1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95 				FEC_QUIRK_SINGLE_MDIO,
96 	}, {
97 		.name = "imx6q-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101 	}, {
102 		.name = "mvf600-fec",
103 		.driver_data = FEC_QUIRK_ENET_MAC,
104 	}, {
105 		.name = "imx6sx-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110 	}, {
111 		/* sentinel */
112 	}
113 };
114 MODULE_DEVICE_TABLE(platform, fec_devtype);
115 
116 enum imx_fec_type {
117 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
118 	IMX27_FEC,	/* runs on i.mx27/35/51 */
119 	IMX28_FEC,
120 	IMX6Q_FEC,
121 	MVF600_FEC,
122 	IMX6SX_FEC,
123 };
124 
125 static const struct of_device_id fec_dt_ids[] = {
126 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132 	{ /* sentinel */ }
133 };
134 MODULE_DEVICE_TABLE(of, fec_dt_ids);
135 
136 static unsigned char macaddr[ETH_ALEN];
137 module_param_array(macaddr, byte, NULL, 0);
138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139 
140 #if defined(CONFIG_M5272)
141 /*
142  * Some hardware gets it MAC address out of local flash memory.
143  * if this is non-zero then assume it is the address to get MAC from.
144  */
145 #if defined(CONFIG_NETtel)
146 #define	FEC_FLASHMAC	0xf0006006
147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148 #define	FEC_FLASHMAC	0xf0006000
149 #elif defined(CONFIG_CANCam)
150 #define	FEC_FLASHMAC	0xf0020000
151 #elif defined (CONFIG_M5272C3)
152 #define	FEC_FLASHMAC	(0xffe04000 + 4)
153 #elif defined(CONFIG_MOD5272)
154 #define FEC_FLASHMAC	0xffc0406b
155 #else
156 #define	FEC_FLASHMAC	0
157 #endif
158 #endif /* CONFIG_M5272 */
159 
160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161  */
162 #define PKT_MAXBUF_SIZE		1522
163 #define PKT_MINBUF_SIZE		64
164 #define PKT_MAXBLR_SIZE		1536
165 
166 /* FEC receive acceleration */
167 #define FEC_RACC_IPDIS		(1 << 1)
168 #define FEC_RACC_PRODIS		(1 << 2)
169 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170 
171 /*
172  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173  * size bits. Other FEC hardware does not, so we need to take that into
174  * account when setting it.
175  */
176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
179 #else
180 #define	OPT_FRAME_SIZE	0
181 #endif
182 
183 /* FEC MII MMFR bits definition */
184 #define FEC_MMFR_ST		(1 << 30)
185 #define FEC_MMFR_OP_READ	(2 << 28)
186 #define FEC_MMFR_OP_WRITE	(1 << 28)
187 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
188 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
189 #define FEC_MMFR_TA		(2 << 16)
190 #define FEC_MMFR_DATA(v)	(v & 0xffff)
191 /* FEC ECR bits definition */
192 #define FEC_ECR_MAGICEN		(1 << 2)
193 #define FEC_ECR_SLEEP		(1 << 3)
194 
195 #define FEC_MII_TIMEOUT		30000 /* us */
196 
197 /* Transmitter timeout */
198 #define TX_TIMEOUT (2 * HZ)
199 
200 #define FEC_PAUSE_FLAG_AUTONEG	0x1
201 #define FEC_PAUSE_FLAG_ENABLE	0x2
202 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
203 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
204 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
205 
206 #define COPYBREAK_DEFAULT	256
207 
208 #define TSO_HEADER_SIZE		128
209 /* Max number of allowed TCP segments for software TSO */
210 #define FEC_MAX_TSO_SEGS	100
211 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
212 
213 #define IS_TSO_HEADER(txq, addr) \
214 	((addr >= txq->tso_hdrs_dma) && \
215 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
216 
217 static int mii_cnt;
218 
219 static inline
220 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
221 				      struct fec_enet_private *fep,
222 				      int queue_id)
223 {
224 	struct bufdesc *new_bd = bdp + 1;
225 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
226 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
227 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
228 	struct bufdesc_ex *ex_base;
229 	struct bufdesc *base;
230 	int ring_size;
231 
232 	if (bdp >= txq->tx_bd_base) {
233 		base = txq->tx_bd_base;
234 		ring_size = txq->tx_ring_size;
235 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
236 	} else {
237 		base = rxq->rx_bd_base;
238 		ring_size = rxq->rx_ring_size;
239 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
240 	}
241 
242 	if (fep->bufdesc_ex)
243 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
244 			ex_base : ex_new_bd);
245 	else
246 		return (new_bd >= (base + ring_size)) ?
247 			base : new_bd;
248 }
249 
250 static inline
251 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
252 				      struct fec_enet_private *fep,
253 				      int queue_id)
254 {
255 	struct bufdesc *new_bd = bdp - 1;
256 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
257 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
258 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
259 	struct bufdesc_ex *ex_base;
260 	struct bufdesc *base;
261 	int ring_size;
262 
263 	if (bdp >= txq->tx_bd_base) {
264 		base = txq->tx_bd_base;
265 		ring_size = txq->tx_ring_size;
266 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
267 	} else {
268 		base = rxq->rx_bd_base;
269 		ring_size = rxq->rx_ring_size;
270 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
271 	}
272 
273 	if (fep->bufdesc_ex)
274 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
275 			(ex_new_bd + ring_size) : ex_new_bd);
276 	else
277 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
278 }
279 
280 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
281 				struct fec_enet_private *fep)
282 {
283 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
284 }
285 
286 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
287 					struct fec_enet_priv_tx_q *txq)
288 {
289 	int entries;
290 
291 	entries = ((const char *)txq->dirty_tx -
292 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
293 
294 	return entries > 0 ? entries : entries + txq->tx_ring_size;
295 }
296 
297 static void swap_buffer(void *bufaddr, int len)
298 {
299 	int i;
300 	unsigned int *buf = bufaddr;
301 
302 	for (i = 0; i < len; i += 4, buf++)
303 		swab32s(buf);
304 }
305 
306 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
307 {
308 	int i;
309 	unsigned int *src = src_buf;
310 	unsigned int *dst = dst_buf;
311 
312 	for (i = 0; i < len; i += 4, src++, dst++)
313 		*dst = swab32p(src);
314 }
315 
316 static void fec_dump(struct net_device *ndev)
317 {
318 	struct fec_enet_private *fep = netdev_priv(ndev);
319 	struct bufdesc *bdp;
320 	struct fec_enet_priv_tx_q *txq;
321 	int index = 0;
322 
323 	netdev_info(ndev, "TX ring dump\n");
324 	pr_info("Nr     SC     addr       len  SKB\n");
325 
326 	txq = fep->tx_queue[0];
327 	bdp = txq->tx_bd_base;
328 
329 	do {
330 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
331 			index,
332 			bdp == txq->cur_tx ? 'S' : ' ',
333 			bdp == txq->dirty_tx ? 'H' : ' ',
334 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
335 			txq->tx_skbuff[index]);
336 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
337 		index++;
338 	} while (bdp != txq->tx_bd_base);
339 }
340 
341 static inline bool is_ipv4_pkt(struct sk_buff *skb)
342 {
343 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
344 }
345 
346 static int
347 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
348 {
349 	/* Only run for packets requiring a checksum. */
350 	if (skb->ip_summed != CHECKSUM_PARTIAL)
351 		return 0;
352 
353 	if (unlikely(skb_cow_head(skb, 0)))
354 		return -1;
355 
356 	if (is_ipv4_pkt(skb))
357 		ip_hdr(skb)->check = 0;
358 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
359 
360 	return 0;
361 }
362 
363 static int
364 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
365 			     struct sk_buff *skb,
366 			     struct net_device *ndev)
367 {
368 	struct fec_enet_private *fep = netdev_priv(ndev);
369 	struct bufdesc *bdp = txq->cur_tx;
370 	struct bufdesc_ex *ebdp;
371 	int nr_frags = skb_shinfo(skb)->nr_frags;
372 	unsigned short queue = skb_get_queue_mapping(skb);
373 	int frag, frag_len;
374 	unsigned short status;
375 	unsigned int estatus = 0;
376 	skb_frag_t *this_frag;
377 	unsigned int index;
378 	void *bufaddr;
379 	dma_addr_t addr;
380 	int i;
381 
382 	for (frag = 0; frag < nr_frags; frag++) {
383 		this_frag = &skb_shinfo(skb)->frags[frag];
384 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
385 		ebdp = (struct bufdesc_ex *)bdp;
386 
387 		status = bdp->cbd_sc;
388 		status &= ~BD_ENET_TX_STATS;
389 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
390 		frag_len = skb_shinfo(skb)->frags[frag].size;
391 
392 		/* Handle the last BD specially */
393 		if (frag == nr_frags - 1) {
394 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
395 			if (fep->bufdesc_ex) {
396 				estatus |= BD_ENET_TX_INT;
397 				if (unlikely(skb_shinfo(skb)->tx_flags &
398 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
399 					estatus |= BD_ENET_TX_TS;
400 			}
401 		}
402 
403 		if (fep->bufdesc_ex) {
404 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
405 				estatus |= FEC_TX_BD_FTYPE(queue);
406 			if (skb->ip_summed == CHECKSUM_PARTIAL)
407 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
408 			ebdp->cbd_bdu = 0;
409 			ebdp->cbd_esc = estatus;
410 		}
411 
412 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
413 
414 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
415 		if (((unsigned long) bufaddr) & fep->tx_align ||
416 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
417 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
418 			bufaddr = txq->tx_bounce[index];
419 
420 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
421 				swap_buffer(bufaddr, frag_len);
422 		}
423 
424 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
425 				      DMA_TO_DEVICE);
426 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
427 			dev_kfree_skb_any(skb);
428 			if (net_ratelimit())
429 				netdev_err(ndev, "Tx DMA memory map failed\n");
430 			goto dma_mapping_error;
431 		}
432 
433 		bdp->cbd_bufaddr = addr;
434 		bdp->cbd_datlen = frag_len;
435 		bdp->cbd_sc = status;
436 	}
437 
438 	txq->cur_tx = bdp;
439 
440 	return 0;
441 
442 dma_mapping_error:
443 	bdp = txq->cur_tx;
444 	for (i = 0; i < frag; i++) {
445 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
446 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
447 				bdp->cbd_datlen, DMA_TO_DEVICE);
448 	}
449 	return NETDEV_TX_OK;
450 }
451 
452 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
453 				   struct sk_buff *skb, struct net_device *ndev)
454 {
455 	struct fec_enet_private *fep = netdev_priv(ndev);
456 	int nr_frags = skb_shinfo(skb)->nr_frags;
457 	struct bufdesc *bdp, *last_bdp;
458 	void *bufaddr;
459 	dma_addr_t addr;
460 	unsigned short status;
461 	unsigned short buflen;
462 	unsigned short queue;
463 	unsigned int estatus = 0;
464 	unsigned int index;
465 	int entries_free;
466 	int ret;
467 
468 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 	if (entries_free < MAX_SKB_FRAGS + 1) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "NOT enough BD for SG!\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Protocol checksum off-load for TCP and UDP. */
477 	if (fec_enet_clear_csum(skb, ndev)) {
478 		dev_kfree_skb_any(skb);
479 		return NETDEV_TX_OK;
480 	}
481 
482 	/* Fill in a Tx ring entry */
483 	bdp = txq->cur_tx;
484 	status = bdp->cbd_sc;
485 	status &= ~BD_ENET_TX_STATS;
486 
487 	/* Set buffer length and buffer pointer */
488 	bufaddr = skb->data;
489 	buflen = skb_headlen(skb);
490 
491 	queue = skb_get_queue_mapping(skb);
492 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
493 	if (((unsigned long) bufaddr) & fep->tx_align ||
494 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
495 		memcpy(txq->tx_bounce[index], skb->data, buflen);
496 		bufaddr = txq->tx_bounce[index];
497 
498 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
499 			swap_buffer(bufaddr, buflen);
500 	}
501 
502 	/* Push the data cache so the CPM does not get stale memory data. */
503 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
505 		dev_kfree_skb_any(skb);
506 		if (net_ratelimit())
507 			netdev_err(ndev, "Tx DMA memory map failed\n");
508 		return NETDEV_TX_OK;
509 	}
510 
511 	if (nr_frags) {
512 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
513 		if (ret)
514 			return ret;
515 	} else {
516 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517 		if (fep->bufdesc_ex) {
518 			estatus = BD_ENET_TX_INT;
519 			if (unlikely(skb_shinfo(skb)->tx_flags &
520 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521 				estatus |= BD_ENET_TX_TS;
522 		}
523 	}
524 
525 	if (fep->bufdesc_ex) {
526 
527 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528 
529 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530 			fep->hwts_tx_en))
531 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532 
533 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
534 			estatus |= FEC_TX_BD_FTYPE(queue);
535 
536 		if (skb->ip_summed == CHECKSUM_PARTIAL)
537 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
538 
539 		ebdp->cbd_bdu = 0;
540 		ebdp->cbd_esc = estatus;
541 	}
542 
543 	last_bdp = txq->cur_tx;
544 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 	/* Save skb pointer */
546 	txq->tx_skbuff[index] = skb;
547 
548 	bdp->cbd_datlen = buflen;
549 	bdp->cbd_bufaddr = addr;
550 
551 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
552 	 * it's the last BD of the frame, and to put the CRC on the end.
553 	 */
554 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 	bdp->cbd_sc = status;
556 
557 	/* If this was the last BD in the ring, start at the beginning again. */
558 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559 
560 	skb_tx_timestamp(skb);
561 
562 	txq->cur_tx = bdp;
563 
564 	/* Trigger transmission start */
565 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
566 
567 	return 0;
568 }
569 
570 static int
571 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
572 			  struct net_device *ndev,
573 			  struct bufdesc *bdp, int index, char *data,
574 			  int size, bool last_tcp, bool is_last)
575 {
576 	struct fec_enet_private *fep = netdev_priv(ndev);
577 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
578 	unsigned short queue = skb_get_queue_mapping(skb);
579 	unsigned short status;
580 	unsigned int estatus = 0;
581 	dma_addr_t addr;
582 
583 	status = bdp->cbd_sc;
584 	status &= ~BD_ENET_TX_STATS;
585 
586 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
587 
588 	if (((unsigned long) data) & fep->tx_align ||
589 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
590 		memcpy(txq->tx_bounce[index], data, size);
591 		data = txq->tx_bounce[index];
592 
593 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
594 			swap_buffer(data, size);
595 	}
596 
597 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
598 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
599 		dev_kfree_skb_any(skb);
600 		if (net_ratelimit())
601 			netdev_err(ndev, "Tx DMA memory map failed\n");
602 		return NETDEV_TX_BUSY;
603 	}
604 
605 	bdp->cbd_datlen = size;
606 	bdp->cbd_bufaddr = addr;
607 
608 	if (fep->bufdesc_ex) {
609 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
610 			estatus |= FEC_TX_BD_FTYPE(queue);
611 		if (skb->ip_summed == CHECKSUM_PARTIAL)
612 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
613 		ebdp->cbd_bdu = 0;
614 		ebdp->cbd_esc = estatus;
615 	}
616 
617 	/* Handle the last BD specially */
618 	if (last_tcp)
619 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
620 	if (is_last) {
621 		status |= BD_ENET_TX_INTR;
622 		if (fep->bufdesc_ex)
623 			ebdp->cbd_esc |= BD_ENET_TX_INT;
624 	}
625 
626 	bdp->cbd_sc = status;
627 
628 	return 0;
629 }
630 
631 static int
632 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
633 			 struct sk_buff *skb, struct net_device *ndev,
634 			 struct bufdesc *bdp, int index)
635 {
636 	struct fec_enet_private *fep = netdev_priv(ndev);
637 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
638 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
639 	unsigned short queue = skb_get_queue_mapping(skb);
640 	void *bufaddr;
641 	unsigned long dmabuf;
642 	unsigned short status;
643 	unsigned int estatus = 0;
644 
645 	status = bdp->cbd_sc;
646 	status &= ~BD_ENET_TX_STATS;
647 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
648 
649 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
650 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
651 	if (((unsigned long)bufaddr) & fep->tx_align ||
652 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
653 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
654 		bufaddr = txq->tx_bounce[index];
655 
656 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
657 			swap_buffer(bufaddr, hdr_len);
658 
659 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
660 					hdr_len, DMA_TO_DEVICE);
661 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
662 			dev_kfree_skb_any(skb);
663 			if (net_ratelimit())
664 				netdev_err(ndev, "Tx DMA memory map failed\n");
665 			return NETDEV_TX_BUSY;
666 		}
667 	}
668 
669 	bdp->cbd_bufaddr = dmabuf;
670 	bdp->cbd_datlen = hdr_len;
671 
672 	if (fep->bufdesc_ex) {
673 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
674 			estatus |= FEC_TX_BD_FTYPE(queue);
675 		if (skb->ip_summed == CHECKSUM_PARTIAL)
676 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
677 		ebdp->cbd_bdu = 0;
678 		ebdp->cbd_esc = estatus;
679 	}
680 
681 	bdp->cbd_sc = status;
682 
683 	return 0;
684 }
685 
686 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
687 				   struct sk_buff *skb,
688 				   struct net_device *ndev)
689 {
690 	struct fec_enet_private *fep = netdev_priv(ndev);
691 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
692 	int total_len, data_left;
693 	struct bufdesc *bdp = txq->cur_tx;
694 	unsigned short queue = skb_get_queue_mapping(skb);
695 	struct tso_t tso;
696 	unsigned int index = 0;
697 	int ret;
698 
699 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
700 		dev_kfree_skb_any(skb);
701 		if (net_ratelimit())
702 			netdev_err(ndev, "NOT enough BD for TSO!\n");
703 		return NETDEV_TX_OK;
704 	}
705 
706 	/* Protocol checksum off-load for TCP and UDP. */
707 	if (fec_enet_clear_csum(skb, ndev)) {
708 		dev_kfree_skb_any(skb);
709 		return NETDEV_TX_OK;
710 	}
711 
712 	/* Initialize the TSO handler, and prepare the first payload */
713 	tso_start(skb, &tso);
714 
715 	total_len = skb->len - hdr_len;
716 	while (total_len > 0) {
717 		char *hdr;
718 
719 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
720 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
721 		total_len -= data_left;
722 
723 		/* prepare packet headers: MAC + IP + TCP */
724 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
725 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
726 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
727 		if (ret)
728 			goto err_release;
729 
730 		while (data_left > 0) {
731 			int size;
732 
733 			size = min_t(int, tso.size, data_left);
734 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
735 			index = fec_enet_get_bd_index(txq->tx_bd_base,
736 						      bdp, fep);
737 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
738 							bdp, index,
739 							tso.data, size,
740 							size == data_left,
741 							total_len == 0);
742 			if (ret)
743 				goto err_release;
744 
745 			data_left -= size;
746 			tso_build_data(skb, &tso, size);
747 		}
748 
749 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
750 	}
751 
752 	/* Save skb pointer */
753 	txq->tx_skbuff[index] = skb;
754 
755 	skb_tx_timestamp(skb);
756 	txq->cur_tx = bdp;
757 
758 	/* Trigger transmission start */
759 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
760 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
761 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
762 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
763 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
764 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
765 
766 	return 0;
767 
768 err_release:
769 	/* TODO: Release all used data descriptors for TSO */
770 	return ret;
771 }
772 
773 static netdev_tx_t
774 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
775 {
776 	struct fec_enet_private *fep = netdev_priv(ndev);
777 	int entries_free;
778 	unsigned short queue;
779 	struct fec_enet_priv_tx_q *txq;
780 	struct netdev_queue *nq;
781 	int ret;
782 
783 	queue = skb_get_queue_mapping(skb);
784 	txq = fep->tx_queue[queue];
785 	nq = netdev_get_tx_queue(ndev, queue);
786 
787 	if (skb_is_gso(skb))
788 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
789 	else
790 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
791 	if (ret)
792 		return ret;
793 
794 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
795 	if (entries_free <= txq->tx_stop_threshold)
796 		netif_tx_stop_queue(nq);
797 
798 	return NETDEV_TX_OK;
799 }
800 
801 /* Init RX & TX buffer descriptors
802  */
803 static void fec_enet_bd_init(struct net_device *dev)
804 {
805 	struct fec_enet_private *fep = netdev_priv(dev);
806 	struct fec_enet_priv_tx_q *txq;
807 	struct fec_enet_priv_rx_q *rxq;
808 	struct bufdesc *bdp;
809 	unsigned int i;
810 	unsigned int q;
811 
812 	for (q = 0; q < fep->num_rx_queues; q++) {
813 		/* Initialize the receive buffer descriptors. */
814 		rxq = fep->rx_queue[q];
815 		bdp = rxq->rx_bd_base;
816 
817 		for (i = 0; i < rxq->rx_ring_size; i++) {
818 
819 			/* Initialize the BD for every fragment in the page. */
820 			if (bdp->cbd_bufaddr)
821 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
822 			else
823 				bdp->cbd_sc = 0;
824 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
825 		}
826 
827 		/* Set the last buffer to wrap */
828 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
829 		bdp->cbd_sc |= BD_SC_WRAP;
830 
831 		rxq->cur_rx = rxq->rx_bd_base;
832 	}
833 
834 	for (q = 0; q < fep->num_tx_queues; q++) {
835 		/* ...and the same for transmit */
836 		txq = fep->tx_queue[q];
837 		bdp = txq->tx_bd_base;
838 		txq->cur_tx = bdp;
839 
840 		for (i = 0; i < txq->tx_ring_size; i++) {
841 			/* Initialize the BD for every fragment in the page. */
842 			bdp->cbd_sc = 0;
843 			if (txq->tx_skbuff[i]) {
844 				dev_kfree_skb_any(txq->tx_skbuff[i]);
845 				txq->tx_skbuff[i] = NULL;
846 			}
847 			bdp->cbd_bufaddr = 0;
848 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
849 		}
850 
851 		/* Set the last buffer to wrap */
852 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
853 		bdp->cbd_sc |= BD_SC_WRAP;
854 		txq->dirty_tx = bdp;
855 	}
856 }
857 
858 static void fec_enet_active_rxring(struct net_device *ndev)
859 {
860 	struct fec_enet_private *fep = netdev_priv(ndev);
861 	int i;
862 
863 	for (i = 0; i < fep->num_rx_queues; i++)
864 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
865 }
866 
867 static void fec_enet_enable_ring(struct net_device *ndev)
868 {
869 	struct fec_enet_private *fep = netdev_priv(ndev);
870 	struct fec_enet_priv_tx_q *txq;
871 	struct fec_enet_priv_rx_q *rxq;
872 	int i;
873 
874 	for (i = 0; i < fep->num_rx_queues; i++) {
875 		rxq = fep->rx_queue[i];
876 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
877 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
878 
879 		/* enable DMA1/2 */
880 		if (i)
881 			writel(RCMR_MATCHEN | RCMR_CMP(i),
882 			       fep->hwp + FEC_RCMR(i));
883 	}
884 
885 	for (i = 0; i < fep->num_tx_queues; i++) {
886 		txq = fep->tx_queue[i];
887 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
888 
889 		/* enable DMA1/2 */
890 		if (i)
891 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
892 			       fep->hwp + FEC_DMA_CFG(i));
893 	}
894 }
895 
896 static void fec_enet_reset_skb(struct net_device *ndev)
897 {
898 	struct fec_enet_private *fep = netdev_priv(ndev);
899 	struct fec_enet_priv_tx_q *txq;
900 	int i, j;
901 
902 	for (i = 0; i < fep->num_tx_queues; i++) {
903 		txq = fep->tx_queue[i];
904 
905 		for (j = 0; j < txq->tx_ring_size; j++) {
906 			if (txq->tx_skbuff[j]) {
907 				dev_kfree_skb_any(txq->tx_skbuff[j]);
908 				txq->tx_skbuff[j] = NULL;
909 			}
910 		}
911 	}
912 }
913 
914 /*
915  * This function is called to start or restart the FEC during a link
916  * change, transmit timeout, or to reconfigure the FEC.  The network
917  * packet processing for this device must be stopped before this call.
918  */
919 static void
920 fec_restart(struct net_device *ndev)
921 {
922 	struct fec_enet_private *fep = netdev_priv(ndev);
923 	u32 val;
924 	u32 temp_mac[2];
925 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
926 	u32 ecntl = 0x2; /* ETHEREN */
927 
928 	/* Whack a reset.  We should wait for this.
929 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
930 	 * instead of reset MAC itself.
931 	 */
932 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
933 		writel(0, fep->hwp + FEC_ECNTRL);
934 	} else {
935 		writel(1, fep->hwp + FEC_ECNTRL);
936 		udelay(10);
937 	}
938 
939 	/*
940 	 * enet-mac reset will reset mac address registers too,
941 	 * so need to reconfigure it.
942 	 */
943 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
944 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
945 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
946 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
947 	}
948 
949 	/* Clear any outstanding interrupt. */
950 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
951 
952 	fec_enet_bd_init(ndev);
953 
954 	fec_enet_enable_ring(ndev);
955 
956 	/* Reset tx SKB buffers. */
957 	fec_enet_reset_skb(ndev);
958 
959 	/* Enable MII mode */
960 	if (fep->full_duplex == DUPLEX_FULL) {
961 		/* FD enable */
962 		writel(0x04, fep->hwp + FEC_X_CNTRL);
963 	} else {
964 		/* No Rcv on Xmit */
965 		rcntl |= 0x02;
966 		writel(0x0, fep->hwp + FEC_X_CNTRL);
967 	}
968 
969 	/* Set MII speed */
970 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
971 
972 #if !defined(CONFIG_M5272)
973 	/* set RX checksum */
974 	val = readl(fep->hwp + FEC_RACC);
975 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
976 		val |= FEC_RACC_OPTIONS;
977 	else
978 		val &= ~FEC_RACC_OPTIONS;
979 	writel(val, fep->hwp + FEC_RACC);
980 #endif
981 
982 	/*
983 	 * The phy interface and speed need to get configured
984 	 * differently on enet-mac.
985 	 */
986 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
987 		/* Enable flow control and length check */
988 		rcntl |= 0x40000000 | 0x00000020;
989 
990 		/* RGMII, RMII or MII */
991 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
992 			rcntl |= (1 << 6);
993 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
994 			rcntl |= (1 << 8);
995 		else
996 			rcntl &= ~(1 << 8);
997 
998 		/* 1G, 100M or 10M */
999 		if (fep->phy_dev) {
1000 			if (fep->phy_dev->speed == SPEED_1000)
1001 				ecntl |= (1 << 5);
1002 			else if (fep->phy_dev->speed == SPEED_100)
1003 				rcntl &= ~(1 << 9);
1004 			else
1005 				rcntl |= (1 << 9);
1006 		}
1007 	} else {
1008 #ifdef FEC_MIIGSK_ENR
1009 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1010 			u32 cfgr;
1011 			/* disable the gasket and wait */
1012 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1013 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1014 				udelay(1);
1015 
1016 			/*
1017 			 * configure the gasket:
1018 			 *   RMII, 50 MHz, no loopback, no echo
1019 			 *   MII, 25 MHz, no loopback, no echo
1020 			 */
1021 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1022 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1023 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1024 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1025 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1026 
1027 			/* re-enable the gasket */
1028 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1029 		}
1030 #endif
1031 	}
1032 
1033 #if !defined(CONFIG_M5272)
1034 	/* enable pause frame*/
1035 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1036 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1037 	     fep->phy_dev && fep->phy_dev->pause)) {
1038 		rcntl |= FEC_ENET_FCE;
1039 
1040 		/* set FIFO threshold parameter to reduce overrun */
1041 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1042 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1043 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1044 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1045 
1046 		/* OPD */
1047 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1048 	} else {
1049 		rcntl &= ~FEC_ENET_FCE;
1050 	}
1051 #endif /* !defined(CONFIG_M5272) */
1052 
1053 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1054 
1055 	/* Setup multicast filter. */
1056 	set_multicast_list(ndev);
1057 #ifndef CONFIG_M5272
1058 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1059 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1060 #endif
1061 
1062 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1063 		/* enable ENET endian swap */
1064 		ecntl |= (1 << 8);
1065 		/* enable ENET store and forward mode */
1066 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1067 	}
1068 
1069 	if (fep->bufdesc_ex)
1070 		ecntl |= (1 << 4);
1071 
1072 #ifndef CONFIG_M5272
1073 	/* Enable the MIB statistic event counters */
1074 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1075 #endif
1076 
1077 	/* And last, enable the transmit and receive processing */
1078 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1079 	fec_enet_active_rxring(ndev);
1080 
1081 	if (fep->bufdesc_ex)
1082 		fec_ptp_start_cyclecounter(ndev);
1083 
1084 	/* Enable interrupts we wish to service */
1085 	if (fep->link)
1086 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1087 	else
1088 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1089 
1090 	/* Init the interrupt coalescing */
1091 	fec_enet_itr_coal_init(ndev);
1092 
1093 }
1094 
1095 static void
1096 fec_stop(struct net_device *ndev)
1097 {
1098 	struct fec_enet_private *fep = netdev_priv(ndev);
1099 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1100 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1101 	u32 val;
1102 
1103 	/* We cannot expect a graceful transmit stop without link !!! */
1104 	if (fep->link) {
1105 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1106 		udelay(10);
1107 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1108 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1109 	}
1110 
1111 	/* Whack a reset.  We should wait for this.
1112 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1113 	 * instead of reset MAC itself.
1114 	 */
1115 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1117 			writel(0, fep->hwp + FEC_ECNTRL);
1118 		} else {
1119 			writel(1, fep->hwp + FEC_ECNTRL);
1120 			udelay(10);
1121 		}
1122 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1123 	} else {
1124 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1125 		val = readl(fep->hwp + FEC_ECNTRL);
1126 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1127 		writel(val, fep->hwp + FEC_ECNTRL);
1128 
1129 		if (pdata && pdata->sleep_mode_enable)
1130 			pdata->sleep_mode_enable(true);
1131 	}
1132 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1133 
1134 	/* We have to keep ENET enabled to have MII interrupt stay working */
1135 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1136 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1137 		writel(2, fep->hwp + FEC_ECNTRL);
1138 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1139 	}
1140 }
1141 
1142 
1143 static void
1144 fec_timeout(struct net_device *ndev)
1145 {
1146 	struct fec_enet_private *fep = netdev_priv(ndev);
1147 
1148 	fec_dump(ndev);
1149 
1150 	ndev->stats.tx_errors++;
1151 
1152 	schedule_work(&fep->tx_timeout_work);
1153 }
1154 
1155 static void fec_enet_timeout_work(struct work_struct *work)
1156 {
1157 	struct fec_enet_private *fep =
1158 		container_of(work, struct fec_enet_private, tx_timeout_work);
1159 	struct net_device *ndev = fep->netdev;
1160 
1161 	rtnl_lock();
1162 	if (netif_device_present(ndev) || netif_running(ndev)) {
1163 		napi_disable(&fep->napi);
1164 		netif_tx_lock_bh(ndev);
1165 		fec_restart(ndev);
1166 		netif_wake_queue(ndev);
1167 		netif_tx_unlock_bh(ndev);
1168 		napi_enable(&fep->napi);
1169 	}
1170 	rtnl_unlock();
1171 }
1172 
1173 static void
1174 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1175 	struct skb_shared_hwtstamps *hwtstamps)
1176 {
1177 	unsigned long flags;
1178 	u64 ns;
1179 
1180 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1181 	ns = timecounter_cyc2time(&fep->tc, ts);
1182 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1183 
1184 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1185 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1186 }
1187 
1188 static void
1189 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1190 {
1191 	struct	fec_enet_private *fep;
1192 	struct bufdesc *bdp;
1193 	unsigned short status;
1194 	struct	sk_buff	*skb;
1195 	struct fec_enet_priv_tx_q *txq;
1196 	struct netdev_queue *nq;
1197 	int	index = 0;
1198 	int	entries_free;
1199 
1200 	fep = netdev_priv(ndev);
1201 
1202 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1203 
1204 	txq = fep->tx_queue[queue_id];
1205 	/* get next bdp of dirty_tx */
1206 	nq = netdev_get_tx_queue(ndev, queue_id);
1207 	bdp = txq->dirty_tx;
1208 
1209 	/* get next bdp of dirty_tx */
1210 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1211 
1212 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1213 
1214 		/* current queue is empty */
1215 		if (bdp == txq->cur_tx)
1216 			break;
1217 
1218 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1219 
1220 		skb = txq->tx_skbuff[index];
1221 		txq->tx_skbuff[index] = NULL;
1222 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1223 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1224 					bdp->cbd_datlen, DMA_TO_DEVICE);
1225 		bdp->cbd_bufaddr = 0;
1226 		if (!skb) {
1227 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1228 			continue;
1229 		}
1230 
1231 		/* Check for errors. */
1232 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1233 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1234 				   BD_ENET_TX_CSL)) {
1235 			ndev->stats.tx_errors++;
1236 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1237 				ndev->stats.tx_heartbeat_errors++;
1238 			if (status & BD_ENET_TX_LC)  /* Late collision */
1239 				ndev->stats.tx_window_errors++;
1240 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1241 				ndev->stats.tx_aborted_errors++;
1242 			if (status & BD_ENET_TX_UN)  /* Underrun */
1243 				ndev->stats.tx_fifo_errors++;
1244 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1245 				ndev->stats.tx_carrier_errors++;
1246 		} else {
1247 			ndev->stats.tx_packets++;
1248 			ndev->stats.tx_bytes += skb->len;
1249 		}
1250 
1251 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1252 			fep->bufdesc_ex) {
1253 			struct skb_shared_hwtstamps shhwtstamps;
1254 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1255 
1256 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1257 			skb_tstamp_tx(skb, &shhwtstamps);
1258 		}
1259 
1260 		/* Deferred means some collisions occurred during transmit,
1261 		 * but we eventually sent the packet OK.
1262 		 */
1263 		if (status & BD_ENET_TX_DEF)
1264 			ndev->stats.collisions++;
1265 
1266 		/* Free the sk buffer associated with this last transmit */
1267 		dev_kfree_skb_any(skb);
1268 
1269 		txq->dirty_tx = bdp;
1270 
1271 		/* Update pointer to next buffer descriptor to be transmitted */
1272 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1273 
1274 		/* Since we have freed up a buffer, the ring is no longer full
1275 		 */
1276 		if (netif_queue_stopped(ndev)) {
1277 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1278 			if (entries_free >= txq->tx_wake_threshold)
1279 				netif_tx_wake_queue(nq);
1280 		}
1281 	}
1282 
1283 	/* ERR006538: Keep the transmitter going */
1284 	if (bdp != txq->cur_tx &&
1285 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1286 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1287 }
1288 
1289 static void
1290 fec_enet_tx(struct net_device *ndev)
1291 {
1292 	struct fec_enet_private *fep = netdev_priv(ndev);
1293 	u16 queue_id;
1294 	/* First process class A queue, then Class B and Best Effort queue */
1295 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1296 		clear_bit(queue_id, &fep->work_tx);
1297 		fec_enet_tx_queue(ndev, queue_id);
1298 	}
1299 	return;
1300 }
1301 
1302 static int
1303 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1304 {
1305 	struct  fec_enet_private *fep = netdev_priv(ndev);
1306 	int off;
1307 
1308 	off = ((unsigned long)skb->data) & fep->rx_align;
1309 	if (off)
1310 		skb_reserve(skb, fep->rx_align + 1 - off);
1311 
1312 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1313 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1314 					  DMA_FROM_DEVICE);
1315 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1316 		if (net_ratelimit())
1317 			netdev_err(ndev, "Rx DMA memory map failed\n");
1318 		return -ENOMEM;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1325 			       struct bufdesc *bdp, u32 length, bool swap)
1326 {
1327 	struct  fec_enet_private *fep = netdev_priv(ndev);
1328 	struct sk_buff *new_skb;
1329 
1330 	if (length > fep->rx_copybreak)
1331 		return false;
1332 
1333 	new_skb = netdev_alloc_skb(ndev, length);
1334 	if (!new_skb)
1335 		return false;
1336 
1337 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1338 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1339 				DMA_FROM_DEVICE);
1340 	if (!swap)
1341 		memcpy(new_skb->data, (*skb)->data, length);
1342 	else
1343 		swap_buffer2(new_skb->data, (*skb)->data, length);
1344 	*skb = new_skb;
1345 
1346 	return true;
1347 }
1348 
1349 /* During a receive, the cur_rx points to the current incoming buffer.
1350  * When we update through the ring, if the next incoming buffer has
1351  * not been given to the system, we just set the empty indicator,
1352  * effectively tossing the packet.
1353  */
1354 static int
1355 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1356 {
1357 	struct fec_enet_private *fep = netdev_priv(ndev);
1358 	struct fec_enet_priv_rx_q *rxq;
1359 	struct bufdesc *bdp;
1360 	unsigned short status;
1361 	struct  sk_buff *skb_new = NULL;
1362 	struct  sk_buff *skb;
1363 	ushort	pkt_len;
1364 	__u8 *data;
1365 	int	pkt_received = 0;
1366 	struct	bufdesc_ex *ebdp = NULL;
1367 	bool	vlan_packet_rcvd = false;
1368 	u16	vlan_tag;
1369 	int	index = 0;
1370 	bool	is_copybreak;
1371 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1372 
1373 #ifdef CONFIG_M532x
1374 	flush_cache_all();
1375 #endif
1376 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1377 	rxq = fep->rx_queue[queue_id];
1378 
1379 	/* First, grab all of the stats for the incoming packet.
1380 	 * These get messed up if we get called due to a busy condition.
1381 	 */
1382 	bdp = rxq->cur_rx;
1383 
1384 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1385 
1386 		if (pkt_received >= budget)
1387 			break;
1388 		pkt_received++;
1389 
1390 		/* Since we have allocated space to hold a complete frame,
1391 		 * the last indicator should be set.
1392 		 */
1393 		if ((status & BD_ENET_RX_LAST) == 0)
1394 			netdev_err(ndev, "rcv is not +last\n");
1395 
1396 
1397 		/* Check for errors. */
1398 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1399 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1400 			ndev->stats.rx_errors++;
1401 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1402 				/* Frame too long or too short. */
1403 				ndev->stats.rx_length_errors++;
1404 			}
1405 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1406 				ndev->stats.rx_frame_errors++;
1407 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1408 				ndev->stats.rx_crc_errors++;
1409 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1410 				ndev->stats.rx_fifo_errors++;
1411 		}
1412 
1413 		/* Report late collisions as a frame error.
1414 		 * On this error, the BD is closed, but we don't know what we
1415 		 * have in the buffer.  So, just drop this frame on the floor.
1416 		 */
1417 		if (status & BD_ENET_RX_CL) {
1418 			ndev->stats.rx_errors++;
1419 			ndev->stats.rx_frame_errors++;
1420 			goto rx_processing_done;
1421 		}
1422 
1423 		/* Process the incoming frame. */
1424 		ndev->stats.rx_packets++;
1425 		pkt_len = bdp->cbd_datlen;
1426 		ndev->stats.rx_bytes += pkt_len;
1427 
1428 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1429 		skb = rxq->rx_skbuff[index];
1430 
1431 		/* The packet length includes FCS, but we don't want to
1432 		 * include that when passing upstream as it messes up
1433 		 * bridging applications.
1434 		 */
1435 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1436 						  need_swap);
1437 		if (!is_copybreak) {
1438 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1439 			if (unlikely(!skb_new)) {
1440 				ndev->stats.rx_dropped++;
1441 				goto rx_processing_done;
1442 			}
1443 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1444 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1445 					 DMA_FROM_DEVICE);
1446 		}
1447 
1448 		prefetch(skb->data - NET_IP_ALIGN);
1449 		skb_put(skb, pkt_len - 4);
1450 		data = skb->data;
1451 		if (!is_copybreak && need_swap)
1452 			swap_buffer(data, pkt_len);
1453 
1454 		/* Extract the enhanced buffer descriptor */
1455 		ebdp = NULL;
1456 		if (fep->bufdesc_ex)
1457 			ebdp = (struct bufdesc_ex *)bdp;
1458 
1459 		/* If this is a VLAN packet remove the VLAN Tag */
1460 		vlan_packet_rcvd = false;
1461 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1463 			/* Push and remove the vlan tag */
1464 			struct vlan_hdr *vlan_header =
1465 					(struct vlan_hdr *) (data + ETH_HLEN);
1466 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1467 
1468 			vlan_packet_rcvd = true;
1469 
1470 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1471 			skb_pull(skb, VLAN_HLEN);
1472 		}
1473 
1474 		skb->protocol = eth_type_trans(skb, ndev);
1475 
1476 		/* Get receive timestamp from the skb */
1477 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1478 			fec_enet_hwtstamp(fep, ebdp->ts,
1479 					  skb_hwtstamps(skb));
1480 
1481 		if (fep->bufdesc_ex &&
1482 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1483 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1484 				/* don't check it */
1485 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1486 			} else {
1487 				skb_checksum_none_assert(skb);
1488 			}
1489 		}
1490 
1491 		/* Handle received VLAN packets */
1492 		if (vlan_packet_rcvd)
1493 			__vlan_hwaccel_put_tag(skb,
1494 					       htons(ETH_P_8021Q),
1495 					       vlan_tag);
1496 
1497 		napi_gro_receive(&fep->napi, skb);
1498 
1499 		if (is_copybreak) {
1500 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1501 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1502 						   DMA_FROM_DEVICE);
1503 		} else {
1504 			rxq->rx_skbuff[index] = skb_new;
1505 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1506 		}
1507 
1508 rx_processing_done:
1509 		/* Clear the status flags for this buffer */
1510 		status &= ~BD_ENET_RX_STATS;
1511 
1512 		/* Mark the buffer empty */
1513 		status |= BD_ENET_RX_EMPTY;
1514 		bdp->cbd_sc = status;
1515 
1516 		if (fep->bufdesc_ex) {
1517 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1518 
1519 			ebdp->cbd_esc = BD_ENET_RX_INT;
1520 			ebdp->cbd_prot = 0;
1521 			ebdp->cbd_bdu = 0;
1522 		}
1523 
1524 		/* Update BD pointer to next entry */
1525 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1526 
1527 		/* Doing this here will keep the FEC running while we process
1528 		 * incoming frames.  On a heavily loaded network, we should be
1529 		 * able to keep up at the expense of system resources.
1530 		 */
1531 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1532 	}
1533 	rxq->cur_rx = bdp;
1534 	return pkt_received;
1535 }
1536 
1537 static int
1538 fec_enet_rx(struct net_device *ndev, int budget)
1539 {
1540 	int     pkt_received = 0;
1541 	u16	queue_id;
1542 	struct fec_enet_private *fep = netdev_priv(ndev);
1543 
1544 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1545 		clear_bit(queue_id, &fep->work_rx);
1546 		pkt_received += fec_enet_rx_queue(ndev,
1547 					budget - pkt_received, queue_id);
1548 	}
1549 	return pkt_received;
1550 }
1551 
1552 static bool
1553 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1554 {
1555 	if (int_events == 0)
1556 		return false;
1557 
1558 	if (int_events & FEC_ENET_RXF)
1559 		fep->work_rx |= (1 << 2);
1560 	if (int_events & FEC_ENET_RXF_1)
1561 		fep->work_rx |= (1 << 0);
1562 	if (int_events & FEC_ENET_RXF_2)
1563 		fep->work_rx |= (1 << 1);
1564 
1565 	if (int_events & FEC_ENET_TXF)
1566 		fep->work_tx |= (1 << 2);
1567 	if (int_events & FEC_ENET_TXF_1)
1568 		fep->work_tx |= (1 << 0);
1569 	if (int_events & FEC_ENET_TXF_2)
1570 		fep->work_tx |= (1 << 1);
1571 
1572 	return true;
1573 }
1574 
1575 static irqreturn_t
1576 fec_enet_interrupt(int irq, void *dev_id)
1577 {
1578 	struct net_device *ndev = dev_id;
1579 	struct fec_enet_private *fep = netdev_priv(ndev);
1580 	uint int_events;
1581 	irqreturn_t ret = IRQ_NONE;
1582 
1583 	int_events = readl(fep->hwp + FEC_IEVENT);
1584 	writel(int_events, fep->hwp + FEC_IEVENT);
1585 	fec_enet_collect_events(fep, int_events);
1586 
1587 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1588 		ret = IRQ_HANDLED;
1589 
1590 		if (napi_schedule_prep(&fep->napi)) {
1591 			/* Disable the NAPI interrupts */
1592 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1593 			__napi_schedule(&fep->napi);
1594 		}
1595 	}
1596 
1597 	if (int_events & FEC_ENET_MII) {
1598 		ret = IRQ_HANDLED;
1599 		complete(&fep->mdio_done);
1600 	}
1601 
1602 	if (fep->ptp_clock)
1603 		fec_ptp_check_pps_event(fep);
1604 
1605 	return ret;
1606 }
1607 
1608 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1609 {
1610 	struct net_device *ndev = napi->dev;
1611 	struct fec_enet_private *fep = netdev_priv(ndev);
1612 	int pkts;
1613 
1614 	pkts = fec_enet_rx(ndev, budget);
1615 
1616 	fec_enet_tx(ndev);
1617 
1618 	if (pkts < budget) {
1619 		napi_complete(napi);
1620 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1621 	}
1622 	return pkts;
1623 }
1624 
1625 /* ------------------------------------------------------------------------- */
1626 static void fec_get_mac(struct net_device *ndev)
1627 {
1628 	struct fec_enet_private *fep = netdev_priv(ndev);
1629 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1630 	unsigned char *iap, tmpaddr[ETH_ALEN];
1631 
1632 	/*
1633 	 * try to get mac address in following order:
1634 	 *
1635 	 * 1) module parameter via kernel command line in form
1636 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1637 	 */
1638 	iap = macaddr;
1639 
1640 	/*
1641 	 * 2) from device tree data
1642 	 */
1643 	if (!is_valid_ether_addr(iap)) {
1644 		struct device_node *np = fep->pdev->dev.of_node;
1645 		if (np) {
1646 			const char *mac = of_get_mac_address(np);
1647 			if (mac)
1648 				iap = (unsigned char *) mac;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * 3) from flash or fuse (via platform data)
1654 	 */
1655 	if (!is_valid_ether_addr(iap)) {
1656 #ifdef CONFIG_M5272
1657 		if (FEC_FLASHMAC)
1658 			iap = (unsigned char *)FEC_FLASHMAC;
1659 #else
1660 		if (pdata)
1661 			iap = (unsigned char *)&pdata->mac;
1662 #endif
1663 	}
1664 
1665 	/*
1666 	 * 4) FEC mac registers set by bootloader
1667 	 */
1668 	if (!is_valid_ether_addr(iap)) {
1669 		*((__be32 *) &tmpaddr[0]) =
1670 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1671 		*((__be16 *) &tmpaddr[4]) =
1672 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1673 		iap = &tmpaddr[0];
1674 	}
1675 
1676 	/*
1677 	 * 5) random mac address
1678 	 */
1679 	if (!is_valid_ether_addr(iap)) {
1680 		/* Report it and use a random ethernet address instead */
1681 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1682 		eth_hw_addr_random(ndev);
1683 		netdev_info(ndev, "Using random MAC address: %pM\n",
1684 			    ndev->dev_addr);
1685 		return;
1686 	}
1687 
1688 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1689 
1690 	/* Adjust MAC if using macaddr */
1691 	if (iap == macaddr)
1692 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1693 }
1694 
1695 /* ------------------------------------------------------------------------- */
1696 
1697 /*
1698  * Phy section
1699  */
1700 static void fec_enet_adjust_link(struct net_device *ndev)
1701 {
1702 	struct fec_enet_private *fep = netdev_priv(ndev);
1703 	struct phy_device *phy_dev = fep->phy_dev;
1704 	int status_change = 0;
1705 
1706 	/* Prevent a state halted on mii error */
1707 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1708 		phy_dev->state = PHY_RESUMING;
1709 		return;
1710 	}
1711 
1712 	/*
1713 	 * If the netdev is down, or is going down, we're not interested
1714 	 * in link state events, so just mark our idea of the link as down
1715 	 * and ignore the event.
1716 	 */
1717 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1718 		fep->link = 0;
1719 	} else if (phy_dev->link) {
1720 		if (!fep->link) {
1721 			fep->link = phy_dev->link;
1722 			status_change = 1;
1723 		}
1724 
1725 		if (fep->full_duplex != phy_dev->duplex) {
1726 			fep->full_duplex = phy_dev->duplex;
1727 			status_change = 1;
1728 		}
1729 
1730 		if (phy_dev->speed != fep->speed) {
1731 			fep->speed = phy_dev->speed;
1732 			status_change = 1;
1733 		}
1734 
1735 		/* if any of the above changed restart the FEC */
1736 		if (status_change) {
1737 			napi_disable(&fep->napi);
1738 			netif_tx_lock_bh(ndev);
1739 			fec_restart(ndev);
1740 			netif_wake_queue(ndev);
1741 			netif_tx_unlock_bh(ndev);
1742 			napi_enable(&fep->napi);
1743 		}
1744 	} else {
1745 		if (fep->link) {
1746 			napi_disable(&fep->napi);
1747 			netif_tx_lock_bh(ndev);
1748 			fec_stop(ndev);
1749 			netif_tx_unlock_bh(ndev);
1750 			napi_enable(&fep->napi);
1751 			fep->link = phy_dev->link;
1752 			status_change = 1;
1753 		}
1754 	}
1755 
1756 	if (status_change)
1757 		phy_print_status(phy_dev);
1758 }
1759 
1760 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1761 {
1762 	struct fec_enet_private *fep = bus->priv;
1763 	unsigned long time_left;
1764 
1765 	fep->mii_timeout = 0;
1766 	init_completion(&fep->mdio_done);
1767 
1768 	/* start a read op */
1769 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1770 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1771 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1772 
1773 	/* wait for end of transfer */
1774 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1775 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1776 	if (time_left == 0) {
1777 		fep->mii_timeout = 1;
1778 		netdev_err(fep->netdev, "MDIO read timeout\n");
1779 		return -ETIMEDOUT;
1780 	}
1781 
1782 	/* return value */
1783 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1784 }
1785 
1786 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1787 			   u16 value)
1788 {
1789 	struct fec_enet_private *fep = bus->priv;
1790 	unsigned long time_left;
1791 
1792 	fep->mii_timeout = 0;
1793 	init_completion(&fep->mdio_done);
1794 
1795 	/* start a write op */
1796 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1797 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1798 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1799 		fep->hwp + FEC_MII_DATA);
1800 
1801 	/* wait for end of transfer */
1802 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1803 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1804 	if (time_left == 0) {
1805 		fep->mii_timeout = 1;
1806 		netdev_err(fep->netdev, "MDIO write timeout\n");
1807 		return -ETIMEDOUT;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1814 {
1815 	struct fec_enet_private *fep = netdev_priv(ndev);
1816 	int ret;
1817 
1818 	if (enable) {
1819 		ret = clk_prepare_enable(fep->clk_ahb);
1820 		if (ret)
1821 			return ret;
1822 		ret = clk_prepare_enable(fep->clk_ipg);
1823 		if (ret)
1824 			goto failed_clk_ipg;
1825 		if (fep->clk_enet_out) {
1826 			ret = clk_prepare_enable(fep->clk_enet_out);
1827 			if (ret)
1828 				goto failed_clk_enet_out;
1829 		}
1830 		if (fep->clk_ptp) {
1831 			mutex_lock(&fep->ptp_clk_mutex);
1832 			ret = clk_prepare_enable(fep->clk_ptp);
1833 			if (ret) {
1834 				mutex_unlock(&fep->ptp_clk_mutex);
1835 				goto failed_clk_ptp;
1836 			} else {
1837 				fep->ptp_clk_on = true;
1838 			}
1839 			mutex_unlock(&fep->ptp_clk_mutex);
1840 		}
1841 		if (fep->clk_ref) {
1842 			ret = clk_prepare_enable(fep->clk_ref);
1843 			if (ret)
1844 				goto failed_clk_ref;
1845 		}
1846 	} else {
1847 		clk_disable_unprepare(fep->clk_ahb);
1848 		clk_disable_unprepare(fep->clk_ipg);
1849 		if (fep->clk_enet_out)
1850 			clk_disable_unprepare(fep->clk_enet_out);
1851 		if (fep->clk_ptp) {
1852 			mutex_lock(&fep->ptp_clk_mutex);
1853 			clk_disable_unprepare(fep->clk_ptp);
1854 			fep->ptp_clk_on = false;
1855 			mutex_unlock(&fep->ptp_clk_mutex);
1856 		}
1857 		if (fep->clk_ref)
1858 			clk_disable_unprepare(fep->clk_ref);
1859 	}
1860 
1861 	return 0;
1862 
1863 failed_clk_ref:
1864 	if (fep->clk_ref)
1865 		clk_disable_unprepare(fep->clk_ref);
1866 failed_clk_ptp:
1867 	if (fep->clk_enet_out)
1868 		clk_disable_unprepare(fep->clk_enet_out);
1869 failed_clk_enet_out:
1870 		clk_disable_unprepare(fep->clk_ipg);
1871 failed_clk_ipg:
1872 		clk_disable_unprepare(fep->clk_ahb);
1873 
1874 	return ret;
1875 }
1876 
1877 static int fec_enet_mii_probe(struct net_device *ndev)
1878 {
1879 	struct fec_enet_private *fep = netdev_priv(ndev);
1880 	struct phy_device *phy_dev = NULL;
1881 	char mdio_bus_id[MII_BUS_ID_SIZE];
1882 	char phy_name[MII_BUS_ID_SIZE + 3];
1883 	int phy_id;
1884 	int dev_id = fep->dev_id;
1885 
1886 	fep->phy_dev = NULL;
1887 
1888 	if (fep->phy_node) {
1889 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1890 					 &fec_enet_adjust_link, 0,
1891 					 fep->phy_interface);
1892 		if (!phy_dev)
1893 			return -ENODEV;
1894 	} else {
1895 		/* check for attached phy */
1896 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1897 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1898 				continue;
1899 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1900 				continue;
1901 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1902 				continue;
1903 			if (dev_id--)
1904 				continue;
1905 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1906 			break;
1907 		}
1908 
1909 		if (phy_id >= PHY_MAX_ADDR) {
1910 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1911 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1912 			phy_id = 0;
1913 		}
1914 
1915 		snprintf(phy_name, sizeof(phy_name),
1916 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1917 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1918 				      fep->phy_interface);
1919 	}
1920 
1921 	if (IS_ERR(phy_dev)) {
1922 		netdev_err(ndev, "could not attach to PHY\n");
1923 		return PTR_ERR(phy_dev);
1924 	}
1925 
1926 	/* mask with MAC supported features */
1927 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1928 		phy_dev->supported &= PHY_GBIT_FEATURES;
1929 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1930 #if !defined(CONFIG_M5272)
1931 		phy_dev->supported |= SUPPORTED_Pause;
1932 #endif
1933 	}
1934 	else
1935 		phy_dev->supported &= PHY_BASIC_FEATURES;
1936 
1937 	phy_dev->advertising = phy_dev->supported;
1938 
1939 	fep->phy_dev = phy_dev;
1940 	fep->link = 0;
1941 	fep->full_duplex = 0;
1942 
1943 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1944 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1945 		    fep->phy_dev->irq);
1946 
1947 	return 0;
1948 }
1949 
1950 static int fec_enet_mii_init(struct platform_device *pdev)
1951 {
1952 	static struct mii_bus *fec0_mii_bus;
1953 	struct net_device *ndev = platform_get_drvdata(pdev);
1954 	struct fec_enet_private *fep = netdev_priv(ndev);
1955 	struct device_node *node;
1956 	int err = -ENXIO, i;
1957 
1958 	/*
1959 	 * The i.MX28 dual fec interfaces are not equal.
1960 	 * Here are the differences:
1961 	 *
1962 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1963 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1964 	 *  - external phys can only be configured by fec0
1965 	 *
1966 	 * That is to say fec1 can not work independently. It only works
1967 	 * when fec0 is working. The reason behind this design is that the
1968 	 * second interface is added primarily for Switch mode.
1969 	 *
1970 	 * Because of the last point above, both phys are attached on fec0
1971 	 * mdio interface in board design, and need to be configured by
1972 	 * fec0 mii_bus.
1973 	 */
1974 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1975 		/* fec1 uses fec0 mii_bus */
1976 		if (mii_cnt && fec0_mii_bus) {
1977 			fep->mii_bus = fec0_mii_bus;
1978 			mii_cnt++;
1979 			return 0;
1980 		}
1981 		return -ENOENT;
1982 	}
1983 
1984 	fep->mii_timeout = 0;
1985 
1986 	/*
1987 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1988 	 *
1989 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1990 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1991 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1992 	 * document.
1993 	 */
1994 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1995 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1996 		fep->phy_speed--;
1997 	fep->phy_speed <<= 1;
1998 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1999 
2000 	fep->mii_bus = mdiobus_alloc();
2001 	if (fep->mii_bus == NULL) {
2002 		err = -ENOMEM;
2003 		goto err_out;
2004 	}
2005 
2006 	fep->mii_bus->name = "fec_enet_mii_bus";
2007 	fep->mii_bus->read = fec_enet_mdio_read;
2008 	fep->mii_bus->write = fec_enet_mdio_write;
2009 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2010 		pdev->name, fep->dev_id + 1);
2011 	fep->mii_bus->priv = fep;
2012 	fep->mii_bus->parent = &pdev->dev;
2013 
2014 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2015 	if (!fep->mii_bus->irq) {
2016 		err = -ENOMEM;
2017 		goto err_out_free_mdiobus;
2018 	}
2019 
2020 	for (i = 0; i < PHY_MAX_ADDR; i++)
2021 		fep->mii_bus->irq[i] = PHY_POLL;
2022 
2023 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2024 	if (node) {
2025 		err = of_mdiobus_register(fep->mii_bus, node);
2026 		of_node_put(node);
2027 	} else {
2028 		err = mdiobus_register(fep->mii_bus);
2029 	}
2030 
2031 	if (err)
2032 		goto err_out_free_mdio_irq;
2033 
2034 	mii_cnt++;
2035 
2036 	/* save fec0 mii_bus */
2037 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2038 		fec0_mii_bus = fep->mii_bus;
2039 
2040 	return 0;
2041 
2042 err_out_free_mdio_irq:
2043 	kfree(fep->mii_bus->irq);
2044 err_out_free_mdiobus:
2045 	mdiobus_free(fep->mii_bus);
2046 err_out:
2047 	return err;
2048 }
2049 
2050 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2051 {
2052 	if (--mii_cnt == 0) {
2053 		mdiobus_unregister(fep->mii_bus);
2054 		kfree(fep->mii_bus->irq);
2055 		mdiobus_free(fep->mii_bus);
2056 	}
2057 }
2058 
2059 static int fec_enet_get_settings(struct net_device *ndev,
2060 				  struct ethtool_cmd *cmd)
2061 {
2062 	struct fec_enet_private *fep = netdev_priv(ndev);
2063 	struct phy_device *phydev = fep->phy_dev;
2064 
2065 	if (!phydev)
2066 		return -ENODEV;
2067 
2068 	return phy_ethtool_gset(phydev, cmd);
2069 }
2070 
2071 static int fec_enet_set_settings(struct net_device *ndev,
2072 				 struct ethtool_cmd *cmd)
2073 {
2074 	struct fec_enet_private *fep = netdev_priv(ndev);
2075 	struct phy_device *phydev = fep->phy_dev;
2076 
2077 	if (!phydev)
2078 		return -ENODEV;
2079 
2080 	return phy_ethtool_sset(phydev, cmd);
2081 }
2082 
2083 static void fec_enet_get_drvinfo(struct net_device *ndev,
2084 				 struct ethtool_drvinfo *info)
2085 {
2086 	struct fec_enet_private *fep = netdev_priv(ndev);
2087 
2088 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2089 		sizeof(info->driver));
2090 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2091 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2092 }
2093 
2094 static int fec_enet_get_ts_info(struct net_device *ndev,
2095 				struct ethtool_ts_info *info)
2096 {
2097 	struct fec_enet_private *fep = netdev_priv(ndev);
2098 
2099 	if (fep->bufdesc_ex) {
2100 
2101 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2102 					SOF_TIMESTAMPING_RX_SOFTWARE |
2103 					SOF_TIMESTAMPING_SOFTWARE |
2104 					SOF_TIMESTAMPING_TX_HARDWARE |
2105 					SOF_TIMESTAMPING_RX_HARDWARE |
2106 					SOF_TIMESTAMPING_RAW_HARDWARE;
2107 		if (fep->ptp_clock)
2108 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2109 		else
2110 			info->phc_index = -1;
2111 
2112 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2113 				 (1 << HWTSTAMP_TX_ON);
2114 
2115 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2116 				   (1 << HWTSTAMP_FILTER_ALL);
2117 		return 0;
2118 	} else {
2119 		return ethtool_op_get_ts_info(ndev, info);
2120 	}
2121 }
2122 
2123 #if !defined(CONFIG_M5272)
2124 
2125 static void fec_enet_get_pauseparam(struct net_device *ndev,
2126 				    struct ethtool_pauseparam *pause)
2127 {
2128 	struct fec_enet_private *fep = netdev_priv(ndev);
2129 
2130 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2131 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2132 	pause->rx_pause = pause->tx_pause;
2133 }
2134 
2135 static int fec_enet_set_pauseparam(struct net_device *ndev,
2136 				   struct ethtool_pauseparam *pause)
2137 {
2138 	struct fec_enet_private *fep = netdev_priv(ndev);
2139 
2140 	if (!fep->phy_dev)
2141 		return -ENODEV;
2142 
2143 	if (pause->tx_pause != pause->rx_pause) {
2144 		netdev_info(ndev,
2145 			"hardware only support enable/disable both tx and rx");
2146 		return -EINVAL;
2147 	}
2148 
2149 	fep->pause_flag = 0;
2150 
2151 	/* tx pause must be same as rx pause */
2152 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2153 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2154 
2155 	if (pause->rx_pause || pause->autoneg) {
2156 		fep->phy_dev->supported |= ADVERTISED_Pause;
2157 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2158 	} else {
2159 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2160 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2161 	}
2162 
2163 	if (pause->autoneg) {
2164 		if (netif_running(ndev))
2165 			fec_stop(ndev);
2166 		phy_start_aneg(fep->phy_dev);
2167 	}
2168 	if (netif_running(ndev)) {
2169 		napi_disable(&fep->napi);
2170 		netif_tx_lock_bh(ndev);
2171 		fec_restart(ndev);
2172 		netif_wake_queue(ndev);
2173 		netif_tx_unlock_bh(ndev);
2174 		napi_enable(&fep->napi);
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static const struct fec_stat {
2181 	char name[ETH_GSTRING_LEN];
2182 	u16 offset;
2183 } fec_stats[] = {
2184 	/* RMON TX */
2185 	{ "tx_dropped", RMON_T_DROP },
2186 	{ "tx_packets", RMON_T_PACKETS },
2187 	{ "tx_broadcast", RMON_T_BC_PKT },
2188 	{ "tx_multicast", RMON_T_MC_PKT },
2189 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2190 	{ "tx_undersize", RMON_T_UNDERSIZE },
2191 	{ "tx_oversize", RMON_T_OVERSIZE },
2192 	{ "tx_fragment", RMON_T_FRAG },
2193 	{ "tx_jabber", RMON_T_JAB },
2194 	{ "tx_collision", RMON_T_COL },
2195 	{ "tx_64byte", RMON_T_P64 },
2196 	{ "tx_65to127byte", RMON_T_P65TO127 },
2197 	{ "tx_128to255byte", RMON_T_P128TO255 },
2198 	{ "tx_256to511byte", RMON_T_P256TO511 },
2199 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2200 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2201 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2202 	{ "tx_octets", RMON_T_OCTETS },
2203 
2204 	/* IEEE TX */
2205 	{ "IEEE_tx_drop", IEEE_T_DROP },
2206 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2207 	{ "IEEE_tx_1col", IEEE_T_1COL },
2208 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2209 	{ "IEEE_tx_def", IEEE_T_DEF },
2210 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2211 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2212 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2213 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2214 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2215 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2216 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2217 
2218 	/* RMON RX */
2219 	{ "rx_packets", RMON_R_PACKETS },
2220 	{ "rx_broadcast", RMON_R_BC_PKT },
2221 	{ "rx_multicast", RMON_R_MC_PKT },
2222 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2223 	{ "rx_undersize", RMON_R_UNDERSIZE },
2224 	{ "rx_oversize", RMON_R_OVERSIZE },
2225 	{ "rx_fragment", RMON_R_FRAG },
2226 	{ "rx_jabber", RMON_R_JAB },
2227 	{ "rx_64byte", RMON_R_P64 },
2228 	{ "rx_65to127byte", RMON_R_P65TO127 },
2229 	{ "rx_128to255byte", RMON_R_P128TO255 },
2230 	{ "rx_256to511byte", RMON_R_P256TO511 },
2231 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2232 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2233 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2234 	{ "rx_octets", RMON_R_OCTETS },
2235 
2236 	/* IEEE RX */
2237 	{ "IEEE_rx_drop", IEEE_R_DROP },
2238 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2239 	{ "IEEE_rx_crc", IEEE_R_CRC },
2240 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2241 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2242 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2243 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2244 };
2245 
2246 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2247 	struct ethtool_stats *stats, u64 *data)
2248 {
2249 	struct fec_enet_private *fep = netdev_priv(dev);
2250 	int i;
2251 
2252 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2253 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2254 }
2255 
2256 static void fec_enet_get_strings(struct net_device *netdev,
2257 	u32 stringset, u8 *data)
2258 {
2259 	int i;
2260 	switch (stringset) {
2261 	case ETH_SS_STATS:
2262 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2263 			memcpy(data + i * ETH_GSTRING_LEN,
2264 				fec_stats[i].name, ETH_GSTRING_LEN);
2265 		break;
2266 	}
2267 }
2268 
2269 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2270 {
2271 	switch (sset) {
2272 	case ETH_SS_STATS:
2273 		return ARRAY_SIZE(fec_stats);
2274 	default:
2275 		return -EOPNOTSUPP;
2276 	}
2277 }
2278 #endif /* !defined(CONFIG_M5272) */
2279 
2280 static int fec_enet_nway_reset(struct net_device *dev)
2281 {
2282 	struct fec_enet_private *fep = netdev_priv(dev);
2283 	struct phy_device *phydev = fep->phy_dev;
2284 
2285 	if (!phydev)
2286 		return -ENODEV;
2287 
2288 	return genphy_restart_aneg(phydev);
2289 }
2290 
2291 /* ITR clock source is enet system clock (clk_ahb).
2292  * TCTT unit is cycle_ns * 64 cycle
2293  * So, the ICTT value = X us / (cycle_ns * 64)
2294  */
2295 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2296 {
2297 	struct fec_enet_private *fep = netdev_priv(ndev);
2298 
2299 	return us * (fep->itr_clk_rate / 64000) / 1000;
2300 }
2301 
2302 /* Set threshold for interrupt coalescing */
2303 static void fec_enet_itr_coal_set(struct net_device *ndev)
2304 {
2305 	struct fec_enet_private *fep = netdev_priv(ndev);
2306 	int rx_itr, tx_itr;
2307 
2308 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2309 		return;
2310 
2311 	/* Must be greater than zero to avoid unpredictable behavior */
2312 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2313 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2314 		return;
2315 
2316 	/* Select enet system clock as Interrupt Coalescing
2317 	 * timer Clock Source
2318 	 */
2319 	rx_itr = FEC_ITR_CLK_SEL;
2320 	tx_itr = FEC_ITR_CLK_SEL;
2321 
2322 	/* set ICFT and ICTT */
2323 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2324 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2325 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2326 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2327 
2328 	rx_itr |= FEC_ITR_EN;
2329 	tx_itr |= FEC_ITR_EN;
2330 
2331 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2332 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2333 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2334 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2335 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2336 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2337 }
2338 
2339 static int
2340 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2341 {
2342 	struct fec_enet_private *fep = netdev_priv(ndev);
2343 
2344 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2345 		return -EOPNOTSUPP;
2346 
2347 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2348 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2349 
2350 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2351 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2352 
2353 	return 0;
2354 }
2355 
2356 static int
2357 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2358 {
2359 	struct fec_enet_private *fep = netdev_priv(ndev);
2360 	unsigned int cycle;
2361 
2362 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2363 		return -EOPNOTSUPP;
2364 
2365 	if (ec->rx_max_coalesced_frames > 255) {
2366 		pr_err("Rx coalesced frames exceed hardware limiation");
2367 		return -EINVAL;
2368 	}
2369 
2370 	if (ec->tx_max_coalesced_frames > 255) {
2371 		pr_err("Tx coalesced frame exceed hardware limiation");
2372 		return -EINVAL;
2373 	}
2374 
2375 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2376 	if (cycle > 0xFFFF) {
2377 		pr_err("Rx coalesed usec exceeed hardware limiation");
2378 		return -EINVAL;
2379 	}
2380 
2381 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2382 	if (cycle > 0xFFFF) {
2383 		pr_err("Rx coalesed usec exceeed hardware limiation");
2384 		return -EINVAL;
2385 	}
2386 
2387 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2388 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2389 
2390 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2391 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2392 
2393 	fec_enet_itr_coal_set(ndev);
2394 
2395 	return 0;
2396 }
2397 
2398 static void fec_enet_itr_coal_init(struct net_device *ndev)
2399 {
2400 	struct ethtool_coalesce ec;
2401 
2402 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2403 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2404 
2405 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2406 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2407 
2408 	fec_enet_set_coalesce(ndev, &ec);
2409 }
2410 
2411 static int fec_enet_get_tunable(struct net_device *netdev,
2412 				const struct ethtool_tunable *tuna,
2413 				void *data)
2414 {
2415 	struct fec_enet_private *fep = netdev_priv(netdev);
2416 	int ret = 0;
2417 
2418 	switch (tuna->id) {
2419 	case ETHTOOL_RX_COPYBREAK:
2420 		*(u32 *)data = fep->rx_copybreak;
2421 		break;
2422 	default:
2423 		ret = -EINVAL;
2424 		break;
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 static int fec_enet_set_tunable(struct net_device *netdev,
2431 				const struct ethtool_tunable *tuna,
2432 				const void *data)
2433 {
2434 	struct fec_enet_private *fep = netdev_priv(netdev);
2435 	int ret = 0;
2436 
2437 	switch (tuna->id) {
2438 	case ETHTOOL_RX_COPYBREAK:
2439 		fep->rx_copybreak = *(u32 *)data;
2440 		break;
2441 	default:
2442 		ret = -EINVAL;
2443 		break;
2444 	}
2445 
2446 	return ret;
2447 }
2448 
2449 static void
2450 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2451 {
2452 	struct fec_enet_private *fep = netdev_priv(ndev);
2453 
2454 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2455 		wol->supported = WAKE_MAGIC;
2456 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2457 	} else {
2458 		wol->supported = wol->wolopts = 0;
2459 	}
2460 }
2461 
2462 static int
2463 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2464 {
2465 	struct fec_enet_private *fep = netdev_priv(ndev);
2466 
2467 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2468 		return -EINVAL;
2469 
2470 	if (wol->wolopts & ~WAKE_MAGIC)
2471 		return -EINVAL;
2472 
2473 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2474 	if (device_may_wakeup(&ndev->dev)) {
2475 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2476 		if (fep->irq[0] > 0)
2477 			enable_irq_wake(fep->irq[0]);
2478 	} else {
2479 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2480 		if (fep->irq[0] > 0)
2481 			disable_irq_wake(fep->irq[0]);
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 static const struct ethtool_ops fec_enet_ethtool_ops = {
2488 	.get_settings		= fec_enet_get_settings,
2489 	.set_settings		= fec_enet_set_settings,
2490 	.get_drvinfo		= fec_enet_get_drvinfo,
2491 	.nway_reset		= fec_enet_nway_reset,
2492 	.get_link		= ethtool_op_get_link,
2493 	.get_coalesce		= fec_enet_get_coalesce,
2494 	.set_coalesce		= fec_enet_set_coalesce,
2495 #ifndef CONFIG_M5272
2496 	.get_pauseparam		= fec_enet_get_pauseparam,
2497 	.set_pauseparam		= fec_enet_set_pauseparam,
2498 	.get_strings		= fec_enet_get_strings,
2499 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2500 	.get_sset_count		= fec_enet_get_sset_count,
2501 #endif
2502 	.get_ts_info		= fec_enet_get_ts_info,
2503 	.get_tunable		= fec_enet_get_tunable,
2504 	.set_tunable		= fec_enet_set_tunable,
2505 	.get_wol		= fec_enet_get_wol,
2506 	.set_wol		= fec_enet_set_wol,
2507 };
2508 
2509 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2510 {
2511 	struct fec_enet_private *fep = netdev_priv(ndev);
2512 	struct phy_device *phydev = fep->phy_dev;
2513 
2514 	if (!netif_running(ndev))
2515 		return -EINVAL;
2516 
2517 	if (!phydev)
2518 		return -ENODEV;
2519 
2520 	if (fep->bufdesc_ex) {
2521 		if (cmd == SIOCSHWTSTAMP)
2522 			return fec_ptp_set(ndev, rq);
2523 		if (cmd == SIOCGHWTSTAMP)
2524 			return fec_ptp_get(ndev, rq);
2525 	}
2526 
2527 	return phy_mii_ioctl(phydev, rq, cmd);
2528 }
2529 
2530 static void fec_enet_free_buffers(struct net_device *ndev)
2531 {
2532 	struct fec_enet_private *fep = netdev_priv(ndev);
2533 	unsigned int i;
2534 	struct sk_buff *skb;
2535 	struct bufdesc	*bdp;
2536 	struct fec_enet_priv_tx_q *txq;
2537 	struct fec_enet_priv_rx_q *rxq;
2538 	unsigned int q;
2539 
2540 	for (q = 0; q < fep->num_rx_queues; q++) {
2541 		rxq = fep->rx_queue[q];
2542 		bdp = rxq->rx_bd_base;
2543 		for (i = 0; i < rxq->rx_ring_size; i++) {
2544 			skb = rxq->rx_skbuff[i];
2545 			rxq->rx_skbuff[i] = NULL;
2546 			if (skb) {
2547 				dma_unmap_single(&fep->pdev->dev,
2548 						 bdp->cbd_bufaddr,
2549 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2550 						 DMA_FROM_DEVICE);
2551 				dev_kfree_skb(skb);
2552 			}
2553 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2554 		}
2555 	}
2556 
2557 	for (q = 0; q < fep->num_tx_queues; q++) {
2558 		txq = fep->tx_queue[q];
2559 		bdp = txq->tx_bd_base;
2560 		for (i = 0; i < txq->tx_ring_size; i++) {
2561 			kfree(txq->tx_bounce[i]);
2562 			txq->tx_bounce[i] = NULL;
2563 			skb = txq->tx_skbuff[i];
2564 			txq->tx_skbuff[i] = NULL;
2565 			dev_kfree_skb(skb);
2566 		}
2567 	}
2568 }
2569 
2570 static void fec_enet_free_queue(struct net_device *ndev)
2571 {
2572 	struct fec_enet_private *fep = netdev_priv(ndev);
2573 	int i;
2574 	struct fec_enet_priv_tx_q *txq;
2575 
2576 	for (i = 0; i < fep->num_tx_queues; i++)
2577 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2578 			txq = fep->tx_queue[i];
2579 			dma_free_coherent(NULL,
2580 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2581 					  txq->tso_hdrs,
2582 					  txq->tso_hdrs_dma);
2583 		}
2584 
2585 	for (i = 0; i < fep->num_rx_queues; i++)
2586 		kfree(fep->rx_queue[i]);
2587 	for (i = 0; i < fep->num_tx_queues; i++)
2588 		kfree(fep->tx_queue[i]);
2589 }
2590 
2591 static int fec_enet_alloc_queue(struct net_device *ndev)
2592 {
2593 	struct fec_enet_private *fep = netdev_priv(ndev);
2594 	int i;
2595 	int ret = 0;
2596 	struct fec_enet_priv_tx_q *txq;
2597 
2598 	for (i = 0; i < fep->num_tx_queues; i++) {
2599 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2600 		if (!txq) {
2601 			ret = -ENOMEM;
2602 			goto alloc_failed;
2603 		}
2604 
2605 		fep->tx_queue[i] = txq;
2606 		txq->tx_ring_size = TX_RING_SIZE;
2607 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2608 
2609 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2610 		txq->tx_wake_threshold =
2611 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2612 
2613 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2614 					txq->tx_ring_size * TSO_HEADER_SIZE,
2615 					&txq->tso_hdrs_dma,
2616 					GFP_KERNEL);
2617 		if (!txq->tso_hdrs) {
2618 			ret = -ENOMEM;
2619 			goto alloc_failed;
2620 		}
2621 	}
2622 
2623 	for (i = 0; i < fep->num_rx_queues; i++) {
2624 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2625 					   GFP_KERNEL);
2626 		if (!fep->rx_queue[i]) {
2627 			ret = -ENOMEM;
2628 			goto alloc_failed;
2629 		}
2630 
2631 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2632 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2633 	}
2634 	return ret;
2635 
2636 alloc_failed:
2637 	fec_enet_free_queue(ndev);
2638 	return ret;
2639 }
2640 
2641 static int
2642 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2643 {
2644 	struct fec_enet_private *fep = netdev_priv(ndev);
2645 	unsigned int i;
2646 	struct sk_buff *skb;
2647 	struct bufdesc	*bdp;
2648 	struct fec_enet_priv_rx_q *rxq;
2649 
2650 	rxq = fep->rx_queue[queue];
2651 	bdp = rxq->rx_bd_base;
2652 	for (i = 0; i < rxq->rx_ring_size; i++) {
2653 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2654 		if (!skb)
2655 			goto err_alloc;
2656 
2657 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2658 			dev_kfree_skb(skb);
2659 			goto err_alloc;
2660 		}
2661 
2662 		rxq->rx_skbuff[i] = skb;
2663 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2664 
2665 		if (fep->bufdesc_ex) {
2666 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2667 			ebdp->cbd_esc = BD_ENET_RX_INT;
2668 		}
2669 
2670 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2671 	}
2672 
2673 	/* Set the last buffer to wrap. */
2674 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2675 	bdp->cbd_sc |= BD_SC_WRAP;
2676 	return 0;
2677 
2678  err_alloc:
2679 	fec_enet_free_buffers(ndev);
2680 	return -ENOMEM;
2681 }
2682 
2683 static int
2684 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2685 {
2686 	struct fec_enet_private *fep = netdev_priv(ndev);
2687 	unsigned int i;
2688 	struct bufdesc  *bdp;
2689 	struct fec_enet_priv_tx_q *txq;
2690 
2691 	txq = fep->tx_queue[queue];
2692 	bdp = txq->tx_bd_base;
2693 	for (i = 0; i < txq->tx_ring_size; i++) {
2694 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2695 		if (!txq->tx_bounce[i])
2696 			goto err_alloc;
2697 
2698 		bdp->cbd_sc = 0;
2699 		bdp->cbd_bufaddr = 0;
2700 
2701 		if (fep->bufdesc_ex) {
2702 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2703 			ebdp->cbd_esc = BD_ENET_TX_INT;
2704 		}
2705 
2706 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2707 	}
2708 
2709 	/* Set the last buffer to wrap. */
2710 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2711 	bdp->cbd_sc |= BD_SC_WRAP;
2712 
2713 	return 0;
2714 
2715  err_alloc:
2716 	fec_enet_free_buffers(ndev);
2717 	return -ENOMEM;
2718 }
2719 
2720 static int fec_enet_alloc_buffers(struct net_device *ndev)
2721 {
2722 	struct fec_enet_private *fep = netdev_priv(ndev);
2723 	unsigned int i;
2724 
2725 	for (i = 0; i < fep->num_rx_queues; i++)
2726 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2727 			return -ENOMEM;
2728 
2729 	for (i = 0; i < fep->num_tx_queues; i++)
2730 		if (fec_enet_alloc_txq_buffers(ndev, i))
2731 			return -ENOMEM;
2732 	return 0;
2733 }
2734 
2735 static int
2736 fec_enet_open(struct net_device *ndev)
2737 {
2738 	struct fec_enet_private *fep = netdev_priv(ndev);
2739 	int ret;
2740 
2741 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2742 	ret = fec_enet_clk_enable(ndev, true);
2743 	if (ret)
2744 		return ret;
2745 
2746 	/* I should reset the ring buffers here, but I don't yet know
2747 	 * a simple way to do that.
2748 	 */
2749 
2750 	ret = fec_enet_alloc_buffers(ndev);
2751 	if (ret)
2752 		goto err_enet_alloc;
2753 
2754 	/* Probe and connect to PHY when open the interface */
2755 	ret = fec_enet_mii_probe(ndev);
2756 	if (ret)
2757 		goto err_enet_mii_probe;
2758 
2759 	fec_restart(ndev);
2760 	napi_enable(&fep->napi);
2761 	phy_start(fep->phy_dev);
2762 	netif_tx_start_all_queues(ndev);
2763 
2764 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2765 				 FEC_WOL_FLAG_ENABLE);
2766 
2767 	return 0;
2768 
2769 err_enet_mii_probe:
2770 	fec_enet_free_buffers(ndev);
2771 err_enet_alloc:
2772 	fec_enet_clk_enable(ndev, false);
2773 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2774 	return ret;
2775 }
2776 
2777 static int
2778 fec_enet_close(struct net_device *ndev)
2779 {
2780 	struct fec_enet_private *fep = netdev_priv(ndev);
2781 
2782 	phy_stop(fep->phy_dev);
2783 
2784 	if (netif_device_present(ndev)) {
2785 		napi_disable(&fep->napi);
2786 		netif_tx_disable(ndev);
2787 		fec_stop(ndev);
2788 	}
2789 
2790 	phy_disconnect(fep->phy_dev);
2791 	fep->phy_dev = NULL;
2792 
2793 	fec_enet_clk_enable(ndev, false);
2794 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2795 	fec_enet_free_buffers(ndev);
2796 
2797 	return 0;
2798 }
2799 
2800 /* Set or clear the multicast filter for this adaptor.
2801  * Skeleton taken from sunlance driver.
2802  * The CPM Ethernet implementation allows Multicast as well as individual
2803  * MAC address filtering.  Some of the drivers check to make sure it is
2804  * a group multicast address, and discard those that are not.  I guess I
2805  * will do the same for now, but just remove the test if you want
2806  * individual filtering as well (do the upper net layers want or support
2807  * this kind of feature?).
2808  */
2809 
2810 #define HASH_BITS	6		/* #bits in hash */
2811 #define CRC32_POLY	0xEDB88320
2812 
2813 static void set_multicast_list(struct net_device *ndev)
2814 {
2815 	struct fec_enet_private *fep = netdev_priv(ndev);
2816 	struct netdev_hw_addr *ha;
2817 	unsigned int i, bit, data, crc, tmp;
2818 	unsigned char hash;
2819 
2820 	if (ndev->flags & IFF_PROMISC) {
2821 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2822 		tmp |= 0x8;
2823 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2824 		return;
2825 	}
2826 
2827 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2828 	tmp &= ~0x8;
2829 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2830 
2831 	if (ndev->flags & IFF_ALLMULTI) {
2832 		/* Catch all multicast addresses, so set the
2833 		 * filter to all 1's
2834 		 */
2835 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2836 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2837 
2838 		return;
2839 	}
2840 
2841 	/* Clear filter and add the addresses in hash register
2842 	 */
2843 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2844 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2845 
2846 	netdev_for_each_mc_addr(ha, ndev) {
2847 		/* calculate crc32 value of mac address */
2848 		crc = 0xffffffff;
2849 
2850 		for (i = 0; i < ndev->addr_len; i++) {
2851 			data = ha->addr[i];
2852 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2853 				crc = (crc >> 1) ^
2854 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2855 			}
2856 		}
2857 
2858 		/* only upper 6 bits (HASH_BITS) are used
2859 		 * which point to specific bit in he hash registers
2860 		 */
2861 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2862 
2863 		if (hash > 31) {
2864 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2865 			tmp |= 1 << (hash - 32);
2866 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2867 		} else {
2868 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2869 			tmp |= 1 << hash;
2870 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2871 		}
2872 	}
2873 }
2874 
2875 /* Set a MAC change in hardware. */
2876 static int
2877 fec_set_mac_address(struct net_device *ndev, void *p)
2878 {
2879 	struct fec_enet_private *fep = netdev_priv(ndev);
2880 	struct sockaddr *addr = p;
2881 
2882 	if (addr) {
2883 		if (!is_valid_ether_addr(addr->sa_data))
2884 			return -EADDRNOTAVAIL;
2885 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2886 	}
2887 
2888 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2889 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2890 		fep->hwp + FEC_ADDR_LOW);
2891 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2892 		fep->hwp + FEC_ADDR_HIGH);
2893 	return 0;
2894 }
2895 
2896 #ifdef CONFIG_NET_POLL_CONTROLLER
2897 /**
2898  * fec_poll_controller - FEC Poll controller function
2899  * @dev: The FEC network adapter
2900  *
2901  * Polled functionality used by netconsole and others in non interrupt mode
2902  *
2903  */
2904 static void fec_poll_controller(struct net_device *dev)
2905 {
2906 	int i;
2907 	struct fec_enet_private *fep = netdev_priv(dev);
2908 
2909 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2910 		if (fep->irq[i] > 0) {
2911 			disable_irq(fep->irq[i]);
2912 			fec_enet_interrupt(fep->irq[i], dev);
2913 			enable_irq(fep->irq[i]);
2914 		}
2915 	}
2916 }
2917 #endif
2918 
2919 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2920 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2921 	netdev_features_t features)
2922 {
2923 	struct fec_enet_private *fep = netdev_priv(netdev);
2924 	netdev_features_t changed = features ^ netdev->features;
2925 
2926 	netdev->features = features;
2927 
2928 	/* Receive checksum has been changed */
2929 	if (changed & NETIF_F_RXCSUM) {
2930 		if (features & NETIF_F_RXCSUM)
2931 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2932 		else
2933 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2934 	}
2935 }
2936 
2937 static int fec_set_features(struct net_device *netdev,
2938 	netdev_features_t features)
2939 {
2940 	struct fec_enet_private *fep = netdev_priv(netdev);
2941 	netdev_features_t changed = features ^ netdev->features;
2942 
2943 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2944 		napi_disable(&fep->napi);
2945 		netif_tx_lock_bh(netdev);
2946 		fec_stop(netdev);
2947 		fec_enet_set_netdev_features(netdev, features);
2948 		fec_restart(netdev);
2949 		netif_tx_wake_all_queues(netdev);
2950 		netif_tx_unlock_bh(netdev);
2951 		napi_enable(&fep->napi);
2952 	} else {
2953 		fec_enet_set_netdev_features(netdev, features);
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static const struct net_device_ops fec_netdev_ops = {
2960 	.ndo_open		= fec_enet_open,
2961 	.ndo_stop		= fec_enet_close,
2962 	.ndo_start_xmit		= fec_enet_start_xmit,
2963 	.ndo_set_rx_mode	= set_multicast_list,
2964 	.ndo_change_mtu		= eth_change_mtu,
2965 	.ndo_validate_addr	= eth_validate_addr,
2966 	.ndo_tx_timeout		= fec_timeout,
2967 	.ndo_set_mac_address	= fec_set_mac_address,
2968 	.ndo_do_ioctl		= fec_enet_ioctl,
2969 #ifdef CONFIG_NET_POLL_CONTROLLER
2970 	.ndo_poll_controller	= fec_poll_controller,
2971 #endif
2972 	.ndo_set_features	= fec_set_features,
2973 };
2974 
2975  /*
2976   * XXX:  We need to clean up on failure exits here.
2977   *
2978   */
2979 static int fec_enet_init(struct net_device *ndev)
2980 {
2981 	struct fec_enet_private *fep = netdev_priv(ndev);
2982 	struct fec_enet_priv_tx_q *txq;
2983 	struct fec_enet_priv_rx_q *rxq;
2984 	struct bufdesc *cbd_base;
2985 	dma_addr_t bd_dma;
2986 	int bd_size;
2987 	unsigned int i;
2988 
2989 #if defined(CONFIG_ARM)
2990 	fep->rx_align = 0xf;
2991 	fep->tx_align = 0xf;
2992 #else
2993 	fep->rx_align = 0x3;
2994 	fep->tx_align = 0x3;
2995 #endif
2996 
2997 	fec_enet_alloc_queue(ndev);
2998 
2999 	if (fep->bufdesc_ex)
3000 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3001 	else
3002 		fep->bufdesc_size = sizeof(struct bufdesc);
3003 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3004 			fep->bufdesc_size;
3005 
3006 	/* Allocate memory for buffer descriptors. */
3007 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3008 				      GFP_KERNEL);
3009 	if (!cbd_base) {
3010 		return -ENOMEM;
3011 	}
3012 
3013 	memset(cbd_base, 0, bd_size);
3014 
3015 	/* Get the Ethernet address */
3016 	fec_get_mac(ndev);
3017 	/* make sure MAC we just acquired is programmed into the hw */
3018 	fec_set_mac_address(ndev, NULL);
3019 
3020 	/* Set receive and transmit descriptor base. */
3021 	for (i = 0; i < fep->num_rx_queues; i++) {
3022 		rxq = fep->rx_queue[i];
3023 		rxq->index = i;
3024 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3025 		rxq->bd_dma = bd_dma;
3026 		if (fep->bufdesc_ex) {
3027 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3028 			cbd_base = (struct bufdesc *)
3029 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3030 		} else {
3031 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3032 			cbd_base += rxq->rx_ring_size;
3033 		}
3034 	}
3035 
3036 	for (i = 0; i < fep->num_tx_queues; i++) {
3037 		txq = fep->tx_queue[i];
3038 		txq->index = i;
3039 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3040 		txq->bd_dma = bd_dma;
3041 		if (fep->bufdesc_ex) {
3042 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3043 			cbd_base = (struct bufdesc *)
3044 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3045 		} else {
3046 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3047 			cbd_base += txq->tx_ring_size;
3048 		}
3049 	}
3050 
3051 
3052 	/* The FEC Ethernet specific entries in the device structure */
3053 	ndev->watchdog_timeo = TX_TIMEOUT;
3054 	ndev->netdev_ops = &fec_netdev_ops;
3055 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3056 
3057 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3058 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3059 
3060 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3061 		/* enable hw VLAN support */
3062 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3063 
3064 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3065 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3066 
3067 		/* enable hw accelerator */
3068 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3069 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3070 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3071 	}
3072 
3073 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3074 		fep->tx_align = 0;
3075 		fep->rx_align = 0x3f;
3076 	}
3077 
3078 	ndev->hw_features = ndev->features;
3079 
3080 	fec_restart(ndev);
3081 
3082 	return 0;
3083 }
3084 
3085 #ifdef CONFIG_OF
3086 static void fec_reset_phy(struct platform_device *pdev)
3087 {
3088 	int err, phy_reset;
3089 	int msec = 1;
3090 	struct device_node *np = pdev->dev.of_node;
3091 
3092 	if (!np)
3093 		return;
3094 
3095 	of_property_read_u32(np, "phy-reset-duration", &msec);
3096 	/* A sane reset duration should not be longer than 1s */
3097 	if (msec > 1000)
3098 		msec = 1;
3099 
3100 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3101 	if (!gpio_is_valid(phy_reset))
3102 		return;
3103 
3104 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3105 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3106 	if (err) {
3107 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3108 		return;
3109 	}
3110 	msleep(msec);
3111 	gpio_set_value(phy_reset, 1);
3112 }
3113 #else /* CONFIG_OF */
3114 static void fec_reset_phy(struct platform_device *pdev)
3115 {
3116 	/*
3117 	 * In case of platform probe, the reset has been done
3118 	 * by machine code.
3119 	 */
3120 }
3121 #endif /* CONFIG_OF */
3122 
3123 static void
3124 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3125 {
3126 	struct device_node *np = pdev->dev.of_node;
3127 	int err;
3128 
3129 	*num_tx = *num_rx = 1;
3130 
3131 	if (!np || !of_device_is_available(np))
3132 		return;
3133 
3134 	/* parse the num of tx and rx queues */
3135 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3136 	if (err)
3137 		*num_tx = 1;
3138 
3139 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3140 	if (err)
3141 		*num_rx = 1;
3142 
3143 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3144 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3145 			 *num_tx);
3146 		*num_tx = 1;
3147 		return;
3148 	}
3149 
3150 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3151 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3152 			 *num_rx);
3153 		*num_rx = 1;
3154 		return;
3155 	}
3156 
3157 }
3158 
3159 static int
3160 fec_probe(struct platform_device *pdev)
3161 {
3162 	struct fec_enet_private *fep;
3163 	struct fec_platform_data *pdata;
3164 	struct net_device *ndev;
3165 	int i, irq, ret = 0;
3166 	struct resource *r;
3167 	const struct of_device_id *of_id;
3168 	static int dev_id;
3169 	struct device_node *np = pdev->dev.of_node, *phy_node;
3170 	int num_tx_qs;
3171 	int num_rx_qs;
3172 
3173 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3174 
3175 	/* Init network device */
3176 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3177 				  num_tx_qs, num_rx_qs);
3178 	if (!ndev)
3179 		return -ENOMEM;
3180 
3181 	SET_NETDEV_DEV(ndev, &pdev->dev);
3182 
3183 	/* setup board info structure */
3184 	fep = netdev_priv(ndev);
3185 
3186 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3187 	if (of_id)
3188 		pdev->id_entry = of_id->data;
3189 	fep->quirks = pdev->id_entry->driver_data;
3190 
3191 	fep->netdev = ndev;
3192 	fep->num_rx_queues = num_rx_qs;
3193 	fep->num_tx_queues = num_tx_qs;
3194 
3195 #if !defined(CONFIG_M5272)
3196 	/* default enable pause frame auto negotiation */
3197 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3198 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3199 #endif
3200 
3201 	/* Select default pin state */
3202 	pinctrl_pm_select_default_state(&pdev->dev);
3203 
3204 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3205 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3206 	if (IS_ERR(fep->hwp)) {
3207 		ret = PTR_ERR(fep->hwp);
3208 		goto failed_ioremap;
3209 	}
3210 
3211 	fep->pdev = pdev;
3212 	fep->dev_id = dev_id++;
3213 
3214 	platform_set_drvdata(pdev, ndev);
3215 
3216 	if (of_get_property(np, "fsl,magic-packet", NULL))
3217 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3218 
3219 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3220 	if (!phy_node && of_phy_is_fixed_link(np)) {
3221 		ret = of_phy_register_fixed_link(np);
3222 		if (ret < 0) {
3223 			dev_err(&pdev->dev,
3224 				"broken fixed-link specification\n");
3225 			goto failed_phy;
3226 		}
3227 		phy_node = of_node_get(np);
3228 	}
3229 	fep->phy_node = phy_node;
3230 
3231 	ret = of_get_phy_mode(pdev->dev.of_node);
3232 	if (ret < 0) {
3233 		pdata = dev_get_platdata(&pdev->dev);
3234 		if (pdata)
3235 			fep->phy_interface = pdata->phy;
3236 		else
3237 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3238 	} else {
3239 		fep->phy_interface = ret;
3240 	}
3241 
3242 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3243 	if (IS_ERR(fep->clk_ipg)) {
3244 		ret = PTR_ERR(fep->clk_ipg);
3245 		goto failed_clk;
3246 	}
3247 
3248 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3249 	if (IS_ERR(fep->clk_ahb)) {
3250 		ret = PTR_ERR(fep->clk_ahb);
3251 		goto failed_clk;
3252 	}
3253 
3254 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3255 
3256 	/* enet_out is optional, depends on board */
3257 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3258 	if (IS_ERR(fep->clk_enet_out))
3259 		fep->clk_enet_out = NULL;
3260 
3261 	fep->ptp_clk_on = false;
3262 	mutex_init(&fep->ptp_clk_mutex);
3263 
3264 	/* clk_ref is optional, depends on board */
3265 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3266 	if (IS_ERR(fep->clk_ref))
3267 		fep->clk_ref = NULL;
3268 
3269 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3270 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3271 	if (IS_ERR(fep->clk_ptp)) {
3272 		fep->clk_ptp = NULL;
3273 		fep->bufdesc_ex = false;
3274 	}
3275 
3276 	ret = fec_enet_clk_enable(ndev, true);
3277 	if (ret)
3278 		goto failed_clk;
3279 
3280 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3281 	if (!IS_ERR(fep->reg_phy)) {
3282 		ret = regulator_enable(fep->reg_phy);
3283 		if (ret) {
3284 			dev_err(&pdev->dev,
3285 				"Failed to enable phy regulator: %d\n", ret);
3286 			goto failed_regulator;
3287 		}
3288 	} else {
3289 		fep->reg_phy = NULL;
3290 	}
3291 
3292 	fec_reset_phy(pdev);
3293 
3294 	if (fep->bufdesc_ex)
3295 		fec_ptp_init(pdev);
3296 
3297 	ret = fec_enet_init(ndev);
3298 	if (ret)
3299 		goto failed_init;
3300 
3301 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3302 		irq = platform_get_irq(pdev, i);
3303 		if (irq < 0) {
3304 			if (i)
3305 				break;
3306 			ret = irq;
3307 			goto failed_irq;
3308 		}
3309 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3310 				       0, pdev->name, ndev);
3311 		if (ret)
3312 			goto failed_irq;
3313 
3314 		fep->irq[i] = irq;
3315 	}
3316 
3317 	init_completion(&fep->mdio_done);
3318 	ret = fec_enet_mii_init(pdev);
3319 	if (ret)
3320 		goto failed_mii_init;
3321 
3322 	/* Carrier starts down, phylib will bring it up */
3323 	netif_carrier_off(ndev);
3324 	fec_enet_clk_enable(ndev, false);
3325 	pinctrl_pm_select_sleep_state(&pdev->dev);
3326 
3327 	ret = register_netdev(ndev);
3328 	if (ret)
3329 		goto failed_register;
3330 
3331 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3332 			   FEC_WOL_HAS_MAGIC_PACKET);
3333 
3334 	if (fep->bufdesc_ex && fep->ptp_clock)
3335 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3336 
3337 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3338 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3339 	return 0;
3340 
3341 failed_register:
3342 	fec_enet_mii_remove(fep);
3343 failed_mii_init:
3344 failed_irq:
3345 failed_init:
3346 	if (fep->reg_phy)
3347 		regulator_disable(fep->reg_phy);
3348 failed_regulator:
3349 	fec_enet_clk_enable(ndev, false);
3350 failed_clk:
3351 failed_phy:
3352 	of_node_put(phy_node);
3353 failed_ioremap:
3354 	free_netdev(ndev);
3355 
3356 	return ret;
3357 }
3358 
3359 static int
3360 fec_drv_remove(struct platform_device *pdev)
3361 {
3362 	struct net_device *ndev = platform_get_drvdata(pdev);
3363 	struct fec_enet_private *fep = netdev_priv(ndev);
3364 
3365 	cancel_delayed_work_sync(&fep->time_keep);
3366 	cancel_work_sync(&fep->tx_timeout_work);
3367 	unregister_netdev(ndev);
3368 	fec_enet_mii_remove(fep);
3369 	if (fep->reg_phy)
3370 		regulator_disable(fep->reg_phy);
3371 	if (fep->ptp_clock)
3372 		ptp_clock_unregister(fep->ptp_clock);
3373 	of_node_put(fep->phy_node);
3374 	free_netdev(ndev);
3375 
3376 	return 0;
3377 }
3378 
3379 static int __maybe_unused fec_suspend(struct device *dev)
3380 {
3381 	struct net_device *ndev = dev_get_drvdata(dev);
3382 	struct fec_enet_private *fep = netdev_priv(ndev);
3383 
3384 	rtnl_lock();
3385 	if (netif_running(ndev)) {
3386 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3387 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3388 		phy_stop(fep->phy_dev);
3389 		napi_disable(&fep->napi);
3390 		netif_tx_lock_bh(ndev);
3391 		netif_device_detach(ndev);
3392 		netif_tx_unlock_bh(ndev);
3393 		fec_stop(ndev);
3394 		fec_enet_clk_enable(ndev, false);
3395 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3396 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3397 	}
3398 	rtnl_unlock();
3399 
3400 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3401 		regulator_disable(fep->reg_phy);
3402 
3403 	/* SOC supply clock to phy, when clock is disabled, phy link down
3404 	 * SOC control phy regulator, when regulator is disabled, phy link down
3405 	 */
3406 	if (fep->clk_enet_out || fep->reg_phy)
3407 		fep->link = 0;
3408 
3409 	return 0;
3410 }
3411 
3412 static int __maybe_unused fec_resume(struct device *dev)
3413 {
3414 	struct net_device *ndev = dev_get_drvdata(dev);
3415 	struct fec_enet_private *fep = netdev_priv(ndev);
3416 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3417 	int ret;
3418 	int val;
3419 
3420 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3421 		ret = regulator_enable(fep->reg_phy);
3422 		if (ret)
3423 			return ret;
3424 	}
3425 
3426 	rtnl_lock();
3427 	if (netif_running(ndev)) {
3428 		ret = fec_enet_clk_enable(ndev, true);
3429 		if (ret) {
3430 			rtnl_unlock();
3431 			goto failed_clk;
3432 		}
3433 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3434 			if (pdata && pdata->sleep_mode_enable)
3435 				pdata->sleep_mode_enable(false);
3436 			val = readl(fep->hwp + FEC_ECNTRL);
3437 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3438 			writel(val, fep->hwp + FEC_ECNTRL);
3439 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3440 		} else {
3441 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3442 		}
3443 		fec_restart(ndev);
3444 		netif_tx_lock_bh(ndev);
3445 		netif_device_attach(ndev);
3446 		netif_tx_unlock_bh(ndev);
3447 		napi_enable(&fep->napi);
3448 		phy_start(fep->phy_dev);
3449 	}
3450 	rtnl_unlock();
3451 
3452 	return 0;
3453 
3454 failed_clk:
3455 	if (fep->reg_phy)
3456 		regulator_disable(fep->reg_phy);
3457 	return ret;
3458 }
3459 
3460 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3461 
3462 static struct platform_driver fec_driver = {
3463 	.driver	= {
3464 		.name	= DRIVER_NAME,
3465 		.pm	= &fec_pm_ops,
3466 		.of_match_table = fec_dt_ids,
3467 	},
3468 	.id_table = fec_devtype,
3469 	.probe	= fec_probe,
3470 	.remove	= fec_drv_remove,
3471 };
3472 
3473 module_platform_driver(fec_driver);
3474 
3475 MODULE_ALIAS("platform:"DRIVER_NAME);
3476 MODULE_LICENSE("GPL");
3477