1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 /* Pause frame feild and FIFO threshold */
79 #define FEC_ENET_FCE	(1 << 5)
80 #define FEC_ENET_RSEM_V	0x84
81 #define FEC_ENET_RSFL_V	16
82 #define FEC_ENET_RAEM_V	0x8
83 #define FEC_ENET_RAFL_V	0x8
84 #define FEC_ENET_OPD_V	0xFFF0
85 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
86 
87 struct fec_devinfo {
88 	u32 quirks;
89 };
90 
91 static const struct fec_devinfo fec_imx25_info = {
92 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
93 		  FEC_QUIRK_HAS_FRREG,
94 };
95 
96 static const struct fec_devinfo fec_imx27_info = {
97 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx28_info = {
101 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
102 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
103 		  FEC_QUIRK_HAS_FRREG,
104 };
105 
106 static const struct fec_devinfo fec_imx6q_info = {
107 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
108 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
109 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
110 		  FEC_QUIRK_HAS_RACC,
111 };
112 
113 static const struct fec_devinfo fec_mvf600_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
115 };
116 
117 static const struct fec_devinfo fec_imx6x_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
121 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
123 };
124 
125 static const struct fec_devinfo fec_imx6ul_info = {
126 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
127 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
128 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
129 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_COALESCE,
131 };
132 
133 static struct platform_device_id fec_devtype[] = {
134 	{
135 		/* keep it for coldfire */
136 		.name = DRIVER_NAME,
137 		.driver_data = 0,
138 	}, {
139 		.name = "imx25-fec",
140 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
141 	}, {
142 		.name = "imx27-fec",
143 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
144 	}, {
145 		.name = "imx28-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
147 	}, {
148 		.name = "imx6q-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
150 	}, {
151 		.name = "mvf600-fec",
152 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
153 	}, {
154 		.name = "imx6sx-fec",
155 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
156 	}, {
157 		.name = "imx6ul-fec",
158 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
159 	}, {
160 		/* sentinel */
161 	}
162 };
163 MODULE_DEVICE_TABLE(platform, fec_devtype);
164 
165 enum imx_fec_type {
166 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
167 	IMX27_FEC,	/* runs on i.mx27/35/51 */
168 	IMX28_FEC,
169 	IMX6Q_FEC,
170 	MVF600_FEC,
171 	IMX6SX_FEC,
172 	IMX6UL_FEC,
173 };
174 
175 static const struct of_device_id fec_dt_ids[] = {
176 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
177 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
178 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
179 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
180 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
181 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
182 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
183 	{ /* sentinel */ }
184 };
185 MODULE_DEVICE_TABLE(of, fec_dt_ids);
186 
187 static unsigned char macaddr[ETH_ALEN];
188 module_param_array(macaddr, byte, NULL, 0);
189 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
190 
191 #if defined(CONFIG_M5272)
192 /*
193  * Some hardware gets it MAC address out of local flash memory.
194  * if this is non-zero then assume it is the address to get MAC from.
195  */
196 #if defined(CONFIG_NETtel)
197 #define	FEC_FLASHMAC	0xf0006006
198 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
199 #define	FEC_FLASHMAC	0xf0006000
200 #elif defined(CONFIG_CANCam)
201 #define	FEC_FLASHMAC	0xf0020000
202 #elif defined (CONFIG_M5272C3)
203 #define	FEC_FLASHMAC	(0xffe04000 + 4)
204 #elif defined(CONFIG_MOD5272)
205 #define FEC_FLASHMAC	0xffc0406b
206 #else
207 #define	FEC_FLASHMAC	0
208 #endif
209 #endif /* CONFIG_M5272 */
210 
211 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
212  *
213  * 2048 byte skbufs are allocated. However, alignment requirements
214  * varies between FEC variants. Worst case is 64, so round down by 64.
215  */
216 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
217 #define PKT_MINBUF_SIZE		64
218 
219 /* FEC receive acceleration */
220 #define FEC_RACC_IPDIS		(1 << 1)
221 #define FEC_RACC_PRODIS		(1 << 2)
222 #define FEC_RACC_SHIFT16	BIT(7)
223 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
224 
225 /* MIB Control Register */
226 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
227 
228 /*
229  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
230  * size bits. Other FEC hardware does not, so we need to take that into
231  * account when setting it.
232  */
233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
234     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
235     defined(CONFIG_ARM64)
236 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
237 #else
238 #define	OPT_FRAME_SIZE	0
239 #endif
240 
241 /* FEC MII MMFR bits definition */
242 #define FEC_MMFR_ST		(1 << 30)
243 #define FEC_MMFR_ST_C45		(0)
244 #define FEC_MMFR_OP_READ	(2 << 28)
245 #define FEC_MMFR_OP_READ_C45	(3 << 28)
246 #define FEC_MMFR_OP_WRITE	(1 << 28)
247 #define FEC_MMFR_OP_ADDR_WRITE	(0)
248 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
249 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
250 #define FEC_MMFR_TA		(2 << 16)
251 #define FEC_MMFR_DATA(v)	(v & 0xffff)
252 /* FEC ECR bits definition */
253 #define FEC_ECR_MAGICEN		(1 << 2)
254 #define FEC_ECR_SLEEP		(1 << 3)
255 
256 #define FEC_MII_TIMEOUT		30000 /* us */
257 
258 /* Transmitter timeout */
259 #define TX_TIMEOUT (2 * HZ)
260 
261 #define FEC_PAUSE_FLAG_AUTONEG	0x1
262 #define FEC_PAUSE_FLAG_ENABLE	0x2
263 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
264 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
265 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
266 
267 #define COPYBREAK_DEFAULT	256
268 
269 /* Max number of allowed TCP segments for software TSO */
270 #define FEC_MAX_TSO_SEGS	100
271 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
272 
273 #define IS_TSO_HEADER(txq, addr) \
274 	((addr >= txq->tso_hdrs_dma) && \
275 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
276 
277 static int mii_cnt;
278 
279 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
280 					     struct bufdesc_prop *bd)
281 {
282 	return (bdp >= bd->last) ? bd->base
283 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
284 }
285 
286 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
287 					     struct bufdesc_prop *bd)
288 {
289 	return (bdp <= bd->base) ? bd->last
290 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
291 }
292 
293 static int fec_enet_get_bd_index(struct bufdesc *bdp,
294 				 struct bufdesc_prop *bd)
295 {
296 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
297 }
298 
299 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
300 {
301 	int entries;
302 
303 	entries = (((const char *)txq->dirty_tx -
304 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
305 
306 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
307 }
308 
309 static void swap_buffer(void *bufaddr, int len)
310 {
311 	int i;
312 	unsigned int *buf = bufaddr;
313 
314 	for (i = 0; i < len; i += 4, buf++)
315 		swab32s(buf);
316 }
317 
318 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
319 {
320 	int i;
321 	unsigned int *src = src_buf;
322 	unsigned int *dst = dst_buf;
323 
324 	for (i = 0; i < len; i += 4, src++, dst++)
325 		*dst = swab32p(src);
326 }
327 
328 static void fec_dump(struct net_device *ndev)
329 {
330 	struct fec_enet_private *fep = netdev_priv(ndev);
331 	struct bufdesc *bdp;
332 	struct fec_enet_priv_tx_q *txq;
333 	int index = 0;
334 
335 	netdev_info(ndev, "TX ring dump\n");
336 	pr_info("Nr     SC     addr       len  SKB\n");
337 
338 	txq = fep->tx_queue[0];
339 	bdp = txq->bd.base;
340 
341 	do {
342 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
343 			index,
344 			bdp == txq->bd.cur ? 'S' : ' ',
345 			bdp == txq->dirty_tx ? 'H' : ' ',
346 			fec16_to_cpu(bdp->cbd_sc),
347 			fec32_to_cpu(bdp->cbd_bufaddr),
348 			fec16_to_cpu(bdp->cbd_datlen),
349 			txq->tx_skbuff[index]);
350 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
351 		index++;
352 	} while (bdp != txq->bd.base);
353 }
354 
355 static inline bool is_ipv4_pkt(struct sk_buff *skb)
356 {
357 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
358 }
359 
360 static int
361 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
362 {
363 	/* Only run for packets requiring a checksum. */
364 	if (skb->ip_summed != CHECKSUM_PARTIAL)
365 		return 0;
366 
367 	if (unlikely(skb_cow_head(skb, 0)))
368 		return -1;
369 
370 	if (is_ipv4_pkt(skb))
371 		ip_hdr(skb)->check = 0;
372 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
373 
374 	return 0;
375 }
376 
377 static struct bufdesc *
378 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
379 			     struct sk_buff *skb,
380 			     struct net_device *ndev)
381 {
382 	struct fec_enet_private *fep = netdev_priv(ndev);
383 	struct bufdesc *bdp = txq->bd.cur;
384 	struct bufdesc_ex *ebdp;
385 	int nr_frags = skb_shinfo(skb)->nr_frags;
386 	int frag, frag_len;
387 	unsigned short status;
388 	unsigned int estatus = 0;
389 	skb_frag_t *this_frag;
390 	unsigned int index;
391 	void *bufaddr;
392 	dma_addr_t addr;
393 	int i;
394 
395 	for (frag = 0; frag < nr_frags; frag++) {
396 		this_frag = &skb_shinfo(skb)->frags[frag];
397 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
398 		ebdp = (struct bufdesc_ex *)bdp;
399 
400 		status = fec16_to_cpu(bdp->cbd_sc);
401 		status &= ~BD_ENET_TX_STATS;
402 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
403 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
404 
405 		/* Handle the last BD specially */
406 		if (frag == nr_frags - 1) {
407 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
408 			if (fep->bufdesc_ex) {
409 				estatus |= BD_ENET_TX_INT;
410 				if (unlikely(skb_shinfo(skb)->tx_flags &
411 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
412 					estatus |= BD_ENET_TX_TS;
413 			}
414 		}
415 
416 		if (fep->bufdesc_ex) {
417 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
418 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
419 			if (skb->ip_summed == CHECKSUM_PARTIAL)
420 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
421 			ebdp->cbd_bdu = 0;
422 			ebdp->cbd_esc = cpu_to_fec32(estatus);
423 		}
424 
425 		bufaddr = skb_frag_address(this_frag);
426 
427 		index = fec_enet_get_bd_index(bdp, &txq->bd);
428 		if (((unsigned long) bufaddr) & fep->tx_align ||
429 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
430 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
431 			bufaddr = txq->tx_bounce[index];
432 
433 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
434 				swap_buffer(bufaddr, frag_len);
435 		}
436 
437 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
438 				      DMA_TO_DEVICE);
439 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
440 			if (net_ratelimit())
441 				netdev_err(ndev, "Tx DMA memory map failed\n");
442 			goto dma_mapping_error;
443 		}
444 
445 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
446 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
447 		/* Make sure the updates to rest of the descriptor are
448 		 * performed before transferring ownership.
449 		 */
450 		wmb();
451 		bdp->cbd_sc = cpu_to_fec16(status);
452 	}
453 
454 	return bdp;
455 dma_mapping_error:
456 	bdp = txq->bd.cur;
457 	for (i = 0; i < frag; i++) {
458 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
459 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
460 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
461 	}
462 	return ERR_PTR(-ENOMEM);
463 }
464 
465 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
466 				   struct sk_buff *skb, struct net_device *ndev)
467 {
468 	struct fec_enet_private *fep = netdev_priv(ndev);
469 	int nr_frags = skb_shinfo(skb)->nr_frags;
470 	struct bufdesc *bdp, *last_bdp;
471 	void *bufaddr;
472 	dma_addr_t addr;
473 	unsigned short status;
474 	unsigned short buflen;
475 	unsigned int estatus = 0;
476 	unsigned int index;
477 	int entries_free;
478 
479 	entries_free = fec_enet_get_free_txdesc_num(txq);
480 	if (entries_free < MAX_SKB_FRAGS + 1) {
481 		dev_kfree_skb_any(skb);
482 		if (net_ratelimit())
483 			netdev_err(ndev, "NOT enough BD for SG!\n");
484 		return NETDEV_TX_OK;
485 	}
486 
487 	/* Protocol checksum off-load for TCP and UDP. */
488 	if (fec_enet_clear_csum(skb, ndev)) {
489 		dev_kfree_skb_any(skb);
490 		return NETDEV_TX_OK;
491 	}
492 
493 	/* Fill in a Tx ring entry */
494 	bdp = txq->bd.cur;
495 	last_bdp = bdp;
496 	status = fec16_to_cpu(bdp->cbd_sc);
497 	status &= ~BD_ENET_TX_STATS;
498 
499 	/* Set buffer length and buffer pointer */
500 	bufaddr = skb->data;
501 	buflen = skb_headlen(skb);
502 
503 	index = fec_enet_get_bd_index(bdp, &txq->bd);
504 	if (((unsigned long) bufaddr) & fep->tx_align ||
505 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
506 		memcpy(txq->tx_bounce[index], skb->data, buflen);
507 		bufaddr = txq->tx_bounce[index];
508 
509 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
510 			swap_buffer(bufaddr, buflen);
511 	}
512 
513 	/* Push the data cache so the CPM does not get stale memory data. */
514 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
515 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
516 		dev_kfree_skb_any(skb);
517 		if (net_ratelimit())
518 			netdev_err(ndev, "Tx DMA memory map failed\n");
519 		return NETDEV_TX_OK;
520 	}
521 
522 	if (nr_frags) {
523 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
524 		if (IS_ERR(last_bdp)) {
525 			dma_unmap_single(&fep->pdev->dev, addr,
526 					 buflen, DMA_TO_DEVICE);
527 			dev_kfree_skb_any(skb);
528 			return NETDEV_TX_OK;
529 		}
530 	} else {
531 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
532 		if (fep->bufdesc_ex) {
533 			estatus = BD_ENET_TX_INT;
534 			if (unlikely(skb_shinfo(skb)->tx_flags &
535 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
536 				estatus |= BD_ENET_TX_TS;
537 		}
538 	}
539 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
540 	bdp->cbd_datlen = cpu_to_fec16(buflen);
541 
542 	if (fep->bufdesc_ex) {
543 
544 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
545 
546 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
547 			fep->hwts_tx_en))
548 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
549 
550 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
551 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
552 
553 		if (skb->ip_summed == CHECKSUM_PARTIAL)
554 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
555 
556 		ebdp->cbd_bdu = 0;
557 		ebdp->cbd_esc = cpu_to_fec32(estatus);
558 	}
559 
560 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
561 	/* Save skb pointer */
562 	txq->tx_skbuff[index] = skb;
563 
564 	/* Make sure the updates to rest of the descriptor are performed before
565 	 * transferring ownership.
566 	 */
567 	wmb();
568 
569 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
570 	 * it's the last BD of the frame, and to put the CRC on the end.
571 	 */
572 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
573 	bdp->cbd_sc = cpu_to_fec16(status);
574 
575 	/* If this was the last BD in the ring, start at the beginning again. */
576 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
577 
578 	skb_tx_timestamp(skb);
579 
580 	/* Make sure the update to bdp and tx_skbuff are performed before
581 	 * txq->bd.cur.
582 	 */
583 	wmb();
584 	txq->bd.cur = bdp;
585 
586 	/* Trigger transmission start */
587 	writel(0, txq->bd.reg_desc_active);
588 
589 	return 0;
590 }
591 
592 static int
593 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
594 			  struct net_device *ndev,
595 			  struct bufdesc *bdp, int index, char *data,
596 			  int size, bool last_tcp, bool is_last)
597 {
598 	struct fec_enet_private *fep = netdev_priv(ndev);
599 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
600 	unsigned short status;
601 	unsigned int estatus = 0;
602 	dma_addr_t addr;
603 
604 	status = fec16_to_cpu(bdp->cbd_sc);
605 	status &= ~BD_ENET_TX_STATS;
606 
607 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
608 
609 	if (((unsigned long) data) & fep->tx_align ||
610 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
611 		memcpy(txq->tx_bounce[index], data, size);
612 		data = txq->tx_bounce[index];
613 
614 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
615 			swap_buffer(data, size);
616 	}
617 
618 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
619 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
620 		dev_kfree_skb_any(skb);
621 		if (net_ratelimit())
622 			netdev_err(ndev, "Tx DMA memory map failed\n");
623 		return NETDEV_TX_BUSY;
624 	}
625 
626 	bdp->cbd_datlen = cpu_to_fec16(size);
627 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
628 
629 	if (fep->bufdesc_ex) {
630 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
631 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
632 		if (skb->ip_summed == CHECKSUM_PARTIAL)
633 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
634 		ebdp->cbd_bdu = 0;
635 		ebdp->cbd_esc = cpu_to_fec32(estatus);
636 	}
637 
638 	/* Handle the last BD specially */
639 	if (last_tcp)
640 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
641 	if (is_last) {
642 		status |= BD_ENET_TX_INTR;
643 		if (fep->bufdesc_ex)
644 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
645 	}
646 
647 	bdp->cbd_sc = cpu_to_fec16(status);
648 
649 	return 0;
650 }
651 
652 static int
653 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
654 			 struct sk_buff *skb, struct net_device *ndev,
655 			 struct bufdesc *bdp, int index)
656 {
657 	struct fec_enet_private *fep = netdev_priv(ndev);
658 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
659 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
660 	void *bufaddr;
661 	unsigned long dmabuf;
662 	unsigned short status;
663 	unsigned int estatus = 0;
664 
665 	status = fec16_to_cpu(bdp->cbd_sc);
666 	status &= ~BD_ENET_TX_STATS;
667 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
668 
669 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
670 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
671 	if (((unsigned long)bufaddr) & fep->tx_align ||
672 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
673 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
674 		bufaddr = txq->tx_bounce[index];
675 
676 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
677 			swap_buffer(bufaddr, hdr_len);
678 
679 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
680 					hdr_len, DMA_TO_DEVICE);
681 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
682 			dev_kfree_skb_any(skb);
683 			if (net_ratelimit())
684 				netdev_err(ndev, "Tx DMA memory map failed\n");
685 			return NETDEV_TX_BUSY;
686 		}
687 	}
688 
689 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
690 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
691 
692 	if (fep->bufdesc_ex) {
693 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
694 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
695 		if (skb->ip_summed == CHECKSUM_PARTIAL)
696 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
697 		ebdp->cbd_bdu = 0;
698 		ebdp->cbd_esc = cpu_to_fec32(estatus);
699 	}
700 
701 	bdp->cbd_sc = cpu_to_fec16(status);
702 
703 	return 0;
704 }
705 
706 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
707 				   struct sk_buff *skb,
708 				   struct net_device *ndev)
709 {
710 	struct fec_enet_private *fep = netdev_priv(ndev);
711 	int hdr_len, total_len, data_left;
712 	struct bufdesc *bdp = txq->bd.cur;
713 	struct tso_t tso;
714 	unsigned int index = 0;
715 	int ret;
716 
717 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
718 		dev_kfree_skb_any(skb);
719 		if (net_ratelimit())
720 			netdev_err(ndev, "NOT enough BD for TSO!\n");
721 		return NETDEV_TX_OK;
722 	}
723 
724 	/* Protocol checksum off-load for TCP and UDP. */
725 	if (fec_enet_clear_csum(skb, ndev)) {
726 		dev_kfree_skb_any(skb);
727 		return NETDEV_TX_OK;
728 	}
729 
730 	/* Initialize the TSO handler, and prepare the first payload */
731 	hdr_len = tso_start(skb, &tso);
732 
733 	total_len = skb->len - hdr_len;
734 	while (total_len > 0) {
735 		char *hdr;
736 
737 		index = fec_enet_get_bd_index(bdp, &txq->bd);
738 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
739 		total_len -= data_left;
740 
741 		/* prepare packet headers: MAC + IP + TCP */
742 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
743 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
744 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
745 		if (ret)
746 			goto err_release;
747 
748 		while (data_left > 0) {
749 			int size;
750 
751 			size = min_t(int, tso.size, data_left);
752 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
753 			index = fec_enet_get_bd_index(bdp, &txq->bd);
754 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
755 							bdp, index,
756 							tso.data, size,
757 							size == data_left,
758 							total_len == 0);
759 			if (ret)
760 				goto err_release;
761 
762 			data_left -= size;
763 			tso_build_data(skb, &tso, size);
764 		}
765 
766 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
767 	}
768 
769 	/* Save skb pointer */
770 	txq->tx_skbuff[index] = skb;
771 
772 	skb_tx_timestamp(skb);
773 	txq->bd.cur = bdp;
774 
775 	/* Trigger transmission start */
776 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
777 	    !readl(txq->bd.reg_desc_active) ||
778 	    !readl(txq->bd.reg_desc_active) ||
779 	    !readl(txq->bd.reg_desc_active) ||
780 	    !readl(txq->bd.reg_desc_active))
781 		writel(0, txq->bd.reg_desc_active);
782 
783 	return 0;
784 
785 err_release:
786 	/* TODO: Release all used data descriptors for TSO */
787 	return ret;
788 }
789 
790 static netdev_tx_t
791 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
792 {
793 	struct fec_enet_private *fep = netdev_priv(ndev);
794 	int entries_free;
795 	unsigned short queue;
796 	struct fec_enet_priv_tx_q *txq;
797 	struct netdev_queue *nq;
798 	int ret;
799 
800 	queue = skb_get_queue_mapping(skb);
801 	txq = fep->tx_queue[queue];
802 	nq = netdev_get_tx_queue(ndev, queue);
803 
804 	if (skb_is_gso(skb))
805 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
806 	else
807 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
808 	if (ret)
809 		return ret;
810 
811 	entries_free = fec_enet_get_free_txdesc_num(txq);
812 	if (entries_free <= txq->tx_stop_threshold)
813 		netif_tx_stop_queue(nq);
814 
815 	return NETDEV_TX_OK;
816 }
817 
818 /* Init RX & TX buffer descriptors
819  */
820 static void fec_enet_bd_init(struct net_device *dev)
821 {
822 	struct fec_enet_private *fep = netdev_priv(dev);
823 	struct fec_enet_priv_tx_q *txq;
824 	struct fec_enet_priv_rx_q *rxq;
825 	struct bufdesc *bdp;
826 	unsigned int i;
827 	unsigned int q;
828 
829 	for (q = 0; q < fep->num_rx_queues; q++) {
830 		/* Initialize the receive buffer descriptors. */
831 		rxq = fep->rx_queue[q];
832 		bdp = rxq->bd.base;
833 
834 		for (i = 0; i < rxq->bd.ring_size; i++) {
835 
836 			/* Initialize the BD for every fragment in the page. */
837 			if (bdp->cbd_bufaddr)
838 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
839 			else
840 				bdp->cbd_sc = cpu_to_fec16(0);
841 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
842 		}
843 
844 		/* Set the last buffer to wrap */
845 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
846 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
847 
848 		rxq->bd.cur = rxq->bd.base;
849 	}
850 
851 	for (q = 0; q < fep->num_tx_queues; q++) {
852 		/* ...and the same for transmit */
853 		txq = fep->tx_queue[q];
854 		bdp = txq->bd.base;
855 		txq->bd.cur = bdp;
856 
857 		for (i = 0; i < txq->bd.ring_size; i++) {
858 			/* Initialize the BD for every fragment in the page. */
859 			bdp->cbd_sc = cpu_to_fec16(0);
860 			if (bdp->cbd_bufaddr &&
861 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
862 				dma_unmap_single(&fep->pdev->dev,
863 						 fec32_to_cpu(bdp->cbd_bufaddr),
864 						 fec16_to_cpu(bdp->cbd_datlen),
865 						 DMA_TO_DEVICE);
866 			if (txq->tx_skbuff[i]) {
867 				dev_kfree_skb_any(txq->tx_skbuff[i]);
868 				txq->tx_skbuff[i] = NULL;
869 			}
870 			bdp->cbd_bufaddr = cpu_to_fec32(0);
871 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
872 		}
873 
874 		/* Set the last buffer to wrap */
875 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
876 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
877 		txq->dirty_tx = bdp;
878 	}
879 }
880 
881 static void fec_enet_active_rxring(struct net_device *ndev)
882 {
883 	struct fec_enet_private *fep = netdev_priv(ndev);
884 	int i;
885 
886 	for (i = 0; i < fep->num_rx_queues; i++)
887 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
888 }
889 
890 static void fec_enet_enable_ring(struct net_device *ndev)
891 {
892 	struct fec_enet_private *fep = netdev_priv(ndev);
893 	struct fec_enet_priv_tx_q *txq;
894 	struct fec_enet_priv_rx_q *rxq;
895 	int i;
896 
897 	for (i = 0; i < fep->num_rx_queues; i++) {
898 		rxq = fep->rx_queue[i];
899 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
900 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
901 
902 		/* enable DMA1/2 */
903 		if (i)
904 			writel(RCMR_MATCHEN | RCMR_CMP(i),
905 			       fep->hwp + FEC_RCMR(i));
906 	}
907 
908 	for (i = 0; i < fep->num_tx_queues; i++) {
909 		txq = fep->tx_queue[i];
910 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
911 
912 		/* enable DMA1/2 */
913 		if (i)
914 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
915 			       fep->hwp + FEC_DMA_CFG(i));
916 	}
917 }
918 
919 static void fec_enet_reset_skb(struct net_device *ndev)
920 {
921 	struct fec_enet_private *fep = netdev_priv(ndev);
922 	struct fec_enet_priv_tx_q *txq;
923 	int i, j;
924 
925 	for (i = 0; i < fep->num_tx_queues; i++) {
926 		txq = fep->tx_queue[i];
927 
928 		for (j = 0; j < txq->bd.ring_size; j++) {
929 			if (txq->tx_skbuff[j]) {
930 				dev_kfree_skb_any(txq->tx_skbuff[j]);
931 				txq->tx_skbuff[j] = NULL;
932 			}
933 		}
934 	}
935 }
936 
937 /*
938  * This function is called to start or restart the FEC during a link
939  * change, transmit timeout, or to reconfigure the FEC.  The network
940  * packet processing for this device must be stopped before this call.
941  */
942 static void
943 fec_restart(struct net_device *ndev)
944 {
945 	struct fec_enet_private *fep = netdev_priv(ndev);
946 	u32 val;
947 	u32 temp_mac[2];
948 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
949 	u32 ecntl = 0x2; /* ETHEREN */
950 
951 	/* Whack a reset.  We should wait for this.
952 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
953 	 * instead of reset MAC itself.
954 	 */
955 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
956 		writel(0, fep->hwp + FEC_ECNTRL);
957 	} else {
958 		writel(1, fep->hwp + FEC_ECNTRL);
959 		udelay(10);
960 	}
961 
962 	/*
963 	 * enet-mac reset will reset mac address registers too,
964 	 * so need to reconfigure it.
965 	 */
966 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
967 	writel((__force u32)cpu_to_be32(temp_mac[0]),
968 	       fep->hwp + FEC_ADDR_LOW);
969 	writel((__force u32)cpu_to_be32(temp_mac[1]),
970 	       fep->hwp + FEC_ADDR_HIGH);
971 
972 	/* Clear any outstanding interrupt, except MDIO. */
973 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
974 
975 	fec_enet_bd_init(ndev);
976 
977 	fec_enet_enable_ring(ndev);
978 
979 	/* Reset tx SKB buffers. */
980 	fec_enet_reset_skb(ndev);
981 
982 	/* Enable MII mode */
983 	if (fep->full_duplex == DUPLEX_FULL) {
984 		/* FD enable */
985 		writel(0x04, fep->hwp + FEC_X_CNTRL);
986 	} else {
987 		/* No Rcv on Xmit */
988 		rcntl |= 0x02;
989 		writel(0x0, fep->hwp + FEC_X_CNTRL);
990 	}
991 
992 	/* Set MII speed */
993 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
994 
995 #if !defined(CONFIG_M5272)
996 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
997 		val = readl(fep->hwp + FEC_RACC);
998 		/* align IP header */
999 		val |= FEC_RACC_SHIFT16;
1000 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1001 			/* set RX checksum */
1002 			val |= FEC_RACC_OPTIONS;
1003 		else
1004 			val &= ~FEC_RACC_OPTIONS;
1005 		writel(val, fep->hwp + FEC_RACC);
1006 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1007 	}
1008 #endif
1009 
1010 	/*
1011 	 * The phy interface and speed need to get configured
1012 	 * differently on enet-mac.
1013 	 */
1014 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1015 		/* Enable flow control and length check */
1016 		rcntl |= 0x40000000 | 0x00000020;
1017 
1018 		/* RGMII, RMII or MII */
1019 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1020 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1021 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1022 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1023 			rcntl |= (1 << 6);
1024 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1025 			rcntl |= (1 << 8);
1026 		else
1027 			rcntl &= ~(1 << 8);
1028 
1029 		/* 1G, 100M or 10M */
1030 		if (ndev->phydev) {
1031 			if (ndev->phydev->speed == SPEED_1000)
1032 				ecntl |= (1 << 5);
1033 			else if (ndev->phydev->speed == SPEED_100)
1034 				rcntl &= ~(1 << 9);
1035 			else
1036 				rcntl |= (1 << 9);
1037 		}
1038 	} else {
1039 #ifdef FEC_MIIGSK_ENR
1040 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1041 			u32 cfgr;
1042 			/* disable the gasket and wait */
1043 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1044 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1045 				udelay(1);
1046 
1047 			/*
1048 			 * configure the gasket:
1049 			 *   RMII, 50 MHz, no loopback, no echo
1050 			 *   MII, 25 MHz, no loopback, no echo
1051 			 */
1052 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1053 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1054 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1055 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1056 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1057 
1058 			/* re-enable the gasket */
1059 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1060 		}
1061 #endif
1062 	}
1063 
1064 #if !defined(CONFIG_M5272)
1065 	/* enable pause frame*/
1066 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1067 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1068 	     ndev->phydev && ndev->phydev->pause)) {
1069 		rcntl |= FEC_ENET_FCE;
1070 
1071 		/* set FIFO threshold parameter to reduce overrun */
1072 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1073 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1074 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1075 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1076 
1077 		/* OPD */
1078 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1079 	} else {
1080 		rcntl &= ~FEC_ENET_FCE;
1081 	}
1082 #endif /* !defined(CONFIG_M5272) */
1083 
1084 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1085 
1086 	/* Setup multicast filter. */
1087 	set_multicast_list(ndev);
1088 #ifndef CONFIG_M5272
1089 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1090 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1091 #endif
1092 
1093 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1094 		/* enable ENET endian swap */
1095 		ecntl |= (1 << 8);
1096 		/* enable ENET store and forward mode */
1097 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1098 	}
1099 
1100 	if (fep->bufdesc_ex)
1101 		ecntl |= (1 << 4);
1102 
1103 #ifndef CONFIG_M5272
1104 	/* Enable the MIB statistic event counters */
1105 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1106 #endif
1107 
1108 	/* And last, enable the transmit and receive processing */
1109 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1110 	fec_enet_active_rxring(ndev);
1111 
1112 	if (fep->bufdesc_ex)
1113 		fec_ptp_start_cyclecounter(ndev);
1114 
1115 	/* Enable interrupts we wish to service */
1116 	if (fep->link)
1117 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1118 	else
1119 		writel(0, fep->hwp + FEC_IMASK);
1120 
1121 	/* Init the interrupt coalescing */
1122 	fec_enet_itr_coal_init(ndev);
1123 
1124 }
1125 
1126 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1127 {
1128 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1129 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1130 
1131 	if (stop_gpr->gpr) {
1132 		if (enabled)
1133 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1134 					   BIT(stop_gpr->bit),
1135 					   BIT(stop_gpr->bit));
1136 		else
1137 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1138 					   BIT(stop_gpr->bit), 0);
1139 	} else if (pdata && pdata->sleep_mode_enable) {
1140 		pdata->sleep_mode_enable(enabled);
1141 	}
1142 }
1143 
1144 static void
1145 fec_stop(struct net_device *ndev)
1146 {
1147 	struct fec_enet_private *fep = netdev_priv(ndev);
1148 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1149 	u32 val;
1150 
1151 	/* We cannot expect a graceful transmit stop without link !!! */
1152 	if (fep->link) {
1153 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1154 		udelay(10);
1155 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1156 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1157 	}
1158 
1159 	/* Whack a reset.  We should wait for this.
1160 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1161 	 * instead of reset MAC itself.
1162 	 */
1163 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1164 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1165 			writel(0, fep->hwp + FEC_ECNTRL);
1166 		} else {
1167 			writel(1, fep->hwp + FEC_ECNTRL);
1168 			udelay(10);
1169 		}
1170 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1171 	} else {
1172 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1173 		val = readl(fep->hwp + FEC_ECNTRL);
1174 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1175 		writel(val, fep->hwp + FEC_ECNTRL);
1176 		fec_enet_stop_mode(fep, true);
1177 	}
1178 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1179 
1180 	/* We have to keep ENET enabled to have MII interrupt stay working */
1181 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1182 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1183 		writel(2, fep->hwp + FEC_ECNTRL);
1184 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1185 	}
1186 }
1187 
1188 
1189 static void
1190 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1191 {
1192 	struct fec_enet_private *fep = netdev_priv(ndev);
1193 
1194 	fec_dump(ndev);
1195 
1196 	ndev->stats.tx_errors++;
1197 
1198 	schedule_work(&fep->tx_timeout_work);
1199 }
1200 
1201 static void fec_enet_timeout_work(struct work_struct *work)
1202 {
1203 	struct fec_enet_private *fep =
1204 		container_of(work, struct fec_enet_private, tx_timeout_work);
1205 	struct net_device *ndev = fep->netdev;
1206 
1207 	rtnl_lock();
1208 	if (netif_device_present(ndev) || netif_running(ndev)) {
1209 		napi_disable(&fep->napi);
1210 		netif_tx_lock_bh(ndev);
1211 		fec_restart(ndev);
1212 		netif_tx_wake_all_queues(ndev);
1213 		netif_tx_unlock_bh(ndev);
1214 		napi_enable(&fep->napi);
1215 	}
1216 	rtnl_unlock();
1217 }
1218 
1219 static void
1220 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1221 	struct skb_shared_hwtstamps *hwtstamps)
1222 {
1223 	unsigned long flags;
1224 	u64 ns;
1225 
1226 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1227 	ns = timecounter_cyc2time(&fep->tc, ts);
1228 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1229 
1230 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1231 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1232 }
1233 
1234 static void
1235 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1236 {
1237 	struct	fec_enet_private *fep;
1238 	struct bufdesc *bdp;
1239 	unsigned short status;
1240 	struct	sk_buff	*skb;
1241 	struct fec_enet_priv_tx_q *txq;
1242 	struct netdev_queue *nq;
1243 	int	index = 0;
1244 	int	entries_free;
1245 
1246 	fep = netdev_priv(ndev);
1247 
1248 	txq = fep->tx_queue[queue_id];
1249 	/* get next bdp of dirty_tx */
1250 	nq = netdev_get_tx_queue(ndev, queue_id);
1251 	bdp = txq->dirty_tx;
1252 
1253 	/* get next bdp of dirty_tx */
1254 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1255 
1256 	while (bdp != READ_ONCE(txq->bd.cur)) {
1257 		/* Order the load of bd.cur and cbd_sc */
1258 		rmb();
1259 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1260 		if (status & BD_ENET_TX_READY)
1261 			break;
1262 
1263 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1264 
1265 		skb = txq->tx_skbuff[index];
1266 		txq->tx_skbuff[index] = NULL;
1267 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1268 			dma_unmap_single(&fep->pdev->dev,
1269 					 fec32_to_cpu(bdp->cbd_bufaddr),
1270 					 fec16_to_cpu(bdp->cbd_datlen),
1271 					 DMA_TO_DEVICE);
1272 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1273 		if (!skb)
1274 			goto skb_done;
1275 
1276 		/* Check for errors. */
1277 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1278 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1279 				   BD_ENET_TX_CSL)) {
1280 			ndev->stats.tx_errors++;
1281 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1282 				ndev->stats.tx_heartbeat_errors++;
1283 			if (status & BD_ENET_TX_LC)  /* Late collision */
1284 				ndev->stats.tx_window_errors++;
1285 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1286 				ndev->stats.tx_aborted_errors++;
1287 			if (status & BD_ENET_TX_UN)  /* Underrun */
1288 				ndev->stats.tx_fifo_errors++;
1289 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1290 				ndev->stats.tx_carrier_errors++;
1291 		} else {
1292 			ndev->stats.tx_packets++;
1293 			ndev->stats.tx_bytes += skb->len;
1294 		}
1295 
1296 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1297 			fep->bufdesc_ex) {
1298 			struct skb_shared_hwtstamps shhwtstamps;
1299 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1300 
1301 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1302 			skb_tstamp_tx(skb, &shhwtstamps);
1303 		}
1304 
1305 		/* Deferred means some collisions occurred during transmit,
1306 		 * but we eventually sent the packet OK.
1307 		 */
1308 		if (status & BD_ENET_TX_DEF)
1309 			ndev->stats.collisions++;
1310 
1311 		/* Free the sk buffer associated with this last transmit */
1312 		dev_kfree_skb_any(skb);
1313 skb_done:
1314 		/* Make sure the update to bdp and tx_skbuff are performed
1315 		 * before dirty_tx
1316 		 */
1317 		wmb();
1318 		txq->dirty_tx = bdp;
1319 
1320 		/* Update pointer to next buffer descriptor to be transmitted */
1321 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1322 
1323 		/* Since we have freed up a buffer, the ring is no longer full
1324 		 */
1325 		if (netif_tx_queue_stopped(nq)) {
1326 			entries_free = fec_enet_get_free_txdesc_num(txq);
1327 			if (entries_free >= txq->tx_wake_threshold)
1328 				netif_tx_wake_queue(nq);
1329 		}
1330 	}
1331 
1332 	/* ERR006358: Keep the transmitter going */
1333 	if (bdp != txq->bd.cur &&
1334 	    readl(txq->bd.reg_desc_active) == 0)
1335 		writel(0, txq->bd.reg_desc_active);
1336 }
1337 
1338 static void fec_enet_tx(struct net_device *ndev)
1339 {
1340 	struct fec_enet_private *fep = netdev_priv(ndev);
1341 	int i;
1342 
1343 	/* Make sure that AVB queues are processed first. */
1344 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1345 		fec_enet_tx_queue(ndev, i);
1346 }
1347 
1348 static int
1349 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1350 {
1351 	struct  fec_enet_private *fep = netdev_priv(ndev);
1352 	int off;
1353 
1354 	off = ((unsigned long)skb->data) & fep->rx_align;
1355 	if (off)
1356 		skb_reserve(skb, fep->rx_align + 1 - off);
1357 
1358 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1359 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1360 		if (net_ratelimit())
1361 			netdev_err(ndev, "Rx DMA memory map failed\n");
1362 		return -ENOMEM;
1363 	}
1364 
1365 	return 0;
1366 }
1367 
1368 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1369 			       struct bufdesc *bdp, u32 length, bool swap)
1370 {
1371 	struct  fec_enet_private *fep = netdev_priv(ndev);
1372 	struct sk_buff *new_skb;
1373 
1374 	if (length > fep->rx_copybreak)
1375 		return false;
1376 
1377 	new_skb = netdev_alloc_skb(ndev, length);
1378 	if (!new_skb)
1379 		return false;
1380 
1381 	dma_sync_single_for_cpu(&fep->pdev->dev,
1382 				fec32_to_cpu(bdp->cbd_bufaddr),
1383 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1384 				DMA_FROM_DEVICE);
1385 	if (!swap)
1386 		memcpy(new_skb->data, (*skb)->data, length);
1387 	else
1388 		swap_buffer2(new_skb->data, (*skb)->data, length);
1389 	*skb = new_skb;
1390 
1391 	return true;
1392 }
1393 
1394 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1395  * When we update through the ring, if the next incoming buffer has
1396  * not been given to the system, we just set the empty indicator,
1397  * effectively tossing the packet.
1398  */
1399 static int
1400 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1401 {
1402 	struct fec_enet_private *fep = netdev_priv(ndev);
1403 	struct fec_enet_priv_rx_q *rxq;
1404 	struct bufdesc *bdp;
1405 	unsigned short status;
1406 	struct  sk_buff *skb_new = NULL;
1407 	struct  sk_buff *skb;
1408 	ushort	pkt_len;
1409 	__u8 *data;
1410 	int	pkt_received = 0;
1411 	struct	bufdesc_ex *ebdp = NULL;
1412 	bool	vlan_packet_rcvd = false;
1413 	u16	vlan_tag;
1414 	int	index = 0;
1415 	bool	is_copybreak;
1416 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1417 
1418 #ifdef CONFIG_M532x
1419 	flush_cache_all();
1420 #endif
1421 	rxq = fep->rx_queue[queue_id];
1422 
1423 	/* First, grab all of the stats for the incoming packet.
1424 	 * These get messed up if we get called due to a busy condition.
1425 	 */
1426 	bdp = rxq->bd.cur;
1427 
1428 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1429 
1430 		if (pkt_received >= budget)
1431 			break;
1432 		pkt_received++;
1433 
1434 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1435 
1436 		/* Check for errors. */
1437 		status ^= BD_ENET_RX_LAST;
1438 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1439 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1440 			   BD_ENET_RX_CL)) {
1441 			ndev->stats.rx_errors++;
1442 			if (status & BD_ENET_RX_OV) {
1443 				/* FIFO overrun */
1444 				ndev->stats.rx_fifo_errors++;
1445 				goto rx_processing_done;
1446 			}
1447 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1448 						| BD_ENET_RX_LAST)) {
1449 				/* Frame too long or too short. */
1450 				ndev->stats.rx_length_errors++;
1451 				if (status & BD_ENET_RX_LAST)
1452 					netdev_err(ndev, "rcv is not +last\n");
1453 			}
1454 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1455 				ndev->stats.rx_crc_errors++;
1456 			/* Report late collisions as a frame error. */
1457 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1458 				ndev->stats.rx_frame_errors++;
1459 			goto rx_processing_done;
1460 		}
1461 
1462 		/* Process the incoming frame. */
1463 		ndev->stats.rx_packets++;
1464 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1465 		ndev->stats.rx_bytes += pkt_len;
1466 
1467 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1468 		skb = rxq->rx_skbuff[index];
1469 
1470 		/* The packet length includes FCS, but we don't want to
1471 		 * include that when passing upstream as it messes up
1472 		 * bridging applications.
1473 		 */
1474 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1475 						  need_swap);
1476 		if (!is_copybreak) {
1477 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1478 			if (unlikely(!skb_new)) {
1479 				ndev->stats.rx_dropped++;
1480 				goto rx_processing_done;
1481 			}
1482 			dma_unmap_single(&fep->pdev->dev,
1483 					 fec32_to_cpu(bdp->cbd_bufaddr),
1484 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1485 					 DMA_FROM_DEVICE);
1486 		}
1487 
1488 		prefetch(skb->data - NET_IP_ALIGN);
1489 		skb_put(skb, pkt_len - 4);
1490 		data = skb->data;
1491 
1492 		if (!is_copybreak && need_swap)
1493 			swap_buffer(data, pkt_len);
1494 
1495 #if !defined(CONFIG_M5272)
1496 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1497 			data = skb_pull_inline(skb, 2);
1498 #endif
1499 
1500 		/* Extract the enhanced buffer descriptor */
1501 		ebdp = NULL;
1502 		if (fep->bufdesc_ex)
1503 			ebdp = (struct bufdesc_ex *)bdp;
1504 
1505 		/* If this is a VLAN packet remove the VLAN Tag */
1506 		vlan_packet_rcvd = false;
1507 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1508 		    fep->bufdesc_ex &&
1509 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1510 			/* Push and remove the vlan tag */
1511 			struct vlan_hdr *vlan_header =
1512 					(struct vlan_hdr *) (data + ETH_HLEN);
1513 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1514 
1515 			vlan_packet_rcvd = true;
1516 
1517 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1518 			skb_pull(skb, VLAN_HLEN);
1519 		}
1520 
1521 		skb->protocol = eth_type_trans(skb, ndev);
1522 
1523 		/* Get receive timestamp from the skb */
1524 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1525 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1526 					  skb_hwtstamps(skb));
1527 
1528 		if (fep->bufdesc_ex &&
1529 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1530 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1531 				/* don't check it */
1532 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1533 			} else {
1534 				skb_checksum_none_assert(skb);
1535 			}
1536 		}
1537 
1538 		/* Handle received VLAN packets */
1539 		if (vlan_packet_rcvd)
1540 			__vlan_hwaccel_put_tag(skb,
1541 					       htons(ETH_P_8021Q),
1542 					       vlan_tag);
1543 
1544 		skb_record_rx_queue(skb, queue_id);
1545 		napi_gro_receive(&fep->napi, skb);
1546 
1547 		if (is_copybreak) {
1548 			dma_sync_single_for_device(&fep->pdev->dev,
1549 						   fec32_to_cpu(bdp->cbd_bufaddr),
1550 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1551 						   DMA_FROM_DEVICE);
1552 		} else {
1553 			rxq->rx_skbuff[index] = skb_new;
1554 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1555 		}
1556 
1557 rx_processing_done:
1558 		/* Clear the status flags for this buffer */
1559 		status &= ~BD_ENET_RX_STATS;
1560 
1561 		/* Mark the buffer empty */
1562 		status |= BD_ENET_RX_EMPTY;
1563 
1564 		if (fep->bufdesc_ex) {
1565 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1566 
1567 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1568 			ebdp->cbd_prot = 0;
1569 			ebdp->cbd_bdu = 0;
1570 		}
1571 		/* Make sure the updates to rest of the descriptor are
1572 		 * performed before transferring ownership.
1573 		 */
1574 		wmb();
1575 		bdp->cbd_sc = cpu_to_fec16(status);
1576 
1577 		/* Update BD pointer to next entry */
1578 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1579 
1580 		/* Doing this here will keep the FEC running while we process
1581 		 * incoming frames.  On a heavily loaded network, we should be
1582 		 * able to keep up at the expense of system resources.
1583 		 */
1584 		writel(0, rxq->bd.reg_desc_active);
1585 	}
1586 	rxq->bd.cur = bdp;
1587 	return pkt_received;
1588 }
1589 
1590 static int fec_enet_rx(struct net_device *ndev, int budget)
1591 {
1592 	struct fec_enet_private *fep = netdev_priv(ndev);
1593 	int i, done = 0;
1594 
1595 	/* Make sure that AVB queues are processed first. */
1596 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1597 		done += fec_enet_rx_queue(ndev, budget - done, i);
1598 
1599 	return done;
1600 }
1601 
1602 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1603 {
1604 	uint int_events;
1605 
1606 	int_events = readl(fep->hwp + FEC_IEVENT);
1607 
1608 	/* Don't clear MDIO events, we poll for those */
1609 	int_events &= ~FEC_ENET_MII;
1610 
1611 	writel(int_events, fep->hwp + FEC_IEVENT);
1612 
1613 	return int_events != 0;
1614 }
1615 
1616 static irqreturn_t
1617 fec_enet_interrupt(int irq, void *dev_id)
1618 {
1619 	struct net_device *ndev = dev_id;
1620 	struct fec_enet_private *fep = netdev_priv(ndev);
1621 	irqreturn_t ret = IRQ_NONE;
1622 
1623 	if (fec_enet_collect_events(fep) && fep->link) {
1624 		ret = IRQ_HANDLED;
1625 
1626 		if (napi_schedule_prep(&fep->napi)) {
1627 			/* Disable interrupts */
1628 			writel(0, fep->hwp + FEC_IMASK);
1629 			__napi_schedule(&fep->napi);
1630 		}
1631 	}
1632 
1633 	return ret;
1634 }
1635 
1636 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1637 {
1638 	struct net_device *ndev = napi->dev;
1639 	struct fec_enet_private *fep = netdev_priv(ndev);
1640 	int done = 0;
1641 
1642 	do {
1643 		done += fec_enet_rx(ndev, budget - done);
1644 		fec_enet_tx(ndev);
1645 	} while ((done < budget) && fec_enet_collect_events(fep));
1646 
1647 	if (done < budget) {
1648 		napi_complete_done(napi, done);
1649 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1650 	}
1651 
1652 	return done;
1653 }
1654 
1655 /* ------------------------------------------------------------------------- */
1656 static void fec_get_mac(struct net_device *ndev)
1657 {
1658 	struct fec_enet_private *fep = netdev_priv(ndev);
1659 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1660 	unsigned char *iap, tmpaddr[ETH_ALEN];
1661 
1662 	/*
1663 	 * try to get mac address in following order:
1664 	 *
1665 	 * 1) module parameter via kernel command line in form
1666 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1667 	 */
1668 	iap = macaddr;
1669 
1670 	/*
1671 	 * 2) from device tree data
1672 	 */
1673 	if (!is_valid_ether_addr(iap)) {
1674 		struct device_node *np = fep->pdev->dev.of_node;
1675 		if (np) {
1676 			const char *mac = of_get_mac_address(np);
1677 			if (!IS_ERR(mac))
1678 				iap = (unsigned char *) mac;
1679 		}
1680 	}
1681 
1682 	/*
1683 	 * 3) from flash or fuse (via platform data)
1684 	 */
1685 	if (!is_valid_ether_addr(iap)) {
1686 #ifdef CONFIG_M5272
1687 		if (FEC_FLASHMAC)
1688 			iap = (unsigned char *)FEC_FLASHMAC;
1689 #else
1690 		if (pdata)
1691 			iap = (unsigned char *)&pdata->mac;
1692 #endif
1693 	}
1694 
1695 	/*
1696 	 * 4) FEC mac registers set by bootloader
1697 	 */
1698 	if (!is_valid_ether_addr(iap)) {
1699 		*((__be32 *) &tmpaddr[0]) =
1700 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1701 		*((__be16 *) &tmpaddr[4]) =
1702 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1703 		iap = &tmpaddr[0];
1704 	}
1705 
1706 	/*
1707 	 * 5) random mac address
1708 	 */
1709 	if (!is_valid_ether_addr(iap)) {
1710 		/* Report it and use a random ethernet address instead */
1711 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1712 		eth_hw_addr_random(ndev);
1713 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1714 			 ndev->dev_addr);
1715 		return;
1716 	}
1717 
1718 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1719 
1720 	/* Adjust MAC if using macaddr */
1721 	if (iap == macaddr)
1722 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1723 }
1724 
1725 /* ------------------------------------------------------------------------- */
1726 
1727 /*
1728  * Phy section
1729  */
1730 static void fec_enet_adjust_link(struct net_device *ndev)
1731 {
1732 	struct fec_enet_private *fep = netdev_priv(ndev);
1733 	struct phy_device *phy_dev = ndev->phydev;
1734 	int status_change = 0;
1735 
1736 	/*
1737 	 * If the netdev is down, or is going down, we're not interested
1738 	 * in link state events, so just mark our idea of the link as down
1739 	 * and ignore the event.
1740 	 */
1741 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1742 		fep->link = 0;
1743 	} else if (phy_dev->link) {
1744 		if (!fep->link) {
1745 			fep->link = phy_dev->link;
1746 			status_change = 1;
1747 		}
1748 
1749 		if (fep->full_duplex != phy_dev->duplex) {
1750 			fep->full_duplex = phy_dev->duplex;
1751 			status_change = 1;
1752 		}
1753 
1754 		if (phy_dev->speed != fep->speed) {
1755 			fep->speed = phy_dev->speed;
1756 			status_change = 1;
1757 		}
1758 
1759 		/* if any of the above changed restart the FEC */
1760 		if (status_change) {
1761 			napi_disable(&fep->napi);
1762 			netif_tx_lock_bh(ndev);
1763 			fec_restart(ndev);
1764 			netif_tx_wake_all_queues(ndev);
1765 			netif_tx_unlock_bh(ndev);
1766 			napi_enable(&fep->napi);
1767 		}
1768 	} else {
1769 		if (fep->link) {
1770 			napi_disable(&fep->napi);
1771 			netif_tx_lock_bh(ndev);
1772 			fec_stop(ndev);
1773 			netif_tx_unlock_bh(ndev);
1774 			napi_enable(&fep->napi);
1775 			fep->link = phy_dev->link;
1776 			status_change = 1;
1777 		}
1778 	}
1779 
1780 	if (status_change)
1781 		phy_print_status(phy_dev);
1782 }
1783 
1784 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1785 {
1786 	uint ievent;
1787 	int ret;
1788 
1789 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1790 					ievent & FEC_ENET_MII, 2, 30000);
1791 
1792 	if (!ret)
1793 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1794 
1795 	return ret;
1796 }
1797 
1798 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1799 {
1800 	struct fec_enet_private *fep = bus->priv;
1801 	struct device *dev = &fep->pdev->dev;
1802 	int ret = 0, frame_start, frame_addr, frame_op;
1803 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1804 
1805 	ret = pm_runtime_get_sync(dev);
1806 	if (ret < 0)
1807 		return ret;
1808 
1809 	if (is_c45) {
1810 		frame_start = FEC_MMFR_ST_C45;
1811 
1812 		/* write address */
1813 		frame_addr = (regnum >> 16);
1814 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1815 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1816 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1817 		       fep->hwp + FEC_MII_DATA);
1818 
1819 		/* wait for end of transfer */
1820 		ret = fec_enet_mdio_wait(fep);
1821 		if (ret) {
1822 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1823 			goto out;
1824 		}
1825 
1826 		frame_op = FEC_MMFR_OP_READ_C45;
1827 
1828 	} else {
1829 		/* C22 read */
1830 		frame_op = FEC_MMFR_OP_READ;
1831 		frame_start = FEC_MMFR_ST;
1832 		frame_addr = regnum;
1833 	}
1834 
1835 	/* start a read op */
1836 	writel(frame_start | frame_op |
1837 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1838 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1839 
1840 	/* wait for end of transfer */
1841 	ret = fec_enet_mdio_wait(fep);
1842 	if (ret) {
1843 		netdev_err(fep->netdev, "MDIO read timeout\n");
1844 		goto out;
1845 	}
1846 
1847 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1848 
1849 out:
1850 	pm_runtime_mark_last_busy(dev);
1851 	pm_runtime_put_autosuspend(dev);
1852 
1853 	return ret;
1854 }
1855 
1856 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1857 			   u16 value)
1858 {
1859 	struct fec_enet_private *fep = bus->priv;
1860 	struct device *dev = &fep->pdev->dev;
1861 	int ret, frame_start, frame_addr;
1862 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1863 
1864 	ret = pm_runtime_get_sync(dev);
1865 	if (ret < 0)
1866 		return ret;
1867 	else
1868 		ret = 0;
1869 
1870 	if (is_c45) {
1871 		frame_start = FEC_MMFR_ST_C45;
1872 
1873 		/* write address */
1874 		frame_addr = (regnum >> 16);
1875 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1876 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1877 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1878 		       fep->hwp + FEC_MII_DATA);
1879 
1880 		/* wait for end of transfer */
1881 		ret = fec_enet_mdio_wait(fep);
1882 		if (ret) {
1883 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1884 			goto out;
1885 		}
1886 	} else {
1887 		/* C22 write */
1888 		frame_start = FEC_MMFR_ST;
1889 		frame_addr = regnum;
1890 	}
1891 
1892 	/* start a write op */
1893 	writel(frame_start | FEC_MMFR_OP_WRITE |
1894 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1895 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1896 		fep->hwp + FEC_MII_DATA);
1897 
1898 	/* wait for end of transfer */
1899 	ret = fec_enet_mdio_wait(fep);
1900 	if (ret)
1901 		netdev_err(fep->netdev, "MDIO write timeout\n");
1902 
1903 out:
1904 	pm_runtime_mark_last_busy(dev);
1905 	pm_runtime_put_autosuspend(dev);
1906 
1907 	return ret;
1908 }
1909 
1910 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1911 {
1912 	struct fec_enet_private *fep = netdev_priv(ndev);
1913 	int ret;
1914 
1915 	if (enable) {
1916 		ret = clk_prepare_enable(fep->clk_enet_out);
1917 		if (ret)
1918 			return ret;
1919 
1920 		if (fep->clk_ptp) {
1921 			mutex_lock(&fep->ptp_clk_mutex);
1922 			ret = clk_prepare_enable(fep->clk_ptp);
1923 			if (ret) {
1924 				mutex_unlock(&fep->ptp_clk_mutex);
1925 				goto failed_clk_ptp;
1926 			} else {
1927 				fep->ptp_clk_on = true;
1928 			}
1929 			mutex_unlock(&fep->ptp_clk_mutex);
1930 		}
1931 
1932 		ret = clk_prepare_enable(fep->clk_ref);
1933 		if (ret)
1934 			goto failed_clk_ref;
1935 
1936 		phy_reset_after_clk_enable(ndev->phydev);
1937 	} else {
1938 		clk_disable_unprepare(fep->clk_enet_out);
1939 		if (fep->clk_ptp) {
1940 			mutex_lock(&fep->ptp_clk_mutex);
1941 			clk_disable_unprepare(fep->clk_ptp);
1942 			fep->ptp_clk_on = false;
1943 			mutex_unlock(&fep->ptp_clk_mutex);
1944 		}
1945 		clk_disable_unprepare(fep->clk_ref);
1946 	}
1947 
1948 	return 0;
1949 
1950 failed_clk_ref:
1951 	if (fep->clk_ptp) {
1952 		mutex_lock(&fep->ptp_clk_mutex);
1953 		clk_disable_unprepare(fep->clk_ptp);
1954 		fep->ptp_clk_on = false;
1955 		mutex_unlock(&fep->ptp_clk_mutex);
1956 	}
1957 failed_clk_ptp:
1958 	if (fep->clk_enet_out)
1959 		clk_disable_unprepare(fep->clk_enet_out);
1960 
1961 	return ret;
1962 }
1963 
1964 static int fec_enet_mii_probe(struct net_device *ndev)
1965 {
1966 	struct fec_enet_private *fep = netdev_priv(ndev);
1967 	struct phy_device *phy_dev = NULL;
1968 	char mdio_bus_id[MII_BUS_ID_SIZE];
1969 	char phy_name[MII_BUS_ID_SIZE + 3];
1970 	int phy_id;
1971 	int dev_id = fep->dev_id;
1972 
1973 	if (fep->phy_node) {
1974 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1975 					 &fec_enet_adjust_link, 0,
1976 					 fep->phy_interface);
1977 		if (!phy_dev) {
1978 			netdev_err(ndev, "Unable to connect to phy\n");
1979 			return -ENODEV;
1980 		}
1981 	} else {
1982 		/* check for attached phy */
1983 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1984 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1985 				continue;
1986 			if (dev_id--)
1987 				continue;
1988 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1989 			break;
1990 		}
1991 
1992 		if (phy_id >= PHY_MAX_ADDR) {
1993 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1994 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1995 			phy_id = 0;
1996 		}
1997 
1998 		snprintf(phy_name, sizeof(phy_name),
1999 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2000 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2001 				      fep->phy_interface);
2002 	}
2003 
2004 	if (IS_ERR(phy_dev)) {
2005 		netdev_err(ndev, "could not attach to PHY\n");
2006 		return PTR_ERR(phy_dev);
2007 	}
2008 
2009 	/* mask with MAC supported features */
2010 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2011 		phy_set_max_speed(phy_dev, 1000);
2012 		phy_remove_link_mode(phy_dev,
2013 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2014 #if !defined(CONFIG_M5272)
2015 		phy_support_sym_pause(phy_dev);
2016 #endif
2017 	}
2018 	else
2019 		phy_set_max_speed(phy_dev, 100);
2020 
2021 	fep->link = 0;
2022 	fep->full_duplex = 0;
2023 
2024 	phy_attached_info(phy_dev);
2025 
2026 	return 0;
2027 }
2028 
2029 static int fec_enet_mii_init(struct platform_device *pdev)
2030 {
2031 	static struct mii_bus *fec0_mii_bus;
2032 	struct net_device *ndev = platform_get_drvdata(pdev);
2033 	struct fec_enet_private *fep = netdev_priv(ndev);
2034 	bool suppress_preamble = false;
2035 	struct device_node *node;
2036 	int err = -ENXIO;
2037 	u32 mii_speed, holdtime;
2038 	u32 bus_freq;
2039 
2040 	/*
2041 	 * The i.MX28 dual fec interfaces are not equal.
2042 	 * Here are the differences:
2043 	 *
2044 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2045 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2046 	 *  - external phys can only be configured by fec0
2047 	 *
2048 	 * That is to say fec1 can not work independently. It only works
2049 	 * when fec0 is working. The reason behind this design is that the
2050 	 * second interface is added primarily for Switch mode.
2051 	 *
2052 	 * Because of the last point above, both phys are attached on fec0
2053 	 * mdio interface in board design, and need to be configured by
2054 	 * fec0 mii_bus.
2055 	 */
2056 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2057 		/* fec1 uses fec0 mii_bus */
2058 		if (mii_cnt && fec0_mii_bus) {
2059 			fep->mii_bus = fec0_mii_bus;
2060 			mii_cnt++;
2061 			return 0;
2062 		}
2063 		return -ENOENT;
2064 	}
2065 
2066 	bus_freq = 2500000; /* 2.5MHz by default */
2067 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2068 	if (node) {
2069 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2070 		suppress_preamble = of_property_read_bool(node,
2071 							  "suppress-preamble");
2072 	}
2073 
2074 	/*
2075 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2076 	 *
2077 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2078 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2079 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2080 	 * document.
2081 	 */
2082 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2083 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2084 		mii_speed--;
2085 	if (mii_speed > 63) {
2086 		dev_err(&pdev->dev,
2087 			"fec clock (%lu) too fast to get right mii speed\n",
2088 			clk_get_rate(fep->clk_ipg));
2089 		err = -EINVAL;
2090 		goto err_out;
2091 	}
2092 
2093 	/*
2094 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2095 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2096 	 * versions are RAZ there, so just ignore the difference and write the
2097 	 * register always.
2098 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2099 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2100 	 * output.
2101 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2102 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2103 	 * holdtime cannot result in a value greater than 3.
2104 	 */
2105 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2106 
2107 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2108 
2109 	if (suppress_preamble)
2110 		fep->phy_speed |= BIT(7);
2111 
2112 	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2113 	 * MII event generation condition:
2114 	 * - writing MSCR:
2115 	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2116 	 *	  mscr_reg_data_in[7:0] != 0
2117 	 * - writing MMFR:
2118 	 *	- mscr[7:0]_not_zero
2119 	 */
2120 	writel(0, fep->hwp + FEC_MII_DATA);
2121 
2122 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2123 
2124 	/* Clear any pending transaction complete indication */
2125 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2126 
2127 	fep->mii_bus = mdiobus_alloc();
2128 	if (fep->mii_bus == NULL) {
2129 		err = -ENOMEM;
2130 		goto err_out;
2131 	}
2132 
2133 	fep->mii_bus->name = "fec_enet_mii_bus";
2134 	fep->mii_bus->read = fec_enet_mdio_read;
2135 	fep->mii_bus->write = fec_enet_mdio_write;
2136 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2137 		pdev->name, fep->dev_id + 1);
2138 	fep->mii_bus->priv = fep;
2139 	fep->mii_bus->parent = &pdev->dev;
2140 
2141 	err = of_mdiobus_register(fep->mii_bus, node);
2142 	of_node_put(node);
2143 	if (err)
2144 		goto err_out_free_mdiobus;
2145 
2146 	mii_cnt++;
2147 
2148 	/* save fec0 mii_bus */
2149 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2150 		fec0_mii_bus = fep->mii_bus;
2151 
2152 	return 0;
2153 
2154 err_out_free_mdiobus:
2155 	mdiobus_free(fep->mii_bus);
2156 err_out:
2157 	return err;
2158 }
2159 
2160 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2161 {
2162 	if (--mii_cnt == 0) {
2163 		mdiobus_unregister(fep->mii_bus);
2164 		mdiobus_free(fep->mii_bus);
2165 	}
2166 }
2167 
2168 static void fec_enet_get_drvinfo(struct net_device *ndev,
2169 				 struct ethtool_drvinfo *info)
2170 {
2171 	struct fec_enet_private *fep = netdev_priv(ndev);
2172 
2173 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2174 		sizeof(info->driver));
2175 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2176 }
2177 
2178 static int fec_enet_get_regs_len(struct net_device *ndev)
2179 {
2180 	struct fec_enet_private *fep = netdev_priv(ndev);
2181 	struct resource *r;
2182 	int s = 0;
2183 
2184 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2185 	if (r)
2186 		s = resource_size(r);
2187 
2188 	return s;
2189 }
2190 
2191 /* List of registers that can be safety be read to dump them with ethtool */
2192 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2193 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2194 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2195 static __u32 fec_enet_register_version = 2;
2196 static u32 fec_enet_register_offset[] = {
2197 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2198 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2199 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2200 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2201 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2202 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2203 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2204 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2205 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2206 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2207 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2208 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2209 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2210 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2211 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2212 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2213 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2214 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2215 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2216 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2217 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2218 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2219 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2220 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2221 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2222 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2223 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2224 };
2225 #else
2226 static __u32 fec_enet_register_version = 1;
2227 static u32 fec_enet_register_offset[] = {
2228 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2229 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2230 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2231 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2232 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2233 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2234 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2235 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2236 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2237 };
2238 #endif
2239 
2240 static void fec_enet_get_regs(struct net_device *ndev,
2241 			      struct ethtool_regs *regs, void *regbuf)
2242 {
2243 	struct fec_enet_private *fep = netdev_priv(ndev);
2244 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2245 	struct device *dev = &fep->pdev->dev;
2246 	u32 *buf = (u32 *)regbuf;
2247 	u32 i, off;
2248 	int ret;
2249 
2250 	ret = pm_runtime_get_sync(dev);
2251 	if (ret < 0)
2252 		return;
2253 
2254 	regs->version = fec_enet_register_version;
2255 
2256 	memset(buf, 0, regs->len);
2257 
2258 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2259 		off = fec_enet_register_offset[i];
2260 
2261 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2262 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2263 			continue;
2264 
2265 		off >>= 2;
2266 		buf[off] = readl(&theregs[off]);
2267 	}
2268 
2269 	pm_runtime_mark_last_busy(dev);
2270 	pm_runtime_put_autosuspend(dev);
2271 }
2272 
2273 static int fec_enet_get_ts_info(struct net_device *ndev,
2274 				struct ethtool_ts_info *info)
2275 {
2276 	struct fec_enet_private *fep = netdev_priv(ndev);
2277 
2278 	if (fep->bufdesc_ex) {
2279 
2280 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2281 					SOF_TIMESTAMPING_RX_SOFTWARE |
2282 					SOF_TIMESTAMPING_SOFTWARE |
2283 					SOF_TIMESTAMPING_TX_HARDWARE |
2284 					SOF_TIMESTAMPING_RX_HARDWARE |
2285 					SOF_TIMESTAMPING_RAW_HARDWARE;
2286 		if (fep->ptp_clock)
2287 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2288 		else
2289 			info->phc_index = -1;
2290 
2291 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2292 				 (1 << HWTSTAMP_TX_ON);
2293 
2294 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2295 				   (1 << HWTSTAMP_FILTER_ALL);
2296 		return 0;
2297 	} else {
2298 		return ethtool_op_get_ts_info(ndev, info);
2299 	}
2300 }
2301 
2302 #if !defined(CONFIG_M5272)
2303 
2304 static void fec_enet_get_pauseparam(struct net_device *ndev,
2305 				    struct ethtool_pauseparam *pause)
2306 {
2307 	struct fec_enet_private *fep = netdev_priv(ndev);
2308 
2309 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2310 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2311 	pause->rx_pause = pause->tx_pause;
2312 }
2313 
2314 static int fec_enet_set_pauseparam(struct net_device *ndev,
2315 				   struct ethtool_pauseparam *pause)
2316 {
2317 	struct fec_enet_private *fep = netdev_priv(ndev);
2318 
2319 	if (!ndev->phydev)
2320 		return -ENODEV;
2321 
2322 	if (pause->tx_pause != pause->rx_pause) {
2323 		netdev_info(ndev,
2324 			"hardware only support enable/disable both tx and rx");
2325 		return -EINVAL;
2326 	}
2327 
2328 	fep->pause_flag = 0;
2329 
2330 	/* tx pause must be same as rx pause */
2331 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2332 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2333 
2334 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2335 			  pause->autoneg);
2336 
2337 	if (pause->autoneg) {
2338 		if (netif_running(ndev))
2339 			fec_stop(ndev);
2340 		phy_start_aneg(ndev->phydev);
2341 	}
2342 	if (netif_running(ndev)) {
2343 		napi_disable(&fep->napi);
2344 		netif_tx_lock_bh(ndev);
2345 		fec_restart(ndev);
2346 		netif_tx_wake_all_queues(ndev);
2347 		netif_tx_unlock_bh(ndev);
2348 		napi_enable(&fep->napi);
2349 	}
2350 
2351 	return 0;
2352 }
2353 
2354 static const struct fec_stat {
2355 	char name[ETH_GSTRING_LEN];
2356 	u16 offset;
2357 } fec_stats[] = {
2358 	/* RMON TX */
2359 	{ "tx_dropped", RMON_T_DROP },
2360 	{ "tx_packets", RMON_T_PACKETS },
2361 	{ "tx_broadcast", RMON_T_BC_PKT },
2362 	{ "tx_multicast", RMON_T_MC_PKT },
2363 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2364 	{ "tx_undersize", RMON_T_UNDERSIZE },
2365 	{ "tx_oversize", RMON_T_OVERSIZE },
2366 	{ "tx_fragment", RMON_T_FRAG },
2367 	{ "tx_jabber", RMON_T_JAB },
2368 	{ "tx_collision", RMON_T_COL },
2369 	{ "tx_64byte", RMON_T_P64 },
2370 	{ "tx_65to127byte", RMON_T_P65TO127 },
2371 	{ "tx_128to255byte", RMON_T_P128TO255 },
2372 	{ "tx_256to511byte", RMON_T_P256TO511 },
2373 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2374 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2375 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2376 	{ "tx_octets", RMON_T_OCTETS },
2377 
2378 	/* IEEE TX */
2379 	{ "IEEE_tx_drop", IEEE_T_DROP },
2380 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2381 	{ "IEEE_tx_1col", IEEE_T_1COL },
2382 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2383 	{ "IEEE_tx_def", IEEE_T_DEF },
2384 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2385 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2386 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2387 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2388 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2389 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2390 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2391 
2392 	/* RMON RX */
2393 	{ "rx_packets", RMON_R_PACKETS },
2394 	{ "rx_broadcast", RMON_R_BC_PKT },
2395 	{ "rx_multicast", RMON_R_MC_PKT },
2396 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2397 	{ "rx_undersize", RMON_R_UNDERSIZE },
2398 	{ "rx_oversize", RMON_R_OVERSIZE },
2399 	{ "rx_fragment", RMON_R_FRAG },
2400 	{ "rx_jabber", RMON_R_JAB },
2401 	{ "rx_64byte", RMON_R_P64 },
2402 	{ "rx_65to127byte", RMON_R_P65TO127 },
2403 	{ "rx_128to255byte", RMON_R_P128TO255 },
2404 	{ "rx_256to511byte", RMON_R_P256TO511 },
2405 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2406 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2407 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2408 	{ "rx_octets", RMON_R_OCTETS },
2409 
2410 	/* IEEE RX */
2411 	{ "IEEE_rx_drop", IEEE_R_DROP },
2412 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2413 	{ "IEEE_rx_crc", IEEE_R_CRC },
2414 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2415 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2416 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2417 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2418 };
2419 
2420 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2421 
2422 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2423 {
2424 	struct fec_enet_private *fep = netdev_priv(dev);
2425 	int i;
2426 
2427 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2428 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2429 }
2430 
2431 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2432 				       struct ethtool_stats *stats, u64 *data)
2433 {
2434 	struct fec_enet_private *fep = netdev_priv(dev);
2435 
2436 	if (netif_running(dev))
2437 		fec_enet_update_ethtool_stats(dev);
2438 
2439 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2440 }
2441 
2442 static void fec_enet_get_strings(struct net_device *netdev,
2443 	u32 stringset, u8 *data)
2444 {
2445 	int i;
2446 	switch (stringset) {
2447 	case ETH_SS_STATS:
2448 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2449 			memcpy(data + i * ETH_GSTRING_LEN,
2450 				fec_stats[i].name, ETH_GSTRING_LEN);
2451 		break;
2452 	}
2453 }
2454 
2455 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2456 {
2457 	switch (sset) {
2458 	case ETH_SS_STATS:
2459 		return ARRAY_SIZE(fec_stats);
2460 	default:
2461 		return -EOPNOTSUPP;
2462 	}
2463 }
2464 
2465 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2466 {
2467 	struct fec_enet_private *fep = netdev_priv(dev);
2468 	int i;
2469 
2470 	/* Disable MIB statistics counters */
2471 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2472 
2473 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2474 		writel(0, fep->hwp + fec_stats[i].offset);
2475 
2476 	/* Don't disable MIB statistics counters */
2477 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2478 }
2479 
2480 #else	/* !defined(CONFIG_M5272) */
2481 #define FEC_STATS_SIZE	0
2482 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2483 {
2484 }
2485 
2486 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2487 {
2488 }
2489 #endif /* !defined(CONFIG_M5272) */
2490 
2491 /* ITR clock source is enet system clock (clk_ahb).
2492  * TCTT unit is cycle_ns * 64 cycle
2493  * So, the ICTT value = X us / (cycle_ns * 64)
2494  */
2495 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2496 {
2497 	struct fec_enet_private *fep = netdev_priv(ndev);
2498 
2499 	return us * (fep->itr_clk_rate / 64000) / 1000;
2500 }
2501 
2502 /* Set threshold for interrupt coalescing */
2503 static void fec_enet_itr_coal_set(struct net_device *ndev)
2504 {
2505 	struct fec_enet_private *fep = netdev_priv(ndev);
2506 	int rx_itr, tx_itr;
2507 
2508 	/* Must be greater than zero to avoid unpredictable behavior */
2509 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2510 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2511 		return;
2512 
2513 	/* Select enet system clock as Interrupt Coalescing
2514 	 * timer Clock Source
2515 	 */
2516 	rx_itr = FEC_ITR_CLK_SEL;
2517 	tx_itr = FEC_ITR_CLK_SEL;
2518 
2519 	/* set ICFT and ICTT */
2520 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2521 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2522 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2523 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2524 
2525 	rx_itr |= FEC_ITR_EN;
2526 	tx_itr |= FEC_ITR_EN;
2527 
2528 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2529 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2530 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2531 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2532 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2533 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2534 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2535 	}
2536 }
2537 
2538 static int
2539 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2540 {
2541 	struct fec_enet_private *fep = netdev_priv(ndev);
2542 
2543 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2544 		return -EOPNOTSUPP;
2545 
2546 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2547 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2548 
2549 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2550 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2551 
2552 	return 0;
2553 }
2554 
2555 static int
2556 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2557 {
2558 	struct fec_enet_private *fep = netdev_priv(ndev);
2559 	struct device *dev = &fep->pdev->dev;
2560 	unsigned int cycle;
2561 
2562 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2563 		return -EOPNOTSUPP;
2564 
2565 	if (ec->rx_max_coalesced_frames > 255) {
2566 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (ec->tx_max_coalesced_frames > 255) {
2571 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2572 		return -EINVAL;
2573 	}
2574 
2575 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2576 	if (cycle > 0xFFFF) {
2577 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2578 		return -EINVAL;
2579 	}
2580 
2581 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2582 	if (cycle > 0xFFFF) {
2583 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2584 		return -EINVAL;
2585 	}
2586 
2587 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2588 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2589 
2590 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2591 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2592 
2593 	fec_enet_itr_coal_set(ndev);
2594 
2595 	return 0;
2596 }
2597 
2598 static void fec_enet_itr_coal_init(struct net_device *ndev)
2599 {
2600 	struct ethtool_coalesce ec;
2601 
2602 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2603 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2604 
2605 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2606 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2607 
2608 	fec_enet_set_coalesce(ndev, &ec);
2609 }
2610 
2611 static int fec_enet_get_tunable(struct net_device *netdev,
2612 				const struct ethtool_tunable *tuna,
2613 				void *data)
2614 {
2615 	struct fec_enet_private *fep = netdev_priv(netdev);
2616 	int ret = 0;
2617 
2618 	switch (tuna->id) {
2619 	case ETHTOOL_RX_COPYBREAK:
2620 		*(u32 *)data = fep->rx_copybreak;
2621 		break;
2622 	default:
2623 		ret = -EINVAL;
2624 		break;
2625 	}
2626 
2627 	return ret;
2628 }
2629 
2630 static int fec_enet_set_tunable(struct net_device *netdev,
2631 				const struct ethtool_tunable *tuna,
2632 				const void *data)
2633 {
2634 	struct fec_enet_private *fep = netdev_priv(netdev);
2635 	int ret = 0;
2636 
2637 	switch (tuna->id) {
2638 	case ETHTOOL_RX_COPYBREAK:
2639 		fep->rx_copybreak = *(u32 *)data;
2640 		break;
2641 	default:
2642 		ret = -EINVAL;
2643 		break;
2644 	}
2645 
2646 	return ret;
2647 }
2648 
2649 static void
2650 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2651 {
2652 	struct fec_enet_private *fep = netdev_priv(ndev);
2653 
2654 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2655 		wol->supported = WAKE_MAGIC;
2656 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2657 	} else {
2658 		wol->supported = wol->wolopts = 0;
2659 	}
2660 }
2661 
2662 static int
2663 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2664 {
2665 	struct fec_enet_private *fep = netdev_priv(ndev);
2666 
2667 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2668 		return -EINVAL;
2669 
2670 	if (wol->wolopts & ~WAKE_MAGIC)
2671 		return -EINVAL;
2672 
2673 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2674 	if (device_may_wakeup(&ndev->dev)) {
2675 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2676 		if (fep->irq[0] > 0)
2677 			enable_irq_wake(fep->irq[0]);
2678 	} else {
2679 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2680 		if (fep->irq[0] > 0)
2681 			disable_irq_wake(fep->irq[0]);
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static const struct ethtool_ops fec_enet_ethtool_ops = {
2688 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2689 				     ETHTOOL_COALESCE_MAX_FRAMES,
2690 	.get_drvinfo		= fec_enet_get_drvinfo,
2691 	.get_regs_len		= fec_enet_get_regs_len,
2692 	.get_regs		= fec_enet_get_regs,
2693 	.nway_reset		= phy_ethtool_nway_reset,
2694 	.get_link		= ethtool_op_get_link,
2695 	.get_coalesce		= fec_enet_get_coalesce,
2696 	.set_coalesce		= fec_enet_set_coalesce,
2697 #ifndef CONFIG_M5272
2698 	.get_pauseparam		= fec_enet_get_pauseparam,
2699 	.set_pauseparam		= fec_enet_set_pauseparam,
2700 	.get_strings		= fec_enet_get_strings,
2701 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2702 	.get_sset_count		= fec_enet_get_sset_count,
2703 #endif
2704 	.get_ts_info		= fec_enet_get_ts_info,
2705 	.get_tunable		= fec_enet_get_tunable,
2706 	.set_tunable		= fec_enet_set_tunable,
2707 	.get_wol		= fec_enet_get_wol,
2708 	.set_wol		= fec_enet_set_wol,
2709 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2710 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2711 };
2712 
2713 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2714 {
2715 	struct fec_enet_private *fep = netdev_priv(ndev);
2716 	struct phy_device *phydev = ndev->phydev;
2717 
2718 	if (!netif_running(ndev))
2719 		return -EINVAL;
2720 
2721 	if (!phydev)
2722 		return -ENODEV;
2723 
2724 	if (fep->bufdesc_ex) {
2725 		if (cmd == SIOCSHWTSTAMP)
2726 			return fec_ptp_set(ndev, rq);
2727 		if (cmd == SIOCGHWTSTAMP)
2728 			return fec_ptp_get(ndev, rq);
2729 	}
2730 
2731 	return phy_mii_ioctl(phydev, rq, cmd);
2732 }
2733 
2734 static void fec_enet_free_buffers(struct net_device *ndev)
2735 {
2736 	struct fec_enet_private *fep = netdev_priv(ndev);
2737 	unsigned int i;
2738 	struct sk_buff *skb;
2739 	struct bufdesc	*bdp;
2740 	struct fec_enet_priv_tx_q *txq;
2741 	struct fec_enet_priv_rx_q *rxq;
2742 	unsigned int q;
2743 
2744 	for (q = 0; q < fep->num_rx_queues; q++) {
2745 		rxq = fep->rx_queue[q];
2746 		bdp = rxq->bd.base;
2747 		for (i = 0; i < rxq->bd.ring_size; i++) {
2748 			skb = rxq->rx_skbuff[i];
2749 			rxq->rx_skbuff[i] = NULL;
2750 			if (skb) {
2751 				dma_unmap_single(&fep->pdev->dev,
2752 						 fec32_to_cpu(bdp->cbd_bufaddr),
2753 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2754 						 DMA_FROM_DEVICE);
2755 				dev_kfree_skb(skb);
2756 			}
2757 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2758 		}
2759 	}
2760 
2761 	for (q = 0; q < fep->num_tx_queues; q++) {
2762 		txq = fep->tx_queue[q];
2763 		for (i = 0; i < txq->bd.ring_size; i++) {
2764 			kfree(txq->tx_bounce[i]);
2765 			txq->tx_bounce[i] = NULL;
2766 			skb = txq->tx_skbuff[i];
2767 			txq->tx_skbuff[i] = NULL;
2768 			dev_kfree_skb(skb);
2769 		}
2770 	}
2771 }
2772 
2773 static void fec_enet_free_queue(struct net_device *ndev)
2774 {
2775 	struct fec_enet_private *fep = netdev_priv(ndev);
2776 	int i;
2777 	struct fec_enet_priv_tx_q *txq;
2778 
2779 	for (i = 0; i < fep->num_tx_queues; i++)
2780 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2781 			txq = fep->tx_queue[i];
2782 			dma_free_coherent(&fep->pdev->dev,
2783 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2784 					  txq->tso_hdrs,
2785 					  txq->tso_hdrs_dma);
2786 		}
2787 
2788 	for (i = 0; i < fep->num_rx_queues; i++)
2789 		kfree(fep->rx_queue[i]);
2790 	for (i = 0; i < fep->num_tx_queues; i++)
2791 		kfree(fep->tx_queue[i]);
2792 }
2793 
2794 static int fec_enet_alloc_queue(struct net_device *ndev)
2795 {
2796 	struct fec_enet_private *fep = netdev_priv(ndev);
2797 	int i;
2798 	int ret = 0;
2799 	struct fec_enet_priv_tx_q *txq;
2800 
2801 	for (i = 0; i < fep->num_tx_queues; i++) {
2802 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2803 		if (!txq) {
2804 			ret = -ENOMEM;
2805 			goto alloc_failed;
2806 		}
2807 
2808 		fep->tx_queue[i] = txq;
2809 		txq->bd.ring_size = TX_RING_SIZE;
2810 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2811 
2812 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2813 		txq->tx_wake_threshold =
2814 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2815 
2816 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2817 					txq->bd.ring_size * TSO_HEADER_SIZE,
2818 					&txq->tso_hdrs_dma,
2819 					GFP_KERNEL);
2820 		if (!txq->tso_hdrs) {
2821 			ret = -ENOMEM;
2822 			goto alloc_failed;
2823 		}
2824 	}
2825 
2826 	for (i = 0; i < fep->num_rx_queues; i++) {
2827 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2828 					   GFP_KERNEL);
2829 		if (!fep->rx_queue[i]) {
2830 			ret = -ENOMEM;
2831 			goto alloc_failed;
2832 		}
2833 
2834 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2835 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2836 	}
2837 	return ret;
2838 
2839 alloc_failed:
2840 	fec_enet_free_queue(ndev);
2841 	return ret;
2842 }
2843 
2844 static int
2845 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2846 {
2847 	struct fec_enet_private *fep = netdev_priv(ndev);
2848 	unsigned int i;
2849 	struct sk_buff *skb;
2850 	struct bufdesc	*bdp;
2851 	struct fec_enet_priv_rx_q *rxq;
2852 
2853 	rxq = fep->rx_queue[queue];
2854 	bdp = rxq->bd.base;
2855 	for (i = 0; i < rxq->bd.ring_size; i++) {
2856 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2857 		if (!skb)
2858 			goto err_alloc;
2859 
2860 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2861 			dev_kfree_skb(skb);
2862 			goto err_alloc;
2863 		}
2864 
2865 		rxq->rx_skbuff[i] = skb;
2866 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2867 
2868 		if (fep->bufdesc_ex) {
2869 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2870 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2871 		}
2872 
2873 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2874 	}
2875 
2876 	/* Set the last buffer to wrap. */
2877 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2878 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2879 	return 0;
2880 
2881  err_alloc:
2882 	fec_enet_free_buffers(ndev);
2883 	return -ENOMEM;
2884 }
2885 
2886 static int
2887 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2888 {
2889 	struct fec_enet_private *fep = netdev_priv(ndev);
2890 	unsigned int i;
2891 	struct bufdesc  *bdp;
2892 	struct fec_enet_priv_tx_q *txq;
2893 
2894 	txq = fep->tx_queue[queue];
2895 	bdp = txq->bd.base;
2896 	for (i = 0; i < txq->bd.ring_size; i++) {
2897 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2898 		if (!txq->tx_bounce[i])
2899 			goto err_alloc;
2900 
2901 		bdp->cbd_sc = cpu_to_fec16(0);
2902 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2903 
2904 		if (fep->bufdesc_ex) {
2905 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2906 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2907 		}
2908 
2909 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2910 	}
2911 
2912 	/* Set the last buffer to wrap. */
2913 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2914 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2915 
2916 	return 0;
2917 
2918  err_alloc:
2919 	fec_enet_free_buffers(ndev);
2920 	return -ENOMEM;
2921 }
2922 
2923 static int fec_enet_alloc_buffers(struct net_device *ndev)
2924 {
2925 	struct fec_enet_private *fep = netdev_priv(ndev);
2926 	unsigned int i;
2927 
2928 	for (i = 0; i < fep->num_rx_queues; i++)
2929 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2930 			return -ENOMEM;
2931 
2932 	for (i = 0; i < fep->num_tx_queues; i++)
2933 		if (fec_enet_alloc_txq_buffers(ndev, i))
2934 			return -ENOMEM;
2935 	return 0;
2936 }
2937 
2938 static int
2939 fec_enet_open(struct net_device *ndev)
2940 {
2941 	struct fec_enet_private *fep = netdev_priv(ndev);
2942 	int ret;
2943 	bool reset_again;
2944 
2945 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2946 	if (ret < 0)
2947 		return ret;
2948 
2949 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2950 	ret = fec_enet_clk_enable(ndev, true);
2951 	if (ret)
2952 		goto clk_enable;
2953 
2954 	/* During the first fec_enet_open call the PHY isn't probed at this
2955 	 * point. Therefore the phy_reset_after_clk_enable() call within
2956 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2957 	 * sure the PHY is working correctly we check if we need to reset again
2958 	 * later when the PHY is probed
2959 	 */
2960 	if (ndev->phydev && ndev->phydev->drv)
2961 		reset_again = false;
2962 	else
2963 		reset_again = true;
2964 
2965 	/* I should reset the ring buffers here, but I don't yet know
2966 	 * a simple way to do that.
2967 	 */
2968 
2969 	ret = fec_enet_alloc_buffers(ndev);
2970 	if (ret)
2971 		goto err_enet_alloc;
2972 
2973 	/* Init MAC prior to mii bus probe */
2974 	fec_restart(ndev);
2975 
2976 	/* Probe and connect to PHY when open the interface */
2977 	ret = fec_enet_mii_probe(ndev);
2978 	if (ret)
2979 		goto err_enet_mii_probe;
2980 
2981 	/* Call phy_reset_after_clk_enable() again if it failed during
2982 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2983 	 */
2984 	if (reset_again)
2985 		phy_reset_after_clk_enable(ndev->phydev);
2986 
2987 	if (fep->quirks & FEC_QUIRK_ERR006687)
2988 		imx6q_cpuidle_fec_irqs_used();
2989 
2990 	napi_enable(&fep->napi);
2991 	phy_start(ndev->phydev);
2992 	netif_tx_start_all_queues(ndev);
2993 
2994 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2995 				 FEC_WOL_FLAG_ENABLE);
2996 
2997 	return 0;
2998 
2999 err_enet_mii_probe:
3000 	fec_enet_free_buffers(ndev);
3001 err_enet_alloc:
3002 	fec_enet_clk_enable(ndev, false);
3003 clk_enable:
3004 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3005 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3006 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3007 	return ret;
3008 }
3009 
3010 static int
3011 fec_enet_close(struct net_device *ndev)
3012 {
3013 	struct fec_enet_private *fep = netdev_priv(ndev);
3014 
3015 	phy_stop(ndev->phydev);
3016 
3017 	if (netif_device_present(ndev)) {
3018 		napi_disable(&fep->napi);
3019 		netif_tx_disable(ndev);
3020 		fec_stop(ndev);
3021 	}
3022 
3023 	phy_disconnect(ndev->phydev);
3024 
3025 	if (fep->quirks & FEC_QUIRK_ERR006687)
3026 		imx6q_cpuidle_fec_irqs_unused();
3027 
3028 	fec_enet_update_ethtool_stats(ndev);
3029 
3030 	fec_enet_clk_enable(ndev, false);
3031 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3032 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3033 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3034 
3035 	fec_enet_free_buffers(ndev);
3036 
3037 	return 0;
3038 }
3039 
3040 /* Set or clear the multicast filter for this adaptor.
3041  * Skeleton taken from sunlance driver.
3042  * The CPM Ethernet implementation allows Multicast as well as individual
3043  * MAC address filtering.  Some of the drivers check to make sure it is
3044  * a group multicast address, and discard those that are not.  I guess I
3045  * will do the same for now, but just remove the test if you want
3046  * individual filtering as well (do the upper net layers want or support
3047  * this kind of feature?).
3048  */
3049 
3050 #define FEC_HASH_BITS	6		/* #bits in hash */
3051 
3052 static void set_multicast_list(struct net_device *ndev)
3053 {
3054 	struct fec_enet_private *fep = netdev_priv(ndev);
3055 	struct netdev_hw_addr *ha;
3056 	unsigned int crc, tmp;
3057 	unsigned char hash;
3058 	unsigned int hash_high = 0, hash_low = 0;
3059 
3060 	if (ndev->flags & IFF_PROMISC) {
3061 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3062 		tmp |= 0x8;
3063 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3064 		return;
3065 	}
3066 
3067 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3068 	tmp &= ~0x8;
3069 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3070 
3071 	if (ndev->flags & IFF_ALLMULTI) {
3072 		/* Catch all multicast addresses, so set the
3073 		 * filter to all 1's
3074 		 */
3075 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3076 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3077 
3078 		return;
3079 	}
3080 
3081 	/* Add the addresses in hash register */
3082 	netdev_for_each_mc_addr(ha, ndev) {
3083 		/* calculate crc32 value of mac address */
3084 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3085 
3086 		/* only upper 6 bits (FEC_HASH_BITS) are used
3087 		 * which point to specific bit in the hash registers
3088 		 */
3089 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3090 
3091 		if (hash > 31)
3092 			hash_high |= 1 << (hash - 32);
3093 		else
3094 			hash_low |= 1 << hash;
3095 	}
3096 
3097 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3098 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3099 }
3100 
3101 /* Set a MAC change in hardware. */
3102 static int
3103 fec_set_mac_address(struct net_device *ndev, void *p)
3104 {
3105 	struct fec_enet_private *fep = netdev_priv(ndev);
3106 	struct sockaddr *addr = p;
3107 
3108 	if (addr) {
3109 		if (!is_valid_ether_addr(addr->sa_data))
3110 			return -EADDRNOTAVAIL;
3111 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3112 	}
3113 
3114 	/* Add netif status check here to avoid system hang in below case:
3115 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3116 	 * After ethx down, fec all clocks are gated off and then register
3117 	 * access causes system hang.
3118 	 */
3119 	if (!netif_running(ndev))
3120 		return 0;
3121 
3122 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3123 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3124 		fep->hwp + FEC_ADDR_LOW);
3125 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3126 		fep->hwp + FEC_ADDR_HIGH);
3127 	return 0;
3128 }
3129 
3130 #ifdef CONFIG_NET_POLL_CONTROLLER
3131 /**
3132  * fec_poll_controller - FEC Poll controller function
3133  * @dev: The FEC network adapter
3134  *
3135  * Polled functionality used by netconsole and others in non interrupt mode
3136  *
3137  */
3138 static void fec_poll_controller(struct net_device *dev)
3139 {
3140 	int i;
3141 	struct fec_enet_private *fep = netdev_priv(dev);
3142 
3143 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3144 		if (fep->irq[i] > 0) {
3145 			disable_irq(fep->irq[i]);
3146 			fec_enet_interrupt(fep->irq[i], dev);
3147 			enable_irq(fep->irq[i]);
3148 		}
3149 	}
3150 }
3151 #endif
3152 
3153 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3154 	netdev_features_t features)
3155 {
3156 	struct fec_enet_private *fep = netdev_priv(netdev);
3157 	netdev_features_t changed = features ^ netdev->features;
3158 
3159 	netdev->features = features;
3160 
3161 	/* Receive checksum has been changed */
3162 	if (changed & NETIF_F_RXCSUM) {
3163 		if (features & NETIF_F_RXCSUM)
3164 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3165 		else
3166 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3167 	}
3168 }
3169 
3170 static int fec_set_features(struct net_device *netdev,
3171 	netdev_features_t features)
3172 {
3173 	struct fec_enet_private *fep = netdev_priv(netdev);
3174 	netdev_features_t changed = features ^ netdev->features;
3175 
3176 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3177 		napi_disable(&fep->napi);
3178 		netif_tx_lock_bh(netdev);
3179 		fec_stop(netdev);
3180 		fec_enet_set_netdev_features(netdev, features);
3181 		fec_restart(netdev);
3182 		netif_tx_wake_all_queues(netdev);
3183 		netif_tx_unlock_bh(netdev);
3184 		napi_enable(&fep->napi);
3185 	} else {
3186 		fec_enet_set_netdev_features(netdev, features);
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 static const struct net_device_ops fec_netdev_ops = {
3193 	.ndo_open		= fec_enet_open,
3194 	.ndo_stop		= fec_enet_close,
3195 	.ndo_start_xmit		= fec_enet_start_xmit,
3196 	.ndo_set_rx_mode	= set_multicast_list,
3197 	.ndo_validate_addr	= eth_validate_addr,
3198 	.ndo_tx_timeout		= fec_timeout,
3199 	.ndo_set_mac_address	= fec_set_mac_address,
3200 	.ndo_do_ioctl		= fec_enet_ioctl,
3201 #ifdef CONFIG_NET_POLL_CONTROLLER
3202 	.ndo_poll_controller	= fec_poll_controller,
3203 #endif
3204 	.ndo_set_features	= fec_set_features,
3205 };
3206 
3207 static const unsigned short offset_des_active_rxq[] = {
3208 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3209 };
3210 
3211 static const unsigned short offset_des_active_txq[] = {
3212 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3213 };
3214 
3215  /*
3216   * XXX:  We need to clean up on failure exits here.
3217   *
3218   */
3219 static int fec_enet_init(struct net_device *ndev)
3220 {
3221 	struct fec_enet_private *fep = netdev_priv(ndev);
3222 	struct bufdesc *cbd_base;
3223 	dma_addr_t bd_dma;
3224 	int bd_size;
3225 	unsigned int i;
3226 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3227 			sizeof(struct bufdesc);
3228 	unsigned dsize_log2 = __fls(dsize);
3229 	int ret;
3230 
3231 	WARN_ON(dsize != (1 << dsize_log2));
3232 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3233 	fep->rx_align = 0xf;
3234 	fep->tx_align = 0xf;
3235 #else
3236 	fep->rx_align = 0x3;
3237 	fep->tx_align = 0x3;
3238 #endif
3239 
3240 	/* Check mask of the streaming and coherent API */
3241 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3242 	if (ret < 0) {
3243 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3244 		return ret;
3245 	}
3246 
3247 	fec_enet_alloc_queue(ndev);
3248 
3249 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3250 
3251 	/* Allocate memory for buffer descriptors. */
3252 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3253 				       GFP_KERNEL);
3254 	if (!cbd_base) {
3255 		return -ENOMEM;
3256 	}
3257 
3258 	/* Get the Ethernet address */
3259 	fec_get_mac(ndev);
3260 	/* make sure MAC we just acquired is programmed into the hw */
3261 	fec_set_mac_address(ndev, NULL);
3262 
3263 	/* Set receive and transmit descriptor base. */
3264 	for (i = 0; i < fep->num_rx_queues; i++) {
3265 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3266 		unsigned size = dsize * rxq->bd.ring_size;
3267 
3268 		rxq->bd.qid = i;
3269 		rxq->bd.base = cbd_base;
3270 		rxq->bd.cur = cbd_base;
3271 		rxq->bd.dma = bd_dma;
3272 		rxq->bd.dsize = dsize;
3273 		rxq->bd.dsize_log2 = dsize_log2;
3274 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3275 		bd_dma += size;
3276 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3277 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3278 	}
3279 
3280 	for (i = 0; i < fep->num_tx_queues; i++) {
3281 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3282 		unsigned size = dsize * txq->bd.ring_size;
3283 
3284 		txq->bd.qid = i;
3285 		txq->bd.base = cbd_base;
3286 		txq->bd.cur = cbd_base;
3287 		txq->bd.dma = bd_dma;
3288 		txq->bd.dsize = dsize;
3289 		txq->bd.dsize_log2 = dsize_log2;
3290 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3291 		bd_dma += size;
3292 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3293 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3294 	}
3295 
3296 
3297 	/* The FEC Ethernet specific entries in the device structure */
3298 	ndev->watchdog_timeo = TX_TIMEOUT;
3299 	ndev->netdev_ops = &fec_netdev_ops;
3300 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3301 
3302 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3303 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3304 
3305 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3306 		/* enable hw VLAN support */
3307 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3308 
3309 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3310 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3311 
3312 		/* enable hw accelerator */
3313 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3314 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3315 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3316 	}
3317 
3318 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3319 		fep->tx_align = 0;
3320 		fep->rx_align = 0x3f;
3321 	}
3322 
3323 	ndev->hw_features = ndev->features;
3324 
3325 	fec_restart(ndev);
3326 
3327 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3328 		fec_enet_clear_ethtool_stats(ndev);
3329 	else
3330 		fec_enet_update_ethtool_stats(ndev);
3331 
3332 	return 0;
3333 }
3334 
3335 #ifdef CONFIG_OF
3336 static int fec_reset_phy(struct platform_device *pdev)
3337 {
3338 	int err, phy_reset;
3339 	bool active_high = false;
3340 	int msec = 1, phy_post_delay = 0;
3341 	struct device_node *np = pdev->dev.of_node;
3342 
3343 	if (!np)
3344 		return 0;
3345 
3346 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3347 	/* A sane reset duration should not be longer than 1s */
3348 	if (!err && msec > 1000)
3349 		msec = 1;
3350 
3351 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3352 	if (phy_reset == -EPROBE_DEFER)
3353 		return phy_reset;
3354 	else if (!gpio_is_valid(phy_reset))
3355 		return 0;
3356 
3357 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3358 	/* valid reset duration should be less than 1s */
3359 	if (!err && phy_post_delay > 1000)
3360 		return -EINVAL;
3361 
3362 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3363 
3364 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3365 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3366 			"phy-reset");
3367 	if (err) {
3368 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3369 		return err;
3370 	}
3371 
3372 	if (msec > 20)
3373 		msleep(msec);
3374 	else
3375 		usleep_range(msec * 1000, msec * 1000 + 1000);
3376 
3377 	gpio_set_value_cansleep(phy_reset, !active_high);
3378 
3379 	if (!phy_post_delay)
3380 		return 0;
3381 
3382 	if (phy_post_delay > 20)
3383 		msleep(phy_post_delay);
3384 	else
3385 		usleep_range(phy_post_delay * 1000,
3386 			     phy_post_delay * 1000 + 1000);
3387 
3388 	return 0;
3389 }
3390 #else /* CONFIG_OF */
3391 static int fec_reset_phy(struct platform_device *pdev)
3392 {
3393 	/*
3394 	 * In case of platform probe, the reset has been done
3395 	 * by machine code.
3396 	 */
3397 	return 0;
3398 }
3399 #endif /* CONFIG_OF */
3400 
3401 static void
3402 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3403 {
3404 	struct device_node *np = pdev->dev.of_node;
3405 
3406 	*num_tx = *num_rx = 1;
3407 
3408 	if (!np || !of_device_is_available(np))
3409 		return;
3410 
3411 	/* parse the num of tx and rx queues */
3412 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3413 
3414 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3415 
3416 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3417 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3418 			 *num_tx);
3419 		*num_tx = 1;
3420 		return;
3421 	}
3422 
3423 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3424 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3425 			 *num_rx);
3426 		*num_rx = 1;
3427 		return;
3428 	}
3429 
3430 }
3431 
3432 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3433 {
3434 	int irq_cnt = platform_irq_count(pdev);
3435 
3436 	if (irq_cnt > FEC_IRQ_NUM)
3437 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3438 	else if (irq_cnt == 2)
3439 		irq_cnt = 1;	/* last for pps */
3440 	else if (irq_cnt <= 0)
3441 		irq_cnt = 1;	/* At least 1 irq is needed */
3442 	return irq_cnt;
3443 }
3444 
3445 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3446 				   struct device_node *np)
3447 {
3448 	struct device_node *gpr_np;
3449 	u32 out_val[3];
3450 	int ret = 0;
3451 
3452 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3453 	if (!gpr_np)
3454 		return 0;
3455 
3456 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3457 					 ARRAY_SIZE(out_val));
3458 	if (ret) {
3459 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3460 		return ret;
3461 	}
3462 
3463 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3464 	if (IS_ERR(fep->stop_gpr.gpr)) {
3465 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3466 		ret = PTR_ERR(fep->stop_gpr.gpr);
3467 		fep->stop_gpr.gpr = NULL;
3468 		goto out;
3469 	}
3470 
3471 	fep->stop_gpr.reg = out_val[1];
3472 	fep->stop_gpr.bit = out_val[2];
3473 
3474 out:
3475 	of_node_put(gpr_np);
3476 
3477 	return ret;
3478 }
3479 
3480 static int
3481 fec_probe(struct platform_device *pdev)
3482 {
3483 	struct fec_enet_private *fep;
3484 	struct fec_platform_data *pdata;
3485 	phy_interface_t interface;
3486 	struct net_device *ndev;
3487 	int i, irq, ret = 0;
3488 	const struct of_device_id *of_id;
3489 	static int dev_id;
3490 	struct device_node *np = pdev->dev.of_node, *phy_node;
3491 	int num_tx_qs;
3492 	int num_rx_qs;
3493 	char irq_name[8];
3494 	int irq_cnt;
3495 	struct fec_devinfo *dev_info;
3496 
3497 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3498 
3499 	/* Init network device */
3500 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3501 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3502 	if (!ndev)
3503 		return -ENOMEM;
3504 
3505 	SET_NETDEV_DEV(ndev, &pdev->dev);
3506 
3507 	/* setup board info structure */
3508 	fep = netdev_priv(ndev);
3509 
3510 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3511 	if (of_id)
3512 		pdev->id_entry = of_id->data;
3513 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3514 	if (dev_info)
3515 		fep->quirks = dev_info->quirks;
3516 
3517 	fep->netdev = ndev;
3518 	fep->num_rx_queues = num_rx_qs;
3519 	fep->num_tx_queues = num_tx_qs;
3520 
3521 #if !defined(CONFIG_M5272)
3522 	/* default enable pause frame auto negotiation */
3523 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3524 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3525 #endif
3526 
3527 	/* Select default pin state */
3528 	pinctrl_pm_select_default_state(&pdev->dev);
3529 
3530 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3531 	if (IS_ERR(fep->hwp)) {
3532 		ret = PTR_ERR(fep->hwp);
3533 		goto failed_ioremap;
3534 	}
3535 
3536 	fep->pdev = pdev;
3537 	fep->dev_id = dev_id++;
3538 
3539 	platform_set_drvdata(pdev, ndev);
3540 
3541 	if ((of_machine_is_compatible("fsl,imx6q") ||
3542 	     of_machine_is_compatible("fsl,imx6dl")) &&
3543 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3544 		fep->quirks |= FEC_QUIRK_ERR006687;
3545 
3546 	if (of_get_property(np, "fsl,magic-packet", NULL))
3547 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3548 
3549 	ret = fec_enet_init_stop_mode(fep, np);
3550 	if (ret)
3551 		goto failed_stop_mode;
3552 
3553 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3554 	if (!phy_node && of_phy_is_fixed_link(np)) {
3555 		ret = of_phy_register_fixed_link(np);
3556 		if (ret < 0) {
3557 			dev_err(&pdev->dev,
3558 				"broken fixed-link specification\n");
3559 			goto failed_phy;
3560 		}
3561 		phy_node = of_node_get(np);
3562 	}
3563 	fep->phy_node = phy_node;
3564 
3565 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3566 	if (ret) {
3567 		pdata = dev_get_platdata(&pdev->dev);
3568 		if (pdata)
3569 			fep->phy_interface = pdata->phy;
3570 		else
3571 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3572 	} else {
3573 		fep->phy_interface = interface;
3574 	}
3575 
3576 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3577 	if (IS_ERR(fep->clk_ipg)) {
3578 		ret = PTR_ERR(fep->clk_ipg);
3579 		goto failed_clk;
3580 	}
3581 
3582 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3583 	if (IS_ERR(fep->clk_ahb)) {
3584 		ret = PTR_ERR(fep->clk_ahb);
3585 		goto failed_clk;
3586 	}
3587 
3588 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3589 
3590 	/* enet_out is optional, depends on board */
3591 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3592 	if (IS_ERR(fep->clk_enet_out))
3593 		fep->clk_enet_out = NULL;
3594 
3595 	fep->ptp_clk_on = false;
3596 	mutex_init(&fep->ptp_clk_mutex);
3597 
3598 	/* clk_ref is optional, depends on board */
3599 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3600 	if (IS_ERR(fep->clk_ref))
3601 		fep->clk_ref = NULL;
3602 
3603 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3604 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3605 	if (IS_ERR(fep->clk_ptp)) {
3606 		fep->clk_ptp = NULL;
3607 		fep->bufdesc_ex = false;
3608 	}
3609 
3610 	ret = fec_enet_clk_enable(ndev, true);
3611 	if (ret)
3612 		goto failed_clk;
3613 
3614 	ret = clk_prepare_enable(fep->clk_ipg);
3615 	if (ret)
3616 		goto failed_clk_ipg;
3617 	ret = clk_prepare_enable(fep->clk_ahb);
3618 	if (ret)
3619 		goto failed_clk_ahb;
3620 
3621 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3622 	if (!IS_ERR(fep->reg_phy)) {
3623 		ret = regulator_enable(fep->reg_phy);
3624 		if (ret) {
3625 			dev_err(&pdev->dev,
3626 				"Failed to enable phy regulator: %d\n", ret);
3627 			goto failed_regulator;
3628 		}
3629 	} else {
3630 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3631 			ret = -EPROBE_DEFER;
3632 			goto failed_regulator;
3633 		}
3634 		fep->reg_phy = NULL;
3635 	}
3636 
3637 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3638 	pm_runtime_use_autosuspend(&pdev->dev);
3639 	pm_runtime_get_noresume(&pdev->dev);
3640 	pm_runtime_set_active(&pdev->dev);
3641 	pm_runtime_enable(&pdev->dev);
3642 
3643 	ret = fec_reset_phy(pdev);
3644 	if (ret)
3645 		goto failed_reset;
3646 
3647 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3648 	if (fep->bufdesc_ex)
3649 		fec_ptp_init(pdev, irq_cnt);
3650 
3651 	ret = fec_enet_init(ndev);
3652 	if (ret)
3653 		goto failed_init;
3654 
3655 	for (i = 0; i < irq_cnt; i++) {
3656 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3657 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3658 		if (irq < 0)
3659 			irq = platform_get_irq(pdev, i);
3660 		if (irq < 0) {
3661 			ret = irq;
3662 			goto failed_irq;
3663 		}
3664 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3665 				       0, pdev->name, ndev);
3666 		if (ret)
3667 			goto failed_irq;
3668 
3669 		fep->irq[i] = irq;
3670 	}
3671 
3672 	ret = fec_enet_mii_init(pdev);
3673 	if (ret)
3674 		goto failed_mii_init;
3675 
3676 	/* Carrier starts down, phylib will bring it up */
3677 	netif_carrier_off(ndev);
3678 	fec_enet_clk_enable(ndev, false);
3679 	pinctrl_pm_select_sleep_state(&pdev->dev);
3680 
3681 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3682 
3683 	ret = register_netdev(ndev);
3684 	if (ret)
3685 		goto failed_register;
3686 
3687 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3688 			   FEC_WOL_HAS_MAGIC_PACKET);
3689 
3690 	if (fep->bufdesc_ex && fep->ptp_clock)
3691 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3692 
3693 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3694 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3695 
3696 	pm_runtime_mark_last_busy(&pdev->dev);
3697 	pm_runtime_put_autosuspend(&pdev->dev);
3698 
3699 	return 0;
3700 
3701 failed_register:
3702 	fec_enet_mii_remove(fep);
3703 failed_mii_init:
3704 failed_irq:
3705 failed_init:
3706 	fec_ptp_stop(pdev);
3707 	if (fep->reg_phy)
3708 		regulator_disable(fep->reg_phy);
3709 failed_reset:
3710 	pm_runtime_put_noidle(&pdev->dev);
3711 	pm_runtime_disable(&pdev->dev);
3712 failed_regulator:
3713 	clk_disable_unprepare(fep->clk_ahb);
3714 failed_clk_ahb:
3715 	clk_disable_unprepare(fep->clk_ipg);
3716 failed_clk_ipg:
3717 	fec_enet_clk_enable(ndev, false);
3718 failed_clk:
3719 	if (of_phy_is_fixed_link(np))
3720 		of_phy_deregister_fixed_link(np);
3721 	of_node_put(phy_node);
3722 failed_stop_mode:
3723 failed_phy:
3724 	dev_id--;
3725 failed_ioremap:
3726 	free_netdev(ndev);
3727 
3728 	return ret;
3729 }
3730 
3731 static int
3732 fec_drv_remove(struct platform_device *pdev)
3733 {
3734 	struct net_device *ndev = platform_get_drvdata(pdev);
3735 	struct fec_enet_private *fep = netdev_priv(ndev);
3736 	struct device_node *np = pdev->dev.of_node;
3737 	int ret;
3738 
3739 	ret = pm_runtime_get_sync(&pdev->dev);
3740 	if (ret < 0)
3741 		return ret;
3742 
3743 	cancel_work_sync(&fep->tx_timeout_work);
3744 	fec_ptp_stop(pdev);
3745 	unregister_netdev(ndev);
3746 	fec_enet_mii_remove(fep);
3747 	if (fep->reg_phy)
3748 		regulator_disable(fep->reg_phy);
3749 
3750 	if (of_phy_is_fixed_link(np))
3751 		of_phy_deregister_fixed_link(np);
3752 	of_node_put(fep->phy_node);
3753 	free_netdev(ndev);
3754 
3755 	clk_disable_unprepare(fep->clk_ahb);
3756 	clk_disable_unprepare(fep->clk_ipg);
3757 	pm_runtime_put_noidle(&pdev->dev);
3758 	pm_runtime_disable(&pdev->dev);
3759 
3760 	return 0;
3761 }
3762 
3763 static int __maybe_unused fec_suspend(struct device *dev)
3764 {
3765 	struct net_device *ndev = dev_get_drvdata(dev);
3766 	struct fec_enet_private *fep = netdev_priv(ndev);
3767 
3768 	rtnl_lock();
3769 	if (netif_running(ndev)) {
3770 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3771 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3772 		phy_stop(ndev->phydev);
3773 		napi_disable(&fep->napi);
3774 		netif_tx_lock_bh(ndev);
3775 		netif_device_detach(ndev);
3776 		netif_tx_unlock_bh(ndev);
3777 		fec_stop(ndev);
3778 		fec_enet_clk_enable(ndev, false);
3779 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3780 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3781 	}
3782 	rtnl_unlock();
3783 
3784 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3785 		regulator_disable(fep->reg_phy);
3786 
3787 	/* SOC supply clock to phy, when clock is disabled, phy link down
3788 	 * SOC control phy regulator, when regulator is disabled, phy link down
3789 	 */
3790 	if (fep->clk_enet_out || fep->reg_phy)
3791 		fep->link = 0;
3792 
3793 	return 0;
3794 }
3795 
3796 static int __maybe_unused fec_resume(struct device *dev)
3797 {
3798 	struct net_device *ndev = dev_get_drvdata(dev);
3799 	struct fec_enet_private *fep = netdev_priv(ndev);
3800 	int ret;
3801 	int val;
3802 
3803 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3804 		ret = regulator_enable(fep->reg_phy);
3805 		if (ret)
3806 			return ret;
3807 	}
3808 
3809 	rtnl_lock();
3810 	if (netif_running(ndev)) {
3811 		ret = fec_enet_clk_enable(ndev, true);
3812 		if (ret) {
3813 			rtnl_unlock();
3814 			goto failed_clk;
3815 		}
3816 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3817 			fec_enet_stop_mode(fep, false);
3818 
3819 			val = readl(fep->hwp + FEC_ECNTRL);
3820 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3821 			writel(val, fep->hwp + FEC_ECNTRL);
3822 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3823 		} else {
3824 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3825 		}
3826 		fec_restart(ndev);
3827 		netif_tx_lock_bh(ndev);
3828 		netif_device_attach(ndev);
3829 		netif_tx_unlock_bh(ndev);
3830 		napi_enable(&fep->napi);
3831 		phy_start(ndev->phydev);
3832 	}
3833 	rtnl_unlock();
3834 
3835 	return 0;
3836 
3837 failed_clk:
3838 	if (fep->reg_phy)
3839 		regulator_disable(fep->reg_phy);
3840 	return ret;
3841 }
3842 
3843 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3844 {
3845 	struct net_device *ndev = dev_get_drvdata(dev);
3846 	struct fec_enet_private *fep = netdev_priv(ndev);
3847 
3848 	clk_disable_unprepare(fep->clk_ahb);
3849 	clk_disable_unprepare(fep->clk_ipg);
3850 
3851 	return 0;
3852 }
3853 
3854 static int __maybe_unused fec_runtime_resume(struct device *dev)
3855 {
3856 	struct net_device *ndev = dev_get_drvdata(dev);
3857 	struct fec_enet_private *fep = netdev_priv(ndev);
3858 	int ret;
3859 
3860 	ret = clk_prepare_enable(fep->clk_ahb);
3861 	if (ret)
3862 		return ret;
3863 	ret = clk_prepare_enable(fep->clk_ipg);
3864 	if (ret)
3865 		goto failed_clk_ipg;
3866 
3867 	return 0;
3868 
3869 failed_clk_ipg:
3870 	clk_disable_unprepare(fep->clk_ahb);
3871 	return ret;
3872 }
3873 
3874 static const struct dev_pm_ops fec_pm_ops = {
3875 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3876 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3877 };
3878 
3879 static struct platform_driver fec_driver = {
3880 	.driver	= {
3881 		.name	= DRIVER_NAME,
3882 		.pm	= &fec_pm_ops,
3883 		.of_match_table = fec_dt_ids,
3884 		.suppress_bind_attrs = true,
3885 	},
3886 	.id_table = fec_devtype,
3887 	.probe	= fec_probe,
3888 	.remove	= fec_drv_remove,
3889 };
3890 
3891 module_platform_driver(fec_driver);
3892 
3893 MODULE_ALIAS("platform:"DRIVER_NAME);
3894 MODULE_LICENSE("GPL");
3895