1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_init(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 108 }; 109 110 static const struct fec_devinfo fec_imx28_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 112 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 113 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 114 FEC_QUIRK_NO_HARD_RESET, 115 }; 116 117 static const struct fec_devinfo fec_imx6q_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 122 FEC_QUIRK_HAS_PMQOS, 123 }; 124 125 static const struct fec_devinfo fec_mvf600_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 127 }; 128 129 static const struct fec_devinfo fec_imx6x_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 131 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 132 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 133 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 134 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 135 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 136 }; 137 138 static const struct fec_devinfo fec_imx6ul_info = { 139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 142 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 143 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 144 }; 145 146 static const struct fec_devinfo fec_imx8mq_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 150 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 151 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 152 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 153 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 154 }; 155 156 static const struct fec_devinfo fec_imx8qm_info = { 157 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 158 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 159 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 160 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 161 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 162 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 163 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 164 }; 165 166 static const struct fec_devinfo fec_s32v234_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, 171 }; 172 173 static struct platform_device_id fec_devtype[] = { 174 { 175 /* keep it for coldfire */ 176 .name = DRIVER_NAME, 177 .driver_data = 0, 178 }, { 179 .name = "imx25-fec", 180 .driver_data = (kernel_ulong_t)&fec_imx25_info, 181 }, { 182 .name = "imx27-fec", 183 .driver_data = (kernel_ulong_t)&fec_imx27_info, 184 }, { 185 .name = "imx28-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx28_info, 187 }, { 188 .name = "imx6q-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 190 }, { 191 .name = "mvf600-fec", 192 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 193 }, { 194 .name = "imx6sx-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 196 }, { 197 .name = "imx6ul-fec", 198 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 199 }, { 200 .name = "imx8mq-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 202 }, { 203 .name = "imx8qm-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 205 }, { 206 .name = "s32v234-fec", 207 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 208 }, { 209 /* sentinel */ 210 } 211 }; 212 MODULE_DEVICE_TABLE(platform, fec_devtype); 213 214 enum imx_fec_type { 215 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 216 IMX27_FEC, /* runs on i.mx27/35/51 */ 217 IMX28_FEC, 218 IMX6Q_FEC, 219 MVF600_FEC, 220 IMX6SX_FEC, 221 IMX6UL_FEC, 222 IMX8MQ_FEC, 223 IMX8QM_FEC, 224 S32V234_FEC, 225 }; 226 227 static const struct of_device_id fec_dt_ids[] = { 228 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 229 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 230 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 231 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 232 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 233 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 234 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 235 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 236 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 237 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 238 { /* sentinel */ } 239 }; 240 MODULE_DEVICE_TABLE(of, fec_dt_ids); 241 242 static unsigned char macaddr[ETH_ALEN]; 243 module_param_array(macaddr, byte, NULL, 0); 244 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 245 246 #if defined(CONFIG_M5272) 247 /* 248 * Some hardware gets it MAC address out of local flash memory. 249 * if this is non-zero then assume it is the address to get MAC from. 250 */ 251 #if defined(CONFIG_NETtel) 252 #define FEC_FLASHMAC 0xf0006006 253 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 254 #define FEC_FLASHMAC 0xf0006000 255 #elif defined(CONFIG_CANCam) 256 #define FEC_FLASHMAC 0xf0020000 257 #elif defined (CONFIG_M5272C3) 258 #define FEC_FLASHMAC (0xffe04000 + 4) 259 #elif defined(CONFIG_MOD5272) 260 #define FEC_FLASHMAC 0xffc0406b 261 #else 262 #define FEC_FLASHMAC 0 263 #endif 264 #endif /* CONFIG_M5272 */ 265 266 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 267 * 268 * 2048 byte skbufs are allocated. However, alignment requirements 269 * varies between FEC variants. Worst case is 64, so round down by 64. 270 */ 271 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 272 #define PKT_MINBUF_SIZE 64 273 274 /* FEC receive acceleration */ 275 #define FEC_RACC_IPDIS (1 << 1) 276 #define FEC_RACC_PRODIS (1 << 2) 277 #define FEC_RACC_SHIFT16 BIT(7) 278 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 279 280 /* MIB Control Register */ 281 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 282 283 /* 284 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 285 * size bits. Other FEC hardware does not, so we need to take that into 286 * account when setting it. 287 */ 288 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 289 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 290 defined(CONFIG_ARM64) 291 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 292 #else 293 #define OPT_FRAME_SIZE 0 294 #endif 295 296 /* FEC MII MMFR bits definition */ 297 #define FEC_MMFR_ST (1 << 30) 298 #define FEC_MMFR_ST_C45 (0) 299 #define FEC_MMFR_OP_READ (2 << 28) 300 #define FEC_MMFR_OP_READ_C45 (3 << 28) 301 #define FEC_MMFR_OP_WRITE (1 << 28) 302 #define FEC_MMFR_OP_ADDR_WRITE (0) 303 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 304 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 305 #define FEC_MMFR_TA (2 << 16) 306 #define FEC_MMFR_DATA(v) (v & 0xffff) 307 /* FEC ECR bits definition */ 308 #define FEC_ECR_MAGICEN (1 << 2) 309 #define FEC_ECR_SLEEP (1 << 3) 310 311 #define FEC_MII_TIMEOUT 30000 /* us */ 312 313 /* Transmitter timeout */ 314 #define TX_TIMEOUT (2 * HZ) 315 316 #define FEC_PAUSE_FLAG_AUTONEG 0x1 317 #define FEC_PAUSE_FLAG_ENABLE 0x2 318 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 319 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 320 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 321 322 #define COPYBREAK_DEFAULT 256 323 324 /* Max number of allowed TCP segments for software TSO */ 325 #define FEC_MAX_TSO_SEGS 100 326 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 327 328 #define IS_TSO_HEADER(txq, addr) \ 329 ((addr >= txq->tso_hdrs_dma) && \ 330 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 331 332 static int mii_cnt; 333 334 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 335 struct bufdesc_prop *bd) 336 { 337 return (bdp >= bd->last) ? bd->base 338 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 339 } 340 341 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 342 struct bufdesc_prop *bd) 343 { 344 return (bdp <= bd->base) ? bd->last 345 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 346 } 347 348 static int fec_enet_get_bd_index(struct bufdesc *bdp, 349 struct bufdesc_prop *bd) 350 { 351 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 352 } 353 354 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 355 { 356 int entries; 357 358 entries = (((const char *)txq->dirty_tx - 359 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 360 361 return entries >= 0 ? entries : entries + txq->bd.ring_size; 362 } 363 364 static void swap_buffer(void *bufaddr, int len) 365 { 366 int i; 367 unsigned int *buf = bufaddr; 368 369 for (i = 0; i < len; i += 4, buf++) 370 swab32s(buf); 371 } 372 373 static void fec_dump(struct net_device *ndev) 374 { 375 struct fec_enet_private *fep = netdev_priv(ndev); 376 struct bufdesc *bdp; 377 struct fec_enet_priv_tx_q *txq; 378 int index = 0; 379 380 netdev_info(ndev, "TX ring dump\n"); 381 pr_info("Nr SC addr len SKB\n"); 382 383 txq = fep->tx_queue[0]; 384 bdp = txq->bd.base; 385 386 do { 387 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 388 index, 389 bdp == txq->bd.cur ? 'S' : ' ', 390 bdp == txq->dirty_tx ? 'H' : ' ', 391 fec16_to_cpu(bdp->cbd_sc), 392 fec32_to_cpu(bdp->cbd_bufaddr), 393 fec16_to_cpu(bdp->cbd_datlen), 394 txq->tx_skbuff[index]); 395 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 396 index++; 397 } while (bdp != txq->bd.base); 398 } 399 400 static inline bool is_ipv4_pkt(struct sk_buff *skb) 401 { 402 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 403 } 404 405 static int 406 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 407 { 408 /* Only run for packets requiring a checksum. */ 409 if (skb->ip_summed != CHECKSUM_PARTIAL) 410 return 0; 411 412 if (unlikely(skb_cow_head(skb, 0))) 413 return -1; 414 415 if (is_ipv4_pkt(skb)) 416 ip_hdr(skb)->check = 0; 417 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 418 419 return 0; 420 } 421 422 static int 423 fec_enet_create_page_pool(struct fec_enet_private *fep, 424 struct fec_enet_priv_rx_q *rxq, int size) 425 { 426 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 427 struct page_pool_params pp_params = { 428 .order = 0, 429 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 430 .pool_size = size, 431 .nid = dev_to_node(&fep->pdev->dev), 432 .dev = &fep->pdev->dev, 433 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 434 .offset = FEC_ENET_XDP_HEADROOM, 435 .max_len = FEC_ENET_RX_FRSIZE, 436 }; 437 int err; 438 439 rxq->page_pool = page_pool_create(&pp_params); 440 if (IS_ERR(rxq->page_pool)) { 441 err = PTR_ERR(rxq->page_pool); 442 rxq->page_pool = NULL; 443 return err; 444 } 445 446 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 447 if (err < 0) 448 goto err_free_pp; 449 450 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 451 rxq->page_pool); 452 if (err) 453 goto err_unregister_rxq; 454 455 return 0; 456 457 err_unregister_rxq: 458 xdp_rxq_info_unreg(&rxq->xdp_rxq); 459 err_free_pp: 460 page_pool_destroy(rxq->page_pool); 461 rxq->page_pool = NULL; 462 return err; 463 } 464 465 static struct bufdesc * 466 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 467 struct sk_buff *skb, 468 struct net_device *ndev) 469 { 470 struct fec_enet_private *fep = netdev_priv(ndev); 471 struct bufdesc *bdp = txq->bd.cur; 472 struct bufdesc_ex *ebdp; 473 int nr_frags = skb_shinfo(skb)->nr_frags; 474 int frag, frag_len; 475 unsigned short status; 476 unsigned int estatus = 0; 477 skb_frag_t *this_frag; 478 unsigned int index; 479 void *bufaddr; 480 dma_addr_t addr; 481 int i; 482 483 for (frag = 0; frag < nr_frags; frag++) { 484 this_frag = &skb_shinfo(skb)->frags[frag]; 485 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 486 ebdp = (struct bufdesc_ex *)bdp; 487 488 status = fec16_to_cpu(bdp->cbd_sc); 489 status &= ~BD_ENET_TX_STATS; 490 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 491 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 492 493 /* Handle the last BD specially */ 494 if (frag == nr_frags - 1) { 495 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 496 if (fep->bufdesc_ex) { 497 estatus |= BD_ENET_TX_INT; 498 if (unlikely(skb_shinfo(skb)->tx_flags & 499 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 500 estatus |= BD_ENET_TX_TS; 501 } 502 } 503 504 if (fep->bufdesc_ex) { 505 if (fep->quirks & FEC_QUIRK_HAS_AVB) 506 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 507 if (skb->ip_summed == CHECKSUM_PARTIAL) 508 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 509 510 ebdp->cbd_bdu = 0; 511 ebdp->cbd_esc = cpu_to_fec32(estatus); 512 } 513 514 bufaddr = skb_frag_address(this_frag); 515 516 index = fec_enet_get_bd_index(bdp, &txq->bd); 517 if (((unsigned long) bufaddr) & fep->tx_align || 518 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 519 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 520 bufaddr = txq->tx_bounce[index]; 521 522 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 523 swap_buffer(bufaddr, frag_len); 524 } 525 526 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 527 DMA_TO_DEVICE); 528 if (dma_mapping_error(&fep->pdev->dev, addr)) { 529 if (net_ratelimit()) 530 netdev_err(ndev, "Tx DMA memory map failed\n"); 531 goto dma_mapping_error; 532 } 533 534 bdp->cbd_bufaddr = cpu_to_fec32(addr); 535 bdp->cbd_datlen = cpu_to_fec16(frag_len); 536 /* Make sure the updates to rest of the descriptor are 537 * performed before transferring ownership. 538 */ 539 wmb(); 540 bdp->cbd_sc = cpu_to_fec16(status); 541 } 542 543 return bdp; 544 dma_mapping_error: 545 bdp = txq->bd.cur; 546 for (i = 0; i < frag; i++) { 547 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 548 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 549 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 550 } 551 return ERR_PTR(-ENOMEM); 552 } 553 554 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 555 struct sk_buff *skb, struct net_device *ndev) 556 { 557 struct fec_enet_private *fep = netdev_priv(ndev); 558 int nr_frags = skb_shinfo(skb)->nr_frags; 559 struct bufdesc *bdp, *last_bdp; 560 void *bufaddr; 561 dma_addr_t addr; 562 unsigned short status; 563 unsigned short buflen; 564 unsigned int estatus = 0; 565 unsigned int index; 566 int entries_free; 567 568 entries_free = fec_enet_get_free_txdesc_num(txq); 569 if (entries_free < MAX_SKB_FRAGS + 1) { 570 dev_kfree_skb_any(skb); 571 if (net_ratelimit()) 572 netdev_err(ndev, "NOT enough BD for SG!\n"); 573 return NETDEV_TX_OK; 574 } 575 576 /* Protocol checksum off-load for TCP and UDP. */ 577 if (fec_enet_clear_csum(skb, ndev)) { 578 dev_kfree_skb_any(skb); 579 return NETDEV_TX_OK; 580 } 581 582 /* Fill in a Tx ring entry */ 583 bdp = txq->bd.cur; 584 last_bdp = bdp; 585 status = fec16_to_cpu(bdp->cbd_sc); 586 status &= ~BD_ENET_TX_STATS; 587 588 /* Set buffer length and buffer pointer */ 589 bufaddr = skb->data; 590 buflen = skb_headlen(skb); 591 592 index = fec_enet_get_bd_index(bdp, &txq->bd); 593 if (((unsigned long) bufaddr) & fep->tx_align || 594 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 595 memcpy(txq->tx_bounce[index], skb->data, buflen); 596 bufaddr = txq->tx_bounce[index]; 597 598 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 599 swap_buffer(bufaddr, buflen); 600 } 601 602 /* Push the data cache so the CPM does not get stale memory data. */ 603 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 604 if (dma_mapping_error(&fep->pdev->dev, addr)) { 605 dev_kfree_skb_any(skb); 606 if (net_ratelimit()) 607 netdev_err(ndev, "Tx DMA memory map failed\n"); 608 return NETDEV_TX_OK; 609 } 610 611 if (nr_frags) { 612 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 613 if (IS_ERR(last_bdp)) { 614 dma_unmap_single(&fep->pdev->dev, addr, 615 buflen, DMA_TO_DEVICE); 616 dev_kfree_skb_any(skb); 617 return NETDEV_TX_OK; 618 } 619 } else { 620 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 621 if (fep->bufdesc_ex) { 622 estatus = BD_ENET_TX_INT; 623 if (unlikely(skb_shinfo(skb)->tx_flags & 624 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 625 estatus |= BD_ENET_TX_TS; 626 } 627 } 628 bdp->cbd_bufaddr = cpu_to_fec32(addr); 629 bdp->cbd_datlen = cpu_to_fec16(buflen); 630 631 if (fep->bufdesc_ex) { 632 633 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 634 635 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 636 fep->hwts_tx_en)) 637 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 638 639 if (fep->quirks & FEC_QUIRK_HAS_AVB) 640 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 641 642 if (skb->ip_summed == CHECKSUM_PARTIAL) 643 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 644 645 ebdp->cbd_bdu = 0; 646 ebdp->cbd_esc = cpu_to_fec32(estatus); 647 } 648 649 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 650 /* Save skb pointer */ 651 txq->tx_skbuff[index] = skb; 652 653 /* Make sure the updates to rest of the descriptor are performed before 654 * transferring ownership. 655 */ 656 wmb(); 657 658 /* Send it on its way. Tell FEC it's ready, interrupt when done, 659 * it's the last BD of the frame, and to put the CRC on the end. 660 */ 661 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 662 bdp->cbd_sc = cpu_to_fec16(status); 663 664 /* If this was the last BD in the ring, start at the beginning again. */ 665 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 666 667 skb_tx_timestamp(skb); 668 669 /* Make sure the update to bdp and tx_skbuff are performed before 670 * txq->bd.cur. 671 */ 672 wmb(); 673 txq->bd.cur = bdp; 674 675 /* Trigger transmission start */ 676 writel(0, txq->bd.reg_desc_active); 677 678 return 0; 679 } 680 681 static int 682 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 683 struct net_device *ndev, 684 struct bufdesc *bdp, int index, char *data, 685 int size, bool last_tcp, bool is_last) 686 { 687 struct fec_enet_private *fep = netdev_priv(ndev); 688 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 689 unsigned short status; 690 unsigned int estatus = 0; 691 dma_addr_t addr; 692 693 status = fec16_to_cpu(bdp->cbd_sc); 694 status &= ~BD_ENET_TX_STATS; 695 696 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 697 698 if (((unsigned long) data) & fep->tx_align || 699 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 700 memcpy(txq->tx_bounce[index], data, size); 701 data = txq->tx_bounce[index]; 702 703 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 704 swap_buffer(data, size); 705 } 706 707 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 708 if (dma_mapping_error(&fep->pdev->dev, addr)) { 709 dev_kfree_skb_any(skb); 710 if (net_ratelimit()) 711 netdev_err(ndev, "Tx DMA memory map failed\n"); 712 return NETDEV_TX_OK; 713 } 714 715 bdp->cbd_datlen = cpu_to_fec16(size); 716 bdp->cbd_bufaddr = cpu_to_fec32(addr); 717 718 if (fep->bufdesc_ex) { 719 if (fep->quirks & FEC_QUIRK_HAS_AVB) 720 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 721 if (skb->ip_summed == CHECKSUM_PARTIAL) 722 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 723 ebdp->cbd_bdu = 0; 724 ebdp->cbd_esc = cpu_to_fec32(estatus); 725 } 726 727 /* Handle the last BD specially */ 728 if (last_tcp) 729 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 730 if (is_last) { 731 status |= BD_ENET_TX_INTR; 732 if (fep->bufdesc_ex) 733 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 734 } 735 736 bdp->cbd_sc = cpu_to_fec16(status); 737 738 return 0; 739 } 740 741 static int 742 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 743 struct sk_buff *skb, struct net_device *ndev, 744 struct bufdesc *bdp, int index) 745 { 746 struct fec_enet_private *fep = netdev_priv(ndev); 747 int hdr_len = skb_tcp_all_headers(skb); 748 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 749 void *bufaddr; 750 unsigned long dmabuf; 751 unsigned short status; 752 unsigned int estatus = 0; 753 754 status = fec16_to_cpu(bdp->cbd_sc); 755 status &= ~BD_ENET_TX_STATS; 756 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 757 758 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 759 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 760 if (((unsigned long)bufaddr) & fep->tx_align || 761 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 762 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 763 bufaddr = txq->tx_bounce[index]; 764 765 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 766 swap_buffer(bufaddr, hdr_len); 767 768 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 769 hdr_len, DMA_TO_DEVICE); 770 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 771 dev_kfree_skb_any(skb); 772 if (net_ratelimit()) 773 netdev_err(ndev, "Tx DMA memory map failed\n"); 774 return NETDEV_TX_OK; 775 } 776 } 777 778 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 779 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 780 781 if (fep->bufdesc_ex) { 782 if (fep->quirks & FEC_QUIRK_HAS_AVB) 783 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 784 if (skb->ip_summed == CHECKSUM_PARTIAL) 785 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 786 ebdp->cbd_bdu = 0; 787 ebdp->cbd_esc = cpu_to_fec32(estatus); 788 } 789 790 bdp->cbd_sc = cpu_to_fec16(status); 791 792 return 0; 793 } 794 795 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 796 struct sk_buff *skb, 797 struct net_device *ndev) 798 { 799 struct fec_enet_private *fep = netdev_priv(ndev); 800 int hdr_len, total_len, data_left; 801 struct bufdesc *bdp = txq->bd.cur; 802 struct tso_t tso; 803 unsigned int index = 0; 804 int ret; 805 806 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 807 dev_kfree_skb_any(skb); 808 if (net_ratelimit()) 809 netdev_err(ndev, "NOT enough BD for TSO!\n"); 810 return NETDEV_TX_OK; 811 } 812 813 /* Protocol checksum off-load for TCP and UDP. */ 814 if (fec_enet_clear_csum(skb, ndev)) { 815 dev_kfree_skb_any(skb); 816 return NETDEV_TX_OK; 817 } 818 819 /* Initialize the TSO handler, and prepare the first payload */ 820 hdr_len = tso_start(skb, &tso); 821 822 total_len = skb->len - hdr_len; 823 while (total_len > 0) { 824 char *hdr; 825 826 index = fec_enet_get_bd_index(bdp, &txq->bd); 827 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 828 total_len -= data_left; 829 830 /* prepare packet headers: MAC + IP + TCP */ 831 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 832 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 833 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 834 if (ret) 835 goto err_release; 836 837 while (data_left > 0) { 838 int size; 839 840 size = min_t(int, tso.size, data_left); 841 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 842 index = fec_enet_get_bd_index(bdp, &txq->bd); 843 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 844 bdp, index, 845 tso.data, size, 846 size == data_left, 847 total_len == 0); 848 if (ret) 849 goto err_release; 850 851 data_left -= size; 852 tso_build_data(skb, &tso, size); 853 } 854 855 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 856 } 857 858 /* Save skb pointer */ 859 txq->tx_skbuff[index] = skb; 860 861 skb_tx_timestamp(skb); 862 txq->bd.cur = bdp; 863 864 /* Trigger transmission start */ 865 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 866 !readl(txq->bd.reg_desc_active) || 867 !readl(txq->bd.reg_desc_active) || 868 !readl(txq->bd.reg_desc_active) || 869 !readl(txq->bd.reg_desc_active)) 870 writel(0, txq->bd.reg_desc_active); 871 872 return 0; 873 874 err_release: 875 /* TODO: Release all used data descriptors for TSO */ 876 return ret; 877 } 878 879 static netdev_tx_t 880 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 881 { 882 struct fec_enet_private *fep = netdev_priv(ndev); 883 int entries_free; 884 unsigned short queue; 885 struct fec_enet_priv_tx_q *txq; 886 struct netdev_queue *nq; 887 int ret; 888 889 queue = skb_get_queue_mapping(skb); 890 txq = fep->tx_queue[queue]; 891 nq = netdev_get_tx_queue(ndev, queue); 892 893 if (skb_is_gso(skb)) 894 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 895 else 896 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 897 if (ret) 898 return ret; 899 900 entries_free = fec_enet_get_free_txdesc_num(txq); 901 if (entries_free <= txq->tx_stop_threshold) 902 netif_tx_stop_queue(nq); 903 904 return NETDEV_TX_OK; 905 } 906 907 /* Init RX & TX buffer descriptors 908 */ 909 static void fec_enet_bd_init(struct net_device *dev) 910 { 911 struct fec_enet_private *fep = netdev_priv(dev); 912 struct fec_enet_priv_tx_q *txq; 913 struct fec_enet_priv_rx_q *rxq; 914 struct bufdesc *bdp; 915 unsigned int i; 916 unsigned int q; 917 918 for (q = 0; q < fep->num_rx_queues; q++) { 919 /* Initialize the receive buffer descriptors. */ 920 rxq = fep->rx_queue[q]; 921 bdp = rxq->bd.base; 922 923 for (i = 0; i < rxq->bd.ring_size; i++) { 924 925 /* Initialize the BD for every fragment in the page. */ 926 if (bdp->cbd_bufaddr) 927 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 928 else 929 bdp->cbd_sc = cpu_to_fec16(0); 930 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 931 } 932 933 /* Set the last buffer to wrap */ 934 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 935 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 936 937 rxq->bd.cur = rxq->bd.base; 938 } 939 940 for (q = 0; q < fep->num_tx_queues; q++) { 941 /* ...and the same for transmit */ 942 txq = fep->tx_queue[q]; 943 bdp = txq->bd.base; 944 txq->bd.cur = bdp; 945 946 for (i = 0; i < txq->bd.ring_size; i++) { 947 /* Initialize the BD for every fragment in the page. */ 948 bdp->cbd_sc = cpu_to_fec16(0); 949 if (bdp->cbd_bufaddr && 950 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 951 dma_unmap_single(&fep->pdev->dev, 952 fec32_to_cpu(bdp->cbd_bufaddr), 953 fec16_to_cpu(bdp->cbd_datlen), 954 DMA_TO_DEVICE); 955 if (txq->tx_skbuff[i]) { 956 dev_kfree_skb_any(txq->tx_skbuff[i]); 957 txq->tx_skbuff[i] = NULL; 958 } 959 bdp->cbd_bufaddr = cpu_to_fec32(0); 960 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 961 } 962 963 /* Set the last buffer to wrap */ 964 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 965 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 966 txq->dirty_tx = bdp; 967 } 968 } 969 970 static void fec_enet_active_rxring(struct net_device *ndev) 971 { 972 struct fec_enet_private *fep = netdev_priv(ndev); 973 int i; 974 975 for (i = 0; i < fep->num_rx_queues; i++) 976 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 977 } 978 979 static void fec_enet_enable_ring(struct net_device *ndev) 980 { 981 struct fec_enet_private *fep = netdev_priv(ndev); 982 struct fec_enet_priv_tx_q *txq; 983 struct fec_enet_priv_rx_q *rxq; 984 int i; 985 986 for (i = 0; i < fep->num_rx_queues; i++) { 987 rxq = fep->rx_queue[i]; 988 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 989 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 990 991 /* enable DMA1/2 */ 992 if (i) 993 writel(RCMR_MATCHEN | RCMR_CMP(i), 994 fep->hwp + FEC_RCMR(i)); 995 } 996 997 for (i = 0; i < fep->num_tx_queues; i++) { 998 txq = fep->tx_queue[i]; 999 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1000 1001 /* enable DMA1/2 */ 1002 if (i) 1003 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1004 fep->hwp + FEC_DMA_CFG(i)); 1005 } 1006 } 1007 1008 static void fec_enet_reset_skb(struct net_device *ndev) 1009 { 1010 struct fec_enet_private *fep = netdev_priv(ndev); 1011 struct fec_enet_priv_tx_q *txq; 1012 int i, j; 1013 1014 for (i = 0; i < fep->num_tx_queues; i++) { 1015 txq = fep->tx_queue[i]; 1016 1017 for (j = 0; j < txq->bd.ring_size; j++) { 1018 if (txq->tx_skbuff[j]) { 1019 dev_kfree_skb_any(txq->tx_skbuff[j]); 1020 txq->tx_skbuff[j] = NULL; 1021 } 1022 } 1023 } 1024 } 1025 1026 /* 1027 * This function is called to start or restart the FEC during a link 1028 * change, transmit timeout, or to reconfigure the FEC. The network 1029 * packet processing for this device must be stopped before this call. 1030 */ 1031 static void 1032 fec_restart(struct net_device *ndev) 1033 { 1034 struct fec_enet_private *fep = netdev_priv(ndev); 1035 u32 temp_mac[2]; 1036 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1037 u32 ecntl = 0x2; /* ETHEREN */ 1038 1039 /* Whack a reset. We should wait for this. 1040 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1041 * instead of reset MAC itself. 1042 */ 1043 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1044 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1045 writel(0, fep->hwp + FEC_ECNTRL); 1046 } else { 1047 writel(1, fep->hwp + FEC_ECNTRL); 1048 udelay(10); 1049 } 1050 1051 /* 1052 * enet-mac reset will reset mac address registers too, 1053 * so need to reconfigure it. 1054 */ 1055 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1056 writel((__force u32)cpu_to_be32(temp_mac[0]), 1057 fep->hwp + FEC_ADDR_LOW); 1058 writel((__force u32)cpu_to_be32(temp_mac[1]), 1059 fep->hwp + FEC_ADDR_HIGH); 1060 1061 /* Clear any outstanding interrupt, except MDIO. */ 1062 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1063 1064 fec_enet_bd_init(ndev); 1065 1066 fec_enet_enable_ring(ndev); 1067 1068 /* Reset tx SKB buffers. */ 1069 fec_enet_reset_skb(ndev); 1070 1071 /* Enable MII mode */ 1072 if (fep->full_duplex == DUPLEX_FULL) { 1073 /* FD enable */ 1074 writel(0x04, fep->hwp + FEC_X_CNTRL); 1075 } else { 1076 /* No Rcv on Xmit */ 1077 rcntl |= 0x02; 1078 writel(0x0, fep->hwp + FEC_X_CNTRL); 1079 } 1080 1081 /* Set MII speed */ 1082 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1083 1084 #if !defined(CONFIG_M5272) 1085 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1086 u32 val = readl(fep->hwp + FEC_RACC); 1087 1088 /* align IP header */ 1089 val |= FEC_RACC_SHIFT16; 1090 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1091 /* set RX checksum */ 1092 val |= FEC_RACC_OPTIONS; 1093 else 1094 val &= ~FEC_RACC_OPTIONS; 1095 writel(val, fep->hwp + FEC_RACC); 1096 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1097 } 1098 #endif 1099 1100 /* 1101 * The phy interface and speed need to get configured 1102 * differently on enet-mac. 1103 */ 1104 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1105 /* Enable flow control and length check */ 1106 rcntl |= 0x40000000 | 0x00000020; 1107 1108 /* RGMII, RMII or MII */ 1109 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1110 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1111 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1112 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1113 rcntl |= (1 << 6); 1114 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1115 rcntl |= (1 << 8); 1116 else 1117 rcntl &= ~(1 << 8); 1118 1119 /* 1G, 100M or 10M */ 1120 if (ndev->phydev) { 1121 if (ndev->phydev->speed == SPEED_1000) 1122 ecntl |= (1 << 5); 1123 else if (ndev->phydev->speed == SPEED_100) 1124 rcntl &= ~(1 << 9); 1125 else 1126 rcntl |= (1 << 9); 1127 } 1128 } else { 1129 #ifdef FEC_MIIGSK_ENR 1130 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1131 u32 cfgr; 1132 /* disable the gasket and wait */ 1133 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1134 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1135 udelay(1); 1136 1137 /* 1138 * configure the gasket: 1139 * RMII, 50 MHz, no loopback, no echo 1140 * MII, 25 MHz, no loopback, no echo 1141 */ 1142 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1143 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1144 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1145 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1146 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1147 1148 /* re-enable the gasket */ 1149 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1150 } 1151 #endif 1152 } 1153 1154 #if !defined(CONFIG_M5272) 1155 /* enable pause frame*/ 1156 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1157 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1158 ndev->phydev && ndev->phydev->pause)) { 1159 rcntl |= FEC_ENET_FCE; 1160 1161 /* set FIFO threshold parameter to reduce overrun */ 1162 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1163 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1164 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1165 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1166 1167 /* OPD */ 1168 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1169 } else { 1170 rcntl &= ~FEC_ENET_FCE; 1171 } 1172 #endif /* !defined(CONFIG_M5272) */ 1173 1174 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1175 1176 /* Setup multicast filter. */ 1177 set_multicast_list(ndev); 1178 #ifndef CONFIG_M5272 1179 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1180 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1181 #endif 1182 1183 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1184 /* enable ENET endian swap */ 1185 ecntl |= (1 << 8); 1186 /* enable ENET store and forward mode */ 1187 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1188 } 1189 1190 if (fep->bufdesc_ex) 1191 ecntl |= (1 << 4); 1192 1193 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1194 fep->rgmii_txc_dly) 1195 ecntl |= FEC_ENET_TXC_DLY; 1196 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1197 fep->rgmii_rxc_dly) 1198 ecntl |= FEC_ENET_RXC_DLY; 1199 1200 #ifndef CONFIG_M5272 1201 /* Enable the MIB statistic event counters */ 1202 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1203 #endif 1204 1205 /* And last, enable the transmit and receive processing */ 1206 writel(ecntl, fep->hwp + FEC_ECNTRL); 1207 fec_enet_active_rxring(ndev); 1208 1209 if (fep->bufdesc_ex) 1210 fec_ptp_start_cyclecounter(ndev); 1211 1212 /* Enable interrupts we wish to service */ 1213 if (fep->link) 1214 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1215 else 1216 writel(0, fep->hwp + FEC_IMASK); 1217 1218 /* Init the interrupt coalescing */ 1219 fec_enet_itr_coal_init(ndev); 1220 1221 } 1222 1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1224 { 1225 if (!(of_machine_is_compatible("fsl,imx8qm") || 1226 of_machine_is_compatible("fsl,imx8qxp") || 1227 of_machine_is_compatible("fsl,imx8dxl"))) 1228 return 0; 1229 1230 return imx_scu_get_handle(&fep->ipc_handle); 1231 } 1232 1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1234 { 1235 struct device_node *np = fep->pdev->dev.of_node; 1236 u32 rsrc_id, val; 1237 int idx; 1238 1239 if (!np || !fep->ipc_handle) 1240 return; 1241 1242 idx = of_alias_get_id(np, "ethernet"); 1243 if (idx < 0) 1244 idx = 0; 1245 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1246 1247 val = enabled ? 1 : 0; 1248 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1249 } 1250 1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1252 { 1253 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1254 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1255 1256 if (stop_gpr->gpr) { 1257 if (enabled) 1258 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1259 BIT(stop_gpr->bit), 1260 BIT(stop_gpr->bit)); 1261 else 1262 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1263 BIT(stop_gpr->bit), 0); 1264 } else if (pdata && pdata->sleep_mode_enable) { 1265 pdata->sleep_mode_enable(enabled); 1266 } else { 1267 fec_enet_ipg_stop_set(fep, enabled); 1268 } 1269 } 1270 1271 static void fec_irqs_disable(struct net_device *ndev) 1272 { 1273 struct fec_enet_private *fep = netdev_priv(ndev); 1274 1275 writel(0, fep->hwp + FEC_IMASK); 1276 } 1277 1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1279 { 1280 struct fec_enet_private *fep = netdev_priv(ndev); 1281 1282 writel(0, fep->hwp + FEC_IMASK); 1283 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1284 } 1285 1286 static void 1287 fec_stop(struct net_device *ndev) 1288 { 1289 struct fec_enet_private *fep = netdev_priv(ndev); 1290 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1291 u32 val; 1292 1293 /* We cannot expect a graceful transmit stop without link !!! */ 1294 if (fep->link) { 1295 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1296 udelay(10); 1297 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1298 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1299 } 1300 1301 /* Whack a reset. We should wait for this. 1302 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1303 * instead of reset MAC itself. 1304 */ 1305 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1306 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1307 writel(0, fep->hwp + FEC_ECNTRL); 1308 } else { 1309 writel(1, fep->hwp + FEC_ECNTRL); 1310 udelay(10); 1311 } 1312 } else { 1313 val = readl(fep->hwp + FEC_ECNTRL); 1314 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1315 writel(val, fep->hwp + FEC_ECNTRL); 1316 } 1317 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1318 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1319 1320 /* We have to keep ENET enabled to have MII interrupt stay working */ 1321 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1322 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1323 writel(2, fep->hwp + FEC_ECNTRL); 1324 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1325 } 1326 } 1327 1328 1329 static void 1330 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1331 { 1332 struct fec_enet_private *fep = netdev_priv(ndev); 1333 1334 fec_dump(ndev); 1335 1336 ndev->stats.tx_errors++; 1337 1338 schedule_work(&fep->tx_timeout_work); 1339 } 1340 1341 static void fec_enet_timeout_work(struct work_struct *work) 1342 { 1343 struct fec_enet_private *fep = 1344 container_of(work, struct fec_enet_private, tx_timeout_work); 1345 struct net_device *ndev = fep->netdev; 1346 1347 rtnl_lock(); 1348 if (netif_device_present(ndev) || netif_running(ndev)) { 1349 napi_disable(&fep->napi); 1350 netif_tx_lock_bh(ndev); 1351 fec_restart(ndev); 1352 netif_tx_wake_all_queues(ndev); 1353 netif_tx_unlock_bh(ndev); 1354 napi_enable(&fep->napi); 1355 } 1356 rtnl_unlock(); 1357 } 1358 1359 static void 1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1361 struct skb_shared_hwtstamps *hwtstamps) 1362 { 1363 unsigned long flags; 1364 u64 ns; 1365 1366 spin_lock_irqsave(&fep->tmreg_lock, flags); 1367 ns = timecounter_cyc2time(&fep->tc, ts); 1368 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1369 1370 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1371 hwtstamps->hwtstamp = ns_to_ktime(ns); 1372 } 1373 1374 static void 1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1376 { 1377 struct fec_enet_private *fep; 1378 struct bufdesc *bdp; 1379 unsigned short status; 1380 struct sk_buff *skb; 1381 struct fec_enet_priv_tx_q *txq; 1382 struct netdev_queue *nq; 1383 int index = 0; 1384 int entries_free; 1385 1386 fep = netdev_priv(ndev); 1387 1388 txq = fep->tx_queue[queue_id]; 1389 /* get next bdp of dirty_tx */ 1390 nq = netdev_get_tx_queue(ndev, queue_id); 1391 bdp = txq->dirty_tx; 1392 1393 /* get next bdp of dirty_tx */ 1394 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1395 1396 while (bdp != READ_ONCE(txq->bd.cur)) { 1397 /* Order the load of bd.cur and cbd_sc */ 1398 rmb(); 1399 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1400 if (status & BD_ENET_TX_READY) 1401 break; 1402 1403 index = fec_enet_get_bd_index(bdp, &txq->bd); 1404 1405 skb = txq->tx_skbuff[index]; 1406 txq->tx_skbuff[index] = NULL; 1407 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1408 dma_unmap_single(&fep->pdev->dev, 1409 fec32_to_cpu(bdp->cbd_bufaddr), 1410 fec16_to_cpu(bdp->cbd_datlen), 1411 DMA_TO_DEVICE); 1412 bdp->cbd_bufaddr = cpu_to_fec32(0); 1413 if (!skb) 1414 goto skb_done; 1415 1416 /* Check for errors. */ 1417 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1418 BD_ENET_TX_RL | BD_ENET_TX_UN | 1419 BD_ENET_TX_CSL)) { 1420 ndev->stats.tx_errors++; 1421 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1422 ndev->stats.tx_heartbeat_errors++; 1423 if (status & BD_ENET_TX_LC) /* Late collision */ 1424 ndev->stats.tx_window_errors++; 1425 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1426 ndev->stats.tx_aborted_errors++; 1427 if (status & BD_ENET_TX_UN) /* Underrun */ 1428 ndev->stats.tx_fifo_errors++; 1429 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1430 ndev->stats.tx_carrier_errors++; 1431 } else { 1432 ndev->stats.tx_packets++; 1433 ndev->stats.tx_bytes += skb->len; 1434 } 1435 1436 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1437 * are to time stamp the packet, so we still need to check time 1438 * stamping enabled flag. 1439 */ 1440 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1441 fep->hwts_tx_en) && 1442 fep->bufdesc_ex) { 1443 struct skb_shared_hwtstamps shhwtstamps; 1444 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1445 1446 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1447 skb_tstamp_tx(skb, &shhwtstamps); 1448 } 1449 1450 /* Deferred means some collisions occurred during transmit, 1451 * but we eventually sent the packet OK. 1452 */ 1453 if (status & BD_ENET_TX_DEF) 1454 ndev->stats.collisions++; 1455 1456 /* Free the sk buffer associated with this last transmit */ 1457 dev_kfree_skb_any(skb); 1458 skb_done: 1459 /* Make sure the update to bdp and tx_skbuff are performed 1460 * before dirty_tx 1461 */ 1462 wmb(); 1463 txq->dirty_tx = bdp; 1464 1465 /* Update pointer to next buffer descriptor to be transmitted */ 1466 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1467 1468 /* Since we have freed up a buffer, the ring is no longer full 1469 */ 1470 if (netif_tx_queue_stopped(nq)) { 1471 entries_free = fec_enet_get_free_txdesc_num(txq); 1472 if (entries_free >= txq->tx_wake_threshold) 1473 netif_tx_wake_queue(nq); 1474 } 1475 } 1476 1477 /* ERR006358: Keep the transmitter going */ 1478 if (bdp != txq->bd.cur && 1479 readl(txq->bd.reg_desc_active) == 0) 1480 writel(0, txq->bd.reg_desc_active); 1481 } 1482 1483 static void fec_enet_tx(struct net_device *ndev) 1484 { 1485 struct fec_enet_private *fep = netdev_priv(ndev); 1486 int i; 1487 1488 /* Make sure that AVB queues are processed first. */ 1489 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1490 fec_enet_tx_queue(ndev, i); 1491 } 1492 1493 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1494 struct bufdesc *bdp, int index) 1495 { 1496 struct page *new_page; 1497 dma_addr_t phys_addr; 1498 1499 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1500 WARN_ON(!new_page); 1501 rxq->rx_skb_info[index].page = new_page; 1502 1503 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1504 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1505 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1506 } 1507 1508 static u32 1509 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1510 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1511 { 1512 unsigned int sync, len = xdp->data_end - xdp->data; 1513 u32 ret = FEC_ENET_XDP_PASS; 1514 struct page *page; 1515 int err; 1516 u32 act; 1517 1518 act = bpf_prog_run_xdp(prog, xdp); 1519 1520 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1521 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1522 sync = max(sync, len); 1523 1524 switch (act) { 1525 case XDP_PASS: 1526 ret = FEC_ENET_XDP_PASS; 1527 break; 1528 1529 case XDP_REDIRECT: 1530 err = xdp_do_redirect(fep->netdev, xdp, prog); 1531 if (!err) { 1532 ret = FEC_ENET_XDP_REDIR; 1533 } else { 1534 ret = FEC_ENET_XDP_CONSUMED; 1535 page = virt_to_head_page(xdp->data); 1536 page_pool_put_page(rxq->page_pool, page, sync, true); 1537 } 1538 break; 1539 1540 default: 1541 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1542 fallthrough; 1543 1544 case XDP_TX: 1545 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1546 fallthrough; 1547 1548 case XDP_ABORTED: 1549 fallthrough; /* handle aborts by dropping packet */ 1550 1551 case XDP_DROP: 1552 ret = FEC_ENET_XDP_CONSUMED; 1553 page = virt_to_head_page(xdp->data); 1554 page_pool_put_page(rxq->page_pool, page, sync, true); 1555 break; 1556 } 1557 1558 return ret; 1559 } 1560 1561 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1562 * When we update through the ring, if the next incoming buffer has 1563 * not been given to the system, we just set the empty indicator, 1564 * effectively tossing the packet. 1565 */ 1566 static int 1567 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1568 { 1569 struct fec_enet_private *fep = netdev_priv(ndev); 1570 struct fec_enet_priv_rx_q *rxq; 1571 struct bufdesc *bdp; 1572 unsigned short status; 1573 struct sk_buff *skb; 1574 ushort pkt_len; 1575 __u8 *data; 1576 int pkt_received = 0; 1577 struct bufdesc_ex *ebdp = NULL; 1578 bool vlan_packet_rcvd = false; 1579 u16 vlan_tag; 1580 int index = 0; 1581 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1582 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1583 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1584 struct xdp_buff xdp; 1585 struct page *page; 1586 1587 #ifdef CONFIG_M532x 1588 flush_cache_all(); 1589 #endif 1590 rxq = fep->rx_queue[queue_id]; 1591 1592 /* First, grab all of the stats for the incoming packet. 1593 * These get messed up if we get called due to a busy condition. 1594 */ 1595 bdp = rxq->bd.cur; 1596 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1597 1598 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1599 1600 if (pkt_received >= budget) 1601 break; 1602 pkt_received++; 1603 1604 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1605 1606 /* Check for errors. */ 1607 status ^= BD_ENET_RX_LAST; 1608 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1609 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1610 BD_ENET_RX_CL)) { 1611 ndev->stats.rx_errors++; 1612 if (status & BD_ENET_RX_OV) { 1613 /* FIFO overrun */ 1614 ndev->stats.rx_fifo_errors++; 1615 goto rx_processing_done; 1616 } 1617 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1618 | BD_ENET_RX_LAST)) { 1619 /* Frame too long or too short. */ 1620 ndev->stats.rx_length_errors++; 1621 if (status & BD_ENET_RX_LAST) 1622 netdev_err(ndev, "rcv is not +last\n"); 1623 } 1624 if (status & BD_ENET_RX_CR) /* CRC Error */ 1625 ndev->stats.rx_crc_errors++; 1626 /* Report late collisions as a frame error. */ 1627 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1628 ndev->stats.rx_frame_errors++; 1629 goto rx_processing_done; 1630 } 1631 1632 /* Process the incoming frame. */ 1633 ndev->stats.rx_packets++; 1634 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1635 ndev->stats.rx_bytes += pkt_len; 1636 1637 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1638 page = rxq->rx_skb_info[index].page; 1639 dma_sync_single_for_cpu(&fep->pdev->dev, 1640 fec32_to_cpu(bdp->cbd_bufaddr), 1641 pkt_len, 1642 DMA_FROM_DEVICE); 1643 prefetch(page_address(page)); 1644 fec_enet_update_cbd(rxq, bdp, index); 1645 1646 if (xdp_prog) { 1647 xdp_buff_clear_frags_flag(&xdp); 1648 xdp_prepare_buff(&xdp, page_address(page), 1649 FEC_ENET_XDP_HEADROOM, pkt_len, false); 1650 1651 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1652 xdp_result |= ret; 1653 if (ret != FEC_ENET_XDP_PASS) 1654 goto rx_processing_done; 1655 } 1656 1657 /* The packet length includes FCS, but we don't want to 1658 * include that when passing upstream as it messes up 1659 * bridging applications. 1660 */ 1661 skb = build_skb(page_address(page), PAGE_SIZE); 1662 skb_reserve(skb, FEC_ENET_XDP_HEADROOM); 1663 skb_put(skb, pkt_len - 4); 1664 skb_mark_for_recycle(skb); 1665 data = skb->data; 1666 1667 if (need_swap) 1668 swap_buffer(data, pkt_len); 1669 1670 #if !defined(CONFIG_M5272) 1671 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1672 data = skb_pull_inline(skb, 2); 1673 #endif 1674 1675 /* Extract the enhanced buffer descriptor */ 1676 ebdp = NULL; 1677 if (fep->bufdesc_ex) 1678 ebdp = (struct bufdesc_ex *)bdp; 1679 1680 /* If this is a VLAN packet remove the VLAN Tag */ 1681 vlan_packet_rcvd = false; 1682 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1683 fep->bufdesc_ex && 1684 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1685 /* Push and remove the vlan tag */ 1686 struct vlan_hdr *vlan_header = 1687 (struct vlan_hdr *) (data + ETH_HLEN); 1688 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1689 1690 vlan_packet_rcvd = true; 1691 1692 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1693 skb_pull(skb, VLAN_HLEN); 1694 } 1695 1696 skb->protocol = eth_type_trans(skb, ndev); 1697 1698 /* Get receive timestamp from the skb */ 1699 if (fep->hwts_rx_en && fep->bufdesc_ex) 1700 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1701 skb_hwtstamps(skb)); 1702 1703 if (fep->bufdesc_ex && 1704 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1705 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1706 /* don't check it */ 1707 skb->ip_summed = CHECKSUM_UNNECESSARY; 1708 } else { 1709 skb_checksum_none_assert(skb); 1710 } 1711 } 1712 1713 /* Handle received VLAN packets */ 1714 if (vlan_packet_rcvd) 1715 __vlan_hwaccel_put_tag(skb, 1716 htons(ETH_P_8021Q), 1717 vlan_tag); 1718 1719 skb_record_rx_queue(skb, queue_id); 1720 napi_gro_receive(&fep->napi, skb); 1721 1722 rx_processing_done: 1723 /* Clear the status flags for this buffer */ 1724 status &= ~BD_ENET_RX_STATS; 1725 1726 /* Mark the buffer empty */ 1727 status |= BD_ENET_RX_EMPTY; 1728 1729 if (fep->bufdesc_ex) { 1730 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1731 1732 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1733 ebdp->cbd_prot = 0; 1734 ebdp->cbd_bdu = 0; 1735 } 1736 /* Make sure the updates to rest of the descriptor are 1737 * performed before transferring ownership. 1738 */ 1739 wmb(); 1740 bdp->cbd_sc = cpu_to_fec16(status); 1741 1742 /* Update BD pointer to next entry */ 1743 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1744 1745 /* Doing this here will keep the FEC running while we process 1746 * incoming frames. On a heavily loaded network, we should be 1747 * able to keep up at the expense of system resources. 1748 */ 1749 writel(0, rxq->bd.reg_desc_active); 1750 } 1751 rxq->bd.cur = bdp; 1752 1753 if (xdp_result & FEC_ENET_XDP_REDIR) 1754 xdp_do_flush_map(); 1755 1756 return pkt_received; 1757 } 1758 1759 static int fec_enet_rx(struct net_device *ndev, int budget) 1760 { 1761 struct fec_enet_private *fep = netdev_priv(ndev); 1762 int i, done = 0; 1763 1764 /* Make sure that AVB queues are processed first. */ 1765 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1766 done += fec_enet_rx_queue(ndev, budget - done, i); 1767 1768 return done; 1769 } 1770 1771 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1772 { 1773 uint int_events; 1774 1775 int_events = readl(fep->hwp + FEC_IEVENT); 1776 1777 /* Don't clear MDIO events, we poll for those */ 1778 int_events &= ~FEC_ENET_MII; 1779 1780 writel(int_events, fep->hwp + FEC_IEVENT); 1781 1782 return int_events != 0; 1783 } 1784 1785 static irqreturn_t 1786 fec_enet_interrupt(int irq, void *dev_id) 1787 { 1788 struct net_device *ndev = dev_id; 1789 struct fec_enet_private *fep = netdev_priv(ndev); 1790 irqreturn_t ret = IRQ_NONE; 1791 1792 if (fec_enet_collect_events(fep) && fep->link) { 1793 ret = IRQ_HANDLED; 1794 1795 if (napi_schedule_prep(&fep->napi)) { 1796 /* Disable interrupts */ 1797 writel(0, fep->hwp + FEC_IMASK); 1798 __napi_schedule(&fep->napi); 1799 } 1800 } 1801 1802 return ret; 1803 } 1804 1805 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1806 { 1807 struct net_device *ndev = napi->dev; 1808 struct fec_enet_private *fep = netdev_priv(ndev); 1809 int done = 0; 1810 1811 do { 1812 done += fec_enet_rx(ndev, budget - done); 1813 fec_enet_tx(ndev); 1814 } while ((done < budget) && fec_enet_collect_events(fep)); 1815 1816 if (done < budget) { 1817 napi_complete_done(napi, done); 1818 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1819 } 1820 1821 return done; 1822 } 1823 1824 /* ------------------------------------------------------------------------- */ 1825 static int fec_get_mac(struct net_device *ndev) 1826 { 1827 struct fec_enet_private *fep = netdev_priv(ndev); 1828 unsigned char *iap, tmpaddr[ETH_ALEN]; 1829 int ret; 1830 1831 /* 1832 * try to get mac address in following order: 1833 * 1834 * 1) module parameter via kernel command line in form 1835 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1836 */ 1837 iap = macaddr; 1838 1839 /* 1840 * 2) from device tree data 1841 */ 1842 if (!is_valid_ether_addr(iap)) { 1843 struct device_node *np = fep->pdev->dev.of_node; 1844 if (np) { 1845 ret = of_get_mac_address(np, tmpaddr); 1846 if (!ret) 1847 iap = tmpaddr; 1848 else if (ret == -EPROBE_DEFER) 1849 return ret; 1850 } 1851 } 1852 1853 /* 1854 * 3) from flash or fuse (via platform data) 1855 */ 1856 if (!is_valid_ether_addr(iap)) { 1857 #ifdef CONFIG_M5272 1858 if (FEC_FLASHMAC) 1859 iap = (unsigned char *)FEC_FLASHMAC; 1860 #else 1861 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1862 1863 if (pdata) 1864 iap = (unsigned char *)&pdata->mac; 1865 #endif 1866 } 1867 1868 /* 1869 * 4) FEC mac registers set by bootloader 1870 */ 1871 if (!is_valid_ether_addr(iap)) { 1872 *((__be32 *) &tmpaddr[0]) = 1873 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1874 *((__be16 *) &tmpaddr[4]) = 1875 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1876 iap = &tmpaddr[0]; 1877 } 1878 1879 /* 1880 * 5) random mac address 1881 */ 1882 if (!is_valid_ether_addr(iap)) { 1883 /* Report it and use a random ethernet address instead */ 1884 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1885 eth_hw_addr_random(ndev); 1886 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1887 ndev->dev_addr); 1888 return 0; 1889 } 1890 1891 /* Adjust MAC if using macaddr */ 1892 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1893 1894 return 0; 1895 } 1896 1897 /* ------------------------------------------------------------------------- */ 1898 1899 /* 1900 * Phy section 1901 */ 1902 static void fec_enet_adjust_link(struct net_device *ndev) 1903 { 1904 struct fec_enet_private *fep = netdev_priv(ndev); 1905 struct phy_device *phy_dev = ndev->phydev; 1906 int status_change = 0; 1907 1908 /* 1909 * If the netdev is down, or is going down, we're not interested 1910 * in link state events, so just mark our idea of the link as down 1911 * and ignore the event. 1912 */ 1913 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1914 fep->link = 0; 1915 } else if (phy_dev->link) { 1916 if (!fep->link) { 1917 fep->link = phy_dev->link; 1918 status_change = 1; 1919 } 1920 1921 if (fep->full_duplex != phy_dev->duplex) { 1922 fep->full_duplex = phy_dev->duplex; 1923 status_change = 1; 1924 } 1925 1926 if (phy_dev->speed != fep->speed) { 1927 fep->speed = phy_dev->speed; 1928 status_change = 1; 1929 } 1930 1931 /* if any of the above changed restart the FEC */ 1932 if (status_change) { 1933 napi_disable(&fep->napi); 1934 netif_tx_lock_bh(ndev); 1935 fec_restart(ndev); 1936 netif_tx_wake_all_queues(ndev); 1937 netif_tx_unlock_bh(ndev); 1938 napi_enable(&fep->napi); 1939 } 1940 } else { 1941 if (fep->link) { 1942 napi_disable(&fep->napi); 1943 netif_tx_lock_bh(ndev); 1944 fec_stop(ndev); 1945 netif_tx_unlock_bh(ndev); 1946 napi_enable(&fep->napi); 1947 fep->link = phy_dev->link; 1948 status_change = 1; 1949 } 1950 } 1951 1952 if (status_change) 1953 phy_print_status(phy_dev); 1954 } 1955 1956 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1957 { 1958 uint ievent; 1959 int ret; 1960 1961 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1962 ievent & FEC_ENET_MII, 2, 30000); 1963 1964 if (!ret) 1965 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1966 1967 return ret; 1968 } 1969 1970 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1971 { 1972 struct fec_enet_private *fep = bus->priv; 1973 struct device *dev = &fep->pdev->dev; 1974 int ret = 0, frame_start, frame_addr, frame_op; 1975 bool is_c45 = !!(regnum & MII_ADDR_C45); 1976 1977 ret = pm_runtime_resume_and_get(dev); 1978 if (ret < 0) 1979 return ret; 1980 1981 if (is_c45) { 1982 frame_start = FEC_MMFR_ST_C45; 1983 1984 /* write address */ 1985 frame_addr = (regnum >> 16); 1986 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1987 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1988 FEC_MMFR_TA | (regnum & 0xFFFF), 1989 fep->hwp + FEC_MII_DATA); 1990 1991 /* wait for end of transfer */ 1992 ret = fec_enet_mdio_wait(fep); 1993 if (ret) { 1994 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1995 goto out; 1996 } 1997 1998 frame_op = FEC_MMFR_OP_READ_C45; 1999 2000 } else { 2001 /* C22 read */ 2002 frame_op = FEC_MMFR_OP_READ; 2003 frame_start = FEC_MMFR_ST; 2004 frame_addr = regnum; 2005 } 2006 2007 /* start a read op */ 2008 writel(frame_start | frame_op | 2009 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2010 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2011 2012 /* wait for end of transfer */ 2013 ret = fec_enet_mdio_wait(fep); 2014 if (ret) { 2015 netdev_err(fep->netdev, "MDIO read timeout\n"); 2016 goto out; 2017 } 2018 2019 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2020 2021 out: 2022 pm_runtime_mark_last_busy(dev); 2023 pm_runtime_put_autosuspend(dev); 2024 2025 return ret; 2026 } 2027 2028 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 2029 u16 value) 2030 { 2031 struct fec_enet_private *fep = bus->priv; 2032 struct device *dev = &fep->pdev->dev; 2033 int ret, frame_start, frame_addr; 2034 bool is_c45 = !!(regnum & MII_ADDR_C45); 2035 2036 ret = pm_runtime_resume_and_get(dev); 2037 if (ret < 0) 2038 return ret; 2039 2040 if (is_c45) { 2041 frame_start = FEC_MMFR_ST_C45; 2042 2043 /* write address */ 2044 frame_addr = (regnum >> 16); 2045 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2046 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2047 FEC_MMFR_TA | (regnum & 0xFFFF), 2048 fep->hwp + FEC_MII_DATA); 2049 2050 /* wait for end of transfer */ 2051 ret = fec_enet_mdio_wait(fep); 2052 if (ret) { 2053 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2054 goto out; 2055 } 2056 } else { 2057 /* C22 write */ 2058 frame_start = FEC_MMFR_ST; 2059 frame_addr = regnum; 2060 } 2061 2062 /* start a write op */ 2063 writel(frame_start | FEC_MMFR_OP_WRITE | 2064 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2065 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2066 fep->hwp + FEC_MII_DATA); 2067 2068 /* wait for end of transfer */ 2069 ret = fec_enet_mdio_wait(fep); 2070 if (ret) 2071 netdev_err(fep->netdev, "MDIO write timeout\n"); 2072 2073 out: 2074 pm_runtime_mark_last_busy(dev); 2075 pm_runtime_put_autosuspend(dev); 2076 2077 return ret; 2078 } 2079 2080 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2081 { 2082 struct fec_enet_private *fep = netdev_priv(ndev); 2083 struct phy_device *phy_dev = ndev->phydev; 2084 2085 if (phy_dev) { 2086 phy_reset_after_clk_enable(phy_dev); 2087 } else if (fep->phy_node) { 2088 /* 2089 * If the PHY still is not bound to the MAC, but there is 2090 * OF PHY node and a matching PHY device instance already, 2091 * use the OF PHY node to obtain the PHY device instance, 2092 * and then use that PHY device instance when triggering 2093 * the PHY reset. 2094 */ 2095 phy_dev = of_phy_find_device(fep->phy_node); 2096 phy_reset_after_clk_enable(phy_dev); 2097 put_device(&phy_dev->mdio.dev); 2098 } 2099 } 2100 2101 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2102 { 2103 struct fec_enet_private *fep = netdev_priv(ndev); 2104 int ret; 2105 2106 if (enable) { 2107 ret = clk_prepare_enable(fep->clk_enet_out); 2108 if (ret) 2109 return ret; 2110 2111 if (fep->clk_ptp) { 2112 mutex_lock(&fep->ptp_clk_mutex); 2113 ret = clk_prepare_enable(fep->clk_ptp); 2114 if (ret) { 2115 mutex_unlock(&fep->ptp_clk_mutex); 2116 goto failed_clk_ptp; 2117 } else { 2118 fep->ptp_clk_on = true; 2119 } 2120 mutex_unlock(&fep->ptp_clk_mutex); 2121 } 2122 2123 ret = clk_prepare_enable(fep->clk_ref); 2124 if (ret) 2125 goto failed_clk_ref; 2126 2127 ret = clk_prepare_enable(fep->clk_2x_txclk); 2128 if (ret) 2129 goto failed_clk_2x_txclk; 2130 2131 fec_enet_phy_reset_after_clk_enable(ndev); 2132 } else { 2133 clk_disable_unprepare(fep->clk_enet_out); 2134 if (fep->clk_ptp) { 2135 mutex_lock(&fep->ptp_clk_mutex); 2136 clk_disable_unprepare(fep->clk_ptp); 2137 fep->ptp_clk_on = false; 2138 mutex_unlock(&fep->ptp_clk_mutex); 2139 } 2140 clk_disable_unprepare(fep->clk_ref); 2141 clk_disable_unprepare(fep->clk_2x_txclk); 2142 } 2143 2144 return 0; 2145 2146 failed_clk_2x_txclk: 2147 if (fep->clk_ref) 2148 clk_disable_unprepare(fep->clk_ref); 2149 failed_clk_ref: 2150 if (fep->clk_ptp) { 2151 mutex_lock(&fep->ptp_clk_mutex); 2152 clk_disable_unprepare(fep->clk_ptp); 2153 fep->ptp_clk_on = false; 2154 mutex_unlock(&fep->ptp_clk_mutex); 2155 } 2156 failed_clk_ptp: 2157 clk_disable_unprepare(fep->clk_enet_out); 2158 2159 return ret; 2160 } 2161 2162 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2163 struct device_node *np) 2164 { 2165 u32 rgmii_tx_delay, rgmii_rx_delay; 2166 2167 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2168 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2169 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2170 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2171 return -EINVAL; 2172 } else if (rgmii_tx_delay == 2000) { 2173 fep->rgmii_txc_dly = true; 2174 } 2175 } 2176 2177 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2178 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2179 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2180 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2181 return -EINVAL; 2182 } else if (rgmii_rx_delay == 2000) { 2183 fep->rgmii_rxc_dly = true; 2184 } 2185 } 2186 2187 return 0; 2188 } 2189 2190 static int fec_enet_mii_probe(struct net_device *ndev) 2191 { 2192 struct fec_enet_private *fep = netdev_priv(ndev); 2193 struct phy_device *phy_dev = NULL; 2194 char mdio_bus_id[MII_BUS_ID_SIZE]; 2195 char phy_name[MII_BUS_ID_SIZE + 3]; 2196 int phy_id; 2197 int dev_id = fep->dev_id; 2198 2199 if (fep->phy_node) { 2200 phy_dev = of_phy_connect(ndev, fep->phy_node, 2201 &fec_enet_adjust_link, 0, 2202 fep->phy_interface); 2203 if (!phy_dev) { 2204 netdev_err(ndev, "Unable to connect to phy\n"); 2205 return -ENODEV; 2206 } 2207 } else { 2208 /* check for attached phy */ 2209 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2210 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2211 continue; 2212 if (dev_id--) 2213 continue; 2214 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2215 break; 2216 } 2217 2218 if (phy_id >= PHY_MAX_ADDR) { 2219 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2220 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2221 phy_id = 0; 2222 } 2223 2224 snprintf(phy_name, sizeof(phy_name), 2225 PHY_ID_FMT, mdio_bus_id, phy_id); 2226 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2227 fep->phy_interface); 2228 } 2229 2230 if (IS_ERR(phy_dev)) { 2231 netdev_err(ndev, "could not attach to PHY\n"); 2232 return PTR_ERR(phy_dev); 2233 } 2234 2235 /* mask with MAC supported features */ 2236 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2237 phy_set_max_speed(phy_dev, 1000); 2238 phy_remove_link_mode(phy_dev, 2239 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2240 #if !defined(CONFIG_M5272) 2241 phy_support_sym_pause(phy_dev); 2242 #endif 2243 } 2244 else 2245 phy_set_max_speed(phy_dev, 100); 2246 2247 fep->link = 0; 2248 fep->full_duplex = 0; 2249 2250 phy_dev->mac_managed_pm = true; 2251 2252 phy_attached_info(phy_dev); 2253 2254 return 0; 2255 } 2256 2257 static int fec_enet_mii_init(struct platform_device *pdev) 2258 { 2259 static struct mii_bus *fec0_mii_bus; 2260 struct net_device *ndev = platform_get_drvdata(pdev); 2261 struct fec_enet_private *fep = netdev_priv(ndev); 2262 bool suppress_preamble = false; 2263 struct device_node *node; 2264 int err = -ENXIO; 2265 u32 mii_speed, holdtime; 2266 u32 bus_freq; 2267 2268 /* 2269 * The i.MX28 dual fec interfaces are not equal. 2270 * Here are the differences: 2271 * 2272 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2273 * - fec0 acts as the 1588 time master while fec1 is slave 2274 * - external phys can only be configured by fec0 2275 * 2276 * That is to say fec1 can not work independently. It only works 2277 * when fec0 is working. The reason behind this design is that the 2278 * second interface is added primarily for Switch mode. 2279 * 2280 * Because of the last point above, both phys are attached on fec0 2281 * mdio interface in board design, and need to be configured by 2282 * fec0 mii_bus. 2283 */ 2284 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2285 /* fec1 uses fec0 mii_bus */ 2286 if (mii_cnt && fec0_mii_bus) { 2287 fep->mii_bus = fec0_mii_bus; 2288 mii_cnt++; 2289 return 0; 2290 } 2291 return -ENOENT; 2292 } 2293 2294 bus_freq = 2500000; /* 2.5MHz by default */ 2295 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2296 if (node) { 2297 of_property_read_u32(node, "clock-frequency", &bus_freq); 2298 suppress_preamble = of_property_read_bool(node, 2299 "suppress-preamble"); 2300 } 2301 2302 /* 2303 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2304 * 2305 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2306 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2307 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2308 * document. 2309 */ 2310 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2311 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2312 mii_speed--; 2313 if (mii_speed > 63) { 2314 dev_err(&pdev->dev, 2315 "fec clock (%lu) too fast to get right mii speed\n", 2316 clk_get_rate(fep->clk_ipg)); 2317 err = -EINVAL; 2318 goto err_out; 2319 } 2320 2321 /* 2322 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2323 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2324 * versions are RAZ there, so just ignore the difference and write the 2325 * register always. 2326 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2327 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2328 * output. 2329 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2330 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2331 * holdtime cannot result in a value greater than 3. 2332 */ 2333 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2334 2335 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2336 2337 if (suppress_preamble) 2338 fep->phy_speed |= BIT(7); 2339 2340 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2341 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2342 * MII event generation condition: 2343 * - writing MSCR: 2344 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2345 * mscr_reg_data_in[7:0] != 0 2346 * - writing MMFR: 2347 * - mscr[7:0]_not_zero 2348 */ 2349 writel(0, fep->hwp + FEC_MII_DATA); 2350 } 2351 2352 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2353 2354 /* Clear any pending transaction complete indication */ 2355 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2356 2357 fep->mii_bus = mdiobus_alloc(); 2358 if (fep->mii_bus == NULL) { 2359 err = -ENOMEM; 2360 goto err_out; 2361 } 2362 2363 fep->mii_bus->name = "fec_enet_mii_bus"; 2364 fep->mii_bus->read = fec_enet_mdio_read; 2365 fep->mii_bus->write = fec_enet_mdio_write; 2366 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2367 pdev->name, fep->dev_id + 1); 2368 fep->mii_bus->priv = fep; 2369 fep->mii_bus->parent = &pdev->dev; 2370 2371 err = of_mdiobus_register(fep->mii_bus, node); 2372 if (err) 2373 goto err_out_free_mdiobus; 2374 of_node_put(node); 2375 2376 mii_cnt++; 2377 2378 /* save fec0 mii_bus */ 2379 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2380 fec0_mii_bus = fep->mii_bus; 2381 2382 return 0; 2383 2384 err_out_free_mdiobus: 2385 mdiobus_free(fep->mii_bus); 2386 err_out: 2387 of_node_put(node); 2388 return err; 2389 } 2390 2391 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2392 { 2393 if (--mii_cnt == 0) { 2394 mdiobus_unregister(fep->mii_bus); 2395 mdiobus_free(fep->mii_bus); 2396 } 2397 } 2398 2399 static void fec_enet_get_drvinfo(struct net_device *ndev, 2400 struct ethtool_drvinfo *info) 2401 { 2402 struct fec_enet_private *fep = netdev_priv(ndev); 2403 2404 strscpy(info->driver, fep->pdev->dev.driver->name, 2405 sizeof(info->driver)); 2406 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2407 } 2408 2409 static int fec_enet_get_regs_len(struct net_device *ndev) 2410 { 2411 struct fec_enet_private *fep = netdev_priv(ndev); 2412 struct resource *r; 2413 int s = 0; 2414 2415 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2416 if (r) 2417 s = resource_size(r); 2418 2419 return s; 2420 } 2421 2422 /* List of registers that can be safety be read to dump them with ethtool */ 2423 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2424 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2425 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2426 static __u32 fec_enet_register_version = 2; 2427 static u32 fec_enet_register_offset[] = { 2428 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2429 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2430 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2431 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2432 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2433 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2434 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2435 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2436 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2437 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2438 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2439 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2440 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2441 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2442 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2443 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2444 RMON_T_P_GTE2048, RMON_T_OCTETS, 2445 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2446 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2447 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2448 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2449 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2450 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2451 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2452 RMON_R_P_GTE2048, RMON_R_OCTETS, 2453 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2454 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2455 }; 2456 /* for i.MX6ul */ 2457 static u32 fec_enet_register_offset_6ul[] = { 2458 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2459 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2460 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2461 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2462 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2463 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2464 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2465 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2466 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2467 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2468 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2469 RMON_T_P_GTE2048, RMON_T_OCTETS, 2470 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2471 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2472 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2473 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2474 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2475 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2476 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2477 RMON_R_P_GTE2048, RMON_R_OCTETS, 2478 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2479 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2480 }; 2481 #else 2482 static __u32 fec_enet_register_version = 1; 2483 static u32 fec_enet_register_offset[] = { 2484 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2485 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2486 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2487 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2488 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2489 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2490 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2491 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2492 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2493 }; 2494 #endif 2495 2496 static void fec_enet_get_regs(struct net_device *ndev, 2497 struct ethtool_regs *regs, void *regbuf) 2498 { 2499 struct fec_enet_private *fep = netdev_priv(ndev); 2500 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2501 struct device *dev = &fep->pdev->dev; 2502 u32 *buf = (u32 *)regbuf; 2503 u32 i, off; 2504 int ret; 2505 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2506 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2507 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2508 u32 *reg_list; 2509 u32 reg_cnt; 2510 2511 if (!of_machine_is_compatible("fsl,imx6ul")) { 2512 reg_list = fec_enet_register_offset; 2513 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2514 } else { 2515 reg_list = fec_enet_register_offset_6ul; 2516 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2517 } 2518 #else 2519 /* coldfire */ 2520 static u32 *reg_list = fec_enet_register_offset; 2521 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2522 #endif 2523 ret = pm_runtime_resume_and_get(dev); 2524 if (ret < 0) 2525 return; 2526 2527 regs->version = fec_enet_register_version; 2528 2529 memset(buf, 0, regs->len); 2530 2531 for (i = 0; i < reg_cnt; i++) { 2532 off = reg_list[i]; 2533 2534 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2535 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2536 continue; 2537 2538 off >>= 2; 2539 buf[off] = readl(&theregs[off]); 2540 } 2541 2542 pm_runtime_mark_last_busy(dev); 2543 pm_runtime_put_autosuspend(dev); 2544 } 2545 2546 static int fec_enet_get_ts_info(struct net_device *ndev, 2547 struct ethtool_ts_info *info) 2548 { 2549 struct fec_enet_private *fep = netdev_priv(ndev); 2550 2551 if (fep->bufdesc_ex) { 2552 2553 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2554 SOF_TIMESTAMPING_RX_SOFTWARE | 2555 SOF_TIMESTAMPING_SOFTWARE | 2556 SOF_TIMESTAMPING_TX_HARDWARE | 2557 SOF_TIMESTAMPING_RX_HARDWARE | 2558 SOF_TIMESTAMPING_RAW_HARDWARE; 2559 if (fep->ptp_clock) 2560 info->phc_index = ptp_clock_index(fep->ptp_clock); 2561 else 2562 info->phc_index = -1; 2563 2564 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2565 (1 << HWTSTAMP_TX_ON); 2566 2567 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2568 (1 << HWTSTAMP_FILTER_ALL); 2569 return 0; 2570 } else { 2571 return ethtool_op_get_ts_info(ndev, info); 2572 } 2573 } 2574 2575 #if !defined(CONFIG_M5272) 2576 2577 static void fec_enet_get_pauseparam(struct net_device *ndev, 2578 struct ethtool_pauseparam *pause) 2579 { 2580 struct fec_enet_private *fep = netdev_priv(ndev); 2581 2582 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2583 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2584 pause->rx_pause = pause->tx_pause; 2585 } 2586 2587 static int fec_enet_set_pauseparam(struct net_device *ndev, 2588 struct ethtool_pauseparam *pause) 2589 { 2590 struct fec_enet_private *fep = netdev_priv(ndev); 2591 2592 if (!ndev->phydev) 2593 return -ENODEV; 2594 2595 if (pause->tx_pause != pause->rx_pause) { 2596 netdev_info(ndev, 2597 "hardware only support enable/disable both tx and rx"); 2598 return -EINVAL; 2599 } 2600 2601 fep->pause_flag = 0; 2602 2603 /* tx pause must be same as rx pause */ 2604 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2605 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2606 2607 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2608 pause->autoneg); 2609 2610 if (pause->autoneg) { 2611 if (netif_running(ndev)) 2612 fec_stop(ndev); 2613 phy_start_aneg(ndev->phydev); 2614 } 2615 if (netif_running(ndev)) { 2616 napi_disable(&fep->napi); 2617 netif_tx_lock_bh(ndev); 2618 fec_restart(ndev); 2619 netif_tx_wake_all_queues(ndev); 2620 netif_tx_unlock_bh(ndev); 2621 napi_enable(&fep->napi); 2622 } 2623 2624 return 0; 2625 } 2626 2627 static const struct fec_stat { 2628 char name[ETH_GSTRING_LEN]; 2629 u16 offset; 2630 } fec_stats[] = { 2631 /* RMON TX */ 2632 { "tx_dropped", RMON_T_DROP }, 2633 { "tx_packets", RMON_T_PACKETS }, 2634 { "tx_broadcast", RMON_T_BC_PKT }, 2635 { "tx_multicast", RMON_T_MC_PKT }, 2636 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2637 { "tx_undersize", RMON_T_UNDERSIZE }, 2638 { "tx_oversize", RMON_T_OVERSIZE }, 2639 { "tx_fragment", RMON_T_FRAG }, 2640 { "tx_jabber", RMON_T_JAB }, 2641 { "tx_collision", RMON_T_COL }, 2642 { "tx_64byte", RMON_T_P64 }, 2643 { "tx_65to127byte", RMON_T_P65TO127 }, 2644 { "tx_128to255byte", RMON_T_P128TO255 }, 2645 { "tx_256to511byte", RMON_T_P256TO511 }, 2646 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2647 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2648 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2649 { "tx_octets", RMON_T_OCTETS }, 2650 2651 /* IEEE TX */ 2652 { "IEEE_tx_drop", IEEE_T_DROP }, 2653 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2654 { "IEEE_tx_1col", IEEE_T_1COL }, 2655 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2656 { "IEEE_tx_def", IEEE_T_DEF }, 2657 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2658 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2659 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2660 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2661 { "IEEE_tx_sqe", IEEE_T_SQE }, 2662 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2663 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2664 2665 /* RMON RX */ 2666 { "rx_packets", RMON_R_PACKETS }, 2667 { "rx_broadcast", RMON_R_BC_PKT }, 2668 { "rx_multicast", RMON_R_MC_PKT }, 2669 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2670 { "rx_undersize", RMON_R_UNDERSIZE }, 2671 { "rx_oversize", RMON_R_OVERSIZE }, 2672 { "rx_fragment", RMON_R_FRAG }, 2673 { "rx_jabber", RMON_R_JAB }, 2674 { "rx_64byte", RMON_R_P64 }, 2675 { "rx_65to127byte", RMON_R_P65TO127 }, 2676 { "rx_128to255byte", RMON_R_P128TO255 }, 2677 { "rx_256to511byte", RMON_R_P256TO511 }, 2678 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2679 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2680 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2681 { "rx_octets", RMON_R_OCTETS }, 2682 2683 /* IEEE RX */ 2684 { "IEEE_rx_drop", IEEE_R_DROP }, 2685 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2686 { "IEEE_rx_crc", IEEE_R_CRC }, 2687 { "IEEE_rx_align", IEEE_R_ALIGN }, 2688 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2689 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2690 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2691 }; 2692 2693 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2694 2695 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2696 { 2697 struct fec_enet_private *fep = netdev_priv(dev); 2698 int i; 2699 2700 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2701 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2702 } 2703 2704 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2705 struct ethtool_stats *stats, u64 *data) 2706 { 2707 struct fec_enet_private *fep = netdev_priv(dev); 2708 2709 if (netif_running(dev)) 2710 fec_enet_update_ethtool_stats(dev); 2711 2712 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2713 } 2714 2715 static void fec_enet_get_strings(struct net_device *netdev, 2716 u32 stringset, u8 *data) 2717 { 2718 int i; 2719 switch (stringset) { 2720 case ETH_SS_STATS: 2721 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2722 memcpy(data + i * ETH_GSTRING_LEN, 2723 fec_stats[i].name, ETH_GSTRING_LEN); 2724 break; 2725 case ETH_SS_TEST: 2726 net_selftest_get_strings(data); 2727 break; 2728 } 2729 } 2730 2731 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2732 { 2733 switch (sset) { 2734 case ETH_SS_STATS: 2735 return ARRAY_SIZE(fec_stats); 2736 case ETH_SS_TEST: 2737 return net_selftest_get_count(); 2738 default: 2739 return -EOPNOTSUPP; 2740 } 2741 } 2742 2743 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2744 { 2745 struct fec_enet_private *fep = netdev_priv(dev); 2746 int i; 2747 2748 /* Disable MIB statistics counters */ 2749 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2750 2751 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2752 writel(0, fep->hwp + fec_stats[i].offset); 2753 2754 /* Don't disable MIB statistics counters */ 2755 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2756 } 2757 2758 #else /* !defined(CONFIG_M5272) */ 2759 #define FEC_STATS_SIZE 0 2760 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2761 { 2762 } 2763 2764 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2765 { 2766 } 2767 #endif /* !defined(CONFIG_M5272) */ 2768 2769 /* ITR clock source is enet system clock (clk_ahb). 2770 * TCTT unit is cycle_ns * 64 cycle 2771 * So, the ICTT value = X us / (cycle_ns * 64) 2772 */ 2773 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2774 { 2775 struct fec_enet_private *fep = netdev_priv(ndev); 2776 2777 return us * (fep->itr_clk_rate / 64000) / 1000; 2778 } 2779 2780 /* Set threshold for interrupt coalescing */ 2781 static void fec_enet_itr_coal_set(struct net_device *ndev) 2782 { 2783 struct fec_enet_private *fep = netdev_priv(ndev); 2784 int rx_itr, tx_itr; 2785 2786 /* Must be greater than zero to avoid unpredictable behavior */ 2787 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2788 !fep->tx_time_itr || !fep->tx_pkts_itr) 2789 return; 2790 2791 /* Select enet system clock as Interrupt Coalescing 2792 * timer Clock Source 2793 */ 2794 rx_itr = FEC_ITR_CLK_SEL; 2795 tx_itr = FEC_ITR_CLK_SEL; 2796 2797 /* set ICFT and ICTT */ 2798 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2799 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2800 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2801 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2802 2803 rx_itr |= FEC_ITR_EN; 2804 tx_itr |= FEC_ITR_EN; 2805 2806 writel(tx_itr, fep->hwp + FEC_TXIC0); 2807 writel(rx_itr, fep->hwp + FEC_RXIC0); 2808 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2809 writel(tx_itr, fep->hwp + FEC_TXIC1); 2810 writel(rx_itr, fep->hwp + FEC_RXIC1); 2811 writel(tx_itr, fep->hwp + FEC_TXIC2); 2812 writel(rx_itr, fep->hwp + FEC_RXIC2); 2813 } 2814 } 2815 2816 static int fec_enet_get_coalesce(struct net_device *ndev, 2817 struct ethtool_coalesce *ec, 2818 struct kernel_ethtool_coalesce *kernel_coal, 2819 struct netlink_ext_ack *extack) 2820 { 2821 struct fec_enet_private *fep = netdev_priv(ndev); 2822 2823 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2824 return -EOPNOTSUPP; 2825 2826 ec->rx_coalesce_usecs = fep->rx_time_itr; 2827 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2828 2829 ec->tx_coalesce_usecs = fep->tx_time_itr; 2830 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2831 2832 return 0; 2833 } 2834 2835 static int fec_enet_set_coalesce(struct net_device *ndev, 2836 struct ethtool_coalesce *ec, 2837 struct kernel_ethtool_coalesce *kernel_coal, 2838 struct netlink_ext_ack *extack) 2839 { 2840 struct fec_enet_private *fep = netdev_priv(ndev); 2841 struct device *dev = &fep->pdev->dev; 2842 unsigned int cycle; 2843 2844 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2845 return -EOPNOTSUPP; 2846 2847 if (ec->rx_max_coalesced_frames > 255) { 2848 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2849 return -EINVAL; 2850 } 2851 2852 if (ec->tx_max_coalesced_frames > 255) { 2853 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2854 return -EINVAL; 2855 } 2856 2857 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2858 if (cycle > 0xFFFF) { 2859 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2860 return -EINVAL; 2861 } 2862 2863 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2864 if (cycle > 0xFFFF) { 2865 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2866 return -EINVAL; 2867 } 2868 2869 fep->rx_time_itr = ec->rx_coalesce_usecs; 2870 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2871 2872 fep->tx_time_itr = ec->tx_coalesce_usecs; 2873 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2874 2875 fec_enet_itr_coal_set(ndev); 2876 2877 return 0; 2878 } 2879 2880 static void fec_enet_itr_coal_init(struct net_device *ndev) 2881 { 2882 struct ethtool_coalesce ec; 2883 2884 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2885 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2886 2887 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2888 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2889 2890 fec_enet_set_coalesce(ndev, &ec, NULL, NULL); 2891 } 2892 2893 static int fec_enet_get_tunable(struct net_device *netdev, 2894 const struct ethtool_tunable *tuna, 2895 void *data) 2896 { 2897 struct fec_enet_private *fep = netdev_priv(netdev); 2898 int ret = 0; 2899 2900 switch (tuna->id) { 2901 case ETHTOOL_RX_COPYBREAK: 2902 *(u32 *)data = fep->rx_copybreak; 2903 break; 2904 default: 2905 ret = -EINVAL; 2906 break; 2907 } 2908 2909 return ret; 2910 } 2911 2912 static int fec_enet_set_tunable(struct net_device *netdev, 2913 const struct ethtool_tunable *tuna, 2914 const void *data) 2915 { 2916 struct fec_enet_private *fep = netdev_priv(netdev); 2917 int ret = 0; 2918 2919 switch (tuna->id) { 2920 case ETHTOOL_RX_COPYBREAK: 2921 fep->rx_copybreak = *(u32 *)data; 2922 break; 2923 default: 2924 ret = -EINVAL; 2925 break; 2926 } 2927 2928 return ret; 2929 } 2930 2931 /* LPI Sleep Ts count base on tx clk (clk_ref). 2932 * The lpi sleep cnt value = X us / (cycle_ns). 2933 */ 2934 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 2935 { 2936 struct fec_enet_private *fep = netdev_priv(ndev); 2937 2938 return us * (fep->clk_ref_rate / 1000) / 1000; 2939 } 2940 2941 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 2942 { 2943 struct fec_enet_private *fep = netdev_priv(ndev); 2944 struct ethtool_eee *p = &fep->eee; 2945 unsigned int sleep_cycle, wake_cycle; 2946 int ret = 0; 2947 2948 if (enable) { 2949 ret = phy_init_eee(ndev->phydev, false); 2950 if (ret) 2951 return ret; 2952 2953 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 2954 wake_cycle = sleep_cycle; 2955 } else { 2956 sleep_cycle = 0; 2957 wake_cycle = 0; 2958 } 2959 2960 p->tx_lpi_enabled = enable; 2961 p->eee_enabled = enable; 2962 p->eee_active = enable; 2963 2964 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 2965 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 2966 2967 return 0; 2968 } 2969 2970 static int 2971 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2972 { 2973 struct fec_enet_private *fep = netdev_priv(ndev); 2974 struct ethtool_eee *p = &fep->eee; 2975 2976 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2977 return -EOPNOTSUPP; 2978 2979 if (!netif_running(ndev)) 2980 return -ENETDOWN; 2981 2982 edata->eee_enabled = p->eee_enabled; 2983 edata->eee_active = p->eee_active; 2984 edata->tx_lpi_timer = p->tx_lpi_timer; 2985 edata->tx_lpi_enabled = p->tx_lpi_enabled; 2986 2987 return phy_ethtool_get_eee(ndev->phydev, edata); 2988 } 2989 2990 static int 2991 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2992 { 2993 struct fec_enet_private *fep = netdev_priv(ndev); 2994 struct ethtool_eee *p = &fep->eee; 2995 int ret = 0; 2996 2997 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2998 return -EOPNOTSUPP; 2999 3000 if (!netif_running(ndev)) 3001 return -ENETDOWN; 3002 3003 p->tx_lpi_timer = edata->tx_lpi_timer; 3004 3005 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3006 !edata->tx_lpi_timer) 3007 ret = fec_enet_eee_mode_set(ndev, false); 3008 else 3009 ret = fec_enet_eee_mode_set(ndev, true); 3010 3011 if (ret) 3012 return ret; 3013 3014 return phy_ethtool_set_eee(ndev->phydev, edata); 3015 } 3016 3017 static void 3018 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3019 { 3020 struct fec_enet_private *fep = netdev_priv(ndev); 3021 3022 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3023 wol->supported = WAKE_MAGIC; 3024 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3025 } else { 3026 wol->supported = wol->wolopts = 0; 3027 } 3028 } 3029 3030 static int 3031 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3032 { 3033 struct fec_enet_private *fep = netdev_priv(ndev); 3034 3035 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3036 return -EINVAL; 3037 3038 if (wol->wolopts & ~WAKE_MAGIC) 3039 return -EINVAL; 3040 3041 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3042 if (device_may_wakeup(&ndev->dev)) 3043 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3044 else 3045 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3046 3047 return 0; 3048 } 3049 3050 static const struct ethtool_ops fec_enet_ethtool_ops = { 3051 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3052 ETHTOOL_COALESCE_MAX_FRAMES, 3053 .get_drvinfo = fec_enet_get_drvinfo, 3054 .get_regs_len = fec_enet_get_regs_len, 3055 .get_regs = fec_enet_get_regs, 3056 .nway_reset = phy_ethtool_nway_reset, 3057 .get_link = ethtool_op_get_link, 3058 .get_coalesce = fec_enet_get_coalesce, 3059 .set_coalesce = fec_enet_set_coalesce, 3060 #ifndef CONFIG_M5272 3061 .get_pauseparam = fec_enet_get_pauseparam, 3062 .set_pauseparam = fec_enet_set_pauseparam, 3063 .get_strings = fec_enet_get_strings, 3064 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3065 .get_sset_count = fec_enet_get_sset_count, 3066 #endif 3067 .get_ts_info = fec_enet_get_ts_info, 3068 .get_tunable = fec_enet_get_tunable, 3069 .set_tunable = fec_enet_set_tunable, 3070 .get_wol = fec_enet_get_wol, 3071 .set_wol = fec_enet_set_wol, 3072 .get_eee = fec_enet_get_eee, 3073 .set_eee = fec_enet_set_eee, 3074 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3075 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3076 .self_test = net_selftest, 3077 }; 3078 3079 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3080 { 3081 struct fec_enet_private *fep = netdev_priv(ndev); 3082 struct phy_device *phydev = ndev->phydev; 3083 3084 if (!netif_running(ndev)) 3085 return -EINVAL; 3086 3087 if (!phydev) 3088 return -ENODEV; 3089 3090 if (fep->bufdesc_ex) { 3091 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3092 3093 if (cmd == SIOCSHWTSTAMP) { 3094 if (use_fec_hwts) 3095 return fec_ptp_set(ndev, rq); 3096 fec_ptp_disable_hwts(ndev); 3097 } else if (cmd == SIOCGHWTSTAMP) { 3098 if (use_fec_hwts) 3099 return fec_ptp_get(ndev, rq); 3100 } 3101 } 3102 3103 return phy_mii_ioctl(phydev, rq, cmd); 3104 } 3105 3106 static void fec_enet_free_buffers(struct net_device *ndev) 3107 { 3108 struct fec_enet_private *fep = netdev_priv(ndev); 3109 unsigned int i; 3110 struct sk_buff *skb; 3111 struct fec_enet_priv_tx_q *txq; 3112 struct fec_enet_priv_rx_q *rxq; 3113 unsigned int q; 3114 3115 for (q = 0; q < fep->num_rx_queues; q++) { 3116 rxq = fep->rx_queue[q]; 3117 for (i = 0; i < rxq->bd.ring_size; i++) 3118 page_pool_release_page(rxq->page_pool, rxq->rx_skb_info[i].page); 3119 3120 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3121 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3122 page_pool_destroy(rxq->page_pool); 3123 rxq->page_pool = NULL; 3124 } 3125 3126 for (q = 0; q < fep->num_tx_queues; q++) { 3127 txq = fep->tx_queue[q]; 3128 for (i = 0; i < txq->bd.ring_size; i++) { 3129 kfree(txq->tx_bounce[i]); 3130 txq->tx_bounce[i] = NULL; 3131 skb = txq->tx_skbuff[i]; 3132 txq->tx_skbuff[i] = NULL; 3133 dev_kfree_skb(skb); 3134 } 3135 } 3136 } 3137 3138 static void fec_enet_free_queue(struct net_device *ndev) 3139 { 3140 struct fec_enet_private *fep = netdev_priv(ndev); 3141 int i; 3142 struct fec_enet_priv_tx_q *txq; 3143 3144 for (i = 0; i < fep->num_tx_queues; i++) 3145 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3146 txq = fep->tx_queue[i]; 3147 dma_free_coherent(&fep->pdev->dev, 3148 txq->bd.ring_size * TSO_HEADER_SIZE, 3149 txq->tso_hdrs, 3150 txq->tso_hdrs_dma); 3151 } 3152 3153 for (i = 0; i < fep->num_rx_queues; i++) 3154 kfree(fep->rx_queue[i]); 3155 for (i = 0; i < fep->num_tx_queues; i++) 3156 kfree(fep->tx_queue[i]); 3157 } 3158 3159 static int fec_enet_alloc_queue(struct net_device *ndev) 3160 { 3161 struct fec_enet_private *fep = netdev_priv(ndev); 3162 int i; 3163 int ret = 0; 3164 struct fec_enet_priv_tx_q *txq; 3165 3166 for (i = 0; i < fep->num_tx_queues; i++) { 3167 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3168 if (!txq) { 3169 ret = -ENOMEM; 3170 goto alloc_failed; 3171 } 3172 3173 fep->tx_queue[i] = txq; 3174 txq->bd.ring_size = TX_RING_SIZE; 3175 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3176 3177 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3178 txq->tx_wake_threshold = 3179 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3180 3181 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3182 txq->bd.ring_size * TSO_HEADER_SIZE, 3183 &txq->tso_hdrs_dma, 3184 GFP_KERNEL); 3185 if (!txq->tso_hdrs) { 3186 ret = -ENOMEM; 3187 goto alloc_failed; 3188 } 3189 } 3190 3191 for (i = 0; i < fep->num_rx_queues; i++) { 3192 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3193 GFP_KERNEL); 3194 if (!fep->rx_queue[i]) { 3195 ret = -ENOMEM; 3196 goto alloc_failed; 3197 } 3198 3199 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3200 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3201 } 3202 return ret; 3203 3204 alloc_failed: 3205 fec_enet_free_queue(ndev); 3206 return ret; 3207 } 3208 3209 static int 3210 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3211 { 3212 struct fec_enet_private *fep = netdev_priv(ndev); 3213 struct fec_enet_priv_rx_q *rxq; 3214 dma_addr_t phys_addr; 3215 struct bufdesc *bdp; 3216 struct page *page; 3217 int i, err; 3218 3219 rxq = fep->rx_queue[queue]; 3220 bdp = rxq->bd.base; 3221 3222 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3223 if (err < 0) { 3224 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3225 return err; 3226 } 3227 3228 for (i = 0; i < rxq->bd.ring_size; i++) { 3229 page = page_pool_dev_alloc_pages(rxq->page_pool); 3230 if (!page) 3231 goto err_alloc; 3232 3233 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3234 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3235 3236 rxq->rx_skb_info[i].page = page; 3237 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3238 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3239 3240 if (fep->bufdesc_ex) { 3241 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3242 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3243 } 3244 3245 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3246 } 3247 3248 /* Set the last buffer to wrap. */ 3249 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3250 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3251 return 0; 3252 3253 err_alloc: 3254 fec_enet_free_buffers(ndev); 3255 return -ENOMEM; 3256 } 3257 3258 static int 3259 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3260 { 3261 struct fec_enet_private *fep = netdev_priv(ndev); 3262 unsigned int i; 3263 struct bufdesc *bdp; 3264 struct fec_enet_priv_tx_q *txq; 3265 3266 txq = fep->tx_queue[queue]; 3267 bdp = txq->bd.base; 3268 for (i = 0; i < txq->bd.ring_size; i++) { 3269 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3270 if (!txq->tx_bounce[i]) 3271 goto err_alloc; 3272 3273 bdp->cbd_sc = cpu_to_fec16(0); 3274 bdp->cbd_bufaddr = cpu_to_fec32(0); 3275 3276 if (fep->bufdesc_ex) { 3277 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3278 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3279 } 3280 3281 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3282 } 3283 3284 /* Set the last buffer to wrap. */ 3285 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3286 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3287 3288 return 0; 3289 3290 err_alloc: 3291 fec_enet_free_buffers(ndev); 3292 return -ENOMEM; 3293 } 3294 3295 static int fec_enet_alloc_buffers(struct net_device *ndev) 3296 { 3297 struct fec_enet_private *fep = netdev_priv(ndev); 3298 unsigned int i; 3299 3300 for (i = 0; i < fep->num_rx_queues; i++) 3301 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3302 return -ENOMEM; 3303 3304 for (i = 0; i < fep->num_tx_queues; i++) 3305 if (fec_enet_alloc_txq_buffers(ndev, i)) 3306 return -ENOMEM; 3307 return 0; 3308 } 3309 3310 static int 3311 fec_enet_open(struct net_device *ndev) 3312 { 3313 struct fec_enet_private *fep = netdev_priv(ndev); 3314 int ret; 3315 bool reset_again; 3316 3317 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3318 if (ret < 0) 3319 return ret; 3320 3321 pinctrl_pm_select_default_state(&fep->pdev->dev); 3322 ret = fec_enet_clk_enable(ndev, true); 3323 if (ret) 3324 goto clk_enable; 3325 3326 /* During the first fec_enet_open call the PHY isn't probed at this 3327 * point. Therefore the phy_reset_after_clk_enable() call within 3328 * fec_enet_clk_enable() fails. As we need this reset in order to be 3329 * sure the PHY is working correctly we check if we need to reset again 3330 * later when the PHY is probed 3331 */ 3332 if (ndev->phydev && ndev->phydev->drv) 3333 reset_again = false; 3334 else 3335 reset_again = true; 3336 3337 /* I should reset the ring buffers here, but I don't yet know 3338 * a simple way to do that. 3339 */ 3340 3341 ret = fec_enet_alloc_buffers(ndev); 3342 if (ret) 3343 goto err_enet_alloc; 3344 3345 /* Init MAC prior to mii bus probe */ 3346 fec_restart(ndev); 3347 3348 /* Call phy_reset_after_clk_enable() again if it failed during 3349 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3350 */ 3351 if (reset_again) 3352 fec_enet_phy_reset_after_clk_enable(ndev); 3353 3354 /* Probe and connect to PHY when open the interface */ 3355 ret = fec_enet_mii_probe(ndev); 3356 if (ret) 3357 goto err_enet_mii_probe; 3358 3359 if (fep->quirks & FEC_QUIRK_ERR006687) 3360 imx6q_cpuidle_fec_irqs_used(); 3361 3362 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3363 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3364 3365 napi_enable(&fep->napi); 3366 phy_start(ndev->phydev); 3367 netif_tx_start_all_queues(ndev); 3368 3369 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3370 FEC_WOL_FLAG_ENABLE); 3371 3372 return 0; 3373 3374 err_enet_mii_probe: 3375 fec_enet_free_buffers(ndev); 3376 err_enet_alloc: 3377 fec_enet_clk_enable(ndev, false); 3378 clk_enable: 3379 pm_runtime_mark_last_busy(&fep->pdev->dev); 3380 pm_runtime_put_autosuspend(&fep->pdev->dev); 3381 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3382 return ret; 3383 } 3384 3385 static int 3386 fec_enet_close(struct net_device *ndev) 3387 { 3388 struct fec_enet_private *fep = netdev_priv(ndev); 3389 3390 phy_stop(ndev->phydev); 3391 3392 if (netif_device_present(ndev)) { 3393 napi_disable(&fep->napi); 3394 netif_tx_disable(ndev); 3395 fec_stop(ndev); 3396 } 3397 3398 phy_disconnect(ndev->phydev); 3399 3400 if (fep->quirks & FEC_QUIRK_ERR006687) 3401 imx6q_cpuidle_fec_irqs_unused(); 3402 3403 fec_enet_update_ethtool_stats(ndev); 3404 3405 fec_enet_clk_enable(ndev, false); 3406 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3407 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3408 3409 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3410 pm_runtime_mark_last_busy(&fep->pdev->dev); 3411 pm_runtime_put_autosuspend(&fep->pdev->dev); 3412 3413 fec_enet_free_buffers(ndev); 3414 3415 return 0; 3416 } 3417 3418 /* Set or clear the multicast filter for this adaptor. 3419 * Skeleton taken from sunlance driver. 3420 * The CPM Ethernet implementation allows Multicast as well as individual 3421 * MAC address filtering. Some of the drivers check to make sure it is 3422 * a group multicast address, and discard those that are not. I guess I 3423 * will do the same for now, but just remove the test if you want 3424 * individual filtering as well (do the upper net layers want or support 3425 * this kind of feature?). 3426 */ 3427 3428 #define FEC_HASH_BITS 6 /* #bits in hash */ 3429 3430 static void set_multicast_list(struct net_device *ndev) 3431 { 3432 struct fec_enet_private *fep = netdev_priv(ndev); 3433 struct netdev_hw_addr *ha; 3434 unsigned int crc, tmp; 3435 unsigned char hash; 3436 unsigned int hash_high = 0, hash_low = 0; 3437 3438 if (ndev->flags & IFF_PROMISC) { 3439 tmp = readl(fep->hwp + FEC_R_CNTRL); 3440 tmp |= 0x8; 3441 writel(tmp, fep->hwp + FEC_R_CNTRL); 3442 return; 3443 } 3444 3445 tmp = readl(fep->hwp + FEC_R_CNTRL); 3446 tmp &= ~0x8; 3447 writel(tmp, fep->hwp + FEC_R_CNTRL); 3448 3449 if (ndev->flags & IFF_ALLMULTI) { 3450 /* Catch all multicast addresses, so set the 3451 * filter to all 1's 3452 */ 3453 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3454 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3455 3456 return; 3457 } 3458 3459 /* Add the addresses in hash register */ 3460 netdev_for_each_mc_addr(ha, ndev) { 3461 /* calculate crc32 value of mac address */ 3462 crc = ether_crc_le(ndev->addr_len, ha->addr); 3463 3464 /* only upper 6 bits (FEC_HASH_BITS) are used 3465 * which point to specific bit in the hash registers 3466 */ 3467 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3468 3469 if (hash > 31) 3470 hash_high |= 1 << (hash - 32); 3471 else 3472 hash_low |= 1 << hash; 3473 } 3474 3475 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3476 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3477 } 3478 3479 /* Set a MAC change in hardware. */ 3480 static int 3481 fec_set_mac_address(struct net_device *ndev, void *p) 3482 { 3483 struct fec_enet_private *fep = netdev_priv(ndev); 3484 struct sockaddr *addr = p; 3485 3486 if (addr) { 3487 if (!is_valid_ether_addr(addr->sa_data)) 3488 return -EADDRNOTAVAIL; 3489 eth_hw_addr_set(ndev, addr->sa_data); 3490 } 3491 3492 /* Add netif status check here to avoid system hang in below case: 3493 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3494 * After ethx down, fec all clocks are gated off and then register 3495 * access causes system hang. 3496 */ 3497 if (!netif_running(ndev)) 3498 return 0; 3499 3500 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3501 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3502 fep->hwp + FEC_ADDR_LOW); 3503 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3504 fep->hwp + FEC_ADDR_HIGH); 3505 return 0; 3506 } 3507 3508 #ifdef CONFIG_NET_POLL_CONTROLLER 3509 /** 3510 * fec_poll_controller - FEC Poll controller function 3511 * @dev: The FEC network adapter 3512 * 3513 * Polled functionality used by netconsole and others in non interrupt mode 3514 * 3515 */ 3516 static void fec_poll_controller(struct net_device *dev) 3517 { 3518 int i; 3519 struct fec_enet_private *fep = netdev_priv(dev); 3520 3521 for (i = 0; i < FEC_IRQ_NUM; i++) { 3522 if (fep->irq[i] > 0) { 3523 disable_irq(fep->irq[i]); 3524 fec_enet_interrupt(fep->irq[i], dev); 3525 enable_irq(fep->irq[i]); 3526 } 3527 } 3528 } 3529 #endif 3530 3531 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3532 netdev_features_t features) 3533 { 3534 struct fec_enet_private *fep = netdev_priv(netdev); 3535 netdev_features_t changed = features ^ netdev->features; 3536 3537 netdev->features = features; 3538 3539 /* Receive checksum has been changed */ 3540 if (changed & NETIF_F_RXCSUM) { 3541 if (features & NETIF_F_RXCSUM) 3542 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3543 else 3544 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3545 } 3546 } 3547 3548 static int fec_set_features(struct net_device *netdev, 3549 netdev_features_t features) 3550 { 3551 struct fec_enet_private *fep = netdev_priv(netdev); 3552 netdev_features_t changed = features ^ netdev->features; 3553 3554 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3555 napi_disable(&fep->napi); 3556 netif_tx_lock_bh(netdev); 3557 fec_stop(netdev); 3558 fec_enet_set_netdev_features(netdev, features); 3559 fec_restart(netdev); 3560 netif_tx_wake_all_queues(netdev); 3561 netif_tx_unlock_bh(netdev); 3562 napi_enable(&fep->napi); 3563 } else { 3564 fec_enet_set_netdev_features(netdev, features); 3565 } 3566 3567 return 0; 3568 } 3569 3570 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3571 { 3572 struct vlan_ethhdr *vhdr; 3573 unsigned short vlan_TCI = 0; 3574 3575 if (skb->protocol == htons(ETH_P_ALL)) { 3576 vhdr = (struct vlan_ethhdr *)(skb->data); 3577 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3578 } 3579 3580 return vlan_TCI; 3581 } 3582 3583 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3584 struct net_device *sb_dev) 3585 { 3586 struct fec_enet_private *fep = netdev_priv(ndev); 3587 u16 vlan_tag; 3588 3589 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3590 return netdev_pick_tx(ndev, skb, NULL); 3591 3592 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3593 if (!vlan_tag) 3594 return vlan_tag; 3595 3596 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3597 } 3598 3599 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3600 { 3601 struct fec_enet_private *fep = netdev_priv(dev); 3602 bool is_run = netif_running(dev); 3603 struct bpf_prog *old_prog; 3604 3605 switch (bpf->command) { 3606 case XDP_SETUP_PROG: 3607 if (is_run) { 3608 napi_disable(&fep->napi); 3609 netif_tx_disable(dev); 3610 } 3611 3612 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3613 fec_restart(dev); 3614 3615 if (is_run) { 3616 napi_enable(&fep->napi); 3617 netif_tx_start_all_queues(dev); 3618 } 3619 3620 if (old_prog) 3621 bpf_prog_put(old_prog); 3622 3623 return 0; 3624 3625 case XDP_SETUP_XSK_POOL: 3626 return -EOPNOTSUPP; 3627 3628 default: 3629 return -EOPNOTSUPP; 3630 } 3631 } 3632 3633 static int 3634 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int cpu) 3635 { 3636 int index = cpu; 3637 3638 if (unlikely(index < 0)) 3639 index = 0; 3640 3641 while (index >= fep->num_tx_queues) 3642 index -= fep->num_tx_queues; 3643 3644 return index; 3645 } 3646 3647 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3648 struct fec_enet_priv_tx_q *txq, 3649 struct xdp_frame *frame) 3650 { 3651 unsigned int index, status, estatus; 3652 struct bufdesc *bdp, *last_bdp; 3653 dma_addr_t dma_addr; 3654 int entries_free; 3655 3656 entries_free = fec_enet_get_free_txdesc_num(txq); 3657 if (entries_free < MAX_SKB_FRAGS + 1) { 3658 netdev_err(fep->netdev, "NOT enough BD for SG!\n"); 3659 return NETDEV_TX_OK; 3660 } 3661 3662 /* Fill in a Tx ring entry */ 3663 bdp = txq->bd.cur; 3664 last_bdp = bdp; 3665 status = fec16_to_cpu(bdp->cbd_sc); 3666 status &= ~BD_ENET_TX_STATS; 3667 3668 index = fec_enet_get_bd_index(bdp, &txq->bd); 3669 3670 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3671 frame->len, DMA_TO_DEVICE); 3672 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3673 return FEC_ENET_XDP_CONSUMED; 3674 3675 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3676 if (fep->bufdesc_ex) 3677 estatus = BD_ENET_TX_INT; 3678 3679 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3680 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3681 3682 if (fep->bufdesc_ex) { 3683 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3684 3685 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3686 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3687 3688 ebdp->cbd_bdu = 0; 3689 ebdp->cbd_esc = cpu_to_fec32(estatus); 3690 } 3691 3692 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 3693 txq->tx_skbuff[index] = NULL; 3694 3695 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3696 * it's the last BD of the frame, and to put the CRC on the end. 3697 */ 3698 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3699 bdp->cbd_sc = cpu_to_fec16(status); 3700 3701 /* If this was the last BD in the ring, start at the beginning again. */ 3702 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 3703 3704 txq->bd.cur = bdp; 3705 3706 return 0; 3707 } 3708 3709 static int fec_enet_xdp_xmit(struct net_device *dev, 3710 int num_frames, 3711 struct xdp_frame **frames, 3712 u32 flags) 3713 { 3714 struct fec_enet_private *fep = netdev_priv(dev); 3715 struct fec_enet_priv_tx_q *txq; 3716 int cpu = smp_processor_id(); 3717 struct netdev_queue *nq; 3718 unsigned int queue; 3719 int i; 3720 3721 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3722 txq = fep->tx_queue[queue]; 3723 nq = netdev_get_tx_queue(fep->netdev, queue); 3724 3725 __netif_tx_lock(nq, cpu); 3726 3727 for (i = 0; i < num_frames; i++) 3728 fec_enet_txq_xmit_frame(fep, txq, frames[i]); 3729 3730 /* Make sure the update to bdp and tx_skbuff are performed. */ 3731 wmb(); 3732 3733 /* Trigger transmission start */ 3734 writel(0, txq->bd.reg_desc_active); 3735 3736 __netif_tx_unlock(nq); 3737 3738 return num_frames; 3739 } 3740 3741 static const struct net_device_ops fec_netdev_ops = { 3742 .ndo_open = fec_enet_open, 3743 .ndo_stop = fec_enet_close, 3744 .ndo_start_xmit = fec_enet_start_xmit, 3745 .ndo_select_queue = fec_enet_select_queue, 3746 .ndo_set_rx_mode = set_multicast_list, 3747 .ndo_validate_addr = eth_validate_addr, 3748 .ndo_tx_timeout = fec_timeout, 3749 .ndo_set_mac_address = fec_set_mac_address, 3750 .ndo_eth_ioctl = fec_enet_ioctl, 3751 #ifdef CONFIG_NET_POLL_CONTROLLER 3752 .ndo_poll_controller = fec_poll_controller, 3753 #endif 3754 .ndo_set_features = fec_set_features, 3755 .ndo_bpf = fec_enet_bpf, 3756 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3757 }; 3758 3759 static const unsigned short offset_des_active_rxq[] = { 3760 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3761 }; 3762 3763 static const unsigned short offset_des_active_txq[] = { 3764 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3765 }; 3766 3767 /* 3768 * XXX: We need to clean up on failure exits here. 3769 * 3770 */ 3771 static int fec_enet_init(struct net_device *ndev) 3772 { 3773 struct fec_enet_private *fep = netdev_priv(ndev); 3774 struct bufdesc *cbd_base; 3775 dma_addr_t bd_dma; 3776 int bd_size; 3777 unsigned int i; 3778 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3779 sizeof(struct bufdesc); 3780 unsigned dsize_log2 = __fls(dsize); 3781 int ret; 3782 3783 WARN_ON(dsize != (1 << dsize_log2)); 3784 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3785 fep->rx_align = 0xf; 3786 fep->tx_align = 0xf; 3787 #else 3788 fep->rx_align = 0x3; 3789 fep->tx_align = 0x3; 3790 #endif 3791 3792 /* Check mask of the streaming and coherent API */ 3793 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3794 if (ret < 0) { 3795 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3796 return ret; 3797 } 3798 3799 ret = fec_enet_alloc_queue(ndev); 3800 if (ret) 3801 return ret; 3802 3803 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3804 3805 /* Allocate memory for buffer descriptors. */ 3806 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3807 GFP_KERNEL); 3808 if (!cbd_base) { 3809 ret = -ENOMEM; 3810 goto free_queue_mem; 3811 } 3812 3813 /* Get the Ethernet address */ 3814 ret = fec_get_mac(ndev); 3815 if (ret) 3816 goto free_queue_mem; 3817 3818 /* make sure MAC we just acquired is programmed into the hw */ 3819 fec_set_mac_address(ndev, NULL); 3820 3821 /* Set receive and transmit descriptor base. */ 3822 for (i = 0; i < fep->num_rx_queues; i++) { 3823 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3824 unsigned size = dsize * rxq->bd.ring_size; 3825 3826 rxq->bd.qid = i; 3827 rxq->bd.base = cbd_base; 3828 rxq->bd.cur = cbd_base; 3829 rxq->bd.dma = bd_dma; 3830 rxq->bd.dsize = dsize; 3831 rxq->bd.dsize_log2 = dsize_log2; 3832 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3833 bd_dma += size; 3834 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3835 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3836 } 3837 3838 for (i = 0; i < fep->num_tx_queues; i++) { 3839 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3840 unsigned size = dsize * txq->bd.ring_size; 3841 3842 txq->bd.qid = i; 3843 txq->bd.base = cbd_base; 3844 txq->bd.cur = cbd_base; 3845 txq->bd.dma = bd_dma; 3846 txq->bd.dsize = dsize; 3847 txq->bd.dsize_log2 = dsize_log2; 3848 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3849 bd_dma += size; 3850 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3851 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3852 } 3853 3854 3855 /* The FEC Ethernet specific entries in the device structure */ 3856 ndev->watchdog_timeo = TX_TIMEOUT; 3857 ndev->netdev_ops = &fec_netdev_ops; 3858 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3859 3860 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3861 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 3862 3863 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3864 /* enable hw VLAN support */ 3865 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3866 3867 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3868 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 3869 3870 /* enable hw accelerator */ 3871 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3872 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3873 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3874 } 3875 3876 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3877 fep->tx_align = 0; 3878 fep->rx_align = 0x3f; 3879 } 3880 3881 ndev->hw_features = ndev->features; 3882 3883 fec_restart(ndev); 3884 3885 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3886 fec_enet_clear_ethtool_stats(ndev); 3887 else 3888 fec_enet_update_ethtool_stats(ndev); 3889 3890 return 0; 3891 3892 free_queue_mem: 3893 fec_enet_free_queue(ndev); 3894 return ret; 3895 } 3896 3897 #ifdef CONFIG_OF 3898 static int fec_reset_phy(struct platform_device *pdev) 3899 { 3900 int err, phy_reset; 3901 bool active_high = false; 3902 int msec = 1, phy_post_delay = 0; 3903 struct device_node *np = pdev->dev.of_node; 3904 3905 if (!np) 3906 return 0; 3907 3908 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3909 /* A sane reset duration should not be longer than 1s */ 3910 if (!err && msec > 1000) 3911 msec = 1; 3912 3913 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3914 if (phy_reset == -EPROBE_DEFER) 3915 return phy_reset; 3916 else if (!gpio_is_valid(phy_reset)) 3917 return 0; 3918 3919 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3920 /* valid reset duration should be less than 1s */ 3921 if (!err && phy_post_delay > 1000) 3922 return -EINVAL; 3923 3924 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3925 3926 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3927 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3928 "phy-reset"); 3929 if (err) { 3930 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3931 return err; 3932 } 3933 3934 if (msec > 20) 3935 msleep(msec); 3936 else 3937 usleep_range(msec * 1000, msec * 1000 + 1000); 3938 3939 gpio_set_value_cansleep(phy_reset, !active_high); 3940 3941 if (!phy_post_delay) 3942 return 0; 3943 3944 if (phy_post_delay > 20) 3945 msleep(phy_post_delay); 3946 else 3947 usleep_range(phy_post_delay * 1000, 3948 phy_post_delay * 1000 + 1000); 3949 3950 return 0; 3951 } 3952 #else /* CONFIG_OF */ 3953 static int fec_reset_phy(struct platform_device *pdev) 3954 { 3955 /* 3956 * In case of platform probe, the reset has been done 3957 * by machine code. 3958 */ 3959 return 0; 3960 } 3961 #endif /* CONFIG_OF */ 3962 3963 static void 3964 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3965 { 3966 struct device_node *np = pdev->dev.of_node; 3967 3968 *num_tx = *num_rx = 1; 3969 3970 if (!np || !of_device_is_available(np)) 3971 return; 3972 3973 /* parse the num of tx and rx queues */ 3974 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3975 3976 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3977 3978 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3979 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3980 *num_tx); 3981 *num_tx = 1; 3982 return; 3983 } 3984 3985 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3986 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3987 *num_rx); 3988 *num_rx = 1; 3989 return; 3990 } 3991 3992 } 3993 3994 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3995 { 3996 int irq_cnt = platform_irq_count(pdev); 3997 3998 if (irq_cnt > FEC_IRQ_NUM) 3999 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4000 else if (irq_cnt == 2) 4001 irq_cnt = 1; /* last for pps */ 4002 else if (irq_cnt <= 0) 4003 irq_cnt = 1; /* At least 1 irq is needed */ 4004 return irq_cnt; 4005 } 4006 4007 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4008 { 4009 struct net_device *ndev = platform_get_drvdata(pdev); 4010 struct fec_enet_private *fep = netdev_priv(ndev); 4011 4012 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4013 fep->wake_irq = fep->irq[2]; 4014 else 4015 fep->wake_irq = fep->irq[0]; 4016 } 4017 4018 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4019 struct device_node *np) 4020 { 4021 struct device_node *gpr_np; 4022 u32 out_val[3]; 4023 int ret = 0; 4024 4025 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4026 if (!gpr_np) 4027 return 0; 4028 4029 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4030 ARRAY_SIZE(out_val)); 4031 if (ret) { 4032 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4033 goto out; 4034 } 4035 4036 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4037 if (IS_ERR(fep->stop_gpr.gpr)) { 4038 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4039 ret = PTR_ERR(fep->stop_gpr.gpr); 4040 fep->stop_gpr.gpr = NULL; 4041 goto out; 4042 } 4043 4044 fep->stop_gpr.reg = out_val[1]; 4045 fep->stop_gpr.bit = out_val[2]; 4046 4047 out: 4048 of_node_put(gpr_np); 4049 4050 return ret; 4051 } 4052 4053 static int 4054 fec_probe(struct platform_device *pdev) 4055 { 4056 struct fec_enet_private *fep; 4057 struct fec_platform_data *pdata; 4058 phy_interface_t interface; 4059 struct net_device *ndev; 4060 int i, irq, ret = 0; 4061 const struct of_device_id *of_id; 4062 static int dev_id; 4063 struct device_node *np = pdev->dev.of_node, *phy_node; 4064 int num_tx_qs; 4065 int num_rx_qs; 4066 char irq_name[8]; 4067 int irq_cnt; 4068 struct fec_devinfo *dev_info; 4069 4070 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4071 4072 /* Init network device */ 4073 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4074 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4075 if (!ndev) 4076 return -ENOMEM; 4077 4078 SET_NETDEV_DEV(ndev, &pdev->dev); 4079 4080 /* setup board info structure */ 4081 fep = netdev_priv(ndev); 4082 4083 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4084 if (of_id) 4085 pdev->id_entry = of_id->data; 4086 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4087 if (dev_info) 4088 fep->quirks = dev_info->quirks; 4089 4090 fep->netdev = ndev; 4091 fep->num_rx_queues = num_rx_qs; 4092 fep->num_tx_queues = num_tx_qs; 4093 4094 #if !defined(CONFIG_M5272) 4095 /* default enable pause frame auto negotiation */ 4096 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4097 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4098 #endif 4099 4100 /* Select default pin state */ 4101 pinctrl_pm_select_default_state(&pdev->dev); 4102 4103 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4104 if (IS_ERR(fep->hwp)) { 4105 ret = PTR_ERR(fep->hwp); 4106 goto failed_ioremap; 4107 } 4108 4109 fep->pdev = pdev; 4110 fep->dev_id = dev_id++; 4111 4112 platform_set_drvdata(pdev, ndev); 4113 4114 if ((of_machine_is_compatible("fsl,imx6q") || 4115 of_machine_is_compatible("fsl,imx6dl")) && 4116 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4117 fep->quirks |= FEC_QUIRK_ERR006687; 4118 4119 ret = fec_enet_ipc_handle_init(fep); 4120 if (ret) 4121 goto failed_ipc_init; 4122 4123 if (of_get_property(np, "fsl,magic-packet", NULL)) 4124 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4125 4126 ret = fec_enet_init_stop_mode(fep, np); 4127 if (ret) 4128 goto failed_stop_mode; 4129 4130 phy_node = of_parse_phandle(np, "phy-handle", 0); 4131 if (!phy_node && of_phy_is_fixed_link(np)) { 4132 ret = of_phy_register_fixed_link(np); 4133 if (ret < 0) { 4134 dev_err(&pdev->dev, 4135 "broken fixed-link specification\n"); 4136 goto failed_phy; 4137 } 4138 phy_node = of_node_get(np); 4139 } 4140 fep->phy_node = phy_node; 4141 4142 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4143 if (ret) { 4144 pdata = dev_get_platdata(&pdev->dev); 4145 if (pdata) 4146 fep->phy_interface = pdata->phy; 4147 else 4148 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4149 } else { 4150 fep->phy_interface = interface; 4151 } 4152 4153 ret = fec_enet_parse_rgmii_delay(fep, np); 4154 if (ret) 4155 goto failed_rgmii_delay; 4156 4157 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4158 if (IS_ERR(fep->clk_ipg)) { 4159 ret = PTR_ERR(fep->clk_ipg); 4160 goto failed_clk; 4161 } 4162 4163 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4164 if (IS_ERR(fep->clk_ahb)) { 4165 ret = PTR_ERR(fep->clk_ahb); 4166 goto failed_clk; 4167 } 4168 4169 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4170 4171 /* enet_out is optional, depends on board */ 4172 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4173 if (IS_ERR(fep->clk_enet_out)) { 4174 ret = PTR_ERR(fep->clk_enet_out); 4175 goto failed_clk; 4176 } 4177 4178 fep->ptp_clk_on = false; 4179 mutex_init(&fep->ptp_clk_mutex); 4180 4181 /* clk_ref is optional, depends on board */ 4182 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4183 if (IS_ERR(fep->clk_ref)) { 4184 ret = PTR_ERR(fep->clk_ref); 4185 goto failed_clk; 4186 } 4187 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4188 4189 /* clk_2x_txclk is optional, depends on board */ 4190 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4191 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4192 if (IS_ERR(fep->clk_2x_txclk)) 4193 fep->clk_2x_txclk = NULL; 4194 } 4195 4196 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4197 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4198 if (IS_ERR(fep->clk_ptp)) { 4199 fep->clk_ptp = NULL; 4200 fep->bufdesc_ex = false; 4201 } 4202 4203 ret = fec_enet_clk_enable(ndev, true); 4204 if (ret) 4205 goto failed_clk; 4206 4207 ret = clk_prepare_enable(fep->clk_ipg); 4208 if (ret) 4209 goto failed_clk_ipg; 4210 ret = clk_prepare_enable(fep->clk_ahb); 4211 if (ret) 4212 goto failed_clk_ahb; 4213 4214 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4215 if (!IS_ERR(fep->reg_phy)) { 4216 ret = regulator_enable(fep->reg_phy); 4217 if (ret) { 4218 dev_err(&pdev->dev, 4219 "Failed to enable phy regulator: %d\n", ret); 4220 goto failed_regulator; 4221 } 4222 } else { 4223 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4224 ret = -EPROBE_DEFER; 4225 goto failed_regulator; 4226 } 4227 fep->reg_phy = NULL; 4228 } 4229 4230 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4231 pm_runtime_use_autosuspend(&pdev->dev); 4232 pm_runtime_get_noresume(&pdev->dev); 4233 pm_runtime_set_active(&pdev->dev); 4234 pm_runtime_enable(&pdev->dev); 4235 4236 ret = fec_reset_phy(pdev); 4237 if (ret) 4238 goto failed_reset; 4239 4240 irq_cnt = fec_enet_get_irq_cnt(pdev); 4241 if (fep->bufdesc_ex) 4242 fec_ptp_init(pdev, irq_cnt); 4243 4244 ret = fec_enet_init(ndev); 4245 if (ret) 4246 goto failed_init; 4247 4248 for (i = 0; i < irq_cnt; i++) { 4249 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4250 irq = platform_get_irq_byname_optional(pdev, irq_name); 4251 if (irq < 0) 4252 irq = platform_get_irq(pdev, i); 4253 if (irq < 0) { 4254 ret = irq; 4255 goto failed_irq; 4256 } 4257 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4258 0, pdev->name, ndev); 4259 if (ret) 4260 goto failed_irq; 4261 4262 fep->irq[i] = irq; 4263 } 4264 4265 /* Decide which interrupt line is wakeup capable */ 4266 fec_enet_get_wakeup_irq(pdev); 4267 4268 ret = fec_enet_mii_init(pdev); 4269 if (ret) 4270 goto failed_mii_init; 4271 4272 /* Carrier starts down, phylib will bring it up */ 4273 netif_carrier_off(ndev); 4274 fec_enet_clk_enable(ndev, false); 4275 pinctrl_pm_select_sleep_state(&pdev->dev); 4276 4277 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4278 4279 ret = register_netdev(ndev); 4280 if (ret) 4281 goto failed_register; 4282 4283 device_init_wakeup(&ndev->dev, fep->wol_flag & 4284 FEC_WOL_HAS_MAGIC_PACKET); 4285 4286 if (fep->bufdesc_ex && fep->ptp_clock) 4287 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4288 4289 fep->rx_copybreak = COPYBREAK_DEFAULT; 4290 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4291 4292 pm_runtime_mark_last_busy(&pdev->dev); 4293 pm_runtime_put_autosuspend(&pdev->dev); 4294 4295 return 0; 4296 4297 failed_register: 4298 fec_enet_mii_remove(fep); 4299 failed_mii_init: 4300 failed_irq: 4301 failed_init: 4302 fec_ptp_stop(pdev); 4303 failed_reset: 4304 pm_runtime_put_noidle(&pdev->dev); 4305 pm_runtime_disable(&pdev->dev); 4306 if (fep->reg_phy) 4307 regulator_disable(fep->reg_phy); 4308 failed_regulator: 4309 clk_disable_unprepare(fep->clk_ahb); 4310 failed_clk_ahb: 4311 clk_disable_unprepare(fep->clk_ipg); 4312 failed_clk_ipg: 4313 fec_enet_clk_enable(ndev, false); 4314 failed_clk: 4315 failed_rgmii_delay: 4316 if (of_phy_is_fixed_link(np)) 4317 of_phy_deregister_fixed_link(np); 4318 of_node_put(phy_node); 4319 failed_stop_mode: 4320 failed_ipc_init: 4321 failed_phy: 4322 dev_id--; 4323 failed_ioremap: 4324 free_netdev(ndev); 4325 4326 return ret; 4327 } 4328 4329 static int 4330 fec_drv_remove(struct platform_device *pdev) 4331 { 4332 struct net_device *ndev = platform_get_drvdata(pdev); 4333 struct fec_enet_private *fep = netdev_priv(ndev); 4334 struct device_node *np = pdev->dev.of_node; 4335 int ret; 4336 4337 ret = pm_runtime_resume_and_get(&pdev->dev); 4338 if (ret < 0) 4339 return ret; 4340 4341 cancel_work_sync(&fep->tx_timeout_work); 4342 fec_ptp_stop(pdev); 4343 unregister_netdev(ndev); 4344 fec_enet_mii_remove(fep); 4345 if (fep->reg_phy) 4346 regulator_disable(fep->reg_phy); 4347 4348 if (of_phy_is_fixed_link(np)) 4349 of_phy_deregister_fixed_link(np); 4350 of_node_put(fep->phy_node); 4351 4352 clk_disable_unprepare(fep->clk_ahb); 4353 clk_disable_unprepare(fep->clk_ipg); 4354 pm_runtime_put_noidle(&pdev->dev); 4355 pm_runtime_disable(&pdev->dev); 4356 4357 free_netdev(ndev); 4358 return 0; 4359 } 4360 4361 static int __maybe_unused fec_suspend(struct device *dev) 4362 { 4363 struct net_device *ndev = dev_get_drvdata(dev); 4364 struct fec_enet_private *fep = netdev_priv(ndev); 4365 int ret; 4366 4367 rtnl_lock(); 4368 if (netif_running(ndev)) { 4369 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4370 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4371 phy_stop(ndev->phydev); 4372 napi_disable(&fep->napi); 4373 netif_tx_lock_bh(ndev); 4374 netif_device_detach(ndev); 4375 netif_tx_unlock_bh(ndev); 4376 fec_stop(ndev); 4377 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4378 fec_irqs_disable(ndev); 4379 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4380 } else { 4381 fec_irqs_disable_except_wakeup(ndev); 4382 if (fep->wake_irq > 0) { 4383 disable_irq(fep->wake_irq); 4384 enable_irq_wake(fep->wake_irq); 4385 } 4386 fec_enet_stop_mode(fep, true); 4387 } 4388 /* It's safe to disable clocks since interrupts are masked */ 4389 fec_enet_clk_enable(ndev, false); 4390 4391 fep->rpm_active = !pm_runtime_status_suspended(dev); 4392 if (fep->rpm_active) { 4393 ret = pm_runtime_force_suspend(dev); 4394 if (ret < 0) { 4395 rtnl_unlock(); 4396 return ret; 4397 } 4398 } 4399 } 4400 rtnl_unlock(); 4401 4402 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4403 regulator_disable(fep->reg_phy); 4404 4405 /* SOC supply clock to phy, when clock is disabled, phy link down 4406 * SOC control phy regulator, when regulator is disabled, phy link down 4407 */ 4408 if (fep->clk_enet_out || fep->reg_phy) 4409 fep->link = 0; 4410 4411 return 0; 4412 } 4413 4414 static int __maybe_unused fec_resume(struct device *dev) 4415 { 4416 struct net_device *ndev = dev_get_drvdata(dev); 4417 struct fec_enet_private *fep = netdev_priv(ndev); 4418 int ret; 4419 int val; 4420 4421 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4422 ret = regulator_enable(fep->reg_phy); 4423 if (ret) 4424 return ret; 4425 } 4426 4427 rtnl_lock(); 4428 if (netif_running(ndev)) { 4429 if (fep->rpm_active) 4430 pm_runtime_force_resume(dev); 4431 4432 ret = fec_enet_clk_enable(ndev, true); 4433 if (ret) { 4434 rtnl_unlock(); 4435 goto failed_clk; 4436 } 4437 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4438 fec_enet_stop_mode(fep, false); 4439 if (fep->wake_irq) { 4440 disable_irq_wake(fep->wake_irq); 4441 enable_irq(fep->wake_irq); 4442 } 4443 4444 val = readl(fep->hwp + FEC_ECNTRL); 4445 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4446 writel(val, fep->hwp + FEC_ECNTRL); 4447 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4448 } else { 4449 pinctrl_pm_select_default_state(&fep->pdev->dev); 4450 } 4451 fec_restart(ndev); 4452 netif_tx_lock_bh(ndev); 4453 netif_device_attach(ndev); 4454 netif_tx_unlock_bh(ndev); 4455 napi_enable(&fep->napi); 4456 phy_init_hw(ndev->phydev); 4457 phy_start(ndev->phydev); 4458 } 4459 rtnl_unlock(); 4460 4461 return 0; 4462 4463 failed_clk: 4464 if (fep->reg_phy) 4465 regulator_disable(fep->reg_phy); 4466 return ret; 4467 } 4468 4469 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4470 { 4471 struct net_device *ndev = dev_get_drvdata(dev); 4472 struct fec_enet_private *fep = netdev_priv(ndev); 4473 4474 clk_disable_unprepare(fep->clk_ahb); 4475 clk_disable_unprepare(fep->clk_ipg); 4476 4477 return 0; 4478 } 4479 4480 static int __maybe_unused fec_runtime_resume(struct device *dev) 4481 { 4482 struct net_device *ndev = dev_get_drvdata(dev); 4483 struct fec_enet_private *fep = netdev_priv(ndev); 4484 int ret; 4485 4486 ret = clk_prepare_enable(fep->clk_ahb); 4487 if (ret) 4488 return ret; 4489 ret = clk_prepare_enable(fep->clk_ipg); 4490 if (ret) 4491 goto failed_clk_ipg; 4492 4493 return 0; 4494 4495 failed_clk_ipg: 4496 clk_disable_unprepare(fep->clk_ahb); 4497 return ret; 4498 } 4499 4500 static const struct dev_pm_ops fec_pm_ops = { 4501 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4502 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4503 }; 4504 4505 static struct platform_driver fec_driver = { 4506 .driver = { 4507 .name = DRIVER_NAME, 4508 .pm = &fec_pm_ops, 4509 .of_match_table = fec_dt_ids, 4510 .suppress_bind_attrs = true, 4511 }, 4512 .id_table = fec_devtype, 4513 .probe = fec_probe, 4514 .remove = fec_drv_remove, 4515 }; 4516 4517 module_platform_driver(fec_driver); 4518 4519 MODULE_LICENSE("GPL"); 4520