1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 #include <linux/filter.h>
70 #include <linux/bpf.h>
71 
72 #include <asm/cacheflush.h>
73 
74 #include "fec.h"
75 
76 static void set_multicast_list(struct net_device *ndev);
77 static void fec_enet_itr_coal_init(struct net_device *ndev);
78 
79 #define DRIVER_NAME	"fec"
80 
81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
82 
83 /* Pause frame feild and FIFO threshold */
84 #define FEC_ENET_FCE	(1 << 5)
85 #define FEC_ENET_RSEM_V	0x84
86 #define FEC_ENET_RSFL_V	16
87 #define FEC_ENET_RAEM_V	0x8
88 #define FEC_ENET_RAFL_V	0x8
89 #define FEC_ENET_OPD_V	0xFFF0
90 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
91 
92 #define FEC_ENET_XDP_PASS          0
93 #define FEC_ENET_XDP_CONSUMED      BIT(0)
94 #define FEC_ENET_XDP_TX            BIT(1)
95 #define FEC_ENET_XDP_REDIR         BIT(2)
96 
97 struct fec_devinfo {
98 	u32 quirks;
99 };
100 
101 static const struct fec_devinfo fec_imx25_info = {
102 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
103 		  FEC_QUIRK_HAS_FRREG,
104 };
105 
106 static const struct fec_devinfo fec_imx27_info = {
107 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
108 };
109 
110 static const struct fec_devinfo fec_imx28_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
112 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
113 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
114 		  FEC_QUIRK_NO_HARD_RESET,
115 };
116 
117 static const struct fec_devinfo fec_imx6q_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
121 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
122 		  FEC_QUIRK_HAS_PMQOS,
123 };
124 
125 static const struct fec_devinfo fec_mvf600_info = {
126 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
127 };
128 
129 static const struct fec_devinfo fec_imx6x_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
131 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
132 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
133 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
134 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
135 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
136 };
137 
138 static const struct fec_devinfo fec_imx6ul_info = {
139 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
140 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
141 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
142 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
143 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
144 };
145 
146 static const struct fec_devinfo fec_imx8mq_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
150 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
151 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
152 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
153 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
154 };
155 
156 static const struct fec_devinfo fec_imx8qm_info = {
157 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
158 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
159 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
160 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
161 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
162 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
163 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT,
164 };
165 
166 static const struct fec_devinfo fec_s32v234_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
171 };
172 
173 static struct platform_device_id fec_devtype[] = {
174 	{
175 		/* keep it for coldfire */
176 		.name = DRIVER_NAME,
177 		.driver_data = 0,
178 	}, {
179 		.name = "imx25-fec",
180 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
181 	}, {
182 		.name = "imx27-fec",
183 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
184 	}, {
185 		.name = "imx28-fec",
186 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
187 	}, {
188 		.name = "imx6q-fec",
189 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
190 	}, {
191 		.name = "mvf600-fec",
192 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
193 	}, {
194 		.name = "imx6sx-fec",
195 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
196 	}, {
197 		.name = "imx6ul-fec",
198 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
199 	}, {
200 		.name = "imx8mq-fec",
201 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
202 	}, {
203 		.name = "imx8qm-fec",
204 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
205 	}, {
206 		.name = "s32v234-fec",
207 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
208 	}, {
209 		/* sentinel */
210 	}
211 };
212 MODULE_DEVICE_TABLE(platform, fec_devtype);
213 
214 enum imx_fec_type {
215 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
216 	IMX27_FEC,	/* runs on i.mx27/35/51 */
217 	IMX28_FEC,
218 	IMX6Q_FEC,
219 	MVF600_FEC,
220 	IMX6SX_FEC,
221 	IMX6UL_FEC,
222 	IMX8MQ_FEC,
223 	IMX8QM_FEC,
224 	S32V234_FEC,
225 };
226 
227 static const struct of_device_id fec_dt_ids[] = {
228 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
229 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
230 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
231 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
232 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
233 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
234 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
235 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
236 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
237 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
238 	{ /* sentinel */ }
239 };
240 MODULE_DEVICE_TABLE(of, fec_dt_ids);
241 
242 static unsigned char macaddr[ETH_ALEN];
243 module_param_array(macaddr, byte, NULL, 0);
244 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
245 
246 #if defined(CONFIG_M5272)
247 /*
248  * Some hardware gets it MAC address out of local flash memory.
249  * if this is non-zero then assume it is the address to get MAC from.
250  */
251 #if defined(CONFIG_NETtel)
252 #define	FEC_FLASHMAC	0xf0006006
253 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
254 #define	FEC_FLASHMAC	0xf0006000
255 #elif defined(CONFIG_CANCam)
256 #define	FEC_FLASHMAC	0xf0020000
257 #elif defined (CONFIG_M5272C3)
258 #define	FEC_FLASHMAC	(0xffe04000 + 4)
259 #elif defined(CONFIG_MOD5272)
260 #define FEC_FLASHMAC	0xffc0406b
261 #else
262 #define	FEC_FLASHMAC	0
263 #endif
264 #endif /* CONFIG_M5272 */
265 
266 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
267  *
268  * 2048 byte skbufs are allocated. However, alignment requirements
269  * varies between FEC variants. Worst case is 64, so round down by 64.
270  */
271 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
272 #define PKT_MINBUF_SIZE		64
273 
274 /* FEC receive acceleration */
275 #define FEC_RACC_IPDIS		(1 << 1)
276 #define FEC_RACC_PRODIS		(1 << 2)
277 #define FEC_RACC_SHIFT16	BIT(7)
278 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
279 
280 /* MIB Control Register */
281 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
282 
283 /*
284  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
285  * size bits. Other FEC hardware does not, so we need to take that into
286  * account when setting it.
287  */
288 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
289     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
290     defined(CONFIG_ARM64)
291 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
292 #else
293 #define	OPT_FRAME_SIZE	0
294 #endif
295 
296 /* FEC MII MMFR bits definition */
297 #define FEC_MMFR_ST		(1 << 30)
298 #define FEC_MMFR_ST_C45		(0)
299 #define FEC_MMFR_OP_READ	(2 << 28)
300 #define FEC_MMFR_OP_READ_C45	(3 << 28)
301 #define FEC_MMFR_OP_WRITE	(1 << 28)
302 #define FEC_MMFR_OP_ADDR_WRITE	(0)
303 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
304 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
305 #define FEC_MMFR_TA		(2 << 16)
306 #define FEC_MMFR_DATA(v)	(v & 0xffff)
307 /* FEC ECR bits definition */
308 #define FEC_ECR_MAGICEN		(1 << 2)
309 #define FEC_ECR_SLEEP		(1 << 3)
310 
311 #define FEC_MII_TIMEOUT		30000 /* us */
312 
313 /* Transmitter timeout */
314 #define TX_TIMEOUT (2 * HZ)
315 
316 #define FEC_PAUSE_FLAG_AUTONEG	0x1
317 #define FEC_PAUSE_FLAG_ENABLE	0x2
318 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
319 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
320 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
321 
322 #define COPYBREAK_DEFAULT	256
323 
324 /* Max number of allowed TCP segments for software TSO */
325 #define FEC_MAX_TSO_SEGS	100
326 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
327 
328 #define IS_TSO_HEADER(txq, addr) \
329 	((addr >= txq->tso_hdrs_dma) && \
330 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
331 
332 static int mii_cnt;
333 
334 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
335 					     struct bufdesc_prop *bd)
336 {
337 	return (bdp >= bd->last) ? bd->base
338 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
339 }
340 
341 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
342 					     struct bufdesc_prop *bd)
343 {
344 	return (bdp <= bd->base) ? bd->last
345 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
346 }
347 
348 static int fec_enet_get_bd_index(struct bufdesc *bdp,
349 				 struct bufdesc_prop *bd)
350 {
351 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
352 }
353 
354 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
355 {
356 	int entries;
357 
358 	entries = (((const char *)txq->dirty_tx -
359 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
360 
361 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
362 }
363 
364 static void swap_buffer(void *bufaddr, int len)
365 {
366 	int i;
367 	unsigned int *buf = bufaddr;
368 
369 	for (i = 0; i < len; i += 4, buf++)
370 		swab32s(buf);
371 }
372 
373 static void fec_dump(struct net_device *ndev)
374 {
375 	struct fec_enet_private *fep = netdev_priv(ndev);
376 	struct bufdesc *bdp;
377 	struct fec_enet_priv_tx_q *txq;
378 	int index = 0;
379 
380 	netdev_info(ndev, "TX ring dump\n");
381 	pr_info("Nr     SC     addr       len  SKB\n");
382 
383 	txq = fep->tx_queue[0];
384 	bdp = txq->bd.base;
385 
386 	do {
387 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
388 			index,
389 			bdp == txq->bd.cur ? 'S' : ' ',
390 			bdp == txq->dirty_tx ? 'H' : ' ',
391 			fec16_to_cpu(bdp->cbd_sc),
392 			fec32_to_cpu(bdp->cbd_bufaddr),
393 			fec16_to_cpu(bdp->cbd_datlen),
394 			txq->tx_skbuff[index]);
395 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
396 		index++;
397 	} while (bdp != txq->bd.base);
398 }
399 
400 static inline bool is_ipv4_pkt(struct sk_buff *skb)
401 {
402 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
403 }
404 
405 static int
406 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
407 {
408 	/* Only run for packets requiring a checksum. */
409 	if (skb->ip_summed != CHECKSUM_PARTIAL)
410 		return 0;
411 
412 	if (unlikely(skb_cow_head(skb, 0)))
413 		return -1;
414 
415 	if (is_ipv4_pkt(skb))
416 		ip_hdr(skb)->check = 0;
417 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
418 
419 	return 0;
420 }
421 
422 static int
423 fec_enet_create_page_pool(struct fec_enet_private *fep,
424 			  struct fec_enet_priv_rx_q *rxq, int size)
425 {
426 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
427 	struct page_pool_params pp_params = {
428 		.order = 0,
429 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
430 		.pool_size = size,
431 		.nid = dev_to_node(&fep->pdev->dev),
432 		.dev = &fep->pdev->dev,
433 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
434 		.offset = FEC_ENET_XDP_HEADROOM,
435 		.max_len = FEC_ENET_RX_FRSIZE,
436 	};
437 	int err;
438 
439 	rxq->page_pool = page_pool_create(&pp_params);
440 	if (IS_ERR(rxq->page_pool)) {
441 		err = PTR_ERR(rxq->page_pool);
442 		rxq->page_pool = NULL;
443 		return err;
444 	}
445 
446 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
447 	if (err < 0)
448 		goto err_free_pp;
449 
450 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
451 					 rxq->page_pool);
452 	if (err)
453 		goto err_unregister_rxq;
454 
455 	return 0;
456 
457 err_unregister_rxq:
458 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
459 err_free_pp:
460 	page_pool_destroy(rxq->page_pool);
461 	rxq->page_pool = NULL;
462 	return err;
463 }
464 
465 static struct bufdesc *
466 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
467 			     struct sk_buff *skb,
468 			     struct net_device *ndev)
469 {
470 	struct fec_enet_private *fep = netdev_priv(ndev);
471 	struct bufdesc *bdp = txq->bd.cur;
472 	struct bufdesc_ex *ebdp;
473 	int nr_frags = skb_shinfo(skb)->nr_frags;
474 	int frag, frag_len;
475 	unsigned short status;
476 	unsigned int estatus = 0;
477 	skb_frag_t *this_frag;
478 	unsigned int index;
479 	void *bufaddr;
480 	dma_addr_t addr;
481 	int i;
482 
483 	for (frag = 0; frag < nr_frags; frag++) {
484 		this_frag = &skb_shinfo(skb)->frags[frag];
485 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
486 		ebdp = (struct bufdesc_ex *)bdp;
487 
488 		status = fec16_to_cpu(bdp->cbd_sc);
489 		status &= ~BD_ENET_TX_STATS;
490 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
491 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
492 
493 		/* Handle the last BD specially */
494 		if (frag == nr_frags - 1) {
495 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
496 			if (fep->bufdesc_ex) {
497 				estatus |= BD_ENET_TX_INT;
498 				if (unlikely(skb_shinfo(skb)->tx_flags &
499 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
500 					estatus |= BD_ENET_TX_TS;
501 			}
502 		}
503 
504 		if (fep->bufdesc_ex) {
505 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
506 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
507 			if (skb->ip_summed == CHECKSUM_PARTIAL)
508 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
509 
510 			ebdp->cbd_bdu = 0;
511 			ebdp->cbd_esc = cpu_to_fec32(estatus);
512 		}
513 
514 		bufaddr = skb_frag_address(this_frag);
515 
516 		index = fec_enet_get_bd_index(bdp, &txq->bd);
517 		if (((unsigned long) bufaddr) & fep->tx_align ||
518 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
519 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
520 			bufaddr = txq->tx_bounce[index];
521 
522 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
523 				swap_buffer(bufaddr, frag_len);
524 		}
525 
526 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
527 				      DMA_TO_DEVICE);
528 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
529 			if (net_ratelimit())
530 				netdev_err(ndev, "Tx DMA memory map failed\n");
531 			goto dma_mapping_error;
532 		}
533 
534 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
535 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
536 		/* Make sure the updates to rest of the descriptor are
537 		 * performed before transferring ownership.
538 		 */
539 		wmb();
540 		bdp->cbd_sc = cpu_to_fec16(status);
541 	}
542 
543 	return bdp;
544 dma_mapping_error:
545 	bdp = txq->bd.cur;
546 	for (i = 0; i < frag; i++) {
547 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
548 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
549 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
550 	}
551 	return ERR_PTR(-ENOMEM);
552 }
553 
554 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
555 				   struct sk_buff *skb, struct net_device *ndev)
556 {
557 	struct fec_enet_private *fep = netdev_priv(ndev);
558 	int nr_frags = skb_shinfo(skb)->nr_frags;
559 	struct bufdesc *bdp, *last_bdp;
560 	void *bufaddr;
561 	dma_addr_t addr;
562 	unsigned short status;
563 	unsigned short buflen;
564 	unsigned int estatus = 0;
565 	unsigned int index;
566 	int entries_free;
567 
568 	entries_free = fec_enet_get_free_txdesc_num(txq);
569 	if (entries_free < MAX_SKB_FRAGS + 1) {
570 		dev_kfree_skb_any(skb);
571 		if (net_ratelimit())
572 			netdev_err(ndev, "NOT enough BD for SG!\n");
573 		return NETDEV_TX_OK;
574 	}
575 
576 	/* Protocol checksum off-load for TCP and UDP. */
577 	if (fec_enet_clear_csum(skb, ndev)) {
578 		dev_kfree_skb_any(skb);
579 		return NETDEV_TX_OK;
580 	}
581 
582 	/* Fill in a Tx ring entry */
583 	bdp = txq->bd.cur;
584 	last_bdp = bdp;
585 	status = fec16_to_cpu(bdp->cbd_sc);
586 	status &= ~BD_ENET_TX_STATS;
587 
588 	/* Set buffer length and buffer pointer */
589 	bufaddr = skb->data;
590 	buflen = skb_headlen(skb);
591 
592 	index = fec_enet_get_bd_index(bdp, &txq->bd);
593 	if (((unsigned long) bufaddr) & fep->tx_align ||
594 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
595 		memcpy(txq->tx_bounce[index], skb->data, buflen);
596 		bufaddr = txq->tx_bounce[index];
597 
598 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
599 			swap_buffer(bufaddr, buflen);
600 	}
601 
602 	/* Push the data cache so the CPM does not get stale memory data. */
603 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
604 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
605 		dev_kfree_skb_any(skb);
606 		if (net_ratelimit())
607 			netdev_err(ndev, "Tx DMA memory map failed\n");
608 		return NETDEV_TX_OK;
609 	}
610 
611 	if (nr_frags) {
612 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
613 		if (IS_ERR(last_bdp)) {
614 			dma_unmap_single(&fep->pdev->dev, addr,
615 					 buflen, DMA_TO_DEVICE);
616 			dev_kfree_skb_any(skb);
617 			return NETDEV_TX_OK;
618 		}
619 	} else {
620 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
621 		if (fep->bufdesc_ex) {
622 			estatus = BD_ENET_TX_INT;
623 			if (unlikely(skb_shinfo(skb)->tx_flags &
624 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
625 				estatus |= BD_ENET_TX_TS;
626 		}
627 	}
628 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
629 	bdp->cbd_datlen = cpu_to_fec16(buflen);
630 
631 	if (fep->bufdesc_ex) {
632 
633 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
634 
635 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
636 			fep->hwts_tx_en))
637 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
638 
639 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
640 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
641 
642 		if (skb->ip_summed == CHECKSUM_PARTIAL)
643 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
644 
645 		ebdp->cbd_bdu = 0;
646 		ebdp->cbd_esc = cpu_to_fec32(estatus);
647 	}
648 
649 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
650 	/* Save skb pointer */
651 	txq->tx_skbuff[index] = skb;
652 
653 	/* Make sure the updates to rest of the descriptor are performed before
654 	 * transferring ownership.
655 	 */
656 	wmb();
657 
658 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
659 	 * it's the last BD of the frame, and to put the CRC on the end.
660 	 */
661 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
662 	bdp->cbd_sc = cpu_to_fec16(status);
663 
664 	/* If this was the last BD in the ring, start at the beginning again. */
665 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
666 
667 	skb_tx_timestamp(skb);
668 
669 	/* Make sure the update to bdp and tx_skbuff are performed before
670 	 * txq->bd.cur.
671 	 */
672 	wmb();
673 	txq->bd.cur = bdp;
674 
675 	/* Trigger transmission start */
676 	writel(0, txq->bd.reg_desc_active);
677 
678 	return 0;
679 }
680 
681 static int
682 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
683 			  struct net_device *ndev,
684 			  struct bufdesc *bdp, int index, char *data,
685 			  int size, bool last_tcp, bool is_last)
686 {
687 	struct fec_enet_private *fep = netdev_priv(ndev);
688 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
689 	unsigned short status;
690 	unsigned int estatus = 0;
691 	dma_addr_t addr;
692 
693 	status = fec16_to_cpu(bdp->cbd_sc);
694 	status &= ~BD_ENET_TX_STATS;
695 
696 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
697 
698 	if (((unsigned long) data) & fep->tx_align ||
699 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
700 		memcpy(txq->tx_bounce[index], data, size);
701 		data = txq->tx_bounce[index];
702 
703 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
704 			swap_buffer(data, size);
705 	}
706 
707 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
708 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
709 		dev_kfree_skb_any(skb);
710 		if (net_ratelimit())
711 			netdev_err(ndev, "Tx DMA memory map failed\n");
712 		return NETDEV_TX_OK;
713 	}
714 
715 	bdp->cbd_datlen = cpu_to_fec16(size);
716 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
717 
718 	if (fep->bufdesc_ex) {
719 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
720 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
721 		if (skb->ip_summed == CHECKSUM_PARTIAL)
722 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
723 		ebdp->cbd_bdu = 0;
724 		ebdp->cbd_esc = cpu_to_fec32(estatus);
725 	}
726 
727 	/* Handle the last BD specially */
728 	if (last_tcp)
729 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
730 	if (is_last) {
731 		status |= BD_ENET_TX_INTR;
732 		if (fep->bufdesc_ex)
733 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
734 	}
735 
736 	bdp->cbd_sc = cpu_to_fec16(status);
737 
738 	return 0;
739 }
740 
741 static int
742 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
743 			 struct sk_buff *skb, struct net_device *ndev,
744 			 struct bufdesc *bdp, int index)
745 {
746 	struct fec_enet_private *fep = netdev_priv(ndev);
747 	int hdr_len = skb_tcp_all_headers(skb);
748 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
749 	void *bufaddr;
750 	unsigned long dmabuf;
751 	unsigned short status;
752 	unsigned int estatus = 0;
753 
754 	status = fec16_to_cpu(bdp->cbd_sc);
755 	status &= ~BD_ENET_TX_STATS;
756 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
757 
758 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
759 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
760 	if (((unsigned long)bufaddr) & fep->tx_align ||
761 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
762 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
763 		bufaddr = txq->tx_bounce[index];
764 
765 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
766 			swap_buffer(bufaddr, hdr_len);
767 
768 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
769 					hdr_len, DMA_TO_DEVICE);
770 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
771 			dev_kfree_skb_any(skb);
772 			if (net_ratelimit())
773 				netdev_err(ndev, "Tx DMA memory map failed\n");
774 			return NETDEV_TX_OK;
775 		}
776 	}
777 
778 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
779 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
780 
781 	if (fep->bufdesc_ex) {
782 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
783 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
784 		if (skb->ip_summed == CHECKSUM_PARTIAL)
785 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
786 		ebdp->cbd_bdu = 0;
787 		ebdp->cbd_esc = cpu_to_fec32(estatus);
788 	}
789 
790 	bdp->cbd_sc = cpu_to_fec16(status);
791 
792 	return 0;
793 }
794 
795 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
796 				   struct sk_buff *skb,
797 				   struct net_device *ndev)
798 {
799 	struct fec_enet_private *fep = netdev_priv(ndev);
800 	int hdr_len, total_len, data_left;
801 	struct bufdesc *bdp = txq->bd.cur;
802 	struct tso_t tso;
803 	unsigned int index = 0;
804 	int ret;
805 
806 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
807 		dev_kfree_skb_any(skb);
808 		if (net_ratelimit())
809 			netdev_err(ndev, "NOT enough BD for TSO!\n");
810 		return NETDEV_TX_OK;
811 	}
812 
813 	/* Protocol checksum off-load for TCP and UDP. */
814 	if (fec_enet_clear_csum(skb, ndev)) {
815 		dev_kfree_skb_any(skb);
816 		return NETDEV_TX_OK;
817 	}
818 
819 	/* Initialize the TSO handler, and prepare the first payload */
820 	hdr_len = tso_start(skb, &tso);
821 
822 	total_len = skb->len - hdr_len;
823 	while (total_len > 0) {
824 		char *hdr;
825 
826 		index = fec_enet_get_bd_index(bdp, &txq->bd);
827 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
828 		total_len -= data_left;
829 
830 		/* prepare packet headers: MAC + IP + TCP */
831 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
832 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
833 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
834 		if (ret)
835 			goto err_release;
836 
837 		while (data_left > 0) {
838 			int size;
839 
840 			size = min_t(int, tso.size, data_left);
841 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
842 			index = fec_enet_get_bd_index(bdp, &txq->bd);
843 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
844 							bdp, index,
845 							tso.data, size,
846 							size == data_left,
847 							total_len == 0);
848 			if (ret)
849 				goto err_release;
850 
851 			data_left -= size;
852 			tso_build_data(skb, &tso, size);
853 		}
854 
855 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
856 	}
857 
858 	/* Save skb pointer */
859 	txq->tx_skbuff[index] = skb;
860 
861 	skb_tx_timestamp(skb);
862 	txq->bd.cur = bdp;
863 
864 	/* Trigger transmission start */
865 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
866 	    !readl(txq->bd.reg_desc_active) ||
867 	    !readl(txq->bd.reg_desc_active) ||
868 	    !readl(txq->bd.reg_desc_active) ||
869 	    !readl(txq->bd.reg_desc_active))
870 		writel(0, txq->bd.reg_desc_active);
871 
872 	return 0;
873 
874 err_release:
875 	/* TODO: Release all used data descriptors for TSO */
876 	return ret;
877 }
878 
879 static netdev_tx_t
880 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
881 {
882 	struct fec_enet_private *fep = netdev_priv(ndev);
883 	int entries_free;
884 	unsigned short queue;
885 	struct fec_enet_priv_tx_q *txq;
886 	struct netdev_queue *nq;
887 	int ret;
888 
889 	queue = skb_get_queue_mapping(skb);
890 	txq = fep->tx_queue[queue];
891 	nq = netdev_get_tx_queue(ndev, queue);
892 
893 	if (skb_is_gso(skb))
894 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
895 	else
896 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
897 	if (ret)
898 		return ret;
899 
900 	entries_free = fec_enet_get_free_txdesc_num(txq);
901 	if (entries_free <= txq->tx_stop_threshold)
902 		netif_tx_stop_queue(nq);
903 
904 	return NETDEV_TX_OK;
905 }
906 
907 /* Init RX & TX buffer descriptors
908  */
909 static void fec_enet_bd_init(struct net_device *dev)
910 {
911 	struct fec_enet_private *fep = netdev_priv(dev);
912 	struct fec_enet_priv_tx_q *txq;
913 	struct fec_enet_priv_rx_q *rxq;
914 	struct bufdesc *bdp;
915 	unsigned int i;
916 	unsigned int q;
917 
918 	for (q = 0; q < fep->num_rx_queues; q++) {
919 		/* Initialize the receive buffer descriptors. */
920 		rxq = fep->rx_queue[q];
921 		bdp = rxq->bd.base;
922 
923 		for (i = 0; i < rxq->bd.ring_size; i++) {
924 
925 			/* Initialize the BD for every fragment in the page. */
926 			if (bdp->cbd_bufaddr)
927 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
928 			else
929 				bdp->cbd_sc = cpu_to_fec16(0);
930 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
931 		}
932 
933 		/* Set the last buffer to wrap */
934 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
935 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
936 
937 		rxq->bd.cur = rxq->bd.base;
938 	}
939 
940 	for (q = 0; q < fep->num_tx_queues; q++) {
941 		/* ...and the same for transmit */
942 		txq = fep->tx_queue[q];
943 		bdp = txq->bd.base;
944 		txq->bd.cur = bdp;
945 
946 		for (i = 0; i < txq->bd.ring_size; i++) {
947 			/* Initialize the BD for every fragment in the page. */
948 			bdp->cbd_sc = cpu_to_fec16(0);
949 			if (bdp->cbd_bufaddr &&
950 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
951 				dma_unmap_single(&fep->pdev->dev,
952 						 fec32_to_cpu(bdp->cbd_bufaddr),
953 						 fec16_to_cpu(bdp->cbd_datlen),
954 						 DMA_TO_DEVICE);
955 			if (txq->tx_skbuff[i]) {
956 				dev_kfree_skb_any(txq->tx_skbuff[i]);
957 				txq->tx_skbuff[i] = NULL;
958 			}
959 			bdp->cbd_bufaddr = cpu_to_fec32(0);
960 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
961 		}
962 
963 		/* Set the last buffer to wrap */
964 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
965 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
966 		txq->dirty_tx = bdp;
967 	}
968 }
969 
970 static void fec_enet_active_rxring(struct net_device *ndev)
971 {
972 	struct fec_enet_private *fep = netdev_priv(ndev);
973 	int i;
974 
975 	for (i = 0; i < fep->num_rx_queues; i++)
976 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
977 }
978 
979 static void fec_enet_enable_ring(struct net_device *ndev)
980 {
981 	struct fec_enet_private *fep = netdev_priv(ndev);
982 	struct fec_enet_priv_tx_q *txq;
983 	struct fec_enet_priv_rx_q *rxq;
984 	int i;
985 
986 	for (i = 0; i < fep->num_rx_queues; i++) {
987 		rxq = fep->rx_queue[i];
988 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
989 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
990 
991 		/* enable DMA1/2 */
992 		if (i)
993 			writel(RCMR_MATCHEN | RCMR_CMP(i),
994 			       fep->hwp + FEC_RCMR(i));
995 	}
996 
997 	for (i = 0; i < fep->num_tx_queues; i++) {
998 		txq = fep->tx_queue[i];
999 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1000 
1001 		/* enable DMA1/2 */
1002 		if (i)
1003 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1004 			       fep->hwp + FEC_DMA_CFG(i));
1005 	}
1006 }
1007 
1008 static void fec_enet_reset_skb(struct net_device *ndev)
1009 {
1010 	struct fec_enet_private *fep = netdev_priv(ndev);
1011 	struct fec_enet_priv_tx_q *txq;
1012 	int i, j;
1013 
1014 	for (i = 0; i < fep->num_tx_queues; i++) {
1015 		txq = fep->tx_queue[i];
1016 
1017 		for (j = 0; j < txq->bd.ring_size; j++) {
1018 			if (txq->tx_skbuff[j]) {
1019 				dev_kfree_skb_any(txq->tx_skbuff[j]);
1020 				txq->tx_skbuff[j] = NULL;
1021 			}
1022 		}
1023 	}
1024 }
1025 
1026 /*
1027  * This function is called to start or restart the FEC during a link
1028  * change, transmit timeout, or to reconfigure the FEC.  The network
1029  * packet processing for this device must be stopped before this call.
1030  */
1031 static void
1032 fec_restart(struct net_device *ndev)
1033 {
1034 	struct fec_enet_private *fep = netdev_priv(ndev);
1035 	u32 temp_mac[2];
1036 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1037 	u32 ecntl = 0x2; /* ETHEREN */
1038 
1039 	/* Whack a reset.  We should wait for this.
1040 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1041 	 * instead of reset MAC itself.
1042 	 */
1043 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1044 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1045 		writel(0, fep->hwp + FEC_ECNTRL);
1046 	} else {
1047 		writel(1, fep->hwp + FEC_ECNTRL);
1048 		udelay(10);
1049 	}
1050 
1051 	/*
1052 	 * enet-mac reset will reset mac address registers too,
1053 	 * so need to reconfigure it.
1054 	 */
1055 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1056 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1057 	       fep->hwp + FEC_ADDR_LOW);
1058 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1059 	       fep->hwp + FEC_ADDR_HIGH);
1060 
1061 	/* Clear any outstanding interrupt, except MDIO. */
1062 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1063 
1064 	fec_enet_bd_init(ndev);
1065 
1066 	fec_enet_enable_ring(ndev);
1067 
1068 	/* Reset tx SKB buffers. */
1069 	fec_enet_reset_skb(ndev);
1070 
1071 	/* Enable MII mode */
1072 	if (fep->full_duplex == DUPLEX_FULL) {
1073 		/* FD enable */
1074 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1075 	} else {
1076 		/* No Rcv on Xmit */
1077 		rcntl |= 0x02;
1078 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1079 	}
1080 
1081 	/* Set MII speed */
1082 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1083 
1084 #if !defined(CONFIG_M5272)
1085 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1086 		u32 val = readl(fep->hwp + FEC_RACC);
1087 
1088 		/* align IP header */
1089 		val |= FEC_RACC_SHIFT16;
1090 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1091 			/* set RX checksum */
1092 			val |= FEC_RACC_OPTIONS;
1093 		else
1094 			val &= ~FEC_RACC_OPTIONS;
1095 		writel(val, fep->hwp + FEC_RACC);
1096 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1097 	}
1098 #endif
1099 
1100 	/*
1101 	 * The phy interface and speed need to get configured
1102 	 * differently on enet-mac.
1103 	 */
1104 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1105 		/* Enable flow control and length check */
1106 		rcntl |= 0x40000000 | 0x00000020;
1107 
1108 		/* RGMII, RMII or MII */
1109 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1110 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1111 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1112 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1113 			rcntl |= (1 << 6);
1114 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1115 			rcntl |= (1 << 8);
1116 		else
1117 			rcntl &= ~(1 << 8);
1118 
1119 		/* 1G, 100M or 10M */
1120 		if (ndev->phydev) {
1121 			if (ndev->phydev->speed == SPEED_1000)
1122 				ecntl |= (1 << 5);
1123 			else if (ndev->phydev->speed == SPEED_100)
1124 				rcntl &= ~(1 << 9);
1125 			else
1126 				rcntl |= (1 << 9);
1127 		}
1128 	} else {
1129 #ifdef FEC_MIIGSK_ENR
1130 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1131 			u32 cfgr;
1132 			/* disable the gasket and wait */
1133 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1134 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1135 				udelay(1);
1136 
1137 			/*
1138 			 * configure the gasket:
1139 			 *   RMII, 50 MHz, no loopback, no echo
1140 			 *   MII, 25 MHz, no loopback, no echo
1141 			 */
1142 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1143 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1144 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1145 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1146 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1147 
1148 			/* re-enable the gasket */
1149 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1150 		}
1151 #endif
1152 	}
1153 
1154 #if !defined(CONFIG_M5272)
1155 	/* enable pause frame*/
1156 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1157 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1158 	     ndev->phydev && ndev->phydev->pause)) {
1159 		rcntl |= FEC_ENET_FCE;
1160 
1161 		/* set FIFO threshold parameter to reduce overrun */
1162 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1163 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1164 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1165 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1166 
1167 		/* OPD */
1168 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1169 	} else {
1170 		rcntl &= ~FEC_ENET_FCE;
1171 	}
1172 #endif /* !defined(CONFIG_M5272) */
1173 
1174 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1175 
1176 	/* Setup multicast filter. */
1177 	set_multicast_list(ndev);
1178 #ifndef CONFIG_M5272
1179 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1180 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1181 #endif
1182 
1183 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1184 		/* enable ENET endian swap */
1185 		ecntl |= (1 << 8);
1186 		/* enable ENET store and forward mode */
1187 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1188 	}
1189 
1190 	if (fep->bufdesc_ex)
1191 		ecntl |= (1 << 4);
1192 
1193 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1194 	    fep->rgmii_txc_dly)
1195 		ecntl |= FEC_ENET_TXC_DLY;
1196 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1197 	    fep->rgmii_rxc_dly)
1198 		ecntl |= FEC_ENET_RXC_DLY;
1199 
1200 #ifndef CONFIG_M5272
1201 	/* Enable the MIB statistic event counters */
1202 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1203 #endif
1204 
1205 	/* And last, enable the transmit and receive processing */
1206 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1207 	fec_enet_active_rxring(ndev);
1208 
1209 	if (fep->bufdesc_ex)
1210 		fec_ptp_start_cyclecounter(ndev);
1211 
1212 	/* Enable interrupts we wish to service */
1213 	if (fep->link)
1214 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1215 	else
1216 		writel(0, fep->hwp + FEC_IMASK);
1217 
1218 	/* Init the interrupt coalescing */
1219 	fec_enet_itr_coal_init(ndev);
1220 
1221 }
1222 
1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1224 {
1225 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1226 	      of_machine_is_compatible("fsl,imx8qxp") ||
1227 	      of_machine_is_compatible("fsl,imx8dxl")))
1228 		return 0;
1229 
1230 	return imx_scu_get_handle(&fep->ipc_handle);
1231 }
1232 
1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1234 {
1235 	struct device_node *np = fep->pdev->dev.of_node;
1236 	u32 rsrc_id, val;
1237 	int idx;
1238 
1239 	if (!np || !fep->ipc_handle)
1240 		return;
1241 
1242 	idx = of_alias_get_id(np, "ethernet");
1243 	if (idx < 0)
1244 		idx = 0;
1245 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1246 
1247 	val = enabled ? 1 : 0;
1248 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1249 }
1250 
1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1252 {
1253 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1254 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1255 
1256 	if (stop_gpr->gpr) {
1257 		if (enabled)
1258 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1259 					   BIT(stop_gpr->bit),
1260 					   BIT(stop_gpr->bit));
1261 		else
1262 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1263 					   BIT(stop_gpr->bit), 0);
1264 	} else if (pdata && pdata->sleep_mode_enable) {
1265 		pdata->sleep_mode_enable(enabled);
1266 	} else {
1267 		fec_enet_ipg_stop_set(fep, enabled);
1268 	}
1269 }
1270 
1271 static void fec_irqs_disable(struct net_device *ndev)
1272 {
1273 	struct fec_enet_private *fep = netdev_priv(ndev);
1274 
1275 	writel(0, fep->hwp + FEC_IMASK);
1276 }
1277 
1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1279 {
1280 	struct fec_enet_private *fep = netdev_priv(ndev);
1281 
1282 	writel(0, fep->hwp + FEC_IMASK);
1283 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1284 }
1285 
1286 static void
1287 fec_stop(struct net_device *ndev)
1288 {
1289 	struct fec_enet_private *fep = netdev_priv(ndev);
1290 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1291 	u32 val;
1292 
1293 	/* We cannot expect a graceful transmit stop without link !!! */
1294 	if (fep->link) {
1295 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1296 		udelay(10);
1297 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1298 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1299 	}
1300 
1301 	/* Whack a reset.  We should wait for this.
1302 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1303 	 * instead of reset MAC itself.
1304 	 */
1305 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1306 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1307 			writel(0, fep->hwp + FEC_ECNTRL);
1308 		} else {
1309 			writel(1, fep->hwp + FEC_ECNTRL);
1310 			udelay(10);
1311 		}
1312 	} else {
1313 		val = readl(fep->hwp + FEC_ECNTRL);
1314 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1315 		writel(val, fep->hwp + FEC_ECNTRL);
1316 	}
1317 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1318 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1319 
1320 	/* We have to keep ENET enabled to have MII interrupt stay working */
1321 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1322 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1323 		writel(2, fep->hwp + FEC_ECNTRL);
1324 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1325 	}
1326 }
1327 
1328 
1329 static void
1330 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1331 {
1332 	struct fec_enet_private *fep = netdev_priv(ndev);
1333 
1334 	fec_dump(ndev);
1335 
1336 	ndev->stats.tx_errors++;
1337 
1338 	schedule_work(&fep->tx_timeout_work);
1339 }
1340 
1341 static void fec_enet_timeout_work(struct work_struct *work)
1342 {
1343 	struct fec_enet_private *fep =
1344 		container_of(work, struct fec_enet_private, tx_timeout_work);
1345 	struct net_device *ndev = fep->netdev;
1346 
1347 	rtnl_lock();
1348 	if (netif_device_present(ndev) || netif_running(ndev)) {
1349 		napi_disable(&fep->napi);
1350 		netif_tx_lock_bh(ndev);
1351 		fec_restart(ndev);
1352 		netif_tx_wake_all_queues(ndev);
1353 		netif_tx_unlock_bh(ndev);
1354 		napi_enable(&fep->napi);
1355 	}
1356 	rtnl_unlock();
1357 }
1358 
1359 static void
1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1361 	struct skb_shared_hwtstamps *hwtstamps)
1362 {
1363 	unsigned long flags;
1364 	u64 ns;
1365 
1366 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1367 	ns = timecounter_cyc2time(&fep->tc, ts);
1368 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1369 
1370 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1371 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1372 }
1373 
1374 static void
1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1376 {
1377 	struct	fec_enet_private *fep;
1378 	struct bufdesc *bdp;
1379 	unsigned short status;
1380 	struct	sk_buff	*skb;
1381 	struct fec_enet_priv_tx_q *txq;
1382 	struct netdev_queue *nq;
1383 	int	index = 0;
1384 	int	entries_free;
1385 
1386 	fep = netdev_priv(ndev);
1387 
1388 	txq = fep->tx_queue[queue_id];
1389 	/* get next bdp of dirty_tx */
1390 	nq = netdev_get_tx_queue(ndev, queue_id);
1391 	bdp = txq->dirty_tx;
1392 
1393 	/* get next bdp of dirty_tx */
1394 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1395 
1396 	while (bdp != READ_ONCE(txq->bd.cur)) {
1397 		/* Order the load of bd.cur and cbd_sc */
1398 		rmb();
1399 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1400 		if (status & BD_ENET_TX_READY)
1401 			break;
1402 
1403 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1404 
1405 		skb = txq->tx_skbuff[index];
1406 		txq->tx_skbuff[index] = NULL;
1407 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1408 			dma_unmap_single(&fep->pdev->dev,
1409 					 fec32_to_cpu(bdp->cbd_bufaddr),
1410 					 fec16_to_cpu(bdp->cbd_datlen),
1411 					 DMA_TO_DEVICE);
1412 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1413 		if (!skb)
1414 			goto skb_done;
1415 
1416 		/* Check for errors. */
1417 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1418 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1419 				   BD_ENET_TX_CSL)) {
1420 			ndev->stats.tx_errors++;
1421 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1422 				ndev->stats.tx_heartbeat_errors++;
1423 			if (status & BD_ENET_TX_LC)  /* Late collision */
1424 				ndev->stats.tx_window_errors++;
1425 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1426 				ndev->stats.tx_aborted_errors++;
1427 			if (status & BD_ENET_TX_UN)  /* Underrun */
1428 				ndev->stats.tx_fifo_errors++;
1429 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1430 				ndev->stats.tx_carrier_errors++;
1431 		} else {
1432 			ndev->stats.tx_packets++;
1433 			ndev->stats.tx_bytes += skb->len;
1434 		}
1435 
1436 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1437 		 * are to time stamp the packet, so we still need to check time
1438 		 * stamping enabled flag.
1439 		 */
1440 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1441 			     fep->hwts_tx_en) &&
1442 		    fep->bufdesc_ex) {
1443 			struct skb_shared_hwtstamps shhwtstamps;
1444 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1445 
1446 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1447 			skb_tstamp_tx(skb, &shhwtstamps);
1448 		}
1449 
1450 		/* Deferred means some collisions occurred during transmit,
1451 		 * but we eventually sent the packet OK.
1452 		 */
1453 		if (status & BD_ENET_TX_DEF)
1454 			ndev->stats.collisions++;
1455 
1456 		/* Free the sk buffer associated with this last transmit */
1457 		dev_kfree_skb_any(skb);
1458 skb_done:
1459 		/* Make sure the update to bdp and tx_skbuff are performed
1460 		 * before dirty_tx
1461 		 */
1462 		wmb();
1463 		txq->dirty_tx = bdp;
1464 
1465 		/* Update pointer to next buffer descriptor to be transmitted */
1466 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1467 
1468 		/* Since we have freed up a buffer, the ring is no longer full
1469 		 */
1470 		if (netif_tx_queue_stopped(nq)) {
1471 			entries_free = fec_enet_get_free_txdesc_num(txq);
1472 			if (entries_free >= txq->tx_wake_threshold)
1473 				netif_tx_wake_queue(nq);
1474 		}
1475 	}
1476 
1477 	/* ERR006358: Keep the transmitter going */
1478 	if (bdp != txq->bd.cur &&
1479 	    readl(txq->bd.reg_desc_active) == 0)
1480 		writel(0, txq->bd.reg_desc_active);
1481 }
1482 
1483 static void fec_enet_tx(struct net_device *ndev)
1484 {
1485 	struct fec_enet_private *fep = netdev_priv(ndev);
1486 	int i;
1487 
1488 	/* Make sure that AVB queues are processed first. */
1489 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1490 		fec_enet_tx_queue(ndev, i);
1491 }
1492 
1493 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1494 				struct bufdesc *bdp, int index)
1495 {
1496 	struct page *new_page;
1497 	dma_addr_t phys_addr;
1498 
1499 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1500 	WARN_ON(!new_page);
1501 	rxq->rx_skb_info[index].page = new_page;
1502 
1503 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1504 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1505 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1506 }
1507 
1508 static u32
1509 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1510 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index)
1511 {
1512 	unsigned int sync, len = xdp->data_end - xdp->data;
1513 	u32 ret = FEC_ENET_XDP_PASS;
1514 	struct page *page;
1515 	int err;
1516 	u32 act;
1517 
1518 	act = bpf_prog_run_xdp(prog, xdp);
1519 
1520 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
1521 	sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM;
1522 	sync = max(sync, len);
1523 
1524 	switch (act) {
1525 	case XDP_PASS:
1526 		ret = FEC_ENET_XDP_PASS;
1527 		break;
1528 
1529 	case XDP_REDIRECT:
1530 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1531 		if (!err) {
1532 			ret = FEC_ENET_XDP_REDIR;
1533 		} else {
1534 			ret = FEC_ENET_XDP_CONSUMED;
1535 			page = virt_to_head_page(xdp->data);
1536 			page_pool_put_page(rxq->page_pool, page, sync, true);
1537 		}
1538 		break;
1539 
1540 	default:
1541 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1542 		fallthrough;
1543 
1544 	case XDP_TX:
1545 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1546 		fallthrough;
1547 
1548 	case XDP_ABORTED:
1549 		fallthrough;    /* handle aborts by dropping packet */
1550 
1551 	case XDP_DROP:
1552 		ret = FEC_ENET_XDP_CONSUMED;
1553 		page = virt_to_head_page(xdp->data);
1554 		page_pool_put_page(rxq->page_pool, page, sync, true);
1555 		break;
1556 	}
1557 
1558 	return ret;
1559 }
1560 
1561 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1562  * When we update through the ring, if the next incoming buffer has
1563  * not been given to the system, we just set the empty indicator,
1564  * effectively tossing the packet.
1565  */
1566 static int
1567 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1568 {
1569 	struct fec_enet_private *fep = netdev_priv(ndev);
1570 	struct fec_enet_priv_rx_q *rxq;
1571 	struct bufdesc *bdp;
1572 	unsigned short status;
1573 	struct  sk_buff *skb;
1574 	ushort	pkt_len;
1575 	__u8 *data;
1576 	int	pkt_received = 0;
1577 	struct	bufdesc_ex *ebdp = NULL;
1578 	bool	vlan_packet_rcvd = false;
1579 	u16	vlan_tag;
1580 	int	index = 0;
1581 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1582 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1583 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1584 	struct xdp_buff xdp;
1585 	struct page *page;
1586 
1587 #ifdef CONFIG_M532x
1588 	flush_cache_all();
1589 #endif
1590 	rxq = fep->rx_queue[queue_id];
1591 
1592 	/* First, grab all of the stats for the incoming packet.
1593 	 * These get messed up if we get called due to a busy condition.
1594 	 */
1595 	bdp = rxq->bd.cur;
1596 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1597 
1598 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1599 
1600 		if (pkt_received >= budget)
1601 			break;
1602 		pkt_received++;
1603 
1604 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1605 
1606 		/* Check for errors. */
1607 		status ^= BD_ENET_RX_LAST;
1608 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1609 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1610 			   BD_ENET_RX_CL)) {
1611 			ndev->stats.rx_errors++;
1612 			if (status & BD_ENET_RX_OV) {
1613 				/* FIFO overrun */
1614 				ndev->stats.rx_fifo_errors++;
1615 				goto rx_processing_done;
1616 			}
1617 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1618 						| BD_ENET_RX_LAST)) {
1619 				/* Frame too long or too short. */
1620 				ndev->stats.rx_length_errors++;
1621 				if (status & BD_ENET_RX_LAST)
1622 					netdev_err(ndev, "rcv is not +last\n");
1623 			}
1624 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1625 				ndev->stats.rx_crc_errors++;
1626 			/* Report late collisions as a frame error. */
1627 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1628 				ndev->stats.rx_frame_errors++;
1629 			goto rx_processing_done;
1630 		}
1631 
1632 		/* Process the incoming frame. */
1633 		ndev->stats.rx_packets++;
1634 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1635 		ndev->stats.rx_bytes += pkt_len;
1636 
1637 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1638 		page = rxq->rx_skb_info[index].page;
1639 		dma_sync_single_for_cpu(&fep->pdev->dev,
1640 					fec32_to_cpu(bdp->cbd_bufaddr),
1641 					pkt_len,
1642 					DMA_FROM_DEVICE);
1643 		prefetch(page_address(page));
1644 		fec_enet_update_cbd(rxq, bdp, index);
1645 
1646 		if (xdp_prog) {
1647 			xdp_buff_clear_frags_flag(&xdp);
1648 			xdp_prepare_buff(&xdp, page_address(page),
1649 					 FEC_ENET_XDP_HEADROOM, pkt_len, false);
1650 
1651 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index);
1652 			xdp_result |= ret;
1653 			if (ret != FEC_ENET_XDP_PASS)
1654 				goto rx_processing_done;
1655 		}
1656 
1657 		/* The packet length includes FCS, but we don't want to
1658 		 * include that when passing upstream as it messes up
1659 		 * bridging applications.
1660 		 */
1661 		skb = build_skb(page_address(page), PAGE_SIZE);
1662 		skb_reserve(skb, FEC_ENET_XDP_HEADROOM);
1663 		skb_put(skb, pkt_len - 4);
1664 		skb_mark_for_recycle(skb);
1665 		data = skb->data;
1666 
1667 		if (need_swap)
1668 			swap_buffer(data, pkt_len);
1669 
1670 #if !defined(CONFIG_M5272)
1671 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1672 			data = skb_pull_inline(skb, 2);
1673 #endif
1674 
1675 		/* Extract the enhanced buffer descriptor */
1676 		ebdp = NULL;
1677 		if (fep->bufdesc_ex)
1678 			ebdp = (struct bufdesc_ex *)bdp;
1679 
1680 		/* If this is a VLAN packet remove the VLAN Tag */
1681 		vlan_packet_rcvd = false;
1682 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1683 		    fep->bufdesc_ex &&
1684 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1685 			/* Push and remove the vlan tag */
1686 			struct vlan_hdr *vlan_header =
1687 					(struct vlan_hdr *) (data + ETH_HLEN);
1688 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1689 
1690 			vlan_packet_rcvd = true;
1691 
1692 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1693 			skb_pull(skb, VLAN_HLEN);
1694 		}
1695 
1696 		skb->protocol = eth_type_trans(skb, ndev);
1697 
1698 		/* Get receive timestamp from the skb */
1699 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1700 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1701 					  skb_hwtstamps(skb));
1702 
1703 		if (fep->bufdesc_ex &&
1704 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1705 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1706 				/* don't check it */
1707 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1708 			} else {
1709 				skb_checksum_none_assert(skb);
1710 			}
1711 		}
1712 
1713 		/* Handle received VLAN packets */
1714 		if (vlan_packet_rcvd)
1715 			__vlan_hwaccel_put_tag(skb,
1716 					       htons(ETH_P_8021Q),
1717 					       vlan_tag);
1718 
1719 		skb_record_rx_queue(skb, queue_id);
1720 		napi_gro_receive(&fep->napi, skb);
1721 
1722 rx_processing_done:
1723 		/* Clear the status flags for this buffer */
1724 		status &= ~BD_ENET_RX_STATS;
1725 
1726 		/* Mark the buffer empty */
1727 		status |= BD_ENET_RX_EMPTY;
1728 
1729 		if (fep->bufdesc_ex) {
1730 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1731 
1732 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1733 			ebdp->cbd_prot = 0;
1734 			ebdp->cbd_bdu = 0;
1735 		}
1736 		/* Make sure the updates to rest of the descriptor are
1737 		 * performed before transferring ownership.
1738 		 */
1739 		wmb();
1740 		bdp->cbd_sc = cpu_to_fec16(status);
1741 
1742 		/* Update BD pointer to next entry */
1743 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1744 
1745 		/* Doing this here will keep the FEC running while we process
1746 		 * incoming frames.  On a heavily loaded network, we should be
1747 		 * able to keep up at the expense of system resources.
1748 		 */
1749 		writel(0, rxq->bd.reg_desc_active);
1750 	}
1751 	rxq->bd.cur = bdp;
1752 
1753 	if (xdp_result & FEC_ENET_XDP_REDIR)
1754 		xdp_do_flush_map();
1755 
1756 	return pkt_received;
1757 }
1758 
1759 static int fec_enet_rx(struct net_device *ndev, int budget)
1760 {
1761 	struct fec_enet_private *fep = netdev_priv(ndev);
1762 	int i, done = 0;
1763 
1764 	/* Make sure that AVB queues are processed first. */
1765 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1766 		done += fec_enet_rx_queue(ndev, budget - done, i);
1767 
1768 	return done;
1769 }
1770 
1771 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1772 {
1773 	uint int_events;
1774 
1775 	int_events = readl(fep->hwp + FEC_IEVENT);
1776 
1777 	/* Don't clear MDIO events, we poll for those */
1778 	int_events &= ~FEC_ENET_MII;
1779 
1780 	writel(int_events, fep->hwp + FEC_IEVENT);
1781 
1782 	return int_events != 0;
1783 }
1784 
1785 static irqreturn_t
1786 fec_enet_interrupt(int irq, void *dev_id)
1787 {
1788 	struct net_device *ndev = dev_id;
1789 	struct fec_enet_private *fep = netdev_priv(ndev);
1790 	irqreturn_t ret = IRQ_NONE;
1791 
1792 	if (fec_enet_collect_events(fep) && fep->link) {
1793 		ret = IRQ_HANDLED;
1794 
1795 		if (napi_schedule_prep(&fep->napi)) {
1796 			/* Disable interrupts */
1797 			writel(0, fep->hwp + FEC_IMASK);
1798 			__napi_schedule(&fep->napi);
1799 		}
1800 	}
1801 
1802 	return ret;
1803 }
1804 
1805 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1806 {
1807 	struct net_device *ndev = napi->dev;
1808 	struct fec_enet_private *fep = netdev_priv(ndev);
1809 	int done = 0;
1810 
1811 	do {
1812 		done += fec_enet_rx(ndev, budget - done);
1813 		fec_enet_tx(ndev);
1814 	} while ((done < budget) && fec_enet_collect_events(fep));
1815 
1816 	if (done < budget) {
1817 		napi_complete_done(napi, done);
1818 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1819 	}
1820 
1821 	return done;
1822 }
1823 
1824 /* ------------------------------------------------------------------------- */
1825 static int fec_get_mac(struct net_device *ndev)
1826 {
1827 	struct fec_enet_private *fep = netdev_priv(ndev);
1828 	unsigned char *iap, tmpaddr[ETH_ALEN];
1829 	int ret;
1830 
1831 	/*
1832 	 * try to get mac address in following order:
1833 	 *
1834 	 * 1) module parameter via kernel command line in form
1835 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1836 	 */
1837 	iap = macaddr;
1838 
1839 	/*
1840 	 * 2) from device tree data
1841 	 */
1842 	if (!is_valid_ether_addr(iap)) {
1843 		struct device_node *np = fep->pdev->dev.of_node;
1844 		if (np) {
1845 			ret = of_get_mac_address(np, tmpaddr);
1846 			if (!ret)
1847 				iap = tmpaddr;
1848 			else if (ret == -EPROBE_DEFER)
1849 				return ret;
1850 		}
1851 	}
1852 
1853 	/*
1854 	 * 3) from flash or fuse (via platform data)
1855 	 */
1856 	if (!is_valid_ether_addr(iap)) {
1857 #ifdef CONFIG_M5272
1858 		if (FEC_FLASHMAC)
1859 			iap = (unsigned char *)FEC_FLASHMAC;
1860 #else
1861 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1862 
1863 		if (pdata)
1864 			iap = (unsigned char *)&pdata->mac;
1865 #endif
1866 	}
1867 
1868 	/*
1869 	 * 4) FEC mac registers set by bootloader
1870 	 */
1871 	if (!is_valid_ether_addr(iap)) {
1872 		*((__be32 *) &tmpaddr[0]) =
1873 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1874 		*((__be16 *) &tmpaddr[4]) =
1875 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1876 		iap = &tmpaddr[0];
1877 	}
1878 
1879 	/*
1880 	 * 5) random mac address
1881 	 */
1882 	if (!is_valid_ether_addr(iap)) {
1883 		/* Report it and use a random ethernet address instead */
1884 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1885 		eth_hw_addr_random(ndev);
1886 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1887 			 ndev->dev_addr);
1888 		return 0;
1889 	}
1890 
1891 	/* Adjust MAC if using macaddr */
1892 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1893 
1894 	return 0;
1895 }
1896 
1897 /* ------------------------------------------------------------------------- */
1898 
1899 /*
1900  * Phy section
1901  */
1902 static void fec_enet_adjust_link(struct net_device *ndev)
1903 {
1904 	struct fec_enet_private *fep = netdev_priv(ndev);
1905 	struct phy_device *phy_dev = ndev->phydev;
1906 	int status_change = 0;
1907 
1908 	/*
1909 	 * If the netdev is down, or is going down, we're not interested
1910 	 * in link state events, so just mark our idea of the link as down
1911 	 * and ignore the event.
1912 	 */
1913 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1914 		fep->link = 0;
1915 	} else if (phy_dev->link) {
1916 		if (!fep->link) {
1917 			fep->link = phy_dev->link;
1918 			status_change = 1;
1919 		}
1920 
1921 		if (fep->full_duplex != phy_dev->duplex) {
1922 			fep->full_duplex = phy_dev->duplex;
1923 			status_change = 1;
1924 		}
1925 
1926 		if (phy_dev->speed != fep->speed) {
1927 			fep->speed = phy_dev->speed;
1928 			status_change = 1;
1929 		}
1930 
1931 		/* if any of the above changed restart the FEC */
1932 		if (status_change) {
1933 			napi_disable(&fep->napi);
1934 			netif_tx_lock_bh(ndev);
1935 			fec_restart(ndev);
1936 			netif_tx_wake_all_queues(ndev);
1937 			netif_tx_unlock_bh(ndev);
1938 			napi_enable(&fep->napi);
1939 		}
1940 	} else {
1941 		if (fep->link) {
1942 			napi_disable(&fep->napi);
1943 			netif_tx_lock_bh(ndev);
1944 			fec_stop(ndev);
1945 			netif_tx_unlock_bh(ndev);
1946 			napi_enable(&fep->napi);
1947 			fep->link = phy_dev->link;
1948 			status_change = 1;
1949 		}
1950 	}
1951 
1952 	if (status_change)
1953 		phy_print_status(phy_dev);
1954 }
1955 
1956 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1957 {
1958 	uint ievent;
1959 	int ret;
1960 
1961 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1962 					ievent & FEC_ENET_MII, 2, 30000);
1963 
1964 	if (!ret)
1965 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1966 
1967 	return ret;
1968 }
1969 
1970 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1971 {
1972 	struct fec_enet_private *fep = bus->priv;
1973 	struct device *dev = &fep->pdev->dev;
1974 	int ret = 0, frame_start, frame_addr, frame_op;
1975 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1976 
1977 	ret = pm_runtime_resume_and_get(dev);
1978 	if (ret < 0)
1979 		return ret;
1980 
1981 	if (is_c45) {
1982 		frame_start = FEC_MMFR_ST_C45;
1983 
1984 		/* write address */
1985 		frame_addr = (regnum >> 16);
1986 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1987 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1988 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1989 		       fep->hwp + FEC_MII_DATA);
1990 
1991 		/* wait for end of transfer */
1992 		ret = fec_enet_mdio_wait(fep);
1993 		if (ret) {
1994 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1995 			goto out;
1996 		}
1997 
1998 		frame_op = FEC_MMFR_OP_READ_C45;
1999 
2000 	} else {
2001 		/* C22 read */
2002 		frame_op = FEC_MMFR_OP_READ;
2003 		frame_start = FEC_MMFR_ST;
2004 		frame_addr = regnum;
2005 	}
2006 
2007 	/* start a read op */
2008 	writel(frame_start | frame_op |
2009 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2010 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2011 
2012 	/* wait for end of transfer */
2013 	ret = fec_enet_mdio_wait(fep);
2014 	if (ret) {
2015 		netdev_err(fep->netdev, "MDIO read timeout\n");
2016 		goto out;
2017 	}
2018 
2019 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2020 
2021 out:
2022 	pm_runtime_mark_last_busy(dev);
2023 	pm_runtime_put_autosuspend(dev);
2024 
2025 	return ret;
2026 }
2027 
2028 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
2029 			   u16 value)
2030 {
2031 	struct fec_enet_private *fep = bus->priv;
2032 	struct device *dev = &fep->pdev->dev;
2033 	int ret, frame_start, frame_addr;
2034 	bool is_c45 = !!(regnum & MII_ADDR_C45);
2035 
2036 	ret = pm_runtime_resume_and_get(dev);
2037 	if (ret < 0)
2038 		return ret;
2039 
2040 	if (is_c45) {
2041 		frame_start = FEC_MMFR_ST_C45;
2042 
2043 		/* write address */
2044 		frame_addr = (regnum >> 16);
2045 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2046 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2047 		       FEC_MMFR_TA | (regnum & 0xFFFF),
2048 		       fep->hwp + FEC_MII_DATA);
2049 
2050 		/* wait for end of transfer */
2051 		ret = fec_enet_mdio_wait(fep);
2052 		if (ret) {
2053 			netdev_err(fep->netdev, "MDIO address write timeout\n");
2054 			goto out;
2055 		}
2056 	} else {
2057 		/* C22 write */
2058 		frame_start = FEC_MMFR_ST;
2059 		frame_addr = regnum;
2060 	}
2061 
2062 	/* start a write op */
2063 	writel(frame_start | FEC_MMFR_OP_WRITE |
2064 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2065 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
2066 		fep->hwp + FEC_MII_DATA);
2067 
2068 	/* wait for end of transfer */
2069 	ret = fec_enet_mdio_wait(fep);
2070 	if (ret)
2071 		netdev_err(fep->netdev, "MDIO write timeout\n");
2072 
2073 out:
2074 	pm_runtime_mark_last_busy(dev);
2075 	pm_runtime_put_autosuspend(dev);
2076 
2077 	return ret;
2078 }
2079 
2080 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2081 {
2082 	struct fec_enet_private *fep = netdev_priv(ndev);
2083 	struct phy_device *phy_dev = ndev->phydev;
2084 
2085 	if (phy_dev) {
2086 		phy_reset_after_clk_enable(phy_dev);
2087 	} else if (fep->phy_node) {
2088 		/*
2089 		 * If the PHY still is not bound to the MAC, but there is
2090 		 * OF PHY node and a matching PHY device instance already,
2091 		 * use the OF PHY node to obtain the PHY device instance,
2092 		 * and then use that PHY device instance when triggering
2093 		 * the PHY reset.
2094 		 */
2095 		phy_dev = of_phy_find_device(fep->phy_node);
2096 		phy_reset_after_clk_enable(phy_dev);
2097 		put_device(&phy_dev->mdio.dev);
2098 	}
2099 }
2100 
2101 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2102 {
2103 	struct fec_enet_private *fep = netdev_priv(ndev);
2104 	int ret;
2105 
2106 	if (enable) {
2107 		ret = clk_prepare_enable(fep->clk_enet_out);
2108 		if (ret)
2109 			return ret;
2110 
2111 		if (fep->clk_ptp) {
2112 			mutex_lock(&fep->ptp_clk_mutex);
2113 			ret = clk_prepare_enable(fep->clk_ptp);
2114 			if (ret) {
2115 				mutex_unlock(&fep->ptp_clk_mutex);
2116 				goto failed_clk_ptp;
2117 			} else {
2118 				fep->ptp_clk_on = true;
2119 			}
2120 			mutex_unlock(&fep->ptp_clk_mutex);
2121 		}
2122 
2123 		ret = clk_prepare_enable(fep->clk_ref);
2124 		if (ret)
2125 			goto failed_clk_ref;
2126 
2127 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2128 		if (ret)
2129 			goto failed_clk_2x_txclk;
2130 
2131 		fec_enet_phy_reset_after_clk_enable(ndev);
2132 	} else {
2133 		clk_disable_unprepare(fep->clk_enet_out);
2134 		if (fep->clk_ptp) {
2135 			mutex_lock(&fep->ptp_clk_mutex);
2136 			clk_disable_unprepare(fep->clk_ptp);
2137 			fep->ptp_clk_on = false;
2138 			mutex_unlock(&fep->ptp_clk_mutex);
2139 		}
2140 		clk_disable_unprepare(fep->clk_ref);
2141 		clk_disable_unprepare(fep->clk_2x_txclk);
2142 	}
2143 
2144 	return 0;
2145 
2146 failed_clk_2x_txclk:
2147 	if (fep->clk_ref)
2148 		clk_disable_unprepare(fep->clk_ref);
2149 failed_clk_ref:
2150 	if (fep->clk_ptp) {
2151 		mutex_lock(&fep->ptp_clk_mutex);
2152 		clk_disable_unprepare(fep->clk_ptp);
2153 		fep->ptp_clk_on = false;
2154 		mutex_unlock(&fep->ptp_clk_mutex);
2155 	}
2156 failed_clk_ptp:
2157 	clk_disable_unprepare(fep->clk_enet_out);
2158 
2159 	return ret;
2160 }
2161 
2162 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2163 				      struct device_node *np)
2164 {
2165 	u32 rgmii_tx_delay, rgmii_rx_delay;
2166 
2167 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2168 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2169 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2170 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2171 			return -EINVAL;
2172 		} else if (rgmii_tx_delay == 2000) {
2173 			fep->rgmii_txc_dly = true;
2174 		}
2175 	}
2176 
2177 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2178 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2179 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2180 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2181 			return -EINVAL;
2182 		} else if (rgmii_rx_delay == 2000) {
2183 			fep->rgmii_rxc_dly = true;
2184 		}
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 static int fec_enet_mii_probe(struct net_device *ndev)
2191 {
2192 	struct fec_enet_private *fep = netdev_priv(ndev);
2193 	struct phy_device *phy_dev = NULL;
2194 	char mdio_bus_id[MII_BUS_ID_SIZE];
2195 	char phy_name[MII_BUS_ID_SIZE + 3];
2196 	int phy_id;
2197 	int dev_id = fep->dev_id;
2198 
2199 	if (fep->phy_node) {
2200 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2201 					 &fec_enet_adjust_link, 0,
2202 					 fep->phy_interface);
2203 		if (!phy_dev) {
2204 			netdev_err(ndev, "Unable to connect to phy\n");
2205 			return -ENODEV;
2206 		}
2207 	} else {
2208 		/* check for attached phy */
2209 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2210 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2211 				continue;
2212 			if (dev_id--)
2213 				continue;
2214 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2215 			break;
2216 		}
2217 
2218 		if (phy_id >= PHY_MAX_ADDR) {
2219 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2220 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2221 			phy_id = 0;
2222 		}
2223 
2224 		snprintf(phy_name, sizeof(phy_name),
2225 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2226 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2227 				      fep->phy_interface);
2228 	}
2229 
2230 	if (IS_ERR(phy_dev)) {
2231 		netdev_err(ndev, "could not attach to PHY\n");
2232 		return PTR_ERR(phy_dev);
2233 	}
2234 
2235 	/* mask with MAC supported features */
2236 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2237 		phy_set_max_speed(phy_dev, 1000);
2238 		phy_remove_link_mode(phy_dev,
2239 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2240 #if !defined(CONFIG_M5272)
2241 		phy_support_sym_pause(phy_dev);
2242 #endif
2243 	}
2244 	else
2245 		phy_set_max_speed(phy_dev, 100);
2246 
2247 	fep->link = 0;
2248 	fep->full_duplex = 0;
2249 
2250 	phy_dev->mac_managed_pm = true;
2251 
2252 	phy_attached_info(phy_dev);
2253 
2254 	return 0;
2255 }
2256 
2257 static int fec_enet_mii_init(struct platform_device *pdev)
2258 {
2259 	static struct mii_bus *fec0_mii_bus;
2260 	struct net_device *ndev = platform_get_drvdata(pdev);
2261 	struct fec_enet_private *fep = netdev_priv(ndev);
2262 	bool suppress_preamble = false;
2263 	struct device_node *node;
2264 	int err = -ENXIO;
2265 	u32 mii_speed, holdtime;
2266 	u32 bus_freq;
2267 
2268 	/*
2269 	 * The i.MX28 dual fec interfaces are not equal.
2270 	 * Here are the differences:
2271 	 *
2272 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2273 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2274 	 *  - external phys can only be configured by fec0
2275 	 *
2276 	 * That is to say fec1 can not work independently. It only works
2277 	 * when fec0 is working. The reason behind this design is that the
2278 	 * second interface is added primarily for Switch mode.
2279 	 *
2280 	 * Because of the last point above, both phys are attached on fec0
2281 	 * mdio interface in board design, and need to be configured by
2282 	 * fec0 mii_bus.
2283 	 */
2284 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2285 		/* fec1 uses fec0 mii_bus */
2286 		if (mii_cnt && fec0_mii_bus) {
2287 			fep->mii_bus = fec0_mii_bus;
2288 			mii_cnt++;
2289 			return 0;
2290 		}
2291 		return -ENOENT;
2292 	}
2293 
2294 	bus_freq = 2500000; /* 2.5MHz by default */
2295 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2296 	if (node) {
2297 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2298 		suppress_preamble = of_property_read_bool(node,
2299 							  "suppress-preamble");
2300 	}
2301 
2302 	/*
2303 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2304 	 *
2305 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2306 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2307 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2308 	 * document.
2309 	 */
2310 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2311 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2312 		mii_speed--;
2313 	if (mii_speed > 63) {
2314 		dev_err(&pdev->dev,
2315 			"fec clock (%lu) too fast to get right mii speed\n",
2316 			clk_get_rate(fep->clk_ipg));
2317 		err = -EINVAL;
2318 		goto err_out;
2319 	}
2320 
2321 	/*
2322 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2323 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2324 	 * versions are RAZ there, so just ignore the difference and write the
2325 	 * register always.
2326 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2327 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2328 	 * output.
2329 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2330 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2331 	 * holdtime cannot result in a value greater than 3.
2332 	 */
2333 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2334 
2335 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2336 
2337 	if (suppress_preamble)
2338 		fep->phy_speed |= BIT(7);
2339 
2340 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2341 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2342 		 * MII event generation condition:
2343 		 * - writing MSCR:
2344 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2345 		 *	  mscr_reg_data_in[7:0] != 0
2346 		 * - writing MMFR:
2347 		 *	- mscr[7:0]_not_zero
2348 		 */
2349 		writel(0, fep->hwp + FEC_MII_DATA);
2350 	}
2351 
2352 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2353 
2354 	/* Clear any pending transaction complete indication */
2355 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2356 
2357 	fep->mii_bus = mdiobus_alloc();
2358 	if (fep->mii_bus == NULL) {
2359 		err = -ENOMEM;
2360 		goto err_out;
2361 	}
2362 
2363 	fep->mii_bus->name = "fec_enet_mii_bus";
2364 	fep->mii_bus->read = fec_enet_mdio_read;
2365 	fep->mii_bus->write = fec_enet_mdio_write;
2366 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2367 		pdev->name, fep->dev_id + 1);
2368 	fep->mii_bus->priv = fep;
2369 	fep->mii_bus->parent = &pdev->dev;
2370 
2371 	err = of_mdiobus_register(fep->mii_bus, node);
2372 	if (err)
2373 		goto err_out_free_mdiobus;
2374 	of_node_put(node);
2375 
2376 	mii_cnt++;
2377 
2378 	/* save fec0 mii_bus */
2379 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2380 		fec0_mii_bus = fep->mii_bus;
2381 
2382 	return 0;
2383 
2384 err_out_free_mdiobus:
2385 	mdiobus_free(fep->mii_bus);
2386 err_out:
2387 	of_node_put(node);
2388 	return err;
2389 }
2390 
2391 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2392 {
2393 	if (--mii_cnt == 0) {
2394 		mdiobus_unregister(fep->mii_bus);
2395 		mdiobus_free(fep->mii_bus);
2396 	}
2397 }
2398 
2399 static void fec_enet_get_drvinfo(struct net_device *ndev,
2400 				 struct ethtool_drvinfo *info)
2401 {
2402 	struct fec_enet_private *fep = netdev_priv(ndev);
2403 
2404 	strscpy(info->driver, fep->pdev->dev.driver->name,
2405 		sizeof(info->driver));
2406 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2407 }
2408 
2409 static int fec_enet_get_regs_len(struct net_device *ndev)
2410 {
2411 	struct fec_enet_private *fep = netdev_priv(ndev);
2412 	struct resource *r;
2413 	int s = 0;
2414 
2415 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2416 	if (r)
2417 		s = resource_size(r);
2418 
2419 	return s;
2420 }
2421 
2422 /* List of registers that can be safety be read to dump them with ethtool */
2423 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2424 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2425 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2426 static __u32 fec_enet_register_version = 2;
2427 static u32 fec_enet_register_offset[] = {
2428 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2429 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2430 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2431 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2432 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2433 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2434 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2435 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2436 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2437 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2438 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2439 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2440 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2441 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2442 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2443 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2444 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2445 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2446 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2447 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2448 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2449 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2450 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2451 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2452 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2453 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2454 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2455 };
2456 /* for i.MX6ul */
2457 static u32 fec_enet_register_offset_6ul[] = {
2458 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2459 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2460 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2461 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2462 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2463 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2464 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2465 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2466 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2467 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2468 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2469 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2470 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2471 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2472 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2473 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2474 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2475 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2476 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2477 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2478 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2479 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2480 };
2481 #else
2482 static __u32 fec_enet_register_version = 1;
2483 static u32 fec_enet_register_offset[] = {
2484 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2485 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2486 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2487 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2488 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2489 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2490 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2491 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2492 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2493 };
2494 #endif
2495 
2496 static void fec_enet_get_regs(struct net_device *ndev,
2497 			      struct ethtool_regs *regs, void *regbuf)
2498 {
2499 	struct fec_enet_private *fep = netdev_priv(ndev);
2500 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2501 	struct device *dev = &fep->pdev->dev;
2502 	u32 *buf = (u32 *)regbuf;
2503 	u32 i, off;
2504 	int ret;
2505 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2506 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2507 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2508 	u32 *reg_list;
2509 	u32 reg_cnt;
2510 
2511 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2512 		reg_list = fec_enet_register_offset;
2513 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2514 	} else {
2515 		reg_list = fec_enet_register_offset_6ul;
2516 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2517 	}
2518 #else
2519 	/* coldfire */
2520 	static u32 *reg_list = fec_enet_register_offset;
2521 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2522 #endif
2523 	ret = pm_runtime_resume_and_get(dev);
2524 	if (ret < 0)
2525 		return;
2526 
2527 	regs->version = fec_enet_register_version;
2528 
2529 	memset(buf, 0, regs->len);
2530 
2531 	for (i = 0; i < reg_cnt; i++) {
2532 		off = reg_list[i];
2533 
2534 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2535 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2536 			continue;
2537 
2538 		off >>= 2;
2539 		buf[off] = readl(&theregs[off]);
2540 	}
2541 
2542 	pm_runtime_mark_last_busy(dev);
2543 	pm_runtime_put_autosuspend(dev);
2544 }
2545 
2546 static int fec_enet_get_ts_info(struct net_device *ndev,
2547 				struct ethtool_ts_info *info)
2548 {
2549 	struct fec_enet_private *fep = netdev_priv(ndev);
2550 
2551 	if (fep->bufdesc_ex) {
2552 
2553 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2554 					SOF_TIMESTAMPING_RX_SOFTWARE |
2555 					SOF_TIMESTAMPING_SOFTWARE |
2556 					SOF_TIMESTAMPING_TX_HARDWARE |
2557 					SOF_TIMESTAMPING_RX_HARDWARE |
2558 					SOF_TIMESTAMPING_RAW_HARDWARE;
2559 		if (fep->ptp_clock)
2560 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2561 		else
2562 			info->phc_index = -1;
2563 
2564 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2565 				 (1 << HWTSTAMP_TX_ON);
2566 
2567 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2568 				   (1 << HWTSTAMP_FILTER_ALL);
2569 		return 0;
2570 	} else {
2571 		return ethtool_op_get_ts_info(ndev, info);
2572 	}
2573 }
2574 
2575 #if !defined(CONFIG_M5272)
2576 
2577 static void fec_enet_get_pauseparam(struct net_device *ndev,
2578 				    struct ethtool_pauseparam *pause)
2579 {
2580 	struct fec_enet_private *fep = netdev_priv(ndev);
2581 
2582 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2583 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2584 	pause->rx_pause = pause->tx_pause;
2585 }
2586 
2587 static int fec_enet_set_pauseparam(struct net_device *ndev,
2588 				   struct ethtool_pauseparam *pause)
2589 {
2590 	struct fec_enet_private *fep = netdev_priv(ndev);
2591 
2592 	if (!ndev->phydev)
2593 		return -ENODEV;
2594 
2595 	if (pause->tx_pause != pause->rx_pause) {
2596 		netdev_info(ndev,
2597 			"hardware only support enable/disable both tx and rx");
2598 		return -EINVAL;
2599 	}
2600 
2601 	fep->pause_flag = 0;
2602 
2603 	/* tx pause must be same as rx pause */
2604 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2605 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2606 
2607 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2608 			  pause->autoneg);
2609 
2610 	if (pause->autoneg) {
2611 		if (netif_running(ndev))
2612 			fec_stop(ndev);
2613 		phy_start_aneg(ndev->phydev);
2614 	}
2615 	if (netif_running(ndev)) {
2616 		napi_disable(&fep->napi);
2617 		netif_tx_lock_bh(ndev);
2618 		fec_restart(ndev);
2619 		netif_tx_wake_all_queues(ndev);
2620 		netif_tx_unlock_bh(ndev);
2621 		napi_enable(&fep->napi);
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 static const struct fec_stat {
2628 	char name[ETH_GSTRING_LEN];
2629 	u16 offset;
2630 } fec_stats[] = {
2631 	/* RMON TX */
2632 	{ "tx_dropped", RMON_T_DROP },
2633 	{ "tx_packets", RMON_T_PACKETS },
2634 	{ "tx_broadcast", RMON_T_BC_PKT },
2635 	{ "tx_multicast", RMON_T_MC_PKT },
2636 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2637 	{ "tx_undersize", RMON_T_UNDERSIZE },
2638 	{ "tx_oversize", RMON_T_OVERSIZE },
2639 	{ "tx_fragment", RMON_T_FRAG },
2640 	{ "tx_jabber", RMON_T_JAB },
2641 	{ "tx_collision", RMON_T_COL },
2642 	{ "tx_64byte", RMON_T_P64 },
2643 	{ "tx_65to127byte", RMON_T_P65TO127 },
2644 	{ "tx_128to255byte", RMON_T_P128TO255 },
2645 	{ "tx_256to511byte", RMON_T_P256TO511 },
2646 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2647 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2648 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2649 	{ "tx_octets", RMON_T_OCTETS },
2650 
2651 	/* IEEE TX */
2652 	{ "IEEE_tx_drop", IEEE_T_DROP },
2653 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2654 	{ "IEEE_tx_1col", IEEE_T_1COL },
2655 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2656 	{ "IEEE_tx_def", IEEE_T_DEF },
2657 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2658 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2659 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2660 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2661 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2662 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2663 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2664 
2665 	/* RMON RX */
2666 	{ "rx_packets", RMON_R_PACKETS },
2667 	{ "rx_broadcast", RMON_R_BC_PKT },
2668 	{ "rx_multicast", RMON_R_MC_PKT },
2669 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2670 	{ "rx_undersize", RMON_R_UNDERSIZE },
2671 	{ "rx_oversize", RMON_R_OVERSIZE },
2672 	{ "rx_fragment", RMON_R_FRAG },
2673 	{ "rx_jabber", RMON_R_JAB },
2674 	{ "rx_64byte", RMON_R_P64 },
2675 	{ "rx_65to127byte", RMON_R_P65TO127 },
2676 	{ "rx_128to255byte", RMON_R_P128TO255 },
2677 	{ "rx_256to511byte", RMON_R_P256TO511 },
2678 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2679 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2680 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2681 	{ "rx_octets", RMON_R_OCTETS },
2682 
2683 	/* IEEE RX */
2684 	{ "IEEE_rx_drop", IEEE_R_DROP },
2685 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2686 	{ "IEEE_rx_crc", IEEE_R_CRC },
2687 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2688 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2689 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2690 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2691 };
2692 
2693 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2694 
2695 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2696 {
2697 	struct fec_enet_private *fep = netdev_priv(dev);
2698 	int i;
2699 
2700 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2701 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2702 }
2703 
2704 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2705 				       struct ethtool_stats *stats, u64 *data)
2706 {
2707 	struct fec_enet_private *fep = netdev_priv(dev);
2708 
2709 	if (netif_running(dev))
2710 		fec_enet_update_ethtool_stats(dev);
2711 
2712 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2713 }
2714 
2715 static void fec_enet_get_strings(struct net_device *netdev,
2716 	u32 stringset, u8 *data)
2717 {
2718 	int i;
2719 	switch (stringset) {
2720 	case ETH_SS_STATS:
2721 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2722 			memcpy(data + i * ETH_GSTRING_LEN,
2723 				fec_stats[i].name, ETH_GSTRING_LEN);
2724 		break;
2725 	case ETH_SS_TEST:
2726 		net_selftest_get_strings(data);
2727 		break;
2728 	}
2729 }
2730 
2731 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2732 {
2733 	switch (sset) {
2734 	case ETH_SS_STATS:
2735 		return ARRAY_SIZE(fec_stats);
2736 	case ETH_SS_TEST:
2737 		return net_selftest_get_count();
2738 	default:
2739 		return -EOPNOTSUPP;
2740 	}
2741 }
2742 
2743 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2744 {
2745 	struct fec_enet_private *fep = netdev_priv(dev);
2746 	int i;
2747 
2748 	/* Disable MIB statistics counters */
2749 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2750 
2751 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2752 		writel(0, fep->hwp + fec_stats[i].offset);
2753 
2754 	/* Don't disable MIB statistics counters */
2755 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2756 }
2757 
2758 #else	/* !defined(CONFIG_M5272) */
2759 #define FEC_STATS_SIZE	0
2760 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2761 {
2762 }
2763 
2764 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2765 {
2766 }
2767 #endif /* !defined(CONFIG_M5272) */
2768 
2769 /* ITR clock source is enet system clock (clk_ahb).
2770  * TCTT unit is cycle_ns * 64 cycle
2771  * So, the ICTT value = X us / (cycle_ns * 64)
2772  */
2773 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2774 {
2775 	struct fec_enet_private *fep = netdev_priv(ndev);
2776 
2777 	return us * (fep->itr_clk_rate / 64000) / 1000;
2778 }
2779 
2780 /* Set threshold for interrupt coalescing */
2781 static void fec_enet_itr_coal_set(struct net_device *ndev)
2782 {
2783 	struct fec_enet_private *fep = netdev_priv(ndev);
2784 	int rx_itr, tx_itr;
2785 
2786 	/* Must be greater than zero to avoid unpredictable behavior */
2787 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2788 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2789 		return;
2790 
2791 	/* Select enet system clock as Interrupt Coalescing
2792 	 * timer Clock Source
2793 	 */
2794 	rx_itr = FEC_ITR_CLK_SEL;
2795 	tx_itr = FEC_ITR_CLK_SEL;
2796 
2797 	/* set ICFT and ICTT */
2798 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2799 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2800 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2801 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2802 
2803 	rx_itr |= FEC_ITR_EN;
2804 	tx_itr |= FEC_ITR_EN;
2805 
2806 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2807 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2808 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2809 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2810 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2811 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2812 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2813 	}
2814 }
2815 
2816 static int fec_enet_get_coalesce(struct net_device *ndev,
2817 				 struct ethtool_coalesce *ec,
2818 				 struct kernel_ethtool_coalesce *kernel_coal,
2819 				 struct netlink_ext_ack *extack)
2820 {
2821 	struct fec_enet_private *fep = netdev_priv(ndev);
2822 
2823 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2824 		return -EOPNOTSUPP;
2825 
2826 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2827 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2828 
2829 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2830 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2831 
2832 	return 0;
2833 }
2834 
2835 static int fec_enet_set_coalesce(struct net_device *ndev,
2836 				 struct ethtool_coalesce *ec,
2837 				 struct kernel_ethtool_coalesce *kernel_coal,
2838 				 struct netlink_ext_ack *extack)
2839 {
2840 	struct fec_enet_private *fep = netdev_priv(ndev);
2841 	struct device *dev = &fep->pdev->dev;
2842 	unsigned int cycle;
2843 
2844 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2845 		return -EOPNOTSUPP;
2846 
2847 	if (ec->rx_max_coalesced_frames > 255) {
2848 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2849 		return -EINVAL;
2850 	}
2851 
2852 	if (ec->tx_max_coalesced_frames > 255) {
2853 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2854 		return -EINVAL;
2855 	}
2856 
2857 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2858 	if (cycle > 0xFFFF) {
2859 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2860 		return -EINVAL;
2861 	}
2862 
2863 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2864 	if (cycle > 0xFFFF) {
2865 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2866 		return -EINVAL;
2867 	}
2868 
2869 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2870 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2871 
2872 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2873 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2874 
2875 	fec_enet_itr_coal_set(ndev);
2876 
2877 	return 0;
2878 }
2879 
2880 static void fec_enet_itr_coal_init(struct net_device *ndev)
2881 {
2882 	struct ethtool_coalesce ec;
2883 
2884 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2885 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2886 
2887 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2888 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2889 
2890 	fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2891 }
2892 
2893 static int fec_enet_get_tunable(struct net_device *netdev,
2894 				const struct ethtool_tunable *tuna,
2895 				void *data)
2896 {
2897 	struct fec_enet_private *fep = netdev_priv(netdev);
2898 	int ret = 0;
2899 
2900 	switch (tuna->id) {
2901 	case ETHTOOL_RX_COPYBREAK:
2902 		*(u32 *)data = fep->rx_copybreak;
2903 		break;
2904 	default:
2905 		ret = -EINVAL;
2906 		break;
2907 	}
2908 
2909 	return ret;
2910 }
2911 
2912 static int fec_enet_set_tunable(struct net_device *netdev,
2913 				const struct ethtool_tunable *tuna,
2914 				const void *data)
2915 {
2916 	struct fec_enet_private *fep = netdev_priv(netdev);
2917 	int ret = 0;
2918 
2919 	switch (tuna->id) {
2920 	case ETHTOOL_RX_COPYBREAK:
2921 		fep->rx_copybreak = *(u32 *)data;
2922 		break;
2923 	default:
2924 		ret = -EINVAL;
2925 		break;
2926 	}
2927 
2928 	return ret;
2929 }
2930 
2931 /* LPI Sleep Ts count base on tx clk (clk_ref).
2932  * The lpi sleep cnt value = X us / (cycle_ns).
2933  */
2934 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2935 {
2936 	struct fec_enet_private *fep = netdev_priv(ndev);
2937 
2938 	return us * (fep->clk_ref_rate / 1000) / 1000;
2939 }
2940 
2941 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2942 {
2943 	struct fec_enet_private *fep = netdev_priv(ndev);
2944 	struct ethtool_eee *p = &fep->eee;
2945 	unsigned int sleep_cycle, wake_cycle;
2946 	int ret = 0;
2947 
2948 	if (enable) {
2949 		ret = phy_init_eee(ndev->phydev, false);
2950 		if (ret)
2951 			return ret;
2952 
2953 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2954 		wake_cycle = sleep_cycle;
2955 	} else {
2956 		sleep_cycle = 0;
2957 		wake_cycle = 0;
2958 	}
2959 
2960 	p->tx_lpi_enabled = enable;
2961 	p->eee_enabled = enable;
2962 	p->eee_active = enable;
2963 
2964 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2965 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2966 
2967 	return 0;
2968 }
2969 
2970 static int
2971 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2972 {
2973 	struct fec_enet_private *fep = netdev_priv(ndev);
2974 	struct ethtool_eee *p = &fep->eee;
2975 
2976 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2977 		return -EOPNOTSUPP;
2978 
2979 	if (!netif_running(ndev))
2980 		return -ENETDOWN;
2981 
2982 	edata->eee_enabled = p->eee_enabled;
2983 	edata->eee_active = p->eee_active;
2984 	edata->tx_lpi_timer = p->tx_lpi_timer;
2985 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
2986 
2987 	return phy_ethtool_get_eee(ndev->phydev, edata);
2988 }
2989 
2990 static int
2991 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2992 {
2993 	struct fec_enet_private *fep = netdev_priv(ndev);
2994 	struct ethtool_eee *p = &fep->eee;
2995 	int ret = 0;
2996 
2997 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2998 		return -EOPNOTSUPP;
2999 
3000 	if (!netif_running(ndev))
3001 		return -ENETDOWN;
3002 
3003 	p->tx_lpi_timer = edata->tx_lpi_timer;
3004 
3005 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3006 	    !edata->tx_lpi_timer)
3007 		ret = fec_enet_eee_mode_set(ndev, false);
3008 	else
3009 		ret = fec_enet_eee_mode_set(ndev, true);
3010 
3011 	if (ret)
3012 		return ret;
3013 
3014 	return phy_ethtool_set_eee(ndev->phydev, edata);
3015 }
3016 
3017 static void
3018 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3019 {
3020 	struct fec_enet_private *fep = netdev_priv(ndev);
3021 
3022 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3023 		wol->supported = WAKE_MAGIC;
3024 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3025 	} else {
3026 		wol->supported = wol->wolopts = 0;
3027 	}
3028 }
3029 
3030 static int
3031 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3032 {
3033 	struct fec_enet_private *fep = netdev_priv(ndev);
3034 
3035 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3036 		return -EINVAL;
3037 
3038 	if (wol->wolopts & ~WAKE_MAGIC)
3039 		return -EINVAL;
3040 
3041 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3042 	if (device_may_wakeup(&ndev->dev))
3043 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3044 	else
3045 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3046 
3047 	return 0;
3048 }
3049 
3050 static const struct ethtool_ops fec_enet_ethtool_ops = {
3051 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3052 				     ETHTOOL_COALESCE_MAX_FRAMES,
3053 	.get_drvinfo		= fec_enet_get_drvinfo,
3054 	.get_regs_len		= fec_enet_get_regs_len,
3055 	.get_regs		= fec_enet_get_regs,
3056 	.nway_reset		= phy_ethtool_nway_reset,
3057 	.get_link		= ethtool_op_get_link,
3058 	.get_coalesce		= fec_enet_get_coalesce,
3059 	.set_coalesce		= fec_enet_set_coalesce,
3060 #ifndef CONFIG_M5272
3061 	.get_pauseparam		= fec_enet_get_pauseparam,
3062 	.set_pauseparam		= fec_enet_set_pauseparam,
3063 	.get_strings		= fec_enet_get_strings,
3064 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3065 	.get_sset_count		= fec_enet_get_sset_count,
3066 #endif
3067 	.get_ts_info		= fec_enet_get_ts_info,
3068 	.get_tunable		= fec_enet_get_tunable,
3069 	.set_tunable		= fec_enet_set_tunable,
3070 	.get_wol		= fec_enet_get_wol,
3071 	.set_wol		= fec_enet_set_wol,
3072 	.get_eee		= fec_enet_get_eee,
3073 	.set_eee		= fec_enet_set_eee,
3074 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3075 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3076 	.self_test		= net_selftest,
3077 };
3078 
3079 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
3080 {
3081 	struct fec_enet_private *fep = netdev_priv(ndev);
3082 	struct phy_device *phydev = ndev->phydev;
3083 
3084 	if (!netif_running(ndev))
3085 		return -EINVAL;
3086 
3087 	if (!phydev)
3088 		return -ENODEV;
3089 
3090 	if (fep->bufdesc_ex) {
3091 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
3092 
3093 		if (cmd == SIOCSHWTSTAMP) {
3094 			if (use_fec_hwts)
3095 				return fec_ptp_set(ndev, rq);
3096 			fec_ptp_disable_hwts(ndev);
3097 		} else if (cmd == SIOCGHWTSTAMP) {
3098 			if (use_fec_hwts)
3099 				return fec_ptp_get(ndev, rq);
3100 		}
3101 	}
3102 
3103 	return phy_mii_ioctl(phydev, rq, cmd);
3104 }
3105 
3106 static void fec_enet_free_buffers(struct net_device *ndev)
3107 {
3108 	struct fec_enet_private *fep = netdev_priv(ndev);
3109 	unsigned int i;
3110 	struct sk_buff *skb;
3111 	struct fec_enet_priv_tx_q *txq;
3112 	struct fec_enet_priv_rx_q *rxq;
3113 	unsigned int q;
3114 
3115 	for (q = 0; q < fep->num_rx_queues; q++) {
3116 		rxq = fep->rx_queue[q];
3117 		for (i = 0; i < rxq->bd.ring_size; i++)
3118 			page_pool_release_page(rxq->page_pool, rxq->rx_skb_info[i].page);
3119 
3120 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3121 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3122 		page_pool_destroy(rxq->page_pool);
3123 		rxq->page_pool = NULL;
3124 	}
3125 
3126 	for (q = 0; q < fep->num_tx_queues; q++) {
3127 		txq = fep->tx_queue[q];
3128 		for (i = 0; i < txq->bd.ring_size; i++) {
3129 			kfree(txq->tx_bounce[i]);
3130 			txq->tx_bounce[i] = NULL;
3131 			skb = txq->tx_skbuff[i];
3132 			txq->tx_skbuff[i] = NULL;
3133 			dev_kfree_skb(skb);
3134 		}
3135 	}
3136 }
3137 
3138 static void fec_enet_free_queue(struct net_device *ndev)
3139 {
3140 	struct fec_enet_private *fep = netdev_priv(ndev);
3141 	int i;
3142 	struct fec_enet_priv_tx_q *txq;
3143 
3144 	for (i = 0; i < fep->num_tx_queues; i++)
3145 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3146 			txq = fep->tx_queue[i];
3147 			dma_free_coherent(&fep->pdev->dev,
3148 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3149 					  txq->tso_hdrs,
3150 					  txq->tso_hdrs_dma);
3151 		}
3152 
3153 	for (i = 0; i < fep->num_rx_queues; i++)
3154 		kfree(fep->rx_queue[i]);
3155 	for (i = 0; i < fep->num_tx_queues; i++)
3156 		kfree(fep->tx_queue[i]);
3157 }
3158 
3159 static int fec_enet_alloc_queue(struct net_device *ndev)
3160 {
3161 	struct fec_enet_private *fep = netdev_priv(ndev);
3162 	int i;
3163 	int ret = 0;
3164 	struct fec_enet_priv_tx_q *txq;
3165 
3166 	for (i = 0; i < fep->num_tx_queues; i++) {
3167 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3168 		if (!txq) {
3169 			ret = -ENOMEM;
3170 			goto alloc_failed;
3171 		}
3172 
3173 		fep->tx_queue[i] = txq;
3174 		txq->bd.ring_size = TX_RING_SIZE;
3175 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3176 
3177 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3178 		txq->tx_wake_threshold =
3179 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3180 
3181 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3182 					txq->bd.ring_size * TSO_HEADER_SIZE,
3183 					&txq->tso_hdrs_dma,
3184 					GFP_KERNEL);
3185 		if (!txq->tso_hdrs) {
3186 			ret = -ENOMEM;
3187 			goto alloc_failed;
3188 		}
3189 	}
3190 
3191 	for (i = 0; i < fep->num_rx_queues; i++) {
3192 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3193 					   GFP_KERNEL);
3194 		if (!fep->rx_queue[i]) {
3195 			ret = -ENOMEM;
3196 			goto alloc_failed;
3197 		}
3198 
3199 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3200 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3201 	}
3202 	return ret;
3203 
3204 alloc_failed:
3205 	fec_enet_free_queue(ndev);
3206 	return ret;
3207 }
3208 
3209 static int
3210 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3211 {
3212 	struct fec_enet_private *fep = netdev_priv(ndev);
3213 	struct fec_enet_priv_rx_q *rxq;
3214 	dma_addr_t phys_addr;
3215 	struct bufdesc	*bdp;
3216 	struct page *page;
3217 	int i, err;
3218 
3219 	rxq = fep->rx_queue[queue];
3220 	bdp = rxq->bd.base;
3221 
3222 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3223 	if (err < 0) {
3224 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3225 		return err;
3226 	}
3227 
3228 	for (i = 0; i < rxq->bd.ring_size; i++) {
3229 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3230 		if (!page)
3231 			goto err_alloc;
3232 
3233 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3234 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3235 
3236 		rxq->rx_skb_info[i].page = page;
3237 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3238 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3239 
3240 		if (fep->bufdesc_ex) {
3241 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3242 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3243 		}
3244 
3245 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3246 	}
3247 
3248 	/* Set the last buffer to wrap. */
3249 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3250 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3251 	return 0;
3252 
3253  err_alloc:
3254 	fec_enet_free_buffers(ndev);
3255 	return -ENOMEM;
3256 }
3257 
3258 static int
3259 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3260 {
3261 	struct fec_enet_private *fep = netdev_priv(ndev);
3262 	unsigned int i;
3263 	struct bufdesc  *bdp;
3264 	struct fec_enet_priv_tx_q *txq;
3265 
3266 	txq = fep->tx_queue[queue];
3267 	bdp = txq->bd.base;
3268 	for (i = 0; i < txq->bd.ring_size; i++) {
3269 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3270 		if (!txq->tx_bounce[i])
3271 			goto err_alloc;
3272 
3273 		bdp->cbd_sc = cpu_to_fec16(0);
3274 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3275 
3276 		if (fep->bufdesc_ex) {
3277 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3278 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3279 		}
3280 
3281 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3282 	}
3283 
3284 	/* Set the last buffer to wrap. */
3285 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3286 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3287 
3288 	return 0;
3289 
3290  err_alloc:
3291 	fec_enet_free_buffers(ndev);
3292 	return -ENOMEM;
3293 }
3294 
3295 static int fec_enet_alloc_buffers(struct net_device *ndev)
3296 {
3297 	struct fec_enet_private *fep = netdev_priv(ndev);
3298 	unsigned int i;
3299 
3300 	for (i = 0; i < fep->num_rx_queues; i++)
3301 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3302 			return -ENOMEM;
3303 
3304 	for (i = 0; i < fep->num_tx_queues; i++)
3305 		if (fec_enet_alloc_txq_buffers(ndev, i))
3306 			return -ENOMEM;
3307 	return 0;
3308 }
3309 
3310 static int
3311 fec_enet_open(struct net_device *ndev)
3312 {
3313 	struct fec_enet_private *fep = netdev_priv(ndev);
3314 	int ret;
3315 	bool reset_again;
3316 
3317 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3318 	if (ret < 0)
3319 		return ret;
3320 
3321 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3322 	ret = fec_enet_clk_enable(ndev, true);
3323 	if (ret)
3324 		goto clk_enable;
3325 
3326 	/* During the first fec_enet_open call the PHY isn't probed at this
3327 	 * point. Therefore the phy_reset_after_clk_enable() call within
3328 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3329 	 * sure the PHY is working correctly we check if we need to reset again
3330 	 * later when the PHY is probed
3331 	 */
3332 	if (ndev->phydev && ndev->phydev->drv)
3333 		reset_again = false;
3334 	else
3335 		reset_again = true;
3336 
3337 	/* I should reset the ring buffers here, but I don't yet know
3338 	 * a simple way to do that.
3339 	 */
3340 
3341 	ret = fec_enet_alloc_buffers(ndev);
3342 	if (ret)
3343 		goto err_enet_alloc;
3344 
3345 	/* Init MAC prior to mii bus probe */
3346 	fec_restart(ndev);
3347 
3348 	/* Call phy_reset_after_clk_enable() again if it failed during
3349 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3350 	 */
3351 	if (reset_again)
3352 		fec_enet_phy_reset_after_clk_enable(ndev);
3353 
3354 	/* Probe and connect to PHY when open the interface */
3355 	ret = fec_enet_mii_probe(ndev);
3356 	if (ret)
3357 		goto err_enet_mii_probe;
3358 
3359 	if (fep->quirks & FEC_QUIRK_ERR006687)
3360 		imx6q_cpuidle_fec_irqs_used();
3361 
3362 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3363 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3364 
3365 	napi_enable(&fep->napi);
3366 	phy_start(ndev->phydev);
3367 	netif_tx_start_all_queues(ndev);
3368 
3369 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3370 				 FEC_WOL_FLAG_ENABLE);
3371 
3372 	return 0;
3373 
3374 err_enet_mii_probe:
3375 	fec_enet_free_buffers(ndev);
3376 err_enet_alloc:
3377 	fec_enet_clk_enable(ndev, false);
3378 clk_enable:
3379 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3380 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3381 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3382 	return ret;
3383 }
3384 
3385 static int
3386 fec_enet_close(struct net_device *ndev)
3387 {
3388 	struct fec_enet_private *fep = netdev_priv(ndev);
3389 
3390 	phy_stop(ndev->phydev);
3391 
3392 	if (netif_device_present(ndev)) {
3393 		napi_disable(&fep->napi);
3394 		netif_tx_disable(ndev);
3395 		fec_stop(ndev);
3396 	}
3397 
3398 	phy_disconnect(ndev->phydev);
3399 
3400 	if (fep->quirks & FEC_QUIRK_ERR006687)
3401 		imx6q_cpuidle_fec_irqs_unused();
3402 
3403 	fec_enet_update_ethtool_stats(ndev);
3404 
3405 	fec_enet_clk_enable(ndev, false);
3406 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3407 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3408 
3409 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3410 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3411 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3412 
3413 	fec_enet_free_buffers(ndev);
3414 
3415 	return 0;
3416 }
3417 
3418 /* Set or clear the multicast filter for this adaptor.
3419  * Skeleton taken from sunlance driver.
3420  * The CPM Ethernet implementation allows Multicast as well as individual
3421  * MAC address filtering.  Some of the drivers check to make sure it is
3422  * a group multicast address, and discard those that are not.  I guess I
3423  * will do the same for now, but just remove the test if you want
3424  * individual filtering as well (do the upper net layers want or support
3425  * this kind of feature?).
3426  */
3427 
3428 #define FEC_HASH_BITS	6		/* #bits in hash */
3429 
3430 static void set_multicast_list(struct net_device *ndev)
3431 {
3432 	struct fec_enet_private *fep = netdev_priv(ndev);
3433 	struct netdev_hw_addr *ha;
3434 	unsigned int crc, tmp;
3435 	unsigned char hash;
3436 	unsigned int hash_high = 0, hash_low = 0;
3437 
3438 	if (ndev->flags & IFF_PROMISC) {
3439 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3440 		tmp |= 0x8;
3441 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3442 		return;
3443 	}
3444 
3445 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3446 	tmp &= ~0x8;
3447 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3448 
3449 	if (ndev->flags & IFF_ALLMULTI) {
3450 		/* Catch all multicast addresses, so set the
3451 		 * filter to all 1's
3452 		 */
3453 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3454 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3455 
3456 		return;
3457 	}
3458 
3459 	/* Add the addresses in hash register */
3460 	netdev_for_each_mc_addr(ha, ndev) {
3461 		/* calculate crc32 value of mac address */
3462 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3463 
3464 		/* only upper 6 bits (FEC_HASH_BITS) are used
3465 		 * which point to specific bit in the hash registers
3466 		 */
3467 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3468 
3469 		if (hash > 31)
3470 			hash_high |= 1 << (hash - 32);
3471 		else
3472 			hash_low |= 1 << hash;
3473 	}
3474 
3475 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3476 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3477 }
3478 
3479 /* Set a MAC change in hardware. */
3480 static int
3481 fec_set_mac_address(struct net_device *ndev, void *p)
3482 {
3483 	struct fec_enet_private *fep = netdev_priv(ndev);
3484 	struct sockaddr *addr = p;
3485 
3486 	if (addr) {
3487 		if (!is_valid_ether_addr(addr->sa_data))
3488 			return -EADDRNOTAVAIL;
3489 		eth_hw_addr_set(ndev, addr->sa_data);
3490 	}
3491 
3492 	/* Add netif status check here to avoid system hang in below case:
3493 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3494 	 * After ethx down, fec all clocks are gated off and then register
3495 	 * access causes system hang.
3496 	 */
3497 	if (!netif_running(ndev))
3498 		return 0;
3499 
3500 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3501 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3502 		fep->hwp + FEC_ADDR_LOW);
3503 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3504 		fep->hwp + FEC_ADDR_HIGH);
3505 	return 0;
3506 }
3507 
3508 #ifdef CONFIG_NET_POLL_CONTROLLER
3509 /**
3510  * fec_poll_controller - FEC Poll controller function
3511  * @dev: The FEC network adapter
3512  *
3513  * Polled functionality used by netconsole and others in non interrupt mode
3514  *
3515  */
3516 static void fec_poll_controller(struct net_device *dev)
3517 {
3518 	int i;
3519 	struct fec_enet_private *fep = netdev_priv(dev);
3520 
3521 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3522 		if (fep->irq[i] > 0) {
3523 			disable_irq(fep->irq[i]);
3524 			fec_enet_interrupt(fep->irq[i], dev);
3525 			enable_irq(fep->irq[i]);
3526 		}
3527 	}
3528 }
3529 #endif
3530 
3531 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3532 	netdev_features_t features)
3533 {
3534 	struct fec_enet_private *fep = netdev_priv(netdev);
3535 	netdev_features_t changed = features ^ netdev->features;
3536 
3537 	netdev->features = features;
3538 
3539 	/* Receive checksum has been changed */
3540 	if (changed & NETIF_F_RXCSUM) {
3541 		if (features & NETIF_F_RXCSUM)
3542 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3543 		else
3544 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3545 	}
3546 }
3547 
3548 static int fec_set_features(struct net_device *netdev,
3549 	netdev_features_t features)
3550 {
3551 	struct fec_enet_private *fep = netdev_priv(netdev);
3552 	netdev_features_t changed = features ^ netdev->features;
3553 
3554 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3555 		napi_disable(&fep->napi);
3556 		netif_tx_lock_bh(netdev);
3557 		fec_stop(netdev);
3558 		fec_enet_set_netdev_features(netdev, features);
3559 		fec_restart(netdev);
3560 		netif_tx_wake_all_queues(netdev);
3561 		netif_tx_unlock_bh(netdev);
3562 		napi_enable(&fep->napi);
3563 	} else {
3564 		fec_enet_set_netdev_features(netdev, features);
3565 	}
3566 
3567 	return 0;
3568 }
3569 
3570 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3571 {
3572 	struct vlan_ethhdr *vhdr;
3573 	unsigned short vlan_TCI = 0;
3574 
3575 	if (skb->protocol == htons(ETH_P_ALL)) {
3576 		vhdr = (struct vlan_ethhdr *)(skb->data);
3577 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3578 	}
3579 
3580 	return vlan_TCI;
3581 }
3582 
3583 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3584 				 struct net_device *sb_dev)
3585 {
3586 	struct fec_enet_private *fep = netdev_priv(ndev);
3587 	u16 vlan_tag;
3588 
3589 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3590 		return netdev_pick_tx(ndev, skb, NULL);
3591 
3592 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3593 	if (!vlan_tag)
3594 		return vlan_tag;
3595 
3596 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3597 }
3598 
3599 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3600 {
3601 	struct fec_enet_private *fep = netdev_priv(dev);
3602 	bool is_run = netif_running(dev);
3603 	struct bpf_prog *old_prog;
3604 
3605 	switch (bpf->command) {
3606 	case XDP_SETUP_PROG:
3607 		if (is_run) {
3608 			napi_disable(&fep->napi);
3609 			netif_tx_disable(dev);
3610 		}
3611 
3612 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3613 		fec_restart(dev);
3614 
3615 		if (is_run) {
3616 			napi_enable(&fep->napi);
3617 			netif_tx_start_all_queues(dev);
3618 		}
3619 
3620 		if (old_prog)
3621 			bpf_prog_put(old_prog);
3622 
3623 		return 0;
3624 
3625 	case XDP_SETUP_XSK_POOL:
3626 		return -EOPNOTSUPP;
3627 
3628 	default:
3629 		return -EOPNOTSUPP;
3630 	}
3631 }
3632 
3633 static int
3634 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int cpu)
3635 {
3636 	int index = cpu;
3637 
3638 	if (unlikely(index < 0))
3639 		index = 0;
3640 
3641 	while (index >= fep->num_tx_queues)
3642 		index -= fep->num_tx_queues;
3643 
3644 	return index;
3645 }
3646 
3647 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3648 				   struct fec_enet_priv_tx_q *txq,
3649 				   struct xdp_frame *frame)
3650 {
3651 	unsigned int index, status, estatus;
3652 	struct bufdesc *bdp, *last_bdp;
3653 	dma_addr_t dma_addr;
3654 	int entries_free;
3655 
3656 	entries_free = fec_enet_get_free_txdesc_num(txq);
3657 	if (entries_free < MAX_SKB_FRAGS + 1) {
3658 		netdev_err(fep->netdev, "NOT enough BD for SG!\n");
3659 		return NETDEV_TX_OK;
3660 	}
3661 
3662 	/* Fill in a Tx ring entry */
3663 	bdp = txq->bd.cur;
3664 	last_bdp = bdp;
3665 	status = fec16_to_cpu(bdp->cbd_sc);
3666 	status &= ~BD_ENET_TX_STATS;
3667 
3668 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3669 
3670 	dma_addr = dma_map_single(&fep->pdev->dev, frame->data,
3671 				  frame->len, DMA_TO_DEVICE);
3672 	if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3673 		return FEC_ENET_XDP_CONSUMED;
3674 
3675 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3676 	if (fep->bufdesc_ex)
3677 		estatus = BD_ENET_TX_INT;
3678 
3679 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3680 	bdp->cbd_datlen = cpu_to_fec16(frame->len);
3681 
3682 	if (fep->bufdesc_ex) {
3683 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3684 
3685 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3686 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3687 
3688 		ebdp->cbd_bdu = 0;
3689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3690 	}
3691 
3692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
3693 	txq->tx_skbuff[index] = NULL;
3694 
3695 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3696 	 * it's the last BD of the frame, and to put the CRC on the end.
3697 	 */
3698 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3699 	bdp->cbd_sc = cpu_to_fec16(status);
3700 
3701 	/* If this was the last BD in the ring, start at the beginning again. */
3702 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
3703 
3704 	txq->bd.cur = bdp;
3705 
3706 	return 0;
3707 }
3708 
3709 static int fec_enet_xdp_xmit(struct net_device *dev,
3710 			     int num_frames,
3711 			     struct xdp_frame **frames,
3712 			     u32 flags)
3713 {
3714 	struct fec_enet_private *fep = netdev_priv(dev);
3715 	struct fec_enet_priv_tx_q *txq;
3716 	int cpu = smp_processor_id();
3717 	struct netdev_queue *nq;
3718 	unsigned int queue;
3719 	int i;
3720 
3721 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3722 	txq = fep->tx_queue[queue];
3723 	nq = netdev_get_tx_queue(fep->netdev, queue);
3724 
3725 	__netif_tx_lock(nq, cpu);
3726 
3727 	for (i = 0; i < num_frames; i++)
3728 		fec_enet_txq_xmit_frame(fep, txq, frames[i]);
3729 
3730 	/* Make sure the update to bdp and tx_skbuff are performed. */
3731 	wmb();
3732 
3733 	/* Trigger transmission start */
3734 	writel(0, txq->bd.reg_desc_active);
3735 
3736 	__netif_tx_unlock(nq);
3737 
3738 	return num_frames;
3739 }
3740 
3741 static const struct net_device_ops fec_netdev_ops = {
3742 	.ndo_open		= fec_enet_open,
3743 	.ndo_stop		= fec_enet_close,
3744 	.ndo_start_xmit		= fec_enet_start_xmit,
3745 	.ndo_select_queue       = fec_enet_select_queue,
3746 	.ndo_set_rx_mode	= set_multicast_list,
3747 	.ndo_validate_addr	= eth_validate_addr,
3748 	.ndo_tx_timeout		= fec_timeout,
3749 	.ndo_set_mac_address	= fec_set_mac_address,
3750 	.ndo_eth_ioctl		= fec_enet_ioctl,
3751 #ifdef CONFIG_NET_POLL_CONTROLLER
3752 	.ndo_poll_controller	= fec_poll_controller,
3753 #endif
3754 	.ndo_set_features	= fec_set_features,
3755 	.ndo_bpf		= fec_enet_bpf,
3756 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3757 };
3758 
3759 static const unsigned short offset_des_active_rxq[] = {
3760 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3761 };
3762 
3763 static const unsigned short offset_des_active_txq[] = {
3764 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3765 };
3766 
3767  /*
3768   * XXX:  We need to clean up on failure exits here.
3769   *
3770   */
3771 static int fec_enet_init(struct net_device *ndev)
3772 {
3773 	struct fec_enet_private *fep = netdev_priv(ndev);
3774 	struct bufdesc *cbd_base;
3775 	dma_addr_t bd_dma;
3776 	int bd_size;
3777 	unsigned int i;
3778 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3779 			sizeof(struct bufdesc);
3780 	unsigned dsize_log2 = __fls(dsize);
3781 	int ret;
3782 
3783 	WARN_ON(dsize != (1 << dsize_log2));
3784 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3785 	fep->rx_align = 0xf;
3786 	fep->tx_align = 0xf;
3787 #else
3788 	fep->rx_align = 0x3;
3789 	fep->tx_align = 0x3;
3790 #endif
3791 
3792 	/* Check mask of the streaming and coherent API */
3793 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3794 	if (ret < 0) {
3795 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3796 		return ret;
3797 	}
3798 
3799 	ret = fec_enet_alloc_queue(ndev);
3800 	if (ret)
3801 		return ret;
3802 
3803 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3804 
3805 	/* Allocate memory for buffer descriptors. */
3806 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3807 				       GFP_KERNEL);
3808 	if (!cbd_base) {
3809 		ret = -ENOMEM;
3810 		goto free_queue_mem;
3811 	}
3812 
3813 	/* Get the Ethernet address */
3814 	ret = fec_get_mac(ndev);
3815 	if (ret)
3816 		goto free_queue_mem;
3817 
3818 	/* make sure MAC we just acquired is programmed into the hw */
3819 	fec_set_mac_address(ndev, NULL);
3820 
3821 	/* Set receive and transmit descriptor base. */
3822 	for (i = 0; i < fep->num_rx_queues; i++) {
3823 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3824 		unsigned size = dsize * rxq->bd.ring_size;
3825 
3826 		rxq->bd.qid = i;
3827 		rxq->bd.base = cbd_base;
3828 		rxq->bd.cur = cbd_base;
3829 		rxq->bd.dma = bd_dma;
3830 		rxq->bd.dsize = dsize;
3831 		rxq->bd.dsize_log2 = dsize_log2;
3832 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3833 		bd_dma += size;
3834 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3835 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3836 	}
3837 
3838 	for (i = 0; i < fep->num_tx_queues; i++) {
3839 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3840 		unsigned size = dsize * txq->bd.ring_size;
3841 
3842 		txq->bd.qid = i;
3843 		txq->bd.base = cbd_base;
3844 		txq->bd.cur = cbd_base;
3845 		txq->bd.dma = bd_dma;
3846 		txq->bd.dsize = dsize;
3847 		txq->bd.dsize_log2 = dsize_log2;
3848 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3849 		bd_dma += size;
3850 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3851 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3852 	}
3853 
3854 
3855 	/* The FEC Ethernet specific entries in the device structure */
3856 	ndev->watchdog_timeo = TX_TIMEOUT;
3857 	ndev->netdev_ops = &fec_netdev_ops;
3858 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3859 
3860 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3861 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
3862 
3863 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3864 		/* enable hw VLAN support */
3865 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3866 
3867 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3868 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
3869 
3870 		/* enable hw accelerator */
3871 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3872 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3873 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3874 	}
3875 
3876 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3877 		fep->tx_align = 0;
3878 		fep->rx_align = 0x3f;
3879 	}
3880 
3881 	ndev->hw_features = ndev->features;
3882 
3883 	fec_restart(ndev);
3884 
3885 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3886 		fec_enet_clear_ethtool_stats(ndev);
3887 	else
3888 		fec_enet_update_ethtool_stats(ndev);
3889 
3890 	return 0;
3891 
3892 free_queue_mem:
3893 	fec_enet_free_queue(ndev);
3894 	return ret;
3895 }
3896 
3897 #ifdef CONFIG_OF
3898 static int fec_reset_phy(struct platform_device *pdev)
3899 {
3900 	int err, phy_reset;
3901 	bool active_high = false;
3902 	int msec = 1, phy_post_delay = 0;
3903 	struct device_node *np = pdev->dev.of_node;
3904 
3905 	if (!np)
3906 		return 0;
3907 
3908 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3909 	/* A sane reset duration should not be longer than 1s */
3910 	if (!err && msec > 1000)
3911 		msec = 1;
3912 
3913 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3914 	if (phy_reset == -EPROBE_DEFER)
3915 		return phy_reset;
3916 	else if (!gpio_is_valid(phy_reset))
3917 		return 0;
3918 
3919 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3920 	/* valid reset duration should be less than 1s */
3921 	if (!err && phy_post_delay > 1000)
3922 		return -EINVAL;
3923 
3924 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3925 
3926 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3927 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3928 			"phy-reset");
3929 	if (err) {
3930 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3931 		return err;
3932 	}
3933 
3934 	if (msec > 20)
3935 		msleep(msec);
3936 	else
3937 		usleep_range(msec * 1000, msec * 1000 + 1000);
3938 
3939 	gpio_set_value_cansleep(phy_reset, !active_high);
3940 
3941 	if (!phy_post_delay)
3942 		return 0;
3943 
3944 	if (phy_post_delay > 20)
3945 		msleep(phy_post_delay);
3946 	else
3947 		usleep_range(phy_post_delay * 1000,
3948 			     phy_post_delay * 1000 + 1000);
3949 
3950 	return 0;
3951 }
3952 #else /* CONFIG_OF */
3953 static int fec_reset_phy(struct platform_device *pdev)
3954 {
3955 	/*
3956 	 * In case of platform probe, the reset has been done
3957 	 * by machine code.
3958 	 */
3959 	return 0;
3960 }
3961 #endif /* CONFIG_OF */
3962 
3963 static void
3964 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3965 {
3966 	struct device_node *np = pdev->dev.of_node;
3967 
3968 	*num_tx = *num_rx = 1;
3969 
3970 	if (!np || !of_device_is_available(np))
3971 		return;
3972 
3973 	/* parse the num of tx and rx queues */
3974 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3975 
3976 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3977 
3978 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3979 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3980 			 *num_tx);
3981 		*num_tx = 1;
3982 		return;
3983 	}
3984 
3985 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3986 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3987 			 *num_rx);
3988 		*num_rx = 1;
3989 		return;
3990 	}
3991 
3992 }
3993 
3994 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3995 {
3996 	int irq_cnt = platform_irq_count(pdev);
3997 
3998 	if (irq_cnt > FEC_IRQ_NUM)
3999 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4000 	else if (irq_cnt == 2)
4001 		irq_cnt = 1;	/* last for pps */
4002 	else if (irq_cnt <= 0)
4003 		irq_cnt = 1;	/* At least 1 irq is needed */
4004 	return irq_cnt;
4005 }
4006 
4007 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4008 {
4009 	struct net_device *ndev = platform_get_drvdata(pdev);
4010 	struct fec_enet_private *fep = netdev_priv(ndev);
4011 
4012 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4013 		fep->wake_irq = fep->irq[2];
4014 	else
4015 		fep->wake_irq = fep->irq[0];
4016 }
4017 
4018 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4019 				   struct device_node *np)
4020 {
4021 	struct device_node *gpr_np;
4022 	u32 out_val[3];
4023 	int ret = 0;
4024 
4025 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4026 	if (!gpr_np)
4027 		return 0;
4028 
4029 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4030 					 ARRAY_SIZE(out_val));
4031 	if (ret) {
4032 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4033 		goto out;
4034 	}
4035 
4036 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4037 	if (IS_ERR(fep->stop_gpr.gpr)) {
4038 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4039 		ret = PTR_ERR(fep->stop_gpr.gpr);
4040 		fep->stop_gpr.gpr = NULL;
4041 		goto out;
4042 	}
4043 
4044 	fep->stop_gpr.reg = out_val[1];
4045 	fep->stop_gpr.bit = out_val[2];
4046 
4047 out:
4048 	of_node_put(gpr_np);
4049 
4050 	return ret;
4051 }
4052 
4053 static int
4054 fec_probe(struct platform_device *pdev)
4055 {
4056 	struct fec_enet_private *fep;
4057 	struct fec_platform_data *pdata;
4058 	phy_interface_t interface;
4059 	struct net_device *ndev;
4060 	int i, irq, ret = 0;
4061 	const struct of_device_id *of_id;
4062 	static int dev_id;
4063 	struct device_node *np = pdev->dev.of_node, *phy_node;
4064 	int num_tx_qs;
4065 	int num_rx_qs;
4066 	char irq_name[8];
4067 	int irq_cnt;
4068 	struct fec_devinfo *dev_info;
4069 
4070 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4071 
4072 	/* Init network device */
4073 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4074 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4075 	if (!ndev)
4076 		return -ENOMEM;
4077 
4078 	SET_NETDEV_DEV(ndev, &pdev->dev);
4079 
4080 	/* setup board info structure */
4081 	fep = netdev_priv(ndev);
4082 
4083 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4084 	if (of_id)
4085 		pdev->id_entry = of_id->data;
4086 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4087 	if (dev_info)
4088 		fep->quirks = dev_info->quirks;
4089 
4090 	fep->netdev = ndev;
4091 	fep->num_rx_queues = num_rx_qs;
4092 	fep->num_tx_queues = num_tx_qs;
4093 
4094 #if !defined(CONFIG_M5272)
4095 	/* default enable pause frame auto negotiation */
4096 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4097 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4098 #endif
4099 
4100 	/* Select default pin state */
4101 	pinctrl_pm_select_default_state(&pdev->dev);
4102 
4103 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4104 	if (IS_ERR(fep->hwp)) {
4105 		ret = PTR_ERR(fep->hwp);
4106 		goto failed_ioremap;
4107 	}
4108 
4109 	fep->pdev = pdev;
4110 	fep->dev_id = dev_id++;
4111 
4112 	platform_set_drvdata(pdev, ndev);
4113 
4114 	if ((of_machine_is_compatible("fsl,imx6q") ||
4115 	     of_machine_is_compatible("fsl,imx6dl")) &&
4116 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4117 		fep->quirks |= FEC_QUIRK_ERR006687;
4118 
4119 	ret = fec_enet_ipc_handle_init(fep);
4120 	if (ret)
4121 		goto failed_ipc_init;
4122 
4123 	if (of_get_property(np, "fsl,magic-packet", NULL))
4124 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4125 
4126 	ret = fec_enet_init_stop_mode(fep, np);
4127 	if (ret)
4128 		goto failed_stop_mode;
4129 
4130 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4131 	if (!phy_node && of_phy_is_fixed_link(np)) {
4132 		ret = of_phy_register_fixed_link(np);
4133 		if (ret < 0) {
4134 			dev_err(&pdev->dev,
4135 				"broken fixed-link specification\n");
4136 			goto failed_phy;
4137 		}
4138 		phy_node = of_node_get(np);
4139 	}
4140 	fep->phy_node = phy_node;
4141 
4142 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4143 	if (ret) {
4144 		pdata = dev_get_platdata(&pdev->dev);
4145 		if (pdata)
4146 			fep->phy_interface = pdata->phy;
4147 		else
4148 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4149 	} else {
4150 		fep->phy_interface = interface;
4151 	}
4152 
4153 	ret = fec_enet_parse_rgmii_delay(fep, np);
4154 	if (ret)
4155 		goto failed_rgmii_delay;
4156 
4157 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4158 	if (IS_ERR(fep->clk_ipg)) {
4159 		ret = PTR_ERR(fep->clk_ipg);
4160 		goto failed_clk;
4161 	}
4162 
4163 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4164 	if (IS_ERR(fep->clk_ahb)) {
4165 		ret = PTR_ERR(fep->clk_ahb);
4166 		goto failed_clk;
4167 	}
4168 
4169 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4170 
4171 	/* enet_out is optional, depends on board */
4172 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4173 	if (IS_ERR(fep->clk_enet_out)) {
4174 		ret = PTR_ERR(fep->clk_enet_out);
4175 		goto failed_clk;
4176 	}
4177 
4178 	fep->ptp_clk_on = false;
4179 	mutex_init(&fep->ptp_clk_mutex);
4180 
4181 	/* clk_ref is optional, depends on board */
4182 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4183 	if (IS_ERR(fep->clk_ref)) {
4184 		ret = PTR_ERR(fep->clk_ref);
4185 		goto failed_clk;
4186 	}
4187 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4188 
4189 	/* clk_2x_txclk is optional, depends on board */
4190 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4191 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4192 		if (IS_ERR(fep->clk_2x_txclk))
4193 			fep->clk_2x_txclk = NULL;
4194 	}
4195 
4196 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4197 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4198 	if (IS_ERR(fep->clk_ptp)) {
4199 		fep->clk_ptp = NULL;
4200 		fep->bufdesc_ex = false;
4201 	}
4202 
4203 	ret = fec_enet_clk_enable(ndev, true);
4204 	if (ret)
4205 		goto failed_clk;
4206 
4207 	ret = clk_prepare_enable(fep->clk_ipg);
4208 	if (ret)
4209 		goto failed_clk_ipg;
4210 	ret = clk_prepare_enable(fep->clk_ahb);
4211 	if (ret)
4212 		goto failed_clk_ahb;
4213 
4214 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4215 	if (!IS_ERR(fep->reg_phy)) {
4216 		ret = regulator_enable(fep->reg_phy);
4217 		if (ret) {
4218 			dev_err(&pdev->dev,
4219 				"Failed to enable phy regulator: %d\n", ret);
4220 			goto failed_regulator;
4221 		}
4222 	} else {
4223 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4224 			ret = -EPROBE_DEFER;
4225 			goto failed_regulator;
4226 		}
4227 		fep->reg_phy = NULL;
4228 	}
4229 
4230 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4231 	pm_runtime_use_autosuspend(&pdev->dev);
4232 	pm_runtime_get_noresume(&pdev->dev);
4233 	pm_runtime_set_active(&pdev->dev);
4234 	pm_runtime_enable(&pdev->dev);
4235 
4236 	ret = fec_reset_phy(pdev);
4237 	if (ret)
4238 		goto failed_reset;
4239 
4240 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4241 	if (fep->bufdesc_ex)
4242 		fec_ptp_init(pdev, irq_cnt);
4243 
4244 	ret = fec_enet_init(ndev);
4245 	if (ret)
4246 		goto failed_init;
4247 
4248 	for (i = 0; i < irq_cnt; i++) {
4249 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4250 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4251 		if (irq < 0)
4252 			irq = platform_get_irq(pdev, i);
4253 		if (irq < 0) {
4254 			ret = irq;
4255 			goto failed_irq;
4256 		}
4257 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4258 				       0, pdev->name, ndev);
4259 		if (ret)
4260 			goto failed_irq;
4261 
4262 		fep->irq[i] = irq;
4263 	}
4264 
4265 	/* Decide which interrupt line is wakeup capable */
4266 	fec_enet_get_wakeup_irq(pdev);
4267 
4268 	ret = fec_enet_mii_init(pdev);
4269 	if (ret)
4270 		goto failed_mii_init;
4271 
4272 	/* Carrier starts down, phylib will bring it up */
4273 	netif_carrier_off(ndev);
4274 	fec_enet_clk_enable(ndev, false);
4275 	pinctrl_pm_select_sleep_state(&pdev->dev);
4276 
4277 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4278 
4279 	ret = register_netdev(ndev);
4280 	if (ret)
4281 		goto failed_register;
4282 
4283 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4284 			   FEC_WOL_HAS_MAGIC_PACKET);
4285 
4286 	if (fep->bufdesc_ex && fep->ptp_clock)
4287 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4288 
4289 	fep->rx_copybreak = COPYBREAK_DEFAULT;
4290 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4291 
4292 	pm_runtime_mark_last_busy(&pdev->dev);
4293 	pm_runtime_put_autosuspend(&pdev->dev);
4294 
4295 	return 0;
4296 
4297 failed_register:
4298 	fec_enet_mii_remove(fep);
4299 failed_mii_init:
4300 failed_irq:
4301 failed_init:
4302 	fec_ptp_stop(pdev);
4303 failed_reset:
4304 	pm_runtime_put_noidle(&pdev->dev);
4305 	pm_runtime_disable(&pdev->dev);
4306 	if (fep->reg_phy)
4307 		regulator_disable(fep->reg_phy);
4308 failed_regulator:
4309 	clk_disable_unprepare(fep->clk_ahb);
4310 failed_clk_ahb:
4311 	clk_disable_unprepare(fep->clk_ipg);
4312 failed_clk_ipg:
4313 	fec_enet_clk_enable(ndev, false);
4314 failed_clk:
4315 failed_rgmii_delay:
4316 	if (of_phy_is_fixed_link(np))
4317 		of_phy_deregister_fixed_link(np);
4318 	of_node_put(phy_node);
4319 failed_stop_mode:
4320 failed_ipc_init:
4321 failed_phy:
4322 	dev_id--;
4323 failed_ioremap:
4324 	free_netdev(ndev);
4325 
4326 	return ret;
4327 }
4328 
4329 static int
4330 fec_drv_remove(struct platform_device *pdev)
4331 {
4332 	struct net_device *ndev = platform_get_drvdata(pdev);
4333 	struct fec_enet_private *fep = netdev_priv(ndev);
4334 	struct device_node *np = pdev->dev.of_node;
4335 	int ret;
4336 
4337 	ret = pm_runtime_resume_and_get(&pdev->dev);
4338 	if (ret < 0)
4339 		return ret;
4340 
4341 	cancel_work_sync(&fep->tx_timeout_work);
4342 	fec_ptp_stop(pdev);
4343 	unregister_netdev(ndev);
4344 	fec_enet_mii_remove(fep);
4345 	if (fep->reg_phy)
4346 		regulator_disable(fep->reg_phy);
4347 
4348 	if (of_phy_is_fixed_link(np))
4349 		of_phy_deregister_fixed_link(np);
4350 	of_node_put(fep->phy_node);
4351 
4352 	clk_disable_unprepare(fep->clk_ahb);
4353 	clk_disable_unprepare(fep->clk_ipg);
4354 	pm_runtime_put_noidle(&pdev->dev);
4355 	pm_runtime_disable(&pdev->dev);
4356 
4357 	free_netdev(ndev);
4358 	return 0;
4359 }
4360 
4361 static int __maybe_unused fec_suspend(struct device *dev)
4362 {
4363 	struct net_device *ndev = dev_get_drvdata(dev);
4364 	struct fec_enet_private *fep = netdev_priv(ndev);
4365 	int ret;
4366 
4367 	rtnl_lock();
4368 	if (netif_running(ndev)) {
4369 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4370 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4371 		phy_stop(ndev->phydev);
4372 		napi_disable(&fep->napi);
4373 		netif_tx_lock_bh(ndev);
4374 		netif_device_detach(ndev);
4375 		netif_tx_unlock_bh(ndev);
4376 		fec_stop(ndev);
4377 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4378 			fec_irqs_disable(ndev);
4379 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4380 		} else {
4381 			fec_irqs_disable_except_wakeup(ndev);
4382 			if (fep->wake_irq > 0) {
4383 				disable_irq(fep->wake_irq);
4384 				enable_irq_wake(fep->wake_irq);
4385 			}
4386 			fec_enet_stop_mode(fep, true);
4387 		}
4388 		/* It's safe to disable clocks since interrupts are masked */
4389 		fec_enet_clk_enable(ndev, false);
4390 
4391 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4392 		if (fep->rpm_active) {
4393 			ret = pm_runtime_force_suspend(dev);
4394 			if (ret < 0) {
4395 				rtnl_unlock();
4396 				return ret;
4397 			}
4398 		}
4399 	}
4400 	rtnl_unlock();
4401 
4402 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4403 		regulator_disable(fep->reg_phy);
4404 
4405 	/* SOC supply clock to phy, when clock is disabled, phy link down
4406 	 * SOC control phy regulator, when regulator is disabled, phy link down
4407 	 */
4408 	if (fep->clk_enet_out || fep->reg_phy)
4409 		fep->link = 0;
4410 
4411 	return 0;
4412 }
4413 
4414 static int __maybe_unused fec_resume(struct device *dev)
4415 {
4416 	struct net_device *ndev = dev_get_drvdata(dev);
4417 	struct fec_enet_private *fep = netdev_priv(ndev);
4418 	int ret;
4419 	int val;
4420 
4421 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4422 		ret = regulator_enable(fep->reg_phy);
4423 		if (ret)
4424 			return ret;
4425 	}
4426 
4427 	rtnl_lock();
4428 	if (netif_running(ndev)) {
4429 		if (fep->rpm_active)
4430 			pm_runtime_force_resume(dev);
4431 
4432 		ret = fec_enet_clk_enable(ndev, true);
4433 		if (ret) {
4434 			rtnl_unlock();
4435 			goto failed_clk;
4436 		}
4437 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4438 			fec_enet_stop_mode(fep, false);
4439 			if (fep->wake_irq) {
4440 				disable_irq_wake(fep->wake_irq);
4441 				enable_irq(fep->wake_irq);
4442 			}
4443 
4444 			val = readl(fep->hwp + FEC_ECNTRL);
4445 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4446 			writel(val, fep->hwp + FEC_ECNTRL);
4447 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4448 		} else {
4449 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4450 		}
4451 		fec_restart(ndev);
4452 		netif_tx_lock_bh(ndev);
4453 		netif_device_attach(ndev);
4454 		netif_tx_unlock_bh(ndev);
4455 		napi_enable(&fep->napi);
4456 		phy_init_hw(ndev->phydev);
4457 		phy_start(ndev->phydev);
4458 	}
4459 	rtnl_unlock();
4460 
4461 	return 0;
4462 
4463 failed_clk:
4464 	if (fep->reg_phy)
4465 		regulator_disable(fep->reg_phy);
4466 	return ret;
4467 }
4468 
4469 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4470 {
4471 	struct net_device *ndev = dev_get_drvdata(dev);
4472 	struct fec_enet_private *fep = netdev_priv(ndev);
4473 
4474 	clk_disable_unprepare(fep->clk_ahb);
4475 	clk_disable_unprepare(fep->clk_ipg);
4476 
4477 	return 0;
4478 }
4479 
4480 static int __maybe_unused fec_runtime_resume(struct device *dev)
4481 {
4482 	struct net_device *ndev = dev_get_drvdata(dev);
4483 	struct fec_enet_private *fep = netdev_priv(ndev);
4484 	int ret;
4485 
4486 	ret = clk_prepare_enable(fep->clk_ahb);
4487 	if (ret)
4488 		return ret;
4489 	ret = clk_prepare_enable(fep->clk_ipg);
4490 	if (ret)
4491 		goto failed_clk_ipg;
4492 
4493 	return 0;
4494 
4495 failed_clk_ipg:
4496 	clk_disable_unprepare(fep->clk_ahb);
4497 	return ret;
4498 }
4499 
4500 static const struct dev_pm_ops fec_pm_ops = {
4501 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4502 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4503 };
4504 
4505 static struct platform_driver fec_driver = {
4506 	.driver	= {
4507 		.name	= DRIVER_NAME,
4508 		.pm	= &fec_pm_ops,
4509 		.of_match_table = fec_dt_ids,
4510 		.suppress_bind_attrs = true,
4511 	},
4512 	.id_table = fec_devtype,
4513 	.probe	= fec_probe,
4514 	.remove	= fec_drv_remove,
4515 };
4516 
4517 module_platform_driver(fec_driver);
4518 
4519 MODULE_LICENSE("GPL");
4520