1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <linux/mfd/syscon.h> 66 #include <linux/regmap.h> 67 #include <soc/imx/cpuidle.h> 68 69 #include <asm/cacheflush.h> 70 71 #include "fec.h" 72 73 static void set_multicast_list(struct net_device *ndev); 74 static void fec_enet_itr_coal_init(struct net_device *ndev); 75 76 #define DRIVER_NAME "fec" 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 struct fec_devinfo { 88 u32 quirks; 89 }; 90 91 static const struct fec_devinfo fec_imx25_info = { 92 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 93 FEC_QUIRK_HAS_FRREG, 94 }; 95 96 static const struct fec_devinfo fec_imx27_info = { 97 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 98 }; 99 100 static const struct fec_devinfo fec_imx28_info = { 101 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx6q_info = { 107 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 108 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 109 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 110 FEC_QUIRK_HAS_RACC, 111 }; 112 113 static const struct fec_devinfo fec_mvf600_info = { 114 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 115 }; 116 117 static const struct fec_devinfo fec_imx6x_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 121 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 122 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 123 }; 124 125 static const struct fec_devinfo fec_imx6ul_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 127 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 128 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 129 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 130 FEC_QUIRK_HAS_COALESCE, 131 }; 132 133 static struct platform_device_id fec_devtype[] = { 134 { 135 /* keep it for coldfire */ 136 .name = DRIVER_NAME, 137 .driver_data = 0, 138 }, { 139 .name = "imx25-fec", 140 .driver_data = (kernel_ulong_t)&fec_imx25_info, 141 }, { 142 .name = "imx27-fec", 143 .driver_data = (kernel_ulong_t)&fec_imx27_info, 144 }, { 145 .name = "imx28-fec", 146 .driver_data = (kernel_ulong_t)&fec_imx28_info, 147 }, { 148 .name = "imx6q-fec", 149 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 150 }, { 151 .name = "mvf600-fec", 152 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 153 }, { 154 .name = "imx6sx-fec", 155 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 156 }, { 157 .name = "imx6ul-fec", 158 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 159 }, { 160 /* sentinel */ 161 } 162 }; 163 MODULE_DEVICE_TABLE(platform, fec_devtype); 164 165 enum imx_fec_type { 166 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 167 IMX27_FEC, /* runs on i.mx27/35/51 */ 168 IMX28_FEC, 169 IMX6Q_FEC, 170 MVF600_FEC, 171 IMX6SX_FEC, 172 IMX6UL_FEC, 173 }; 174 175 static const struct of_device_id fec_dt_ids[] = { 176 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 177 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 178 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 179 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 180 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 181 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 182 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 183 { /* sentinel */ } 184 }; 185 MODULE_DEVICE_TABLE(of, fec_dt_ids); 186 187 static unsigned char macaddr[ETH_ALEN]; 188 module_param_array(macaddr, byte, NULL, 0); 189 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 190 191 #if defined(CONFIG_M5272) 192 /* 193 * Some hardware gets it MAC address out of local flash memory. 194 * if this is non-zero then assume it is the address to get MAC from. 195 */ 196 #if defined(CONFIG_NETtel) 197 #define FEC_FLASHMAC 0xf0006006 198 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 199 #define FEC_FLASHMAC 0xf0006000 200 #elif defined(CONFIG_CANCam) 201 #define FEC_FLASHMAC 0xf0020000 202 #elif defined (CONFIG_M5272C3) 203 #define FEC_FLASHMAC (0xffe04000 + 4) 204 #elif defined(CONFIG_MOD5272) 205 #define FEC_FLASHMAC 0xffc0406b 206 #else 207 #define FEC_FLASHMAC 0 208 #endif 209 #endif /* CONFIG_M5272 */ 210 211 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 212 * 213 * 2048 byte skbufs are allocated. However, alignment requirements 214 * varies between FEC variants. Worst case is 64, so round down by 64. 215 */ 216 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 217 #define PKT_MINBUF_SIZE 64 218 219 /* FEC receive acceleration */ 220 #define FEC_RACC_IPDIS (1 << 1) 221 #define FEC_RACC_PRODIS (1 << 2) 222 #define FEC_RACC_SHIFT16 BIT(7) 223 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 224 225 /* MIB Control Register */ 226 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 227 228 /* 229 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 230 * size bits. Other FEC hardware does not, so we need to take that into 231 * account when setting it. 232 */ 233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 234 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 235 defined(CONFIG_ARM64) 236 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 237 #else 238 #define OPT_FRAME_SIZE 0 239 #endif 240 241 /* FEC MII MMFR bits definition */ 242 #define FEC_MMFR_ST (1 << 30) 243 #define FEC_MMFR_ST_C45 (0) 244 #define FEC_MMFR_OP_READ (2 << 28) 245 #define FEC_MMFR_OP_READ_C45 (3 << 28) 246 #define FEC_MMFR_OP_WRITE (1 << 28) 247 #define FEC_MMFR_OP_ADDR_WRITE (0) 248 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 249 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 250 #define FEC_MMFR_TA (2 << 16) 251 #define FEC_MMFR_DATA(v) (v & 0xffff) 252 /* FEC ECR bits definition */ 253 #define FEC_ECR_MAGICEN (1 << 2) 254 #define FEC_ECR_SLEEP (1 << 3) 255 256 #define FEC_MII_TIMEOUT 30000 /* us */ 257 258 /* Transmitter timeout */ 259 #define TX_TIMEOUT (2 * HZ) 260 261 #define FEC_PAUSE_FLAG_AUTONEG 0x1 262 #define FEC_PAUSE_FLAG_ENABLE 0x2 263 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 264 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 265 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 266 267 #define COPYBREAK_DEFAULT 256 268 269 /* Max number of allowed TCP segments for software TSO */ 270 #define FEC_MAX_TSO_SEGS 100 271 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 272 273 #define IS_TSO_HEADER(txq, addr) \ 274 ((addr >= txq->tso_hdrs_dma) && \ 275 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 276 277 static int mii_cnt; 278 279 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 280 struct bufdesc_prop *bd) 281 { 282 return (bdp >= bd->last) ? bd->base 283 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 284 } 285 286 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 287 struct bufdesc_prop *bd) 288 { 289 return (bdp <= bd->base) ? bd->last 290 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 291 } 292 293 static int fec_enet_get_bd_index(struct bufdesc *bdp, 294 struct bufdesc_prop *bd) 295 { 296 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 297 } 298 299 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 300 { 301 int entries; 302 303 entries = (((const char *)txq->dirty_tx - 304 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 305 306 return entries >= 0 ? entries : entries + txq->bd.ring_size; 307 } 308 309 static void swap_buffer(void *bufaddr, int len) 310 { 311 int i; 312 unsigned int *buf = bufaddr; 313 314 for (i = 0; i < len; i += 4, buf++) 315 swab32s(buf); 316 } 317 318 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 319 { 320 int i; 321 unsigned int *src = src_buf; 322 unsigned int *dst = dst_buf; 323 324 for (i = 0; i < len; i += 4, src++, dst++) 325 *dst = swab32p(src); 326 } 327 328 static void fec_dump(struct net_device *ndev) 329 { 330 struct fec_enet_private *fep = netdev_priv(ndev); 331 struct bufdesc *bdp; 332 struct fec_enet_priv_tx_q *txq; 333 int index = 0; 334 335 netdev_info(ndev, "TX ring dump\n"); 336 pr_info("Nr SC addr len SKB\n"); 337 338 txq = fep->tx_queue[0]; 339 bdp = txq->bd.base; 340 341 do { 342 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 343 index, 344 bdp == txq->bd.cur ? 'S' : ' ', 345 bdp == txq->dirty_tx ? 'H' : ' ', 346 fec16_to_cpu(bdp->cbd_sc), 347 fec32_to_cpu(bdp->cbd_bufaddr), 348 fec16_to_cpu(bdp->cbd_datlen), 349 txq->tx_skbuff[index]); 350 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 351 index++; 352 } while (bdp != txq->bd.base); 353 } 354 355 static inline bool is_ipv4_pkt(struct sk_buff *skb) 356 { 357 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 358 } 359 360 static int 361 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 362 { 363 /* Only run for packets requiring a checksum. */ 364 if (skb->ip_summed != CHECKSUM_PARTIAL) 365 return 0; 366 367 if (unlikely(skb_cow_head(skb, 0))) 368 return -1; 369 370 if (is_ipv4_pkt(skb)) 371 ip_hdr(skb)->check = 0; 372 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 373 374 return 0; 375 } 376 377 static struct bufdesc * 378 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 379 struct sk_buff *skb, 380 struct net_device *ndev) 381 { 382 struct fec_enet_private *fep = netdev_priv(ndev); 383 struct bufdesc *bdp = txq->bd.cur; 384 struct bufdesc_ex *ebdp; 385 int nr_frags = skb_shinfo(skb)->nr_frags; 386 int frag, frag_len; 387 unsigned short status; 388 unsigned int estatus = 0; 389 skb_frag_t *this_frag; 390 unsigned int index; 391 void *bufaddr; 392 dma_addr_t addr; 393 int i; 394 395 for (frag = 0; frag < nr_frags; frag++) { 396 this_frag = &skb_shinfo(skb)->frags[frag]; 397 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 398 ebdp = (struct bufdesc_ex *)bdp; 399 400 status = fec16_to_cpu(bdp->cbd_sc); 401 status &= ~BD_ENET_TX_STATS; 402 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 403 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 404 405 /* Handle the last BD specially */ 406 if (frag == nr_frags - 1) { 407 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 408 if (fep->bufdesc_ex) { 409 estatus |= BD_ENET_TX_INT; 410 if (unlikely(skb_shinfo(skb)->tx_flags & 411 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 412 estatus |= BD_ENET_TX_TS; 413 } 414 } 415 416 if (fep->bufdesc_ex) { 417 if (fep->quirks & FEC_QUIRK_HAS_AVB) 418 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 419 if (skb->ip_summed == CHECKSUM_PARTIAL) 420 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 421 ebdp->cbd_bdu = 0; 422 ebdp->cbd_esc = cpu_to_fec32(estatus); 423 } 424 425 bufaddr = skb_frag_address(this_frag); 426 427 index = fec_enet_get_bd_index(bdp, &txq->bd); 428 if (((unsigned long) bufaddr) & fep->tx_align || 429 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 430 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 431 bufaddr = txq->tx_bounce[index]; 432 433 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 434 swap_buffer(bufaddr, frag_len); 435 } 436 437 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 438 DMA_TO_DEVICE); 439 if (dma_mapping_error(&fep->pdev->dev, addr)) { 440 if (net_ratelimit()) 441 netdev_err(ndev, "Tx DMA memory map failed\n"); 442 goto dma_mapping_error; 443 } 444 445 bdp->cbd_bufaddr = cpu_to_fec32(addr); 446 bdp->cbd_datlen = cpu_to_fec16(frag_len); 447 /* Make sure the updates to rest of the descriptor are 448 * performed before transferring ownership. 449 */ 450 wmb(); 451 bdp->cbd_sc = cpu_to_fec16(status); 452 } 453 454 return bdp; 455 dma_mapping_error: 456 bdp = txq->bd.cur; 457 for (i = 0; i < frag; i++) { 458 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 459 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 460 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 461 } 462 return ERR_PTR(-ENOMEM); 463 } 464 465 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 466 struct sk_buff *skb, struct net_device *ndev) 467 { 468 struct fec_enet_private *fep = netdev_priv(ndev); 469 int nr_frags = skb_shinfo(skb)->nr_frags; 470 struct bufdesc *bdp, *last_bdp; 471 void *bufaddr; 472 dma_addr_t addr; 473 unsigned short status; 474 unsigned short buflen; 475 unsigned int estatus = 0; 476 unsigned int index; 477 int entries_free; 478 479 entries_free = fec_enet_get_free_txdesc_num(txq); 480 if (entries_free < MAX_SKB_FRAGS + 1) { 481 dev_kfree_skb_any(skb); 482 if (net_ratelimit()) 483 netdev_err(ndev, "NOT enough BD for SG!\n"); 484 return NETDEV_TX_OK; 485 } 486 487 /* Protocol checksum off-load for TCP and UDP. */ 488 if (fec_enet_clear_csum(skb, ndev)) { 489 dev_kfree_skb_any(skb); 490 return NETDEV_TX_OK; 491 } 492 493 /* Fill in a Tx ring entry */ 494 bdp = txq->bd.cur; 495 last_bdp = bdp; 496 status = fec16_to_cpu(bdp->cbd_sc); 497 status &= ~BD_ENET_TX_STATS; 498 499 /* Set buffer length and buffer pointer */ 500 bufaddr = skb->data; 501 buflen = skb_headlen(skb); 502 503 index = fec_enet_get_bd_index(bdp, &txq->bd); 504 if (((unsigned long) bufaddr) & fep->tx_align || 505 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 506 memcpy(txq->tx_bounce[index], skb->data, buflen); 507 bufaddr = txq->tx_bounce[index]; 508 509 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 510 swap_buffer(bufaddr, buflen); 511 } 512 513 /* Push the data cache so the CPM does not get stale memory data. */ 514 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 515 if (dma_mapping_error(&fep->pdev->dev, addr)) { 516 dev_kfree_skb_any(skb); 517 if (net_ratelimit()) 518 netdev_err(ndev, "Tx DMA memory map failed\n"); 519 return NETDEV_TX_OK; 520 } 521 522 if (nr_frags) { 523 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 524 if (IS_ERR(last_bdp)) { 525 dma_unmap_single(&fep->pdev->dev, addr, 526 buflen, DMA_TO_DEVICE); 527 dev_kfree_skb_any(skb); 528 return NETDEV_TX_OK; 529 } 530 } else { 531 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 532 if (fep->bufdesc_ex) { 533 estatus = BD_ENET_TX_INT; 534 if (unlikely(skb_shinfo(skb)->tx_flags & 535 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 536 estatus |= BD_ENET_TX_TS; 537 } 538 } 539 bdp->cbd_bufaddr = cpu_to_fec32(addr); 540 bdp->cbd_datlen = cpu_to_fec16(buflen); 541 542 if (fep->bufdesc_ex) { 543 544 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 545 546 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 547 fep->hwts_tx_en)) 548 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 549 550 if (fep->quirks & FEC_QUIRK_HAS_AVB) 551 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 552 553 if (skb->ip_summed == CHECKSUM_PARTIAL) 554 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 555 556 ebdp->cbd_bdu = 0; 557 ebdp->cbd_esc = cpu_to_fec32(estatus); 558 } 559 560 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 561 /* Save skb pointer */ 562 txq->tx_skbuff[index] = skb; 563 564 /* Make sure the updates to rest of the descriptor are performed before 565 * transferring ownership. 566 */ 567 wmb(); 568 569 /* Send it on its way. Tell FEC it's ready, interrupt when done, 570 * it's the last BD of the frame, and to put the CRC on the end. 571 */ 572 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 573 bdp->cbd_sc = cpu_to_fec16(status); 574 575 /* If this was the last BD in the ring, start at the beginning again. */ 576 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 577 578 skb_tx_timestamp(skb); 579 580 /* Make sure the update to bdp and tx_skbuff are performed before 581 * txq->bd.cur. 582 */ 583 wmb(); 584 txq->bd.cur = bdp; 585 586 /* Trigger transmission start */ 587 writel(0, txq->bd.reg_desc_active); 588 589 return 0; 590 } 591 592 static int 593 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 594 struct net_device *ndev, 595 struct bufdesc *bdp, int index, char *data, 596 int size, bool last_tcp, bool is_last) 597 { 598 struct fec_enet_private *fep = netdev_priv(ndev); 599 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 600 unsigned short status; 601 unsigned int estatus = 0; 602 dma_addr_t addr; 603 604 status = fec16_to_cpu(bdp->cbd_sc); 605 status &= ~BD_ENET_TX_STATS; 606 607 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 608 609 if (((unsigned long) data) & fep->tx_align || 610 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 611 memcpy(txq->tx_bounce[index], data, size); 612 data = txq->tx_bounce[index]; 613 614 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 615 swap_buffer(data, size); 616 } 617 618 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 619 if (dma_mapping_error(&fep->pdev->dev, addr)) { 620 dev_kfree_skb_any(skb); 621 if (net_ratelimit()) 622 netdev_err(ndev, "Tx DMA memory map failed\n"); 623 return NETDEV_TX_BUSY; 624 } 625 626 bdp->cbd_datlen = cpu_to_fec16(size); 627 bdp->cbd_bufaddr = cpu_to_fec32(addr); 628 629 if (fep->bufdesc_ex) { 630 if (fep->quirks & FEC_QUIRK_HAS_AVB) 631 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 632 if (skb->ip_summed == CHECKSUM_PARTIAL) 633 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 634 ebdp->cbd_bdu = 0; 635 ebdp->cbd_esc = cpu_to_fec32(estatus); 636 } 637 638 /* Handle the last BD specially */ 639 if (last_tcp) 640 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 641 if (is_last) { 642 status |= BD_ENET_TX_INTR; 643 if (fep->bufdesc_ex) 644 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 645 } 646 647 bdp->cbd_sc = cpu_to_fec16(status); 648 649 return 0; 650 } 651 652 static int 653 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 654 struct sk_buff *skb, struct net_device *ndev, 655 struct bufdesc *bdp, int index) 656 { 657 struct fec_enet_private *fep = netdev_priv(ndev); 658 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 659 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 660 void *bufaddr; 661 unsigned long dmabuf; 662 unsigned short status; 663 unsigned int estatus = 0; 664 665 status = fec16_to_cpu(bdp->cbd_sc); 666 status &= ~BD_ENET_TX_STATS; 667 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 668 669 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 670 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 671 if (((unsigned long)bufaddr) & fep->tx_align || 672 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 673 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 674 bufaddr = txq->tx_bounce[index]; 675 676 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 677 swap_buffer(bufaddr, hdr_len); 678 679 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 680 hdr_len, DMA_TO_DEVICE); 681 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 682 dev_kfree_skb_any(skb); 683 if (net_ratelimit()) 684 netdev_err(ndev, "Tx DMA memory map failed\n"); 685 return NETDEV_TX_BUSY; 686 } 687 } 688 689 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 690 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 691 692 if (fep->bufdesc_ex) { 693 if (fep->quirks & FEC_QUIRK_HAS_AVB) 694 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 695 if (skb->ip_summed == CHECKSUM_PARTIAL) 696 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 697 ebdp->cbd_bdu = 0; 698 ebdp->cbd_esc = cpu_to_fec32(estatus); 699 } 700 701 bdp->cbd_sc = cpu_to_fec16(status); 702 703 return 0; 704 } 705 706 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 707 struct sk_buff *skb, 708 struct net_device *ndev) 709 { 710 struct fec_enet_private *fep = netdev_priv(ndev); 711 int hdr_len, total_len, data_left; 712 struct bufdesc *bdp = txq->bd.cur; 713 struct tso_t tso; 714 unsigned int index = 0; 715 int ret; 716 717 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 718 dev_kfree_skb_any(skb); 719 if (net_ratelimit()) 720 netdev_err(ndev, "NOT enough BD for TSO!\n"); 721 return NETDEV_TX_OK; 722 } 723 724 /* Protocol checksum off-load for TCP and UDP. */ 725 if (fec_enet_clear_csum(skb, ndev)) { 726 dev_kfree_skb_any(skb); 727 return NETDEV_TX_OK; 728 } 729 730 /* Initialize the TSO handler, and prepare the first payload */ 731 hdr_len = tso_start(skb, &tso); 732 733 total_len = skb->len - hdr_len; 734 while (total_len > 0) { 735 char *hdr; 736 737 index = fec_enet_get_bd_index(bdp, &txq->bd); 738 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 739 total_len -= data_left; 740 741 /* prepare packet headers: MAC + IP + TCP */ 742 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 743 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 744 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 745 if (ret) 746 goto err_release; 747 748 while (data_left > 0) { 749 int size; 750 751 size = min_t(int, tso.size, data_left); 752 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 753 index = fec_enet_get_bd_index(bdp, &txq->bd); 754 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 755 bdp, index, 756 tso.data, size, 757 size == data_left, 758 total_len == 0); 759 if (ret) 760 goto err_release; 761 762 data_left -= size; 763 tso_build_data(skb, &tso, size); 764 } 765 766 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 767 } 768 769 /* Save skb pointer */ 770 txq->tx_skbuff[index] = skb; 771 772 skb_tx_timestamp(skb); 773 txq->bd.cur = bdp; 774 775 /* Trigger transmission start */ 776 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 777 !readl(txq->bd.reg_desc_active) || 778 !readl(txq->bd.reg_desc_active) || 779 !readl(txq->bd.reg_desc_active) || 780 !readl(txq->bd.reg_desc_active)) 781 writel(0, txq->bd.reg_desc_active); 782 783 return 0; 784 785 err_release: 786 /* TODO: Release all used data descriptors for TSO */ 787 return ret; 788 } 789 790 static netdev_tx_t 791 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 792 { 793 struct fec_enet_private *fep = netdev_priv(ndev); 794 int entries_free; 795 unsigned short queue; 796 struct fec_enet_priv_tx_q *txq; 797 struct netdev_queue *nq; 798 int ret; 799 800 queue = skb_get_queue_mapping(skb); 801 txq = fep->tx_queue[queue]; 802 nq = netdev_get_tx_queue(ndev, queue); 803 804 if (skb_is_gso(skb)) 805 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 806 else 807 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 808 if (ret) 809 return ret; 810 811 entries_free = fec_enet_get_free_txdesc_num(txq); 812 if (entries_free <= txq->tx_stop_threshold) 813 netif_tx_stop_queue(nq); 814 815 return NETDEV_TX_OK; 816 } 817 818 /* Init RX & TX buffer descriptors 819 */ 820 static void fec_enet_bd_init(struct net_device *dev) 821 { 822 struct fec_enet_private *fep = netdev_priv(dev); 823 struct fec_enet_priv_tx_q *txq; 824 struct fec_enet_priv_rx_q *rxq; 825 struct bufdesc *bdp; 826 unsigned int i; 827 unsigned int q; 828 829 for (q = 0; q < fep->num_rx_queues; q++) { 830 /* Initialize the receive buffer descriptors. */ 831 rxq = fep->rx_queue[q]; 832 bdp = rxq->bd.base; 833 834 for (i = 0; i < rxq->bd.ring_size; i++) { 835 836 /* Initialize the BD for every fragment in the page. */ 837 if (bdp->cbd_bufaddr) 838 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 839 else 840 bdp->cbd_sc = cpu_to_fec16(0); 841 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 842 } 843 844 /* Set the last buffer to wrap */ 845 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 846 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 847 848 rxq->bd.cur = rxq->bd.base; 849 } 850 851 for (q = 0; q < fep->num_tx_queues; q++) { 852 /* ...and the same for transmit */ 853 txq = fep->tx_queue[q]; 854 bdp = txq->bd.base; 855 txq->bd.cur = bdp; 856 857 for (i = 0; i < txq->bd.ring_size; i++) { 858 /* Initialize the BD for every fragment in the page. */ 859 bdp->cbd_sc = cpu_to_fec16(0); 860 if (bdp->cbd_bufaddr && 861 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 862 dma_unmap_single(&fep->pdev->dev, 863 fec32_to_cpu(bdp->cbd_bufaddr), 864 fec16_to_cpu(bdp->cbd_datlen), 865 DMA_TO_DEVICE); 866 if (txq->tx_skbuff[i]) { 867 dev_kfree_skb_any(txq->tx_skbuff[i]); 868 txq->tx_skbuff[i] = NULL; 869 } 870 bdp->cbd_bufaddr = cpu_to_fec32(0); 871 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 872 } 873 874 /* Set the last buffer to wrap */ 875 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 876 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 877 txq->dirty_tx = bdp; 878 } 879 } 880 881 static void fec_enet_active_rxring(struct net_device *ndev) 882 { 883 struct fec_enet_private *fep = netdev_priv(ndev); 884 int i; 885 886 for (i = 0; i < fep->num_rx_queues; i++) 887 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 888 } 889 890 static void fec_enet_enable_ring(struct net_device *ndev) 891 { 892 struct fec_enet_private *fep = netdev_priv(ndev); 893 struct fec_enet_priv_tx_q *txq; 894 struct fec_enet_priv_rx_q *rxq; 895 int i; 896 897 for (i = 0; i < fep->num_rx_queues; i++) { 898 rxq = fep->rx_queue[i]; 899 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 900 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 901 902 /* enable DMA1/2 */ 903 if (i) 904 writel(RCMR_MATCHEN | RCMR_CMP(i), 905 fep->hwp + FEC_RCMR(i)); 906 } 907 908 for (i = 0; i < fep->num_tx_queues; i++) { 909 txq = fep->tx_queue[i]; 910 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 911 912 /* enable DMA1/2 */ 913 if (i) 914 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 915 fep->hwp + FEC_DMA_CFG(i)); 916 } 917 } 918 919 static void fec_enet_reset_skb(struct net_device *ndev) 920 { 921 struct fec_enet_private *fep = netdev_priv(ndev); 922 struct fec_enet_priv_tx_q *txq; 923 int i, j; 924 925 for (i = 0; i < fep->num_tx_queues; i++) { 926 txq = fep->tx_queue[i]; 927 928 for (j = 0; j < txq->bd.ring_size; j++) { 929 if (txq->tx_skbuff[j]) { 930 dev_kfree_skb_any(txq->tx_skbuff[j]); 931 txq->tx_skbuff[j] = NULL; 932 } 933 } 934 } 935 } 936 937 /* 938 * This function is called to start or restart the FEC during a link 939 * change, transmit timeout, or to reconfigure the FEC. The network 940 * packet processing for this device must be stopped before this call. 941 */ 942 static void 943 fec_restart(struct net_device *ndev) 944 { 945 struct fec_enet_private *fep = netdev_priv(ndev); 946 u32 val; 947 u32 temp_mac[2]; 948 u32 rcntl = OPT_FRAME_SIZE | 0x04; 949 u32 ecntl = 0x2; /* ETHEREN */ 950 951 /* Whack a reset. We should wait for this. 952 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 953 * instead of reset MAC itself. 954 */ 955 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 956 writel(0, fep->hwp + FEC_ECNTRL); 957 } else { 958 writel(1, fep->hwp + FEC_ECNTRL); 959 udelay(10); 960 } 961 962 /* 963 * enet-mac reset will reset mac address registers too, 964 * so need to reconfigure it. 965 */ 966 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 967 writel((__force u32)cpu_to_be32(temp_mac[0]), 968 fep->hwp + FEC_ADDR_LOW); 969 writel((__force u32)cpu_to_be32(temp_mac[1]), 970 fep->hwp + FEC_ADDR_HIGH); 971 972 /* Clear any outstanding interrupt, except MDIO. */ 973 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 974 975 fec_enet_bd_init(ndev); 976 977 fec_enet_enable_ring(ndev); 978 979 /* Reset tx SKB buffers. */ 980 fec_enet_reset_skb(ndev); 981 982 /* Enable MII mode */ 983 if (fep->full_duplex == DUPLEX_FULL) { 984 /* FD enable */ 985 writel(0x04, fep->hwp + FEC_X_CNTRL); 986 } else { 987 /* No Rcv on Xmit */ 988 rcntl |= 0x02; 989 writel(0x0, fep->hwp + FEC_X_CNTRL); 990 } 991 992 /* Set MII speed */ 993 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 994 995 #if !defined(CONFIG_M5272) 996 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 997 val = readl(fep->hwp + FEC_RACC); 998 /* align IP header */ 999 val |= FEC_RACC_SHIFT16; 1000 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1001 /* set RX checksum */ 1002 val |= FEC_RACC_OPTIONS; 1003 else 1004 val &= ~FEC_RACC_OPTIONS; 1005 writel(val, fep->hwp + FEC_RACC); 1006 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1007 } 1008 #endif 1009 1010 /* 1011 * The phy interface and speed need to get configured 1012 * differently on enet-mac. 1013 */ 1014 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1015 /* Enable flow control and length check */ 1016 rcntl |= 0x40000000 | 0x00000020; 1017 1018 /* RGMII, RMII or MII */ 1019 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1020 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1021 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1022 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1023 rcntl |= (1 << 6); 1024 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1025 rcntl |= (1 << 8); 1026 else 1027 rcntl &= ~(1 << 8); 1028 1029 /* 1G, 100M or 10M */ 1030 if (ndev->phydev) { 1031 if (ndev->phydev->speed == SPEED_1000) 1032 ecntl |= (1 << 5); 1033 else if (ndev->phydev->speed == SPEED_100) 1034 rcntl &= ~(1 << 9); 1035 else 1036 rcntl |= (1 << 9); 1037 } 1038 } else { 1039 #ifdef FEC_MIIGSK_ENR 1040 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1041 u32 cfgr; 1042 /* disable the gasket and wait */ 1043 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1044 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1045 udelay(1); 1046 1047 /* 1048 * configure the gasket: 1049 * RMII, 50 MHz, no loopback, no echo 1050 * MII, 25 MHz, no loopback, no echo 1051 */ 1052 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1053 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1054 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1055 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1056 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1057 1058 /* re-enable the gasket */ 1059 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1060 } 1061 #endif 1062 } 1063 1064 #if !defined(CONFIG_M5272) 1065 /* enable pause frame*/ 1066 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1067 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1068 ndev->phydev && ndev->phydev->pause)) { 1069 rcntl |= FEC_ENET_FCE; 1070 1071 /* set FIFO threshold parameter to reduce overrun */ 1072 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1073 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1074 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1075 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1076 1077 /* OPD */ 1078 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1079 } else { 1080 rcntl &= ~FEC_ENET_FCE; 1081 } 1082 #endif /* !defined(CONFIG_M5272) */ 1083 1084 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1085 1086 /* Setup multicast filter. */ 1087 set_multicast_list(ndev); 1088 #ifndef CONFIG_M5272 1089 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1090 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1091 #endif 1092 1093 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1094 /* enable ENET endian swap */ 1095 ecntl |= (1 << 8); 1096 /* enable ENET store and forward mode */ 1097 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1098 } 1099 1100 if (fep->bufdesc_ex) 1101 ecntl |= (1 << 4); 1102 1103 #ifndef CONFIG_M5272 1104 /* Enable the MIB statistic event counters */ 1105 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1106 #endif 1107 1108 /* And last, enable the transmit and receive processing */ 1109 writel(ecntl, fep->hwp + FEC_ECNTRL); 1110 fec_enet_active_rxring(ndev); 1111 1112 if (fep->bufdesc_ex) 1113 fec_ptp_start_cyclecounter(ndev); 1114 1115 /* Enable interrupts we wish to service */ 1116 if (fep->link) 1117 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1118 else 1119 writel(0, fep->hwp + FEC_IMASK); 1120 1121 /* Init the interrupt coalescing */ 1122 fec_enet_itr_coal_init(ndev); 1123 1124 } 1125 1126 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1127 { 1128 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1129 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1130 1131 if (stop_gpr->gpr) { 1132 if (enabled) 1133 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1134 BIT(stop_gpr->bit), 1135 BIT(stop_gpr->bit)); 1136 else 1137 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1138 BIT(stop_gpr->bit), 0); 1139 } else if (pdata && pdata->sleep_mode_enable) { 1140 pdata->sleep_mode_enable(enabled); 1141 } 1142 } 1143 1144 static void 1145 fec_stop(struct net_device *ndev) 1146 { 1147 struct fec_enet_private *fep = netdev_priv(ndev); 1148 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1149 u32 val; 1150 1151 /* We cannot expect a graceful transmit stop without link !!! */ 1152 if (fep->link) { 1153 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1154 udelay(10); 1155 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1156 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1157 } 1158 1159 /* Whack a reset. We should wait for this. 1160 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1161 * instead of reset MAC itself. 1162 */ 1163 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1164 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1165 writel(0, fep->hwp + FEC_ECNTRL); 1166 } else { 1167 writel(1, fep->hwp + FEC_ECNTRL); 1168 udelay(10); 1169 } 1170 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1171 } else { 1172 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1173 val = readl(fep->hwp + FEC_ECNTRL); 1174 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1175 writel(val, fep->hwp + FEC_ECNTRL); 1176 fec_enet_stop_mode(fep, true); 1177 } 1178 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1179 1180 /* We have to keep ENET enabled to have MII interrupt stay working */ 1181 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1182 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1183 writel(2, fep->hwp + FEC_ECNTRL); 1184 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1185 } 1186 } 1187 1188 1189 static void 1190 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1191 { 1192 struct fec_enet_private *fep = netdev_priv(ndev); 1193 1194 fec_dump(ndev); 1195 1196 ndev->stats.tx_errors++; 1197 1198 schedule_work(&fep->tx_timeout_work); 1199 } 1200 1201 static void fec_enet_timeout_work(struct work_struct *work) 1202 { 1203 struct fec_enet_private *fep = 1204 container_of(work, struct fec_enet_private, tx_timeout_work); 1205 struct net_device *ndev = fep->netdev; 1206 1207 rtnl_lock(); 1208 if (netif_device_present(ndev) || netif_running(ndev)) { 1209 napi_disable(&fep->napi); 1210 netif_tx_lock_bh(ndev); 1211 fec_restart(ndev); 1212 netif_tx_wake_all_queues(ndev); 1213 netif_tx_unlock_bh(ndev); 1214 napi_enable(&fep->napi); 1215 } 1216 rtnl_unlock(); 1217 } 1218 1219 static void 1220 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1221 struct skb_shared_hwtstamps *hwtstamps) 1222 { 1223 unsigned long flags; 1224 u64 ns; 1225 1226 spin_lock_irqsave(&fep->tmreg_lock, flags); 1227 ns = timecounter_cyc2time(&fep->tc, ts); 1228 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1229 1230 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1231 hwtstamps->hwtstamp = ns_to_ktime(ns); 1232 } 1233 1234 static void 1235 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1236 { 1237 struct fec_enet_private *fep; 1238 struct bufdesc *bdp; 1239 unsigned short status; 1240 struct sk_buff *skb; 1241 struct fec_enet_priv_tx_q *txq; 1242 struct netdev_queue *nq; 1243 int index = 0; 1244 int entries_free; 1245 1246 fep = netdev_priv(ndev); 1247 1248 txq = fep->tx_queue[queue_id]; 1249 /* get next bdp of dirty_tx */ 1250 nq = netdev_get_tx_queue(ndev, queue_id); 1251 bdp = txq->dirty_tx; 1252 1253 /* get next bdp of dirty_tx */ 1254 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1255 1256 while (bdp != READ_ONCE(txq->bd.cur)) { 1257 /* Order the load of bd.cur and cbd_sc */ 1258 rmb(); 1259 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1260 if (status & BD_ENET_TX_READY) 1261 break; 1262 1263 index = fec_enet_get_bd_index(bdp, &txq->bd); 1264 1265 skb = txq->tx_skbuff[index]; 1266 txq->tx_skbuff[index] = NULL; 1267 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1268 dma_unmap_single(&fep->pdev->dev, 1269 fec32_to_cpu(bdp->cbd_bufaddr), 1270 fec16_to_cpu(bdp->cbd_datlen), 1271 DMA_TO_DEVICE); 1272 bdp->cbd_bufaddr = cpu_to_fec32(0); 1273 if (!skb) 1274 goto skb_done; 1275 1276 /* Check for errors. */ 1277 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1278 BD_ENET_TX_RL | BD_ENET_TX_UN | 1279 BD_ENET_TX_CSL)) { 1280 ndev->stats.tx_errors++; 1281 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1282 ndev->stats.tx_heartbeat_errors++; 1283 if (status & BD_ENET_TX_LC) /* Late collision */ 1284 ndev->stats.tx_window_errors++; 1285 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1286 ndev->stats.tx_aborted_errors++; 1287 if (status & BD_ENET_TX_UN) /* Underrun */ 1288 ndev->stats.tx_fifo_errors++; 1289 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1290 ndev->stats.tx_carrier_errors++; 1291 } else { 1292 ndev->stats.tx_packets++; 1293 ndev->stats.tx_bytes += skb->len; 1294 } 1295 1296 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && 1297 fep->bufdesc_ex) { 1298 struct skb_shared_hwtstamps shhwtstamps; 1299 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1300 1301 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1302 skb_tstamp_tx(skb, &shhwtstamps); 1303 } 1304 1305 /* Deferred means some collisions occurred during transmit, 1306 * but we eventually sent the packet OK. 1307 */ 1308 if (status & BD_ENET_TX_DEF) 1309 ndev->stats.collisions++; 1310 1311 /* Free the sk buffer associated with this last transmit */ 1312 dev_kfree_skb_any(skb); 1313 skb_done: 1314 /* Make sure the update to bdp and tx_skbuff are performed 1315 * before dirty_tx 1316 */ 1317 wmb(); 1318 txq->dirty_tx = bdp; 1319 1320 /* Update pointer to next buffer descriptor to be transmitted */ 1321 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1322 1323 /* Since we have freed up a buffer, the ring is no longer full 1324 */ 1325 if (netif_tx_queue_stopped(nq)) { 1326 entries_free = fec_enet_get_free_txdesc_num(txq); 1327 if (entries_free >= txq->tx_wake_threshold) 1328 netif_tx_wake_queue(nq); 1329 } 1330 } 1331 1332 /* ERR006358: Keep the transmitter going */ 1333 if (bdp != txq->bd.cur && 1334 readl(txq->bd.reg_desc_active) == 0) 1335 writel(0, txq->bd.reg_desc_active); 1336 } 1337 1338 static void fec_enet_tx(struct net_device *ndev) 1339 { 1340 struct fec_enet_private *fep = netdev_priv(ndev); 1341 int i; 1342 1343 /* Make sure that AVB queues are processed first. */ 1344 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1345 fec_enet_tx_queue(ndev, i); 1346 } 1347 1348 static int 1349 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1350 { 1351 struct fec_enet_private *fep = netdev_priv(ndev); 1352 int off; 1353 1354 off = ((unsigned long)skb->data) & fep->rx_align; 1355 if (off) 1356 skb_reserve(skb, fep->rx_align + 1 - off); 1357 1358 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1359 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1360 if (net_ratelimit()) 1361 netdev_err(ndev, "Rx DMA memory map failed\n"); 1362 return -ENOMEM; 1363 } 1364 1365 return 0; 1366 } 1367 1368 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1369 struct bufdesc *bdp, u32 length, bool swap) 1370 { 1371 struct fec_enet_private *fep = netdev_priv(ndev); 1372 struct sk_buff *new_skb; 1373 1374 if (length > fep->rx_copybreak) 1375 return false; 1376 1377 new_skb = netdev_alloc_skb(ndev, length); 1378 if (!new_skb) 1379 return false; 1380 1381 dma_sync_single_for_cpu(&fep->pdev->dev, 1382 fec32_to_cpu(bdp->cbd_bufaddr), 1383 FEC_ENET_RX_FRSIZE - fep->rx_align, 1384 DMA_FROM_DEVICE); 1385 if (!swap) 1386 memcpy(new_skb->data, (*skb)->data, length); 1387 else 1388 swap_buffer2(new_skb->data, (*skb)->data, length); 1389 *skb = new_skb; 1390 1391 return true; 1392 } 1393 1394 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1395 * When we update through the ring, if the next incoming buffer has 1396 * not been given to the system, we just set the empty indicator, 1397 * effectively tossing the packet. 1398 */ 1399 static int 1400 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1401 { 1402 struct fec_enet_private *fep = netdev_priv(ndev); 1403 struct fec_enet_priv_rx_q *rxq; 1404 struct bufdesc *bdp; 1405 unsigned short status; 1406 struct sk_buff *skb_new = NULL; 1407 struct sk_buff *skb; 1408 ushort pkt_len; 1409 __u8 *data; 1410 int pkt_received = 0; 1411 struct bufdesc_ex *ebdp = NULL; 1412 bool vlan_packet_rcvd = false; 1413 u16 vlan_tag; 1414 int index = 0; 1415 bool is_copybreak; 1416 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1417 1418 #ifdef CONFIG_M532x 1419 flush_cache_all(); 1420 #endif 1421 rxq = fep->rx_queue[queue_id]; 1422 1423 /* First, grab all of the stats for the incoming packet. 1424 * These get messed up if we get called due to a busy condition. 1425 */ 1426 bdp = rxq->bd.cur; 1427 1428 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1429 1430 if (pkt_received >= budget) 1431 break; 1432 pkt_received++; 1433 1434 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1435 1436 /* Check for errors. */ 1437 status ^= BD_ENET_RX_LAST; 1438 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1439 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1440 BD_ENET_RX_CL)) { 1441 ndev->stats.rx_errors++; 1442 if (status & BD_ENET_RX_OV) { 1443 /* FIFO overrun */ 1444 ndev->stats.rx_fifo_errors++; 1445 goto rx_processing_done; 1446 } 1447 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1448 | BD_ENET_RX_LAST)) { 1449 /* Frame too long or too short. */ 1450 ndev->stats.rx_length_errors++; 1451 if (status & BD_ENET_RX_LAST) 1452 netdev_err(ndev, "rcv is not +last\n"); 1453 } 1454 if (status & BD_ENET_RX_CR) /* CRC Error */ 1455 ndev->stats.rx_crc_errors++; 1456 /* Report late collisions as a frame error. */ 1457 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1458 ndev->stats.rx_frame_errors++; 1459 goto rx_processing_done; 1460 } 1461 1462 /* Process the incoming frame. */ 1463 ndev->stats.rx_packets++; 1464 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1465 ndev->stats.rx_bytes += pkt_len; 1466 1467 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1468 skb = rxq->rx_skbuff[index]; 1469 1470 /* The packet length includes FCS, but we don't want to 1471 * include that when passing upstream as it messes up 1472 * bridging applications. 1473 */ 1474 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1475 need_swap); 1476 if (!is_copybreak) { 1477 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1478 if (unlikely(!skb_new)) { 1479 ndev->stats.rx_dropped++; 1480 goto rx_processing_done; 1481 } 1482 dma_unmap_single(&fep->pdev->dev, 1483 fec32_to_cpu(bdp->cbd_bufaddr), 1484 FEC_ENET_RX_FRSIZE - fep->rx_align, 1485 DMA_FROM_DEVICE); 1486 } 1487 1488 prefetch(skb->data - NET_IP_ALIGN); 1489 skb_put(skb, pkt_len - 4); 1490 data = skb->data; 1491 1492 if (!is_copybreak && need_swap) 1493 swap_buffer(data, pkt_len); 1494 1495 #if !defined(CONFIG_M5272) 1496 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1497 data = skb_pull_inline(skb, 2); 1498 #endif 1499 1500 /* Extract the enhanced buffer descriptor */ 1501 ebdp = NULL; 1502 if (fep->bufdesc_ex) 1503 ebdp = (struct bufdesc_ex *)bdp; 1504 1505 /* If this is a VLAN packet remove the VLAN Tag */ 1506 vlan_packet_rcvd = false; 1507 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1508 fep->bufdesc_ex && 1509 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1510 /* Push and remove the vlan tag */ 1511 struct vlan_hdr *vlan_header = 1512 (struct vlan_hdr *) (data + ETH_HLEN); 1513 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1514 1515 vlan_packet_rcvd = true; 1516 1517 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1518 skb_pull(skb, VLAN_HLEN); 1519 } 1520 1521 skb->protocol = eth_type_trans(skb, ndev); 1522 1523 /* Get receive timestamp from the skb */ 1524 if (fep->hwts_rx_en && fep->bufdesc_ex) 1525 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1526 skb_hwtstamps(skb)); 1527 1528 if (fep->bufdesc_ex && 1529 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1530 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1531 /* don't check it */ 1532 skb->ip_summed = CHECKSUM_UNNECESSARY; 1533 } else { 1534 skb_checksum_none_assert(skb); 1535 } 1536 } 1537 1538 /* Handle received VLAN packets */ 1539 if (vlan_packet_rcvd) 1540 __vlan_hwaccel_put_tag(skb, 1541 htons(ETH_P_8021Q), 1542 vlan_tag); 1543 1544 skb_record_rx_queue(skb, queue_id); 1545 napi_gro_receive(&fep->napi, skb); 1546 1547 if (is_copybreak) { 1548 dma_sync_single_for_device(&fep->pdev->dev, 1549 fec32_to_cpu(bdp->cbd_bufaddr), 1550 FEC_ENET_RX_FRSIZE - fep->rx_align, 1551 DMA_FROM_DEVICE); 1552 } else { 1553 rxq->rx_skbuff[index] = skb_new; 1554 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1555 } 1556 1557 rx_processing_done: 1558 /* Clear the status flags for this buffer */ 1559 status &= ~BD_ENET_RX_STATS; 1560 1561 /* Mark the buffer empty */ 1562 status |= BD_ENET_RX_EMPTY; 1563 1564 if (fep->bufdesc_ex) { 1565 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1566 1567 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1568 ebdp->cbd_prot = 0; 1569 ebdp->cbd_bdu = 0; 1570 } 1571 /* Make sure the updates to rest of the descriptor are 1572 * performed before transferring ownership. 1573 */ 1574 wmb(); 1575 bdp->cbd_sc = cpu_to_fec16(status); 1576 1577 /* Update BD pointer to next entry */ 1578 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1579 1580 /* Doing this here will keep the FEC running while we process 1581 * incoming frames. On a heavily loaded network, we should be 1582 * able to keep up at the expense of system resources. 1583 */ 1584 writel(0, rxq->bd.reg_desc_active); 1585 } 1586 rxq->bd.cur = bdp; 1587 return pkt_received; 1588 } 1589 1590 static int fec_enet_rx(struct net_device *ndev, int budget) 1591 { 1592 struct fec_enet_private *fep = netdev_priv(ndev); 1593 int i, done = 0; 1594 1595 /* Make sure that AVB queues are processed first. */ 1596 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1597 done += fec_enet_rx_queue(ndev, budget - done, i); 1598 1599 return done; 1600 } 1601 1602 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1603 { 1604 uint int_events; 1605 1606 int_events = readl(fep->hwp + FEC_IEVENT); 1607 1608 /* Don't clear MDIO events, we poll for those */ 1609 int_events &= ~FEC_ENET_MII; 1610 1611 writel(int_events, fep->hwp + FEC_IEVENT); 1612 1613 return int_events != 0; 1614 } 1615 1616 static irqreturn_t 1617 fec_enet_interrupt(int irq, void *dev_id) 1618 { 1619 struct net_device *ndev = dev_id; 1620 struct fec_enet_private *fep = netdev_priv(ndev); 1621 irqreturn_t ret = IRQ_NONE; 1622 1623 if (fec_enet_collect_events(fep) && fep->link) { 1624 ret = IRQ_HANDLED; 1625 1626 if (napi_schedule_prep(&fep->napi)) { 1627 /* Disable interrupts */ 1628 writel(0, fep->hwp + FEC_IMASK); 1629 __napi_schedule(&fep->napi); 1630 } 1631 } 1632 1633 return ret; 1634 } 1635 1636 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1637 { 1638 struct net_device *ndev = napi->dev; 1639 struct fec_enet_private *fep = netdev_priv(ndev); 1640 int done = 0; 1641 1642 do { 1643 done += fec_enet_rx(ndev, budget - done); 1644 fec_enet_tx(ndev); 1645 } while ((done < budget) && fec_enet_collect_events(fep)); 1646 1647 if (done < budget) { 1648 napi_complete_done(napi, done); 1649 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1650 } 1651 1652 return done; 1653 } 1654 1655 /* ------------------------------------------------------------------------- */ 1656 static void fec_get_mac(struct net_device *ndev) 1657 { 1658 struct fec_enet_private *fep = netdev_priv(ndev); 1659 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1660 unsigned char *iap, tmpaddr[ETH_ALEN]; 1661 1662 /* 1663 * try to get mac address in following order: 1664 * 1665 * 1) module parameter via kernel command line in form 1666 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1667 */ 1668 iap = macaddr; 1669 1670 /* 1671 * 2) from device tree data 1672 */ 1673 if (!is_valid_ether_addr(iap)) { 1674 struct device_node *np = fep->pdev->dev.of_node; 1675 if (np) { 1676 const char *mac = of_get_mac_address(np); 1677 if (!IS_ERR(mac)) 1678 iap = (unsigned char *) mac; 1679 } 1680 } 1681 1682 /* 1683 * 3) from flash or fuse (via platform data) 1684 */ 1685 if (!is_valid_ether_addr(iap)) { 1686 #ifdef CONFIG_M5272 1687 if (FEC_FLASHMAC) 1688 iap = (unsigned char *)FEC_FLASHMAC; 1689 #else 1690 if (pdata) 1691 iap = (unsigned char *)&pdata->mac; 1692 #endif 1693 } 1694 1695 /* 1696 * 4) FEC mac registers set by bootloader 1697 */ 1698 if (!is_valid_ether_addr(iap)) { 1699 *((__be32 *) &tmpaddr[0]) = 1700 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1701 *((__be16 *) &tmpaddr[4]) = 1702 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1703 iap = &tmpaddr[0]; 1704 } 1705 1706 /* 1707 * 5) random mac address 1708 */ 1709 if (!is_valid_ether_addr(iap)) { 1710 /* Report it and use a random ethernet address instead */ 1711 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1712 eth_hw_addr_random(ndev); 1713 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1714 ndev->dev_addr); 1715 return; 1716 } 1717 1718 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1719 1720 /* Adjust MAC if using macaddr */ 1721 if (iap == macaddr) 1722 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1723 } 1724 1725 /* ------------------------------------------------------------------------- */ 1726 1727 /* 1728 * Phy section 1729 */ 1730 static void fec_enet_adjust_link(struct net_device *ndev) 1731 { 1732 struct fec_enet_private *fep = netdev_priv(ndev); 1733 struct phy_device *phy_dev = ndev->phydev; 1734 int status_change = 0; 1735 1736 /* 1737 * If the netdev is down, or is going down, we're not interested 1738 * in link state events, so just mark our idea of the link as down 1739 * and ignore the event. 1740 */ 1741 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1742 fep->link = 0; 1743 } else if (phy_dev->link) { 1744 if (!fep->link) { 1745 fep->link = phy_dev->link; 1746 status_change = 1; 1747 } 1748 1749 if (fep->full_duplex != phy_dev->duplex) { 1750 fep->full_duplex = phy_dev->duplex; 1751 status_change = 1; 1752 } 1753 1754 if (phy_dev->speed != fep->speed) { 1755 fep->speed = phy_dev->speed; 1756 status_change = 1; 1757 } 1758 1759 /* if any of the above changed restart the FEC */ 1760 if (status_change) { 1761 napi_disable(&fep->napi); 1762 netif_tx_lock_bh(ndev); 1763 fec_restart(ndev); 1764 netif_tx_wake_all_queues(ndev); 1765 netif_tx_unlock_bh(ndev); 1766 napi_enable(&fep->napi); 1767 } 1768 } else { 1769 if (fep->link) { 1770 napi_disable(&fep->napi); 1771 netif_tx_lock_bh(ndev); 1772 fec_stop(ndev); 1773 netif_tx_unlock_bh(ndev); 1774 napi_enable(&fep->napi); 1775 fep->link = phy_dev->link; 1776 status_change = 1; 1777 } 1778 } 1779 1780 if (status_change) 1781 phy_print_status(phy_dev); 1782 } 1783 1784 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1785 { 1786 uint ievent; 1787 int ret; 1788 1789 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1790 ievent & FEC_ENET_MII, 2, 30000); 1791 1792 if (!ret) 1793 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1794 1795 return ret; 1796 } 1797 1798 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1799 { 1800 struct fec_enet_private *fep = bus->priv; 1801 struct device *dev = &fep->pdev->dev; 1802 int ret = 0, frame_start, frame_addr, frame_op; 1803 bool is_c45 = !!(regnum & MII_ADDR_C45); 1804 1805 ret = pm_runtime_get_sync(dev); 1806 if (ret < 0) 1807 return ret; 1808 1809 if (is_c45) { 1810 frame_start = FEC_MMFR_ST_C45; 1811 1812 /* write address */ 1813 frame_addr = (regnum >> 16); 1814 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1815 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1816 FEC_MMFR_TA | (regnum & 0xFFFF), 1817 fep->hwp + FEC_MII_DATA); 1818 1819 /* wait for end of transfer */ 1820 ret = fec_enet_mdio_wait(fep); 1821 if (ret) { 1822 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1823 goto out; 1824 } 1825 1826 frame_op = FEC_MMFR_OP_READ_C45; 1827 1828 } else { 1829 /* C22 read */ 1830 frame_op = FEC_MMFR_OP_READ; 1831 frame_start = FEC_MMFR_ST; 1832 frame_addr = regnum; 1833 } 1834 1835 /* start a read op */ 1836 writel(frame_start | frame_op | 1837 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1838 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1839 1840 /* wait for end of transfer */ 1841 ret = fec_enet_mdio_wait(fep); 1842 if (ret) { 1843 netdev_err(fep->netdev, "MDIO read timeout\n"); 1844 goto out; 1845 } 1846 1847 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1848 1849 out: 1850 pm_runtime_mark_last_busy(dev); 1851 pm_runtime_put_autosuspend(dev); 1852 1853 return ret; 1854 } 1855 1856 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1857 u16 value) 1858 { 1859 struct fec_enet_private *fep = bus->priv; 1860 struct device *dev = &fep->pdev->dev; 1861 int ret, frame_start, frame_addr; 1862 bool is_c45 = !!(regnum & MII_ADDR_C45); 1863 1864 ret = pm_runtime_get_sync(dev); 1865 if (ret < 0) 1866 return ret; 1867 else 1868 ret = 0; 1869 1870 if (is_c45) { 1871 frame_start = FEC_MMFR_ST_C45; 1872 1873 /* write address */ 1874 frame_addr = (regnum >> 16); 1875 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1876 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1877 FEC_MMFR_TA | (regnum & 0xFFFF), 1878 fep->hwp + FEC_MII_DATA); 1879 1880 /* wait for end of transfer */ 1881 ret = fec_enet_mdio_wait(fep); 1882 if (ret) { 1883 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1884 goto out; 1885 } 1886 } else { 1887 /* C22 write */ 1888 frame_start = FEC_MMFR_ST; 1889 frame_addr = regnum; 1890 } 1891 1892 /* start a write op */ 1893 writel(frame_start | FEC_MMFR_OP_WRITE | 1894 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1895 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1896 fep->hwp + FEC_MII_DATA); 1897 1898 /* wait for end of transfer */ 1899 ret = fec_enet_mdio_wait(fep); 1900 if (ret) 1901 netdev_err(fep->netdev, "MDIO write timeout\n"); 1902 1903 out: 1904 pm_runtime_mark_last_busy(dev); 1905 pm_runtime_put_autosuspend(dev); 1906 1907 return ret; 1908 } 1909 1910 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1911 { 1912 struct fec_enet_private *fep = netdev_priv(ndev); 1913 int ret; 1914 1915 if (enable) { 1916 ret = clk_prepare_enable(fep->clk_enet_out); 1917 if (ret) 1918 return ret; 1919 1920 if (fep->clk_ptp) { 1921 mutex_lock(&fep->ptp_clk_mutex); 1922 ret = clk_prepare_enable(fep->clk_ptp); 1923 if (ret) { 1924 mutex_unlock(&fep->ptp_clk_mutex); 1925 goto failed_clk_ptp; 1926 } else { 1927 fep->ptp_clk_on = true; 1928 } 1929 mutex_unlock(&fep->ptp_clk_mutex); 1930 } 1931 1932 ret = clk_prepare_enable(fep->clk_ref); 1933 if (ret) 1934 goto failed_clk_ref; 1935 1936 phy_reset_after_clk_enable(ndev->phydev); 1937 } else { 1938 clk_disable_unprepare(fep->clk_enet_out); 1939 if (fep->clk_ptp) { 1940 mutex_lock(&fep->ptp_clk_mutex); 1941 clk_disable_unprepare(fep->clk_ptp); 1942 fep->ptp_clk_on = false; 1943 mutex_unlock(&fep->ptp_clk_mutex); 1944 } 1945 clk_disable_unprepare(fep->clk_ref); 1946 } 1947 1948 return 0; 1949 1950 failed_clk_ref: 1951 if (fep->clk_ptp) { 1952 mutex_lock(&fep->ptp_clk_mutex); 1953 clk_disable_unprepare(fep->clk_ptp); 1954 fep->ptp_clk_on = false; 1955 mutex_unlock(&fep->ptp_clk_mutex); 1956 } 1957 failed_clk_ptp: 1958 if (fep->clk_enet_out) 1959 clk_disable_unprepare(fep->clk_enet_out); 1960 1961 return ret; 1962 } 1963 1964 static int fec_enet_mii_probe(struct net_device *ndev) 1965 { 1966 struct fec_enet_private *fep = netdev_priv(ndev); 1967 struct phy_device *phy_dev = NULL; 1968 char mdio_bus_id[MII_BUS_ID_SIZE]; 1969 char phy_name[MII_BUS_ID_SIZE + 3]; 1970 int phy_id; 1971 int dev_id = fep->dev_id; 1972 1973 if (fep->phy_node) { 1974 phy_dev = of_phy_connect(ndev, fep->phy_node, 1975 &fec_enet_adjust_link, 0, 1976 fep->phy_interface); 1977 if (!phy_dev) { 1978 netdev_err(ndev, "Unable to connect to phy\n"); 1979 return -ENODEV; 1980 } 1981 } else { 1982 /* check for attached phy */ 1983 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 1984 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 1985 continue; 1986 if (dev_id--) 1987 continue; 1988 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 1989 break; 1990 } 1991 1992 if (phy_id >= PHY_MAX_ADDR) { 1993 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 1994 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 1995 phy_id = 0; 1996 } 1997 1998 snprintf(phy_name, sizeof(phy_name), 1999 PHY_ID_FMT, mdio_bus_id, phy_id); 2000 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2001 fep->phy_interface); 2002 } 2003 2004 if (IS_ERR(phy_dev)) { 2005 netdev_err(ndev, "could not attach to PHY\n"); 2006 return PTR_ERR(phy_dev); 2007 } 2008 2009 /* mask with MAC supported features */ 2010 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2011 phy_set_max_speed(phy_dev, 1000); 2012 phy_remove_link_mode(phy_dev, 2013 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2014 #if !defined(CONFIG_M5272) 2015 phy_support_sym_pause(phy_dev); 2016 #endif 2017 } 2018 else 2019 phy_set_max_speed(phy_dev, 100); 2020 2021 fep->link = 0; 2022 fep->full_duplex = 0; 2023 2024 phy_attached_info(phy_dev); 2025 2026 return 0; 2027 } 2028 2029 static int fec_enet_mii_init(struct platform_device *pdev) 2030 { 2031 static struct mii_bus *fec0_mii_bus; 2032 struct net_device *ndev = platform_get_drvdata(pdev); 2033 struct fec_enet_private *fep = netdev_priv(ndev); 2034 bool suppress_preamble = false; 2035 struct device_node *node; 2036 int err = -ENXIO; 2037 u32 mii_speed, holdtime; 2038 u32 bus_freq; 2039 2040 /* 2041 * The i.MX28 dual fec interfaces are not equal. 2042 * Here are the differences: 2043 * 2044 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2045 * - fec0 acts as the 1588 time master while fec1 is slave 2046 * - external phys can only be configured by fec0 2047 * 2048 * That is to say fec1 can not work independently. It only works 2049 * when fec0 is working. The reason behind this design is that the 2050 * second interface is added primarily for Switch mode. 2051 * 2052 * Because of the last point above, both phys are attached on fec0 2053 * mdio interface in board design, and need to be configured by 2054 * fec0 mii_bus. 2055 */ 2056 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2057 /* fec1 uses fec0 mii_bus */ 2058 if (mii_cnt && fec0_mii_bus) { 2059 fep->mii_bus = fec0_mii_bus; 2060 mii_cnt++; 2061 return 0; 2062 } 2063 return -ENOENT; 2064 } 2065 2066 bus_freq = 2500000; /* 2.5MHz by default */ 2067 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2068 if (node) { 2069 of_property_read_u32(node, "clock-frequency", &bus_freq); 2070 suppress_preamble = of_property_read_bool(node, 2071 "suppress-preamble"); 2072 } 2073 2074 /* 2075 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2076 * 2077 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2078 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2079 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2080 * document. 2081 */ 2082 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2083 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2084 mii_speed--; 2085 if (mii_speed > 63) { 2086 dev_err(&pdev->dev, 2087 "fec clock (%lu) too fast to get right mii speed\n", 2088 clk_get_rate(fep->clk_ipg)); 2089 err = -EINVAL; 2090 goto err_out; 2091 } 2092 2093 /* 2094 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2095 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2096 * versions are RAZ there, so just ignore the difference and write the 2097 * register always. 2098 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2099 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2100 * output. 2101 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2102 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2103 * holdtime cannot result in a value greater than 3. 2104 */ 2105 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2106 2107 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2108 2109 if (suppress_preamble) 2110 fep->phy_speed |= BIT(7); 2111 2112 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2113 * MII event generation condition: 2114 * - writing MSCR: 2115 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2116 * mscr_reg_data_in[7:0] != 0 2117 * - writing MMFR: 2118 * - mscr[7:0]_not_zero 2119 */ 2120 writel(0, fep->hwp + FEC_MII_DATA); 2121 2122 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2123 2124 /* Clear any pending transaction complete indication */ 2125 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2126 2127 fep->mii_bus = mdiobus_alloc(); 2128 if (fep->mii_bus == NULL) { 2129 err = -ENOMEM; 2130 goto err_out; 2131 } 2132 2133 fep->mii_bus->name = "fec_enet_mii_bus"; 2134 fep->mii_bus->read = fec_enet_mdio_read; 2135 fep->mii_bus->write = fec_enet_mdio_write; 2136 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2137 pdev->name, fep->dev_id + 1); 2138 fep->mii_bus->priv = fep; 2139 fep->mii_bus->parent = &pdev->dev; 2140 2141 err = of_mdiobus_register(fep->mii_bus, node); 2142 of_node_put(node); 2143 if (err) 2144 goto err_out_free_mdiobus; 2145 2146 mii_cnt++; 2147 2148 /* save fec0 mii_bus */ 2149 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2150 fec0_mii_bus = fep->mii_bus; 2151 2152 return 0; 2153 2154 err_out_free_mdiobus: 2155 mdiobus_free(fep->mii_bus); 2156 err_out: 2157 return err; 2158 } 2159 2160 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2161 { 2162 if (--mii_cnt == 0) { 2163 mdiobus_unregister(fep->mii_bus); 2164 mdiobus_free(fep->mii_bus); 2165 } 2166 } 2167 2168 static void fec_enet_get_drvinfo(struct net_device *ndev, 2169 struct ethtool_drvinfo *info) 2170 { 2171 struct fec_enet_private *fep = netdev_priv(ndev); 2172 2173 strlcpy(info->driver, fep->pdev->dev.driver->name, 2174 sizeof(info->driver)); 2175 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2176 } 2177 2178 static int fec_enet_get_regs_len(struct net_device *ndev) 2179 { 2180 struct fec_enet_private *fep = netdev_priv(ndev); 2181 struct resource *r; 2182 int s = 0; 2183 2184 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2185 if (r) 2186 s = resource_size(r); 2187 2188 return s; 2189 } 2190 2191 /* List of registers that can be safety be read to dump them with ethtool */ 2192 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2193 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2194 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2195 static __u32 fec_enet_register_version = 2; 2196 static u32 fec_enet_register_offset[] = { 2197 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2198 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2199 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2200 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2201 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2202 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2203 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2204 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2205 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2206 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2207 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2208 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2209 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2210 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2211 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2212 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2213 RMON_T_P_GTE2048, RMON_T_OCTETS, 2214 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2215 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2216 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2217 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2218 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2219 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2220 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2221 RMON_R_P_GTE2048, RMON_R_OCTETS, 2222 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2223 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2224 }; 2225 #else 2226 static __u32 fec_enet_register_version = 1; 2227 static u32 fec_enet_register_offset[] = { 2228 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2229 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2230 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2231 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2232 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2233 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2234 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2235 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2236 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2237 }; 2238 #endif 2239 2240 static void fec_enet_get_regs(struct net_device *ndev, 2241 struct ethtool_regs *regs, void *regbuf) 2242 { 2243 struct fec_enet_private *fep = netdev_priv(ndev); 2244 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2245 struct device *dev = &fep->pdev->dev; 2246 u32 *buf = (u32 *)regbuf; 2247 u32 i, off; 2248 int ret; 2249 2250 ret = pm_runtime_get_sync(dev); 2251 if (ret < 0) 2252 return; 2253 2254 regs->version = fec_enet_register_version; 2255 2256 memset(buf, 0, regs->len); 2257 2258 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2259 off = fec_enet_register_offset[i]; 2260 2261 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2262 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2263 continue; 2264 2265 off >>= 2; 2266 buf[off] = readl(&theregs[off]); 2267 } 2268 2269 pm_runtime_mark_last_busy(dev); 2270 pm_runtime_put_autosuspend(dev); 2271 } 2272 2273 static int fec_enet_get_ts_info(struct net_device *ndev, 2274 struct ethtool_ts_info *info) 2275 { 2276 struct fec_enet_private *fep = netdev_priv(ndev); 2277 2278 if (fep->bufdesc_ex) { 2279 2280 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2281 SOF_TIMESTAMPING_RX_SOFTWARE | 2282 SOF_TIMESTAMPING_SOFTWARE | 2283 SOF_TIMESTAMPING_TX_HARDWARE | 2284 SOF_TIMESTAMPING_RX_HARDWARE | 2285 SOF_TIMESTAMPING_RAW_HARDWARE; 2286 if (fep->ptp_clock) 2287 info->phc_index = ptp_clock_index(fep->ptp_clock); 2288 else 2289 info->phc_index = -1; 2290 2291 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2292 (1 << HWTSTAMP_TX_ON); 2293 2294 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2295 (1 << HWTSTAMP_FILTER_ALL); 2296 return 0; 2297 } else { 2298 return ethtool_op_get_ts_info(ndev, info); 2299 } 2300 } 2301 2302 #if !defined(CONFIG_M5272) 2303 2304 static void fec_enet_get_pauseparam(struct net_device *ndev, 2305 struct ethtool_pauseparam *pause) 2306 { 2307 struct fec_enet_private *fep = netdev_priv(ndev); 2308 2309 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2310 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2311 pause->rx_pause = pause->tx_pause; 2312 } 2313 2314 static int fec_enet_set_pauseparam(struct net_device *ndev, 2315 struct ethtool_pauseparam *pause) 2316 { 2317 struct fec_enet_private *fep = netdev_priv(ndev); 2318 2319 if (!ndev->phydev) 2320 return -ENODEV; 2321 2322 if (pause->tx_pause != pause->rx_pause) { 2323 netdev_info(ndev, 2324 "hardware only support enable/disable both tx and rx"); 2325 return -EINVAL; 2326 } 2327 2328 fep->pause_flag = 0; 2329 2330 /* tx pause must be same as rx pause */ 2331 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2332 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2333 2334 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2335 pause->autoneg); 2336 2337 if (pause->autoneg) { 2338 if (netif_running(ndev)) 2339 fec_stop(ndev); 2340 phy_start_aneg(ndev->phydev); 2341 } 2342 if (netif_running(ndev)) { 2343 napi_disable(&fep->napi); 2344 netif_tx_lock_bh(ndev); 2345 fec_restart(ndev); 2346 netif_tx_wake_all_queues(ndev); 2347 netif_tx_unlock_bh(ndev); 2348 napi_enable(&fep->napi); 2349 } 2350 2351 return 0; 2352 } 2353 2354 static const struct fec_stat { 2355 char name[ETH_GSTRING_LEN]; 2356 u16 offset; 2357 } fec_stats[] = { 2358 /* RMON TX */ 2359 { "tx_dropped", RMON_T_DROP }, 2360 { "tx_packets", RMON_T_PACKETS }, 2361 { "tx_broadcast", RMON_T_BC_PKT }, 2362 { "tx_multicast", RMON_T_MC_PKT }, 2363 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2364 { "tx_undersize", RMON_T_UNDERSIZE }, 2365 { "tx_oversize", RMON_T_OVERSIZE }, 2366 { "tx_fragment", RMON_T_FRAG }, 2367 { "tx_jabber", RMON_T_JAB }, 2368 { "tx_collision", RMON_T_COL }, 2369 { "tx_64byte", RMON_T_P64 }, 2370 { "tx_65to127byte", RMON_T_P65TO127 }, 2371 { "tx_128to255byte", RMON_T_P128TO255 }, 2372 { "tx_256to511byte", RMON_T_P256TO511 }, 2373 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2374 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2375 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2376 { "tx_octets", RMON_T_OCTETS }, 2377 2378 /* IEEE TX */ 2379 { "IEEE_tx_drop", IEEE_T_DROP }, 2380 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2381 { "IEEE_tx_1col", IEEE_T_1COL }, 2382 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2383 { "IEEE_tx_def", IEEE_T_DEF }, 2384 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2385 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2386 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2387 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2388 { "IEEE_tx_sqe", IEEE_T_SQE }, 2389 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2390 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2391 2392 /* RMON RX */ 2393 { "rx_packets", RMON_R_PACKETS }, 2394 { "rx_broadcast", RMON_R_BC_PKT }, 2395 { "rx_multicast", RMON_R_MC_PKT }, 2396 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2397 { "rx_undersize", RMON_R_UNDERSIZE }, 2398 { "rx_oversize", RMON_R_OVERSIZE }, 2399 { "rx_fragment", RMON_R_FRAG }, 2400 { "rx_jabber", RMON_R_JAB }, 2401 { "rx_64byte", RMON_R_P64 }, 2402 { "rx_65to127byte", RMON_R_P65TO127 }, 2403 { "rx_128to255byte", RMON_R_P128TO255 }, 2404 { "rx_256to511byte", RMON_R_P256TO511 }, 2405 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2406 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2407 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2408 { "rx_octets", RMON_R_OCTETS }, 2409 2410 /* IEEE RX */ 2411 { "IEEE_rx_drop", IEEE_R_DROP }, 2412 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2413 { "IEEE_rx_crc", IEEE_R_CRC }, 2414 { "IEEE_rx_align", IEEE_R_ALIGN }, 2415 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2416 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2417 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2418 }; 2419 2420 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2421 2422 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2423 { 2424 struct fec_enet_private *fep = netdev_priv(dev); 2425 int i; 2426 2427 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2428 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2429 } 2430 2431 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2432 struct ethtool_stats *stats, u64 *data) 2433 { 2434 struct fec_enet_private *fep = netdev_priv(dev); 2435 2436 if (netif_running(dev)) 2437 fec_enet_update_ethtool_stats(dev); 2438 2439 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2440 } 2441 2442 static void fec_enet_get_strings(struct net_device *netdev, 2443 u32 stringset, u8 *data) 2444 { 2445 int i; 2446 switch (stringset) { 2447 case ETH_SS_STATS: 2448 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2449 memcpy(data + i * ETH_GSTRING_LEN, 2450 fec_stats[i].name, ETH_GSTRING_LEN); 2451 break; 2452 } 2453 } 2454 2455 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2456 { 2457 switch (sset) { 2458 case ETH_SS_STATS: 2459 return ARRAY_SIZE(fec_stats); 2460 default: 2461 return -EOPNOTSUPP; 2462 } 2463 } 2464 2465 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2466 { 2467 struct fec_enet_private *fep = netdev_priv(dev); 2468 int i; 2469 2470 /* Disable MIB statistics counters */ 2471 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2472 2473 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2474 writel(0, fep->hwp + fec_stats[i].offset); 2475 2476 /* Don't disable MIB statistics counters */ 2477 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2478 } 2479 2480 #else /* !defined(CONFIG_M5272) */ 2481 #define FEC_STATS_SIZE 0 2482 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2483 { 2484 } 2485 2486 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2487 { 2488 } 2489 #endif /* !defined(CONFIG_M5272) */ 2490 2491 /* ITR clock source is enet system clock (clk_ahb). 2492 * TCTT unit is cycle_ns * 64 cycle 2493 * So, the ICTT value = X us / (cycle_ns * 64) 2494 */ 2495 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2496 { 2497 struct fec_enet_private *fep = netdev_priv(ndev); 2498 2499 return us * (fep->itr_clk_rate / 64000) / 1000; 2500 } 2501 2502 /* Set threshold for interrupt coalescing */ 2503 static void fec_enet_itr_coal_set(struct net_device *ndev) 2504 { 2505 struct fec_enet_private *fep = netdev_priv(ndev); 2506 int rx_itr, tx_itr; 2507 2508 /* Must be greater than zero to avoid unpredictable behavior */ 2509 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2510 !fep->tx_time_itr || !fep->tx_pkts_itr) 2511 return; 2512 2513 /* Select enet system clock as Interrupt Coalescing 2514 * timer Clock Source 2515 */ 2516 rx_itr = FEC_ITR_CLK_SEL; 2517 tx_itr = FEC_ITR_CLK_SEL; 2518 2519 /* set ICFT and ICTT */ 2520 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2521 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2522 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2523 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2524 2525 rx_itr |= FEC_ITR_EN; 2526 tx_itr |= FEC_ITR_EN; 2527 2528 writel(tx_itr, fep->hwp + FEC_TXIC0); 2529 writel(rx_itr, fep->hwp + FEC_RXIC0); 2530 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2531 writel(tx_itr, fep->hwp + FEC_TXIC1); 2532 writel(rx_itr, fep->hwp + FEC_RXIC1); 2533 writel(tx_itr, fep->hwp + FEC_TXIC2); 2534 writel(rx_itr, fep->hwp + FEC_RXIC2); 2535 } 2536 } 2537 2538 static int 2539 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2540 { 2541 struct fec_enet_private *fep = netdev_priv(ndev); 2542 2543 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2544 return -EOPNOTSUPP; 2545 2546 ec->rx_coalesce_usecs = fep->rx_time_itr; 2547 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2548 2549 ec->tx_coalesce_usecs = fep->tx_time_itr; 2550 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2551 2552 return 0; 2553 } 2554 2555 static int 2556 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2557 { 2558 struct fec_enet_private *fep = netdev_priv(ndev); 2559 struct device *dev = &fep->pdev->dev; 2560 unsigned int cycle; 2561 2562 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2563 return -EOPNOTSUPP; 2564 2565 if (ec->rx_max_coalesced_frames > 255) { 2566 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2567 return -EINVAL; 2568 } 2569 2570 if (ec->tx_max_coalesced_frames > 255) { 2571 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2572 return -EINVAL; 2573 } 2574 2575 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2576 if (cycle > 0xFFFF) { 2577 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2578 return -EINVAL; 2579 } 2580 2581 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2582 if (cycle > 0xFFFF) { 2583 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2584 return -EINVAL; 2585 } 2586 2587 fep->rx_time_itr = ec->rx_coalesce_usecs; 2588 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2589 2590 fep->tx_time_itr = ec->tx_coalesce_usecs; 2591 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2592 2593 fec_enet_itr_coal_set(ndev); 2594 2595 return 0; 2596 } 2597 2598 static void fec_enet_itr_coal_init(struct net_device *ndev) 2599 { 2600 struct ethtool_coalesce ec; 2601 2602 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2603 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2604 2605 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2606 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2607 2608 fec_enet_set_coalesce(ndev, &ec); 2609 } 2610 2611 static int fec_enet_get_tunable(struct net_device *netdev, 2612 const struct ethtool_tunable *tuna, 2613 void *data) 2614 { 2615 struct fec_enet_private *fep = netdev_priv(netdev); 2616 int ret = 0; 2617 2618 switch (tuna->id) { 2619 case ETHTOOL_RX_COPYBREAK: 2620 *(u32 *)data = fep->rx_copybreak; 2621 break; 2622 default: 2623 ret = -EINVAL; 2624 break; 2625 } 2626 2627 return ret; 2628 } 2629 2630 static int fec_enet_set_tunable(struct net_device *netdev, 2631 const struct ethtool_tunable *tuna, 2632 const void *data) 2633 { 2634 struct fec_enet_private *fep = netdev_priv(netdev); 2635 int ret = 0; 2636 2637 switch (tuna->id) { 2638 case ETHTOOL_RX_COPYBREAK: 2639 fep->rx_copybreak = *(u32 *)data; 2640 break; 2641 default: 2642 ret = -EINVAL; 2643 break; 2644 } 2645 2646 return ret; 2647 } 2648 2649 static void 2650 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2651 { 2652 struct fec_enet_private *fep = netdev_priv(ndev); 2653 2654 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2655 wol->supported = WAKE_MAGIC; 2656 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2657 } else { 2658 wol->supported = wol->wolopts = 0; 2659 } 2660 } 2661 2662 static int 2663 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2664 { 2665 struct fec_enet_private *fep = netdev_priv(ndev); 2666 2667 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2668 return -EINVAL; 2669 2670 if (wol->wolopts & ~WAKE_MAGIC) 2671 return -EINVAL; 2672 2673 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2674 if (device_may_wakeup(&ndev->dev)) { 2675 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2676 if (fep->irq[0] > 0) 2677 enable_irq_wake(fep->irq[0]); 2678 } else { 2679 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2680 if (fep->irq[0] > 0) 2681 disable_irq_wake(fep->irq[0]); 2682 } 2683 2684 return 0; 2685 } 2686 2687 static const struct ethtool_ops fec_enet_ethtool_ops = { 2688 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2689 ETHTOOL_COALESCE_MAX_FRAMES, 2690 .get_drvinfo = fec_enet_get_drvinfo, 2691 .get_regs_len = fec_enet_get_regs_len, 2692 .get_regs = fec_enet_get_regs, 2693 .nway_reset = phy_ethtool_nway_reset, 2694 .get_link = ethtool_op_get_link, 2695 .get_coalesce = fec_enet_get_coalesce, 2696 .set_coalesce = fec_enet_set_coalesce, 2697 #ifndef CONFIG_M5272 2698 .get_pauseparam = fec_enet_get_pauseparam, 2699 .set_pauseparam = fec_enet_set_pauseparam, 2700 .get_strings = fec_enet_get_strings, 2701 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2702 .get_sset_count = fec_enet_get_sset_count, 2703 #endif 2704 .get_ts_info = fec_enet_get_ts_info, 2705 .get_tunable = fec_enet_get_tunable, 2706 .set_tunable = fec_enet_set_tunable, 2707 .get_wol = fec_enet_get_wol, 2708 .set_wol = fec_enet_set_wol, 2709 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2710 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2711 }; 2712 2713 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2714 { 2715 struct fec_enet_private *fep = netdev_priv(ndev); 2716 struct phy_device *phydev = ndev->phydev; 2717 2718 if (!netif_running(ndev)) 2719 return -EINVAL; 2720 2721 if (!phydev) 2722 return -ENODEV; 2723 2724 if (fep->bufdesc_ex) { 2725 if (cmd == SIOCSHWTSTAMP) 2726 return fec_ptp_set(ndev, rq); 2727 if (cmd == SIOCGHWTSTAMP) 2728 return fec_ptp_get(ndev, rq); 2729 } 2730 2731 return phy_mii_ioctl(phydev, rq, cmd); 2732 } 2733 2734 static void fec_enet_free_buffers(struct net_device *ndev) 2735 { 2736 struct fec_enet_private *fep = netdev_priv(ndev); 2737 unsigned int i; 2738 struct sk_buff *skb; 2739 struct bufdesc *bdp; 2740 struct fec_enet_priv_tx_q *txq; 2741 struct fec_enet_priv_rx_q *rxq; 2742 unsigned int q; 2743 2744 for (q = 0; q < fep->num_rx_queues; q++) { 2745 rxq = fep->rx_queue[q]; 2746 bdp = rxq->bd.base; 2747 for (i = 0; i < rxq->bd.ring_size; i++) { 2748 skb = rxq->rx_skbuff[i]; 2749 rxq->rx_skbuff[i] = NULL; 2750 if (skb) { 2751 dma_unmap_single(&fep->pdev->dev, 2752 fec32_to_cpu(bdp->cbd_bufaddr), 2753 FEC_ENET_RX_FRSIZE - fep->rx_align, 2754 DMA_FROM_DEVICE); 2755 dev_kfree_skb(skb); 2756 } 2757 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2758 } 2759 } 2760 2761 for (q = 0; q < fep->num_tx_queues; q++) { 2762 txq = fep->tx_queue[q]; 2763 for (i = 0; i < txq->bd.ring_size; i++) { 2764 kfree(txq->tx_bounce[i]); 2765 txq->tx_bounce[i] = NULL; 2766 skb = txq->tx_skbuff[i]; 2767 txq->tx_skbuff[i] = NULL; 2768 dev_kfree_skb(skb); 2769 } 2770 } 2771 } 2772 2773 static void fec_enet_free_queue(struct net_device *ndev) 2774 { 2775 struct fec_enet_private *fep = netdev_priv(ndev); 2776 int i; 2777 struct fec_enet_priv_tx_q *txq; 2778 2779 for (i = 0; i < fep->num_tx_queues; i++) 2780 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2781 txq = fep->tx_queue[i]; 2782 dma_free_coherent(&fep->pdev->dev, 2783 txq->bd.ring_size * TSO_HEADER_SIZE, 2784 txq->tso_hdrs, 2785 txq->tso_hdrs_dma); 2786 } 2787 2788 for (i = 0; i < fep->num_rx_queues; i++) 2789 kfree(fep->rx_queue[i]); 2790 for (i = 0; i < fep->num_tx_queues; i++) 2791 kfree(fep->tx_queue[i]); 2792 } 2793 2794 static int fec_enet_alloc_queue(struct net_device *ndev) 2795 { 2796 struct fec_enet_private *fep = netdev_priv(ndev); 2797 int i; 2798 int ret = 0; 2799 struct fec_enet_priv_tx_q *txq; 2800 2801 for (i = 0; i < fep->num_tx_queues; i++) { 2802 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2803 if (!txq) { 2804 ret = -ENOMEM; 2805 goto alloc_failed; 2806 } 2807 2808 fep->tx_queue[i] = txq; 2809 txq->bd.ring_size = TX_RING_SIZE; 2810 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2811 2812 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2813 txq->tx_wake_threshold = 2814 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2815 2816 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2817 txq->bd.ring_size * TSO_HEADER_SIZE, 2818 &txq->tso_hdrs_dma, 2819 GFP_KERNEL); 2820 if (!txq->tso_hdrs) { 2821 ret = -ENOMEM; 2822 goto alloc_failed; 2823 } 2824 } 2825 2826 for (i = 0; i < fep->num_rx_queues; i++) { 2827 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2828 GFP_KERNEL); 2829 if (!fep->rx_queue[i]) { 2830 ret = -ENOMEM; 2831 goto alloc_failed; 2832 } 2833 2834 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2835 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2836 } 2837 return ret; 2838 2839 alloc_failed: 2840 fec_enet_free_queue(ndev); 2841 return ret; 2842 } 2843 2844 static int 2845 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2846 { 2847 struct fec_enet_private *fep = netdev_priv(ndev); 2848 unsigned int i; 2849 struct sk_buff *skb; 2850 struct bufdesc *bdp; 2851 struct fec_enet_priv_rx_q *rxq; 2852 2853 rxq = fep->rx_queue[queue]; 2854 bdp = rxq->bd.base; 2855 for (i = 0; i < rxq->bd.ring_size; i++) { 2856 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2857 if (!skb) 2858 goto err_alloc; 2859 2860 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2861 dev_kfree_skb(skb); 2862 goto err_alloc; 2863 } 2864 2865 rxq->rx_skbuff[i] = skb; 2866 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2867 2868 if (fep->bufdesc_ex) { 2869 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2870 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2871 } 2872 2873 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2874 } 2875 2876 /* Set the last buffer to wrap. */ 2877 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2878 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2879 return 0; 2880 2881 err_alloc: 2882 fec_enet_free_buffers(ndev); 2883 return -ENOMEM; 2884 } 2885 2886 static int 2887 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2888 { 2889 struct fec_enet_private *fep = netdev_priv(ndev); 2890 unsigned int i; 2891 struct bufdesc *bdp; 2892 struct fec_enet_priv_tx_q *txq; 2893 2894 txq = fep->tx_queue[queue]; 2895 bdp = txq->bd.base; 2896 for (i = 0; i < txq->bd.ring_size; i++) { 2897 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2898 if (!txq->tx_bounce[i]) 2899 goto err_alloc; 2900 2901 bdp->cbd_sc = cpu_to_fec16(0); 2902 bdp->cbd_bufaddr = cpu_to_fec32(0); 2903 2904 if (fep->bufdesc_ex) { 2905 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2906 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2907 } 2908 2909 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2910 } 2911 2912 /* Set the last buffer to wrap. */ 2913 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2914 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2915 2916 return 0; 2917 2918 err_alloc: 2919 fec_enet_free_buffers(ndev); 2920 return -ENOMEM; 2921 } 2922 2923 static int fec_enet_alloc_buffers(struct net_device *ndev) 2924 { 2925 struct fec_enet_private *fep = netdev_priv(ndev); 2926 unsigned int i; 2927 2928 for (i = 0; i < fep->num_rx_queues; i++) 2929 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2930 return -ENOMEM; 2931 2932 for (i = 0; i < fep->num_tx_queues; i++) 2933 if (fec_enet_alloc_txq_buffers(ndev, i)) 2934 return -ENOMEM; 2935 return 0; 2936 } 2937 2938 static int 2939 fec_enet_open(struct net_device *ndev) 2940 { 2941 struct fec_enet_private *fep = netdev_priv(ndev); 2942 int ret; 2943 bool reset_again; 2944 2945 ret = pm_runtime_get_sync(&fep->pdev->dev); 2946 if (ret < 0) 2947 return ret; 2948 2949 pinctrl_pm_select_default_state(&fep->pdev->dev); 2950 ret = fec_enet_clk_enable(ndev, true); 2951 if (ret) 2952 goto clk_enable; 2953 2954 /* During the first fec_enet_open call the PHY isn't probed at this 2955 * point. Therefore the phy_reset_after_clk_enable() call within 2956 * fec_enet_clk_enable() fails. As we need this reset in order to be 2957 * sure the PHY is working correctly we check if we need to reset again 2958 * later when the PHY is probed 2959 */ 2960 if (ndev->phydev && ndev->phydev->drv) 2961 reset_again = false; 2962 else 2963 reset_again = true; 2964 2965 /* I should reset the ring buffers here, but I don't yet know 2966 * a simple way to do that. 2967 */ 2968 2969 ret = fec_enet_alloc_buffers(ndev); 2970 if (ret) 2971 goto err_enet_alloc; 2972 2973 /* Init MAC prior to mii bus probe */ 2974 fec_restart(ndev); 2975 2976 /* Probe and connect to PHY when open the interface */ 2977 ret = fec_enet_mii_probe(ndev); 2978 if (ret) 2979 goto err_enet_mii_probe; 2980 2981 /* Call phy_reset_after_clk_enable() again if it failed during 2982 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 2983 */ 2984 if (reset_again) 2985 phy_reset_after_clk_enable(ndev->phydev); 2986 2987 if (fep->quirks & FEC_QUIRK_ERR006687) 2988 imx6q_cpuidle_fec_irqs_used(); 2989 2990 napi_enable(&fep->napi); 2991 phy_start(ndev->phydev); 2992 netif_tx_start_all_queues(ndev); 2993 2994 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 2995 FEC_WOL_FLAG_ENABLE); 2996 2997 return 0; 2998 2999 err_enet_mii_probe: 3000 fec_enet_free_buffers(ndev); 3001 err_enet_alloc: 3002 fec_enet_clk_enable(ndev, false); 3003 clk_enable: 3004 pm_runtime_mark_last_busy(&fep->pdev->dev); 3005 pm_runtime_put_autosuspend(&fep->pdev->dev); 3006 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3007 return ret; 3008 } 3009 3010 static int 3011 fec_enet_close(struct net_device *ndev) 3012 { 3013 struct fec_enet_private *fep = netdev_priv(ndev); 3014 3015 phy_stop(ndev->phydev); 3016 3017 if (netif_device_present(ndev)) { 3018 napi_disable(&fep->napi); 3019 netif_tx_disable(ndev); 3020 fec_stop(ndev); 3021 } 3022 3023 phy_disconnect(ndev->phydev); 3024 3025 if (fep->quirks & FEC_QUIRK_ERR006687) 3026 imx6q_cpuidle_fec_irqs_unused(); 3027 3028 fec_enet_update_ethtool_stats(ndev); 3029 3030 fec_enet_clk_enable(ndev, false); 3031 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3032 pm_runtime_mark_last_busy(&fep->pdev->dev); 3033 pm_runtime_put_autosuspend(&fep->pdev->dev); 3034 3035 fec_enet_free_buffers(ndev); 3036 3037 return 0; 3038 } 3039 3040 /* Set or clear the multicast filter for this adaptor. 3041 * Skeleton taken from sunlance driver. 3042 * The CPM Ethernet implementation allows Multicast as well as individual 3043 * MAC address filtering. Some of the drivers check to make sure it is 3044 * a group multicast address, and discard those that are not. I guess I 3045 * will do the same for now, but just remove the test if you want 3046 * individual filtering as well (do the upper net layers want or support 3047 * this kind of feature?). 3048 */ 3049 3050 #define FEC_HASH_BITS 6 /* #bits in hash */ 3051 3052 static void set_multicast_list(struct net_device *ndev) 3053 { 3054 struct fec_enet_private *fep = netdev_priv(ndev); 3055 struct netdev_hw_addr *ha; 3056 unsigned int crc, tmp; 3057 unsigned char hash; 3058 unsigned int hash_high = 0, hash_low = 0; 3059 3060 if (ndev->flags & IFF_PROMISC) { 3061 tmp = readl(fep->hwp + FEC_R_CNTRL); 3062 tmp |= 0x8; 3063 writel(tmp, fep->hwp + FEC_R_CNTRL); 3064 return; 3065 } 3066 3067 tmp = readl(fep->hwp + FEC_R_CNTRL); 3068 tmp &= ~0x8; 3069 writel(tmp, fep->hwp + FEC_R_CNTRL); 3070 3071 if (ndev->flags & IFF_ALLMULTI) { 3072 /* Catch all multicast addresses, so set the 3073 * filter to all 1's 3074 */ 3075 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3076 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3077 3078 return; 3079 } 3080 3081 /* Add the addresses in hash register */ 3082 netdev_for_each_mc_addr(ha, ndev) { 3083 /* calculate crc32 value of mac address */ 3084 crc = ether_crc_le(ndev->addr_len, ha->addr); 3085 3086 /* only upper 6 bits (FEC_HASH_BITS) are used 3087 * which point to specific bit in the hash registers 3088 */ 3089 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3090 3091 if (hash > 31) 3092 hash_high |= 1 << (hash - 32); 3093 else 3094 hash_low |= 1 << hash; 3095 } 3096 3097 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3098 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3099 } 3100 3101 /* Set a MAC change in hardware. */ 3102 static int 3103 fec_set_mac_address(struct net_device *ndev, void *p) 3104 { 3105 struct fec_enet_private *fep = netdev_priv(ndev); 3106 struct sockaddr *addr = p; 3107 3108 if (addr) { 3109 if (!is_valid_ether_addr(addr->sa_data)) 3110 return -EADDRNOTAVAIL; 3111 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3112 } 3113 3114 /* Add netif status check here to avoid system hang in below case: 3115 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3116 * After ethx down, fec all clocks are gated off and then register 3117 * access causes system hang. 3118 */ 3119 if (!netif_running(ndev)) 3120 return 0; 3121 3122 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3123 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3124 fep->hwp + FEC_ADDR_LOW); 3125 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3126 fep->hwp + FEC_ADDR_HIGH); 3127 return 0; 3128 } 3129 3130 #ifdef CONFIG_NET_POLL_CONTROLLER 3131 /** 3132 * fec_poll_controller - FEC Poll controller function 3133 * @dev: The FEC network adapter 3134 * 3135 * Polled functionality used by netconsole and others in non interrupt mode 3136 * 3137 */ 3138 static void fec_poll_controller(struct net_device *dev) 3139 { 3140 int i; 3141 struct fec_enet_private *fep = netdev_priv(dev); 3142 3143 for (i = 0; i < FEC_IRQ_NUM; i++) { 3144 if (fep->irq[i] > 0) { 3145 disable_irq(fep->irq[i]); 3146 fec_enet_interrupt(fep->irq[i], dev); 3147 enable_irq(fep->irq[i]); 3148 } 3149 } 3150 } 3151 #endif 3152 3153 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3154 netdev_features_t features) 3155 { 3156 struct fec_enet_private *fep = netdev_priv(netdev); 3157 netdev_features_t changed = features ^ netdev->features; 3158 3159 netdev->features = features; 3160 3161 /* Receive checksum has been changed */ 3162 if (changed & NETIF_F_RXCSUM) { 3163 if (features & NETIF_F_RXCSUM) 3164 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3165 else 3166 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3167 } 3168 } 3169 3170 static int fec_set_features(struct net_device *netdev, 3171 netdev_features_t features) 3172 { 3173 struct fec_enet_private *fep = netdev_priv(netdev); 3174 netdev_features_t changed = features ^ netdev->features; 3175 3176 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3177 napi_disable(&fep->napi); 3178 netif_tx_lock_bh(netdev); 3179 fec_stop(netdev); 3180 fec_enet_set_netdev_features(netdev, features); 3181 fec_restart(netdev); 3182 netif_tx_wake_all_queues(netdev); 3183 netif_tx_unlock_bh(netdev); 3184 napi_enable(&fep->napi); 3185 } else { 3186 fec_enet_set_netdev_features(netdev, features); 3187 } 3188 3189 return 0; 3190 } 3191 3192 static const struct net_device_ops fec_netdev_ops = { 3193 .ndo_open = fec_enet_open, 3194 .ndo_stop = fec_enet_close, 3195 .ndo_start_xmit = fec_enet_start_xmit, 3196 .ndo_set_rx_mode = set_multicast_list, 3197 .ndo_validate_addr = eth_validate_addr, 3198 .ndo_tx_timeout = fec_timeout, 3199 .ndo_set_mac_address = fec_set_mac_address, 3200 .ndo_do_ioctl = fec_enet_ioctl, 3201 #ifdef CONFIG_NET_POLL_CONTROLLER 3202 .ndo_poll_controller = fec_poll_controller, 3203 #endif 3204 .ndo_set_features = fec_set_features, 3205 }; 3206 3207 static const unsigned short offset_des_active_rxq[] = { 3208 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3209 }; 3210 3211 static const unsigned short offset_des_active_txq[] = { 3212 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3213 }; 3214 3215 /* 3216 * XXX: We need to clean up on failure exits here. 3217 * 3218 */ 3219 static int fec_enet_init(struct net_device *ndev) 3220 { 3221 struct fec_enet_private *fep = netdev_priv(ndev); 3222 struct bufdesc *cbd_base; 3223 dma_addr_t bd_dma; 3224 int bd_size; 3225 unsigned int i; 3226 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3227 sizeof(struct bufdesc); 3228 unsigned dsize_log2 = __fls(dsize); 3229 int ret; 3230 3231 WARN_ON(dsize != (1 << dsize_log2)); 3232 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3233 fep->rx_align = 0xf; 3234 fep->tx_align = 0xf; 3235 #else 3236 fep->rx_align = 0x3; 3237 fep->tx_align = 0x3; 3238 #endif 3239 3240 /* Check mask of the streaming and coherent API */ 3241 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3242 if (ret < 0) { 3243 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3244 return ret; 3245 } 3246 3247 fec_enet_alloc_queue(ndev); 3248 3249 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3250 3251 /* Allocate memory for buffer descriptors. */ 3252 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3253 GFP_KERNEL); 3254 if (!cbd_base) { 3255 return -ENOMEM; 3256 } 3257 3258 /* Get the Ethernet address */ 3259 fec_get_mac(ndev); 3260 /* make sure MAC we just acquired is programmed into the hw */ 3261 fec_set_mac_address(ndev, NULL); 3262 3263 /* Set receive and transmit descriptor base. */ 3264 for (i = 0; i < fep->num_rx_queues; i++) { 3265 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3266 unsigned size = dsize * rxq->bd.ring_size; 3267 3268 rxq->bd.qid = i; 3269 rxq->bd.base = cbd_base; 3270 rxq->bd.cur = cbd_base; 3271 rxq->bd.dma = bd_dma; 3272 rxq->bd.dsize = dsize; 3273 rxq->bd.dsize_log2 = dsize_log2; 3274 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3275 bd_dma += size; 3276 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3277 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3278 } 3279 3280 for (i = 0; i < fep->num_tx_queues; i++) { 3281 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3282 unsigned size = dsize * txq->bd.ring_size; 3283 3284 txq->bd.qid = i; 3285 txq->bd.base = cbd_base; 3286 txq->bd.cur = cbd_base; 3287 txq->bd.dma = bd_dma; 3288 txq->bd.dsize = dsize; 3289 txq->bd.dsize_log2 = dsize_log2; 3290 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3291 bd_dma += size; 3292 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3293 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3294 } 3295 3296 3297 /* The FEC Ethernet specific entries in the device structure */ 3298 ndev->watchdog_timeo = TX_TIMEOUT; 3299 ndev->netdev_ops = &fec_netdev_ops; 3300 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3301 3302 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3303 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3304 3305 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3306 /* enable hw VLAN support */ 3307 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3308 3309 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3310 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3311 3312 /* enable hw accelerator */ 3313 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3314 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3315 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3316 } 3317 3318 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3319 fep->tx_align = 0; 3320 fep->rx_align = 0x3f; 3321 } 3322 3323 ndev->hw_features = ndev->features; 3324 3325 fec_restart(ndev); 3326 3327 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3328 fec_enet_clear_ethtool_stats(ndev); 3329 else 3330 fec_enet_update_ethtool_stats(ndev); 3331 3332 return 0; 3333 } 3334 3335 #ifdef CONFIG_OF 3336 static int fec_reset_phy(struct platform_device *pdev) 3337 { 3338 int err, phy_reset; 3339 bool active_high = false; 3340 int msec = 1, phy_post_delay = 0; 3341 struct device_node *np = pdev->dev.of_node; 3342 3343 if (!np) 3344 return 0; 3345 3346 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3347 /* A sane reset duration should not be longer than 1s */ 3348 if (!err && msec > 1000) 3349 msec = 1; 3350 3351 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3352 if (phy_reset == -EPROBE_DEFER) 3353 return phy_reset; 3354 else if (!gpio_is_valid(phy_reset)) 3355 return 0; 3356 3357 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3358 /* valid reset duration should be less than 1s */ 3359 if (!err && phy_post_delay > 1000) 3360 return -EINVAL; 3361 3362 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3363 3364 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3365 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3366 "phy-reset"); 3367 if (err) { 3368 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3369 return err; 3370 } 3371 3372 if (msec > 20) 3373 msleep(msec); 3374 else 3375 usleep_range(msec * 1000, msec * 1000 + 1000); 3376 3377 gpio_set_value_cansleep(phy_reset, !active_high); 3378 3379 if (!phy_post_delay) 3380 return 0; 3381 3382 if (phy_post_delay > 20) 3383 msleep(phy_post_delay); 3384 else 3385 usleep_range(phy_post_delay * 1000, 3386 phy_post_delay * 1000 + 1000); 3387 3388 return 0; 3389 } 3390 #else /* CONFIG_OF */ 3391 static int fec_reset_phy(struct platform_device *pdev) 3392 { 3393 /* 3394 * In case of platform probe, the reset has been done 3395 * by machine code. 3396 */ 3397 return 0; 3398 } 3399 #endif /* CONFIG_OF */ 3400 3401 static void 3402 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3403 { 3404 struct device_node *np = pdev->dev.of_node; 3405 3406 *num_tx = *num_rx = 1; 3407 3408 if (!np || !of_device_is_available(np)) 3409 return; 3410 3411 /* parse the num of tx and rx queues */ 3412 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3413 3414 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3415 3416 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3417 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3418 *num_tx); 3419 *num_tx = 1; 3420 return; 3421 } 3422 3423 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3424 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3425 *num_rx); 3426 *num_rx = 1; 3427 return; 3428 } 3429 3430 } 3431 3432 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3433 { 3434 int irq_cnt = platform_irq_count(pdev); 3435 3436 if (irq_cnt > FEC_IRQ_NUM) 3437 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3438 else if (irq_cnt == 2) 3439 irq_cnt = 1; /* last for pps */ 3440 else if (irq_cnt <= 0) 3441 irq_cnt = 1; /* At least 1 irq is needed */ 3442 return irq_cnt; 3443 } 3444 3445 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3446 struct device_node *np) 3447 { 3448 struct device_node *gpr_np; 3449 u32 out_val[3]; 3450 int ret = 0; 3451 3452 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3453 if (!gpr_np) 3454 return 0; 3455 3456 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3457 ARRAY_SIZE(out_val)); 3458 if (ret) { 3459 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3460 return ret; 3461 } 3462 3463 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3464 if (IS_ERR(fep->stop_gpr.gpr)) { 3465 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3466 ret = PTR_ERR(fep->stop_gpr.gpr); 3467 fep->stop_gpr.gpr = NULL; 3468 goto out; 3469 } 3470 3471 fep->stop_gpr.reg = out_val[1]; 3472 fep->stop_gpr.bit = out_val[2]; 3473 3474 out: 3475 of_node_put(gpr_np); 3476 3477 return ret; 3478 } 3479 3480 static int 3481 fec_probe(struct platform_device *pdev) 3482 { 3483 struct fec_enet_private *fep; 3484 struct fec_platform_data *pdata; 3485 phy_interface_t interface; 3486 struct net_device *ndev; 3487 int i, irq, ret = 0; 3488 const struct of_device_id *of_id; 3489 static int dev_id; 3490 struct device_node *np = pdev->dev.of_node, *phy_node; 3491 int num_tx_qs; 3492 int num_rx_qs; 3493 char irq_name[8]; 3494 int irq_cnt; 3495 struct fec_devinfo *dev_info; 3496 3497 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3498 3499 /* Init network device */ 3500 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3501 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3502 if (!ndev) 3503 return -ENOMEM; 3504 3505 SET_NETDEV_DEV(ndev, &pdev->dev); 3506 3507 /* setup board info structure */ 3508 fep = netdev_priv(ndev); 3509 3510 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3511 if (of_id) 3512 pdev->id_entry = of_id->data; 3513 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3514 if (dev_info) 3515 fep->quirks = dev_info->quirks; 3516 3517 fep->netdev = ndev; 3518 fep->num_rx_queues = num_rx_qs; 3519 fep->num_tx_queues = num_tx_qs; 3520 3521 #if !defined(CONFIG_M5272) 3522 /* default enable pause frame auto negotiation */ 3523 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3524 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3525 #endif 3526 3527 /* Select default pin state */ 3528 pinctrl_pm_select_default_state(&pdev->dev); 3529 3530 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3531 if (IS_ERR(fep->hwp)) { 3532 ret = PTR_ERR(fep->hwp); 3533 goto failed_ioremap; 3534 } 3535 3536 fep->pdev = pdev; 3537 fep->dev_id = dev_id++; 3538 3539 platform_set_drvdata(pdev, ndev); 3540 3541 if ((of_machine_is_compatible("fsl,imx6q") || 3542 of_machine_is_compatible("fsl,imx6dl")) && 3543 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3544 fep->quirks |= FEC_QUIRK_ERR006687; 3545 3546 if (of_get_property(np, "fsl,magic-packet", NULL)) 3547 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3548 3549 ret = fec_enet_init_stop_mode(fep, np); 3550 if (ret) 3551 goto failed_stop_mode; 3552 3553 phy_node = of_parse_phandle(np, "phy-handle", 0); 3554 if (!phy_node && of_phy_is_fixed_link(np)) { 3555 ret = of_phy_register_fixed_link(np); 3556 if (ret < 0) { 3557 dev_err(&pdev->dev, 3558 "broken fixed-link specification\n"); 3559 goto failed_phy; 3560 } 3561 phy_node = of_node_get(np); 3562 } 3563 fep->phy_node = phy_node; 3564 3565 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3566 if (ret) { 3567 pdata = dev_get_platdata(&pdev->dev); 3568 if (pdata) 3569 fep->phy_interface = pdata->phy; 3570 else 3571 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3572 } else { 3573 fep->phy_interface = interface; 3574 } 3575 3576 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3577 if (IS_ERR(fep->clk_ipg)) { 3578 ret = PTR_ERR(fep->clk_ipg); 3579 goto failed_clk; 3580 } 3581 3582 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3583 if (IS_ERR(fep->clk_ahb)) { 3584 ret = PTR_ERR(fep->clk_ahb); 3585 goto failed_clk; 3586 } 3587 3588 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3589 3590 /* enet_out is optional, depends on board */ 3591 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3592 if (IS_ERR(fep->clk_enet_out)) 3593 fep->clk_enet_out = NULL; 3594 3595 fep->ptp_clk_on = false; 3596 mutex_init(&fep->ptp_clk_mutex); 3597 3598 /* clk_ref is optional, depends on board */ 3599 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3600 if (IS_ERR(fep->clk_ref)) 3601 fep->clk_ref = NULL; 3602 3603 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3604 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3605 if (IS_ERR(fep->clk_ptp)) { 3606 fep->clk_ptp = NULL; 3607 fep->bufdesc_ex = false; 3608 } 3609 3610 ret = fec_enet_clk_enable(ndev, true); 3611 if (ret) 3612 goto failed_clk; 3613 3614 ret = clk_prepare_enable(fep->clk_ipg); 3615 if (ret) 3616 goto failed_clk_ipg; 3617 ret = clk_prepare_enable(fep->clk_ahb); 3618 if (ret) 3619 goto failed_clk_ahb; 3620 3621 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3622 if (!IS_ERR(fep->reg_phy)) { 3623 ret = regulator_enable(fep->reg_phy); 3624 if (ret) { 3625 dev_err(&pdev->dev, 3626 "Failed to enable phy regulator: %d\n", ret); 3627 goto failed_regulator; 3628 } 3629 } else { 3630 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3631 ret = -EPROBE_DEFER; 3632 goto failed_regulator; 3633 } 3634 fep->reg_phy = NULL; 3635 } 3636 3637 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3638 pm_runtime_use_autosuspend(&pdev->dev); 3639 pm_runtime_get_noresume(&pdev->dev); 3640 pm_runtime_set_active(&pdev->dev); 3641 pm_runtime_enable(&pdev->dev); 3642 3643 ret = fec_reset_phy(pdev); 3644 if (ret) 3645 goto failed_reset; 3646 3647 irq_cnt = fec_enet_get_irq_cnt(pdev); 3648 if (fep->bufdesc_ex) 3649 fec_ptp_init(pdev, irq_cnt); 3650 3651 ret = fec_enet_init(ndev); 3652 if (ret) 3653 goto failed_init; 3654 3655 for (i = 0; i < irq_cnt; i++) { 3656 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3657 irq = platform_get_irq_byname_optional(pdev, irq_name); 3658 if (irq < 0) 3659 irq = platform_get_irq(pdev, i); 3660 if (irq < 0) { 3661 ret = irq; 3662 goto failed_irq; 3663 } 3664 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3665 0, pdev->name, ndev); 3666 if (ret) 3667 goto failed_irq; 3668 3669 fep->irq[i] = irq; 3670 } 3671 3672 ret = fec_enet_mii_init(pdev); 3673 if (ret) 3674 goto failed_mii_init; 3675 3676 /* Carrier starts down, phylib will bring it up */ 3677 netif_carrier_off(ndev); 3678 fec_enet_clk_enable(ndev, false); 3679 pinctrl_pm_select_sleep_state(&pdev->dev); 3680 3681 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3682 3683 ret = register_netdev(ndev); 3684 if (ret) 3685 goto failed_register; 3686 3687 device_init_wakeup(&ndev->dev, fep->wol_flag & 3688 FEC_WOL_HAS_MAGIC_PACKET); 3689 3690 if (fep->bufdesc_ex && fep->ptp_clock) 3691 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3692 3693 fep->rx_copybreak = COPYBREAK_DEFAULT; 3694 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3695 3696 pm_runtime_mark_last_busy(&pdev->dev); 3697 pm_runtime_put_autosuspend(&pdev->dev); 3698 3699 return 0; 3700 3701 failed_register: 3702 fec_enet_mii_remove(fep); 3703 failed_mii_init: 3704 failed_irq: 3705 failed_init: 3706 fec_ptp_stop(pdev); 3707 if (fep->reg_phy) 3708 regulator_disable(fep->reg_phy); 3709 failed_reset: 3710 pm_runtime_put_noidle(&pdev->dev); 3711 pm_runtime_disable(&pdev->dev); 3712 failed_regulator: 3713 clk_disable_unprepare(fep->clk_ahb); 3714 failed_clk_ahb: 3715 clk_disable_unprepare(fep->clk_ipg); 3716 failed_clk_ipg: 3717 fec_enet_clk_enable(ndev, false); 3718 failed_clk: 3719 if (of_phy_is_fixed_link(np)) 3720 of_phy_deregister_fixed_link(np); 3721 of_node_put(phy_node); 3722 failed_stop_mode: 3723 failed_phy: 3724 dev_id--; 3725 failed_ioremap: 3726 free_netdev(ndev); 3727 3728 return ret; 3729 } 3730 3731 static int 3732 fec_drv_remove(struct platform_device *pdev) 3733 { 3734 struct net_device *ndev = platform_get_drvdata(pdev); 3735 struct fec_enet_private *fep = netdev_priv(ndev); 3736 struct device_node *np = pdev->dev.of_node; 3737 int ret; 3738 3739 ret = pm_runtime_get_sync(&pdev->dev); 3740 if (ret < 0) 3741 return ret; 3742 3743 cancel_work_sync(&fep->tx_timeout_work); 3744 fec_ptp_stop(pdev); 3745 unregister_netdev(ndev); 3746 fec_enet_mii_remove(fep); 3747 if (fep->reg_phy) 3748 regulator_disable(fep->reg_phy); 3749 3750 if (of_phy_is_fixed_link(np)) 3751 of_phy_deregister_fixed_link(np); 3752 of_node_put(fep->phy_node); 3753 free_netdev(ndev); 3754 3755 clk_disable_unprepare(fep->clk_ahb); 3756 clk_disable_unprepare(fep->clk_ipg); 3757 pm_runtime_put_noidle(&pdev->dev); 3758 pm_runtime_disable(&pdev->dev); 3759 3760 return 0; 3761 } 3762 3763 static int __maybe_unused fec_suspend(struct device *dev) 3764 { 3765 struct net_device *ndev = dev_get_drvdata(dev); 3766 struct fec_enet_private *fep = netdev_priv(ndev); 3767 3768 rtnl_lock(); 3769 if (netif_running(ndev)) { 3770 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3771 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3772 phy_stop(ndev->phydev); 3773 napi_disable(&fep->napi); 3774 netif_tx_lock_bh(ndev); 3775 netif_device_detach(ndev); 3776 netif_tx_unlock_bh(ndev); 3777 fec_stop(ndev); 3778 fec_enet_clk_enable(ndev, false); 3779 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3780 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3781 } 3782 rtnl_unlock(); 3783 3784 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3785 regulator_disable(fep->reg_phy); 3786 3787 /* SOC supply clock to phy, when clock is disabled, phy link down 3788 * SOC control phy regulator, when regulator is disabled, phy link down 3789 */ 3790 if (fep->clk_enet_out || fep->reg_phy) 3791 fep->link = 0; 3792 3793 return 0; 3794 } 3795 3796 static int __maybe_unused fec_resume(struct device *dev) 3797 { 3798 struct net_device *ndev = dev_get_drvdata(dev); 3799 struct fec_enet_private *fep = netdev_priv(ndev); 3800 int ret; 3801 int val; 3802 3803 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3804 ret = regulator_enable(fep->reg_phy); 3805 if (ret) 3806 return ret; 3807 } 3808 3809 rtnl_lock(); 3810 if (netif_running(ndev)) { 3811 ret = fec_enet_clk_enable(ndev, true); 3812 if (ret) { 3813 rtnl_unlock(); 3814 goto failed_clk; 3815 } 3816 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3817 fec_enet_stop_mode(fep, false); 3818 3819 val = readl(fep->hwp + FEC_ECNTRL); 3820 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3821 writel(val, fep->hwp + FEC_ECNTRL); 3822 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3823 } else { 3824 pinctrl_pm_select_default_state(&fep->pdev->dev); 3825 } 3826 fec_restart(ndev); 3827 netif_tx_lock_bh(ndev); 3828 netif_device_attach(ndev); 3829 netif_tx_unlock_bh(ndev); 3830 napi_enable(&fep->napi); 3831 phy_start(ndev->phydev); 3832 } 3833 rtnl_unlock(); 3834 3835 return 0; 3836 3837 failed_clk: 3838 if (fep->reg_phy) 3839 regulator_disable(fep->reg_phy); 3840 return ret; 3841 } 3842 3843 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3844 { 3845 struct net_device *ndev = dev_get_drvdata(dev); 3846 struct fec_enet_private *fep = netdev_priv(ndev); 3847 3848 clk_disable_unprepare(fep->clk_ahb); 3849 clk_disable_unprepare(fep->clk_ipg); 3850 3851 return 0; 3852 } 3853 3854 static int __maybe_unused fec_runtime_resume(struct device *dev) 3855 { 3856 struct net_device *ndev = dev_get_drvdata(dev); 3857 struct fec_enet_private *fep = netdev_priv(ndev); 3858 int ret; 3859 3860 ret = clk_prepare_enable(fep->clk_ahb); 3861 if (ret) 3862 return ret; 3863 ret = clk_prepare_enable(fep->clk_ipg); 3864 if (ret) 3865 goto failed_clk_ipg; 3866 3867 return 0; 3868 3869 failed_clk_ipg: 3870 clk_disable_unprepare(fep->clk_ahb); 3871 return ret; 3872 } 3873 3874 static const struct dev_pm_ops fec_pm_ops = { 3875 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3876 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3877 }; 3878 3879 static struct platform_driver fec_driver = { 3880 .driver = { 3881 .name = DRIVER_NAME, 3882 .pm = &fec_pm_ops, 3883 .of_match_table = fec_dt_ids, 3884 .suppress_bind_attrs = true, 3885 }, 3886 .id_table = fec_devtype, 3887 .probe = fec_probe, 3888 .remove = fec_drv_remove, 3889 }; 3890 3891 module_platform_driver(fec_driver); 3892 3893 MODULE_ALIAS("platform:"DRIVER_NAME); 3894 MODULE_LICENSE("GPL"); 3895