1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_init(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 108 }; 109 110 static const struct fec_devinfo fec_imx28_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 112 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 113 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 114 FEC_QUIRK_NO_HARD_RESET, 115 }; 116 117 static const struct fec_devinfo fec_imx6q_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 122 FEC_QUIRK_HAS_PMQOS, 123 }; 124 125 static const struct fec_devinfo fec_mvf600_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 127 }; 128 129 static const struct fec_devinfo fec_imx6x_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 131 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 132 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 133 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 134 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 135 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 136 }; 137 138 static const struct fec_devinfo fec_imx6ul_info = { 139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 142 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 143 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 144 }; 145 146 static const struct fec_devinfo fec_imx8mq_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 150 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 151 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 152 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 153 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 154 }; 155 156 static const struct fec_devinfo fec_imx8qm_info = { 157 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 158 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 159 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 160 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 161 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 162 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 163 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 164 }; 165 166 static const struct fec_devinfo fec_s32v234_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, 171 }; 172 173 static struct platform_device_id fec_devtype[] = { 174 { 175 /* keep it for coldfire */ 176 .name = DRIVER_NAME, 177 .driver_data = 0, 178 }, { 179 .name = "imx25-fec", 180 .driver_data = (kernel_ulong_t)&fec_imx25_info, 181 }, { 182 .name = "imx27-fec", 183 .driver_data = (kernel_ulong_t)&fec_imx27_info, 184 }, { 185 .name = "imx28-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx28_info, 187 }, { 188 .name = "imx6q-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 190 }, { 191 .name = "mvf600-fec", 192 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 193 }, { 194 .name = "imx6sx-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 196 }, { 197 .name = "imx6ul-fec", 198 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 199 }, { 200 .name = "imx8mq-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 202 }, { 203 .name = "imx8qm-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 205 }, { 206 .name = "s32v234-fec", 207 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 208 }, { 209 /* sentinel */ 210 } 211 }; 212 MODULE_DEVICE_TABLE(platform, fec_devtype); 213 214 enum imx_fec_type { 215 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 216 IMX27_FEC, /* runs on i.mx27/35/51 */ 217 IMX28_FEC, 218 IMX6Q_FEC, 219 MVF600_FEC, 220 IMX6SX_FEC, 221 IMX6UL_FEC, 222 IMX8MQ_FEC, 223 IMX8QM_FEC, 224 S32V234_FEC, 225 }; 226 227 static const struct of_device_id fec_dt_ids[] = { 228 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 229 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 230 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 231 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 232 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 233 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 234 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 235 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 236 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 237 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 238 { /* sentinel */ } 239 }; 240 MODULE_DEVICE_TABLE(of, fec_dt_ids); 241 242 static unsigned char macaddr[ETH_ALEN]; 243 module_param_array(macaddr, byte, NULL, 0); 244 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 245 246 #if defined(CONFIG_M5272) 247 /* 248 * Some hardware gets it MAC address out of local flash memory. 249 * if this is non-zero then assume it is the address to get MAC from. 250 */ 251 #if defined(CONFIG_NETtel) 252 #define FEC_FLASHMAC 0xf0006006 253 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 254 #define FEC_FLASHMAC 0xf0006000 255 #elif defined(CONFIG_CANCam) 256 #define FEC_FLASHMAC 0xf0020000 257 #elif defined (CONFIG_M5272C3) 258 #define FEC_FLASHMAC (0xffe04000 + 4) 259 #elif defined(CONFIG_MOD5272) 260 #define FEC_FLASHMAC 0xffc0406b 261 #else 262 #define FEC_FLASHMAC 0 263 #endif 264 #endif /* CONFIG_M5272 */ 265 266 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 267 * 268 * 2048 byte skbufs are allocated. However, alignment requirements 269 * varies between FEC variants. Worst case is 64, so round down by 64. 270 */ 271 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 272 #define PKT_MINBUF_SIZE 64 273 274 /* FEC receive acceleration */ 275 #define FEC_RACC_IPDIS (1 << 1) 276 #define FEC_RACC_PRODIS (1 << 2) 277 #define FEC_RACC_SHIFT16 BIT(7) 278 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 279 280 /* MIB Control Register */ 281 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 282 283 /* 284 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 285 * size bits. Other FEC hardware does not, so we need to take that into 286 * account when setting it. 287 */ 288 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 289 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 290 defined(CONFIG_ARM64) 291 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 292 #else 293 #define OPT_FRAME_SIZE 0 294 #endif 295 296 /* FEC MII MMFR bits definition */ 297 #define FEC_MMFR_ST (1 << 30) 298 #define FEC_MMFR_ST_C45 (0) 299 #define FEC_MMFR_OP_READ (2 << 28) 300 #define FEC_MMFR_OP_READ_C45 (3 << 28) 301 #define FEC_MMFR_OP_WRITE (1 << 28) 302 #define FEC_MMFR_OP_ADDR_WRITE (0) 303 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 304 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 305 #define FEC_MMFR_TA (2 << 16) 306 #define FEC_MMFR_DATA(v) (v & 0xffff) 307 /* FEC ECR bits definition */ 308 #define FEC_ECR_MAGICEN (1 << 2) 309 #define FEC_ECR_SLEEP (1 << 3) 310 311 #define FEC_MII_TIMEOUT 30000 /* us */ 312 313 /* Transmitter timeout */ 314 #define TX_TIMEOUT (2 * HZ) 315 316 #define FEC_PAUSE_FLAG_AUTONEG 0x1 317 #define FEC_PAUSE_FLAG_ENABLE 0x2 318 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 319 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 320 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 321 322 #define COPYBREAK_DEFAULT 256 323 324 /* Max number of allowed TCP segments for software TSO */ 325 #define FEC_MAX_TSO_SEGS 100 326 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 327 328 #define IS_TSO_HEADER(txq, addr) \ 329 ((addr >= txq->tso_hdrs_dma) && \ 330 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 331 332 static int mii_cnt; 333 334 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 335 struct bufdesc_prop *bd) 336 { 337 return (bdp >= bd->last) ? bd->base 338 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 339 } 340 341 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 342 struct bufdesc_prop *bd) 343 { 344 return (bdp <= bd->base) ? bd->last 345 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 346 } 347 348 static int fec_enet_get_bd_index(struct bufdesc *bdp, 349 struct bufdesc_prop *bd) 350 { 351 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 352 } 353 354 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 355 { 356 int entries; 357 358 entries = (((const char *)txq->dirty_tx - 359 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 360 361 return entries >= 0 ? entries : entries + txq->bd.ring_size; 362 } 363 364 static void swap_buffer(void *bufaddr, int len) 365 { 366 int i; 367 unsigned int *buf = bufaddr; 368 369 for (i = 0; i < len; i += 4, buf++) 370 swab32s(buf); 371 } 372 373 static void fec_dump(struct net_device *ndev) 374 { 375 struct fec_enet_private *fep = netdev_priv(ndev); 376 struct bufdesc *bdp; 377 struct fec_enet_priv_tx_q *txq; 378 int index = 0; 379 380 netdev_info(ndev, "TX ring dump\n"); 381 pr_info("Nr SC addr len SKB\n"); 382 383 txq = fep->tx_queue[0]; 384 bdp = txq->bd.base; 385 386 do { 387 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 388 index, 389 bdp == txq->bd.cur ? 'S' : ' ', 390 bdp == txq->dirty_tx ? 'H' : ' ', 391 fec16_to_cpu(bdp->cbd_sc), 392 fec32_to_cpu(bdp->cbd_bufaddr), 393 fec16_to_cpu(bdp->cbd_datlen), 394 txq->tx_skbuff[index]); 395 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 396 index++; 397 } while (bdp != txq->bd.base); 398 } 399 400 static inline bool is_ipv4_pkt(struct sk_buff *skb) 401 { 402 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 403 } 404 405 static int 406 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 407 { 408 /* Only run for packets requiring a checksum. */ 409 if (skb->ip_summed != CHECKSUM_PARTIAL) 410 return 0; 411 412 if (unlikely(skb_cow_head(skb, 0))) 413 return -1; 414 415 if (is_ipv4_pkt(skb)) 416 ip_hdr(skb)->check = 0; 417 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 418 419 return 0; 420 } 421 422 static int 423 fec_enet_create_page_pool(struct fec_enet_private *fep, 424 struct fec_enet_priv_rx_q *rxq, int size) 425 { 426 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 427 struct page_pool_params pp_params = { 428 .order = 0, 429 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 430 .pool_size = size, 431 .nid = dev_to_node(&fep->pdev->dev), 432 .dev = &fep->pdev->dev, 433 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 434 .offset = FEC_ENET_XDP_HEADROOM, 435 .max_len = FEC_ENET_RX_FRSIZE, 436 }; 437 int err; 438 439 rxq->page_pool = page_pool_create(&pp_params); 440 if (IS_ERR(rxq->page_pool)) { 441 err = PTR_ERR(rxq->page_pool); 442 rxq->page_pool = NULL; 443 return err; 444 } 445 446 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 447 if (err < 0) 448 goto err_free_pp; 449 450 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 451 rxq->page_pool); 452 if (err) 453 goto err_unregister_rxq; 454 455 return 0; 456 457 err_unregister_rxq: 458 xdp_rxq_info_unreg(&rxq->xdp_rxq); 459 err_free_pp: 460 page_pool_destroy(rxq->page_pool); 461 rxq->page_pool = NULL; 462 return err; 463 } 464 465 static struct bufdesc * 466 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 467 struct sk_buff *skb, 468 struct net_device *ndev) 469 { 470 struct fec_enet_private *fep = netdev_priv(ndev); 471 struct bufdesc *bdp = txq->bd.cur; 472 struct bufdesc_ex *ebdp; 473 int nr_frags = skb_shinfo(skb)->nr_frags; 474 int frag, frag_len; 475 unsigned short status; 476 unsigned int estatus = 0; 477 skb_frag_t *this_frag; 478 unsigned int index; 479 void *bufaddr; 480 dma_addr_t addr; 481 int i; 482 483 for (frag = 0; frag < nr_frags; frag++) { 484 this_frag = &skb_shinfo(skb)->frags[frag]; 485 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 486 ebdp = (struct bufdesc_ex *)bdp; 487 488 status = fec16_to_cpu(bdp->cbd_sc); 489 status &= ~BD_ENET_TX_STATS; 490 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 491 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 492 493 /* Handle the last BD specially */ 494 if (frag == nr_frags - 1) { 495 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 496 if (fep->bufdesc_ex) { 497 estatus |= BD_ENET_TX_INT; 498 if (unlikely(skb_shinfo(skb)->tx_flags & 499 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 500 estatus |= BD_ENET_TX_TS; 501 } 502 } 503 504 if (fep->bufdesc_ex) { 505 if (fep->quirks & FEC_QUIRK_HAS_AVB) 506 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 507 if (skb->ip_summed == CHECKSUM_PARTIAL) 508 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 509 510 ebdp->cbd_bdu = 0; 511 ebdp->cbd_esc = cpu_to_fec32(estatus); 512 } 513 514 bufaddr = skb_frag_address(this_frag); 515 516 index = fec_enet_get_bd_index(bdp, &txq->bd); 517 if (((unsigned long) bufaddr) & fep->tx_align || 518 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 519 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 520 bufaddr = txq->tx_bounce[index]; 521 522 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 523 swap_buffer(bufaddr, frag_len); 524 } 525 526 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 527 DMA_TO_DEVICE); 528 if (dma_mapping_error(&fep->pdev->dev, addr)) { 529 if (net_ratelimit()) 530 netdev_err(ndev, "Tx DMA memory map failed\n"); 531 goto dma_mapping_error; 532 } 533 534 bdp->cbd_bufaddr = cpu_to_fec32(addr); 535 bdp->cbd_datlen = cpu_to_fec16(frag_len); 536 /* Make sure the updates to rest of the descriptor are 537 * performed before transferring ownership. 538 */ 539 wmb(); 540 bdp->cbd_sc = cpu_to_fec16(status); 541 } 542 543 return bdp; 544 dma_mapping_error: 545 bdp = txq->bd.cur; 546 for (i = 0; i < frag; i++) { 547 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 548 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 549 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 550 } 551 return ERR_PTR(-ENOMEM); 552 } 553 554 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 555 struct sk_buff *skb, struct net_device *ndev) 556 { 557 struct fec_enet_private *fep = netdev_priv(ndev); 558 int nr_frags = skb_shinfo(skb)->nr_frags; 559 struct bufdesc *bdp, *last_bdp; 560 void *bufaddr; 561 dma_addr_t addr; 562 unsigned short status; 563 unsigned short buflen; 564 unsigned int estatus = 0; 565 unsigned int index; 566 int entries_free; 567 568 entries_free = fec_enet_get_free_txdesc_num(txq); 569 if (entries_free < MAX_SKB_FRAGS + 1) { 570 dev_kfree_skb_any(skb); 571 if (net_ratelimit()) 572 netdev_err(ndev, "NOT enough BD for SG!\n"); 573 return NETDEV_TX_OK; 574 } 575 576 /* Protocol checksum off-load for TCP and UDP. */ 577 if (fec_enet_clear_csum(skb, ndev)) { 578 dev_kfree_skb_any(skb); 579 return NETDEV_TX_OK; 580 } 581 582 /* Fill in a Tx ring entry */ 583 bdp = txq->bd.cur; 584 last_bdp = bdp; 585 status = fec16_to_cpu(bdp->cbd_sc); 586 status &= ~BD_ENET_TX_STATS; 587 588 /* Set buffer length and buffer pointer */ 589 bufaddr = skb->data; 590 buflen = skb_headlen(skb); 591 592 index = fec_enet_get_bd_index(bdp, &txq->bd); 593 if (((unsigned long) bufaddr) & fep->tx_align || 594 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 595 memcpy(txq->tx_bounce[index], skb->data, buflen); 596 bufaddr = txq->tx_bounce[index]; 597 598 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 599 swap_buffer(bufaddr, buflen); 600 } 601 602 /* Push the data cache so the CPM does not get stale memory data. */ 603 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 604 if (dma_mapping_error(&fep->pdev->dev, addr)) { 605 dev_kfree_skb_any(skb); 606 if (net_ratelimit()) 607 netdev_err(ndev, "Tx DMA memory map failed\n"); 608 return NETDEV_TX_OK; 609 } 610 611 if (nr_frags) { 612 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 613 if (IS_ERR(last_bdp)) { 614 dma_unmap_single(&fep->pdev->dev, addr, 615 buflen, DMA_TO_DEVICE); 616 dev_kfree_skb_any(skb); 617 return NETDEV_TX_OK; 618 } 619 } else { 620 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 621 if (fep->bufdesc_ex) { 622 estatus = BD_ENET_TX_INT; 623 if (unlikely(skb_shinfo(skb)->tx_flags & 624 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 625 estatus |= BD_ENET_TX_TS; 626 } 627 } 628 bdp->cbd_bufaddr = cpu_to_fec32(addr); 629 bdp->cbd_datlen = cpu_to_fec16(buflen); 630 631 if (fep->bufdesc_ex) { 632 633 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 634 635 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 636 fep->hwts_tx_en)) 637 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 638 639 if (fep->quirks & FEC_QUIRK_HAS_AVB) 640 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 641 642 if (skb->ip_summed == CHECKSUM_PARTIAL) 643 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 644 645 ebdp->cbd_bdu = 0; 646 ebdp->cbd_esc = cpu_to_fec32(estatus); 647 } 648 649 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 650 /* Save skb pointer */ 651 txq->tx_skbuff[index] = skb; 652 653 /* Make sure the updates to rest of the descriptor are performed before 654 * transferring ownership. 655 */ 656 wmb(); 657 658 /* Send it on its way. Tell FEC it's ready, interrupt when done, 659 * it's the last BD of the frame, and to put the CRC on the end. 660 */ 661 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 662 bdp->cbd_sc = cpu_to_fec16(status); 663 664 /* If this was the last BD in the ring, start at the beginning again. */ 665 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 666 667 skb_tx_timestamp(skb); 668 669 /* Make sure the update to bdp and tx_skbuff are performed before 670 * txq->bd.cur. 671 */ 672 wmb(); 673 txq->bd.cur = bdp; 674 675 /* Trigger transmission start */ 676 writel(0, txq->bd.reg_desc_active); 677 678 return 0; 679 } 680 681 static int 682 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 683 struct net_device *ndev, 684 struct bufdesc *bdp, int index, char *data, 685 int size, bool last_tcp, bool is_last) 686 { 687 struct fec_enet_private *fep = netdev_priv(ndev); 688 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 689 unsigned short status; 690 unsigned int estatus = 0; 691 dma_addr_t addr; 692 693 status = fec16_to_cpu(bdp->cbd_sc); 694 status &= ~BD_ENET_TX_STATS; 695 696 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 697 698 if (((unsigned long) data) & fep->tx_align || 699 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 700 memcpy(txq->tx_bounce[index], data, size); 701 data = txq->tx_bounce[index]; 702 703 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 704 swap_buffer(data, size); 705 } 706 707 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 708 if (dma_mapping_error(&fep->pdev->dev, addr)) { 709 dev_kfree_skb_any(skb); 710 if (net_ratelimit()) 711 netdev_err(ndev, "Tx DMA memory map failed\n"); 712 return NETDEV_TX_OK; 713 } 714 715 bdp->cbd_datlen = cpu_to_fec16(size); 716 bdp->cbd_bufaddr = cpu_to_fec32(addr); 717 718 if (fep->bufdesc_ex) { 719 if (fep->quirks & FEC_QUIRK_HAS_AVB) 720 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 721 if (skb->ip_summed == CHECKSUM_PARTIAL) 722 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 723 ebdp->cbd_bdu = 0; 724 ebdp->cbd_esc = cpu_to_fec32(estatus); 725 } 726 727 /* Handle the last BD specially */ 728 if (last_tcp) 729 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 730 if (is_last) { 731 status |= BD_ENET_TX_INTR; 732 if (fep->bufdesc_ex) 733 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 734 } 735 736 bdp->cbd_sc = cpu_to_fec16(status); 737 738 return 0; 739 } 740 741 static int 742 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 743 struct sk_buff *skb, struct net_device *ndev, 744 struct bufdesc *bdp, int index) 745 { 746 struct fec_enet_private *fep = netdev_priv(ndev); 747 int hdr_len = skb_tcp_all_headers(skb); 748 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 749 void *bufaddr; 750 unsigned long dmabuf; 751 unsigned short status; 752 unsigned int estatus = 0; 753 754 status = fec16_to_cpu(bdp->cbd_sc); 755 status &= ~BD_ENET_TX_STATS; 756 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 757 758 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 759 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 760 if (((unsigned long)bufaddr) & fep->tx_align || 761 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 762 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 763 bufaddr = txq->tx_bounce[index]; 764 765 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 766 swap_buffer(bufaddr, hdr_len); 767 768 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 769 hdr_len, DMA_TO_DEVICE); 770 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 771 dev_kfree_skb_any(skb); 772 if (net_ratelimit()) 773 netdev_err(ndev, "Tx DMA memory map failed\n"); 774 return NETDEV_TX_OK; 775 } 776 } 777 778 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 779 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 780 781 if (fep->bufdesc_ex) { 782 if (fep->quirks & FEC_QUIRK_HAS_AVB) 783 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 784 if (skb->ip_summed == CHECKSUM_PARTIAL) 785 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 786 ebdp->cbd_bdu = 0; 787 ebdp->cbd_esc = cpu_to_fec32(estatus); 788 } 789 790 bdp->cbd_sc = cpu_to_fec16(status); 791 792 return 0; 793 } 794 795 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 796 struct sk_buff *skb, 797 struct net_device *ndev) 798 { 799 struct fec_enet_private *fep = netdev_priv(ndev); 800 int hdr_len, total_len, data_left; 801 struct bufdesc *bdp = txq->bd.cur; 802 struct tso_t tso; 803 unsigned int index = 0; 804 int ret; 805 806 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 807 dev_kfree_skb_any(skb); 808 if (net_ratelimit()) 809 netdev_err(ndev, "NOT enough BD for TSO!\n"); 810 return NETDEV_TX_OK; 811 } 812 813 /* Protocol checksum off-load for TCP and UDP. */ 814 if (fec_enet_clear_csum(skb, ndev)) { 815 dev_kfree_skb_any(skb); 816 return NETDEV_TX_OK; 817 } 818 819 /* Initialize the TSO handler, and prepare the first payload */ 820 hdr_len = tso_start(skb, &tso); 821 822 total_len = skb->len - hdr_len; 823 while (total_len > 0) { 824 char *hdr; 825 826 index = fec_enet_get_bd_index(bdp, &txq->bd); 827 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 828 total_len -= data_left; 829 830 /* prepare packet headers: MAC + IP + TCP */ 831 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 832 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 833 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 834 if (ret) 835 goto err_release; 836 837 while (data_left > 0) { 838 int size; 839 840 size = min_t(int, tso.size, data_left); 841 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 842 index = fec_enet_get_bd_index(bdp, &txq->bd); 843 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 844 bdp, index, 845 tso.data, size, 846 size == data_left, 847 total_len == 0); 848 if (ret) 849 goto err_release; 850 851 data_left -= size; 852 tso_build_data(skb, &tso, size); 853 } 854 855 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 856 } 857 858 /* Save skb pointer */ 859 txq->tx_skbuff[index] = skb; 860 861 skb_tx_timestamp(skb); 862 txq->bd.cur = bdp; 863 864 /* Trigger transmission start */ 865 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 866 !readl(txq->bd.reg_desc_active) || 867 !readl(txq->bd.reg_desc_active) || 868 !readl(txq->bd.reg_desc_active) || 869 !readl(txq->bd.reg_desc_active)) 870 writel(0, txq->bd.reg_desc_active); 871 872 return 0; 873 874 err_release: 875 /* TODO: Release all used data descriptors for TSO */ 876 return ret; 877 } 878 879 static netdev_tx_t 880 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 881 { 882 struct fec_enet_private *fep = netdev_priv(ndev); 883 int entries_free; 884 unsigned short queue; 885 struct fec_enet_priv_tx_q *txq; 886 struct netdev_queue *nq; 887 int ret; 888 889 queue = skb_get_queue_mapping(skb); 890 txq = fep->tx_queue[queue]; 891 nq = netdev_get_tx_queue(ndev, queue); 892 893 if (skb_is_gso(skb)) 894 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 895 else 896 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 897 if (ret) 898 return ret; 899 900 entries_free = fec_enet_get_free_txdesc_num(txq); 901 if (entries_free <= txq->tx_stop_threshold) 902 netif_tx_stop_queue(nq); 903 904 return NETDEV_TX_OK; 905 } 906 907 /* Init RX & TX buffer descriptors 908 */ 909 static void fec_enet_bd_init(struct net_device *dev) 910 { 911 struct fec_enet_private *fep = netdev_priv(dev); 912 struct fec_enet_priv_tx_q *txq; 913 struct fec_enet_priv_rx_q *rxq; 914 struct bufdesc *bdp; 915 unsigned int i; 916 unsigned int q; 917 918 for (q = 0; q < fep->num_rx_queues; q++) { 919 /* Initialize the receive buffer descriptors. */ 920 rxq = fep->rx_queue[q]; 921 bdp = rxq->bd.base; 922 923 for (i = 0; i < rxq->bd.ring_size; i++) { 924 925 /* Initialize the BD for every fragment in the page. */ 926 if (bdp->cbd_bufaddr) 927 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 928 else 929 bdp->cbd_sc = cpu_to_fec16(0); 930 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 931 } 932 933 /* Set the last buffer to wrap */ 934 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 935 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 936 937 rxq->bd.cur = rxq->bd.base; 938 } 939 940 for (q = 0; q < fep->num_tx_queues; q++) { 941 /* ...and the same for transmit */ 942 txq = fep->tx_queue[q]; 943 bdp = txq->bd.base; 944 txq->bd.cur = bdp; 945 946 for (i = 0; i < txq->bd.ring_size; i++) { 947 /* Initialize the BD for every fragment in the page. */ 948 bdp->cbd_sc = cpu_to_fec16(0); 949 if (bdp->cbd_bufaddr && 950 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 951 dma_unmap_single(&fep->pdev->dev, 952 fec32_to_cpu(bdp->cbd_bufaddr), 953 fec16_to_cpu(bdp->cbd_datlen), 954 DMA_TO_DEVICE); 955 if (txq->tx_skbuff[i]) { 956 dev_kfree_skb_any(txq->tx_skbuff[i]); 957 txq->tx_skbuff[i] = NULL; 958 } 959 bdp->cbd_bufaddr = cpu_to_fec32(0); 960 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 961 } 962 963 /* Set the last buffer to wrap */ 964 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 965 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 966 txq->dirty_tx = bdp; 967 } 968 } 969 970 static void fec_enet_active_rxring(struct net_device *ndev) 971 { 972 struct fec_enet_private *fep = netdev_priv(ndev); 973 int i; 974 975 for (i = 0; i < fep->num_rx_queues; i++) 976 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 977 } 978 979 static void fec_enet_enable_ring(struct net_device *ndev) 980 { 981 struct fec_enet_private *fep = netdev_priv(ndev); 982 struct fec_enet_priv_tx_q *txq; 983 struct fec_enet_priv_rx_q *rxq; 984 int i; 985 986 for (i = 0; i < fep->num_rx_queues; i++) { 987 rxq = fep->rx_queue[i]; 988 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 989 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 990 991 /* enable DMA1/2 */ 992 if (i) 993 writel(RCMR_MATCHEN | RCMR_CMP(i), 994 fep->hwp + FEC_RCMR(i)); 995 } 996 997 for (i = 0; i < fep->num_tx_queues; i++) { 998 txq = fep->tx_queue[i]; 999 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1000 1001 /* enable DMA1/2 */ 1002 if (i) 1003 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1004 fep->hwp + FEC_DMA_CFG(i)); 1005 } 1006 } 1007 1008 static void fec_enet_reset_skb(struct net_device *ndev) 1009 { 1010 struct fec_enet_private *fep = netdev_priv(ndev); 1011 struct fec_enet_priv_tx_q *txq; 1012 int i, j; 1013 1014 for (i = 0; i < fep->num_tx_queues; i++) { 1015 txq = fep->tx_queue[i]; 1016 1017 for (j = 0; j < txq->bd.ring_size; j++) { 1018 if (txq->tx_skbuff[j]) { 1019 dev_kfree_skb_any(txq->tx_skbuff[j]); 1020 txq->tx_skbuff[j] = NULL; 1021 } 1022 } 1023 } 1024 } 1025 1026 /* 1027 * This function is called to start or restart the FEC during a link 1028 * change, transmit timeout, or to reconfigure the FEC. The network 1029 * packet processing for this device must be stopped before this call. 1030 */ 1031 static void 1032 fec_restart(struct net_device *ndev) 1033 { 1034 struct fec_enet_private *fep = netdev_priv(ndev); 1035 u32 temp_mac[2]; 1036 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1037 u32 ecntl = 0x2; /* ETHEREN */ 1038 1039 /* Whack a reset. We should wait for this. 1040 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1041 * instead of reset MAC itself. 1042 */ 1043 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1044 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1045 writel(0, fep->hwp + FEC_ECNTRL); 1046 } else { 1047 writel(1, fep->hwp + FEC_ECNTRL); 1048 udelay(10); 1049 } 1050 1051 /* 1052 * enet-mac reset will reset mac address registers too, 1053 * so need to reconfigure it. 1054 */ 1055 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1056 writel((__force u32)cpu_to_be32(temp_mac[0]), 1057 fep->hwp + FEC_ADDR_LOW); 1058 writel((__force u32)cpu_to_be32(temp_mac[1]), 1059 fep->hwp + FEC_ADDR_HIGH); 1060 1061 /* Clear any outstanding interrupt, except MDIO. */ 1062 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1063 1064 fec_enet_bd_init(ndev); 1065 1066 fec_enet_enable_ring(ndev); 1067 1068 /* Reset tx SKB buffers. */ 1069 fec_enet_reset_skb(ndev); 1070 1071 /* Enable MII mode */ 1072 if (fep->full_duplex == DUPLEX_FULL) { 1073 /* FD enable */ 1074 writel(0x04, fep->hwp + FEC_X_CNTRL); 1075 } else { 1076 /* No Rcv on Xmit */ 1077 rcntl |= 0x02; 1078 writel(0x0, fep->hwp + FEC_X_CNTRL); 1079 } 1080 1081 /* Set MII speed */ 1082 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1083 1084 #if !defined(CONFIG_M5272) 1085 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1086 u32 val = readl(fep->hwp + FEC_RACC); 1087 1088 /* align IP header */ 1089 val |= FEC_RACC_SHIFT16; 1090 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1091 /* set RX checksum */ 1092 val |= FEC_RACC_OPTIONS; 1093 else 1094 val &= ~FEC_RACC_OPTIONS; 1095 writel(val, fep->hwp + FEC_RACC); 1096 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1097 } 1098 #endif 1099 1100 /* 1101 * The phy interface and speed need to get configured 1102 * differently on enet-mac. 1103 */ 1104 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1105 /* Enable flow control and length check */ 1106 rcntl |= 0x40000000 | 0x00000020; 1107 1108 /* RGMII, RMII or MII */ 1109 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1110 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1111 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1112 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1113 rcntl |= (1 << 6); 1114 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1115 rcntl |= (1 << 8); 1116 else 1117 rcntl &= ~(1 << 8); 1118 1119 /* 1G, 100M or 10M */ 1120 if (ndev->phydev) { 1121 if (ndev->phydev->speed == SPEED_1000) 1122 ecntl |= (1 << 5); 1123 else if (ndev->phydev->speed == SPEED_100) 1124 rcntl &= ~(1 << 9); 1125 else 1126 rcntl |= (1 << 9); 1127 } 1128 } else { 1129 #ifdef FEC_MIIGSK_ENR 1130 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1131 u32 cfgr; 1132 /* disable the gasket and wait */ 1133 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1134 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1135 udelay(1); 1136 1137 /* 1138 * configure the gasket: 1139 * RMII, 50 MHz, no loopback, no echo 1140 * MII, 25 MHz, no loopback, no echo 1141 */ 1142 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1143 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1144 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1145 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1146 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1147 1148 /* re-enable the gasket */ 1149 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1150 } 1151 #endif 1152 } 1153 1154 #if !defined(CONFIG_M5272) 1155 /* enable pause frame*/ 1156 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1157 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1158 ndev->phydev && ndev->phydev->pause)) { 1159 rcntl |= FEC_ENET_FCE; 1160 1161 /* set FIFO threshold parameter to reduce overrun */ 1162 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1163 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1164 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1165 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1166 1167 /* OPD */ 1168 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1169 } else { 1170 rcntl &= ~FEC_ENET_FCE; 1171 } 1172 #endif /* !defined(CONFIG_M5272) */ 1173 1174 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1175 1176 /* Setup multicast filter. */ 1177 set_multicast_list(ndev); 1178 #ifndef CONFIG_M5272 1179 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1180 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1181 #endif 1182 1183 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1184 /* enable ENET endian swap */ 1185 ecntl |= (1 << 8); 1186 /* enable ENET store and forward mode */ 1187 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1188 } 1189 1190 if (fep->bufdesc_ex) 1191 ecntl |= (1 << 4); 1192 1193 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1194 fep->rgmii_txc_dly) 1195 ecntl |= FEC_ENET_TXC_DLY; 1196 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1197 fep->rgmii_rxc_dly) 1198 ecntl |= FEC_ENET_RXC_DLY; 1199 1200 #ifndef CONFIG_M5272 1201 /* Enable the MIB statistic event counters */ 1202 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1203 #endif 1204 1205 /* And last, enable the transmit and receive processing */ 1206 writel(ecntl, fep->hwp + FEC_ECNTRL); 1207 fec_enet_active_rxring(ndev); 1208 1209 if (fep->bufdesc_ex) 1210 fec_ptp_start_cyclecounter(ndev); 1211 1212 /* Enable interrupts we wish to service */ 1213 if (fep->link) 1214 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1215 else 1216 writel(0, fep->hwp + FEC_IMASK); 1217 1218 /* Init the interrupt coalescing */ 1219 fec_enet_itr_coal_init(ndev); 1220 1221 } 1222 1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1224 { 1225 if (!(of_machine_is_compatible("fsl,imx8qm") || 1226 of_machine_is_compatible("fsl,imx8qxp") || 1227 of_machine_is_compatible("fsl,imx8dxl"))) 1228 return 0; 1229 1230 return imx_scu_get_handle(&fep->ipc_handle); 1231 } 1232 1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1234 { 1235 struct device_node *np = fep->pdev->dev.of_node; 1236 u32 rsrc_id, val; 1237 int idx; 1238 1239 if (!np || !fep->ipc_handle) 1240 return; 1241 1242 idx = of_alias_get_id(np, "ethernet"); 1243 if (idx < 0) 1244 idx = 0; 1245 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1246 1247 val = enabled ? 1 : 0; 1248 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1249 } 1250 1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1252 { 1253 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1254 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1255 1256 if (stop_gpr->gpr) { 1257 if (enabled) 1258 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1259 BIT(stop_gpr->bit), 1260 BIT(stop_gpr->bit)); 1261 else 1262 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1263 BIT(stop_gpr->bit), 0); 1264 } else if (pdata && pdata->sleep_mode_enable) { 1265 pdata->sleep_mode_enable(enabled); 1266 } else { 1267 fec_enet_ipg_stop_set(fep, enabled); 1268 } 1269 } 1270 1271 static void fec_irqs_disable(struct net_device *ndev) 1272 { 1273 struct fec_enet_private *fep = netdev_priv(ndev); 1274 1275 writel(0, fep->hwp + FEC_IMASK); 1276 } 1277 1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1279 { 1280 struct fec_enet_private *fep = netdev_priv(ndev); 1281 1282 writel(0, fep->hwp + FEC_IMASK); 1283 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1284 } 1285 1286 static void 1287 fec_stop(struct net_device *ndev) 1288 { 1289 struct fec_enet_private *fep = netdev_priv(ndev); 1290 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1291 u32 val; 1292 1293 /* We cannot expect a graceful transmit stop without link !!! */ 1294 if (fep->link) { 1295 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1296 udelay(10); 1297 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1298 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1299 } 1300 1301 /* Whack a reset. We should wait for this. 1302 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1303 * instead of reset MAC itself. 1304 */ 1305 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1306 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1307 writel(0, fep->hwp + FEC_ECNTRL); 1308 } else { 1309 writel(1, fep->hwp + FEC_ECNTRL); 1310 udelay(10); 1311 } 1312 } else { 1313 val = readl(fep->hwp + FEC_ECNTRL); 1314 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1315 writel(val, fep->hwp + FEC_ECNTRL); 1316 } 1317 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1318 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1319 1320 /* We have to keep ENET enabled to have MII interrupt stay working */ 1321 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1322 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1323 writel(2, fep->hwp + FEC_ECNTRL); 1324 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1325 } 1326 } 1327 1328 1329 static void 1330 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1331 { 1332 struct fec_enet_private *fep = netdev_priv(ndev); 1333 1334 fec_dump(ndev); 1335 1336 ndev->stats.tx_errors++; 1337 1338 schedule_work(&fep->tx_timeout_work); 1339 } 1340 1341 static void fec_enet_timeout_work(struct work_struct *work) 1342 { 1343 struct fec_enet_private *fep = 1344 container_of(work, struct fec_enet_private, tx_timeout_work); 1345 struct net_device *ndev = fep->netdev; 1346 1347 rtnl_lock(); 1348 if (netif_device_present(ndev) || netif_running(ndev)) { 1349 napi_disable(&fep->napi); 1350 netif_tx_lock_bh(ndev); 1351 fec_restart(ndev); 1352 netif_tx_wake_all_queues(ndev); 1353 netif_tx_unlock_bh(ndev); 1354 napi_enable(&fep->napi); 1355 } 1356 rtnl_unlock(); 1357 } 1358 1359 static void 1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1361 struct skb_shared_hwtstamps *hwtstamps) 1362 { 1363 unsigned long flags; 1364 u64 ns; 1365 1366 spin_lock_irqsave(&fep->tmreg_lock, flags); 1367 ns = timecounter_cyc2time(&fep->tc, ts); 1368 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1369 1370 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1371 hwtstamps->hwtstamp = ns_to_ktime(ns); 1372 } 1373 1374 static void 1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1376 { 1377 struct fec_enet_private *fep; 1378 struct bufdesc *bdp; 1379 unsigned short status; 1380 struct sk_buff *skb; 1381 struct fec_enet_priv_tx_q *txq; 1382 struct netdev_queue *nq; 1383 int index = 0; 1384 int entries_free; 1385 1386 fep = netdev_priv(ndev); 1387 1388 txq = fep->tx_queue[queue_id]; 1389 /* get next bdp of dirty_tx */ 1390 nq = netdev_get_tx_queue(ndev, queue_id); 1391 bdp = txq->dirty_tx; 1392 1393 /* get next bdp of dirty_tx */ 1394 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1395 1396 while (bdp != READ_ONCE(txq->bd.cur)) { 1397 /* Order the load of bd.cur and cbd_sc */ 1398 rmb(); 1399 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1400 if (status & BD_ENET_TX_READY) 1401 break; 1402 1403 index = fec_enet_get_bd_index(bdp, &txq->bd); 1404 1405 skb = txq->tx_skbuff[index]; 1406 txq->tx_skbuff[index] = NULL; 1407 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1408 dma_unmap_single(&fep->pdev->dev, 1409 fec32_to_cpu(bdp->cbd_bufaddr), 1410 fec16_to_cpu(bdp->cbd_datlen), 1411 DMA_TO_DEVICE); 1412 bdp->cbd_bufaddr = cpu_to_fec32(0); 1413 if (!skb) 1414 goto skb_done; 1415 1416 /* Check for errors. */ 1417 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1418 BD_ENET_TX_RL | BD_ENET_TX_UN | 1419 BD_ENET_TX_CSL)) { 1420 ndev->stats.tx_errors++; 1421 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1422 ndev->stats.tx_heartbeat_errors++; 1423 if (status & BD_ENET_TX_LC) /* Late collision */ 1424 ndev->stats.tx_window_errors++; 1425 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1426 ndev->stats.tx_aborted_errors++; 1427 if (status & BD_ENET_TX_UN) /* Underrun */ 1428 ndev->stats.tx_fifo_errors++; 1429 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1430 ndev->stats.tx_carrier_errors++; 1431 } else { 1432 ndev->stats.tx_packets++; 1433 ndev->stats.tx_bytes += skb->len; 1434 } 1435 1436 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1437 * are to time stamp the packet, so we still need to check time 1438 * stamping enabled flag. 1439 */ 1440 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1441 fep->hwts_tx_en) && 1442 fep->bufdesc_ex) { 1443 struct skb_shared_hwtstamps shhwtstamps; 1444 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1445 1446 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1447 skb_tstamp_tx(skb, &shhwtstamps); 1448 } 1449 1450 /* Deferred means some collisions occurred during transmit, 1451 * but we eventually sent the packet OK. 1452 */ 1453 if (status & BD_ENET_TX_DEF) 1454 ndev->stats.collisions++; 1455 1456 /* Free the sk buffer associated with this last transmit */ 1457 dev_kfree_skb_any(skb); 1458 skb_done: 1459 /* Make sure the update to bdp and tx_skbuff are performed 1460 * before dirty_tx 1461 */ 1462 wmb(); 1463 txq->dirty_tx = bdp; 1464 1465 /* Update pointer to next buffer descriptor to be transmitted */ 1466 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1467 1468 /* Since we have freed up a buffer, the ring is no longer full 1469 */ 1470 if (netif_tx_queue_stopped(nq)) { 1471 entries_free = fec_enet_get_free_txdesc_num(txq); 1472 if (entries_free >= txq->tx_wake_threshold) 1473 netif_tx_wake_queue(nq); 1474 } 1475 } 1476 1477 /* ERR006358: Keep the transmitter going */ 1478 if (bdp != txq->bd.cur && 1479 readl(txq->bd.reg_desc_active) == 0) 1480 writel(0, txq->bd.reg_desc_active); 1481 } 1482 1483 static void fec_enet_tx(struct net_device *ndev) 1484 { 1485 struct fec_enet_private *fep = netdev_priv(ndev); 1486 int i; 1487 1488 /* Make sure that AVB queues are processed first. */ 1489 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1490 fec_enet_tx_queue(ndev, i); 1491 } 1492 1493 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1494 struct bufdesc *bdp, int index) 1495 { 1496 struct page *new_page; 1497 dma_addr_t phys_addr; 1498 1499 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1500 WARN_ON(!new_page); 1501 rxq->rx_skb_info[index].page = new_page; 1502 1503 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1504 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1505 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1506 } 1507 1508 static u32 1509 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1510 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1511 { 1512 unsigned int sync, len = xdp->data_end - xdp->data; 1513 u32 ret = FEC_ENET_XDP_PASS; 1514 struct page *page; 1515 int err; 1516 u32 act; 1517 1518 act = bpf_prog_run_xdp(prog, xdp); 1519 1520 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1521 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1522 sync = max(sync, len); 1523 1524 switch (act) { 1525 case XDP_PASS: 1526 rxq->stats[RX_XDP_PASS]++; 1527 ret = FEC_ENET_XDP_PASS; 1528 break; 1529 1530 case XDP_REDIRECT: 1531 rxq->stats[RX_XDP_REDIRECT]++; 1532 err = xdp_do_redirect(fep->netdev, xdp, prog); 1533 if (!err) { 1534 ret = FEC_ENET_XDP_REDIR; 1535 } else { 1536 ret = FEC_ENET_XDP_CONSUMED; 1537 page = virt_to_head_page(xdp->data); 1538 page_pool_put_page(rxq->page_pool, page, sync, true); 1539 } 1540 break; 1541 1542 default: 1543 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1544 fallthrough; 1545 1546 case XDP_TX: 1547 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1548 fallthrough; 1549 1550 case XDP_ABORTED: 1551 fallthrough; /* handle aborts by dropping packet */ 1552 1553 case XDP_DROP: 1554 rxq->stats[RX_XDP_DROP]++; 1555 ret = FEC_ENET_XDP_CONSUMED; 1556 page = virt_to_head_page(xdp->data); 1557 page_pool_put_page(rxq->page_pool, page, sync, true); 1558 break; 1559 } 1560 1561 return ret; 1562 } 1563 1564 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1565 * When we update through the ring, if the next incoming buffer has 1566 * not been given to the system, we just set the empty indicator, 1567 * effectively tossing the packet. 1568 */ 1569 static int 1570 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1571 { 1572 struct fec_enet_private *fep = netdev_priv(ndev); 1573 struct fec_enet_priv_rx_q *rxq; 1574 struct bufdesc *bdp; 1575 unsigned short status; 1576 struct sk_buff *skb; 1577 ushort pkt_len; 1578 __u8 *data; 1579 int pkt_received = 0; 1580 struct bufdesc_ex *ebdp = NULL; 1581 bool vlan_packet_rcvd = false; 1582 u16 vlan_tag; 1583 int index = 0; 1584 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1585 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1586 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1587 u32 data_start = FEC_ENET_XDP_HEADROOM; 1588 struct xdp_buff xdp; 1589 struct page *page; 1590 u32 sub_len = 4; 1591 1592 #if !defined(CONFIG_M5272) 1593 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1594 * FEC_RACC_SHIFT16 is set by default in the probe function. 1595 */ 1596 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1597 data_start += 2; 1598 sub_len += 2; 1599 } 1600 #endif 1601 1602 #ifdef CONFIG_M532x 1603 flush_cache_all(); 1604 #endif 1605 rxq = fep->rx_queue[queue_id]; 1606 1607 /* First, grab all of the stats for the incoming packet. 1608 * These get messed up if we get called due to a busy condition. 1609 */ 1610 bdp = rxq->bd.cur; 1611 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1612 1613 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1614 1615 if (pkt_received >= budget) 1616 break; 1617 pkt_received++; 1618 1619 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1620 1621 /* Check for errors. */ 1622 status ^= BD_ENET_RX_LAST; 1623 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1624 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1625 BD_ENET_RX_CL)) { 1626 ndev->stats.rx_errors++; 1627 if (status & BD_ENET_RX_OV) { 1628 /* FIFO overrun */ 1629 ndev->stats.rx_fifo_errors++; 1630 goto rx_processing_done; 1631 } 1632 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1633 | BD_ENET_RX_LAST)) { 1634 /* Frame too long or too short. */ 1635 ndev->stats.rx_length_errors++; 1636 if (status & BD_ENET_RX_LAST) 1637 netdev_err(ndev, "rcv is not +last\n"); 1638 } 1639 if (status & BD_ENET_RX_CR) /* CRC Error */ 1640 ndev->stats.rx_crc_errors++; 1641 /* Report late collisions as a frame error. */ 1642 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1643 ndev->stats.rx_frame_errors++; 1644 goto rx_processing_done; 1645 } 1646 1647 /* Process the incoming frame. */ 1648 ndev->stats.rx_packets++; 1649 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1650 ndev->stats.rx_bytes += pkt_len; 1651 1652 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1653 page = rxq->rx_skb_info[index].page; 1654 dma_sync_single_for_cpu(&fep->pdev->dev, 1655 fec32_to_cpu(bdp->cbd_bufaddr), 1656 pkt_len, 1657 DMA_FROM_DEVICE); 1658 prefetch(page_address(page)); 1659 fec_enet_update_cbd(rxq, bdp, index); 1660 1661 if (xdp_prog) { 1662 xdp_buff_clear_frags_flag(&xdp); 1663 /* subtract 16bit shift and FCS */ 1664 xdp_prepare_buff(&xdp, page_address(page), 1665 data_start, pkt_len - sub_len, false); 1666 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1667 xdp_result |= ret; 1668 if (ret != FEC_ENET_XDP_PASS) 1669 goto rx_processing_done; 1670 } 1671 1672 /* The packet length includes FCS, but we don't want to 1673 * include that when passing upstream as it messes up 1674 * bridging applications. 1675 */ 1676 skb = build_skb(page_address(page), PAGE_SIZE); 1677 skb_reserve(skb, data_start); 1678 skb_put(skb, pkt_len - sub_len); 1679 skb_mark_for_recycle(skb); 1680 1681 if (unlikely(need_swap)) { 1682 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1683 swap_buffer(data, pkt_len); 1684 } 1685 data = skb->data; 1686 1687 /* Extract the enhanced buffer descriptor */ 1688 ebdp = NULL; 1689 if (fep->bufdesc_ex) 1690 ebdp = (struct bufdesc_ex *)bdp; 1691 1692 /* If this is a VLAN packet remove the VLAN Tag */ 1693 vlan_packet_rcvd = false; 1694 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1695 fep->bufdesc_ex && 1696 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1697 /* Push and remove the vlan tag */ 1698 struct vlan_hdr *vlan_header = 1699 (struct vlan_hdr *) (data + ETH_HLEN); 1700 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1701 1702 vlan_packet_rcvd = true; 1703 1704 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1705 skb_pull(skb, VLAN_HLEN); 1706 } 1707 1708 skb->protocol = eth_type_trans(skb, ndev); 1709 1710 /* Get receive timestamp from the skb */ 1711 if (fep->hwts_rx_en && fep->bufdesc_ex) 1712 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1713 skb_hwtstamps(skb)); 1714 1715 if (fep->bufdesc_ex && 1716 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1717 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1718 /* don't check it */ 1719 skb->ip_summed = CHECKSUM_UNNECESSARY; 1720 } else { 1721 skb_checksum_none_assert(skb); 1722 } 1723 } 1724 1725 /* Handle received VLAN packets */ 1726 if (vlan_packet_rcvd) 1727 __vlan_hwaccel_put_tag(skb, 1728 htons(ETH_P_8021Q), 1729 vlan_tag); 1730 1731 skb_record_rx_queue(skb, queue_id); 1732 napi_gro_receive(&fep->napi, skb); 1733 1734 rx_processing_done: 1735 /* Clear the status flags for this buffer */ 1736 status &= ~BD_ENET_RX_STATS; 1737 1738 /* Mark the buffer empty */ 1739 status |= BD_ENET_RX_EMPTY; 1740 1741 if (fep->bufdesc_ex) { 1742 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1743 1744 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1745 ebdp->cbd_prot = 0; 1746 ebdp->cbd_bdu = 0; 1747 } 1748 /* Make sure the updates to rest of the descriptor are 1749 * performed before transferring ownership. 1750 */ 1751 wmb(); 1752 bdp->cbd_sc = cpu_to_fec16(status); 1753 1754 /* Update BD pointer to next entry */ 1755 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1756 1757 /* Doing this here will keep the FEC running while we process 1758 * incoming frames. On a heavily loaded network, we should be 1759 * able to keep up at the expense of system resources. 1760 */ 1761 writel(0, rxq->bd.reg_desc_active); 1762 } 1763 rxq->bd.cur = bdp; 1764 1765 if (xdp_result & FEC_ENET_XDP_REDIR) 1766 xdp_do_flush_map(); 1767 1768 return pkt_received; 1769 } 1770 1771 static int fec_enet_rx(struct net_device *ndev, int budget) 1772 { 1773 struct fec_enet_private *fep = netdev_priv(ndev); 1774 int i, done = 0; 1775 1776 /* Make sure that AVB queues are processed first. */ 1777 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1778 done += fec_enet_rx_queue(ndev, budget - done, i); 1779 1780 return done; 1781 } 1782 1783 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1784 { 1785 uint int_events; 1786 1787 int_events = readl(fep->hwp + FEC_IEVENT); 1788 1789 /* Don't clear MDIO events, we poll for those */ 1790 int_events &= ~FEC_ENET_MII; 1791 1792 writel(int_events, fep->hwp + FEC_IEVENT); 1793 1794 return int_events != 0; 1795 } 1796 1797 static irqreturn_t 1798 fec_enet_interrupt(int irq, void *dev_id) 1799 { 1800 struct net_device *ndev = dev_id; 1801 struct fec_enet_private *fep = netdev_priv(ndev); 1802 irqreturn_t ret = IRQ_NONE; 1803 1804 if (fec_enet_collect_events(fep) && fep->link) { 1805 ret = IRQ_HANDLED; 1806 1807 if (napi_schedule_prep(&fep->napi)) { 1808 /* Disable interrupts */ 1809 writel(0, fep->hwp + FEC_IMASK); 1810 __napi_schedule(&fep->napi); 1811 } 1812 } 1813 1814 return ret; 1815 } 1816 1817 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1818 { 1819 struct net_device *ndev = napi->dev; 1820 struct fec_enet_private *fep = netdev_priv(ndev); 1821 int done = 0; 1822 1823 do { 1824 done += fec_enet_rx(ndev, budget - done); 1825 fec_enet_tx(ndev); 1826 } while ((done < budget) && fec_enet_collect_events(fep)); 1827 1828 if (done < budget) { 1829 napi_complete_done(napi, done); 1830 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1831 } 1832 1833 return done; 1834 } 1835 1836 /* ------------------------------------------------------------------------- */ 1837 static int fec_get_mac(struct net_device *ndev) 1838 { 1839 struct fec_enet_private *fep = netdev_priv(ndev); 1840 unsigned char *iap, tmpaddr[ETH_ALEN]; 1841 int ret; 1842 1843 /* 1844 * try to get mac address in following order: 1845 * 1846 * 1) module parameter via kernel command line in form 1847 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1848 */ 1849 iap = macaddr; 1850 1851 /* 1852 * 2) from device tree data 1853 */ 1854 if (!is_valid_ether_addr(iap)) { 1855 struct device_node *np = fep->pdev->dev.of_node; 1856 if (np) { 1857 ret = of_get_mac_address(np, tmpaddr); 1858 if (!ret) 1859 iap = tmpaddr; 1860 else if (ret == -EPROBE_DEFER) 1861 return ret; 1862 } 1863 } 1864 1865 /* 1866 * 3) from flash or fuse (via platform data) 1867 */ 1868 if (!is_valid_ether_addr(iap)) { 1869 #ifdef CONFIG_M5272 1870 if (FEC_FLASHMAC) 1871 iap = (unsigned char *)FEC_FLASHMAC; 1872 #else 1873 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1874 1875 if (pdata) 1876 iap = (unsigned char *)&pdata->mac; 1877 #endif 1878 } 1879 1880 /* 1881 * 4) FEC mac registers set by bootloader 1882 */ 1883 if (!is_valid_ether_addr(iap)) { 1884 *((__be32 *) &tmpaddr[0]) = 1885 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1886 *((__be16 *) &tmpaddr[4]) = 1887 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1888 iap = &tmpaddr[0]; 1889 } 1890 1891 /* 1892 * 5) random mac address 1893 */ 1894 if (!is_valid_ether_addr(iap)) { 1895 /* Report it and use a random ethernet address instead */ 1896 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1897 eth_hw_addr_random(ndev); 1898 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1899 ndev->dev_addr); 1900 return 0; 1901 } 1902 1903 /* Adjust MAC if using macaddr */ 1904 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1905 1906 return 0; 1907 } 1908 1909 /* ------------------------------------------------------------------------- */ 1910 1911 /* 1912 * Phy section 1913 */ 1914 static void fec_enet_adjust_link(struct net_device *ndev) 1915 { 1916 struct fec_enet_private *fep = netdev_priv(ndev); 1917 struct phy_device *phy_dev = ndev->phydev; 1918 int status_change = 0; 1919 1920 /* 1921 * If the netdev is down, or is going down, we're not interested 1922 * in link state events, so just mark our idea of the link as down 1923 * and ignore the event. 1924 */ 1925 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1926 fep->link = 0; 1927 } else if (phy_dev->link) { 1928 if (!fep->link) { 1929 fep->link = phy_dev->link; 1930 status_change = 1; 1931 } 1932 1933 if (fep->full_duplex != phy_dev->duplex) { 1934 fep->full_duplex = phy_dev->duplex; 1935 status_change = 1; 1936 } 1937 1938 if (phy_dev->speed != fep->speed) { 1939 fep->speed = phy_dev->speed; 1940 status_change = 1; 1941 } 1942 1943 /* if any of the above changed restart the FEC */ 1944 if (status_change) { 1945 napi_disable(&fep->napi); 1946 netif_tx_lock_bh(ndev); 1947 fec_restart(ndev); 1948 netif_tx_wake_all_queues(ndev); 1949 netif_tx_unlock_bh(ndev); 1950 napi_enable(&fep->napi); 1951 } 1952 } else { 1953 if (fep->link) { 1954 napi_disable(&fep->napi); 1955 netif_tx_lock_bh(ndev); 1956 fec_stop(ndev); 1957 netif_tx_unlock_bh(ndev); 1958 napi_enable(&fep->napi); 1959 fep->link = phy_dev->link; 1960 status_change = 1; 1961 } 1962 } 1963 1964 if (status_change) 1965 phy_print_status(phy_dev); 1966 } 1967 1968 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1969 { 1970 uint ievent; 1971 int ret; 1972 1973 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1974 ievent & FEC_ENET_MII, 2, 30000); 1975 1976 if (!ret) 1977 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1978 1979 return ret; 1980 } 1981 1982 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1983 { 1984 struct fec_enet_private *fep = bus->priv; 1985 struct device *dev = &fep->pdev->dev; 1986 int ret = 0, frame_start, frame_addr, frame_op; 1987 bool is_c45 = !!(regnum & MII_ADDR_C45); 1988 1989 ret = pm_runtime_resume_and_get(dev); 1990 if (ret < 0) 1991 return ret; 1992 1993 if (is_c45) { 1994 frame_start = FEC_MMFR_ST_C45; 1995 1996 /* write address */ 1997 frame_addr = (regnum >> 16); 1998 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1999 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2000 FEC_MMFR_TA | (regnum & 0xFFFF), 2001 fep->hwp + FEC_MII_DATA); 2002 2003 /* wait for end of transfer */ 2004 ret = fec_enet_mdio_wait(fep); 2005 if (ret) { 2006 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2007 goto out; 2008 } 2009 2010 frame_op = FEC_MMFR_OP_READ_C45; 2011 2012 } else { 2013 /* C22 read */ 2014 frame_op = FEC_MMFR_OP_READ; 2015 frame_start = FEC_MMFR_ST; 2016 frame_addr = regnum; 2017 } 2018 2019 /* start a read op */ 2020 writel(frame_start | frame_op | 2021 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2022 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2023 2024 /* wait for end of transfer */ 2025 ret = fec_enet_mdio_wait(fep); 2026 if (ret) { 2027 netdev_err(fep->netdev, "MDIO read timeout\n"); 2028 goto out; 2029 } 2030 2031 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2032 2033 out: 2034 pm_runtime_mark_last_busy(dev); 2035 pm_runtime_put_autosuspend(dev); 2036 2037 return ret; 2038 } 2039 2040 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 2041 u16 value) 2042 { 2043 struct fec_enet_private *fep = bus->priv; 2044 struct device *dev = &fep->pdev->dev; 2045 int ret, frame_start, frame_addr; 2046 bool is_c45 = !!(regnum & MII_ADDR_C45); 2047 2048 ret = pm_runtime_resume_and_get(dev); 2049 if (ret < 0) 2050 return ret; 2051 2052 if (is_c45) { 2053 frame_start = FEC_MMFR_ST_C45; 2054 2055 /* write address */ 2056 frame_addr = (regnum >> 16); 2057 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2058 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2059 FEC_MMFR_TA | (regnum & 0xFFFF), 2060 fep->hwp + FEC_MII_DATA); 2061 2062 /* wait for end of transfer */ 2063 ret = fec_enet_mdio_wait(fep); 2064 if (ret) { 2065 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2066 goto out; 2067 } 2068 } else { 2069 /* C22 write */ 2070 frame_start = FEC_MMFR_ST; 2071 frame_addr = regnum; 2072 } 2073 2074 /* start a write op */ 2075 writel(frame_start | FEC_MMFR_OP_WRITE | 2076 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2077 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2078 fep->hwp + FEC_MII_DATA); 2079 2080 /* wait for end of transfer */ 2081 ret = fec_enet_mdio_wait(fep); 2082 if (ret) 2083 netdev_err(fep->netdev, "MDIO write timeout\n"); 2084 2085 out: 2086 pm_runtime_mark_last_busy(dev); 2087 pm_runtime_put_autosuspend(dev); 2088 2089 return ret; 2090 } 2091 2092 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2093 { 2094 struct fec_enet_private *fep = netdev_priv(ndev); 2095 struct phy_device *phy_dev = ndev->phydev; 2096 2097 if (phy_dev) { 2098 phy_reset_after_clk_enable(phy_dev); 2099 } else if (fep->phy_node) { 2100 /* 2101 * If the PHY still is not bound to the MAC, but there is 2102 * OF PHY node and a matching PHY device instance already, 2103 * use the OF PHY node to obtain the PHY device instance, 2104 * and then use that PHY device instance when triggering 2105 * the PHY reset. 2106 */ 2107 phy_dev = of_phy_find_device(fep->phy_node); 2108 phy_reset_after_clk_enable(phy_dev); 2109 put_device(&phy_dev->mdio.dev); 2110 } 2111 } 2112 2113 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2114 { 2115 struct fec_enet_private *fep = netdev_priv(ndev); 2116 int ret; 2117 2118 if (enable) { 2119 ret = clk_prepare_enable(fep->clk_enet_out); 2120 if (ret) 2121 return ret; 2122 2123 if (fep->clk_ptp) { 2124 mutex_lock(&fep->ptp_clk_mutex); 2125 ret = clk_prepare_enable(fep->clk_ptp); 2126 if (ret) { 2127 mutex_unlock(&fep->ptp_clk_mutex); 2128 goto failed_clk_ptp; 2129 } else { 2130 fep->ptp_clk_on = true; 2131 } 2132 mutex_unlock(&fep->ptp_clk_mutex); 2133 } 2134 2135 ret = clk_prepare_enable(fep->clk_ref); 2136 if (ret) 2137 goto failed_clk_ref; 2138 2139 ret = clk_prepare_enable(fep->clk_2x_txclk); 2140 if (ret) 2141 goto failed_clk_2x_txclk; 2142 2143 fec_enet_phy_reset_after_clk_enable(ndev); 2144 } else { 2145 clk_disable_unprepare(fep->clk_enet_out); 2146 if (fep->clk_ptp) { 2147 mutex_lock(&fep->ptp_clk_mutex); 2148 clk_disable_unprepare(fep->clk_ptp); 2149 fep->ptp_clk_on = false; 2150 mutex_unlock(&fep->ptp_clk_mutex); 2151 } 2152 clk_disable_unprepare(fep->clk_ref); 2153 clk_disable_unprepare(fep->clk_2x_txclk); 2154 } 2155 2156 return 0; 2157 2158 failed_clk_2x_txclk: 2159 if (fep->clk_ref) 2160 clk_disable_unprepare(fep->clk_ref); 2161 failed_clk_ref: 2162 if (fep->clk_ptp) { 2163 mutex_lock(&fep->ptp_clk_mutex); 2164 clk_disable_unprepare(fep->clk_ptp); 2165 fep->ptp_clk_on = false; 2166 mutex_unlock(&fep->ptp_clk_mutex); 2167 } 2168 failed_clk_ptp: 2169 clk_disable_unprepare(fep->clk_enet_out); 2170 2171 return ret; 2172 } 2173 2174 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2175 struct device_node *np) 2176 { 2177 u32 rgmii_tx_delay, rgmii_rx_delay; 2178 2179 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2180 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2181 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2182 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2183 return -EINVAL; 2184 } else if (rgmii_tx_delay == 2000) { 2185 fep->rgmii_txc_dly = true; 2186 } 2187 } 2188 2189 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2190 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2191 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2192 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2193 return -EINVAL; 2194 } else if (rgmii_rx_delay == 2000) { 2195 fep->rgmii_rxc_dly = true; 2196 } 2197 } 2198 2199 return 0; 2200 } 2201 2202 static int fec_enet_mii_probe(struct net_device *ndev) 2203 { 2204 struct fec_enet_private *fep = netdev_priv(ndev); 2205 struct phy_device *phy_dev = NULL; 2206 char mdio_bus_id[MII_BUS_ID_SIZE]; 2207 char phy_name[MII_BUS_ID_SIZE + 3]; 2208 int phy_id; 2209 int dev_id = fep->dev_id; 2210 2211 if (fep->phy_node) { 2212 phy_dev = of_phy_connect(ndev, fep->phy_node, 2213 &fec_enet_adjust_link, 0, 2214 fep->phy_interface); 2215 if (!phy_dev) { 2216 netdev_err(ndev, "Unable to connect to phy\n"); 2217 return -ENODEV; 2218 } 2219 } else { 2220 /* check for attached phy */ 2221 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2222 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2223 continue; 2224 if (dev_id--) 2225 continue; 2226 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2227 break; 2228 } 2229 2230 if (phy_id >= PHY_MAX_ADDR) { 2231 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2232 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2233 phy_id = 0; 2234 } 2235 2236 snprintf(phy_name, sizeof(phy_name), 2237 PHY_ID_FMT, mdio_bus_id, phy_id); 2238 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2239 fep->phy_interface); 2240 } 2241 2242 if (IS_ERR(phy_dev)) { 2243 netdev_err(ndev, "could not attach to PHY\n"); 2244 return PTR_ERR(phy_dev); 2245 } 2246 2247 /* mask with MAC supported features */ 2248 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2249 phy_set_max_speed(phy_dev, 1000); 2250 phy_remove_link_mode(phy_dev, 2251 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2252 #if !defined(CONFIG_M5272) 2253 phy_support_sym_pause(phy_dev); 2254 #endif 2255 } 2256 else 2257 phy_set_max_speed(phy_dev, 100); 2258 2259 fep->link = 0; 2260 fep->full_duplex = 0; 2261 2262 phy_dev->mac_managed_pm = true; 2263 2264 phy_attached_info(phy_dev); 2265 2266 return 0; 2267 } 2268 2269 static int fec_enet_mii_init(struct platform_device *pdev) 2270 { 2271 static struct mii_bus *fec0_mii_bus; 2272 struct net_device *ndev = platform_get_drvdata(pdev); 2273 struct fec_enet_private *fep = netdev_priv(ndev); 2274 bool suppress_preamble = false; 2275 struct device_node *node; 2276 int err = -ENXIO; 2277 u32 mii_speed, holdtime; 2278 u32 bus_freq; 2279 2280 /* 2281 * The i.MX28 dual fec interfaces are not equal. 2282 * Here are the differences: 2283 * 2284 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2285 * - fec0 acts as the 1588 time master while fec1 is slave 2286 * - external phys can only be configured by fec0 2287 * 2288 * That is to say fec1 can not work independently. It only works 2289 * when fec0 is working. The reason behind this design is that the 2290 * second interface is added primarily for Switch mode. 2291 * 2292 * Because of the last point above, both phys are attached on fec0 2293 * mdio interface in board design, and need to be configured by 2294 * fec0 mii_bus. 2295 */ 2296 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2297 /* fec1 uses fec0 mii_bus */ 2298 if (mii_cnt && fec0_mii_bus) { 2299 fep->mii_bus = fec0_mii_bus; 2300 mii_cnt++; 2301 return 0; 2302 } 2303 return -ENOENT; 2304 } 2305 2306 bus_freq = 2500000; /* 2.5MHz by default */ 2307 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2308 if (node) { 2309 of_property_read_u32(node, "clock-frequency", &bus_freq); 2310 suppress_preamble = of_property_read_bool(node, 2311 "suppress-preamble"); 2312 } 2313 2314 /* 2315 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2316 * 2317 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2318 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2319 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2320 * document. 2321 */ 2322 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2323 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2324 mii_speed--; 2325 if (mii_speed > 63) { 2326 dev_err(&pdev->dev, 2327 "fec clock (%lu) too fast to get right mii speed\n", 2328 clk_get_rate(fep->clk_ipg)); 2329 err = -EINVAL; 2330 goto err_out; 2331 } 2332 2333 /* 2334 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2335 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2336 * versions are RAZ there, so just ignore the difference and write the 2337 * register always. 2338 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2339 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2340 * output. 2341 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2342 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2343 * holdtime cannot result in a value greater than 3. 2344 */ 2345 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2346 2347 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2348 2349 if (suppress_preamble) 2350 fep->phy_speed |= BIT(7); 2351 2352 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2353 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2354 * MII event generation condition: 2355 * - writing MSCR: 2356 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2357 * mscr_reg_data_in[7:0] != 0 2358 * - writing MMFR: 2359 * - mscr[7:0]_not_zero 2360 */ 2361 writel(0, fep->hwp + FEC_MII_DATA); 2362 } 2363 2364 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2365 2366 /* Clear any pending transaction complete indication */ 2367 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2368 2369 fep->mii_bus = mdiobus_alloc(); 2370 if (fep->mii_bus == NULL) { 2371 err = -ENOMEM; 2372 goto err_out; 2373 } 2374 2375 fep->mii_bus->name = "fec_enet_mii_bus"; 2376 fep->mii_bus->read = fec_enet_mdio_read; 2377 fep->mii_bus->write = fec_enet_mdio_write; 2378 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2379 pdev->name, fep->dev_id + 1); 2380 fep->mii_bus->priv = fep; 2381 fep->mii_bus->parent = &pdev->dev; 2382 2383 err = of_mdiobus_register(fep->mii_bus, node); 2384 if (err) 2385 goto err_out_free_mdiobus; 2386 of_node_put(node); 2387 2388 mii_cnt++; 2389 2390 /* save fec0 mii_bus */ 2391 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2392 fec0_mii_bus = fep->mii_bus; 2393 2394 return 0; 2395 2396 err_out_free_mdiobus: 2397 mdiobus_free(fep->mii_bus); 2398 err_out: 2399 of_node_put(node); 2400 return err; 2401 } 2402 2403 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2404 { 2405 if (--mii_cnt == 0) { 2406 mdiobus_unregister(fep->mii_bus); 2407 mdiobus_free(fep->mii_bus); 2408 } 2409 } 2410 2411 static void fec_enet_get_drvinfo(struct net_device *ndev, 2412 struct ethtool_drvinfo *info) 2413 { 2414 struct fec_enet_private *fep = netdev_priv(ndev); 2415 2416 strscpy(info->driver, fep->pdev->dev.driver->name, 2417 sizeof(info->driver)); 2418 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2419 } 2420 2421 static int fec_enet_get_regs_len(struct net_device *ndev) 2422 { 2423 struct fec_enet_private *fep = netdev_priv(ndev); 2424 struct resource *r; 2425 int s = 0; 2426 2427 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2428 if (r) 2429 s = resource_size(r); 2430 2431 return s; 2432 } 2433 2434 /* List of registers that can be safety be read to dump them with ethtool */ 2435 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2436 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2437 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2438 static __u32 fec_enet_register_version = 2; 2439 static u32 fec_enet_register_offset[] = { 2440 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2441 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2442 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2443 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2444 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2445 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2446 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2447 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2448 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2449 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2450 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2451 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2452 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2453 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2454 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2455 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2456 RMON_T_P_GTE2048, RMON_T_OCTETS, 2457 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2458 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2459 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2460 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2461 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2462 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2463 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2464 RMON_R_P_GTE2048, RMON_R_OCTETS, 2465 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2466 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2467 }; 2468 /* for i.MX6ul */ 2469 static u32 fec_enet_register_offset_6ul[] = { 2470 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2471 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2472 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2473 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2474 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2475 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2476 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2477 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2478 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2479 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2480 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2481 RMON_T_P_GTE2048, RMON_T_OCTETS, 2482 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2483 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2484 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2485 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2486 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2487 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2488 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2489 RMON_R_P_GTE2048, RMON_R_OCTETS, 2490 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2491 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2492 }; 2493 #else 2494 static __u32 fec_enet_register_version = 1; 2495 static u32 fec_enet_register_offset[] = { 2496 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2497 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2498 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2499 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2500 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2501 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2502 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2503 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2504 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2505 }; 2506 #endif 2507 2508 static void fec_enet_get_regs(struct net_device *ndev, 2509 struct ethtool_regs *regs, void *regbuf) 2510 { 2511 struct fec_enet_private *fep = netdev_priv(ndev); 2512 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2513 struct device *dev = &fep->pdev->dev; 2514 u32 *buf = (u32 *)regbuf; 2515 u32 i, off; 2516 int ret; 2517 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2518 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2519 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2520 u32 *reg_list; 2521 u32 reg_cnt; 2522 2523 if (!of_machine_is_compatible("fsl,imx6ul")) { 2524 reg_list = fec_enet_register_offset; 2525 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2526 } else { 2527 reg_list = fec_enet_register_offset_6ul; 2528 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2529 } 2530 #else 2531 /* coldfire */ 2532 static u32 *reg_list = fec_enet_register_offset; 2533 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2534 #endif 2535 ret = pm_runtime_resume_and_get(dev); 2536 if (ret < 0) 2537 return; 2538 2539 regs->version = fec_enet_register_version; 2540 2541 memset(buf, 0, regs->len); 2542 2543 for (i = 0; i < reg_cnt; i++) { 2544 off = reg_list[i]; 2545 2546 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2547 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2548 continue; 2549 2550 off >>= 2; 2551 buf[off] = readl(&theregs[off]); 2552 } 2553 2554 pm_runtime_mark_last_busy(dev); 2555 pm_runtime_put_autosuspend(dev); 2556 } 2557 2558 static int fec_enet_get_ts_info(struct net_device *ndev, 2559 struct ethtool_ts_info *info) 2560 { 2561 struct fec_enet_private *fep = netdev_priv(ndev); 2562 2563 if (fep->bufdesc_ex) { 2564 2565 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2566 SOF_TIMESTAMPING_RX_SOFTWARE | 2567 SOF_TIMESTAMPING_SOFTWARE | 2568 SOF_TIMESTAMPING_TX_HARDWARE | 2569 SOF_TIMESTAMPING_RX_HARDWARE | 2570 SOF_TIMESTAMPING_RAW_HARDWARE; 2571 if (fep->ptp_clock) 2572 info->phc_index = ptp_clock_index(fep->ptp_clock); 2573 else 2574 info->phc_index = -1; 2575 2576 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2577 (1 << HWTSTAMP_TX_ON); 2578 2579 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2580 (1 << HWTSTAMP_FILTER_ALL); 2581 return 0; 2582 } else { 2583 return ethtool_op_get_ts_info(ndev, info); 2584 } 2585 } 2586 2587 #if !defined(CONFIG_M5272) 2588 2589 static void fec_enet_get_pauseparam(struct net_device *ndev, 2590 struct ethtool_pauseparam *pause) 2591 { 2592 struct fec_enet_private *fep = netdev_priv(ndev); 2593 2594 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2595 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2596 pause->rx_pause = pause->tx_pause; 2597 } 2598 2599 static int fec_enet_set_pauseparam(struct net_device *ndev, 2600 struct ethtool_pauseparam *pause) 2601 { 2602 struct fec_enet_private *fep = netdev_priv(ndev); 2603 2604 if (!ndev->phydev) 2605 return -ENODEV; 2606 2607 if (pause->tx_pause != pause->rx_pause) { 2608 netdev_info(ndev, 2609 "hardware only support enable/disable both tx and rx"); 2610 return -EINVAL; 2611 } 2612 2613 fep->pause_flag = 0; 2614 2615 /* tx pause must be same as rx pause */ 2616 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2617 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2618 2619 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2620 pause->autoneg); 2621 2622 if (pause->autoneg) { 2623 if (netif_running(ndev)) 2624 fec_stop(ndev); 2625 phy_start_aneg(ndev->phydev); 2626 } 2627 if (netif_running(ndev)) { 2628 napi_disable(&fep->napi); 2629 netif_tx_lock_bh(ndev); 2630 fec_restart(ndev); 2631 netif_tx_wake_all_queues(ndev); 2632 netif_tx_unlock_bh(ndev); 2633 napi_enable(&fep->napi); 2634 } 2635 2636 return 0; 2637 } 2638 2639 static const struct fec_stat { 2640 char name[ETH_GSTRING_LEN]; 2641 u16 offset; 2642 } fec_stats[] = { 2643 /* RMON TX */ 2644 { "tx_dropped", RMON_T_DROP }, 2645 { "tx_packets", RMON_T_PACKETS }, 2646 { "tx_broadcast", RMON_T_BC_PKT }, 2647 { "tx_multicast", RMON_T_MC_PKT }, 2648 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2649 { "tx_undersize", RMON_T_UNDERSIZE }, 2650 { "tx_oversize", RMON_T_OVERSIZE }, 2651 { "tx_fragment", RMON_T_FRAG }, 2652 { "tx_jabber", RMON_T_JAB }, 2653 { "tx_collision", RMON_T_COL }, 2654 { "tx_64byte", RMON_T_P64 }, 2655 { "tx_65to127byte", RMON_T_P65TO127 }, 2656 { "tx_128to255byte", RMON_T_P128TO255 }, 2657 { "tx_256to511byte", RMON_T_P256TO511 }, 2658 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2659 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2660 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2661 { "tx_octets", RMON_T_OCTETS }, 2662 2663 /* IEEE TX */ 2664 { "IEEE_tx_drop", IEEE_T_DROP }, 2665 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2666 { "IEEE_tx_1col", IEEE_T_1COL }, 2667 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2668 { "IEEE_tx_def", IEEE_T_DEF }, 2669 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2670 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2671 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2672 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2673 { "IEEE_tx_sqe", IEEE_T_SQE }, 2674 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2675 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2676 2677 /* RMON RX */ 2678 { "rx_packets", RMON_R_PACKETS }, 2679 { "rx_broadcast", RMON_R_BC_PKT }, 2680 { "rx_multicast", RMON_R_MC_PKT }, 2681 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2682 { "rx_undersize", RMON_R_UNDERSIZE }, 2683 { "rx_oversize", RMON_R_OVERSIZE }, 2684 { "rx_fragment", RMON_R_FRAG }, 2685 { "rx_jabber", RMON_R_JAB }, 2686 { "rx_64byte", RMON_R_P64 }, 2687 { "rx_65to127byte", RMON_R_P65TO127 }, 2688 { "rx_128to255byte", RMON_R_P128TO255 }, 2689 { "rx_256to511byte", RMON_R_P256TO511 }, 2690 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2691 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2692 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2693 { "rx_octets", RMON_R_OCTETS }, 2694 2695 /* IEEE RX */ 2696 { "IEEE_rx_drop", IEEE_R_DROP }, 2697 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2698 { "IEEE_rx_crc", IEEE_R_CRC }, 2699 { "IEEE_rx_align", IEEE_R_ALIGN }, 2700 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2701 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2702 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2703 }; 2704 2705 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2706 2707 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2708 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2709 "rx_xdp_pass", /* RX_XDP_PASS, */ 2710 "rx_xdp_drop", /* RX_XDP_DROP, */ 2711 "rx_xdp_tx", /* RX_XDP_TX, */ 2712 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2713 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2714 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2715 }; 2716 2717 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2718 { 2719 struct fec_enet_private *fep = netdev_priv(dev); 2720 int i; 2721 2722 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2723 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2724 } 2725 2726 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2727 { 2728 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2729 struct fec_enet_priv_rx_q *rxq; 2730 int i, j; 2731 2732 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2733 rxq = fep->rx_queue[i]; 2734 2735 for (j = 0; j < XDP_STATS_TOTAL; j++) 2736 xdp_stats[j] += rxq->stats[j]; 2737 } 2738 2739 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2740 } 2741 2742 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2743 { 2744 struct page_pool_stats stats = {}; 2745 struct fec_enet_priv_rx_q *rxq; 2746 int i; 2747 2748 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2749 rxq = fep->rx_queue[i]; 2750 2751 if (!rxq->page_pool) 2752 continue; 2753 2754 page_pool_get_stats(rxq->page_pool, &stats); 2755 } 2756 2757 page_pool_ethtool_stats_get(data, &stats); 2758 } 2759 2760 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2761 struct ethtool_stats *stats, u64 *data) 2762 { 2763 struct fec_enet_private *fep = netdev_priv(dev); 2764 2765 if (netif_running(dev)) 2766 fec_enet_update_ethtool_stats(dev); 2767 2768 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2769 data += FEC_STATS_SIZE / sizeof(u64); 2770 2771 fec_enet_get_xdp_stats(fep, data); 2772 data += XDP_STATS_TOTAL; 2773 2774 fec_enet_page_pool_stats(fep, data); 2775 } 2776 2777 static void fec_enet_get_strings(struct net_device *netdev, 2778 u32 stringset, u8 *data) 2779 { 2780 int i; 2781 switch (stringset) { 2782 case ETH_SS_STATS: 2783 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2784 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2785 data += ETH_GSTRING_LEN; 2786 } 2787 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2788 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2789 data += ETH_GSTRING_LEN; 2790 } 2791 page_pool_ethtool_stats_get_strings(data); 2792 2793 break; 2794 case ETH_SS_TEST: 2795 net_selftest_get_strings(data); 2796 break; 2797 } 2798 } 2799 2800 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2801 { 2802 int count; 2803 2804 switch (sset) { 2805 case ETH_SS_STATS: 2806 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2807 count += page_pool_ethtool_stats_get_count(); 2808 return count; 2809 2810 case ETH_SS_TEST: 2811 return net_selftest_get_count(); 2812 default: 2813 return -EOPNOTSUPP; 2814 } 2815 } 2816 2817 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2818 { 2819 struct fec_enet_private *fep = netdev_priv(dev); 2820 struct fec_enet_priv_rx_q *rxq; 2821 int i, j; 2822 2823 /* Disable MIB statistics counters */ 2824 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2825 2826 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2827 writel(0, fep->hwp + fec_stats[i].offset); 2828 2829 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2830 rxq = fep->rx_queue[i]; 2831 for (j = 0; j < XDP_STATS_TOTAL; j++) 2832 rxq->stats[j] = 0; 2833 } 2834 2835 /* Don't disable MIB statistics counters */ 2836 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2837 } 2838 2839 #else /* !defined(CONFIG_M5272) */ 2840 #define FEC_STATS_SIZE 0 2841 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2842 { 2843 } 2844 2845 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2846 { 2847 } 2848 #endif /* !defined(CONFIG_M5272) */ 2849 2850 /* ITR clock source is enet system clock (clk_ahb). 2851 * TCTT unit is cycle_ns * 64 cycle 2852 * So, the ICTT value = X us / (cycle_ns * 64) 2853 */ 2854 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2855 { 2856 struct fec_enet_private *fep = netdev_priv(ndev); 2857 2858 return us * (fep->itr_clk_rate / 64000) / 1000; 2859 } 2860 2861 /* Set threshold for interrupt coalescing */ 2862 static void fec_enet_itr_coal_set(struct net_device *ndev) 2863 { 2864 struct fec_enet_private *fep = netdev_priv(ndev); 2865 int rx_itr, tx_itr; 2866 2867 /* Must be greater than zero to avoid unpredictable behavior */ 2868 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2869 !fep->tx_time_itr || !fep->tx_pkts_itr) 2870 return; 2871 2872 /* Select enet system clock as Interrupt Coalescing 2873 * timer Clock Source 2874 */ 2875 rx_itr = FEC_ITR_CLK_SEL; 2876 tx_itr = FEC_ITR_CLK_SEL; 2877 2878 /* set ICFT and ICTT */ 2879 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2880 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2881 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2882 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2883 2884 rx_itr |= FEC_ITR_EN; 2885 tx_itr |= FEC_ITR_EN; 2886 2887 writel(tx_itr, fep->hwp + FEC_TXIC0); 2888 writel(rx_itr, fep->hwp + FEC_RXIC0); 2889 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2890 writel(tx_itr, fep->hwp + FEC_TXIC1); 2891 writel(rx_itr, fep->hwp + FEC_RXIC1); 2892 writel(tx_itr, fep->hwp + FEC_TXIC2); 2893 writel(rx_itr, fep->hwp + FEC_RXIC2); 2894 } 2895 } 2896 2897 static int fec_enet_get_coalesce(struct net_device *ndev, 2898 struct ethtool_coalesce *ec, 2899 struct kernel_ethtool_coalesce *kernel_coal, 2900 struct netlink_ext_ack *extack) 2901 { 2902 struct fec_enet_private *fep = netdev_priv(ndev); 2903 2904 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2905 return -EOPNOTSUPP; 2906 2907 ec->rx_coalesce_usecs = fep->rx_time_itr; 2908 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2909 2910 ec->tx_coalesce_usecs = fep->tx_time_itr; 2911 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2912 2913 return 0; 2914 } 2915 2916 static int fec_enet_set_coalesce(struct net_device *ndev, 2917 struct ethtool_coalesce *ec, 2918 struct kernel_ethtool_coalesce *kernel_coal, 2919 struct netlink_ext_ack *extack) 2920 { 2921 struct fec_enet_private *fep = netdev_priv(ndev); 2922 struct device *dev = &fep->pdev->dev; 2923 unsigned int cycle; 2924 2925 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2926 return -EOPNOTSUPP; 2927 2928 if (ec->rx_max_coalesced_frames > 255) { 2929 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2930 return -EINVAL; 2931 } 2932 2933 if (ec->tx_max_coalesced_frames > 255) { 2934 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2935 return -EINVAL; 2936 } 2937 2938 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2939 if (cycle > 0xFFFF) { 2940 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2941 return -EINVAL; 2942 } 2943 2944 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2945 if (cycle > 0xFFFF) { 2946 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2947 return -EINVAL; 2948 } 2949 2950 fep->rx_time_itr = ec->rx_coalesce_usecs; 2951 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2952 2953 fep->tx_time_itr = ec->tx_coalesce_usecs; 2954 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2955 2956 fec_enet_itr_coal_set(ndev); 2957 2958 return 0; 2959 } 2960 2961 static void fec_enet_itr_coal_init(struct net_device *ndev) 2962 { 2963 struct ethtool_coalesce ec; 2964 2965 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2966 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2967 2968 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2969 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2970 2971 fec_enet_set_coalesce(ndev, &ec, NULL, NULL); 2972 } 2973 2974 static int fec_enet_get_tunable(struct net_device *netdev, 2975 const struct ethtool_tunable *tuna, 2976 void *data) 2977 { 2978 struct fec_enet_private *fep = netdev_priv(netdev); 2979 int ret = 0; 2980 2981 switch (tuna->id) { 2982 case ETHTOOL_RX_COPYBREAK: 2983 *(u32 *)data = fep->rx_copybreak; 2984 break; 2985 default: 2986 ret = -EINVAL; 2987 break; 2988 } 2989 2990 return ret; 2991 } 2992 2993 static int fec_enet_set_tunable(struct net_device *netdev, 2994 const struct ethtool_tunable *tuna, 2995 const void *data) 2996 { 2997 struct fec_enet_private *fep = netdev_priv(netdev); 2998 int ret = 0; 2999 3000 switch (tuna->id) { 3001 case ETHTOOL_RX_COPYBREAK: 3002 fep->rx_copybreak = *(u32 *)data; 3003 break; 3004 default: 3005 ret = -EINVAL; 3006 break; 3007 } 3008 3009 return ret; 3010 } 3011 3012 /* LPI Sleep Ts count base on tx clk (clk_ref). 3013 * The lpi sleep cnt value = X us / (cycle_ns). 3014 */ 3015 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3016 { 3017 struct fec_enet_private *fep = netdev_priv(ndev); 3018 3019 return us * (fep->clk_ref_rate / 1000) / 1000; 3020 } 3021 3022 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3023 { 3024 struct fec_enet_private *fep = netdev_priv(ndev); 3025 struct ethtool_eee *p = &fep->eee; 3026 unsigned int sleep_cycle, wake_cycle; 3027 int ret = 0; 3028 3029 if (enable) { 3030 ret = phy_init_eee(ndev->phydev, false); 3031 if (ret) 3032 return ret; 3033 3034 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3035 wake_cycle = sleep_cycle; 3036 } else { 3037 sleep_cycle = 0; 3038 wake_cycle = 0; 3039 } 3040 3041 p->tx_lpi_enabled = enable; 3042 p->eee_enabled = enable; 3043 p->eee_active = enable; 3044 3045 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3046 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3047 3048 return 0; 3049 } 3050 3051 static int 3052 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3053 { 3054 struct fec_enet_private *fep = netdev_priv(ndev); 3055 struct ethtool_eee *p = &fep->eee; 3056 3057 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3058 return -EOPNOTSUPP; 3059 3060 if (!netif_running(ndev)) 3061 return -ENETDOWN; 3062 3063 edata->eee_enabled = p->eee_enabled; 3064 edata->eee_active = p->eee_active; 3065 edata->tx_lpi_timer = p->tx_lpi_timer; 3066 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3067 3068 return phy_ethtool_get_eee(ndev->phydev, edata); 3069 } 3070 3071 static int 3072 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3073 { 3074 struct fec_enet_private *fep = netdev_priv(ndev); 3075 struct ethtool_eee *p = &fep->eee; 3076 int ret = 0; 3077 3078 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3079 return -EOPNOTSUPP; 3080 3081 if (!netif_running(ndev)) 3082 return -ENETDOWN; 3083 3084 p->tx_lpi_timer = edata->tx_lpi_timer; 3085 3086 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3087 !edata->tx_lpi_timer) 3088 ret = fec_enet_eee_mode_set(ndev, false); 3089 else 3090 ret = fec_enet_eee_mode_set(ndev, true); 3091 3092 if (ret) 3093 return ret; 3094 3095 return phy_ethtool_set_eee(ndev->phydev, edata); 3096 } 3097 3098 static void 3099 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3100 { 3101 struct fec_enet_private *fep = netdev_priv(ndev); 3102 3103 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3104 wol->supported = WAKE_MAGIC; 3105 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3106 } else { 3107 wol->supported = wol->wolopts = 0; 3108 } 3109 } 3110 3111 static int 3112 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3113 { 3114 struct fec_enet_private *fep = netdev_priv(ndev); 3115 3116 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3117 return -EINVAL; 3118 3119 if (wol->wolopts & ~WAKE_MAGIC) 3120 return -EINVAL; 3121 3122 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3123 if (device_may_wakeup(&ndev->dev)) 3124 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3125 else 3126 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3127 3128 return 0; 3129 } 3130 3131 static const struct ethtool_ops fec_enet_ethtool_ops = { 3132 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3133 ETHTOOL_COALESCE_MAX_FRAMES, 3134 .get_drvinfo = fec_enet_get_drvinfo, 3135 .get_regs_len = fec_enet_get_regs_len, 3136 .get_regs = fec_enet_get_regs, 3137 .nway_reset = phy_ethtool_nway_reset, 3138 .get_link = ethtool_op_get_link, 3139 .get_coalesce = fec_enet_get_coalesce, 3140 .set_coalesce = fec_enet_set_coalesce, 3141 #ifndef CONFIG_M5272 3142 .get_pauseparam = fec_enet_get_pauseparam, 3143 .set_pauseparam = fec_enet_set_pauseparam, 3144 .get_strings = fec_enet_get_strings, 3145 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3146 .get_sset_count = fec_enet_get_sset_count, 3147 #endif 3148 .get_ts_info = fec_enet_get_ts_info, 3149 .get_tunable = fec_enet_get_tunable, 3150 .set_tunable = fec_enet_set_tunable, 3151 .get_wol = fec_enet_get_wol, 3152 .set_wol = fec_enet_set_wol, 3153 .get_eee = fec_enet_get_eee, 3154 .set_eee = fec_enet_set_eee, 3155 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3156 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3157 .self_test = net_selftest, 3158 }; 3159 3160 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3161 { 3162 struct fec_enet_private *fep = netdev_priv(ndev); 3163 struct phy_device *phydev = ndev->phydev; 3164 3165 if (!netif_running(ndev)) 3166 return -EINVAL; 3167 3168 if (!phydev) 3169 return -ENODEV; 3170 3171 if (fep->bufdesc_ex) { 3172 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3173 3174 if (cmd == SIOCSHWTSTAMP) { 3175 if (use_fec_hwts) 3176 return fec_ptp_set(ndev, rq); 3177 fec_ptp_disable_hwts(ndev); 3178 } else if (cmd == SIOCGHWTSTAMP) { 3179 if (use_fec_hwts) 3180 return fec_ptp_get(ndev, rq); 3181 } 3182 } 3183 3184 return phy_mii_ioctl(phydev, rq, cmd); 3185 } 3186 3187 static void fec_enet_free_buffers(struct net_device *ndev) 3188 { 3189 struct fec_enet_private *fep = netdev_priv(ndev); 3190 unsigned int i; 3191 struct sk_buff *skb; 3192 struct fec_enet_priv_tx_q *txq; 3193 struct fec_enet_priv_rx_q *rxq; 3194 unsigned int q; 3195 3196 for (q = 0; q < fep->num_rx_queues; q++) { 3197 rxq = fep->rx_queue[q]; 3198 for (i = 0; i < rxq->bd.ring_size; i++) 3199 page_pool_release_page(rxq->page_pool, rxq->rx_skb_info[i].page); 3200 3201 for (i = 0; i < XDP_STATS_TOTAL; i++) 3202 rxq->stats[i] = 0; 3203 3204 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3205 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3206 page_pool_destroy(rxq->page_pool); 3207 rxq->page_pool = NULL; 3208 } 3209 3210 for (q = 0; q < fep->num_tx_queues; q++) { 3211 txq = fep->tx_queue[q]; 3212 for (i = 0; i < txq->bd.ring_size; i++) { 3213 kfree(txq->tx_bounce[i]); 3214 txq->tx_bounce[i] = NULL; 3215 skb = txq->tx_skbuff[i]; 3216 txq->tx_skbuff[i] = NULL; 3217 dev_kfree_skb(skb); 3218 } 3219 } 3220 } 3221 3222 static void fec_enet_free_queue(struct net_device *ndev) 3223 { 3224 struct fec_enet_private *fep = netdev_priv(ndev); 3225 int i; 3226 struct fec_enet_priv_tx_q *txq; 3227 3228 for (i = 0; i < fep->num_tx_queues; i++) 3229 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3230 txq = fep->tx_queue[i]; 3231 dma_free_coherent(&fep->pdev->dev, 3232 txq->bd.ring_size * TSO_HEADER_SIZE, 3233 txq->tso_hdrs, 3234 txq->tso_hdrs_dma); 3235 } 3236 3237 for (i = 0; i < fep->num_rx_queues; i++) 3238 kfree(fep->rx_queue[i]); 3239 for (i = 0; i < fep->num_tx_queues; i++) 3240 kfree(fep->tx_queue[i]); 3241 } 3242 3243 static int fec_enet_alloc_queue(struct net_device *ndev) 3244 { 3245 struct fec_enet_private *fep = netdev_priv(ndev); 3246 int i; 3247 int ret = 0; 3248 struct fec_enet_priv_tx_q *txq; 3249 3250 for (i = 0; i < fep->num_tx_queues; i++) { 3251 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3252 if (!txq) { 3253 ret = -ENOMEM; 3254 goto alloc_failed; 3255 } 3256 3257 fep->tx_queue[i] = txq; 3258 txq->bd.ring_size = TX_RING_SIZE; 3259 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3260 3261 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3262 txq->tx_wake_threshold = 3263 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3264 3265 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3266 txq->bd.ring_size * TSO_HEADER_SIZE, 3267 &txq->tso_hdrs_dma, 3268 GFP_KERNEL); 3269 if (!txq->tso_hdrs) { 3270 ret = -ENOMEM; 3271 goto alloc_failed; 3272 } 3273 } 3274 3275 for (i = 0; i < fep->num_rx_queues; i++) { 3276 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3277 GFP_KERNEL); 3278 if (!fep->rx_queue[i]) { 3279 ret = -ENOMEM; 3280 goto alloc_failed; 3281 } 3282 3283 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3284 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3285 } 3286 return ret; 3287 3288 alloc_failed: 3289 fec_enet_free_queue(ndev); 3290 return ret; 3291 } 3292 3293 static int 3294 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3295 { 3296 struct fec_enet_private *fep = netdev_priv(ndev); 3297 struct fec_enet_priv_rx_q *rxq; 3298 dma_addr_t phys_addr; 3299 struct bufdesc *bdp; 3300 struct page *page; 3301 int i, err; 3302 3303 rxq = fep->rx_queue[queue]; 3304 bdp = rxq->bd.base; 3305 3306 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3307 if (err < 0) { 3308 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3309 return err; 3310 } 3311 3312 for (i = 0; i < rxq->bd.ring_size; i++) { 3313 page = page_pool_dev_alloc_pages(rxq->page_pool); 3314 if (!page) 3315 goto err_alloc; 3316 3317 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3318 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3319 3320 rxq->rx_skb_info[i].page = page; 3321 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3322 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3323 3324 if (fep->bufdesc_ex) { 3325 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3326 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3327 } 3328 3329 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3330 } 3331 3332 /* Set the last buffer to wrap. */ 3333 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3334 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3335 return 0; 3336 3337 err_alloc: 3338 fec_enet_free_buffers(ndev); 3339 return -ENOMEM; 3340 } 3341 3342 static int 3343 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3344 { 3345 struct fec_enet_private *fep = netdev_priv(ndev); 3346 unsigned int i; 3347 struct bufdesc *bdp; 3348 struct fec_enet_priv_tx_q *txq; 3349 3350 txq = fep->tx_queue[queue]; 3351 bdp = txq->bd.base; 3352 for (i = 0; i < txq->bd.ring_size; i++) { 3353 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3354 if (!txq->tx_bounce[i]) 3355 goto err_alloc; 3356 3357 bdp->cbd_sc = cpu_to_fec16(0); 3358 bdp->cbd_bufaddr = cpu_to_fec32(0); 3359 3360 if (fep->bufdesc_ex) { 3361 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3362 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3363 } 3364 3365 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3366 } 3367 3368 /* Set the last buffer to wrap. */ 3369 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3370 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3371 3372 return 0; 3373 3374 err_alloc: 3375 fec_enet_free_buffers(ndev); 3376 return -ENOMEM; 3377 } 3378 3379 static int fec_enet_alloc_buffers(struct net_device *ndev) 3380 { 3381 struct fec_enet_private *fep = netdev_priv(ndev); 3382 unsigned int i; 3383 3384 for (i = 0; i < fep->num_rx_queues; i++) 3385 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3386 return -ENOMEM; 3387 3388 for (i = 0; i < fep->num_tx_queues; i++) 3389 if (fec_enet_alloc_txq_buffers(ndev, i)) 3390 return -ENOMEM; 3391 return 0; 3392 } 3393 3394 static int 3395 fec_enet_open(struct net_device *ndev) 3396 { 3397 struct fec_enet_private *fep = netdev_priv(ndev); 3398 int ret; 3399 bool reset_again; 3400 3401 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3402 if (ret < 0) 3403 return ret; 3404 3405 pinctrl_pm_select_default_state(&fep->pdev->dev); 3406 ret = fec_enet_clk_enable(ndev, true); 3407 if (ret) 3408 goto clk_enable; 3409 3410 /* During the first fec_enet_open call the PHY isn't probed at this 3411 * point. Therefore the phy_reset_after_clk_enable() call within 3412 * fec_enet_clk_enable() fails. As we need this reset in order to be 3413 * sure the PHY is working correctly we check if we need to reset again 3414 * later when the PHY is probed 3415 */ 3416 if (ndev->phydev && ndev->phydev->drv) 3417 reset_again = false; 3418 else 3419 reset_again = true; 3420 3421 /* I should reset the ring buffers here, but I don't yet know 3422 * a simple way to do that. 3423 */ 3424 3425 ret = fec_enet_alloc_buffers(ndev); 3426 if (ret) 3427 goto err_enet_alloc; 3428 3429 /* Init MAC prior to mii bus probe */ 3430 fec_restart(ndev); 3431 3432 /* Call phy_reset_after_clk_enable() again if it failed during 3433 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3434 */ 3435 if (reset_again) 3436 fec_enet_phy_reset_after_clk_enable(ndev); 3437 3438 /* Probe and connect to PHY when open the interface */ 3439 ret = fec_enet_mii_probe(ndev); 3440 if (ret) 3441 goto err_enet_mii_probe; 3442 3443 if (fep->quirks & FEC_QUIRK_ERR006687) 3444 imx6q_cpuidle_fec_irqs_used(); 3445 3446 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3447 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3448 3449 napi_enable(&fep->napi); 3450 phy_start(ndev->phydev); 3451 netif_tx_start_all_queues(ndev); 3452 3453 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3454 FEC_WOL_FLAG_ENABLE); 3455 3456 return 0; 3457 3458 err_enet_mii_probe: 3459 fec_enet_free_buffers(ndev); 3460 err_enet_alloc: 3461 fec_enet_clk_enable(ndev, false); 3462 clk_enable: 3463 pm_runtime_mark_last_busy(&fep->pdev->dev); 3464 pm_runtime_put_autosuspend(&fep->pdev->dev); 3465 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3466 return ret; 3467 } 3468 3469 static int 3470 fec_enet_close(struct net_device *ndev) 3471 { 3472 struct fec_enet_private *fep = netdev_priv(ndev); 3473 3474 phy_stop(ndev->phydev); 3475 3476 if (netif_device_present(ndev)) { 3477 napi_disable(&fep->napi); 3478 netif_tx_disable(ndev); 3479 fec_stop(ndev); 3480 } 3481 3482 phy_disconnect(ndev->phydev); 3483 3484 if (fep->quirks & FEC_QUIRK_ERR006687) 3485 imx6q_cpuidle_fec_irqs_unused(); 3486 3487 fec_enet_update_ethtool_stats(ndev); 3488 3489 fec_enet_clk_enable(ndev, false); 3490 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3491 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3492 3493 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3494 pm_runtime_mark_last_busy(&fep->pdev->dev); 3495 pm_runtime_put_autosuspend(&fep->pdev->dev); 3496 3497 fec_enet_free_buffers(ndev); 3498 3499 return 0; 3500 } 3501 3502 /* Set or clear the multicast filter for this adaptor. 3503 * Skeleton taken from sunlance driver. 3504 * The CPM Ethernet implementation allows Multicast as well as individual 3505 * MAC address filtering. Some of the drivers check to make sure it is 3506 * a group multicast address, and discard those that are not. I guess I 3507 * will do the same for now, but just remove the test if you want 3508 * individual filtering as well (do the upper net layers want or support 3509 * this kind of feature?). 3510 */ 3511 3512 #define FEC_HASH_BITS 6 /* #bits in hash */ 3513 3514 static void set_multicast_list(struct net_device *ndev) 3515 { 3516 struct fec_enet_private *fep = netdev_priv(ndev); 3517 struct netdev_hw_addr *ha; 3518 unsigned int crc, tmp; 3519 unsigned char hash; 3520 unsigned int hash_high = 0, hash_low = 0; 3521 3522 if (ndev->flags & IFF_PROMISC) { 3523 tmp = readl(fep->hwp + FEC_R_CNTRL); 3524 tmp |= 0x8; 3525 writel(tmp, fep->hwp + FEC_R_CNTRL); 3526 return; 3527 } 3528 3529 tmp = readl(fep->hwp + FEC_R_CNTRL); 3530 tmp &= ~0x8; 3531 writel(tmp, fep->hwp + FEC_R_CNTRL); 3532 3533 if (ndev->flags & IFF_ALLMULTI) { 3534 /* Catch all multicast addresses, so set the 3535 * filter to all 1's 3536 */ 3537 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3538 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3539 3540 return; 3541 } 3542 3543 /* Add the addresses in hash register */ 3544 netdev_for_each_mc_addr(ha, ndev) { 3545 /* calculate crc32 value of mac address */ 3546 crc = ether_crc_le(ndev->addr_len, ha->addr); 3547 3548 /* only upper 6 bits (FEC_HASH_BITS) are used 3549 * which point to specific bit in the hash registers 3550 */ 3551 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3552 3553 if (hash > 31) 3554 hash_high |= 1 << (hash - 32); 3555 else 3556 hash_low |= 1 << hash; 3557 } 3558 3559 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3560 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3561 } 3562 3563 /* Set a MAC change in hardware. */ 3564 static int 3565 fec_set_mac_address(struct net_device *ndev, void *p) 3566 { 3567 struct fec_enet_private *fep = netdev_priv(ndev); 3568 struct sockaddr *addr = p; 3569 3570 if (addr) { 3571 if (!is_valid_ether_addr(addr->sa_data)) 3572 return -EADDRNOTAVAIL; 3573 eth_hw_addr_set(ndev, addr->sa_data); 3574 } 3575 3576 /* Add netif status check here to avoid system hang in below case: 3577 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3578 * After ethx down, fec all clocks are gated off and then register 3579 * access causes system hang. 3580 */ 3581 if (!netif_running(ndev)) 3582 return 0; 3583 3584 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3585 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3586 fep->hwp + FEC_ADDR_LOW); 3587 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3588 fep->hwp + FEC_ADDR_HIGH); 3589 return 0; 3590 } 3591 3592 #ifdef CONFIG_NET_POLL_CONTROLLER 3593 /** 3594 * fec_poll_controller - FEC Poll controller function 3595 * @dev: The FEC network adapter 3596 * 3597 * Polled functionality used by netconsole and others in non interrupt mode 3598 * 3599 */ 3600 static void fec_poll_controller(struct net_device *dev) 3601 { 3602 int i; 3603 struct fec_enet_private *fep = netdev_priv(dev); 3604 3605 for (i = 0; i < FEC_IRQ_NUM; i++) { 3606 if (fep->irq[i] > 0) { 3607 disable_irq(fep->irq[i]); 3608 fec_enet_interrupt(fep->irq[i], dev); 3609 enable_irq(fep->irq[i]); 3610 } 3611 } 3612 } 3613 #endif 3614 3615 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3616 netdev_features_t features) 3617 { 3618 struct fec_enet_private *fep = netdev_priv(netdev); 3619 netdev_features_t changed = features ^ netdev->features; 3620 3621 netdev->features = features; 3622 3623 /* Receive checksum has been changed */ 3624 if (changed & NETIF_F_RXCSUM) { 3625 if (features & NETIF_F_RXCSUM) 3626 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3627 else 3628 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3629 } 3630 } 3631 3632 static int fec_set_features(struct net_device *netdev, 3633 netdev_features_t features) 3634 { 3635 struct fec_enet_private *fep = netdev_priv(netdev); 3636 netdev_features_t changed = features ^ netdev->features; 3637 3638 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3639 napi_disable(&fep->napi); 3640 netif_tx_lock_bh(netdev); 3641 fec_stop(netdev); 3642 fec_enet_set_netdev_features(netdev, features); 3643 fec_restart(netdev); 3644 netif_tx_wake_all_queues(netdev); 3645 netif_tx_unlock_bh(netdev); 3646 napi_enable(&fep->napi); 3647 } else { 3648 fec_enet_set_netdev_features(netdev, features); 3649 } 3650 3651 return 0; 3652 } 3653 3654 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3655 { 3656 struct vlan_ethhdr *vhdr; 3657 unsigned short vlan_TCI = 0; 3658 3659 if (skb->protocol == htons(ETH_P_ALL)) { 3660 vhdr = (struct vlan_ethhdr *)(skb->data); 3661 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3662 } 3663 3664 return vlan_TCI; 3665 } 3666 3667 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3668 struct net_device *sb_dev) 3669 { 3670 struct fec_enet_private *fep = netdev_priv(ndev); 3671 u16 vlan_tag; 3672 3673 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3674 return netdev_pick_tx(ndev, skb, NULL); 3675 3676 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3677 if (!vlan_tag) 3678 return vlan_tag; 3679 3680 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3681 } 3682 3683 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3684 { 3685 struct fec_enet_private *fep = netdev_priv(dev); 3686 bool is_run = netif_running(dev); 3687 struct bpf_prog *old_prog; 3688 3689 switch (bpf->command) { 3690 case XDP_SETUP_PROG: 3691 /* No need to support the SoCs that require to 3692 * do the frame swap because the performance wouldn't be 3693 * better than the skb mode. 3694 */ 3695 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3696 return -EOPNOTSUPP; 3697 3698 if (is_run) { 3699 napi_disable(&fep->napi); 3700 netif_tx_disable(dev); 3701 } 3702 3703 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3704 fec_restart(dev); 3705 3706 if (is_run) { 3707 napi_enable(&fep->napi); 3708 netif_tx_start_all_queues(dev); 3709 } 3710 3711 if (old_prog) 3712 bpf_prog_put(old_prog); 3713 3714 return 0; 3715 3716 case XDP_SETUP_XSK_POOL: 3717 return -EOPNOTSUPP; 3718 3719 default: 3720 return -EOPNOTSUPP; 3721 } 3722 } 3723 3724 static int 3725 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3726 { 3727 if (unlikely(index < 0)) 3728 return 0; 3729 3730 return (index % fep->num_tx_queues); 3731 } 3732 3733 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3734 struct fec_enet_priv_tx_q *txq, 3735 struct xdp_frame *frame) 3736 { 3737 unsigned int index, status, estatus; 3738 struct bufdesc *bdp, *last_bdp; 3739 dma_addr_t dma_addr; 3740 int entries_free; 3741 3742 entries_free = fec_enet_get_free_txdesc_num(txq); 3743 if (entries_free < MAX_SKB_FRAGS + 1) { 3744 netdev_err(fep->netdev, "NOT enough BD for SG!\n"); 3745 return NETDEV_TX_OK; 3746 } 3747 3748 /* Fill in a Tx ring entry */ 3749 bdp = txq->bd.cur; 3750 last_bdp = bdp; 3751 status = fec16_to_cpu(bdp->cbd_sc); 3752 status &= ~BD_ENET_TX_STATS; 3753 3754 index = fec_enet_get_bd_index(bdp, &txq->bd); 3755 3756 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3757 frame->len, DMA_TO_DEVICE); 3758 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3759 return FEC_ENET_XDP_CONSUMED; 3760 3761 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3762 if (fep->bufdesc_ex) 3763 estatus = BD_ENET_TX_INT; 3764 3765 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3766 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3767 3768 if (fep->bufdesc_ex) { 3769 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3770 3771 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3772 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3773 3774 ebdp->cbd_bdu = 0; 3775 ebdp->cbd_esc = cpu_to_fec32(estatus); 3776 } 3777 3778 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 3779 txq->tx_skbuff[index] = NULL; 3780 3781 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3782 * it's the last BD of the frame, and to put the CRC on the end. 3783 */ 3784 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3785 bdp->cbd_sc = cpu_to_fec16(status); 3786 3787 /* If this was the last BD in the ring, start at the beginning again. */ 3788 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 3789 3790 txq->bd.cur = bdp; 3791 3792 return 0; 3793 } 3794 3795 static int fec_enet_xdp_xmit(struct net_device *dev, 3796 int num_frames, 3797 struct xdp_frame **frames, 3798 u32 flags) 3799 { 3800 struct fec_enet_private *fep = netdev_priv(dev); 3801 struct fec_enet_priv_tx_q *txq; 3802 int cpu = smp_processor_id(); 3803 struct netdev_queue *nq; 3804 unsigned int queue; 3805 int i; 3806 3807 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3808 txq = fep->tx_queue[queue]; 3809 nq = netdev_get_tx_queue(fep->netdev, queue); 3810 3811 __netif_tx_lock(nq, cpu); 3812 3813 for (i = 0; i < num_frames; i++) 3814 fec_enet_txq_xmit_frame(fep, txq, frames[i]); 3815 3816 /* Make sure the update to bdp and tx_skbuff are performed. */ 3817 wmb(); 3818 3819 /* Trigger transmission start */ 3820 writel(0, txq->bd.reg_desc_active); 3821 3822 __netif_tx_unlock(nq); 3823 3824 return num_frames; 3825 } 3826 3827 static const struct net_device_ops fec_netdev_ops = { 3828 .ndo_open = fec_enet_open, 3829 .ndo_stop = fec_enet_close, 3830 .ndo_start_xmit = fec_enet_start_xmit, 3831 .ndo_select_queue = fec_enet_select_queue, 3832 .ndo_set_rx_mode = set_multicast_list, 3833 .ndo_validate_addr = eth_validate_addr, 3834 .ndo_tx_timeout = fec_timeout, 3835 .ndo_set_mac_address = fec_set_mac_address, 3836 .ndo_eth_ioctl = fec_enet_ioctl, 3837 #ifdef CONFIG_NET_POLL_CONTROLLER 3838 .ndo_poll_controller = fec_poll_controller, 3839 #endif 3840 .ndo_set_features = fec_set_features, 3841 .ndo_bpf = fec_enet_bpf, 3842 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3843 }; 3844 3845 static const unsigned short offset_des_active_rxq[] = { 3846 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3847 }; 3848 3849 static const unsigned short offset_des_active_txq[] = { 3850 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3851 }; 3852 3853 /* 3854 * XXX: We need to clean up on failure exits here. 3855 * 3856 */ 3857 static int fec_enet_init(struct net_device *ndev) 3858 { 3859 struct fec_enet_private *fep = netdev_priv(ndev); 3860 struct bufdesc *cbd_base; 3861 dma_addr_t bd_dma; 3862 int bd_size; 3863 unsigned int i; 3864 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3865 sizeof(struct bufdesc); 3866 unsigned dsize_log2 = __fls(dsize); 3867 int ret; 3868 3869 WARN_ON(dsize != (1 << dsize_log2)); 3870 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3871 fep->rx_align = 0xf; 3872 fep->tx_align = 0xf; 3873 #else 3874 fep->rx_align = 0x3; 3875 fep->tx_align = 0x3; 3876 #endif 3877 3878 /* Check mask of the streaming and coherent API */ 3879 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3880 if (ret < 0) { 3881 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3882 return ret; 3883 } 3884 3885 ret = fec_enet_alloc_queue(ndev); 3886 if (ret) 3887 return ret; 3888 3889 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3890 3891 /* Allocate memory for buffer descriptors. */ 3892 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3893 GFP_KERNEL); 3894 if (!cbd_base) { 3895 ret = -ENOMEM; 3896 goto free_queue_mem; 3897 } 3898 3899 /* Get the Ethernet address */ 3900 ret = fec_get_mac(ndev); 3901 if (ret) 3902 goto free_queue_mem; 3903 3904 /* make sure MAC we just acquired is programmed into the hw */ 3905 fec_set_mac_address(ndev, NULL); 3906 3907 /* Set receive and transmit descriptor base. */ 3908 for (i = 0; i < fep->num_rx_queues; i++) { 3909 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3910 unsigned size = dsize * rxq->bd.ring_size; 3911 3912 rxq->bd.qid = i; 3913 rxq->bd.base = cbd_base; 3914 rxq->bd.cur = cbd_base; 3915 rxq->bd.dma = bd_dma; 3916 rxq->bd.dsize = dsize; 3917 rxq->bd.dsize_log2 = dsize_log2; 3918 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3919 bd_dma += size; 3920 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3921 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3922 } 3923 3924 for (i = 0; i < fep->num_tx_queues; i++) { 3925 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3926 unsigned size = dsize * txq->bd.ring_size; 3927 3928 txq->bd.qid = i; 3929 txq->bd.base = cbd_base; 3930 txq->bd.cur = cbd_base; 3931 txq->bd.dma = bd_dma; 3932 txq->bd.dsize = dsize; 3933 txq->bd.dsize_log2 = dsize_log2; 3934 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3935 bd_dma += size; 3936 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3937 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3938 } 3939 3940 3941 /* The FEC Ethernet specific entries in the device structure */ 3942 ndev->watchdog_timeo = TX_TIMEOUT; 3943 ndev->netdev_ops = &fec_netdev_ops; 3944 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3945 3946 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3947 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 3948 3949 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3950 /* enable hw VLAN support */ 3951 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3952 3953 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3954 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 3955 3956 /* enable hw accelerator */ 3957 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3958 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3959 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3960 } 3961 3962 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3963 fep->tx_align = 0; 3964 fep->rx_align = 0x3f; 3965 } 3966 3967 ndev->hw_features = ndev->features; 3968 3969 fec_restart(ndev); 3970 3971 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3972 fec_enet_clear_ethtool_stats(ndev); 3973 else 3974 fec_enet_update_ethtool_stats(ndev); 3975 3976 return 0; 3977 3978 free_queue_mem: 3979 fec_enet_free_queue(ndev); 3980 return ret; 3981 } 3982 3983 #ifdef CONFIG_OF 3984 static int fec_reset_phy(struct platform_device *pdev) 3985 { 3986 int err, phy_reset; 3987 bool active_high = false; 3988 int msec = 1, phy_post_delay = 0; 3989 struct device_node *np = pdev->dev.of_node; 3990 3991 if (!np) 3992 return 0; 3993 3994 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3995 /* A sane reset duration should not be longer than 1s */ 3996 if (!err && msec > 1000) 3997 msec = 1; 3998 3999 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 4000 if (phy_reset == -EPROBE_DEFER) 4001 return phy_reset; 4002 else if (!gpio_is_valid(phy_reset)) 4003 return 0; 4004 4005 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4006 /* valid reset duration should be less than 1s */ 4007 if (!err && phy_post_delay > 1000) 4008 return -EINVAL; 4009 4010 active_high = of_property_read_bool(np, "phy-reset-active-high"); 4011 4012 err = devm_gpio_request_one(&pdev->dev, phy_reset, 4013 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 4014 "phy-reset"); 4015 if (err) { 4016 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 4017 return err; 4018 } 4019 4020 if (msec > 20) 4021 msleep(msec); 4022 else 4023 usleep_range(msec * 1000, msec * 1000 + 1000); 4024 4025 gpio_set_value_cansleep(phy_reset, !active_high); 4026 4027 if (!phy_post_delay) 4028 return 0; 4029 4030 if (phy_post_delay > 20) 4031 msleep(phy_post_delay); 4032 else 4033 usleep_range(phy_post_delay * 1000, 4034 phy_post_delay * 1000 + 1000); 4035 4036 return 0; 4037 } 4038 #else /* CONFIG_OF */ 4039 static int fec_reset_phy(struct platform_device *pdev) 4040 { 4041 /* 4042 * In case of platform probe, the reset has been done 4043 * by machine code. 4044 */ 4045 return 0; 4046 } 4047 #endif /* CONFIG_OF */ 4048 4049 static void 4050 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4051 { 4052 struct device_node *np = pdev->dev.of_node; 4053 4054 *num_tx = *num_rx = 1; 4055 4056 if (!np || !of_device_is_available(np)) 4057 return; 4058 4059 /* parse the num of tx and rx queues */ 4060 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4061 4062 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4063 4064 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4065 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4066 *num_tx); 4067 *num_tx = 1; 4068 return; 4069 } 4070 4071 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4072 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4073 *num_rx); 4074 *num_rx = 1; 4075 return; 4076 } 4077 4078 } 4079 4080 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4081 { 4082 int irq_cnt = platform_irq_count(pdev); 4083 4084 if (irq_cnt > FEC_IRQ_NUM) 4085 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4086 else if (irq_cnt == 2) 4087 irq_cnt = 1; /* last for pps */ 4088 else if (irq_cnt <= 0) 4089 irq_cnt = 1; /* At least 1 irq is needed */ 4090 return irq_cnt; 4091 } 4092 4093 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4094 { 4095 struct net_device *ndev = platform_get_drvdata(pdev); 4096 struct fec_enet_private *fep = netdev_priv(ndev); 4097 4098 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4099 fep->wake_irq = fep->irq[2]; 4100 else 4101 fep->wake_irq = fep->irq[0]; 4102 } 4103 4104 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4105 struct device_node *np) 4106 { 4107 struct device_node *gpr_np; 4108 u32 out_val[3]; 4109 int ret = 0; 4110 4111 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4112 if (!gpr_np) 4113 return 0; 4114 4115 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4116 ARRAY_SIZE(out_val)); 4117 if (ret) { 4118 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4119 goto out; 4120 } 4121 4122 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4123 if (IS_ERR(fep->stop_gpr.gpr)) { 4124 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4125 ret = PTR_ERR(fep->stop_gpr.gpr); 4126 fep->stop_gpr.gpr = NULL; 4127 goto out; 4128 } 4129 4130 fep->stop_gpr.reg = out_val[1]; 4131 fep->stop_gpr.bit = out_val[2]; 4132 4133 out: 4134 of_node_put(gpr_np); 4135 4136 return ret; 4137 } 4138 4139 static int 4140 fec_probe(struct platform_device *pdev) 4141 { 4142 struct fec_enet_private *fep; 4143 struct fec_platform_data *pdata; 4144 phy_interface_t interface; 4145 struct net_device *ndev; 4146 int i, irq, ret = 0; 4147 const struct of_device_id *of_id; 4148 static int dev_id; 4149 struct device_node *np = pdev->dev.of_node, *phy_node; 4150 int num_tx_qs; 4151 int num_rx_qs; 4152 char irq_name[8]; 4153 int irq_cnt; 4154 struct fec_devinfo *dev_info; 4155 4156 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4157 4158 /* Init network device */ 4159 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4160 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4161 if (!ndev) 4162 return -ENOMEM; 4163 4164 SET_NETDEV_DEV(ndev, &pdev->dev); 4165 4166 /* setup board info structure */ 4167 fep = netdev_priv(ndev); 4168 4169 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4170 if (of_id) 4171 pdev->id_entry = of_id->data; 4172 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4173 if (dev_info) 4174 fep->quirks = dev_info->quirks; 4175 4176 fep->netdev = ndev; 4177 fep->num_rx_queues = num_rx_qs; 4178 fep->num_tx_queues = num_tx_qs; 4179 4180 #if !defined(CONFIG_M5272) 4181 /* default enable pause frame auto negotiation */ 4182 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4183 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4184 #endif 4185 4186 /* Select default pin state */ 4187 pinctrl_pm_select_default_state(&pdev->dev); 4188 4189 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4190 if (IS_ERR(fep->hwp)) { 4191 ret = PTR_ERR(fep->hwp); 4192 goto failed_ioremap; 4193 } 4194 4195 fep->pdev = pdev; 4196 fep->dev_id = dev_id++; 4197 4198 platform_set_drvdata(pdev, ndev); 4199 4200 if ((of_machine_is_compatible("fsl,imx6q") || 4201 of_machine_is_compatible("fsl,imx6dl")) && 4202 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4203 fep->quirks |= FEC_QUIRK_ERR006687; 4204 4205 ret = fec_enet_ipc_handle_init(fep); 4206 if (ret) 4207 goto failed_ipc_init; 4208 4209 if (of_get_property(np, "fsl,magic-packet", NULL)) 4210 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4211 4212 ret = fec_enet_init_stop_mode(fep, np); 4213 if (ret) 4214 goto failed_stop_mode; 4215 4216 phy_node = of_parse_phandle(np, "phy-handle", 0); 4217 if (!phy_node && of_phy_is_fixed_link(np)) { 4218 ret = of_phy_register_fixed_link(np); 4219 if (ret < 0) { 4220 dev_err(&pdev->dev, 4221 "broken fixed-link specification\n"); 4222 goto failed_phy; 4223 } 4224 phy_node = of_node_get(np); 4225 } 4226 fep->phy_node = phy_node; 4227 4228 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4229 if (ret) { 4230 pdata = dev_get_platdata(&pdev->dev); 4231 if (pdata) 4232 fep->phy_interface = pdata->phy; 4233 else 4234 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4235 } else { 4236 fep->phy_interface = interface; 4237 } 4238 4239 ret = fec_enet_parse_rgmii_delay(fep, np); 4240 if (ret) 4241 goto failed_rgmii_delay; 4242 4243 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4244 if (IS_ERR(fep->clk_ipg)) { 4245 ret = PTR_ERR(fep->clk_ipg); 4246 goto failed_clk; 4247 } 4248 4249 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4250 if (IS_ERR(fep->clk_ahb)) { 4251 ret = PTR_ERR(fep->clk_ahb); 4252 goto failed_clk; 4253 } 4254 4255 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4256 4257 /* enet_out is optional, depends on board */ 4258 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4259 if (IS_ERR(fep->clk_enet_out)) { 4260 ret = PTR_ERR(fep->clk_enet_out); 4261 goto failed_clk; 4262 } 4263 4264 fep->ptp_clk_on = false; 4265 mutex_init(&fep->ptp_clk_mutex); 4266 4267 /* clk_ref is optional, depends on board */ 4268 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4269 if (IS_ERR(fep->clk_ref)) { 4270 ret = PTR_ERR(fep->clk_ref); 4271 goto failed_clk; 4272 } 4273 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4274 4275 /* clk_2x_txclk is optional, depends on board */ 4276 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4277 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4278 if (IS_ERR(fep->clk_2x_txclk)) 4279 fep->clk_2x_txclk = NULL; 4280 } 4281 4282 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4283 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4284 if (IS_ERR(fep->clk_ptp)) { 4285 fep->clk_ptp = NULL; 4286 fep->bufdesc_ex = false; 4287 } 4288 4289 ret = fec_enet_clk_enable(ndev, true); 4290 if (ret) 4291 goto failed_clk; 4292 4293 ret = clk_prepare_enable(fep->clk_ipg); 4294 if (ret) 4295 goto failed_clk_ipg; 4296 ret = clk_prepare_enable(fep->clk_ahb); 4297 if (ret) 4298 goto failed_clk_ahb; 4299 4300 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4301 if (!IS_ERR(fep->reg_phy)) { 4302 ret = regulator_enable(fep->reg_phy); 4303 if (ret) { 4304 dev_err(&pdev->dev, 4305 "Failed to enable phy regulator: %d\n", ret); 4306 goto failed_regulator; 4307 } 4308 } else { 4309 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4310 ret = -EPROBE_DEFER; 4311 goto failed_regulator; 4312 } 4313 fep->reg_phy = NULL; 4314 } 4315 4316 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4317 pm_runtime_use_autosuspend(&pdev->dev); 4318 pm_runtime_get_noresume(&pdev->dev); 4319 pm_runtime_set_active(&pdev->dev); 4320 pm_runtime_enable(&pdev->dev); 4321 4322 ret = fec_reset_phy(pdev); 4323 if (ret) 4324 goto failed_reset; 4325 4326 irq_cnt = fec_enet_get_irq_cnt(pdev); 4327 if (fep->bufdesc_ex) 4328 fec_ptp_init(pdev, irq_cnt); 4329 4330 ret = fec_enet_init(ndev); 4331 if (ret) 4332 goto failed_init; 4333 4334 for (i = 0; i < irq_cnt; i++) { 4335 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4336 irq = platform_get_irq_byname_optional(pdev, irq_name); 4337 if (irq < 0) 4338 irq = platform_get_irq(pdev, i); 4339 if (irq < 0) { 4340 ret = irq; 4341 goto failed_irq; 4342 } 4343 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4344 0, pdev->name, ndev); 4345 if (ret) 4346 goto failed_irq; 4347 4348 fep->irq[i] = irq; 4349 } 4350 4351 /* Decide which interrupt line is wakeup capable */ 4352 fec_enet_get_wakeup_irq(pdev); 4353 4354 ret = fec_enet_mii_init(pdev); 4355 if (ret) 4356 goto failed_mii_init; 4357 4358 /* Carrier starts down, phylib will bring it up */ 4359 netif_carrier_off(ndev); 4360 fec_enet_clk_enable(ndev, false); 4361 pinctrl_pm_select_sleep_state(&pdev->dev); 4362 4363 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4364 4365 ret = register_netdev(ndev); 4366 if (ret) 4367 goto failed_register; 4368 4369 device_init_wakeup(&ndev->dev, fep->wol_flag & 4370 FEC_WOL_HAS_MAGIC_PACKET); 4371 4372 if (fep->bufdesc_ex && fep->ptp_clock) 4373 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4374 4375 fep->rx_copybreak = COPYBREAK_DEFAULT; 4376 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4377 4378 pm_runtime_mark_last_busy(&pdev->dev); 4379 pm_runtime_put_autosuspend(&pdev->dev); 4380 4381 return 0; 4382 4383 failed_register: 4384 fec_enet_mii_remove(fep); 4385 failed_mii_init: 4386 failed_irq: 4387 failed_init: 4388 fec_ptp_stop(pdev); 4389 failed_reset: 4390 pm_runtime_put_noidle(&pdev->dev); 4391 pm_runtime_disable(&pdev->dev); 4392 if (fep->reg_phy) 4393 regulator_disable(fep->reg_phy); 4394 failed_regulator: 4395 clk_disable_unprepare(fep->clk_ahb); 4396 failed_clk_ahb: 4397 clk_disable_unprepare(fep->clk_ipg); 4398 failed_clk_ipg: 4399 fec_enet_clk_enable(ndev, false); 4400 failed_clk: 4401 failed_rgmii_delay: 4402 if (of_phy_is_fixed_link(np)) 4403 of_phy_deregister_fixed_link(np); 4404 of_node_put(phy_node); 4405 failed_stop_mode: 4406 failed_ipc_init: 4407 failed_phy: 4408 dev_id--; 4409 failed_ioremap: 4410 free_netdev(ndev); 4411 4412 return ret; 4413 } 4414 4415 static int 4416 fec_drv_remove(struct platform_device *pdev) 4417 { 4418 struct net_device *ndev = platform_get_drvdata(pdev); 4419 struct fec_enet_private *fep = netdev_priv(ndev); 4420 struct device_node *np = pdev->dev.of_node; 4421 int ret; 4422 4423 ret = pm_runtime_resume_and_get(&pdev->dev); 4424 if (ret < 0) 4425 return ret; 4426 4427 cancel_work_sync(&fep->tx_timeout_work); 4428 fec_ptp_stop(pdev); 4429 unregister_netdev(ndev); 4430 fec_enet_mii_remove(fep); 4431 if (fep->reg_phy) 4432 regulator_disable(fep->reg_phy); 4433 4434 if (of_phy_is_fixed_link(np)) 4435 of_phy_deregister_fixed_link(np); 4436 of_node_put(fep->phy_node); 4437 4438 clk_disable_unprepare(fep->clk_ahb); 4439 clk_disable_unprepare(fep->clk_ipg); 4440 pm_runtime_put_noidle(&pdev->dev); 4441 pm_runtime_disable(&pdev->dev); 4442 4443 free_netdev(ndev); 4444 return 0; 4445 } 4446 4447 static int __maybe_unused fec_suspend(struct device *dev) 4448 { 4449 struct net_device *ndev = dev_get_drvdata(dev); 4450 struct fec_enet_private *fep = netdev_priv(ndev); 4451 int ret; 4452 4453 rtnl_lock(); 4454 if (netif_running(ndev)) { 4455 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4456 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4457 phy_stop(ndev->phydev); 4458 napi_disable(&fep->napi); 4459 netif_tx_lock_bh(ndev); 4460 netif_device_detach(ndev); 4461 netif_tx_unlock_bh(ndev); 4462 fec_stop(ndev); 4463 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4464 fec_irqs_disable(ndev); 4465 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4466 } else { 4467 fec_irqs_disable_except_wakeup(ndev); 4468 if (fep->wake_irq > 0) { 4469 disable_irq(fep->wake_irq); 4470 enable_irq_wake(fep->wake_irq); 4471 } 4472 fec_enet_stop_mode(fep, true); 4473 } 4474 /* It's safe to disable clocks since interrupts are masked */ 4475 fec_enet_clk_enable(ndev, false); 4476 4477 fep->rpm_active = !pm_runtime_status_suspended(dev); 4478 if (fep->rpm_active) { 4479 ret = pm_runtime_force_suspend(dev); 4480 if (ret < 0) { 4481 rtnl_unlock(); 4482 return ret; 4483 } 4484 } 4485 } 4486 rtnl_unlock(); 4487 4488 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4489 regulator_disable(fep->reg_phy); 4490 4491 /* SOC supply clock to phy, when clock is disabled, phy link down 4492 * SOC control phy regulator, when regulator is disabled, phy link down 4493 */ 4494 if (fep->clk_enet_out || fep->reg_phy) 4495 fep->link = 0; 4496 4497 return 0; 4498 } 4499 4500 static int __maybe_unused fec_resume(struct device *dev) 4501 { 4502 struct net_device *ndev = dev_get_drvdata(dev); 4503 struct fec_enet_private *fep = netdev_priv(ndev); 4504 int ret; 4505 int val; 4506 4507 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4508 ret = regulator_enable(fep->reg_phy); 4509 if (ret) 4510 return ret; 4511 } 4512 4513 rtnl_lock(); 4514 if (netif_running(ndev)) { 4515 if (fep->rpm_active) 4516 pm_runtime_force_resume(dev); 4517 4518 ret = fec_enet_clk_enable(ndev, true); 4519 if (ret) { 4520 rtnl_unlock(); 4521 goto failed_clk; 4522 } 4523 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4524 fec_enet_stop_mode(fep, false); 4525 if (fep->wake_irq) { 4526 disable_irq_wake(fep->wake_irq); 4527 enable_irq(fep->wake_irq); 4528 } 4529 4530 val = readl(fep->hwp + FEC_ECNTRL); 4531 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4532 writel(val, fep->hwp + FEC_ECNTRL); 4533 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4534 } else { 4535 pinctrl_pm_select_default_state(&fep->pdev->dev); 4536 } 4537 fec_restart(ndev); 4538 netif_tx_lock_bh(ndev); 4539 netif_device_attach(ndev); 4540 netif_tx_unlock_bh(ndev); 4541 napi_enable(&fep->napi); 4542 phy_init_hw(ndev->phydev); 4543 phy_start(ndev->phydev); 4544 } 4545 rtnl_unlock(); 4546 4547 return 0; 4548 4549 failed_clk: 4550 if (fep->reg_phy) 4551 regulator_disable(fep->reg_phy); 4552 return ret; 4553 } 4554 4555 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4556 { 4557 struct net_device *ndev = dev_get_drvdata(dev); 4558 struct fec_enet_private *fep = netdev_priv(ndev); 4559 4560 clk_disable_unprepare(fep->clk_ahb); 4561 clk_disable_unprepare(fep->clk_ipg); 4562 4563 return 0; 4564 } 4565 4566 static int __maybe_unused fec_runtime_resume(struct device *dev) 4567 { 4568 struct net_device *ndev = dev_get_drvdata(dev); 4569 struct fec_enet_private *fep = netdev_priv(ndev); 4570 int ret; 4571 4572 ret = clk_prepare_enable(fep->clk_ahb); 4573 if (ret) 4574 return ret; 4575 ret = clk_prepare_enable(fep->clk_ipg); 4576 if (ret) 4577 goto failed_clk_ipg; 4578 4579 return 0; 4580 4581 failed_clk_ipg: 4582 clk_disable_unprepare(fep->clk_ahb); 4583 return ret; 4584 } 4585 4586 static const struct dev_pm_ops fec_pm_ops = { 4587 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4588 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4589 }; 4590 4591 static struct platform_driver fec_driver = { 4592 .driver = { 4593 .name = DRIVER_NAME, 4594 .pm = &fec_pm_ops, 4595 .of_match_table = fec_dt_ids, 4596 .suppress_bind_attrs = true, 4597 }, 4598 .id_table = fec_devtype, 4599 .probe = fec_probe, 4600 .remove = fec_drv_remove, 4601 }; 4602 4603 module_platform_driver(fec_driver); 4604 4605 MODULE_LICENSE("GPL"); 4606