1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 
70 #include <asm/cacheflush.h>
71 
72 #include "fec.h"
73 
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76 
77 #define DRIVER_NAME	"fec"
78 
79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
80 
81 /* Pause frame feild and FIFO threshold */
82 #define FEC_ENET_FCE	(1 << 5)
83 #define FEC_ENET_RSEM_V	0x84
84 #define FEC_ENET_RSFL_V	16
85 #define FEC_ENET_RAEM_V	0x8
86 #define FEC_ENET_RAFL_V	0x8
87 #define FEC_ENET_OPD_V	0xFFF0
88 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
89 
90 struct fec_devinfo {
91 	u32 quirks;
92 };
93 
94 static const struct fec_devinfo fec_imx25_info = {
95 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
96 		  FEC_QUIRK_HAS_FRREG,
97 };
98 
99 static const struct fec_devinfo fec_imx27_info = {
100 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
101 };
102 
103 static const struct fec_devinfo fec_imx28_info = {
104 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
105 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
107 		  FEC_QUIRK_NO_HARD_RESET,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
115 		  FEC_QUIRK_HAS_PMQOS,
116 };
117 
118 static const struct fec_devinfo fec_mvf600_info = {
119 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
120 };
121 
122 static const struct fec_devinfo fec_imx6x_info = {
123 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
126 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
128 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
129 };
130 
131 static const struct fec_devinfo fec_imx6ul_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
135 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
136 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
137 };
138 
139 static const struct fec_devinfo fec_imx8mq_info = {
140 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
141 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
142 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
143 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
144 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
145 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
146 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
147 };
148 
149 static const struct fec_devinfo fec_imx8qm_info = {
150 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
151 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
152 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
153 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
154 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
155 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
156 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT,
157 };
158 
159 static const struct fec_devinfo fec_s32v234_info = {
160 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
161 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
162 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
163 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
164 };
165 
166 static struct platform_device_id fec_devtype[] = {
167 	{
168 		/* keep it for coldfire */
169 		.name = DRIVER_NAME,
170 		.driver_data = 0,
171 	}, {
172 		.name = "imx25-fec",
173 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
174 	}, {
175 		.name = "imx27-fec",
176 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
177 	}, {
178 		.name = "imx28-fec",
179 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
180 	}, {
181 		.name = "imx6q-fec",
182 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
183 	}, {
184 		.name = "mvf600-fec",
185 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
186 	}, {
187 		.name = "imx6sx-fec",
188 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
189 	}, {
190 		.name = "imx6ul-fec",
191 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
192 	}, {
193 		.name = "imx8mq-fec",
194 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
195 	}, {
196 		.name = "imx8qm-fec",
197 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
198 	}, {
199 		.name = "s32v234-fec",
200 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
201 	}, {
202 		/* sentinel */
203 	}
204 };
205 MODULE_DEVICE_TABLE(platform, fec_devtype);
206 
207 enum imx_fec_type {
208 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
209 	IMX27_FEC,	/* runs on i.mx27/35/51 */
210 	IMX28_FEC,
211 	IMX6Q_FEC,
212 	MVF600_FEC,
213 	IMX6SX_FEC,
214 	IMX6UL_FEC,
215 	IMX8MQ_FEC,
216 	IMX8QM_FEC,
217 	S32V234_FEC,
218 };
219 
220 static const struct of_device_id fec_dt_ids[] = {
221 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
222 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
223 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
224 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
225 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
226 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
227 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
228 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
229 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
230 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
231 	{ /* sentinel */ }
232 };
233 MODULE_DEVICE_TABLE(of, fec_dt_ids);
234 
235 static unsigned char macaddr[ETH_ALEN];
236 module_param_array(macaddr, byte, NULL, 0);
237 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
238 
239 #if defined(CONFIG_M5272)
240 /*
241  * Some hardware gets it MAC address out of local flash memory.
242  * if this is non-zero then assume it is the address to get MAC from.
243  */
244 #if defined(CONFIG_NETtel)
245 #define	FEC_FLASHMAC	0xf0006006
246 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
247 #define	FEC_FLASHMAC	0xf0006000
248 #elif defined(CONFIG_CANCam)
249 #define	FEC_FLASHMAC	0xf0020000
250 #elif defined (CONFIG_M5272C3)
251 #define	FEC_FLASHMAC	(0xffe04000 + 4)
252 #elif defined(CONFIG_MOD5272)
253 #define FEC_FLASHMAC	0xffc0406b
254 #else
255 #define	FEC_FLASHMAC	0
256 #endif
257 #endif /* CONFIG_M5272 */
258 
259 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
260  *
261  * 2048 byte skbufs are allocated. However, alignment requirements
262  * varies between FEC variants. Worst case is 64, so round down by 64.
263  */
264 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
265 #define PKT_MINBUF_SIZE		64
266 
267 /* FEC receive acceleration */
268 #define FEC_RACC_IPDIS		(1 << 1)
269 #define FEC_RACC_PRODIS		(1 << 2)
270 #define FEC_RACC_SHIFT16	BIT(7)
271 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
272 
273 /* MIB Control Register */
274 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
275 
276 /*
277  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
278  * size bits. Other FEC hardware does not, so we need to take that into
279  * account when setting it.
280  */
281 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
282     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
283     defined(CONFIG_ARM64)
284 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
285 #else
286 #define	OPT_FRAME_SIZE	0
287 #endif
288 
289 /* FEC MII MMFR bits definition */
290 #define FEC_MMFR_ST		(1 << 30)
291 #define FEC_MMFR_ST_C45		(0)
292 #define FEC_MMFR_OP_READ	(2 << 28)
293 #define FEC_MMFR_OP_READ_C45	(3 << 28)
294 #define FEC_MMFR_OP_WRITE	(1 << 28)
295 #define FEC_MMFR_OP_ADDR_WRITE	(0)
296 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
297 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
298 #define FEC_MMFR_TA		(2 << 16)
299 #define FEC_MMFR_DATA(v)	(v & 0xffff)
300 /* FEC ECR bits definition */
301 #define FEC_ECR_MAGICEN		(1 << 2)
302 #define FEC_ECR_SLEEP		(1 << 3)
303 
304 #define FEC_MII_TIMEOUT		30000 /* us */
305 
306 /* Transmitter timeout */
307 #define TX_TIMEOUT (2 * HZ)
308 
309 #define FEC_PAUSE_FLAG_AUTONEG	0x1
310 #define FEC_PAUSE_FLAG_ENABLE	0x2
311 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
312 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
313 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
314 
315 #define COPYBREAK_DEFAULT	256
316 
317 /* Max number of allowed TCP segments for software TSO */
318 #define FEC_MAX_TSO_SEGS	100
319 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
320 
321 #define IS_TSO_HEADER(txq, addr) \
322 	((addr >= txq->tso_hdrs_dma) && \
323 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
324 
325 static int mii_cnt;
326 
327 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
328 					     struct bufdesc_prop *bd)
329 {
330 	return (bdp >= bd->last) ? bd->base
331 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
332 }
333 
334 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
335 					     struct bufdesc_prop *bd)
336 {
337 	return (bdp <= bd->base) ? bd->last
338 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
339 }
340 
341 static int fec_enet_get_bd_index(struct bufdesc *bdp,
342 				 struct bufdesc_prop *bd)
343 {
344 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
345 }
346 
347 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
348 {
349 	int entries;
350 
351 	entries = (((const char *)txq->dirty_tx -
352 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
353 
354 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
355 }
356 
357 static void swap_buffer(void *bufaddr, int len)
358 {
359 	int i;
360 	unsigned int *buf = bufaddr;
361 
362 	for (i = 0; i < len; i += 4, buf++)
363 		swab32s(buf);
364 }
365 
366 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
367 {
368 	int i;
369 	unsigned int *src = src_buf;
370 	unsigned int *dst = dst_buf;
371 
372 	for (i = 0; i < len; i += 4, src++, dst++)
373 		*dst = swab32p(src);
374 }
375 
376 static void fec_dump(struct net_device *ndev)
377 {
378 	struct fec_enet_private *fep = netdev_priv(ndev);
379 	struct bufdesc *bdp;
380 	struct fec_enet_priv_tx_q *txq;
381 	int index = 0;
382 
383 	netdev_info(ndev, "TX ring dump\n");
384 	pr_info("Nr     SC     addr       len  SKB\n");
385 
386 	txq = fep->tx_queue[0];
387 	bdp = txq->bd.base;
388 
389 	do {
390 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
391 			index,
392 			bdp == txq->bd.cur ? 'S' : ' ',
393 			bdp == txq->dirty_tx ? 'H' : ' ',
394 			fec16_to_cpu(bdp->cbd_sc),
395 			fec32_to_cpu(bdp->cbd_bufaddr),
396 			fec16_to_cpu(bdp->cbd_datlen),
397 			txq->tx_skbuff[index]);
398 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
399 		index++;
400 	} while (bdp != txq->bd.base);
401 }
402 
403 static inline bool is_ipv4_pkt(struct sk_buff *skb)
404 {
405 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
406 }
407 
408 static int
409 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
410 {
411 	/* Only run for packets requiring a checksum. */
412 	if (skb->ip_summed != CHECKSUM_PARTIAL)
413 		return 0;
414 
415 	if (unlikely(skb_cow_head(skb, 0)))
416 		return -1;
417 
418 	if (is_ipv4_pkt(skb))
419 		ip_hdr(skb)->check = 0;
420 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
421 
422 	return 0;
423 }
424 
425 static struct bufdesc *
426 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
427 			     struct sk_buff *skb,
428 			     struct net_device *ndev)
429 {
430 	struct fec_enet_private *fep = netdev_priv(ndev);
431 	struct bufdesc *bdp = txq->bd.cur;
432 	struct bufdesc_ex *ebdp;
433 	int nr_frags = skb_shinfo(skb)->nr_frags;
434 	int frag, frag_len;
435 	unsigned short status;
436 	unsigned int estatus = 0;
437 	skb_frag_t *this_frag;
438 	unsigned int index;
439 	void *bufaddr;
440 	dma_addr_t addr;
441 	int i;
442 
443 	for (frag = 0; frag < nr_frags; frag++) {
444 		this_frag = &skb_shinfo(skb)->frags[frag];
445 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
446 		ebdp = (struct bufdesc_ex *)bdp;
447 
448 		status = fec16_to_cpu(bdp->cbd_sc);
449 		status &= ~BD_ENET_TX_STATS;
450 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
451 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
452 
453 		/* Handle the last BD specially */
454 		if (frag == nr_frags - 1) {
455 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
456 			if (fep->bufdesc_ex) {
457 				estatus |= BD_ENET_TX_INT;
458 				if (unlikely(skb_shinfo(skb)->tx_flags &
459 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
460 					estatus |= BD_ENET_TX_TS;
461 			}
462 		}
463 
464 		if (fep->bufdesc_ex) {
465 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
466 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
467 			if (skb->ip_summed == CHECKSUM_PARTIAL)
468 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
469 
470 			ebdp->cbd_bdu = 0;
471 			ebdp->cbd_esc = cpu_to_fec32(estatus);
472 		}
473 
474 		bufaddr = skb_frag_address(this_frag);
475 
476 		index = fec_enet_get_bd_index(bdp, &txq->bd);
477 		if (((unsigned long) bufaddr) & fep->tx_align ||
478 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
479 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
480 			bufaddr = txq->tx_bounce[index];
481 
482 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
483 				swap_buffer(bufaddr, frag_len);
484 		}
485 
486 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
487 				      DMA_TO_DEVICE);
488 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
489 			if (net_ratelimit())
490 				netdev_err(ndev, "Tx DMA memory map failed\n");
491 			goto dma_mapping_error;
492 		}
493 
494 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
495 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
496 		/* Make sure the updates to rest of the descriptor are
497 		 * performed before transferring ownership.
498 		 */
499 		wmb();
500 		bdp->cbd_sc = cpu_to_fec16(status);
501 	}
502 
503 	return bdp;
504 dma_mapping_error:
505 	bdp = txq->bd.cur;
506 	for (i = 0; i < frag; i++) {
507 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
508 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
509 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
510 	}
511 	return ERR_PTR(-ENOMEM);
512 }
513 
514 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
515 				   struct sk_buff *skb, struct net_device *ndev)
516 {
517 	struct fec_enet_private *fep = netdev_priv(ndev);
518 	int nr_frags = skb_shinfo(skb)->nr_frags;
519 	struct bufdesc *bdp, *last_bdp;
520 	void *bufaddr;
521 	dma_addr_t addr;
522 	unsigned short status;
523 	unsigned short buflen;
524 	unsigned int estatus = 0;
525 	unsigned int index;
526 	int entries_free;
527 
528 	entries_free = fec_enet_get_free_txdesc_num(txq);
529 	if (entries_free < MAX_SKB_FRAGS + 1) {
530 		dev_kfree_skb_any(skb);
531 		if (net_ratelimit())
532 			netdev_err(ndev, "NOT enough BD for SG!\n");
533 		return NETDEV_TX_OK;
534 	}
535 
536 	/* Protocol checksum off-load for TCP and UDP. */
537 	if (fec_enet_clear_csum(skb, ndev)) {
538 		dev_kfree_skb_any(skb);
539 		return NETDEV_TX_OK;
540 	}
541 
542 	/* Fill in a Tx ring entry */
543 	bdp = txq->bd.cur;
544 	last_bdp = bdp;
545 	status = fec16_to_cpu(bdp->cbd_sc);
546 	status &= ~BD_ENET_TX_STATS;
547 
548 	/* Set buffer length and buffer pointer */
549 	bufaddr = skb->data;
550 	buflen = skb_headlen(skb);
551 
552 	index = fec_enet_get_bd_index(bdp, &txq->bd);
553 	if (((unsigned long) bufaddr) & fep->tx_align ||
554 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
555 		memcpy(txq->tx_bounce[index], skb->data, buflen);
556 		bufaddr = txq->tx_bounce[index];
557 
558 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
559 			swap_buffer(bufaddr, buflen);
560 	}
561 
562 	/* Push the data cache so the CPM does not get stale memory data. */
563 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
564 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
565 		dev_kfree_skb_any(skb);
566 		if (net_ratelimit())
567 			netdev_err(ndev, "Tx DMA memory map failed\n");
568 		return NETDEV_TX_OK;
569 	}
570 
571 	if (nr_frags) {
572 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
573 		if (IS_ERR(last_bdp)) {
574 			dma_unmap_single(&fep->pdev->dev, addr,
575 					 buflen, DMA_TO_DEVICE);
576 			dev_kfree_skb_any(skb);
577 			return NETDEV_TX_OK;
578 		}
579 	} else {
580 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
581 		if (fep->bufdesc_ex) {
582 			estatus = BD_ENET_TX_INT;
583 			if (unlikely(skb_shinfo(skb)->tx_flags &
584 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
585 				estatus |= BD_ENET_TX_TS;
586 		}
587 	}
588 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
589 	bdp->cbd_datlen = cpu_to_fec16(buflen);
590 
591 	if (fep->bufdesc_ex) {
592 
593 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
594 
595 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
596 			fep->hwts_tx_en))
597 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
598 
599 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
600 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
601 
602 		if (skb->ip_summed == CHECKSUM_PARTIAL)
603 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
604 
605 		ebdp->cbd_bdu = 0;
606 		ebdp->cbd_esc = cpu_to_fec32(estatus);
607 	}
608 
609 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
610 	/* Save skb pointer */
611 	txq->tx_skbuff[index] = skb;
612 
613 	/* Make sure the updates to rest of the descriptor are performed before
614 	 * transferring ownership.
615 	 */
616 	wmb();
617 
618 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
619 	 * it's the last BD of the frame, and to put the CRC on the end.
620 	 */
621 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
622 	bdp->cbd_sc = cpu_to_fec16(status);
623 
624 	/* If this was the last BD in the ring, start at the beginning again. */
625 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
626 
627 	skb_tx_timestamp(skb);
628 
629 	/* Make sure the update to bdp and tx_skbuff are performed before
630 	 * txq->bd.cur.
631 	 */
632 	wmb();
633 	txq->bd.cur = bdp;
634 
635 	/* Trigger transmission start */
636 	writel(0, txq->bd.reg_desc_active);
637 
638 	return 0;
639 }
640 
641 static int
642 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
643 			  struct net_device *ndev,
644 			  struct bufdesc *bdp, int index, char *data,
645 			  int size, bool last_tcp, bool is_last)
646 {
647 	struct fec_enet_private *fep = netdev_priv(ndev);
648 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
649 	unsigned short status;
650 	unsigned int estatus = 0;
651 	dma_addr_t addr;
652 
653 	status = fec16_to_cpu(bdp->cbd_sc);
654 	status &= ~BD_ENET_TX_STATS;
655 
656 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
657 
658 	if (((unsigned long) data) & fep->tx_align ||
659 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
660 		memcpy(txq->tx_bounce[index], data, size);
661 		data = txq->tx_bounce[index];
662 
663 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
664 			swap_buffer(data, size);
665 	}
666 
667 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
668 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
669 		dev_kfree_skb_any(skb);
670 		if (net_ratelimit())
671 			netdev_err(ndev, "Tx DMA memory map failed\n");
672 		return NETDEV_TX_BUSY;
673 	}
674 
675 	bdp->cbd_datlen = cpu_to_fec16(size);
676 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
677 
678 	if (fep->bufdesc_ex) {
679 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
680 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
681 		if (skb->ip_summed == CHECKSUM_PARTIAL)
682 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
683 		ebdp->cbd_bdu = 0;
684 		ebdp->cbd_esc = cpu_to_fec32(estatus);
685 	}
686 
687 	/* Handle the last BD specially */
688 	if (last_tcp)
689 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
690 	if (is_last) {
691 		status |= BD_ENET_TX_INTR;
692 		if (fep->bufdesc_ex)
693 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
694 	}
695 
696 	bdp->cbd_sc = cpu_to_fec16(status);
697 
698 	return 0;
699 }
700 
701 static int
702 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
703 			 struct sk_buff *skb, struct net_device *ndev,
704 			 struct bufdesc *bdp, int index)
705 {
706 	struct fec_enet_private *fep = netdev_priv(ndev);
707 	int hdr_len = skb_tcp_all_headers(skb);
708 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
709 	void *bufaddr;
710 	unsigned long dmabuf;
711 	unsigned short status;
712 	unsigned int estatus = 0;
713 
714 	status = fec16_to_cpu(bdp->cbd_sc);
715 	status &= ~BD_ENET_TX_STATS;
716 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
717 
718 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
719 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
720 	if (((unsigned long)bufaddr) & fep->tx_align ||
721 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
723 		bufaddr = txq->tx_bounce[index];
724 
725 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 			swap_buffer(bufaddr, hdr_len);
727 
728 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
729 					hdr_len, DMA_TO_DEVICE);
730 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
731 			dev_kfree_skb_any(skb);
732 			if (net_ratelimit())
733 				netdev_err(ndev, "Tx DMA memory map failed\n");
734 			return NETDEV_TX_BUSY;
735 		}
736 	}
737 
738 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
739 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
740 
741 	if (fep->bufdesc_ex) {
742 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
743 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
744 		if (skb->ip_summed == CHECKSUM_PARTIAL)
745 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
746 		ebdp->cbd_bdu = 0;
747 		ebdp->cbd_esc = cpu_to_fec32(estatus);
748 	}
749 
750 	bdp->cbd_sc = cpu_to_fec16(status);
751 
752 	return 0;
753 }
754 
755 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
756 				   struct sk_buff *skb,
757 				   struct net_device *ndev)
758 {
759 	struct fec_enet_private *fep = netdev_priv(ndev);
760 	int hdr_len, total_len, data_left;
761 	struct bufdesc *bdp = txq->bd.cur;
762 	struct tso_t tso;
763 	unsigned int index = 0;
764 	int ret;
765 
766 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
767 		dev_kfree_skb_any(skb);
768 		if (net_ratelimit())
769 			netdev_err(ndev, "NOT enough BD for TSO!\n");
770 		return NETDEV_TX_OK;
771 	}
772 
773 	/* Protocol checksum off-load for TCP and UDP. */
774 	if (fec_enet_clear_csum(skb, ndev)) {
775 		dev_kfree_skb_any(skb);
776 		return NETDEV_TX_OK;
777 	}
778 
779 	/* Initialize the TSO handler, and prepare the first payload */
780 	hdr_len = tso_start(skb, &tso);
781 
782 	total_len = skb->len - hdr_len;
783 	while (total_len > 0) {
784 		char *hdr;
785 
786 		index = fec_enet_get_bd_index(bdp, &txq->bd);
787 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
788 		total_len -= data_left;
789 
790 		/* prepare packet headers: MAC + IP + TCP */
791 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
792 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
793 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
794 		if (ret)
795 			goto err_release;
796 
797 		while (data_left > 0) {
798 			int size;
799 
800 			size = min_t(int, tso.size, data_left);
801 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
802 			index = fec_enet_get_bd_index(bdp, &txq->bd);
803 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
804 							bdp, index,
805 							tso.data, size,
806 							size == data_left,
807 							total_len == 0);
808 			if (ret)
809 				goto err_release;
810 
811 			data_left -= size;
812 			tso_build_data(skb, &tso, size);
813 		}
814 
815 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
816 	}
817 
818 	/* Save skb pointer */
819 	txq->tx_skbuff[index] = skb;
820 
821 	skb_tx_timestamp(skb);
822 	txq->bd.cur = bdp;
823 
824 	/* Trigger transmission start */
825 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
826 	    !readl(txq->bd.reg_desc_active) ||
827 	    !readl(txq->bd.reg_desc_active) ||
828 	    !readl(txq->bd.reg_desc_active) ||
829 	    !readl(txq->bd.reg_desc_active))
830 		writel(0, txq->bd.reg_desc_active);
831 
832 	return 0;
833 
834 err_release:
835 	/* TODO: Release all used data descriptors for TSO */
836 	return ret;
837 }
838 
839 static netdev_tx_t
840 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
841 {
842 	struct fec_enet_private *fep = netdev_priv(ndev);
843 	int entries_free;
844 	unsigned short queue;
845 	struct fec_enet_priv_tx_q *txq;
846 	struct netdev_queue *nq;
847 	int ret;
848 
849 	queue = skb_get_queue_mapping(skb);
850 	txq = fep->tx_queue[queue];
851 	nq = netdev_get_tx_queue(ndev, queue);
852 
853 	if (skb_is_gso(skb))
854 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
855 	else
856 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
857 	if (ret)
858 		return ret;
859 
860 	entries_free = fec_enet_get_free_txdesc_num(txq);
861 	if (entries_free <= txq->tx_stop_threshold)
862 		netif_tx_stop_queue(nq);
863 
864 	return NETDEV_TX_OK;
865 }
866 
867 /* Init RX & TX buffer descriptors
868  */
869 static void fec_enet_bd_init(struct net_device *dev)
870 {
871 	struct fec_enet_private *fep = netdev_priv(dev);
872 	struct fec_enet_priv_tx_q *txq;
873 	struct fec_enet_priv_rx_q *rxq;
874 	struct bufdesc *bdp;
875 	unsigned int i;
876 	unsigned int q;
877 
878 	for (q = 0; q < fep->num_rx_queues; q++) {
879 		/* Initialize the receive buffer descriptors. */
880 		rxq = fep->rx_queue[q];
881 		bdp = rxq->bd.base;
882 
883 		for (i = 0; i < rxq->bd.ring_size; i++) {
884 
885 			/* Initialize the BD for every fragment in the page. */
886 			if (bdp->cbd_bufaddr)
887 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
888 			else
889 				bdp->cbd_sc = cpu_to_fec16(0);
890 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
891 		}
892 
893 		/* Set the last buffer to wrap */
894 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
895 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
896 
897 		rxq->bd.cur = rxq->bd.base;
898 	}
899 
900 	for (q = 0; q < fep->num_tx_queues; q++) {
901 		/* ...and the same for transmit */
902 		txq = fep->tx_queue[q];
903 		bdp = txq->bd.base;
904 		txq->bd.cur = bdp;
905 
906 		for (i = 0; i < txq->bd.ring_size; i++) {
907 			/* Initialize the BD for every fragment in the page. */
908 			bdp->cbd_sc = cpu_to_fec16(0);
909 			if (bdp->cbd_bufaddr &&
910 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
911 				dma_unmap_single(&fep->pdev->dev,
912 						 fec32_to_cpu(bdp->cbd_bufaddr),
913 						 fec16_to_cpu(bdp->cbd_datlen),
914 						 DMA_TO_DEVICE);
915 			if (txq->tx_skbuff[i]) {
916 				dev_kfree_skb_any(txq->tx_skbuff[i]);
917 				txq->tx_skbuff[i] = NULL;
918 			}
919 			bdp->cbd_bufaddr = cpu_to_fec32(0);
920 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
921 		}
922 
923 		/* Set the last buffer to wrap */
924 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
925 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
926 		txq->dirty_tx = bdp;
927 	}
928 }
929 
930 static void fec_enet_active_rxring(struct net_device *ndev)
931 {
932 	struct fec_enet_private *fep = netdev_priv(ndev);
933 	int i;
934 
935 	for (i = 0; i < fep->num_rx_queues; i++)
936 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
937 }
938 
939 static void fec_enet_enable_ring(struct net_device *ndev)
940 {
941 	struct fec_enet_private *fep = netdev_priv(ndev);
942 	struct fec_enet_priv_tx_q *txq;
943 	struct fec_enet_priv_rx_q *rxq;
944 	int i;
945 
946 	for (i = 0; i < fep->num_rx_queues; i++) {
947 		rxq = fep->rx_queue[i];
948 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
949 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
950 
951 		/* enable DMA1/2 */
952 		if (i)
953 			writel(RCMR_MATCHEN | RCMR_CMP(i),
954 			       fep->hwp + FEC_RCMR(i));
955 	}
956 
957 	for (i = 0; i < fep->num_tx_queues; i++) {
958 		txq = fep->tx_queue[i];
959 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
960 
961 		/* enable DMA1/2 */
962 		if (i)
963 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
964 			       fep->hwp + FEC_DMA_CFG(i));
965 	}
966 }
967 
968 static void fec_enet_reset_skb(struct net_device *ndev)
969 {
970 	struct fec_enet_private *fep = netdev_priv(ndev);
971 	struct fec_enet_priv_tx_q *txq;
972 	int i, j;
973 
974 	for (i = 0; i < fep->num_tx_queues; i++) {
975 		txq = fep->tx_queue[i];
976 
977 		for (j = 0; j < txq->bd.ring_size; j++) {
978 			if (txq->tx_skbuff[j]) {
979 				dev_kfree_skb_any(txq->tx_skbuff[j]);
980 				txq->tx_skbuff[j] = NULL;
981 			}
982 		}
983 	}
984 }
985 
986 /*
987  * This function is called to start or restart the FEC during a link
988  * change, transmit timeout, or to reconfigure the FEC.  The network
989  * packet processing for this device must be stopped before this call.
990  */
991 static void
992 fec_restart(struct net_device *ndev)
993 {
994 	struct fec_enet_private *fep = netdev_priv(ndev);
995 	u32 temp_mac[2];
996 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
997 	u32 ecntl = 0x2; /* ETHEREN */
998 
999 	/* Whack a reset.  We should wait for this.
1000 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1001 	 * instead of reset MAC itself.
1002 	 */
1003 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1004 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1005 		writel(0, fep->hwp + FEC_ECNTRL);
1006 	} else {
1007 		writel(1, fep->hwp + FEC_ECNTRL);
1008 		udelay(10);
1009 	}
1010 
1011 	/*
1012 	 * enet-mac reset will reset mac address registers too,
1013 	 * so need to reconfigure it.
1014 	 */
1015 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1016 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1017 	       fep->hwp + FEC_ADDR_LOW);
1018 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1019 	       fep->hwp + FEC_ADDR_HIGH);
1020 
1021 	/* Clear any outstanding interrupt, except MDIO. */
1022 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1023 
1024 	fec_enet_bd_init(ndev);
1025 
1026 	fec_enet_enable_ring(ndev);
1027 
1028 	/* Reset tx SKB buffers. */
1029 	fec_enet_reset_skb(ndev);
1030 
1031 	/* Enable MII mode */
1032 	if (fep->full_duplex == DUPLEX_FULL) {
1033 		/* FD enable */
1034 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1035 	} else {
1036 		/* No Rcv on Xmit */
1037 		rcntl |= 0x02;
1038 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1039 	}
1040 
1041 	/* Set MII speed */
1042 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1043 
1044 #if !defined(CONFIG_M5272)
1045 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1046 		u32 val = readl(fep->hwp + FEC_RACC);
1047 
1048 		/* align IP header */
1049 		val |= FEC_RACC_SHIFT16;
1050 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1051 			/* set RX checksum */
1052 			val |= FEC_RACC_OPTIONS;
1053 		else
1054 			val &= ~FEC_RACC_OPTIONS;
1055 		writel(val, fep->hwp + FEC_RACC);
1056 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1057 	}
1058 #endif
1059 
1060 	/*
1061 	 * The phy interface and speed need to get configured
1062 	 * differently on enet-mac.
1063 	 */
1064 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1065 		/* Enable flow control and length check */
1066 		rcntl |= 0x40000000 | 0x00000020;
1067 
1068 		/* RGMII, RMII or MII */
1069 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1070 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1071 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1072 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1073 			rcntl |= (1 << 6);
1074 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1075 			rcntl |= (1 << 8);
1076 		else
1077 			rcntl &= ~(1 << 8);
1078 
1079 		/* 1G, 100M or 10M */
1080 		if (ndev->phydev) {
1081 			if (ndev->phydev->speed == SPEED_1000)
1082 				ecntl |= (1 << 5);
1083 			else if (ndev->phydev->speed == SPEED_100)
1084 				rcntl &= ~(1 << 9);
1085 			else
1086 				rcntl |= (1 << 9);
1087 		}
1088 	} else {
1089 #ifdef FEC_MIIGSK_ENR
1090 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1091 			u32 cfgr;
1092 			/* disable the gasket and wait */
1093 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1094 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1095 				udelay(1);
1096 
1097 			/*
1098 			 * configure the gasket:
1099 			 *   RMII, 50 MHz, no loopback, no echo
1100 			 *   MII, 25 MHz, no loopback, no echo
1101 			 */
1102 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1103 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1104 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1105 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1106 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1107 
1108 			/* re-enable the gasket */
1109 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1110 		}
1111 #endif
1112 	}
1113 
1114 #if !defined(CONFIG_M5272)
1115 	/* enable pause frame*/
1116 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1117 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1118 	     ndev->phydev && ndev->phydev->pause)) {
1119 		rcntl |= FEC_ENET_FCE;
1120 
1121 		/* set FIFO threshold parameter to reduce overrun */
1122 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1123 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1124 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1125 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1126 
1127 		/* OPD */
1128 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1129 	} else {
1130 		rcntl &= ~FEC_ENET_FCE;
1131 	}
1132 #endif /* !defined(CONFIG_M5272) */
1133 
1134 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1135 
1136 	/* Setup multicast filter. */
1137 	set_multicast_list(ndev);
1138 #ifndef CONFIG_M5272
1139 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1140 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1141 #endif
1142 
1143 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1144 		/* enable ENET endian swap */
1145 		ecntl |= (1 << 8);
1146 		/* enable ENET store and forward mode */
1147 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1148 	}
1149 
1150 	if (fep->bufdesc_ex)
1151 		ecntl |= (1 << 4);
1152 
1153 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1154 	    fep->rgmii_txc_dly)
1155 		ecntl |= FEC_ENET_TXC_DLY;
1156 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1157 	    fep->rgmii_rxc_dly)
1158 		ecntl |= FEC_ENET_RXC_DLY;
1159 
1160 #ifndef CONFIG_M5272
1161 	/* Enable the MIB statistic event counters */
1162 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1163 #endif
1164 
1165 	/* And last, enable the transmit and receive processing */
1166 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1167 	fec_enet_active_rxring(ndev);
1168 
1169 	if (fep->bufdesc_ex)
1170 		fec_ptp_start_cyclecounter(ndev);
1171 
1172 	/* Enable interrupts we wish to service */
1173 	if (fep->link)
1174 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1175 	else
1176 		writel(0, fep->hwp + FEC_IMASK);
1177 
1178 	/* Init the interrupt coalescing */
1179 	fec_enet_itr_coal_init(ndev);
1180 
1181 }
1182 
1183 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1184 {
1185 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1186 	      of_machine_is_compatible("fsl,imx8qxp") ||
1187 	      of_machine_is_compatible("fsl,imx8dxl")))
1188 		return 0;
1189 
1190 	return imx_scu_get_handle(&fep->ipc_handle);
1191 }
1192 
1193 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1194 {
1195 	struct device_node *np = fep->pdev->dev.of_node;
1196 	u32 rsrc_id, val;
1197 	int idx;
1198 
1199 	if (!np || !fep->ipc_handle)
1200 		return;
1201 
1202 	idx = of_alias_get_id(np, "ethernet");
1203 	if (idx < 0)
1204 		idx = 0;
1205 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1206 
1207 	val = enabled ? 1 : 0;
1208 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1209 }
1210 
1211 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1212 {
1213 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1214 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1215 
1216 	if (stop_gpr->gpr) {
1217 		if (enabled)
1218 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1219 					   BIT(stop_gpr->bit),
1220 					   BIT(stop_gpr->bit));
1221 		else
1222 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1223 					   BIT(stop_gpr->bit), 0);
1224 	} else if (pdata && pdata->sleep_mode_enable) {
1225 		pdata->sleep_mode_enable(enabled);
1226 	} else {
1227 		fec_enet_ipg_stop_set(fep, enabled);
1228 	}
1229 }
1230 
1231 static void fec_irqs_disable(struct net_device *ndev)
1232 {
1233 	struct fec_enet_private *fep = netdev_priv(ndev);
1234 
1235 	writel(0, fep->hwp + FEC_IMASK);
1236 }
1237 
1238 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1239 {
1240 	struct fec_enet_private *fep = netdev_priv(ndev);
1241 
1242 	writel(0, fep->hwp + FEC_IMASK);
1243 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1244 }
1245 
1246 static void
1247 fec_stop(struct net_device *ndev)
1248 {
1249 	struct fec_enet_private *fep = netdev_priv(ndev);
1250 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1251 	u32 val;
1252 
1253 	/* We cannot expect a graceful transmit stop without link !!! */
1254 	if (fep->link) {
1255 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1256 		udelay(10);
1257 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1258 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1259 	}
1260 
1261 	/* Whack a reset.  We should wait for this.
1262 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1263 	 * instead of reset MAC itself.
1264 	 */
1265 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1266 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1267 			writel(0, fep->hwp + FEC_ECNTRL);
1268 		} else {
1269 			writel(1, fep->hwp + FEC_ECNTRL);
1270 			udelay(10);
1271 		}
1272 	} else {
1273 		val = readl(fep->hwp + FEC_ECNTRL);
1274 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1275 		writel(val, fep->hwp + FEC_ECNTRL);
1276 	}
1277 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1278 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1279 
1280 	/* We have to keep ENET enabled to have MII interrupt stay working */
1281 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1282 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1283 		writel(2, fep->hwp + FEC_ECNTRL);
1284 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1285 	}
1286 }
1287 
1288 
1289 static void
1290 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1291 {
1292 	struct fec_enet_private *fep = netdev_priv(ndev);
1293 
1294 	fec_dump(ndev);
1295 
1296 	ndev->stats.tx_errors++;
1297 
1298 	schedule_work(&fep->tx_timeout_work);
1299 }
1300 
1301 static void fec_enet_timeout_work(struct work_struct *work)
1302 {
1303 	struct fec_enet_private *fep =
1304 		container_of(work, struct fec_enet_private, tx_timeout_work);
1305 	struct net_device *ndev = fep->netdev;
1306 
1307 	rtnl_lock();
1308 	if (netif_device_present(ndev) || netif_running(ndev)) {
1309 		napi_disable(&fep->napi);
1310 		netif_tx_lock_bh(ndev);
1311 		fec_restart(ndev);
1312 		netif_tx_wake_all_queues(ndev);
1313 		netif_tx_unlock_bh(ndev);
1314 		napi_enable(&fep->napi);
1315 	}
1316 	rtnl_unlock();
1317 }
1318 
1319 static void
1320 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1321 	struct skb_shared_hwtstamps *hwtstamps)
1322 {
1323 	unsigned long flags;
1324 	u64 ns;
1325 
1326 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1327 	ns = timecounter_cyc2time(&fep->tc, ts);
1328 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1329 
1330 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1331 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1332 }
1333 
1334 static void
1335 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1336 {
1337 	struct	fec_enet_private *fep;
1338 	struct bufdesc *bdp;
1339 	unsigned short status;
1340 	struct	sk_buff	*skb;
1341 	struct fec_enet_priv_tx_q *txq;
1342 	struct netdev_queue *nq;
1343 	int	index = 0;
1344 	int	entries_free;
1345 
1346 	fep = netdev_priv(ndev);
1347 
1348 	txq = fep->tx_queue[queue_id];
1349 	/* get next bdp of dirty_tx */
1350 	nq = netdev_get_tx_queue(ndev, queue_id);
1351 	bdp = txq->dirty_tx;
1352 
1353 	/* get next bdp of dirty_tx */
1354 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1355 
1356 	while (bdp != READ_ONCE(txq->bd.cur)) {
1357 		/* Order the load of bd.cur and cbd_sc */
1358 		rmb();
1359 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1360 		if (status & BD_ENET_TX_READY)
1361 			break;
1362 
1363 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1364 
1365 		skb = txq->tx_skbuff[index];
1366 		txq->tx_skbuff[index] = NULL;
1367 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1368 			dma_unmap_single(&fep->pdev->dev,
1369 					 fec32_to_cpu(bdp->cbd_bufaddr),
1370 					 fec16_to_cpu(bdp->cbd_datlen),
1371 					 DMA_TO_DEVICE);
1372 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1373 		if (!skb)
1374 			goto skb_done;
1375 
1376 		/* Check for errors. */
1377 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1378 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1379 				   BD_ENET_TX_CSL)) {
1380 			ndev->stats.tx_errors++;
1381 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1382 				ndev->stats.tx_heartbeat_errors++;
1383 			if (status & BD_ENET_TX_LC)  /* Late collision */
1384 				ndev->stats.tx_window_errors++;
1385 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1386 				ndev->stats.tx_aborted_errors++;
1387 			if (status & BD_ENET_TX_UN)  /* Underrun */
1388 				ndev->stats.tx_fifo_errors++;
1389 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1390 				ndev->stats.tx_carrier_errors++;
1391 		} else {
1392 			ndev->stats.tx_packets++;
1393 			ndev->stats.tx_bytes += skb->len;
1394 		}
1395 
1396 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1397 		 * are to time stamp the packet, so we still need to check time
1398 		 * stamping enabled flag.
1399 		 */
1400 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1401 			     fep->hwts_tx_en) &&
1402 		    fep->bufdesc_ex) {
1403 			struct skb_shared_hwtstamps shhwtstamps;
1404 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1405 
1406 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1407 			skb_tstamp_tx(skb, &shhwtstamps);
1408 		}
1409 
1410 		/* Deferred means some collisions occurred during transmit,
1411 		 * but we eventually sent the packet OK.
1412 		 */
1413 		if (status & BD_ENET_TX_DEF)
1414 			ndev->stats.collisions++;
1415 
1416 		/* Free the sk buffer associated with this last transmit */
1417 		dev_kfree_skb_any(skb);
1418 skb_done:
1419 		/* Make sure the update to bdp and tx_skbuff are performed
1420 		 * before dirty_tx
1421 		 */
1422 		wmb();
1423 		txq->dirty_tx = bdp;
1424 
1425 		/* Update pointer to next buffer descriptor to be transmitted */
1426 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1427 
1428 		/* Since we have freed up a buffer, the ring is no longer full
1429 		 */
1430 		if (netif_tx_queue_stopped(nq)) {
1431 			entries_free = fec_enet_get_free_txdesc_num(txq);
1432 			if (entries_free >= txq->tx_wake_threshold)
1433 				netif_tx_wake_queue(nq);
1434 		}
1435 	}
1436 
1437 	/* ERR006358: Keep the transmitter going */
1438 	if (bdp != txq->bd.cur &&
1439 	    readl(txq->bd.reg_desc_active) == 0)
1440 		writel(0, txq->bd.reg_desc_active);
1441 }
1442 
1443 static void fec_enet_tx(struct net_device *ndev)
1444 {
1445 	struct fec_enet_private *fep = netdev_priv(ndev);
1446 	int i;
1447 
1448 	/* Make sure that AVB queues are processed first. */
1449 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1450 		fec_enet_tx_queue(ndev, i);
1451 }
1452 
1453 static int
1454 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1455 {
1456 	struct  fec_enet_private *fep = netdev_priv(ndev);
1457 	int off;
1458 
1459 	off = ((unsigned long)skb->data) & fep->rx_align;
1460 	if (off)
1461 		skb_reserve(skb, fep->rx_align + 1 - off);
1462 
1463 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1464 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1465 		if (net_ratelimit())
1466 			netdev_err(ndev, "Rx DMA memory map failed\n");
1467 		return -ENOMEM;
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1474 			       struct bufdesc *bdp, u32 length, bool swap)
1475 {
1476 	struct  fec_enet_private *fep = netdev_priv(ndev);
1477 	struct sk_buff *new_skb;
1478 
1479 	if (length > fep->rx_copybreak)
1480 		return false;
1481 
1482 	new_skb = netdev_alloc_skb(ndev, length);
1483 	if (!new_skb)
1484 		return false;
1485 
1486 	dma_sync_single_for_cpu(&fep->pdev->dev,
1487 				fec32_to_cpu(bdp->cbd_bufaddr),
1488 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1489 				DMA_FROM_DEVICE);
1490 	if (!swap)
1491 		memcpy(new_skb->data, (*skb)->data, length);
1492 	else
1493 		swap_buffer2(new_skb->data, (*skb)->data, length);
1494 	*skb = new_skb;
1495 
1496 	return true;
1497 }
1498 
1499 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1500  * When we update through the ring, if the next incoming buffer has
1501  * not been given to the system, we just set the empty indicator,
1502  * effectively tossing the packet.
1503  */
1504 static int
1505 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1506 {
1507 	struct fec_enet_private *fep = netdev_priv(ndev);
1508 	struct fec_enet_priv_rx_q *rxq;
1509 	struct bufdesc *bdp;
1510 	unsigned short status;
1511 	struct  sk_buff *skb_new = NULL;
1512 	struct  sk_buff *skb;
1513 	ushort	pkt_len;
1514 	__u8 *data;
1515 	int	pkt_received = 0;
1516 	struct	bufdesc_ex *ebdp = NULL;
1517 	bool	vlan_packet_rcvd = false;
1518 	u16	vlan_tag;
1519 	int	index = 0;
1520 	bool	is_copybreak;
1521 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1522 
1523 #ifdef CONFIG_M532x
1524 	flush_cache_all();
1525 #endif
1526 	rxq = fep->rx_queue[queue_id];
1527 
1528 	/* First, grab all of the stats for the incoming packet.
1529 	 * These get messed up if we get called due to a busy condition.
1530 	 */
1531 	bdp = rxq->bd.cur;
1532 
1533 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1534 
1535 		if (pkt_received >= budget)
1536 			break;
1537 		pkt_received++;
1538 
1539 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1540 
1541 		/* Check for errors. */
1542 		status ^= BD_ENET_RX_LAST;
1543 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1544 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1545 			   BD_ENET_RX_CL)) {
1546 			ndev->stats.rx_errors++;
1547 			if (status & BD_ENET_RX_OV) {
1548 				/* FIFO overrun */
1549 				ndev->stats.rx_fifo_errors++;
1550 				goto rx_processing_done;
1551 			}
1552 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1553 						| BD_ENET_RX_LAST)) {
1554 				/* Frame too long or too short. */
1555 				ndev->stats.rx_length_errors++;
1556 				if (status & BD_ENET_RX_LAST)
1557 					netdev_err(ndev, "rcv is not +last\n");
1558 			}
1559 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1560 				ndev->stats.rx_crc_errors++;
1561 			/* Report late collisions as a frame error. */
1562 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1563 				ndev->stats.rx_frame_errors++;
1564 			goto rx_processing_done;
1565 		}
1566 
1567 		/* Process the incoming frame. */
1568 		ndev->stats.rx_packets++;
1569 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1570 		ndev->stats.rx_bytes += pkt_len;
1571 
1572 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1573 		skb = rxq->rx_skbuff[index];
1574 
1575 		/* The packet length includes FCS, but we don't want to
1576 		 * include that when passing upstream as it messes up
1577 		 * bridging applications.
1578 		 */
1579 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1580 						  need_swap);
1581 		if (!is_copybreak) {
1582 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1583 			if (unlikely(!skb_new)) {
1584 				ndev->stats.rx_dropped++;
1585 				goto rx_processing_done;
1586 			}
1587 			dma_unmap_single(&fep->pdev->dev,
1588 					 fec32_to_cpu(bdp->cbd_bufaddr),
1589 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1590 					 DMA_FROM_DEVICE);
1591 		}
1592 
1593 		prefetch(skb->data - NET_IP_ALIGN);
1594 		skb_put(skb, pkt_len - 4);
1595 		data = skb->data;
1596 
1597 		if (!is_copybreak && need_swap)
1598 			swap_buffer(data, pkt_len);
1599 
1600 #if !defined(CONFIG_M5272)
1601 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1602 			data = skb_pull_inline(skb, 2);
1603 #endif
1604 
1605 		/* Extract the enhanced buffer descriptor */
1606 		ebdp = NULL;
1607 		if (fep->bufdesc_ex)
1608 			ebdp = (struct bufdesc_ex *)bdp;
1609 
1610 		/* If this is a VLAN packet remove the VLAN Tag */
1611 		vlan_packet_rcvd = false;
1612 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1613 		    fep->bufdesc_ex &&
1614 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1615 			/* Push and remove the vlan tag */
1616 			struct vlan_hdr *vlan_header =
1617 					(struct vlan_hdr *) (data + ETH_HLEN);
1618 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1619 
1620 			vlan_packet_rcvd = true;
1621 
1622 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1623 			skb_pull(skb, VLAN_HLEN);
1624 		}
1625 
1626 		skb->protocol = eth_type_trans(skb, ndev);
1627 
1628 		/* Get receive timestamp from the skb */
1629 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1630 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1631 					  skb_hwtstamps(skb));
1632 
1633 		if (fep->bufdesc_ex &&
1634 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1635 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1636 				/* don't check it */
1637 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1638 			} else {
1639 				skb_checksum_none_assert(skb);
1640 			}
1641 		}
1642 
1643 		/* Handle received VLAN packets */
1644 		if (vlan_packet_rcvd)
1645 			__vlan_hwaccel_put_tag(skb,
1646 					       htons(ETH_P_8021Q),
1647 					       vlan_tag);
1648 
1649 		skb_record_rx_queue(skb, queue_id);
1650 		napi_gro_receive(&fep->napi, skb);
1651 
1652 		if (is_copybreak) {
1653 			dma_sync_single_for_device(&fep->pdev->dev,
1654 						   fec32_to_cpu(bdp->cbd_bufaddr),
1655 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1656 						   DMA_FROM_DEVICE);
1657 		} else {
1658 			rxq->rx_skbuff[index] = skb_new;
1659 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1660 		}
1661 
1662 rx_processing_done:
1663 		/* Clear the status flags for this buffer */
1664 		status &= ~BD_ENET_RX_STATS;
1665 
1666 		/* Mark the buffer empty */
1667 		status |= BD_ENET_RX_EMPTY;
1668 
1669 		if (fep->bufdesc_ex) {
1670 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1671 
1672 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1673 			ebdp->cbd_prot = 0;
1674 			ebdp->cbd_bdu = 0;
1675 		}
1676 		/* Make sure the updates to rest of the descriptor are
1677 		 * performed before transferring ownership.
1678 		 */
1679 		wmb();
1680 		bdp->cbd_sc = cpu_to_fec16(status);
1681 
1682 		/* Update BD pointer to next entry */
1683 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1684 
1685 		/* Doing this here will keep the FEC running while we process
1686 		 * incoming frames.  On a heavily loaded network, we should be
1687 		 * able to keep up at the expense of system resources.
1688 		 */
1689 		writel(0, rxq->bd.reg_desc_active);
1690 	}
1691 	rxq->bd.cur = bdp;
1692 	return pkt_received;
1693 }
1694 
1695 static int fec_enet_rx(struct net_device *ndev, int budget)
1696 {
1697 	struct fec_enet_private *fep = netdev_priv(ndev);
1698 	int i, done = 0;
1699 
1700 	/* Make sure that AVB queues are processed first. */
1701 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1702 		done += fec_enet_rx_queue(ndev, budget - done, i);
1703 
1704 	return done;
1705 }
1706 
1707 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1708 {
1709 	uint int_events;
1710 
1711 	int_events = readl(fep->hwp + FEC_IEVENT);
1712 
1713 	/* Don't clear MDIO events, we poll for those */
1714 	int_events &= ~FEC_ENET_MII;
1715 
1716 	writel(int_events, fep->hwp + FEC_IEVENT);
1717 
1718 	return int_events != 0;
1719 }
1720 
1721 static irqreturn_t
1722 fec_enet_interrupt(int irq, void *dev_id)
1723 {
1724 	struct net_device *ndev = dev_id;
1725 	struct fec_enet_private *fep = netdev_priv(ndev);
1726 	irqreturn_t ret = IRQ_NONE;
1727 
1728 	if (fec_enet_collect_events(fep) && fep->link) {
1729 		ret = IRQ_HANDLED;
1730 
1731 		if (napi_schedule_prep(&fep->napi)) {
1732 			/* Disable interrupts */
1733 			writel(0, fep->hwp + FEC_IMASK);
1734 			__napi_schedule(&fep->napi);
1735 		}
1736 	}
1737 
1738 	return ret;
1739 }
1740 
1741 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1742 {
1743 	struct net_device *ndev = napi->dev;
1744 	struct fec_enet_private *fep = netdev_priv(ndev);
1745 	int done = 0;
1746 
1747 	do {
1748 		done += fec_enet_rx(ndev, budget - done);
1749 		fec_enet_tx(ndev);
1750 	} while ((done < budget) && fec_enet_collect_events(fep));
1751 
1752 	if (done < budget) {
1753 		napi_complete_done(napi, done);
1754 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1755 	}
1756 
1757 	return done;
1758 }
1759 
1760 /* ------------------------------------------------------------------------- */
1761 static int fec_get_mac(struct net_device *ndev)
1762 {
1763 	struct fec_enet_private *fep = netdev_priv(ndev);
1764 	unsigned char *iap, tmpaddr[ETH_ALEN];
1765 	int ret;
1766 
1767 	/*
1768 	 * try to get mac address in following order:
1769 	 *
1770 	 * 1) module parameter via kernel command line in form
1771 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1772 	 */
1773 	iap = macaddr;
1774 
1775 	/*
1776 	 * 2) from device tree data
1777 	 */
1778 	if (!is_valid_ether_addr(iap)) {
1779 		struct device_node *np = fep->pdev->dev.of_node;
1780 		if (np) {
1781 			ret = of_get_mac_address(np, tmpaddr);
1782 			if (!ret)
1783 				iap = tmpaddr;
1784 			else if (ret == -EPROBE_DEFER)
1785 				return ret;
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * 3) from flash or fuse (via platform data)
1791 	 */
1792 	if (!is_valid_ether_addr(iap)) {
1793 #ifdef CONFIG_M5272
1794 		if (FEC_FLASHMAC)
1795 			iap = (unsigned char *)FEC_FLASHMAC;
1796 #else
1797 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1798 
1799 		if (pdata)
1800 			iap = (unsigned char *)&pdata->mac;
1801 #endif
1802 	}
1803 
1804 	/*
1805 	 * 4) FEC mac registers set by bootloader
1806 	 */
1807 	if (!is_valid_ether_addr(iap)) {
1808 		*((__be32 *) &tmpaddr[0]) =
1809 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1810 		*((__be16 *) &tmpaddr[4]) =
1811 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1812 		iap = &tmpaddr[0];
1813 	}
1814 
1815 	/*
1816 	 * 5) random mac address
1817 	 */
1818 	if (!is_valid_ether_addr(iap)) {
1819 		/* Report it and use a random ethernet address instead */
1820 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1821 		eth_hw_addr_random(ndev);
1822 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1823 			 ndev->dev_addr);
1824 		return 0;
1825 	}
1826 
1827 	/* Adjust MAC if using macaddr */
1828 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1829 
1830 	return 0;
1831 }
1832 
1833 /* ------------------------------------------------------------------------- */
1834 
1835 /*
1836  * Phy section
1837  */
1838 static void fec_enet_adjust_link(struct net_device *ndev)
1839 {
1840 	struct fec_enet_private *fep = netdev_priv(ndev);
1841 	struct phy_device *phy_dev = ndev->phydev;
1842 	int status_change = 0;
1843 
1844 	/*
1845 	 * If the netdev is down, or is going down, we're not interested
1846 	 * in link state events, so just mark our idea of the link as down
1847 	 * and ignore the event.
1848 	 */
1849 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1850 		fep->link = 0;
1851 	} else if (phy_dev->link) {
1852 		if (!fep->link) {
1853 			fep->link = phy_dev->link;
1854 			status_change = 1;
1855 		}
1856 
1857 		if (fep->full_duplex != phy_dev->duplex) {
1858 			fep->full_duplex = phy_dev->duplex;
1859 			status_change = 1;
1860 		}
1861 
1862 		if (phy_dev->speed != fep->speed) {
1863 			fep->speed = phy_dev->speed;
1864 			status_change = 1;
1865 		}
1866 
1867 		/* if any of the above changed restart the FEC */
1868 		if (status_change) {
1869 			napi_disable(&fep->napi);
1870 			netif_tx_lock_bh(ndev);
1871 			fec_restart(ndev);
1872 			netif_tx_wake_all_queues(ndev);
1873 			netif_tx_unlock_bh(ndev);
1874 			napi_enable(&fep->napi);
1875 		}
1876 	} else {
1877 		if (fep->link) {
1878 			napi_disable(&fep->napi);
1879 			netif_tx_lock_bh(ndev);
1880 			fec_stop(ndev);
1881 			netif_tx_unlock_bh(ndev);
1882 			napi_enable(&fep->napi);
1883 			fep->link = phy_dev->link;
1884 			status_change = 1;
1885 		}
1886 	}
1887 
1888 	if (status_change)
1889 		phy_print_status(phy_dev);
1890 }
1891 
1892 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1893 {
1894 	uint ievent;
1895 	int ret;
1896 
1897 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1898 					ievent & FEC_ENET_MII, 2, 30000);
1899 
1900 	if (!ret)
1901 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1902 
1903 	return ret;
1904 }
1905 
1906 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1907 {
1908 	struct fec_enet_private *fep = bus->priv;
1909 	struct device *dev = &fep->pdev->dev;
1910 	int ret = 0, frame_start, frame_addr, frame_op;
1911 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1912 
1913 	ret = pm_runtime_resume_and_get(dev);
1914 	if (ret < 0)
1915 		return ret;
1916 
1917 	if (is_c45) {
1918 		frame_start = FEC_MMFR_ST_C45;
1919 
1920 		/* write address */
1921 		frame_addr = (regnum >> 16);
1922 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1923 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1924 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1925 		       fep->hwp + FEC_MII_DATA);
1926 
1927 		/* wait for end of transfer */
1928 		ret = fec_enet_mdio_wait(fep);
1929 		if (ret) {
1930 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1931 			goto out;
1932 		}
1933 
1934 		frame_op = FEC_MMFR_OP_READ_C45;
1935 
1936 	} else {
1937 		/* C22 read */
1938 		frame_op = FEC_MMFR_OP_READ;
1939 		frame_start = FEC_MMFR_ST;
1940 		frame_addr = regnum;
1941 	}
1942 
1943 	/* start a read op */
1944 	writel(frame_start | frame_op |
1945 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1946 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1947 
1948 	/* wait for end of transfer */
1949 	ret = fec_enet_mdio_wait(fep);
1950 	if (ret) {
1951 		netdev_err(fep->netdev, "MDIO read timeout\n");
1952 		goto out;
1953 	}
1954 
1955 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1956 
1957 out:
1958 	pm_runtime_mark_last_busy(dev);
1959 	pm_runtime_put_autosuspend(dev);
1960 
1961 	return ret;
1962 }
1963 
1964 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1965 			   u16 value)
1966 {
1967 	struct fec_enet_private *fep = bus->priv;
1968 	struct device *dev = &fep->pdev->dev;
1969 	int ret, frame_start, frame_addr;
1970 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1971 
1972 	ret = pm_runtime_resume_and_get(dev);
1973 	if (ret < 0)
1974 		return ret;
1975 
1976 	if (is_c45) {
1977 		frame_start = FEC_MMFR_ST_C45;
1978 
1979 		/* write address */
1980 		frame_addr = (regnum >> 16);
1981 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1982 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1983 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1984 		       fep->hwp + FEC_MII_DATA);
1985 
1986 		/* wait for end of transfer */
1987 		ret = fec_enet_mdio_wait(fep);
1988 		if (ret) {
1989 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1990 			goto out;
1991 		}
1992 	} else {
1993 		/* C22 write */
1994 		frame_start = FEC_MMFR_ST;
1995 		frame_addr = regnum;
1996 	}
1997 
1998 	/* start a write op */
1999 	writel(frame_start | FEC_MMFR_OP_WRITE |
2000 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2001 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
2002 		fep->hwp + FEC_MII_DATA);
2003 
2004 	/* wait for end of transfer */
2005 	ret = fec_enet_mdio_wait(fep);
2006 	if (ret)
2007 		netdev_err(fep->netdev, "MDIO write timeout\n");
2008 
2009 out:
2010 	pm_runtime_mark_last_busy(dev);
2011 	pm_runtime_put_autosuspend(dev);
2012 
2013 	return ret;
2014 }
2015 
2016 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2017 {
2018 	struct fec_enet_private *fep = netdev_priv(ndev);
2019 	struct phy_device *phy_dev = ndev->phydev;
2020 
2021 	if (phy_dev) {
2022 		phy_reset_after_clk_enable(phy_dev);
2023 	} else if (fep->phy_node) {
2024 		/*
2025 		 * If the PHY still is not bound to the MAC, but there is
2026 		 * OF PHY node and a matching PHY device instance already,
2027 		 * use the OF PHY node to obtain the PHY device instance,
2028 		 * and then use that PHY device instance when triggering
2029 		 * the PHY reset.
2030 		 */
2031 		phy_dev = of_phy_find_device(fep->phy_node);
2032 		phy_reset_after_clk_enable(phy_dev);
2033 		put_device(&phy_dev->mdio.dev);
2034 	}
2035 }
2036 
2037 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2038 {
2039 	struct fec_enet_private *fep = netdev_priv(ndev);
2040 	int ret;
2041 
2042 	if (enable) {
2043 		ret = clk_prepare_enable(fep->clk_enet_out);
2044 		if (ret)
2045 			return ret;
2046 
2047 		if (fep->clk_ptp) {
2048 			mutex_lock(&fep->ptp_clk_mutex);
2049 			ret = clk_prepare_enable(fep->clk_ptp);
2050 			if (ret) {
2051 				mutex_unlock(&fep->ptp_clk_mutex);
2052 				goto failed_clk_ptp;
2053 			} else {
2054 				fep->ptp_clk_on = true;
2055 			}
2056 			mutex_unlock(&fep->ptp_clk_mutex);
2057 		}
2058 
2059 		ret = clk_prepare_enable(fep->clk_ref);
2060 		if (ret)
2061 			goto failed_clk_ref;
2062 
2063 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2064 		if (ret)
2065 			goto failed_clk_2x_txclk;
2066 
2067 		fec_enet_phy_reset_after_clk_enable(ndev);
2068 	} else {
2069 		clk_disable_unprepare(fep->clk_enet_out);
2070 		if (fep->clk_ptp) {
2071 			mutex_lock(&fep->ptp_clk_mutex);
2072 			clk_disable_unprepare(fep->clk_ptp);
2073 			fep->ptp_clk_on = false;
2074 			mutex_unlock(&fep->ptp_clk_mutex);
2075 		}
2076 		clk_disable_unprepare(fep->clk_ref);
2077 		clk_disable_unprepare(fep->clk_2x_txclk);
2078 	}
2079 
2080 	return 0;
2081 
2082 failed_clk_2x_txclk:
2083 	if (fep->clk_ref)
2084 		clk_disable_unprepare(fep->clk_ref);
2085 failed_clk_ref:
2086 	if (fep->clk_ptp) {
2087 		mutex_lock(&fep->ptp_clk_mutex);
2088 		clk_disable_unprepare(fep->clk_ptp);
2089 		fep->ptp_clk_on = false;
2090 		mutex_unlock(&fep->ptp_clk_mutex);
2091 	}
2092 failed_clk_ptp:
2093 	clk_disable_unprepare(fep->clk_enet_out);
2094 
2095 	return ret;
2096 }
2097 
2098 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2099 				      struct device_node *np)
2100 {
2101 	u32 rgmii_tx_delay, rgmii_rx_delay;
2102 
2103 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2104 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2105 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2106 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2107 			return -EINVAL;
2108 		} else if (rgmii_tx_delay == 2000) {
2109 			fep->rgmii_txc_dly = true;
2110 		}
2111 	}
2112 
2113 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2114 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2115 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2116 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2117 			return -EINVAL;
2118 		} else if (rgmii_rx_delay == 2000) {
2119 			fep->rgmii_rxc_dly = true;
2120 		}
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 static int fec_enet_mii_probe(struct net_device *ndev)
2127 {
2128 	struct fec_enet_private *fep = netdev_priv(ndev);
2129 	struct phy_device *phy_dev = NULL;
2130 	char mdio_bus_id[MII_BUS_ID_SIZE];
2131 	char phy_name[MII_BUS_ID_SIZE + 3];
2132 	int phy_id;
2133 	int dev_id = fep->dev_id;
2134 
2135 	if (fep->phy_node) {
2136 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2137 					 &fec_enet_adjust_link, 0,
2138 					 fep->phy_interface);
2139 		if (!phy_dev) {
2140 			netdev_err(ndev, "Unable to connect to phy\n");
2141 			return -ENODEV;
2142 		}
2143 	} else {
2144 		/* check for attached phy */
2145 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2146 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2147 				continue;
2148 			if (dev_id--)
2149 				continue;
2150 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2151 			break;
2152 		}
2153 
2154 		if (phy_id >= PHY_MAX_ADDR) {
2155 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2156 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2157 			phy_id = 0;
2158 		}
2159 
2160 		snprintf(phy_name, sizeof(phy_name),
2161 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2162 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2163 				      fep->phy_interface);
2164 	}
2165 
2166 	if (IS_ERR(phy_dev)) {
2167 		netdev_err(ndev, "could not attach to PHY\n");
2168 		return PTR_ERR(phy_dev);
2169 	}
2170 
2171 	/* mask with MAC supported features */
2172 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2173 		phy_set_max_speed(phy_dev, 1000);
2174 		phy_remove_link_mode(phy_dev,
2175 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2176 #if !defined(CONFIG_M5272)
2177 		phy_support_sym_pause(phy_dev);
2178 #endif
2179 	}
2180 	else
2181 		phy_set_max_speed(phy_dev, 100);
2182 
2183 	fep->link = 0;
2184 	fep->full_duplex = 0;
2185 
2186 	phy_dev->mac_managed_pm = 1;
2187 
2188 	phy_attached_info(phy_dev);
2189 
2190 	return 0;
2191 }
2192 
2193 static int fec_enet_mii_init(struct platform_device *pdev)
2194 {
2195 	static struct mii_bus *fec0_mii_bus;
2196 	struct net_device *ndev = platform_get_drvdata(pdev);
2197 	struct fec_enet_private *fep = netdev_priv(ndev);
2198 	bool suppress_preamble = false;
2199 	struct device_node *node;
2200 	int err = -ENXIO;
2201 	u32 mii_speed, holdtime;
2202 	u32 bus_freq;
2203 
2204 	/*
2205 	 * The i.MX28 dual fec interfaces are not equal.
2206 	 * Here are the differences:
2207 	 *
2208 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2209 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2210 	 *  - external phys can only be configured by fec0
2211 	 *
2212 	 * That is to say fec1 can not work independently. It only works
2213 	 * when fec0 is working. The reason behind this design is that the
2214 	 * second interface is added primarily for Switch mode.
2215 	 *
2216 	 * Because of the last point above, both phys are attached on fec0
2217 	 * mdio interface in board design, and need to be configured by
2218 	 * fec0 mii_bus.
2219 	 */
2220 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2221 		/* fec1 uses fec0 mii_bus */
2222 		if (mii_cnt && fec0_mii_bus) {
2223 			fep->mii_bus = fec0_mii_bus;
2224 			mii_cnt++;
2225 			return 0;
2226 		}
2227 		return -ENOENT;
2228 	}
2229 
2230 	bus_freq = 2500000; /* 2.5MHz by default */
2231 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2232 	if (node) {
2233 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2234 		suppress_preamble = of_property_read_bool(node,
2235 							  "suppress-preamble");
2236 	}
2237 
2238 	/*
2239 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2240 	 *
2241 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2242 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2243 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2244 	 * document.
2245 	 */
2246 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2247 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2248 		mii_speed--;
2249 	if (mii_speed > 63) {
2250 		dev_err(&pdev->dev,
2251 			"fec clock (%lu) too fast to get right mii speed\n",
2252 			clk_get_rate(fep->clk_ipg));
2253 		err = -EINVAL;
2254 		goto err_out;
2255 	}
2256 
2257 	/*
2258 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2259 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2260 	 * versions are RAZ there, so just ignore the difference and write the
2261 	 * register always.
2262 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2263 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2264 	 * output.
2265 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2266 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2267 	 * holdtime cannot result in a value greater than 3.
2268 	 */
2269 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2270 
2271 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2272 
2273 	if (suppress_preamble)
2274 		fep->phy_speed |= BIT(7);
2275 
2276 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2277 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2278 		 * MII event generation condition:
2279 		 * - writing MSCR:
2280 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2281 		 *	  mscr_reg_data_in[7:0] != 0
2282 		 * - writing MMFR:
2283 		 *	- mscr[7:0]_not_zero
2284 		 */
2285 		writel(0, fep->hwp + FEC_MII_DATA);
2286 	}
2287 
2288 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2289 
2290 	/* Clear any pending transaction complete indication */
2291 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2292 
2293 	fep->mii_bus = mdiobus_alloc();
2294 	if (fep->mii_bus == NULL) {
2295 		err = -ENOMEM;
2296 		goto err_out;
2297 	}
2298 
2299 	fep->mii_bus->name = "fec_enet_mii_bus";
2300 	fep->mii_bus->read = fec_enet_mdio_read;
2301 	fep->mii_bus->write = fec_enet_mdio_write;
2302 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2303 		pdev->name, fep->dev_id + 1);
2304 	fep->mii_bus->priv = fep;
2305 	fep->mii_bus->parent = &pdev->dev;
2306 
2307 	err = of_mdiobus_register(fep->mii_bus, node);
2308 	if (err)
2309 		goto err_out_free_mdiobus;
2310 	of_node_put(node);
2311 
2312 	mii_cnt++;
2313 
2314 	/* save fec0 mii_bus */
2315 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2316 		fec0_mii_bus = fep->mii_bus;
2317 
2318 	return 0;
2319 
2320 err_out_free_mdiobus:
2321 	mdiobus_free(fep->mii_bus);
2322 err_out:
2323 	of_node_put(node);
2324 	return err;
2325 }
2326 
2327 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2328 {
2329 	if (--mii_cnt == 0) {
2330 		mdiobus_unregister(fep->mii_bus);
2331 		mdiobus_free(fep->mii_bus);
2332 	}
2333 }
2334 
2335 static void fec_enet_get_drvinfo(struct net_device *ndev,
2336 				 struct ethtool_drvinfo *info)
2337 {
2338 	struct fec_enet_private *fep = netdev_priv(ndev);
2339 
2340 	strscpy(info->driver, fep->pdev->dev.driver->name,
2341 		sizeof(info->driver));
2342 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2343 }
2344 
2345 static int fec_enet_get_regs_len(struct net_device *ndev)
2346 {
2347 	struct fec_enet_private *fep = netdev_priv(ndev);
2348 	struct resource *r;
2349 	int s = 0;
2350 
2351 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2352 	if (r)
2353 		s = resource_size(r);
2354 
2355 	return s;
2356 }
2357 
2358 /* List of registers that can be safety be read to dump them with ethtool */
2359 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2360 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2361 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2362 static __u32 fec_enet_register_version = 2;
2363 static u32 fec_enet_register_offset[] = {
2364 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2365 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2366 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2367 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2368 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2369 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2370 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2371 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2372 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2373 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2374 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2375 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2376 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2377 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2378 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2379 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2380 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2381 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2382 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2383 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2384 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2385 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2386 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2387 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2388 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2389 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2390 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2391 };
2392 #else
2393 static __u32 fec_enet_register_version = 1;
2394 static u32 fec_enet_register_offset[] = {
2395 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2396 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2397 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2398 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2399 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2400 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2401 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2402 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2403 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2404 };
2405 #endif
2406 
2407 static void fec_enet_get_regs(struct net_device *ndev,
2408 			      struct ethtool_regs *regs, void *regbuf)
2409 {
2410 	struct fec_enet_private *fep = netdev_priv(ndev);
2411 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2412 	struct device *dev = &fep->pdev->dev;
2413 	u32 *buf = (u32 *)regbuf;
2414 	u32 i, off;
2415 	int ret;
2416 
2417 	ret = pm_runtime_resume_and_get(dev);
2418 	if (ret < 0)
2419 		return;
2420 
2421 	regs->version = fec_enet_register_version;
2422 
2423 	memset(buf, 0, regs->len);
2424 
2425 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2426 		off = fec_enet_register_offset[i];
2427 
2428 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2429 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2430 			continue;
2431 
2432 		off >>= 2;
2433 		buf[off] = readl(&theregs[off]);
2434 	}
2435 
2436 	pm_runtime_mark_last_busy(dev);
2437 	pm_runtime_put_autosuspend(dev);
2438 }
2439 
2440 static int fec_enet_get_ts_info(struct net_device *ndev,
2441 				struct ethtool_ts_info *info)
2442 {
2443 	struct fec_enet_private *fep = netdev_priv(ndev);
2444 
2445 	if (fep->bufdesc_ex) {
2446 
2447 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2448 					SOF_TIMESTAMPING_RX_SOFTWARE |
2449 					SOF_TIMESTAMPING_SOFTWARE |
2450 					SOF_TIMESTAMPING_TX_HARDWARE |
2451 					SOF_TIMESTAMPING_RX_HARDWARE |
2452 					SOF_TIMESTAMPING_RAW_HARDWARE;
2453 		if (fep->ptp_clock)
2454 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2455 		else
2456 			info->phc_index = -1;
2457 
2458 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2459 				 (1 << HWTSTAMP_TX_ON);
2460 
2461 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2462 				   (1 << HWTSTAMP_FILTER_ALL);
2463 		return 0;
2464 	} else {
2465 		return ethtool_op_get_ts_info(ndev, info);
2466 	}
2467 }
2468 
2469 #if !defined(CONFIG_M5272)
2470 
2471 static void fec_enet_get_pauseparam(struct net_device *ndev,
2472 				    struct ethtool_pauseparam *pause)
2473 {
2474 	struct fec_enet_private *fep = netdev_priv(ndev);
2475 
2476 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2477 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2478 	pause->rx_pause = pause->tx_pause;
2479 }
2480 
2481 static int fec_enet_set_pauseparam(struct net_device *ndev,
2482 				   struct ethtool_pauseparam *pause)
2483 {
2484 	struct fec_enet_private *fep = netdev_priv(ndev);
2485 
2486 	if (!ndev->phydev)
2487 		return -ENODEV;
2488 
2489 	if (pause->tx_pause != pause->rx_pause) {
2490 		netdev_info(ndev,
2491 			"hardware only support enable/disable both tx and rx");
2492 		return -EINVAL;
2493 	}
2494 
2495 	fep->pause_flag = 0;
2496 
2497 	/* tx pause must be same as rx pause */
2498 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2499 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2500 
2501 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2502 			  pause->autoneg);
2503 
2504 	if (pause->autoneg) {
2505 		if (netif_running(ndev))
2506 			fec_stop(ndev);
2507 		phy_start_aneg(ndev->phydev);
2508 	}
2509 	if (netif_running(ndev)) {
2510 		napi_disable(&fep->napi);
2511 		netif_tx_lock_bh(ndev);
2512 		fec_restart(ndev);
2513 		netif_tx_wake_all_queues(ndev);
2514 		netif_tx_unlock_bh(ndev);
2515 		napi_enable(&fep->napi);
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static const struct fec_stat {
2522 	char name[ETH_GSTRING_LEN];
2523 	u16 offset;
2524 } fec_stats[] = {
2525 	/* RMON TX */
2526 	{ "tx_dropped", RMON_T_DROP },
2527 	{ "tx_packets", RMON_T_PACKETS },
2528 	{ "tx_broadcast", RMON_T_BC_PKT },
2529 	{ "tx_multicast", RMON_T_MC_PKT },
2530 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2531 	{ "tx_undersize", RMON_T_UNDERSIZE },
2532 	{ "tx_oversize", RMON_T_OVERSIZE },
2533 	{ "tx_fragment", RMON_T_FRAG },
2534 	{ "tx_jabber", RMON_T_JAB },
2535 	{ "tx_collision", RMON_T_COL },
2536 	{ "tx_64byte", RMON_T_P64 },
2537 	{ "tx_65to127byte", RMON_T_P65TO127 },
2538 	{ "tx_128to255byte", RMON_T_P128TO255 },
2539 	{ "tx_256to511byte", RMON_T_P256TO511 },
2540 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2541 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2542 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2543 	{ "tx_octets", RMON_T_OCTETS },
2544 
2545 	/* IEEE TX */
2546 	{ "IEEE_tx_drop", IEEE_T_DROP },
2547 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2548 	{ "IEEE_tx_1col", IEEE_T_1COL },
2549 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2550 	{ "IEEE_tx_def", IEEE_T_DEF },
2551 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2552 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2553 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2554 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2555 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2556 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2557 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2558 
2559 	/* RMON RX */
2560 	{ "rx_packets", RMON_R_PACKETS },
2561 	{ "rx_broadcast", RMON_R_BC_PKT },
2562 	{ "rx_multicast", RMON_R_MC_PKT },
2563 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2564 	{ "rx_undersize", RMON_R_UNDERSIZE },
2565 	{ "rx_oversize", RMON_R_OVERSIZE },
2566 	{ "rx_fragment", RMON_R_FRAG },
2567 	{ "rx_jabber", RMON_R_JAB },
2568 	{ "rx_64byte", RMON_R_P64 },
2569 	{ "rx_65to127byte", RMON_R_P65TO127 },
2570 	{ "rx_128to255byte", RMON_R_P128TO255 },
2571 	{ "rx_256to511byte", RMON_R_P256TO511 },
2572 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2573 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2574 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2575 	{ "rx_octets", RMON_R_OCTETS },
2576 
2577 	/* IEEE RX */
2578 	{ "IEEE_rx_drop", IEEE_R_DROP },
2579 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2580 	{ "IEEE_rx_crc", IEEE_R_CRC },
2581 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2582 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2583 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2584 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2585 };
2586 
2587 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2588 
2589 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2590 {
2591 	struct fec_enet_private *fep = netdev_priv(dev);
2592 	int i;
2593 
2594 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2595 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2596 }
2597 
2598 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2599 				       struct ethtool_stats *stats, u64 *data)
2600 {
2601 	struct fec_enet_private *fep = netdev_priv(dev);
2602 
2603 	if (netif_running(dev))
2604 		fec_enet_update_ethtool_stats(dev);
2605 
2606 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2607 }
2608 
2609 static void fec_enet_get_strings(struct net_device *netdev,
2610 	u32 stringset, u8 *data)
2611 {
2612 	int i;
2613 	switch (stringset) {
2614 	case ETH_SS_STATS:
2615 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2616 			memcpy(data + i * ETH_GSTRING_LEN,
2617 				fec_stats[i].name, ETH_GSTRING_LEN);
2618 		break;
2619 	case ETH_SS_TEST:
2620 		net_selftest_get_strings(data);
2621 		break;
2622 	}
2623 }
2624 
2625 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2626 {
2627 	switch (sset) {
2628 	case ETH_SS_STATS:
2629 		return ARRAY_SIZE(fec_stats);
2630 	case ETH_SS_TEST:
2631 		return net_selftest_get_count();
2632 	default:
2633 		return -EOPNOTSUPP;
2634 	}
2635 }
2636 
2637 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2638 {
2639 	struct fec_enet_private *fep = netdev_priv(dev);
2640 	int i;
2641 
2642 	/* Disable MIB statistics counters */
2643 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2644 
2645 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2646 		writel(0, fep->hwp + fec_stats[i].offset);
2647 
2648 	/* Don't disable MIB statistics counters */
2649 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2650 }
2651 
2652 #else	/* !defined(CONFIG_M5272) */
2653 #define FEC_STATS_SIZE	0
2654 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2655 {
2656 }
2657 
2658 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2659 {
2660 }
2661 #endif /* !defined(CONFIG_M5272) */
2662 
2663 /* ITR clock source is enet system clock (clk_ahb).
2664  * TCTT unit is cycle_ns * 64 cycle
2665  * So, the ICTT value = X us / (cycle_ns * 64)
2666  */
2667 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2668 {
2669 	struct fec_enet_private *fep = netdev_priv(ndev);
2670 
2671 	return us * (fep->itr_clk_rate / 64000) / 1000;
2672 }
2673 
2674 /* Set threshold for interrupt coalescing */
2675 static void fec_enet_itr_coal_set(struct net_device *ndev)
2676 {
2677 	struct fec_enet_private *fep = netdev_priv(ndev);
2678 	int rx_itr, tx_itr;
2679 
2680 	/* Must be greater than zero to avoid unpredictable behavior */
2681 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2682 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2683 		return;
2684 
2685 	/* Select enet system clock as Interrupt Coalescing
2686 	 * timer Clock Source
2687 	 */
2688 	rx_itr = FEC_ITR_CLK_SEL;
2689 	tx_itr = FEC_ITR_CLK_SEL;
2690 
2691 	/* set ICFT and ICTT */
2692 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2693 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2694 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2695 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2696 
2697 	rx_itr |= FEC_ITR_EN;
2698 	tx_itr |= FEC_ITR_EN;
2699 
2700 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2701 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2702 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2703 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2704 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2705 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2706 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2707 	}
2708 }
2709 
2710 static int fec_enet_get_coalesce(struct net_device *ndev,
2711 				 struct ethtool_coalesce *ec,
2712 				 struct kernel_ethtool_coalesce *kernel_coal,
2713 				 struct netlink_ext_ack *extack)
2714 {
2715 	struct fec_enet_private *fep = netdev_priv(ndev);
2716 
2717 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2718 		return -EOPNOTSUPP;
2719 
2720 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2721 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2722 
2723 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2724 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2725 
2726 	return 0;
2727 }
2728 
2729 static int fec_enet_set_coalesce(struct net_device *ndev,
2730 				 struct ethtool_coalesce *ec,
2731 				 struct kernel_ethtool_coalesce *kernel_coal,
2732 				 struct netlink_ext_ack *extack)
2733 {
2734 	struct fec_enet_private *fep = netdev_priv(ndev);
2735 	struct device *dev = &fep->pdev->dev;
2736 	unsigned int cycle;
2737 
2738 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2739 		return -EOPNOTSUPP;
2740 
2741 	if (ec->rx_max_coalesced_frames > 255) {
2742 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2743 		return -EINVAL;
2744 	}
2745 
2746 	if (ec->tx_max_coalesced_frames > 255) {
2747 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2748 		return -EINVAL;
2749 	}
2750 
2751 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2752 	if (cycle > 0xFFFF) {
2753 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2754 		return -EINVAL;
2755 	}
2756 
2757 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2758 	if (cycle > 0xFFFF) {
2759 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2760 		return -EINVAL;
2761 	}
2762 
2763 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2764 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2765 
2766 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2767 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2768 
2769 	fec_enet_itr_coal_set(ndev);
2770 
2771 	return 0;
2772 }
2773 
2774 static void fec_enet_itr_coal_init(struct net_device *ndev)
2775 {
2776 	struct ethtool_coalesce ec;
2777 
2778 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2779 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2780 
2781 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2782 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2783 
2784 	fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2785 }
2786 
2787 static int fec_enet_get_tunable(struct net_device *netdev,
2788 				const struct ethtool_tunable *tuna,
2789 				void *data)
2790 {
2791 	struct fec_enet_private *fep = netdev_priv(netdev);
2792 	int ret = 0;
2793 
2794 	switch (tuna->id) {
2795 	case ETHTOOL_RX_COPYBREAK:
2796 		*(u32 *)data = fep->rx_copybreak;
2797 		break;
2798 	default:
2799 		ret = -EINVAL;
2800 		break;
2801 	}
2802 
2803 	return ret;
2804 }
2805 
2806 static int fec_enet_set_tunable(struct net_device *netdev,
2807 				const struct ethtool_tunable *tuna,
2808 				const void *data)
2809 {
2810 	struct fec_enet_private *fep = netdev_priv(netdev);
2811 	int ret = 0;
2812 
2813 	switch (tuna->id) {
2814 	case ETHTOOL_RX_COPYBREAK:
2815 		fep->rx_copybreak = *(u32 *)data;
2816 		break;
2817 	default:
2818 		ret = -EINVAL;
2819 		break;
2820 	}
2821 
2822 	return ret;
2823 }
2824 
2825 /* LPI Sleep Ts count base on tx clk (clk_ref).
2826  * The lpi sleep cnt value = X us / (cycle_ns).
2827  */
2828 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2829 {
2830 	struct fec_enet_private *fep = netdev_priv(ndev);
2831 
2832 	return us * (fep->clk_ref_rate / 1000) / 1000;
2833 }
2834 
2835 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2836 {
2837 	struct fec_enet_private *fep = netdev_priv(ndev);
2838 	struct ethtool_eee *p = &fep->eee;
2839 	unsigned int sleep_cycle, wake_cycle;
2840 	int ret = 0;
2841 
2842 	if (enable) {
2843 		ret = phy_init_eee(ndev->phydev, false);
2844 		if (ret)
2845 			return ret;
2846 
2847 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2848 		wake_cycle = sleep_cycle;
2849 	} else {
2850 		sleep_cycle = 0;
2851 		wake_cycle = 0;
2852 	}
2853 
2854 	p->tx_lpi_enabled = enable;
2855 	p->eee_enabled = enable;
2856 	p->eee_active = enable;
2857 
2858 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2859 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2860 
2861 	return 0;
2862 }
2863 
2864 static int
2865 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2866 {
2867 	struct fec_enet_private *fep = netdev_priv(ndev);
2868 	struct ethtool_eee *p = &fep->eee;
2869 
2870 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2871 		return -EOPNOTSUPP;
2872 
2873 	if (!netif_running(ndev))
2874 		return -ENETDOWN;
2875 
2876 	edata->eee_enabled = p->eee_enabled;
2877 	edata->eee_active = p->eee_active;
2878 	edata->tx_lpi_timer = p->tx_lpi_timer;
2879 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
2880 
2881 	return phy_ethtool_get_eee(ndev->phydev, edata);
2882 }
2883 
2884 static int
2885 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2886 {
2887 	struct fec_enet_private *fep = netdev_priv(ndev);
2888 	struct ethtool_eee *p = &fep->eee;
2889 	int ret = 0;
2890 
2891 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2892 		return -EOPNOTSUPP;
2893 
2894 	if (!netif_running(ndev))
2895 		return -ENETDOWN;
2896 
2897 	p->tx_lpi_timer = edata->tx_lpi_timer;
2898 
2899 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
2900 	    !edata->tx_lpi_timer)
2901 		ret = fec_enet_eee_mode_set(ndev, false);
2902 	else
2903 		ret = fec_enet_eee_mode_set(ndev, true);
2904 
2905 	if (ret)
2906 		return ret;
2907 
2908 	return phy_ethtool_set_eee(ndev->phydev, edata);
2909 }
2910 
2911 static void
2912 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2913 {
2914 	struct fec_enet_private *fep = netdev_priv(ndev);
2915 
2916 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2917 		wol->supported = WAKE_MAGIC;
2918 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2919 	} else {
2920 		wol->supported = wol->wolopts = 0;
2921 	}
2922 }
2923 
2924 static int
2925 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2926 {
2927 	struct fec_enet_private *fep = netdev_priv(ndev);
2928 
2929 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2930 		return -EINVAL;
2931 
2932 	if (wol->wolopts & ~WAKE_MAGIC)
2933 		return -EINVAL;
2934 
2935 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2936 	if (device_may_wakeup(&ndev->dev))
2937 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2938 	else
2939 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2940 
2941 	return 0;
2942 }
2943 
2944 static const struct ethtool_ops fec_enet_ethtool_ops = {
2945 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2946 				     ETHTOOL_COALESCE_MAX_FRAMES,
2947 	.get_drvinfo		= fec_enet_get_drvinfo,
2948 	.get_regs_len		= fec_enet_get_regs_len,
2949 	.get_regs		= fec_enet_get_regs,
2950 	.nway_reset		= phy_ethtool_nway_reset,
2951 	.get_link		= ethtool_op_get_link,
2952 	.get_coalesce		= fec_enet_get_coalesce,
2953 	.set_coalesce		= fec_enet_set_coalesce,
2954 #ifndef CONFIG_M5272
2955 	.get_pauseparam		= fec_enet_get_pauseparam,
2956 	.set_pauseparam		= fec_enet_set_pauseparam,
2957 	.get_strings		= fec_enet_get_strings,
2958 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2959 	.get_sset_count		= fec_enet_get_sset_count,
2960 #endif
2961 	.get_ts_info		= fec_enet_get_ts_info,
2962 	.get_tunable		= fec_enet_get_tunable,
2963 	.set_tunable		= fec_enet_set_tunable,
2964 	.get_wol		= fec_enet_get_wol,
2965 	.set_wol		= fec_enet_set_wol,
2966 	.get_eee		= fec_enet_get_eee,
2967 	.set_eee		= fec_enet_set_eee,
2968 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2969 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2970 	.self_test		= net_selftest,
2971 };
2972 
2973 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2974 {
2975 	struct fec_enet_private *fep = netdev_priv(ndev);
2976 	struct phy_device *phydev = ndev->phydev;
2977 
2978 	if (!netif_running(ndev))
2979 		return -EINVAL;
2980 
2981 	if (!phydev)
2982 		return -ENODEV;
2983 
2984 	if (fep->bufdesc_ex) {
2985 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2986 
2987 		if (cmd == SIOCSHWTSTAMP) {
2988 			if (use_fec_hwts)
2989 				return fec_ptp_set(ndev, rq);
2990 			fec_ptp_disable_hwts(ndev);
2991 		} else if (cmd == SIOCGHWTSTAMP) {
2992 			if (use_fec_hwts)
2993 				return fec_ptp_get(ndev, rq);
2994 		}
2995 	}
2996 
2997 	return phy_mii_ioctl(phydev, rq, cmd);
2998 }
2999 
3000 static void fec_enet_free_buffers(struct net_device *ndev)
3001 {
3002 	struct fec_enet_private *fep = netdev_priv(ndev);
3003 	unsigned int i;
3004 	struct sk_buff *skb;
3005 	struct bufdesc	*bdp;
3006 	struct fec_enet_priv_tx_q *txq;
3007 	struct fec_enet_priv_rx_q *rxq;
3008 	unsigned int q;
3009 
3010 	for (q = 0; q < fep->num_rx_queues; q++) {
3011 		rxq = fep->rx_queue[q];
3012 		bdp = rxq->bd.base;
3013 		for (i = 0; i < rxq->bd.ring_size; i++) {
3014 			skb = rxq->rx_skbuff[i];
3015 			rxq->rx_skbuff[i] = NULL;
3016 			if (skb) {
3017 				dma_unmap_single(&fep->pdev->dev,
3018 						 fec32_to_cpu(bdp->cbd_bufaddr),
3019 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
3020 						 DMA_FROM_DEVICE);
3021 				dev_kfree_skb(skb);
3022 			}
3023 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3024 		}
3025 	}
3026 
3027 	for (q = 0; q < fep->num_tx_queues; q++) {
3028 		txq = fep->tx_queue[q];
3029 		for (i = 0; i < txq->bd.ring_size; i++) {
3030 			kfree(txq->tx_bounce[i]);
3031 			txq->tx_bounce[i] = NULL;
3032 			skb = txq->tx_skbuff[i];
3033 			txq->tx_skbuff[i] = NULL;
3034 			dev_kfree_skb(skb);
3035 		}
3036 	}
3037 }
3038 
3039 static void fec_enet_free_queue(struct net_device *ndev)
3040 {
3041 	struct fec_enet_private *fep = netdev_priv(ndev);
3042 	int i;
3043 	struct fec_enet_priv_tx_q *txq;
3044 
3045 	for (i = 0; i < fep->num_tx_queues; i++)
3046 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3047 			txq = fep->tx_queue[i];
3048 			dma_free_coherent(&fep->pdev->dev,
3049 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3050 					  txq->tso_hdrs,
3051 					  txq->tso_hdrs_dma);
3052 		}
3053 
3054 	for (i = 0; i < fep->num_rx_queues; i++)
3055 		kfree(fep->rx_queue[i]);
3056 	for (i = 0; i < fep->num_tx_queues; i++)
3057 		kfree(fep->tx_queue[i]);
3058 }
3059 
3060 static int fec_enet_alloc_queue(struct net_device *ndev)
3061 {
3062 	struct fec_enet_private *fep = netdev_priv(ndev);
3063 	int i;
3064 	int ret = 0;
3065 	struct fec_enet_priv_tx_q *txq;
3066 
3067 	for (i = 0; i < fep->num_tx_queues; i++) {
3068 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3069 		if (!txq) {
3070 			ret = -ENOMEM;
3071 			goto alloc_failed;
3072 		}
3073 
3074 		fep->tx_queue[i] = txq;
3075 		txq->bd.ring_size = TX_RING_SIZE;
3076 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3077 
3078 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3079 		txq->tx_wake_threshold =
3080 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3081 
3082 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3083 					txq->bd.ring_size * TSO_HEADER_SIZE,
3084 					&txq->tso_hdrs_dma,
3085 					GFP_KERNEL);
3086 		if (!txq->tso_hdrs) {
3087 			ret = -ENOMEM;
3088 			goto alloc_failed;
3089 		}
3090 	}
3091 
3092 	for (i = 0; i < fep->num_rx_queues; i++) {
3093 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3094 					   GFP_KERNEL);
3095 		if (!fep->rx_queue[i]) {
3096 			ret = -ENOMEM;
3097 			goto alloc_failed;
3098 		}
3099 
3100 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3101 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3102 	}
3103 	return ret;
3104 
3105 alloc_failed:
3106 	fec_enet_free_queue(ndev);
3107 	return ret;
3108 }
3109 
3110 static int
3111 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3112 {
3113 	struct fec_enet_private *fep = netdev_priv(ndev);
3114 	unsigned int i;
3115 	struct sk_buff *skb;
3116 	struct bufdesc	*bdp;
3117 	struct fec_enet_priv_rx_q *rxq;
3118 
3119 	rxq = fep->rx_queue[queue];
3120 	bdp = rxq->bd.base;
3121 	for (i = 0; i < rxq->bd.ring_size; i++) {
3122 		skb = __netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE, GFP_KERNEL);
3123 		if (!skb)
3124 			goto err_alloc;
3125 
3126 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
3127 			dev_kfree_skb(skb);
3128 			goto err_alloc;
3129 		}
3130 
3131 		rxq->rx_skbuff[i] = skb;
3132 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3133 
3134 		if (fep->bufdesc_ex) {
3135 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3136 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3137 		}
3138 
3139 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3140 	}
3141 
3142 	/* Set the last buffer to wrap. */
3143 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3144 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3145 	return 0;
3146 
3147  err_alloc:
3148 	fec_enet_free_buffers(ndev);
3149 	return -ENOMEM;
3150 }
3151 
3152 static int
3153 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3154 {
3155 	struct fec_enet_private *fep = netdev_priv(ndev);
3156 	unsigned int i;
3157 	struct bufdesc  *bdp;
3158 	struct fec_enet_priv_tx_q *txq;
3159 
3160 	txq = fep->tx_queue[queue];
3161 	bdp = txq->bd.base;
3162 	for (i = 0; i < txq->bd.ring_size; i++) {
3163 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3164 		if (!txq->tx_bounce[i])
3165 			goto err_alloc;
3166 
3167 		bdp->cbd_sc = cpu_to_fec16(0);
3168 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3169 
3170 		if (fep->bufdesc_ex) {
3171 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3172 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3173 		}
3174 
3175 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3176 	}
3177 
3178 	/* Set the last buffer to wrap. */
3179 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3180 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3181 
3182 	return 0;
3183 
3184  err_alloc:
3185 	fec_enet_free_buffers(ndev);
3186 	return -ENOMEM;
3187 }
3188 
3189 static int fec_enet_alloc_buffers(struct net_device *ndev)
3190 {
3191 	struct fec_enet_private *fep = netdev_priv(ndev);
3192 	unsigned int i;
3193 
3194 	for (i = 0; i < fep->num_rx_queues; i++)
3195 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3196 			return -ENOMEM;
3197 
3198 	for (i = 0; i < fep->num_tx_queues; i++)
3199 		if (fec_enet_alloc_txq_buffers(ndev, i))
3200 			return -ENOMEM;
3201 	return 0;
3202 }
3203 
3204 static int
3205 fec_enet_open(struct net_device *ndev)
3206 {
3207 	struct fec_enet_private *fep = netdev_priv(ndev);
3208 	int ret;
3209 	bool reset_again;
3210 
3211 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3212 	if (ret < 0)
3213 		return ret;
3214 
3215 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3216 	ret = fec_enet_clk_enable(ndev, true);
3217 	if (ret)
3218 		goto clk_enable;
3219 
3220 	/* During the first fec_enet_open call the PHY isn't probed at this
3221 	 * point. Therefore the phy_reset_after_clk_enable() call within
3222 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3223 	 * sure the PHY is working correctly we check if we need to reset again
3224 	 * later when the PHY is probed
3225 	 */
3226 	if (ndev->phydev && ndev->phydev->drv)
3227 		reset_again = false;
3228 	else
3229 		reset_again = true;
3230 
3231 	/* I should reset the ring buffers here, but I don't yet know
3232 	 * a simple way to do that.
3233 	 */
3234 
3235 	ret = fec_enet_alloc_buffers(ndev);
3236 	if (ret)
3237 		goto err_enet_alloc;
3238 
3239 	/* Init MAC prior to mii bus probe */
3240 	fec_restart(ndev);
3241 
3242 	/* Call phy_reset_after_clk_enable() again if it failed during
3243 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3244 	 */
3245 	if (reset_again)
3246 		fec_enet_phy_reset_after_clk_enable(ndev);
3247 
3248 	/* Probe and connect to PHY when open the interface */
3249 	ret = fec_enet_mii_probe(ndev);
3250 	if (ret)
3251 		goto err_enet_mii_probe;
3252 
3253 	if (fep->quirks & FEC_QUIRK_ERR006687)
3254 		imx6q_cpuidle_fec_irqs_used();
3255 
3256 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3257 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3258 
3259 	napi_enable(&fep->napi);
3260 	phy_start(ndev->phydev);
3261 	netif_tx_start_all_queues(ndev);
3262 
3263 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3264 				 FEC_WOL_FLAG_ENABLE);
3265 
3266 	return 0;
3267 
3268 err_enet_mii_probe:
3269 	fec_enet_free_buffers(ndev);
3270 err_enet_alloc:
3271 	fec_enet_clk_enable(ndev, false);
3272 clk_enable:
3273 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3274 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3275 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3276 	return ret;
3277 }
3278 
3279 static int
3280 fec_enet_close(struct net_device *ndev)
3281 {
3282 	struct fec_enet_private *fep = netdev_priv(ndev);
3283 
3284 	phy_stop(ndev->phydev);
3285 
3286 	if (netif_device_present(ndev)) {
3287 		napi_disable(&fep->napi);
3288 		netif_tx_disable(ndev);
3289 		fec_stop(ndev);
3290 	}
3291 
3292 	phy_disconnect(ndev->phydev);
3293 
3294 	if (fep->quirks & FEC_QUIRK_ERR006687)
3295 		imx6q_cpuidle_fec_irqs_unused();
3296 
3297 	fec_enet_update_ethtool_stats(ndev);
3298 
3299 	fec_enet_clk_enable(ndev, false);
3300 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3301 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3302 
3303 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3304 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3305 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3306 
3307 	fec_enet_free_buffers(ndev);
3308 
3309 	return 0;
3310 }
3311 
3312 /* Set or clear the multicast filter for this adaptor.
3313  * Skeleton taken from sunlance driver.
3314  * The CPM Ethernet implementation allows Multicast as well as individual
3315  * MAC address filtering.  Some of the drivers check to make sure it is
3316  * a group multicast address, and discard those that are not.  I guess I
3317  * will do the same for now, but just remove the test if you want
3318  * individual filtering as well (do the upper net layers want or support
3319  * this kind of feature?).
3320  */
3321 
3322 #define FEC_HASH_BITS	6		/* #bits in hash */
3323 
3324 static void set_multicast_list(struct net_device *ndev)
3325 {
3326 	struct fec_enet_private *fep = netdev_priv(ndev);
3327 	struct netdev_hw_addr *ha;
3328 	unsigned int crc, tmp;
3329 	unsigned char hash;
3330 	unsigned int hash_high = 0, hash_low = 0;
3331 
3332 	if (ndev->flags & IFF_PROMISC) {
3333 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3334 		tmp |= 0x8;
3335 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3336 		return;
3337 	}
3338 
3339 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3340 	tmp &= ~0x8;
3341 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3342 
3343 	if (ndev->flags & IFF_ALLMULTI) {
3344 		/* Catch all multicast addresses, so set the
3345 		 * filter to all 1's
3346 		 */
3347 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3348 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3349 
3350 		return;
3351 	}
3352 
3353 	/* Add the addresses in hash register */
3354 	netdev_for_each_mc_addr(ha, ndev) {
3355 		/* calculate crc32 value of mac address */
3356 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3357 
3358 		/* only upper 6 bits (FEC_HASH_BITS) are used
3359 		 * which point to specific bit in the hash registers
3360 		 */
3361 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3362 
3363 		if (hash > 31)
3364 			hash_high |= 1 << (hash - 32);
3365 		else
3366 			hash_low |= 1 << hash;
3367 	}
3368 
3369 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3370 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3371 }
3372 
3373 /* Set a MAC change in hardware. */
3374 static int
3375 fec_set_mac_address(struct net_device *ndev, void *p)
3376 {
3377 	struct fec_enet_private *fep = netdev_priv(ndev);
3378 	struct sockaddr *addr = p;
3379 
3380 	if (addr) {
3381 		if (!is_valid_ether_addr(addr->sa_data))
3382 			return -EADDRNOTAVAIL;
3383 		eth_hw_addr_set(ndev, addr->sa_data);
3384 	}
3385 
3386 	/* Add netif status check here to avoid system hang in below case:
3387 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3388 	 * After ethx down, fec all clocks are gated off and then register
3389 	 * access causes system hang.
3390 	 */
3391 	if (!netif_running(ndev))
3392 		return 0;
3393 
3394 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3395 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3396 		fep->hwp + FEC_ADDR_LOW);
3397 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3398 		fep->hwp + FEC_ADDR_HIGH);
3399 	return 0;
3400 }
3401 
3402 #ifdef CONFIG_NET_POLL_CONTROLLER
3403 /**
3404  * fec_poll_controller - FEC Poll controller function
3405  * @dev: The FEC network adapter
3406  *
3407  * Polled functionality used by netconsole and others in non interrupt mode
3408  *
3409  */
3410 static void fec_poll_controller(struct net_device *dev)
3411 {
3412 	int i;
3413 	struct fec_enet_private *fep = netdev_priv(dev);
3414 
3415 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3416 		if (fep->irq[i] > 0) {
3417 			disable_irq(fep->irq[i]);
3418 			fec_enet_interrupt(fep->irq[i], dev);
3419 			enable_irq(fep->irq[i]);
3420 		}
3421 	}
3422 }
3423 #endif
3424 
3425 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3426 	netdev_features_t features)
3427 {
3428 	struct fec_enet_private *fep = netdev_priv(netdev);
3429 	netdev_features_t changed = features ^ netdev->features;
3430 
3431 	netdev->features = features;
3432 
3433 	/* Receive checksum has been changed */
3434 	if (changed & NETIF_F_RXCSUM) {
3435 		if (features & NETIF_F_RXCSUM)
3436 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3437 		else
3438 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3439 	}
3440 }
3441 
3442 static int fec_set_features(struct net_device *netdev,
3443 	netdev_features_t features)
3444 {
3445 	struct fec_enet_private *fep = netdev_priv(netdev);
3446 	netdev_features_t changed = features ^ netdev->features;
3447 
3448 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3449 		napi_disable(&fep->napi);
3450 		netif_tx_lock_bh(netdev);
3451 		fec_stop(netdev);
3452 		fec_enet_set_netdev_features(netdev, features);
3453 		fec_restart(netdev);
3454 		netif_tx_wake_all_queues(netdev);
3455 		netif_tx_unlock_bh(netdev);
3456 		napi_enable(&fep->napi);
3457 	} else {
3458 		fec_enet_set_netdev_features(netdev, features);
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3465 {
3466 	struct vlan_ethhdr *vhdr;
3467 	unsigned short vlan_TCI = 0;
3468 
3469 	if (skb->protocol == htons(ETH_P_ALL)) {
3470 		vhdr = (struct vlan_ethhdr *)(skb->data);
3471 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3472 	}
3473 
3474 	return vlan_TCI;
3475 }
3476 
3477 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3478 				 struct net_device *sb_dev)
3479 {
3480 	struct fec_enet_private *fep = netdev_priv(ndev);
3481 	u16 vlan_tag;
3482 
3483 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3484 		return netdev_pick_tx(ndev, skb, NULL);
3485 
3486 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3487 	if (!vlan_tag)
3488 		return vlan_tag;
3489 
3490 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3491 }
3492 
3493 static const struct net_device_ops fec_netdev_ops = {
3494 	.ndo_open		= fec_enet_open,
3495 	.ndo_stop		= fec_enet_close,
3496 	.ndo_start_xmit		= fec_enet_start_xmit,
3497 	.ndo_select_queue       = fec_enet_select_queue,
3498 	.ndo_set_rx_mode	= set_multicast_list,
3499 	.ndo_validate_addr	= eth_validate_addr,
3500 	.ndo_tx_timeout		= fec_timeout,
3501 	.ndo_set_mac_address	= fec_set_mac_address,
3502 	.ndo_eth_ioctl		= fec_enet_ioctl,
3503 #ifdef CONFIG_NET_POLL_CONTROLLER
3504 	.ndo_poll_controller	= fec_poll_controller,
3505 #endif
3506 	.ndo_set_features	= fec_set_features,
3507 };
3508 
3509 static const unsigned short offset_des_active_rxq[] = {
3510 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3511 };
3512 
3513 static const unsigned short offset_des_active_txq[] = {
3514 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3515 };
3516 
3517  /*
3518   * XXX:  We need to clean up on failure exits here.
3519   *
3520   */
3521 static int fec_enet_init(struct net_device *ndev)
3522 {
3523 	struct fec_enet_private *fep = netdev_priv(ndev);
3524 	struct bufdesc *cbd_base;
3525 	dma_addr_t bd_dma;
3526 	int bd_size;
3527 	unsigned int i;
3528 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3529 			sizeof(struct bufdesc);
3530 	unsigned dsize_log2 = __fls(dsize);
3531 	int ret;
3532 
3533 	WARN_ON(dsize != (1 << dsize_log2));
3534 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3535 	fep->rx_align = 0xf;
3536 	fep->tx_align = 0xf;
3537 #else
3538 	fep->rx_align = 0x3;
3539 	fep->tx_align = 0x3;
3540 #endif
3541 
3542 	/* Check mask of the streaming and coherent API */
3543 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3544 	if (ret < 0) {
3545 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3546 		return ret;
3547 	}
3548 
3549 	ret = fec_enet_alloc_queue(ndev);
3550 	if (ret)
3551 		return ret;
3552 
3553 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3554 
3555 	/* Allocate memory for buffer descriptors. */
3556 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3557 				       GFP_KERNEL);
3558 	if (!cbd_base) {
3559 		ret = -ENOMEM;
3560 		goto free_queue_mem;
3561 	}
3562 
3563 	/* Get the Ethernet address */
3564 	ret = fec_get_mac(ndev);
3565 	if (ret)
3566 		goto free_queue_mem;
3567 
3568 	/* make sure MAC we just acquired is programmed into the hw */
3569 	fec_set_mac_address(ndev, NULL);
3570 
3571 	/* Set receive and transmit descriptor base. */
3572 	for (i = 0; i < fep->num_rx_queues; i++) {
3573 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3574 		unsigned size = dsize * rxq->bd.ring_size;
3575 
3576 		rxq->bd.qid = i;
3577 		rxq->bd.base = cbd_base;
3578 		rxq->bd.cur = cbd_base;
3579 		rxq->bd.dma = bd_dma;
3580 		rxq->bd.dsize = dsize;
3581 		rxq->bd.dsize_log2 = dsize_log2;
3582 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3583 		bd_dma += size;
3584 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3585 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3586 	}
3587 
3588 	for (i = 0; i < fep->num_tx_queues; i++) {
3589 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3590 		unsigned size = dsize * txq->bd.ring_size;
3591 
3592 		txq->bd.qid = i;
3593 		txq->bd.base = cbd_base;
3594 		txq->bd.cur = cbd_base;
3595 		txq->bd.dma = bd_dma;
3596 		txq->bd.dsize = dsize;
3597 		txq->bd.dsize_log2 = dsize_log2;
3598 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3599 		bd_dma += size;
3600 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3601 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3602 	}
3603 
3604 
3605 	/* The FEC Ethernet specific entries in the device structure */
3606 	ndev->watchdog_timeo = TX_TIMEOUT;
3607 	ndev->netdev_ops = &fec_netdev_ops;
3608 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3609 
3610 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3611 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
3612 
3613 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3614 		/* enable hw VLAN support */
3615 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3616 
3617 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3618 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
3619 
3620 		/* enable hw accelerator */
3621 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3622 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3623 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3624 	}
3625 
3626 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3627 		fep->tx_align = 0;
3628 		fep->rx_align = 0x3f;
3629 	}
3630 
3631 	ndev->hw_features = ndev->features;
3632 
3633 	fec_restart(ndev);
3634 
3635 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3636 		fec_enet_clear_ethtool_stats(ndev);
3637 	else
3638 		fec_enet_update_ethtool_stats(ndev);
3639 
3640 	return 0;
3641 
3642 free_queue_mem:
3643 	fec_enet_free_queue(ndev);
3644 	return ret;
3645 }
3646 
3647 #ifdef CONFIG_OF
3648 static int fec_reset_phy(struct platform_device *pdev)
3649 {
3650 	int err, phy_reset;
3651 	bool active_high = false;
3652 	int msec = 1, phy_post_delay = 0;
3653 	struct device_node *np = pdev->dev.of_node;
3654 
3655 	if (!np)
3656 		return 0;
3657 
3658 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3659 	/* A sane reset duration should not be longer than 1s */
3660 	if (!err && msec > 1000)
3661 		msec = 1;
3662 
3663 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3664 	if (phy_reset == -EPROBE_DEFER)
3665 		return phy_reset;
3666 	else if (!gpio_is_valid(phy_reset))
3667 		return 0;
3668 
3669 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3670 	/* valid reset duration should be less than 1s */
3671 	if (!err && phy_post_delay > 1000)
3672 		return -EINVAL;
3673 
3674 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3675 
3676 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3677 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3678 			"phy-reset");
3679 	if (err) {
3680 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3681 		return err;
3682 	}
3683 
3684 	if (msec > 20)
3685 		msleep(msec);
3686 	else
3687 		usleep_range(msec * 1000, msec * 1000 + 1000);
3688 
3689 	gpio_set_value_cansleep(phy_reset, !active_high);
3690 
3691 	if (!phy_post_delay)
3692 		return 0;
3693 
3694 	if (phy_post_delay > 20)
3695 		msleep(phy_post_delay);
3696 	else
3697 		usleep_range(phy_post_delay * 1000,
3698 			     phy_post_delay * 1000 + 1000);
3699 
3700 	return 0;
3701 }
3702 #else /* CONFIG_OF */
3703 static int fec_reset_phy(struct platform_device *pdev)
3704 {
3705 	/*
3706 	 * In case of platform probe, the reset has been done
3707 	 * by machine code.
3708 	 */
3709 	return 0;
3710 }
3711 #endif /* CONFIG_OF */
3712 
3713 static void
3714 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3715 {
3716 	struct device_node *np = pdev->dev.of_node;
3717 
3718 	*num_tx = *num_rx = 1;
3719 
3720 	if (!np || !of_device_is_available(np))
3721 		return;
3722 
3723 	/* parse the num of tx and rx queues */
3724 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3725 
3726 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3727 
3728 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3729 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3730 			 *num_tx);
3731 		*num_tx = 1;
3732 		return;
3733 	}
3734 
3735 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3736 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3737 			 *num_rx);
3738 		*num_rx = 1;
3739 		return;
3740 	}
3741 
3742 }
3743 
3744 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3745 {
3746 	int irq_cnt = platform_irq_count(pdev);
3747 
3748 	if (irq_cnt > FEC_IRQ_NUM)
3749 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3750 	else if (irq_cnt == 2)
3751 		irq_cnt = 1;	/* last for pps */
3752 	else if (irq_cnt <= 0)
3753 		irq_cnt = 1;	/* At least 1 irq is needed */
3754 	return irq_cnt;
3755 }
3756 
3757 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
3758 {
3759 	struct net_device *ndev = platform_get_drvdata(pdev);
3760 	struct fec_enet_private *fep = netdev_priv(ndev);
3761 
3762 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
3763 		fep->wake_irq = fep->irq[2];
3764 	else
3765 		fep->wake_irq = fep->irq[0];
3766 }
3767 
3768 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3769 				   struct device_node *np)
3770 {
3771 	struct device_node *gpr_np;
3772 	u32 out_val[3];
3773 	int ret = 0;
3774 
3775 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3776 	if (!gpr_np)
3777 		return 0;
3778 
3779 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3780 					 ARRAY_SIZE(out_val));
3781 	if (ret) {
3782 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3783 		goto out;
3784 	}
3785 
3786 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3787 	if (IS_ERR(fep->stop_gpr.gpr)) {
3788 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3789 		ret = PTR_ERR(fep->stop_gpr.gpr);
3790 		fep->stop_gpr.gpr = NULL;
3791 		goto out;
3792 	}
3793 
3794 	fep->stop_gpr.reg = out_val[1];
3795 	fep->stop_gpr.bit = out_val[2];
3796 
3797 out:
3798 	of_node_put(gpr_np);
3799 
3800 	return ret;
3801 }
3802 
3803 static int
3804 fec_probe(struct platform_device *pdev)
3805 {
3806 	struct fec_enet_private *fep;
3807 	struct fec_platform_data *pdata;
3808 	phy_interface_t interface;
3809 	struct net_device *ndev;
3810 	int i, irq, ret = 0;
3811 	const struct of_device_id *of_id;
3812 	static int dev_id;
3813 	struct device_node *np = pdev->dev.of_node, *phy_node;
3814 	int num_tx_qs;
3815 	int num_rx_qs;
3816 	char irq_name[8];
3817 	int irq_cnt;
3818 	struct fec_devinfo *dev_info;
3819 
3820 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3821 
3822 	/* Init network device */
3823 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3824 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3825 	if (!ndev)
3826 		return -ENOMEM;
3827 
3828 	SET_NETDEV_DEV(ndev, &pdev->dev);
3829 
3830 	/* setup board info structure */
3831 	fep = netdev_priv(ndev);
3832 
3833 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3834 	if (of_id)
3835 		pdev->id_entry = of_id->data;
3836 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3837 	if (dev_info)
3838 		fep->quirks = dev_info->quirks;
3839 
3840 	fep->netdev = ndev;
3841 	fep->num_rx_queues = num_rx_qs;
3842 	fep->num_tx_queues = num_tx_qs;
3843 
3844 #if !defined(CONFIG_M5272)
3845 	/* default enable pause frame auto negotiation */
3846 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3847 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3848 #endif
3849 
3850 	/* Select default pin state */
3851 	pinctrl_pm_select_default_state(&pdev->dev);
3852 
3853 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3854 	if (IS_ERR(fep->hwp)) {
3855 		ret = PTR_ERR(fep->hwp);
3856 		goto failed_ioremap;
3857 	}
3858 
3859 	fep->pdev = pdev;
3860 	fep->dev_id = dev_id++;
3861 
3862 	platform_set_drvdata(pdev, ndev);
3863 
3864 	if ((of_machine_is_compatible("fsl,imx6q") ||
3865 	     of_machine_is_compatible("fsl,imx6dl")) &&
3866 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3867 		fep->quirks |= FEC_QUIRK_ERR006687;
3868 
3869 	ret = fec_enet_ipc_handle_init(fep);
3870 	if (ret)
3871 		goto failed_ipc_init;
3872 
3873 	if (of_get_property(np, "fsl,magic-packet", NULL))
3874 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3875 
3876 	ret = fec_enet_init_stop_mode(fep, np);
3877 	if (ret)
3878 		goto failed_stop_mode;
3879 
3880 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3881 	if (!phy_node && of_phy_is_fixed_link(np)) {
3882 		ret = of_phy_register_fixed_link(np);
3883 		if (ret < 0) {
3884 			dev_err(&pdev->dev,
3885 				"broken fixed-link specification\n");
3886 			goto failed_phy;
3887 		}
3888 		phy_node = of_node_get(np);
3889 	}
3890 	fep->phy_node = phy_node;
3891 
3892 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3893 	if (ret) {
3894 		pdata = dev_get_platdata(&pdev->dev);
3895 		if (pdata)
3896 			fep->phy_interface = pdata->phy;
3897 		else
3898 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3899 	} else {
3900 		fep->phy_interface = interface;
3901 	}
3902 
3903 	ret = fec_enet_parse_rgmii_delay(fep, np);
3904 	if (ret)
3905 		goto failed_rgmii_delay;
3906 
3907 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3908 	if (IS_ERR(fep->clk_ipg)) {
3909 		ret = PTR_ERR(fep->clk_ipg);
3910 		goto failed_clk;
3911 	}
3912 
3913 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3914 	if (IS_ERR(fep->clk_ahb)) {
3915 		ret = PTR_ERR(fep->clk_ahb);
3916 		goto failed_clk;
3917 	}
3918 
3919 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3920 
3921 	/* enet_out is optional, depends on board */
3922 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
3923 	if (IS_ERR(fep->clk_enet_out)) {
3924 		ret = PTR_ERR(fep->clk_enet_out);
3925 		goto failed_clk;
3926 	}
3927 
3928 	fep->ptp_clk_on = false;
3929 	mutex_init(&fep->ptp_clk_mutex);
3930 
3931 	/* clk_ref is optional, depends on board */
3932 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
3933 	if (IS_ERR(fep->clk_ref)) {
3934 		ret = PTR_ERR(fep->clk_ref);
3935 		goto failed_clk;
3936 	}
3937 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
3938 
3939 	/* clk_2x_txclk is optional, depends on board */
3940 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
3941 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
3942 		if (IS_ERR(fep->clk_2x_txclk))
3943 			fep->clk_2x_txclk = NULL;
3944 	}
3945 
3946 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3947 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3948 	if (IS_ERR(fep->clk_ptp)) {
3949 		fep->clk_ptp = NULL;
3950 		fep->bufdesc_ex = false;
3951 	}
3952 
3953 	ret = fec_enet_clk_enable(ndev, true);
3954 	if (ret)
3955 		goto failed_clk;
3956 
3957 	ret = clk_prepare_enable(fep->clk_ipg);
3958 	if (ret)
3959 		goto failed_clk_ipg;
3960 	ret = clk_prepare_enable(fep->clk_ahb);
3961 	if (ret)
3962 		goto failed_clk_ahb;
3963 
3964 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3965 	if (!IS_ERR(fep->reg_phy)) {
3966 		ret = regulator_enable(fep->reg_phy);
3967 		if (ret) {
3968 			dev_err(&pdev->dev,
3969 				"Failed to enable phy regulator: %d\n", ret);
3970 			goto failed_regulator;
3971 		}
3972 	} else {
3973 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3974 			ret = -EPROBE_DEFER;
3975 			goto failed_regulator;
3976 		}
3977 		fep->reg_phy = NULL;
3978 	}
3979 
3980 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3981 	pm_runtime_use_autosuspend(&pdev->dev);
3982 	pm_runtime_get_noresume(&pdev->dev);
3983 	pm_runtime_set_active(&pdev->dev);
3984 	pm_runtime_enable(&pdev->dev);
3985 
3986 	ret = fec_reset_phy(pdev);
3987 	if (ret)
3988 		goto failed_reset;
3989 
3990 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3991 	if (fep->bufdesc_ex)
3992 		fec_ptp_init(pdev, irq_cnt);
3993 
3994 	ret = fec_enet_init(ndev);
3995 	if (ret)
3996 		goto failed_init;
3997 
3998 	for (i = 0; i < irq_cnt; i++) {
3999 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4000 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4001 		if (irq < 0)
4002 			irq = platform_get_irq(pdev, i);
4003 		if (irq < 0) {
4004 			ret = irq;
4005 			goto failed_irq;
4006 		}
4007 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4008 				       0, pdev->name, ndev);
4009 		if (ret)
4010 			goto failed_irq;
4011 
4012 		fep->irq[i] = irq;
4013 	}
4014 
4015 	/* Decide which interrupt line is wakeup capable */
4016 	fec_enet_get_wakeup_irq(pdev);
4017 
4018 	ret = fec_enet_mii_init(pdev);
4019 	if (ret)
4020 		goto failed_mii_init;
4021 
4022 	/* Carrier starts down, phylib will bring it up */
4023 	netif_carrier_off(ndev);
4024 	fec_enet_clk_enable(ndev, false);
4025 	pinctrl_pm_select_sleep_state(&pdev->dev);
4026 
4027 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4028 
4029 	ret = register_netdev(ndev);
4030 	if (ret)
4031 		goto failed_register;
4032 
4033 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4034 			   FEC_WOL_HAS_MAGIC_PACKET);
4035 
4036 	if (fep->bufdesc_ex && fep->ptp_clock)
4037 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4038 
4039 	fep->rx_copybreak = COPYBREAK_DEFAULT;
4040 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4041 
4042 	pm_runtime_mark_last_busy(&pdev->dev);
4043 	pm_runtime_put_autosuspend(&pdev->dev);
4044 
4045 	return 0;
4046 
4047 failed_register:
4048 	fec_enet_mii_remove(fep);
4049 failed_mii_init:
4050 failed_irq:
4051 failed_init:
4052 	fec_ptp_stop(pdev);
4053 failed_reset:
4054 	pm_runtime_put_noidle(&pdev->dev);
4055 	pm_runtime_disable(&pdev->dev);
4056 	if (fep->reg_phy)
4057 		regulator_disable(fep->reg_phy);
4058 failed_regulator:
4059 	clk_disable_unprepare(fep->clk_ahb);
4060 failed_clk_ahb:
4061 	clk_disable_unprepare(fep->clk_ipg);
4062 failed_clk_ipg:
4063 	fec_enet_clk_enable(ndev, false);
4064 failed_clk:
4065 failed_rgmii_delay:
4066 	if (of_phy_is_fixed_link(np))
4067 		of_phy_deregister_fixed_link(np);
4068 	of_node_put(phy_node);
4069 failed_stop_mode:
4070 failed_ipc_init:
4071 failed_phy:
4072 	dev_id--;
4073 failed_ioremap:
4074 	free_netdev(ndev);
4075 
4076 	return ret;
4077 }
4078 
4079 static int
4080 fec_drv_remove(struct platform_device *pdev)
4081 {
4082 	struct net_device *ndev = platform_get_drvdata(pdev);
4083 	struct fec_enet_private *fep = netdev_priv(ndev);
4084 	struct device_node *np = pdev->dev.of_node;
4085 	int ret;
4086 
4087 	ret = pm_runtime_resume_and_get(&pdev->dev);
4088 	if (ret < 0)
4089 		return ret;
4090 
4091 	cancel_work_sync(&fep->tx_timeout_work);
4092 	fec_ptp_stop(pdev);
4093 	unregister_netdev(ndev);
4094 	fec_enet_mii_remove(fep);
4095 	if (fep->reg_phy)
4096 		regulator_disable(fep->reg_phy);
4097 
4098 	if (of_phy_is_fixed_link(np))
4099 		of_phy_deregister_fixed_link(np);
4100 	of_node_put(fep->phy_node);
4101 
4102 	clk_disable_unprepare(fep->clk_ahb);
4103 	clk_disable_unprepare(fep->clk_ipg);
4104 	pm_runtime_put_noidle(&pdev->dev);
4105 	pm_runtime_disable(&pdev->dev);
4106 
4107 	free_netdev(ndev);
4108 	return 0;
4109 }
4110 
4111 static int __maybe_unused fec_suspend(struct device *dev)
4112 {
4113 	struct net_device *ndev = dev_get_drvdata(dev);
4114 	struct fec_enet_private *fep = netdev_priv(ndev);
4115 	int ret;
4116 
4117 	rtnl_lock();
4118 	if (netif_running(ndev)) {
4119 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4120 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4121 		phy_stop(ndev->phydev);
4122 		napi_disable(&fep->napi);
4123 		netif_tx_lock_bh(ndev);
4124 		netif_device_detach(ndev);
4125 		netif_tx_unlock_bh(ndev);
4126 		fec_stop(ndev);
4127 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4128 			fec_irqs_disable(ndev);
4129 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4130 		} else {
4131 			fec_irqs_disable_except_wakeup(ndev);
4132 			if (fep->wake_irq > 0) {
4133 				disable_irq(fep->wake_irq);
4134 				enable_irq_wake(fep->wake_irq);
4135 			}
4136 			fec_enet_stop_mode(fep, true);
4137 		}
4138 		/* It's safe to disable clocks since interrupts are masked */
4139 		fec_enet_clk_enable(ndev, false);
4140 
4141 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4142 		if (fep->rpm_active) {
4143 			ret = pm_runtime_force_suspend(dev);
4144 			if (ret < 0) {
4145 				rtnl_unlock();
4146 				return ret;
4147 			}
4148 		}
4149 	}
4150 	rtnl_unlock();
4151 
4152 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4153 		regulator_disable(fep->reg_phy);
4154 
4155 	/* SOC supply clock to phy, when clock is disabled, phy link down
4156 	 * SOC control phy regulator, when regulator is disabled, phy link down
4157 	 */
4158 	if (fep->clk_enet_out || fep->reg_phy)
4159 		fep->link = 0;
4160 
4161 	return 0;
4162 }
4163 
4164 static int __maybe_unused fec_resume(struct device *dev)
4165 {
4166 	struct net_device *ndev = dev_get_drvdata(dev);
4167 	struct fec_enet_private *fep = netdev_priv(ndev);
4168 	int ret;
4169 	int val;
4170 
4171 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4172 		ret = regulator_enable(fep->reg_phy);
4173 		if (ret)
4174 			return ret;
4175 	}
4176 
4177 	rtnl_lock();
4178 	if (netif_running(ndev)) {
4179 		if (fep->rpm_active)
4180 			pm_runtime_force_resume(dev);
4181 
4182 		ret = fec_enet_clk_enable(ndev, true);
4183 		if (ret) {
4184 			rtnl_unlock();
4185 			goto failed_clk;
4186 		}
4187 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4188 			fec_enet_stop_mode(fep, false);
4189 			if (fep->wake_irq) {
4190 				disable_irq_wake(fep->wake_irq);
4191 				enable_irq(fep->wake_irq);
4192 			}
4193 
4194 			val = readl(fep->hwp + FEC_ECNTRL);
4195 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4196 			writel(val, fep->hwp + FEC_ECNTRL);
4197 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4198 		} else {
4199 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4200 		}
4201 		fec_restart(ndev);
4202 		netif_tx_lock_bh(ndev);
4203 		netif_device_attach(ndev);
4204 		netif_tx_unlock_bh(ndev);
4205 		napi_enable(&fep->napi);
4206 		phy_init_hw(ndev->phydev);
4207 		phy_start(ndev->phydev);
4208 	}
4209 	rtnl_unlock();
4210 
4211 	return 0;
4212 
4213 failed_clk:
4214 	if (fep->reg_phy)
4215 		regulator_disable(fep->reg_phy);
4216 	return ret;
4217 }
4218 
4219 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4220 {
4221 	struct net_device *ndev = dev_get_drvdata(dev);
4222 	struct fec_enet_private *fep = netdev_priv(ndev);
4223 
4224 	clk_disable_unprepare(fep->clk_ahb);
4225 	clk_disable_unprepare(fep->clk_ipg);
4226 
4227 	return 0;
4228 }
4229 
4230 static int __maybe_unused fec_runtime_resume(struct device *dev)
4231 {
4232 	struct net_device *ndev = dev_get_drvdata(dev);
4233 	struct fec_enet_private *fep = netdev_priv(ndev);
4234 	int ret;
4235 
4236 	ret = clk_prepare_enable(fep->clk_ahb);
4237 	if (ret)
4238 		return ret;
4239 	ret = clk_prepare_enable(fep->clk_ipg);
4240 	if (ret)
4241 		goto failed_clk_ipg;
4242 
4243 	return 0;
4244 
4245 failed_clk_ipg:
4246 	clk_disable_unprepare(fep->clk_ahb);
4247 	return ret;
4248 }
4249 
4250 static const struct dev_pm_ops fec_pm_ops = {
4251 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4252 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4253 };
4254 
4255 static struct platform_driver fec_driver = {
4256 	.driver	= {
4257 		.name	= DRIVER_NAME,
4258 		.pm	= &fec_pm_ops,
4259 		.of_match_table = fec_dt_ids,
4260 		.suppress_bind_attrs = true,
4261 	},
4262 	.id_table = fec_devtype,
4263 	.probe	= fec_probe,
4264 	.remove	= fec_drv_remove,
4265 };
4266 
4267 module_platform_driver(fec_driver);
4268 
4269 MODULE_LICENSE("GPL");
4270