2669 { "tx_octets", RMON_T_OCTETS }, 2670 2671 /* IEEE TX */ 2672 { "IEEE_tx_drop", IEEE_T_DROP }, 2673 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2674 { "IEEE_tx_1col", IEEE_T_1COL }, 2675 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2676 { "IEEE_tx_def", IEEE_T_DEF }, 2677 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2678 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2679 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2680 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2681 { "IEEE_tx_sqe", IEEE_T_SQE }, 2682 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2683 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2684 2685 /* RMON RX */ 2686 { "rx_packets", RMON_R_PACKETS }, 2687 { "rx_broadcast", RMON_R_BC_PKT }, 2688 { "rx_multicast", RMON_R_MC_PKT }, 2689 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2690 { "rx_undersize", RMON_R_UNDERSIZE }, 2691 { "rx_oversize", RMON_R_OVERSIZE }, 2692 { "rx_fragment", RMON_R_FRAG }, 2693 { "rx_jabber", RMON_R_JAB }, 2694 { "rx_64byte", RMON_R_P64 }, 2695 { "rx_65to127byte", RMON_R_P65TO127 }, 2696 { "rx_128to255byte", RMON_R_P128TO255 }, 2697 { "rx_256to511byte", RMON_R_P256TO511 }, 2698 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2699 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2700 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2701 { "rx_octets", RMON_R_OCTETS }, 2702 2703 /* IEEE RX */ 2704 { "IEEE_rx_drop", IEEE_R_DROP }, 2705 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2706 { "IEEE_rx_crc", IEEE_R_CRC }, 2707 { "IEEE_rx_align", IEEE_R_ALIGN }, 2708 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2709 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2710 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2711 }; 2712 2713 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2714 2715 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2716 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2717 "rx_xdp_pass", /* RX_XDP_PASS, */ 2718 "rx_xdp_drop", /* RX_XDP_DROP, */ 2719 "rx_xdp_tx", /* RX_XDP_TX, */ 2720 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2721 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2722 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2723 }; 2724 2725 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2726 { 2727 struct fec_enet_private *fep = netdev_priv(dev); 2728 int i; 2729 2730 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2731 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2732 } 2733 2734 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2735 { 2736 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2737 struct fec_enet_priv_rx_q *rxq; 2738 int i, j; 2739 2740 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2741 rxq = fep->rx_queue[i]; 2742 2743 for (j = 0; j < XDP_STATS_TOTAL; j++) 2744 xdp_stats[j] += rxq->stats[j]; 2745 } 2746 2747 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2748 } 2749 2750 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2751 { 2752 struct page_pool_stats stats = {}; 2753 struct fec_enet_priv_rx_q *rxq; 2754 int i; 2755 2756 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2757 rxq = fep->rx_queue[i]; 2758 2759 if (!rxq->page_pool) 2760 continue; 2761 2762 page_pool_get_stats(rxq->page_pool, &stats); 2763 } 2764 2765 page_pool_ethtool_stats_get(data, &stats); 2766 } 2767 2768 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2769 struct ethtool_stats *stats, u64 *data) 2770 { 2771 struct fec_enet_private *fep = netdev_priv(dev); 2772 2773 if (netif_running(dev)) 2774 fec_enet_update_ethtool_stats(dev); 2775 2776 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2777 data += FEC_STATS_SIZE / sizeof(u64); 2778 2779 fec_enet_get_xdp_stats(fep, data); 2780 data += XDP_STATS_TOTAL; 2781 2782 fec_enet_page_pool_stats(fep, data); 2783 } 2784 2785 static void fec_enet_get_strings(struct net_device *netdev, 2786 u32 stringset, u8 *data) 2787 { 2788 int i; 2789 switch (stringset) { 2790 case ETH_SS_STATS: 2791 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2792 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2793 data += ETH_GSTRING_LEN; 2794 } 2795 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2796 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2797 data += ETH_GSTRING_LEN; 2798 } 2799 page_pool_ethtool_stats_get_strings(data); 2800 2801 break; 2802 case ETH_SS_TEST: 2803 net_selftest_get_strings(data); 2804 break; 2805 } 2806 } 2807 2808 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2809 { 2810 int count; 2811 2812 switch (sset) { 2813 case ETH_SS_STATS: 2814 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2815 count += page_pool_ethtool_stats_get_count(); 2816 return count; 2817 2818 case ETH_SS_TEST: 2819 return net_selftest_get_count(); 2820 default: 2821 return -EOPNOTSUPP; 2822 } 2823 } 2824 2825 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2826 { 2827 struct fec_enet_private *fep = netdev_priv(dev); 2828 struct fec_enet_priv_rx_q *rxq; 2829 int i, j; 2830 2831 /* Disable MIB statistics counters */ 2832 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2833 2834 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2835 writel(0, fep->hwp + fec_stats[i].offset); 2836 2837 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2838 rxq = fep->rx_queue[i]; 2839 for (j = 0; j < XDP_STATS_TOTAL; j++) 2840 rxq->stats[j] = 0; 2841 } 2842 2843 /* Don't disable MIB statistics counters */ 2844 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2845 } 2846 2847 #else /* !defined(CONFIG_M5272) */ 2848 #define FEC_STATS_SIZE 0 2849 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2850 { 2851 } 2852 2853 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2854 { 2855 } 2856 #endif /* !defined(CONFIG_M5272) */ 2857 2858 /* ITR clock source is enet system clock (clk_ahb). 2859 * TCTT unit is cycle_ns * 64 cycle 2860 * So, the ICTT value = X us / (cycle_ns * 64) 2861 */ 2862 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2863 { 2864 struct fec_enet_private *fep = netdev_priv(ndev); 2865 2866 return us * (fep->itr_clk_rate / 64000) / 1000; 2867 } 2868 2869 /* Set threshold for interrupt coalescing */ 2870 static void fec_enet_itr_coal_set(struct net_device *ndev) 2871 { 2872 struct fec_enet_private *fep = netdev_priv(ndev); 2873 int rx_itr, tx_itr; 2874 2875 /* Must be greater than zero to avoid unpredictable behavior */ 2876 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2877 !fep->tx_time_itr || !fep->tx_pkts_itr) 2878 return; 2879 2880 /* Select enet system clock as Interrupt Coalescing 2881 * timer Clock Source 2882 */ 2883 rx_itr = FEC_ITR_CLK_SEL; 2884 tx_itr = FEC_ITR_CLK_SEL; 2885 2886 /* set ICFT and ICTT */ 2887 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2888 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2889 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2890 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2891 2892 rx_itr |= FEC_ITR_EN; 2893 tx_itr |= FEC_ITR_EN; 2894 2895 writel(tx_itr, fep->hwp + FEC_TXIC0); 2896 writel(rx_itr, fep->hwp + FEC_RXIC0); 2897 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2898 writel(tx_itr, fep->hwp + FEC_TXIC1); 2899 writel(rx_itr, fep->hwp + FEC_RXIC1); 2900 writel(tx_itr, fep->hwp + FEC_TXIC2); 2901 writel(rx_itr, fep->hwp + FEC_RXIC2); 2902 } 2903 } 2904 2905 static int fec_enet_get_coalesce(struct net_device *ndev, 2906 struct ethtool_coalesce *ec, 2907 struct kernel_ethtool_coalesce *kernel_coal, 2908 struct netlink_ext_ack *extack) 2909 { 2910 struct fec_enet_private *fep = netdev_priv(ndev); 2911 2912 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2913 return -EOPNOTSUPP; 2914 2915 ec->rx_coalesce_usecs = fep->rx_time_itr; 2916 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2917 2918 ec->tx_coalesce_usecs = fep->tx_time_itr; 2919 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2920 2921 return 0; 2922 } 2923 2924 static int fec_enet_set_coalesce(struct net_device *ndev, 2925 struct ethtool_coalesce *ec, 2926 struct kernel_ethtool_coalesce *kernel_coal, 2927 struct netlink_ext_ack *extack) 2928 { 2929 struct fec_enet_private *fep = netdev_priv(ndev); 2930 struct device *dev = &fep->pdev->dev; 2931 unsigned int cycle; 2932 2933 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2934 return -EOPNOTSUPP; 2935 2936 if (ec->rx_max_coalesced_frames > 255) { 2937 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2938 return -EINVAL; 2939 } 2940 2941 if (ec->tx_max_coalesced_frames > 255) { 2942 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2943 return -EINVAL; 2944 } 2945 2946 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2947 if (cycle > 0xFFFF) { 2948 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2949 return -EINVAL; 2950 } 2951 2952 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2953 if (cycle > 0xFFFF) { 2954 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2955 return -EINVAL; 2956 } 2957 2958 fep->rx_time_itr = ec->rx_coalesce_usecs; 2959 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2960 2961 fep->tx_time_itr = ec->tx_coalesce_usecs; 2962 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2963 2964 fec_enet_itr_coal_set(ndev); 2965 2966 return 0; 2967 } 2968 2969 static int fec_enet_get_tunable(struct net_device *netdev, 2970 const struct ethtool_tunable *tuna, 2971 void *data) 2972 { 2973 struct fec_enet_private *fep = netdev_priv(netdev); 2974 int ret = 0; 2975 2976 switch (tuna->id) { 2977 case ETHTOOL_RX_COPYBREAK: 2978 *(u32 *)data = fep->rx_copybreak; 2979 break; 2980 default: 2981 ret = -EINVAL; 2982 break; 2983 } 2984 2985 return ret; 2986 } 2987 2988 static int fec_enet_set_tunable(struct net_device *netdev, 2989 const struct ethtool_tunable *tuna, 2990 const void *data) 2991 { 2992 struct fec_enet_private *fep = netdev_priv(netdev); 2993 int ret = 0; 2994 2995 switch (tuna->id) { 2996 case ETHTOOL_RX_COPYBREAK: 2997 fep->rx_copybreak = *(u32 *)data; 2998 break; 2999 default: 3000 ret = -EINVAL; 3001 break; 3002 } 3003 3004 return ret; 3005 } 3006 3007 /* LPI Sleep Ts count base on tx clk (clk_ref). 3008 * The lpi sleep cnt value = X us / (cycle_ns). 3009 */ 3010 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3011 { 3012 struct fec_enet_private *fep = netdev_priv(ndev); 3013 3014 return us * (fep->clk_ref_rate / 1000) / 1000; 3015 } 3016 3017 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3018 { 3019 struct fec_enet_private *fep = netdev_priv(ndev); 3020 struct ethtool_eee *p = &fep->eee; 3021 unsigned int sleep_cycle, wake_cycle; 3022 int ret = 0; 3023 3024 if (enable) { 3025 ret = phy_init_eee(ndev->phydev, false); 3026 if (ret) 3027 return ret; 3028 3029 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3030 wake_cycle = sleep_cycle; 3031 } else { 3032 sleep_cycle = 0; 3033 wake_cycle = 0; 3034 } 3035 3036 p->tx_lpi_enabled = enable; 3037 p->eee_enabled = enable; 3038 p->eee_active = enable; 3039 3040 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3041 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3042 3043 return 0; 3044 } 3045 3046 static int 3047 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3048 { 3049 struct fec_enet_private *fep = netdev_priv(ndev); 3050 struct ethtool_eee *p = &fep->eee; 3051 3052 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3053 return -EOPNOTSUPP; 3054 3055 if (!netif_running(ndev)) 3056 return -ENETDOWN; 3057 3058 edata->eee_enabled = p->eee_enabled; 3059 edata->eee_active = p->eee_active; 3060 edata->tx_lpi_timer = p->tx_lpi_timer; 3061 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3062 3063 return phy_ethtool_get_eee(ndev->phydev, edata); 3064 } 3065 3066 static int 3067 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3068 { 3069 struct fec_enet_private *fep = netdev_priv(ndev); 3070 struct ethtool_eee *p = &fep->eee; 3071 int ret = 0; 3072 3073 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3074 return -EOPNOTSUPP; 3075 3076 if (!netif_running(ndev)) 3077 return -ENETDOWN; 3078 3079 p->tx_lpi_timer = edata->tx_lpi_timer; 3080 3081 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3082 !edata->tx_lpi_timer) 3083 ret = fec_enet_eee_mode_set(ndev, false); 3084 else 3085 ret = fec_enet_eee_mode_set(ndev, true); 3086 3087 if (ret) 3088 return ret; 3089 3090 return phy_ethtool_set_eee(ndev->phydev, edata); 3091 } 3092 3093 static void 3094 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3095 { 3096 struct fec_enet_private *fep = netdev_priv(ndev); 3097 3098 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3099 wol->supported = WAKE_MAGIC; 3100 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3101 } else { 3102 wol->supported = wol->wolopts = 0; 3103 } 3104 } 3105 3106 static int 3107 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3108 { 3109 struct fec_enet_private *fep = netdev_priv(ndev); 3110 3111 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3112 return -EINVAL; 3113 3114 if (wol->wolopts & ~WAKE_MAGIC) 3115 return -EINVAL; 3116 3117 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3118 if (device_may_wakeup(&ndev->dev)) 3119 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3120 else 3121 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3122 3123 return 0; 3124 } 3125 3126 static const struct ethtool_ops fec_enet_ethtool_ops = { 3127 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3128 ETHTOOL_COALESCE_MAX_FRAMES, 3129 .get_drvinfo = fec_enet_get_drvinfo, 3130 .get_regs_len = fec_enet_get_regs_len, 3131 .get_regs = fec_enet_get_regs, 3132 .nway_reset = phy_ethtool_nway_reset, 3133 .get_link = ethtool_op_get_link, 3134 .get_coalesce = fec_enet_get_coalesce, 3135 .set_coalesce = fec_enet_set_coalesce, 3136 #ifndef CONFIG_M5272 3137 .get_pauseparam = fec_enet_get_pauseparam, 3138 .set_pauseparam = fec_enet_set_pauseparam, 3139 .get_strings = fec_enet_get_strings, 3140 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3141 .get_sset_count = fec_enet_get_sset_count, 3142 #endif 3143 .get_ts_info = fec_enet_get_ts_info, 3144 .get_tunable = fec_enet_get_tunable, 3145 .set_tunable = fec_enet_set_tunable, 3146 .get_wol = fec_enet_get_wol, 3147 .set_wol = fec_enet_set_wol, 3148 .get_eee = fec_enet_get_eee, 3149 .set_eee = fec_enet_set_eee, 3150 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3151 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3152 .self_test = net_selftest, 3153 }; 3154 3155 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3156 { 3157 struct fec_enet_private *fep = netdev_priv(ndev); 3158 struct phy_device *phydev = ndev->phydev; 3159 3160 if (!netif_running(ndev)) 3161 return -EINVAL; 3162 3163 if (!phydev) 3164 return -ENODEV; 3165 3166 if (fep->bufdesc_ex) { 3167 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3168 3169 if (cmd == SIOCSHWTSTAMP) { 3170 if (use_fec_hwts) 3171 return fec_ptp_set(ndev, rq); 3172 fec_ptp_disable_hwts(ndev); 3173 } else if (cmd == SIOCGHWTSTAMP) { 3174 if (use_fec_hwts) 3175 return fec_ptp_get(ndev, rq); 3176 } 3177 } 3178 3179 return phy_mii_ioctl(phydev, rq, cmd); 3180 } 3181 3182 static void fec_enet_free_buffers(struct net_device *ndev) 3183 { 3184 struct fec_enet_private *fep = netdev_priv(ndev); 3185 unsigned int i; 3186 struct sk_buff *skb; 3187 struct fec_enet_priv_tx_q *txq; 3188 struct fec_enet_priv_rx_q *rxq; 3189 unsigned int q; 3190 3191 for (q = 0; q < fep->num_rx_queues; q++) { 3192 rxq = fep->rx_queue[q]; 3193 for (i = 0; i < rxq->bd.ring_size; i++) 3194 page_pool_release_page(rxq->page_pool, rxq->rx_skb_info[i].page); 3195 3196 for (i = 0; i < XDP_STATS_TOTAL; i++) 3197 rxq->stats[i] = 0; 3198 3199 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3200 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3201 page_pool_destroy(rxq->page_pool); 3202 rxq->page_pool = NULL; 3203 } 3204 3205 for (q = 0; q < fep->num_tx_queues; q++) { 3206 txq = fep->tx_queue[q]; 3207 for (i = 0; i < txq->bd.ring_size; i++) { 3208 kfree(txq->tx_bounce[i]); 3209 txq->tx_bounce[i] = NULL; 3210 skb = txq->tx_skbuff[i]; 3211 txq->tx_skbuff[i] = NULL; 3212 dev_kfree_skb(skb); 3213 } 3214 } 3215 } 3216 3217 static void fec_enet_free_queue(struct net_device *ndev) 3218 { 3219 struct fec_enet_private *fep = netdev_priv(ndev); 3220 int i; 3221 struct fec_enet_priv_tx_q *txq; 3222 3223 for (i = 0; i < fep->num_tx_queues; i++) 3224 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3225 txq = fep->tx_queue[i]; 3226 dma_free_coherent(&fep->pdev->dev, 3227 txq->bd.ring_size * TSO_HEADER_SIZE, 3228 txq->tso_hdrs, 3229 txq->tso_hdrs_dma); 3230 } 3231 3232 for (i = 0; i < fep->num_rx_queues; i++) 3233 kfree(fep->rx_queue[i]); 3234 for (i = 0; i < fep->num_tx_queues; i++) 3235 kfree(fep->tx_queue[i]); 3236 } 3237 3238 static int fec_enet_alloc_queue(struct net_device *ndev) 3239 { 3240 struct fec_enet_private *fep = netdev_priv(ndev); 3241 int i; 3242 int ret = 0; 3243 struct fec_enet_priv_tx_q *txq; 3244 3245 for (i = 0; i < fep->num_tx_queues; i++) { 3246 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3247 if (!txq) { 3248 ret = -ENOMEM; 3249 goto alloc_failed; 3250 } 3251 3252 fep->tx_queue[i] = txq; 3253 txq->bd.ring_size = TX_RING_SIZE; 3254 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3255 3256 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3257 txq->tx_wake_threshold = 3258 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3259 3260 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3261 txq->bd.ring_size * TSO_HEADER_SIZE, 3262 &txq->tso_hdrs_dma, 3263 GFP_KERNEL); 3264 if (!txq->tso_hdrs) { 3265 ret = -ENOMEM; 3266 goto alloc_failed; 3267 } 3268 } 3269 3270 for (i = 0; i < fep->num_rx_queues; i++) { 3271 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3272 GFP_KERNEL); 3273 if (!fep->rx_queue[i]) { 3274 ret = -ENOMEM; 3275 goto alloc_failed; 3276 } 3277 3278 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3279 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3280 } 3281 return ret; 3282 3283 alloc_failed: 3284 fec_enet_free_queue(ndev); 3285 return ret; 3286 } 3287 3288 static int 3289 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3290 { 3291 struct fec_enet_private *fep = netdev_priv(ndev); 3292 struct fec_enet_priv_rx_q *rxq; 3293 dma_addr_t phys_addr; 3294 struct bufdesc *bdp; 3295 struct page *page; 3296 int i, err; 3297 3298 rxq = fep->rx_queue[queue]; 3299 bdp = rxq->bd.base; 3300 3301 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3302 if (err < 0) { 3303 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3304 return err; 3305 } 3306 3307 for (i = 0; i < rxq->bd.ring_size; i++) { 3308 page = page_pool_dev_alloc_pages(rxq->page_pool); 3309 if (!page) 3310 goto err_alloc; 3311 3312 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3313 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3314 3315 rxq->rx_skb_info[i].page = page; 3316 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3317 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3318 3319 if (fep->bufdesc_ex) { 3320 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3321 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3322 } 3323 3324 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3325 } 3326 3327 /* Set the last buffer to wrap. */ 3328 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3329 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3330 return 0; 3331 3332 err_alloc: 3333 fec_enet_free_buffers(ndev); 3334 return -ENOMEM; 3335 } 3336 3337 static int 3338 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3339 { 3340 struct fec_enet_private *fep = netdev_priv(ndev); 3341 unsigned int i; 3342 struct bufdesc *bdp; 3343 struct fec_enet_priv_tx_q *txq; 3344 3345 txq = fep->tx_queue[queue]; 3346 bdp = txq->bd.base; 3347 for (i = 0; i < txq->bd.ring_size; i++) { 3348 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3349 if (!txq->tx_bounce[i]) 3350 goto err_alloc; 3351 3352 bdp->cbd_sc = cpu_to_fec16(0); 3353 bdp->cbd_bufaddr = cpu_to_fec32(0); 3354 3355 if (fep->bufdesc_ex) { 3356 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3357 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3358 } 3359 3360 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3361 } 3362 3363 /* Set the last buffer to wrap. */ 3364 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3365 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3366 3367 return 0; 3368 3369 err_alloc: 3370 fec_enet_free_buffers(ndev); 3371 return -ENOMEM; 3372 } 3373 3374 static int fec_enet_alloc_buffers(struct net_device *ndev) 3375 { 3376 struct fec_enet_private *fep = netdev_priv(ndev); 3377 unsigned int i; 3378 3379 for (i = 0; i < fep->num_rx_queues; i++) 3380 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3381 return -ENOMEM; 3382 3383 for (i = 0; i < fep->num_tx_queues; i++) 3384 if (fec_enet_alloc_txq_buffers(ndev, i)) 3385 return -ENOMEM; 3386 return 0; 3387 } 3388 3389 static int 3390 fec_enet_open(struct net_device *ndev) 3391 { 3392 struct fec_enet_private *fep = netdev_priv(ndev); 3393 int ret; 3394 bool reset_again; 3395 3396 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3397 if (ret < 0) 3398 return ret; 3399 3400 pinctrl_pm_select_default_state(&fep->pdev->dev); 3401 ret = fec_enet_clk_enable(ndev, true); 3402 if (ret) 3403 goto clk_enable; 3404 3405 /* During the first fec_enet_open call the PHY isn't probed at this 3406 * point. Therefore the phy_reset_after_clk_enable() call within 3407 * fec_enet_clk_enable() fails. As we need this reset in order to be 3408 * sure the PHY is working correctly we check if we need to reset again 3409 * later when the PHY is probed 3410 */ 3411 if (ndev->phydev && ndev->phydev->drv) 3412 reset_again = false; 3413 else 3414 reset_again = true; 3415 3416 /* I should reset the ring buffers here, but I don't yet know 3417 * a simple way to do that. 3418 */ 3419 3420 ret = fec_enet_alloc_buffers(ndev); 3421 if (ret) 3422 goto err_enet_alloc; 3423 3424 /* Init MAC prior to mii bus probe */ 3425 fec_restart(ndev); 3426 3427 /* Call phy_reset_after_clk_enable() again if it failed during 3428 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3429 */ 3430 if (reset_again) 3431 fec_enet_phy_reset_after_clk_enable(ndev); 3432 3433 /* Probe and connect to PHY when open the interface */ 3434 ret = fec_enet_mii_probe(ndev); 3435 if (ret) 3436 goto err_enet_mii_probe; 3437 3438 if (fep->quirks & FEC_QUIRK_ERR006687) 3439 imx6q_cpuidle_fec_irqs_used(); 3440 3441 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3442 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3443 3444 napi_enable(&fep->napi); 3445 phy_start(ndev->phydev); 3446 netif_tx_start_all_queues(ndev); 3447 3448 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3449 FEC_WOL_FLAG_ENABLE); 3450 3451 return 0; 3452 3453 err_enet_mii_probe: 3454 fec_enet_free_buffers(ndev); 3455 err_enet_alloc: 3456 fec_enet_clk_enable(ndev, false); 3457 clk_enable: 3458 pm_runtime_mark_last_busy(&fep->pdev->dev); 3459 pm_runtime_put_autosuspend(&fep->pdev->dev); 3460 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3461 return ret; 3462 } 3463 3464 static int 3465 fec_enet_close(struct net_device *ndev) 3466 { 3467 struct fec_enet_private *fep = netdev_priv(ndev); 3468 3469 phy_stop(ndev->phydev); 3470 3471 if (netif_device_present(ndev)) { 3472 napi_disable(&fep->napi); 3473 netif_tx_disable(ndev); 3474 fec_stop(ndev); 3475 } 3476 3477 phy_disconnect(ndev->phydev); 3478 3479 if (fep->quirks & FEC_QUIRK_ERR006687) 3480 imx6q_cpuidle_fec_irqs_unused(); 3481 3482 fec_enet_update_ethtool_stats(ndev); 3483 3484 fec_enet_clk_enable(ndev, false); 3485 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3486 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3487 3488 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3489 pm_runtime_mark_last_busy(&fep->pdev->dev); 3490 pm_runtime_put_autosuspend(&fep->pdev->dev); 3491 3492 fec_enet_free_buffers(ndev); 3493 3494 return 0; 3495 } 3496 3497 /* Set or clear the multicast filter for this adaptor. 3498 * Skeleton taken from sunlance driver. 3499 * The CPM Ethernet implementation allows Multicast as well as individual 3500 * MAC address filtering. Some of the drivers check to make sure it is 3501 * a group multicast address, and discard those that are not. I guess I 3502 * will do the same for now, but just remove the test if you want 3503 * individual filtering as well (do the upper net layers want or support 3504 * this kind of feature?). 3505 */ 3506 3507 #define FEC_HASH_BITS 6 /* #bits in hash */ 3508 3509 static void set_multicast_list(struct net_device *ndev) 3510 { 3511 struct fec_enet_private *fep = netdev_priv(ndev); 3512 struct netdev_hw_addr *ha; 3513 unsigned int crc, tmp; 3514 unsigned char hash; 3515 unsigned int hash_high = 0, hash_low = 0; 3516 3517 if (ndev->flags & IFF_PROMISC) { 3518 tmp = readl(fep->hwp + FEC_R_CNTRL); 3519 tmp |= 0x8; 3520 writel(tmp, fep->hwp + FEC_R_CNTRL); 3521 return; 3522 } 3523 3524 tmp = readl(fep->hwp + FEC_R_CNTRL); 3525 tmp &= ~0x8; 3526 writel(tmp, fep->hwp + FEC_R_CNTRL); 3527 3528 if (ndev->flags & IFF_ALLMULTI) { 3529 /* Catch all multicast addresses, so set the 3530 * filter to all 1's 3531 */ 3532 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3533 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3534 3535 return; 3536 } 3537 3538 /* Add the addresses in hash register */ 3539 netdev_for_each_mc_addr(ha, ndev) { 3540 /* calculate crc32 value of mac address */ 3541 crc = ether_crc_le(ndev->addr_len, ha->addr); 3542 3543 /* only upper 6 bits (FEC_HASH_BITS) are used 3544 * which point to specific bit in the hash registers 3545 */ 3546 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3547 3548 if (hash > 31) 3549 hash_high |= 1 << (hash - 32); 3550 else 3551 hash_low |= 1 << hash; 3552 } 3553 3554 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3555 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3556 } 3557 3558 /* Set a MAC change in hardware. */ 3559 static int 3560 fec_set_mac_address(struct net_device *ndev, void *p) 3561 { 3562 struct fec_enet_private *fep = netdev_priv(ndev); 3563 struct sockaddr *addr = p; 3564 3565 if (addr) { 3566 if (!is_valid_ether_addr(addr->sa_data)) 3567 return -EADDRNOTAVAIL; 3568 eth_hw_addr_set(ndev, addr->sa_data); 3569 } 3570 3571 /* Add netif status check here to avoid system hang in below case: 3572 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3573 * After ethx down, fec all clocks are gated off and then register 3574 * access causes system hang. 3575 */ 3576 if (!netif_running(ndev)) 3577 return 0; 3578 3579 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3580 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3581 fep->hwp + FEC_ADDR_LOW); 3582 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3583 fep->hwp + FEC_ADDR_HIGH); 3584 return 0; 3585 } 3586 3587 #ifdef CONFIG_NET_POLL_CONTROLLER 3588 /** 3589 * fec_poll_controller - FEC Poll controller function 3590 * @dev: The FEC network adapter 3591 * 3592 * Polled functionality used by netconsole and others in non interrupt mode 3593 * 3594 */ 3595 static void fec_poll_controller(struct net_device *dev) 3596 { 3597 int i; 3598 struct fec_enet_private *fep = netdev_priv(dev); 3599 3600 for (i = 0; i < FEC_IRQ_NUM; i++) { 3601 if (fep->irq[i] > 0) { 3602 disable_irq(fep->irq[i]); 3603 fec_enet_interrupt(fep->irq[i], dev); 3604 enable_irq(fep->irq[i]); 3605 } 3606 } 3607 } 3608 #endif 3609 3610 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3611 netdev_features_t features) 3612 { 3613 struct fec_enet_private *fep = netdev_priv(netdev); 3614 netdev_features_t changed = features ^ netdev->features; 3615 3616 netdev->features = features; 3617 3618 /* Receive checksum has been changed */ 3619 if (changed & NETIF_F_RXCSUM) { 3620 if (features & NETIF_F_RXCSUM) 3621 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3622 else 3623 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3624 } 3625 } 3626 3627 static int fec_set_features(struct net_device *netdev, 3628 netdev_features_t features) 3629 { 3630 struct fec_enet_private *fep = netdev_priv(netdev); 3631 netdev_features_t changed = features ^ netdev->features; 3632 3633 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3634 napi_disable(&fep->napi); 3635 netif_tx_lock_bh(netdev); 3636 fec_stop(netdev); 3637 fec_enet_set_netdev_features(netdev, features); 3638 fec_restart(netdev); 3639 netif_tx_wake_all_queues(netdev); 3640 netif_tx_unlock_bh(netdev); 3641 napi_enable(&fep->napi); 3642 } else { 3643 fec_enet_set_netdev_features(netdev, features); 3644 } 3645 3646 return 0; 3647 } 3648 3649 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3650 { 3651 struct vlan_ethhdr *vhdr; 3652 unsigned short vlan_TCI = 0; 3653 3654 if (skb->protocol == htons(ETH_P_ALL)) { 3655 vhdr = (struct vlan_ethhdr *)(skb->data); 3656 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3657 } 3658 3659 return vlan_TCI; 3660 } 3661 3662 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3663 struct net_device *sb_dev) 3664 { 3665 struct fec_enet_private *fep = netdev_priv(ndev); 3666 u16 vlan_tag; 3667 3668 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3669 return netdev_pick_tx(ndev, skb, NULL); 3670 3671 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3672 if (!vlan_tag) 3673 return vlan_tag; 3674 3675 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3676 } 3677 3678 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3679 { 3680 struct fec_enet_private *fep = netdev_priv(dev); 3681 bool is_run = netif_running(dev); 3682 struct bpf_prog *old_prog; 3683 3684 switch (bpf->command) { 3685 case XDP_SETUP_PROG: 3686 /* No need to support the SoCs that require to 3687 * do the frame swap because the performance wouldn't be 3688 * better than the skb mode. 3689 */ 3690 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3691 return -EOPNOTSUPP; 3692 3693 if (is_run) { 3694 napi_disable(&fep->napi); 3695 netif_tx_disable(dev); 3696 } 3697 3698 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3699 fec_restart(dev); 3700 3701 if (is_run) { 3702 napi_enable(&fep->napi); 3703 netif_tx_start_all_queues(dev); 3704 } 3705 3706 if (old_prog) 3707 bpf_prog_put(old_prog); 3708 3709 return 0; 3710 3711 case XDP_SETUP_XSK_POOL: 3712 return -EOPNOTSUPP; 3713 3714 default: 3715 return -EOPNOTSUPP; 3716 } 3717 } 3718 3719 static int 3720 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3721 { 3722 if (unlikely(index < 0)) 3723 return 0; 3724 3725 return (index % fep->num_tx_queues); 3726 } 3727 3728 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3729 struct fec_enet_priv_tx_q *txq, 3730 struct xdp_frame *frame) 3731 { 3732 unsigned int index, status, estatus; 3733 struct bufdesc *bdp, *last_bdp; 3734 dma_addr_t dma_addr; 3735 int entries_free; 3736 3737 entries_free = fec_enet_get_free_txdesc_num(txq); 3738 if (entries_free < MAX_SKB_FRAGS + 1) { 3739 netdev_err(fep->netdev, "NOT enough BD for SG!\n"); 3740 return NETDEV_TX_OK; 3741 } 3742 3743 /* Fill in a Tx ring entry */ 3744 bdp = txq->bd.cur; 3745 last_bdp = bdp; 3746 status = fec16_to_cpu(bdp->cbd_sc); 3747 status &= ~BD_ENET_TX_STATS; 3748 3749 index = fec_enet_get_bd_index(bdp, &txq->bd); 3750 3751 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3752 frame->len, DMA_TO_DEVICE); 3753 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3754 return FEC_ENET_XDP_CONSUMED; 3755 3756 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3757 if (fep->bufdesc_ex) 3758 estatus = BD_ENET_TX_INT; 3759 3760 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3761 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3762 3763 if (fep->bufdesc_ex) { 3764 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3765 3766 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3767 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3768 3769 ebdp->cbd_bdu = 0; 3770 ebdp->cbd_esc = cpu_to_fec32(estatus); 3771 } 3772 3773 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 3774 txq->tx_skbuff[index] = NULL; 3775 3776 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3777 * it's the last BD of the frame, and to put the CRC on the end. 3778 */ 3779 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3780 bdp->cbd_sc = cpu_to_fec16(status); 3781 3782 /* If this was the last BD in the ring, start at the beginning again. */ 3783 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 3784 3785 txq->bd.cur = bdp; 3786 3787 return 0; 3788 } 3789 3790 static int fec_enet_xdp_xmit(struct net_device *dev, 3791 int num_frames, 3792 struct xdp_frame **frames, 3793 u32 flags) 3794 { 3795 struct fec_enet_private *fep = netdev_priv(dev); 3796 struct fec_enet_priv_tx_q *txq; 3797 int cpu = smp_processor_id(); 3798 struct netdev_queue *nq; 3799 unsigned int queue; 3800 int i; 3801 3802 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3803 txq = fep->tx_queue[queue]; 3804 nq = netdev_get_tx_queue(fep->netdev, queue); 3805 3806 __netif_tx_lock(nq, cpu); 3807 3808 for (i = 0; i < num_frames; i++) 3809 fec_enet_txq_xmit_frame(fep, txq, frames[i]); 3810 3811 /* Make sure the update to bdp and tx_skbuff are performed. */ 3812 wmb(); 3813 3814 /* Trigger transmission start */ 3815 writel(0, txq->bd.reg_desc_active); 3816 3817 __netif_tx_unlock(nq); 3818 3819 return num_frames; 3820 } 3821 3822 static const struct net_device_ops fec_netdev_ops = { 3823 .ndo_open = fec_enet_open, 3824 .ndo_stop = fec_enet_close, 3825 .ndo_start_xmit = fec_enet_start_xmit, 3826 .ndo_select_queue = fec_enet_select_queue, 3827 .ndo_set_rx_mode = set_multicast_list, 3828 .ndo_validate_addr = eth_validate_addr, 3829 .ndo_tx_timeout = fec_timeout, 3830 .ndo_set_mac_address = fec_set_mac_address, 3831 .ndo_eth_ioctl = fec_enet_ioctl, 3832 #ifdef CONFIG_NET_POLL_CONTROLLER 3833 .ndo_poll_controller = fec_poll_controller, 3834 #endif 3835 .ndo_set_features = fec_set_features, 3836 .ndo_bpf = fec_enet_bpf, 3837 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3838 }; 3839 3840 static const unsigned short offset_des_active_rxq[] = { 3841 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3842 }; 3843 3844 static const unsigned short offset_des_active_txq[] = { 3845 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3846 }; 3847 3848 /* 3849 * XXX: We need to clean up on failure exits here. 3850 * 3851 */ 3852 static int fec_enet_init(struct net_device *ndev) 3853 { 3854 struct fec_enet_private *fep = netdev_priv(ndev); 3855 struct bufdesc *cbd_base; 3856 dma_addr_t bd_dma; 3857 int bd_size; 3858 unsigned int i; 3859 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3860 sizeof(struct bufdesc); 3861 unsigned dsize_log2 = __fls(dsize); 3862 int ret; 3863 3864 WARN_ON(dsize != (1 << dsize_log2)); 3865 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3866 fep->rx_align = 0xf; 3867 fep->tx_align = 0xf; 3868 #else 3869 fep->rx_align = 0x3; 3870 fep->tx_align = 0x3; 3871 #endif 3872 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3873 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3874 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 3875 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 3876 3877 /* Check mask of the streaming and coherent API */ 3878 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3879 if (ret < 0) { 3880 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3881 return ret; 3882 } 3883 3884 ret = fec_enet_alloc_queue(ndev); 3885 if (ret) 3886 return ret; 3887 3888 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3889 3890 /* Allocate memory for buffer descriptors. */ 3891 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3892 GFP_KERNEL); 3893 if (!cbd_base) { 3894 ret = -ENOMEM; 3895 goto free_queue_mem; 3896 } 3897 3898 /* Get the Ethernet address */ 3899 ret = fec_get_mac(ndev); 3900 if (ret) 3901 goto free_queue_mem; 3902 3903 /* make sure MAC we just acquired is programmed into the hw */ 3904 fec_set_mac_address(ndev, NULL); 3905 3906 /* Set receive and transmit descriptor base. */ 3907 for (i = 0; i < fep->num_rx_queues; i++) { 3908 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3909 unsigned size = dsize * rxq->bd.ring_size; 3910 3911 rxq->bd.qid = i; 3912 rxq->bd.base = cbd_base; 3913 rxq->bd.cur = cbd_base; 3914 rxq->bd.dma = bd_dma; 3915 rxq->bd.dsize = dsize; 3916 rxq->bd.dsize_log2 = dsize_log2; 3917 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3918 bd_dma += size; 3919 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3920 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3921 } 3922 3923 for (i = 0; i < fep->num_tx_queues; i++) { 3924 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3925 unsigned size = dsize * txq->bd.ring_size; 3926 3927 txq->bd.qid = i; 3928 txq->bd.base = cbd_base; 3929 txq->bd.cur = cbd_base; 3930 txq->bd.dma = bd_dma; 3931 txq->bd.dsize = dsize; 3932 txq->bd.dsize_log2 = dsize_log2; 3933 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3934 bd_dma += size; 3935 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3936 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3937 } 3938 3939 3940 /* The FEC Ethernet specific entries in the device structure */ 3941 ndev->watchdog_timeo = TX_TIMEOUT; 3942 ndev->netdev_ops = &fec_netdev_ops; 3943 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3944 3945 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3946 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 3947 3948 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3949 /* enable hw VLAN support */ 3950 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3951 3952 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3953 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 3954 3955 /* enable hw accelerator */ 3956 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3957 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3958 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3959 } 3960 3961 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3962 fep->tx_align = 0; 3963 fep->rx_align = 0x3f; 3964 } 3965 3966 ndev->hw_features = ndev->features; 3967 3968 fec_restart(ndev); 3969 3970 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3971 fec_enet_clear_ethtool_stats(ndev); 3972 else 3973 fec_enet_update_ethtool_stats(ndev); 3974 3975 return 0; 3976 3977 free_queue_mem: 3978 fec_enet_free_queue(ndev); 3979 return ret; 3980 } 3981 3982 #ifdef CONFIG_OF 3983 static int fec_reset_phy(struct platform_device *pdev) 3984 { 3985 int err, phy_reset; 3986 bool active_high = false; 3987 int msec = 1, phy_post_delay = 0; 3988 struct device_node *np = pdev->dev.of_node; 3989 3990 if (!np) 3991 return 0; 3992 3993 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3994 /* A sane reset duration should not be longer than 1s */ 3995 if (!err && msec > 1000) 3996 msec = 1; 3997 3998 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3999 if (phy_reset == -EPROBE_DEFER) 4000 return phy_reset; 4001 else if (!gpio_is_valid(phy_reset)) 4002 return 0; 4003 4004 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4005 /* valid reset duration should be less than 1s */ 4006 if (!err && phy_post_delay > 1000) 4007 return -EINVAL; 4008 4009 active_high = of_property_read_bool(np, "phy-reset-active-high"); 4010 4011 err = devm_gpio_request_one(&pdev->dev, phy_reset, 4012 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 4013 "phy-reset"); 4014 if (err) { 4015 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 4016 return err; 4017 } 4018 4019 if (msec > 20) 4020 msleep(msec); 4021 else 4022 usleep_range(msec * 1000, msec * 1000 + 1000); 4023 4024 gpio_set_value_cansleep(phy_reset, !active_high); 4025 4026 if (!phy_post_delay) 4027 return 0; 4028 4029 if (phy_post_delay > 20) 4030 msleep(phy_post_delay); 4031 else 4032 usleep_range(phy_post_delay * 1000, 4033 phy_post_delay * 1000 + 1000); 4034 4035 return 0; 4036 } 4037 #else /* CONFIG_OF */ 4038 static int fec_reset_phy(struct platform_device *pdev) 4039 { 4040 /* 4041 * In case of platform probe, the reset has been done 4042 * by machine code. 4043 */ 4044 return 0; 4045 } 4046 #endif /* CONFIG_OF */ 4047 4048 static void 4049 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4050 { 4051 struct device_node *np = pdev->dev.of_node; 4052 4053 *num_tx = *num_rx = 1; 4054 4055 if (!np || !of_device_is_available(np)) 4056 return; 4057 4058 /* parse the num of tx and rx queues */ 4059 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4060 4061 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4062 4063 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4064 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4065 *num_tx); 4066 *num_tx = 1; 4067 return; 4068 } 4069 4070 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4071 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4072 *num_rx); 4073 *num_rx = 1; 4074 return; 4075 } 4076 4077 } 4078 4079 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4080 { 4081 int irq_cnt = platform_irq_count(pdev); 4082 4083 if (irq_cnt > FEC_IRQ_NUM) 4084 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4085 else if (irq_cnt == 2) 4086 irq_cnt = 1; /* last for pps */ 4087 else if (irq_cnt <= 0) 4088 irq_cnt = 1; /* At least 1 irq is needed */ 4089 return irq_cnt; 4090 } 4091 4092 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4093 { 4094 struct net_device *ndev = platform_get_drvdata(pdev); 4095 struct fec_enet_private *fep = netdev_priv(ndev); 4096 4097 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4098 fep->wake_irq = fep->irq[2]; 4099 else 4100 fep->wake_irq = fep->irq[0]; 4101 } 4102 4103 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4104 struct device_node *np) 4105 { 4106 struct device_node *gpr_np; 4107 u32 out_val[3]; 4108 int ret = 0; 4109 4110 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4111 if (!gpr_np) 4112 return 0; 4113 4114 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4115 ARRAY_SIZE(out_val)); 4116 if (ret) { 4117 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4118 goto out; 4119 } 4120 4121 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4122 if (IS_ERR(fep->stop_gpr.gpr)) { 4123 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4124 ret = PTR_ERR(fep->stop_gpr.gpr); 4125 fep->stop_gpr.gpr = NULL; 4126 goto out; 4127 } 4128 4129 fep->stop_gpr.reg = out_val[1]; 4130 fep->stop_gpr.bit = out_val[2]; 4131 4132 out: 4133 of_node_put(gpr_np); 4134 4135 return ret; 4136 } 4137 4138 static int 4139 fec_probe(struct platform_device *pdev) 4140 { 4141 struct fec_enet_private *fep; 4142 struct fec_platform_data *pdata; 4143 phy_interface_t interface; 4144 struct net_device *ndev; 4145 int i, irq, ret = 0; 4146 const struct of_device_id *of_id; 4147 static int dev_id; 4148 struct device_node *np = pdev->dev.of_node, *phy_node; 4149 int num_tx_qs; 4150 int num_rx_qs; 4151 char irq_name[8]; 4152 int irq_cnt; 4153 struct fec_devinfo *dev_info; 4154 4155 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4156 4157 /* Init network device */ 4158 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4159 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4160 if (!ndev) 4161 return -ENOMEM; 4162 4163 SET_NETDEV_DEV(ndev, &pdev->dev); 4164 4165 /* setup board info structure */ 4166 fep = netdev_priv(ndev); 4167 4168 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4169 if (of_id) 4170 pdev->id_entry = of_id->data; 4171 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4172 if (dev_info) 4173 fep->quirks = dev_info->quirks; 4174 4175 fep->netdev = ndev; 4176 fep->num_rx_queues = num_rx_qs; 4177 fep->num_tx_queues = num_tx_qs; 4178 4179 #if !defined(CONFIG_M5272) 4180 /* default enable pause frame auto negotiation */ 4181 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4182 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4183 #endif 4184 4185 /* Select default pin state */ 4186 pinctrl_pm_select_default_state(&pdev->dev); 4187 4188 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4189 if (IS_ERR(fep->hwp)) { 4190 ret = PTR_ERR(fep->hwp); 4191 goto failed_ioremap; 4192 } 4193 4194 fep->pdev = pdev; 4195 fep->dev_id = dev_id++; 4196 4197 platform_set_drvdata(pdev, ndev); 4198 4199 if ((of_machine_is_compatible("fsl,imx6q") || 4200 of_machine_is_compatible("fsl,imx6dl")) && 4201 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4202 fep->quirks |= FEC_QUIRK_ERR006687; 4203 4204 ret = fec_enet_ipc_handle_init(fep); 4205 if (ret) 4206 goto failed_ipc_init; 4207 4208 if (of_get_property(np, "fsl,magic-packet", NULL)) 4209 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4210 4211 ret = fec_enet_init_stop_mode(fep, np); 4212 if (ret) 4213 goto failed_stop_mode; 4214 4215 phy_node = of_parse_phandle(np, "phy-handle", 0); 4216 if (!phy_node && of_phy_is_fixed_link(np)) { 4217 ret = of_phy_register_fixed_link(np); 4218 if (ret < 0) { 4219 dev_err(&pdev->dev, 4220 "broken fixed-link specification\n"); 4221 goto failed_phy; 4222 } 4223 phy_node = of_node_get(np); 4224 } 4225 fep->phy_node = phy_node; 4226 4227 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4228 if (ret) { 4229 pdata = dev_get_platdata(&pdev->dev); 4230 if (pdata) 4231 fep->phy_interface = pdata->phy; 4232 else 4233 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4234 } else { 4235 fep->phy_interface = interface; 4236 } 4237 4238 ret = fec_enet_parse_rgmii_delay(fep, np); 4239 if (ret) 4240 goto failed_rgmii_delay; 4241 4242 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4243 if (IS_ERR(fep->clk_ipg)) { 4244 ret = PTR_ERR(fep->clk_ipg); 4245 goto failed_clk; 4246 } 4247 4248 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4249 if (IS_ERR(fep->clk_ahb)) { 4250 ret = PTR_ERR(fep->clk_ahb); 4251 goto failed_clk; 4252 } 4253 4254 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4255 4256 /* enet_out is optional, depends on board */ 4257 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4258 if (IS_ERR(fep->clk_enet_out)) { 4259 ret = PTR_ERR(fep->clk_enet_out); 4260 goto failed_clk; 4261 } 4262 4263 fep->ptp_clk_on = false; 4264 mutex_init(&fep->ptp_clk_mutex); 4265 4266 /* clk_ref is optional, depends on board */ 4267 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4268 if (IS_ERR(fep->clk_ref)) { 4269 ret = PTR_ERR(fep->clk_ref); 4270 goto failed_clk; 4271 } 4272 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4273 4274 /* clk_2x_txclk is optional, depends on board */ 4275 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4276 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4277 if (IS_ERR(fep->clk_2x_txclk)) 4278 fep->clk_2x_txclk = NULL; 4279 } 4280 4281 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4282 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4283 if (IS_ERR(fep->clk_ptp)) { 4284 fep->clk_ptp = NULL; 4285 fep->bufdesc_ex = false; 4286 } 4287 4288 ret = fec_enet_clk_enable(ndev, true); 4289 if (ret) 4290 goto failed_clk; 4291 4292 ret = clk_prepare_enable(fep->clk_ipg); 4293 if (ret) 4294 goto failed_clk_ipg; 4295 ret = clk_prepare_enable(fep->clk_ahb); 4296 if (ret) 4297 goto failed_clk_ahb; 4298 4299 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4300 if (!IS_ERR(fep->reg_phy)) { 4301 ret = regulator_enable(fep->reg_phy); 4302 if (ret) { 4303 dev_err(&pdev->dev, 4304 "Failed to enable phy regulator: %d\n", ret); 4305 goto failed_regulator; 4306 } 4307 } else { 4308 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4309 ret = -EPROBE_DEFER; 4310 goto failed_regulator; 4311 } 4312 fep->reg_phy = NULL; 4313 } 4314 4315 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4316 pm_runtime_use_autosuspend(&pdev->dev); 4317 pm_runtime_get_noresume(&pdev->dev); 4318 pm_runtime_set_active(&pdev->dev); 4319 pm_runtime_enable(&pdev->dev); 4320 4321 ret = fec_reset_phy(pdev); 4322 if (ret) 4323 goto failed_reset; 4324 4325 irq_cnt = fec_enet_get_irq_cnt(pdev); 4326 if (fep->bufdesc_ex) 4327 fec_ptp_init(pdev, irq_cnt); 4328 4329 ret = fec_enet_init(ndev); 4330 if (ret) 4331 goto failed_init; 4332 4333 for (i = 0; i < irq_cnt; i++) { 4334 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4335 irq = platform_get_irq_byname_optional(pdev, irq_name); 4336 if (irq < 0) 4337 irq = platform_get_irq(pdev, i); 4338 if (irq < 0) { 4339 ret = irq; 4340 goto failed_irq; 4341 } 4342 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4343 0, pdev->name, ndev); 4344 if (ret) 4345 goto failed_irq; 4346 4347 fep->irq[i] = irq; 4348 } 4349 4350 /* Decide which interrupt line is wakeup capable */ 4351 fec_enet_get_wakeup_irq(pdev); 4352 4353 ret = fec_enet_mii_init(pdev); 4354 if (ret) 4355 goto failed_mii_init; 4356 4357 /* Carrier starts down, phylib will bring it up */ 4358 netif_carrier_off(ndev); 4359 fec_enet_clk_enable(ndev, false); 4360 pinctrl_pm_select_sleep_state(&pdev->dev); 4361 4362 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4363 4364 ret = register_netdev(ndev); 4365 if (ret) 4366 goto failed_register; 4367 4368 device_init_wakeup(&ndev->dev, fep->wol_flag & 4369 FEC_WOL_HAS_MAGIC_PACKET); 4370 4371 if (fep->bufdesc_ex && fep->ptp_clock) 4372 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4373 4374 fep->rx_copybreak = COPYBREAK_DEFAULT; 4375 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4376 4377 pm_runtime_mark_last_busy(&pdev->dev); 4378 pm_runtime_put_autosuspend(&pdev->dev); 4379 4380 return 0; 4381 4382 failed_register: 4383 fec_enet_mii_remove(fep); 4384 failed_mii_init: 4385 failed_irq: 4386 failed_init: 4387 fec_ptp_stop(pdev); 4388 failed_reset: 4389 pm_runtime_put_noidle(&pdev->dev); 4390 pm_runtime_disable(&pdev->dev); 4391 if (fep->reg_phy) 4392 regulator_disable(fep->reg_phy); 4393 failed_regulator: 4394 clk_disable_unprepare(fep->clk_ahb); 4395 failed_clk_ahb: 4396 clk_disable_unprepare(fep->clk_ipg); 4397 failed_clk_ipg: 4398 fec_enet_clk_enable(ndev, false); 4399 failed_clk: 4400 failed_rgmii_delay: 4401 if (of_phy_is_fixed_link(np)) 4402 of_phy_deregister_fixed_link(np); 4403 of_node_put(phy_node); 4404 failed_stop_mode: 4405 failed_ipc_init: 4406 failed_phy: 4407 dev_id--; 4408 failed_ioremap: 4409 free_netdev(ndev); 4410 4411 return ret; 4412 } 4413 4414 static int 4415 fec_drv_remove(struct platform_device *pdev) 4416 { 4417 struct net_device *ndev = platform_get_drvdata(pdev); 4418 struct fec_enet_private *fep = netdev_priv(ndev); 4419 struct device_node *np = pdev->dev.of_node; 4420 int ret; 4421 4422 ret = pm_runtime_resume_and_get(&pdev->dev); 4423 if (ret < 0) 4424 return ret; 4425 4426 cancel_work_sync(&fep->tx_timeout_work); 4427 fec_ptp_stop(pdev); 4428 unregister_netdev(ndev); 4429 fec_enet_mii_remove(fep); 4430 if (fep->reg_phy) 4431 regulator_disable(fep->reg_phy); 4432 4433 if (of_phy_is_fixed_link(np)) 4434 of_phy_deregister_fixed_link(np); 4435 of_node_put(fep->phy_node); 4436 4437 clk_disable_unprepare(fep->clk_ahb); 4438 clk_disable_unprepare(fep->clk_ipg); 4439 pm_runtime_put_noidle(&pdev->dev); 4440 pm_runtime_disable(&pdev->dev); 4441 4442 free_netdev(ndev); 4443 return 0; 4444 } 4445 4446 static int __maybe_unused fec_suspend(struct device *dev) 4447 { 4448 struct net_device *ndev = dev_get_drvdata(dev); 4449 struct fec_enet_private *fep = netdev_priv(ndev); 4450 int ret; 4451 4452 rtnl_lock(); 4453 if (netif_running(ndev)) { 4454 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4455 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4456 phy_stop(ndev->phydev); 4457 napi_disable(&fep->napi); 4458 netif_tx_lock_bh(ndev); 4459 netif_device_detach(ndev); 4460 netif_tx_unlock_bh(ndev); 4461 fec_stop(ndev); 4462 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4463 fec_irqs_disable(ndev); 4464 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4465 } else { 4466 fec_irqs_disable_except_wakeup(ndev); 4467 if (fep->wake_irq > 0) { 4468 disable_irq(fep->wake_irq); 4469 enable_irq_wake(fep->wake_irq); 4470 } 4471 fec_enet_stop_mode(fep, true); 4472 } 4473 /* It's safe to disable clocks since interrupts are masked */ 4474 fec_enet_clk_enable(ndev, false); 4475 4476 fep->rpm_active = !pm_runtime_status_suspended(dev); 4477 if (fep->rpm_active) { 4478 ret = pm_runtime_force_suspend(dev); 4479 if (ret < 0) { 4480 rtnl_unlock(); 4481 return ret; 4482 } 4483 } 4484 } 4485 rtnl_unlock(); 4486 4487 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4488 regulator_disable(fep->reg_phy); 4489 4490 /* SOC supply clock to phy, when clock is disabled, phy link down 4491 * SOC control phy regulator, when regulator is disabled, phy link down 4492 */ 4493 if (fep->clk_enet_out || fep->reg_phy) 4494 fep->link = 0; 4495 4496 return 0; 4497 } 4498 4499 static int __maybe_unused fec_resume(struct device *dev) 4500 { 4501 struct net_device *ndev = dev_get_drvdata(dev); 4502 struct fec_enet_private *fep = netdev_priv(ndev); 4503 int ret; 4504 int val; 4505 4506 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4507 ret = regulator_enable(fep->reg_phy); 4508 if (ret) 4509 return ret; 4510 } 4511 4512 rtnl_lock(); 4513 if (netif_running(ndev)) { 4514 if (fep->rpm_active) 4515 pm_runtime_force_resume(dev); 4516 4517 ret = fec_enet_clk_enable(ndev, true); 4518 if (ret) { 4519 rtnl_unlock(); 4520 goto failed_clk; 4521 } 4522 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4523 fec_enet_stop_mode(fep, false); 4524 if (fep->wake_irq) { 4525 disable_irq_wake(fep->wake_irq); 4526 enable_irq(fep->wake_irq); 4527 } 4528 4529 val = readl(fep->hwp + FEC_ECNTRL); 4530 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4531 writel(val, fep->hwp + FEC_ECNTRL); 4532 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4533 } else { 4534 pinctrl_pm_select_default_state(&fep->pdev->dev); 4535 } 4536 fec_restart(ndev); 4537 netif_tx_lock_bh(ndev); 4538 netif_device_attach(ndev); 4539 netif_tx_unlock_bh(ndev); 4540 napi_enable(&fep->napi); 4541 phy_init_hw(ndev->phydev); 4542 phy_start(ndev->phydev); 4543 } 4544 rtnl_unlock(); 4545 4546 return 0; 4547 4548 failed_clk: 4549 if (fep->reg_phy) 4550 regulator_disable(fep->reg_phy); 4551 return ret; 4552 } 4553 4554 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4555 { 4556 struct net_device *ndev = dev_get_drvdata(dev); 4557 struct fec_enet_private *fep = netdev_priv(ndev); 4558 4559 clk_disable_unprepare(fep->clk_ahb); 4560 clk_disable_unprepare(fep->clk_ipg); 4561 4562 return 0; 4563 } 4564 4565 static int __maybe_unused fec_runtime_resume(struct device *dev) 4566 { 4567 struct net_device *ndev = dev_get_drvdata(dev); 4568 struct fec_enet_private *fep = netdev_priv(ndev); 4569 int ret; 4570 4571 ret = clk_prepare_enable(fep->clk_ahb); 4572 if (ret) 4573 return ret; 4574 ret = clk_prepare_enable(fep->clk_ipg); 4575 if (ret) 4576 goto failed_clk_ipg; 4577 4578 return 0; 4579 4580 failed_clk_ipg: 4581 clk_disable_unprepare(fep->clk_ahb); 4582 return ret; 4583 } 4584 4585 static const struct dev_pm_ops fec_pm_ops = { 4586 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4587 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4588 }; 4589 4590 static struct platform_driver fec_driver = { 4591 .driver = { 4592 .name = DRIVER_NAME, 4593 .pm = &fec_pm_ops, 4594 .of_match_table = fec_dt_ids, 4595 .suppress_bind_attrs = true, 4596 }, 4597 .id_table = fec_devtype, 4598 .probe = fec_probe, 4599 .remove = fec_drv_remove, 4600 }; 4601 4602 module_platform_driver(fec_driver); 4603 4604 MODULE_LICENSE("GPL"); 4605