1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
45 #include <linux/io.h>
46 #include <linux/irq.h>
47 #include <linux/clk.h>
48 #include <linux/platform_device.h>
49 #include <linux/phy.h>
50 #include <linux/fec.h>
51 #include <linux/of.h>
52 #include <linux/of_device.h>
53 #include <linux/of_gpio.h>
54 #include <linux/of_net.h>
55 #include <linux/regulator/consumer.h>
56 #include <linux/if_vlan.h>
57 
58 #include <asm/cacheflush.h>
59 
60 #include "fec.h"
61 
62 static void set_multicast_list(struct net_device *ndev);
63 
64 #if defined(CONFIG_ARM)
65 #define FEC_ALIGNMENT	0xf
66 #else
67 #define FEC_ALIGNMENT	0x3
68 #endif
69 
70 #define DRIVER_NAME	"fec"
71 
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE	(1 << 5)
74 #define FEC_ENET_RSEM_V	0x84
75 #define FEC_ENET_RSFL_V	16
76 #define FEC_ENET_RAEM_V	0x8
77 #define FEC_ENET_RAFL_V	0x8
78 #define FEC_ENET_OPD_V	0xFFF0
79 
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC		(1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET		(1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
92 /* Controller has hardware vlan support */
93 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
94 /* ENET IP errata ERR006358
95  *
96  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
97  * detected as not set during a prior frame transmission, then the
98  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
99  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
100  * frames not being transmitted until there is a 0-to-1 transition on
101  * ENET_TDAR[TDAR].
102  */
103 #define FEC_QUIRK_ERR006358            (1 << 7)
104 
105 static struct platform_device_id fec_devtype[] = {
106 	{
107 		/* keep it for coldfire */
108 		.name = DRIVER_NAME,
109 		.driver_data = 0,
110 	}, {
111 		.name = "imx25-fec",
112 		.driver_data = FEC_QUIRK_USE_GASKET,
113 	}, {
114 		.name = "imx27-fec",
115 		.driver_data = 0,
116 	}, {
117 		.name = "imx28-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
119 	}, {
120 		.name = "imx6q-fec",
121 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
124 	}, {
125 		.name = "mvf600-fec",
126 		.driver_data = FEC_QUIRK_ENET_MAC,
127 	}, {
128 		/* sentinel */
129 	}
130 };
131 MODULE_DEVICE_TABLE(platform, fec_devtype);
132 
133 enum imx_fec_type {
134 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
135 	IMX27_FEC,	/* runs on i.mx27/35/51 */
136 	IMX28_FEC,
137 	IMX6Q_FEC,
138 	MVF600_FEC,
139 };
140 
141 static const struct of_device_id fec_dt_ids[] = {
142 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
143 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
144 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
145 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
146 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
176 #error "FEC: descriptor ring size constants too large"
177 #endif
178 
179 /* Interrupt events/masks. */
180 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
181 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
182 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
183 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
184 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
185 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
186 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
187 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
188 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
189 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
190 
191 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
192 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
193 
194 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
195  */
196 #define PKT_MAXBUF_SIZE		1522
197 #define PKT_MINBUF_SIZE		64
198 #define PKT_MAXBLR_SIZE		1536
199 
200 /* FEC receive acceleration */
201 #define FEC_RACC_IPDIS		(1 << 1)
202 #define FEC_RACC_PRODIS		(1 << 2)
203 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
204 
205 /*
206  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
207  * size bits. Other FEC hardware does not, so we need to take that into
208  * account when setting it.
209  */
210 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
211     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
212 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
213 #else
214 #define	OPT_FRAME_SIZE	0
215 #endif
216 
217 /* FEC MII MMFR bits definition */
218 #define FEC_MMFR_ST		(1 << 30)
219 #define FEC_MMFR_OP_READ	(2 << 28)
220 #define FEC_MMFR_OP_WRITE	(1 << 28)
221 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
222 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
223 #define FEC_MMFR_TA		(2 << 16)
224 #define FEC_MMFR_DATA(v)	(v & 0xffff)
225 
226 #define FEC_MII_TIMEOUT		30000 /* us */
227 
228 /* Transmitter timeout */
229 #define TX_TIMEOUT (2 * HZ)
230 
231 #define FEC_PAUSE_FLAG_AUTONEG	0x1
232 #define FEC_PAUSE_FLAG_ENABLE	0x2
233 
234 static int mii_cnt;
235 
236 static inline
237 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
238 {
239 	struct bufdesc *new_bd = bdp + 1;
240 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
241 	struct bufdesc_ex *ex_base;
242 	struct bufdesc *base;
243 	int ring_size;
244 
245 	if (bdp >= fep->tx_bd_base) {
246 		base = fep->tx_bd_base;
247 		ring_size = fep->tx_ring_size;
248 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
249 	} else {
250 		base = fep->rx_bd_base;
251 		ring_size = fep->rx_ring_size;
252 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
253 	}
254 
255 	if (fep->bufdesc_ex)
256 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
257 			ex_base : ex_new_bd);
258 	else
259 		return (new_bd >= (base + ring_size)) ?
260 			base : new_bd;
261 }
262 
263 static inline
264 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
265 {
266 	struct bufdesc *new_bd = bdp - 1;
267 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
268 	struct bufdesc_ex *ex_base;
269 	struct bufdesc *base;
270 	int ring_size;
271 
272 	if (bdp >= fep->tx_bd_base) {
273 		base = fep->tx_bd_base;
274 		ring_size = fep->tx_ring_size;
275 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
276 	} else {
277 		base = fep->rx_bd_base;
278 		ring_size = fep->rx_ring_size;
279 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
280 	}
281 
282 	if (fep->bufdesc_ex)
283 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
284 			(ex_new_bd + ring_size) : ex_new_bd);
285 	else
286 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
287 }
288 
289 static void *swap_buffer(void *bufaddr, int len)
290 {
291 	int i;
292 	unsigned int *buf = bufaddr;
293 
294 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
295 		*buf = cpu_to_be32(*buf);
296 
297 	return bufaddr;
298 }
299 
300 static int
301 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
302 {
303 	/* Only run for packets requiring a checksum. */
304 	if (skb->ip_summed != CHECKSUM_PARTIAL)
305 		return 0;
306 
307 	if (unlikely(skb_cow_head(skb, 0)))
308 		return -1;
309 
310 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
311 
312 	return 0;
313 }
314 
315 static netdev_tx_t
316 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
317 {
318 	struct fec_enet_private *fep = netdev_priv(ndev);
319 	const struct platform_device_id *id_entry =
320 				platform_get_device_id(fep->pdev);
321 	struct bufdesc *bdp, *bdp_pre;
322 	void *bufaddr;
323 	unsigned short	status;
324 	unsigned int index;
325 
326 	/* Fill in a Tx ring entry */
327 	bdp = fep->cur_tx;
328 
329 	status = bdp->cbd_sc;
330 
331 	if (status & BD_ENET_TX_READY) {
332 		/* Ooops.  All transmit buffers are full.  Bail out.
333 		 * This should not happen, since ndev->tbusy should be set.
334 		 */
335 		netdev_err(ndev, "tx queue full!\n");
336 		return NETDEV_TX_BUSY;
337 	}
338 
339 	/* Protocol checksum off-load for TCP and UDP. */
340 	if (fec_enet_clear_csum(skb, ndev)) {
341 		kfree_skb(skb);
342 		return NETDEV_TX_OK;
343 	}
344 
345 	/* Clear all of the status flags */
346 	status &= ~BD_ENET_TX_STATS;
347 
348 	/* Set buffer length and buffer pointer */
349 	bufaddr = skb->data;
350 	bdp->cbd_datlen = skb->len;
351 
352 	/*
353 	 * On some FEC implementations data must be aligned on
354 	 * 4-byte boundaries. Use bounce buffers to copy data
355 	 * and get it aligned. Ugh.
356 	 */
357 	if (fep->bufdesc_ex)
358 		index = (struct bufdesc_ex *)bdp -
359 			(struct bufdesc_ex *)fep->tx_bd_base;
360 	else
361 		index = bdp - fep->tx_bd_base;
362 
363 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
364 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
365 		bufaddr = fep->tx_bounce[index];
366 	}
367 
368 	/*
369 	 * Some design made an incorrect assumption on endian mode of
370 	 * the system that it's running on. As the result, driver has to
371 	 * swap every frame going to and coming from the controller.
372 	 */
373 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
374 		swap_buffer(bufaddr, skb->len);
375 
376 	/* Save skb pointer */
377 	fep->tx_skbuff[index] = skb;
378 
379 	/* Push the data cache so the CPM does not get stale memory
380 	 * data.
381 	 */
382 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
383 			skb->len, DMA_TO_DEVICE);
384 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
385 		bdp->cbd_bufaddr = 0;
386 		fep->tx_skbuff[index] = NULL;
387 		dev_kfree_skb_any(skb);
388 		if (net_ratelimit())
389 			netdev_err(ndev, "Tx DMA memory map failed\n");
390 		return NETDEV_TX_OK;
391 	}
392 
393 	if (fep->bufdesc_ex) {
394 
395 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
396 		ebdp->cbd_bdu = 0;
397 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
398 			fep->hwts_tx_en)) {
399 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
400 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
401 		} else {
402 			ebdp->cbd_esc = BD_ENET_TX_INT;
403 
404 			/* Enable protocol checksum flags
405 			 * We do not bother with the IP Checksum bits as they
406 			 * are done by the kernel
407 			 */
408 			if (skb->ip_summed == CHECKSUM_PARTIAL)
409 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
410 		}
411 	}
412 
413 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
414 	 * it's the last BD of the frame, and to put the CRC on the end.
415 	 */
416 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
417 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
418 	bdp->cbd_sc = status;
419 
420 	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
421 	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
422 	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
423 		fep->delay_work.trig_tx = true;
424 		schedule_delayed_work(&(fep->delay_work.delay_work),
425 					msecs_to_jiffies(1));
426 	}
427 
428 	/* If this was the last BD in the ring, start at the beginning again. */
429 	bdp = fec_enet_get_nextdesc(bdp, fep);
430 
431 	skb_tx_timestamp(skb);
432 
433 	fep->cur_tx = bdp;
434 
435 	if (fep->cur_tx == fep->dirty_tx)
436 		netif_stop_queue(ndev);
437 
438 	/* Trigger transmission start */
439 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
440 
441 	return NETDEV_TX_OK;
442 }
443 
444 /* Init RX & TX buffer descriptors
445  */
446 static void fec_enet_bd_init(struct net_device *dev)
447 {
448 	struct fec_enet_private *fep = netdev_priv(dev);
449 	struct bufdesc *bdp;
450 	unsigned int i;
451 
452 	/* Initialize the receive buffer descriptors. */
453 	bdp = fep->rx_bd_base;
454 	for (i = 0; i < fep->rx_ring_size; i++) {
455 
456 		/* Initialize the BD for every fragment in the page. */
457 		if (bdp->cbd_bufaddr)
458 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
459 		else
460 			bdp->cbd_sc = 0;
461 		bdp = fec_enet_get_nextdesc(bdp, fep);
462 	}
463 
464 	/* Set the last buffer to wrap */
465 	bdp = fec_enet_get_prevdesc(bdp, fep);
466 	bdp->cbd_sc |= BD_SC_WRAP;
467 
468 	fep->cur_rx = fep->rx_bd_base;
469 
470 	/* ...and the same for transmit */
471 	bdp = fep->tx_bd_base;
472 	fep->cur_tx = bdp;
473 	for (i = 0; i < fep->tx_ring_size; i++) {
474 
475 		/* Initialize the BD for every fragment in the page. */
476 		bdp->cbd_sc = 0;
477 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
478 			dev_kfree_skb_any(fep->tx_skbuff[i]);
479 			fep->tx_skbuff[i] = NULL;
480 		}
481 		bdp->cbd_bufaddr = 0;
482 		bdp = fec_enet_get_nextdesc(bdp, fep);
483 	}
484 
485 	/* Set the last buffer to wrap */
486 	bdp = fec_enet_get_prevdesc(bdp, fep);
487 	bdp->cbd_sc |= BD_SC_WRAP;
488 	fep->dirty_tx = bdp;
489 }
490 
491 /* This function is called to start or restart the FEC during a link
492  * change.  This only happens when switching between half and full
493  * duplex.
494  */
495 static void
496 fec_restart(struct net_device *ndev, int duplex)
497 {
498 	struct fec_enet_private *fep = netdev_priv(ndev);
499 	const struct platform_device_id *id_entry =
500 				platform_get_device_id(fep->pdev);
501 	int i;
502 	u32 val;
503 	u32 temp_mac[2];
504 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
505 	u32 ecntl = 0x2; /* ETHEREN */
506 
507 	if (netif_running(ndev)) {
508 		netif_device_detach(ndev);
509 		napi_disable(&fep->napi);
510 		netif_stop_queue(ndev);
511 		netif_tx_lock_bh(ndev);
512 	}
513 
514 	/* Whack a reset.  We should wait for this. */
515 	writel(1, fep->hwp + FEC_ECNTRL);
516 	udelay(10);
517 
518 	/*
519 	 * enet-mac reset will reset mac address registers too,
520 	 * so need to reconfigure it.
521 	 */
522 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
523 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
524 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
525 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
526 	}
527 
528 	/* Clear any outstanding interrupt. */
529 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
530 
531 	/* Set maximum receive buffer size. */
532 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
533 
534 	fec_enet_bd_init(ndev);
535 
536 	/* Set receive and transmit descriptor base. */
537 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
538 	if (fep->bufdesc_ex)
539 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
540 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
541 	else
542 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
543 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
544 
545 
546 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
547 		if (fep->tx_skbuff[i]) {
548 			dev_kfree_skb_any(fep->tx_skbuff[i]);
549 			fep->tx_skbuff[i] = NULL;
550 		}
551 	}
552 
553 	/* Enable MII mode */
554 	if (duplex) {
555 		/* FD enable */
556 		writel(0x04, fep->hwp + FEC_X_CNTRL);
557 	} else {
558 		/* No Rcv on Xmit */
559 		rcntl |= 0x02;
560 		writel(0x0, fep->hwp + FEC_X_CNTRL);
561 	}
562 
563 	fep->full_duplex = duplex;
564 
565 	/* Set MII speed */
566 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
567 
568 #if !defined(CONFIG_M5272)
569 	/* set RX checksum */
570 	val = readl(fep->hwp + FEC_RACC);
571 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
572 		val |= FEC_RACC_OPTIONS;
573 	else
574 		val &= ~FEC_RACC_OPTIONS;
575 	writel(val, fep->hwp + FEC_RACC);
576 #endif
577 
578 	/*
579 	 * The phy interface and speed need to get configured
580 	 * differently on enet-mac.
581 	 */
582 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
583 		/* Enable flow control and length check */
584 		rcntl |= 0x40000000 | 0x00000020;
585 
586 		/* RGMII, RMII or MII */
587 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
588 			rcntl |= (1 << 6);
589 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
590 			rcntl |= (1 << 8);
591 		else
592 			rcntl &= ~(1 << 8);
593 
594 		/* 1G, 100M or 10M */
595 		if (fep->phy_dev) {
596 			if (fep->phy_dev->speed == SPEED_1000)
597 				ecntl |= (1 << 5);
598 			else if (fep->phy_dev->speed == SPEED_100)
599 				rcntl &= ~(1 << 9);
600 			else
601 				rcntl |= (1 << 9);
602 		}
603 	} else {
604 #ifdef FEC_MIIGSK_ENR
605 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
606 			u32 cfgr;
607 			/* disable the gasket and wait */
608 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
609 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
610 				udelay(1);
611 
612 			/*
613 			 * configure the gasket:
614 			 *   RMII, 50 MHz, no loopback, no echo
615 			 *   MII, 25 MHz, no loopback, no echo
616 			 */
617 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
618 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
619 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
620 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
621 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
622 
623 			/* re-enable the gasket */
624 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
625 		}
626 #endif
627 	}
628 
629 #if !defined(CONFIG_M5272)
630 	/* enable pause frame*/
631 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
632 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
633 	     fep->phy_dev && fep->phy_dev->pause)) {
634 		rcntl |= FEC_ENET_FCE;
635 
636 		/* set FIFO threshold parameter to reduce overrun */
637 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
638 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
639 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
640 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
641 
642 		/* OPD */
643 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
644 	} else {
645 		rcntl &= ~FEC_ENET_FCE;
646 	}
647 #endif /* !defined(CONFIG_M5272) */
648 
649 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
650 
651 	/* Setup multicast filter. */
652 	set_multicast_list(ndev);
653 #ifndef CONFIG_M5272
654 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
655 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
656 #endif
657 
658 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
659 		/* enable ENET endian swap */
660 		ecntl |= (1 << 8);
661 		/* enable ENET store and forward mode */
662 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
663 	}
664 
665 	if (fep->bufdesc_ex)
666 		ecntl |= (1 << 4);
667 
668 #ifndef CONFIG_M5272
669 	/* Enable the MIB statistic event counters */
670 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
671 #endif
672 
673 	/* And last, enable the transmit and receive processing */
674 	writel(ecntl, fep->hwp + FEC_ECNTRL);
675 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
676 
677 	if (fep->bufdesc_ex)
678 		fec_ptp_start_cyclecounter(ndev);
679 
680 	/* Enable interrupts we wish to service */
681 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
682 
683 	if (netif_running(ndev)) {
684 		netif_tx_unlock_bh(ndev);
685 		netif_wake_queue(ndev);
686 		napi_enable(&fep->napi);
687 		netif_device_attach(ndev);
688 	}
689 }
690 
691 static void
692 fec_stop(struct net_device *ndev)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	const struct platform_device_id *id_entry =
696 				platform_get_device_id(fep->pdev);
697 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
698 
699 	/* We cannot expect a graceful transmit stop without link !!! */
700 	if (fep->link) {
701 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
702 		udelay(10);
703 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
704 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
705 	}
706 
707 	/* Whack a reset.  We should wait for this. */
708 	writel(1, fep->hwp + FEC_ECNTRL);
709 	udelay(10);
710 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
711 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
712 
713 	/* We have to keep ENET enabled to have MII interrupt stay working */
714 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
715 		writel(2, fep->hwp + FEC_ECNTRL);
716 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
717 	}
718 }
719 
720 
721 static void
722 fec_timeout(struct net_device *ndev)
723 {
724 	struct fec_enet_private *fep = netdev_priv(ndev);
725 
726 	ndev->stats.tx_errors++;
727 
728 	fep->delay_work.timeout = true;
729 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
730 }
731 
732 static void fec_enet_work(struct work_struct *work)
733 {
734 	struct fec_enet_private *fep =
735 		container_of(work,
736 			     struct fec_enet_private,
737 			     delay_work.delay_work.work);
738 
739 	if (fep->delay_work.timeout) {
740 		fep->delay_work.timeout = false;
741 		fec_restart(fep->netdev, fep->full_duplex);
742 		netif_wake_queue(fep->netdev);
743 	}
744 
745 	if (fep->delay_work.trig_tx) {
746 		fep->delay_work.trig_tx = false;
747 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
748 	}
749 }
750 
751 static void
752 fec_enet_tx(struct net_device *ndev)
753 {
754 	struct	fec_enet_private *fep;
755 	struct bufdesc *bdp;
756 	unsigned short status;
757 	struct	sk_buff	*skb;
758 	int	index = 0;
759 
760 	fep = netdev_priv(ndev);
761 	bdp = fep->dirty_tx;
762 
763 	/* get next bdp of dirty_tx */
764 	bdp = fec_enet_get_nextdesc(bdp, fep);
765 
766 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
767 
768 		/* current queue is empty */
769 		if (bdp == fep->cur_tx)
770 			break;
771 
772 		if (fep->bufdesc_ex)
773 			index = (struct bufdesc_ex *)bdp -
774 				(struct bufdesc_ex *)fep->tx_bd_base;
775 		else
776 			index = bdp - fep->tx_bd_base;
777 
778 		skb = fep->tx_skbuff[index];
779 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
780 				DMA_TO_DEVICE);
781 		bdp->cbd_bufaddr = 0;
782 
783 		/* Check for errors. */
784 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
785 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
786 				   BD_ENET_TX_CSL)) {
787 			ndev->stats.tx_errors++;
788 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
789 				ndev->stats.tx_heartbeat_errors++;
790 			if (status & BD_ENET_TX_LC)  /* Late collision */
791 				ndev->stats.tx_window_errors++;
792 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
793 				ndev->stats.tx_aborted_errors++;
794 			if (status & BD_ENET_TX_UN)  /* Underrun */
795 				ndev->stats.tx_fifo_errors++;
796 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
797 				ndev->stats.tx_carrier_errors++;
798 		} else {
799 			ndev->stats.tx_packets++;
800 			ndev->stats.tx_bytes += bdp->cbd_datlen;
801 		}
802 
803 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
804 			fep->bufdesc_ex) {
805 			struct skb_shared_hwtstamps shhwtstamps;
806 			unsigned long flags;
807 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
808 
809 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
810 			spin_lock_irqsave(&fep->tmreg_lock, flags);
811 			shhwtstamps.hwtstamp = ns_to_ktime(
812 				timecounter_cyc2time(&fep->tc, ebdp->ts));
813 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
814 			skb_tstamp_tx(skb, &shhwtstamps);
815 		}
816 
817 		if (status & BD_ENET_TX_READY)
818 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
819 
820 		/* Deferred means some collisions occurred during transmit,
821 		 * but we eventually sent the packet OK.
822 		 */
823 		if (status & BD_ENET_TX_DEF)
824 			ndev->stats.collisions++;
825 
826 		/* Free the sk buffer associated with this last transmit */
827 		dev_kfree_skb_any(skb);
828 		fep->tx_skbuff[index] = NULL;
829 
830 		fep->dirty_tx = bdp;
831 
832 		/* Update pointer to next buffer descriptor to be transmitted */
833 		bdp = fec_enet_get_nextdesc(bdp, fep);
834 
835 		/* Since we have freed up a buffer, the ring is no longer full
836 		 */
837 		if (fep->dirty_tx != fep->cur_tx) {
838 			if (netif_queue_stopped(ndev))
839 				netif_wake_queue(ndev);
840 		}
841 	}
842 	return;
843 }
844 
845 
846 /* During a receive, the cur_rx points to the current incoming buffer.
847  * When we update through the ring, if the next incoming buffer has
848  * not been given to the system, we just set the empty indicator,
849  * effectively tossing the packet.
850  */
851 static int
852 fec_enet_rx(struct net_device *ndev, int budget)
853 {
854 	struct fec_enet_private *fep = netdev_priv(ndev);
855 	const struct platform_device_id *id_entry =
856 				platform_get_device_id(fep->pdev);
857 	struct bufdesc *bdp;
858 	unsigned short status;
859 	struct	sk_buff	*skb;
860 	ushort	pkt_len;
861 	__u8 *data;
862 	int	pkt_received = 0;
863 	struct	bufdesc_ex *ebdp = NULL;
864 	bool	vlan_packet_rcvd = false;
865 	u16	vlan_tag;
866 	int	index = 0;
867 
868 #ifdef CONFIG_M532x
869 	flush_cache_all();
870 #endif
871 
872 	/* First, grab all of the stats for the incoming packet.
873 	 * These get messed up if we get called due to a busy condition.
874 	 */
875 	bdp = fep->cur_rx;
876 
877 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
878 
879 		if (pkt_received >= budget)
880 			break;
881 		pkt_received++;
882 
883 		/* Since we have allocated space to hold a complete frame,
884 		 * the last indicator should be set.
885 		 */
886 		if ((status & BD_ENET_RX_LAST) == 0)
887 			netdev_err(ndev, "rcv is not +last\n");
888 
889 		if (!fep->opened)
890 			goto rx_processing_done;
891 
892 		/* Check for errors. */
893 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
894 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
895 			ndev->stats.rx_errors++;
896 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
897 				/* Frame too long or too short. */
898 				ndev->stats.rx_length_errors++;
899 			}
900 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
901 				ndev->stats.rx_frame_errors++;
902 			if (status & BD_ENET_RX_CR)	/* CRC Error */
903 				ndev->stats.rx_crc_errors++;
904 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
905 				ndev->stats.rx_fifo_errors++;
906 		}
907 
908 		/* Report late collisions as a frame error.
909 		 * On this error, the BD is closed, but we don't know what we
910 		 * have in the buffer.  So, just drop this frame on the floor.
911 		 */
912 		if (status & BD_ENET_RX_CL) {
913 			ndev->stats.rx_errors++;
914 			ndev->stats.rx_frame_errors++;
915 			goto rx_processing_done;
916 		}
917 
918 		/* Process the incoming frame. */
919 		ndev->stats.rx_packets++;
920 		pkt_len = bdp->cbd_datlen;
921 		ndev->stats.rx_bytes += pkt_len;
922 
923 		if (fep->bufdesc_ex)
924 			index = (struct bufdesc_ex *)bdp -
925 				(struct bufdesc_ex *)fep->rx_bd_base;
926 		else
927 			index = bdp - fep->rx_bd_base;
928 		data = fep->rx_skbuff[index]->data;
929 		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
930 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
931 
932 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
933 			swap_buffer(data, pkt_len);
934 
935 		/* Extract the enhanced buffer descriptor */
936 		ebdp = NULL;
937 		if (fep->bufdesc_ex)
938 			ebdp = (struct bufdesc_ex *)bdp;
939 
940 		/* If this is a VLAN packet remove the VLAN Tag */
941 		vlan_packet_rcvd = false;
942 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
943 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
944 			/* Push and remove the vlan tag */
945 			struct vlan_hdr *vlan_header =
946 					(struct vlan_hdr *) (data + ETH_HLEN);
947 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
948 			pkt_len -= VLAN_HLEN;
949 
950 			vlan_packet_rcvd = true;
951 		}
952 
953 		/* This does 16 byte alignment, exactly what we need.
954 		 * The packet length includes FCS, but we don't want to
955 		 * include that when passing upstream as it messes up
956 		 * bridging applications.
957 		 */
958 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
959 
960 		if (unlikely(!skb)) {
961 			ndev->stats.rx_dropped++;
962 		} else {
963 			int payload_offset = (2 * ETH_ALEN);
964 			skb_reserve(skb, NET_IP_ALIGN);
965 			skb_put(skb, pkt_len - 4);	/* Make room */
966 
967 			/* Extract the frame data without the VLAN header. */
968 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
969 			if (vlan_packet_rcvd)
970 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
971 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
972 						       data + payload_offset,
973 						       pkt_len - 4 - (2 * ETH_ALEN));
974 
975 			skb->protocol = eth_type_trans(skb, ndev);
976 
977 			/* Get receive timestamp from the skb */
978 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
979 				struct skb_shared_hwtstamps *shhwtstamps =
980 							    skb_hwtstamps(skb);
981 				unsigned long flags;
982 
983 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
984 
985 				spin_lock_irqsave(&fep->tmreg_lock, flags);
986 				shhwtstamps->hwtstamp = ns_to_ktime(
987 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
988 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
989 			}
990 
991 			if (fep->bufdesc_ex &&
992 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
993 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
994 					/* don't check it */
995 					skb->ip_summed = CHECKSUM_UNNECESSARY;
996 				} else {
997 					skb_checksum_none_assert(skb);
998 				}
999 			}
1000 
1001 			/* Handle received VLAN packets */
1002 			if (vlan_packet_rcvd)
1003 				__vlan_hwaccel_put_tag(skb,
1004 						       htons(ETH_P_8021Q),
1005 						       vlan_tag);
1006 
1007 			napi_gro_receive(&fep->napi, skb);
1008 		}
1009 
1010 		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012 rx_processing_done:
1013 		/* Clear the status flags for this buffer */
1014 		status &= ~BD_ENET_RX_STATS;
1015 
1016 		/* Mark the buffer empty */
1017 		status |= BD_ENET_RX_EMPTY;
1018 		bdp->cbd_sc = status;
1019 
1020 		if (fep->bufdesc_ex) {
1021 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022 
1023 			ebdp->cbd_esc = BD_ENET_RX_INT;
1024 			ebdp->cbd_prot = 0;
1025 			ebdp->cbd_bdu = 0;
1026 		}
1027 
1028 		/* Update BD pointer to next entry */
1029 		bdp = fec_enet_get_nextdesc(bdp, fep);
1030 
1031 		/* Doing this here will keep the FEC running while we process
1032 		 * incoming frames.  On a heavily loaded network, we should be
1033 		 * able to keep up at the expense of system resources.
1034 		 */
1035 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036 	}
1037 	fep->cur_rx = bdp;
1038 
1039 	return pkt_received;
1040 }
1041 
1042 static irqreturn_t
1043 fec_enet_interrupt(int irq, void *dev_id)
1044 {
1045 	struct net_device *ndev = dev_id;
1046 	struct fec_enet_private *fep = netdev_priv(ndev);
1047 	uint int_events;
1048 	irqreturn_t ret = IRQ_NONE;
1049 
1050 	do {
1051 		int_events = readl(fep->hwp + FEC_IEVENT);
1052 		writel(int_events, fep->hwp + FEC_IEVENT);
1053 
1054 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055 			ret = IRQ_HANDLED;
1056 
1057 			/* Disable the RX interrupt */
1058 			if (napi_schedule_prep(&fep->napi)) {
1059 				writel(FEC_RX_DISABLED_IMASK,
1060 					fep->hwp + FEC_IMASK);
1061 				__napi_schedule(&fep->napi);
1062 			}
1063 		}
1064 
1065 		if (int_events & FEC_ENET_MII) {
1066 			ret = IRQ_HANDLED;
1067 			complete(&fep->mdio_done);
1068 		}
1069 	} while (int_events);
1070 
1071 	return ret;
1072 }
1073 
1074 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075 {
1076 	struct net_device *ndev = napi->dev;
1077 	int pkts = fec_enet_rx(ndev, budget);
1078 	struct fec_enet_private *fep = netdev_priv(ndev);
1079 
1080 	fec_enet_tx(ndev);
1081 
1082 	if (pkts < budget) {
1083 		napi_complete(napi);
1084 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085 	}
1086 	return pkts;
1087 }
1088 
1089 /* ------------------------------------------------------------------------- */
1090 static void fec_get_mac(struct net_device *ndev)
1091 {
1092 	struct fec_enet_private *fep = netdev_priv(ndev);
1093 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094 	unsigned char *iap, tmpaddr[ETH_ALEN];
1095 
1096 	/*
1097 	 * try to get mac address in following order:
1098 	 *
1099 	 * 1) module parameter via kernel command line in form
1100 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101 	 */
1102 	iap = macaddr;
1103 
1104 	/*
1105 	 * 2) from device tree data
1106 	 */
1107 	if (!is_valid_ether_addr(iap)) {
1108 		struct device_node *np = fep->pdev->dev.of_node;
1109 		if (np) {
1110 			const char *mac = of_get_mac_address(np);
1111 			if (mac)
1112 				iap = (unsigned char *) mac;
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * 3) from flash or fuse (via platform data)
1118 	 */
1119 	if (!is_valid_ether_addr(iap)) {
1120 #ifdef CONFIG_M5272
1121 		if (FEC_FLASHMAC)
1122 			iap = (unsigned char *)FEC_FLASHMAC;
1123 #else
1124 		if (pdata)
1125 			iap = (unsigned char *)&pdata->mac;
1126 #endif
1127 	}
1128 
1129 	/*
1130 	 * 4) FEC mac registers set by bootloader
1131 	 */
1132 	if (!is_valid_ether_addr(iap)) {
1133 		*((__be32 *) &tmpaddr[0]) =
1134 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135 		*((__be16 *) &tmpaddr[4]) =
1136 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137 		iap = &tmpaddr[0];
1138 	}
1139 
1140 	/*
1141 	 * 5) random mac address
1142 	 */
1143 	if (!is_valid_ether_addr(iap)) {
1144 		/* Report it and use a random ethernet address instead */
1145 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146 		eth_hw_addr_random(ndev);
1147 		netdev_info(ndev, "Using random MAC address: %pM\n",
1148 			    ndev->dev_addr);
1149 		return;
1150 	}
1151 
1152 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1153 
1154 	/* Adjust MAC if using macaddr */
1155 	if (iap == macaddr)
1156 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157 }
1158 
1159 /* ------------------------------------------------------------------------- */
1160 
1161 /*
1162  * Phy section
1163  */
1164 static void fec_enet_adjust_link(struct net_device *ndev)
1165 {
1166 	struct fec_enet_private *fep = netdev_priv(ndev);
1167 	struct phy_device *phy_dev = fep->phy_dev;
1168 	int status_change = 0;
1169 
1170 	/* Prevent a state halted on mii error */
1171 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172 		phy_dev->state = PHY_RESUMING;
1173 		return;
1174 	}
1175 
1176 	if (phy_dev->link) {
1177 		if (!fep->link) {
1178 			fep->link = phy_dev->link;
1179 			status_change = 1;
1180 		}
1181 
1182 		if (fep->full_duplex != phy_dev->duplex)
1183 			status_change = 1;
1184 
1185 		if (phy_dev->speed != fep->speed) {
1186 			fep->speed = phy_dev->speed;
1187 			status_change = 1;
1188 		}
1189 
1190 		/* if any of the above changed restart the FEC */
1191 		if (status_change)
1192 			fec_restart(ndev, phy_dev->duplex);
1193 	} else {
1194 		if (fep->link) {
1195 			fec_stop(ndev);
1196 			fep->link = phy_dev->link;
1197 			status_change = 1;
1198 		}
1199 	}
1200 
1201 	if (status_change)
1202 		phy_print_status(phy_dev);
1203 }
1204 
1205 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1206 {
1207 	struct fec_enet_private *fep = bus->priv;
1208 	unsigned long time_left;
1209 
1210 	fep->mii_timeout = 0;
1211 	init_completion(&fep->mdio_done);
1212 
1213 	/* start a read op */
1214 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217 
1218 	/* wait for end of transfer */
1219 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1220 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1221 	if (time_left == 0) {
1222 		fep->mii_timeout = 1;
1223 		netdev_err(fep->netdev, "MDIO read timeout\n");
1224 		return -ETIMEDOUT;
1225 	}
1226 
1227 	/* return value */
1228 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1229 }
1230 
1231 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232 			   u16 value)
1233 {
1234 	struct fec_enet_private *fep = bus->priv;
1235 	unsigned long time_left;
1236 
1237 	fep->mii_timeout = 0;
1238 	init_completion(&fep->mdio_done);
1239 
1240 	/* start a write op */
1241 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244 		fep->hwp + FEC_MII_DATA);
1245 
1246 	/* wait for end of transfer */
1247 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1248 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1249 	if (time_left == 0) {
1250 		fep->mii_timeout = 1;
1251 		netdev_err(fep->netdev, "MDIO write timeout\n");
1252 		return -ETIMEDOUT;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int fec_enet_mdio_reset(struct mii_bus *bus)
1259 {
1260 	return 0;
1261 }
1262 
1263 static int fec_enet_mii_probe(struct net_device *ndev)
1264 {
1265 	struct fec_enet_private *fep = netdev_priv(ndev);
1266 	const struct platform_device_id *id_entry =
1267 				platform_get_device_id(fep->pdev);
1268 	struct phy_device *phy_dev = NULL;
1269 	char mdio_bus_id[MII_BUS_ID_SIZE];
1270 	char phy_name[MII_BUS_ID_SIZE + 3];
1271 	int phy_id;
1272 	int dev_id = fep->dev_id;
1273 
1274 	fep->phy_dev = NULL;
1275 
1276 	/* check for attached phy */
1277 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1278 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1279 			continue;
1280 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1281 			continue;
1282 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1283 			continue;
1284 		if (dev_id--)
1285 			continue;
1286 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1287 		break;
1288 	}
1289 
1290 	if (phy_id >= PHY_MAX_ADDR) {
1291 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1292 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1293 		phy_id = 0;
1294 	}
1295 
1296 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1297 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1298 			      fep->phy_interface);
1299 	if (IS_ERR(phy_dev)) {
1300 		netdev_err(ndev, "could not attach to PHY\n");
1301 		return PTR_ERR(phy_dev);
1302 	}
1303 
1304 	/* mask with MAC supported features */
1305 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1306 		phy_dev->supported &= PHY_GBIT_FEATURES;
1307 #if !defined(CONFIG_M5272)
1308 		phy_dev->supported |= SUPPORTED_Pause;
1309 #endif
1310 	}
1311 	else
1312 		phy_dev->supported &= PHY_BASIC_FEATURES;
1313 
1314 	phy_dev->advertising = phy_dev->supported;
1315 
1316 	fep->phy_dev = phy_dev;
1317 	fep->link = 0;
1318 	fep->full_duplex = 0;
1319 
1320 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1321 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1322 		    fep->phy_dev->irq);
1323 
1324 	return 0;
1325 }
1326 
1327 static int fec_enet_mii_init(struct platform_device *pdev)
1328 {
1329 	static struct mii_bus *fec0_mii_bus;
1330 	struct net_device *ndev = platform_get_drvdata(pdev);
1331 	struct fec_enet_private *fep = netdev_priv(ndev);
1332 	const struct platform_device_id *id_entry =
1333 				platform_get_device_id(fep->pdev);
1334 	int err = -ENXIO, i;
1335 
1336 	/*
1337 	 * The dual fec interfaces are not equivalent with enet-mac.
1338 	 * Here are the differences:
1339 	 *
1340 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1341 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1342 	 *  - external phys can only be configured by fec0
1343 	 *
1344 	 * That is to say fec1 can not work independently. It only works
1345 	 * when fec0 is working. The reason behind this design is that the
1346 	 * second interface is added primarily for Switch mode.
1347 	 *
1348 	 * Because of the last point above, both phys are attached on fec0
1349 	 * mdio interface in board design, and need to be configured by
1350 	 * fec0 mii_bus.
1351 	 */
1352 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1353 		/* fec1 uses fec0 mii_bus */
1354 		if (mii_cnt && fec0_mii_bus) {
1355 			fep->mii_bus = fec0_mii_bus;
1356 			mii_cnt++;
1357 			return 0;
1358 		}
1359 		return -ENOENT;
1360 	}
1361 
1362 	fep->mii_timeout = 0;
1363 
1364 	/*
1365 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1366 	 *
1367 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1368 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1369 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1370 	 * document.
1371 	 */
1372 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1373 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1374 		fep->phy_speed--;
1375 	fep->phy_speed <<= 1;
1376 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1377 
1378 	fep->mii_bus = mdiobus_alloc();
1379 	if (fep->mii_bus == NULL) {
1380 		err = -ENOMEM;
1381 		goto err_out;
1382 	}
1383 
1384 	fep->mii_bus->name = "fec_enet_mii_bus";
1385 	fep->mii_bus->read = fec_enet_mdio_read;
1386 	fep->mii_bus->write = fec_enet_mdio_write;
1387 	fep->mii_bus->reset = fec_enet_mdio_reset;
1388 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1389 		pdev->name, fep->dev_id + 1);
1390 	fep->mii_bus->priv = fep;
1391 	fep->mii_bus->parent = &pdev->dev;
1392 
1393 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1394 	if (!fep->mii_bus->irq) {
1395 		err = -ENOMEM;
1396 		goto err_out_free_mdiobus;
1397 	}
1398 
1399 	for (i = 0; i < PHY_MAX_ADDR; i++)
1400 		fep->mii_bus->irq[i] = PHY_POLL;
1401 
1402 	if (mdiobus_register(fep->mii_bus))
1403 		goto err_out_free_mdio_irq;
1404 
1405 	mii_cnt++;
1406 
1407 	/* save fec0 mii_bus */
1408 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1409 		fec0_mii_bus = fep->mii_bus;
1410 
1411 	return 0;
1412 
1413 err_out_free_mdio_irq:
1414 	kfree(fep->mii_bus->irq);
1415 err_out_free_mdiobus:
1416 	mdiobus_free(fep->mii_bus);
1417 err_out:
1418 	return err;
1419 }
1420 
1421 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1422 {
1423 	if (--mii_cnt == 0) {
1424 		mdiobus_unregister(fep->mii_bus);
1425 		kfree(fep->mii_bus->irq);
1426 		mdiobus_free(fep->mii_bus);
1427 	}
1428 }
1429 
1430 static int fec_enet_get_settings(struct net_device *ndev,
1431 				  struct ethtool_cmd *cmd)
1432 {
1433 	struct fec_enet_private *fep = netdev_priv(ndev);
1434 	struct phy_device *phydev = fep->phy_dev;
1435 
1436 	if (!phydev)
1437 		return -ENODEV;
1438 
1439 	return phy_ethtool_gset(phydev, cmd);
1440 }
1441 
1442 static int fec_enet_set_settings(struct net_device *ndev,
1443 				 struct ethtool_cmd *cmd)
1444 {
1445 	struct fec_enet_private *fep = netdev_priv(ndev);
1446 	struct phy_device *phydev = fep->phy_dev;
1447 
1448 	if (!phydev)
1449 		return -ENODEV;
1450 
1451 	return phy_ethtool_sset(phydev, cmd);
1452 }
1453 
1454 static void fec_enet_get_drvinfo(struct net_device *ndev,
1455 				 struct ethtool_drvinfo *info)
1456 {
1457 	struct fec_enet_private *fep = netdev_priv(ndev);
1458 
1459 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1460 		sizeof(info->driver));
1461 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1462 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1463 }
1464 
1465 static int fec_enet_get_ts_info(struct net_device *ndev,
1466 				struct ethtool_ts_info *info)
1467 {
1468 	struct fec_enet_private *fep = netdev_priv(ndev);
1469 
1470 	if (fep->bufdesc_ex) {
1471 
1472 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1473 					SOF_TIMESTAMPING_RX_SOFTWARE |
1474 					SOF_TIMESTAMPING_SOFTWARE |
1475 					SOF_TIMESTAMPING_TX_HARDWARE |
1476 					SOF_TIMESTAMPING_RX_HARDWARE |
1477 					SOF_TIMESTAMPING_RAW_HARDWARE;
1478 		if (fep->ptp_clock)
1479 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1480 		else
1481 			info->phc_index = -1;
1482 
1483 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1484 				 (1 << HWTSTAMP_TX_ON);
1485 
1486 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1487 				   (1 << HWTSTAMP_FILTER_ALL);
1488 		return 0;
1489 	} else {
1490 		return ethtool_op_get_ts_info(ndev, info);
1491 	}
1492 }
1493 
1494 #if !defined(CONFIG_M5272)
1495 
1496 static void fec_enet_get_pauseparam(struct net_device *ndev,
1497 				    struct ethtool_pauseparam *pause)
1498 {
1499 	struct fec_enet_private *fep = netdev_priv(ndev);
1500 
1501 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1502 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1503 	pause->rx_pause = pause->tx_pause;
1504 }
1505 
1506 static int fec_enet_set_pauseparam(struct net_device *ndev,
1507 				   struct ethtool_pauseparam *pause)
1508 {
1509 	struct fec_enet_private *fep = netdev_priv(ndev);
1510 
1511 	if (pause->tx_pause != pause->rx_pause) {
1512 		netdev_info(ndev,
1513 			"hardware only support enable/disable both tx and rx");
1514 		return -EINVAL;
1515 	}
1516 
1517 	fep->pause_flag = 0;
1518 
1519 	/* tx pause must be same as rx pause */
1520 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1521 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1522 
1523 	if (pause->rx_pause || pause->autoneg) {
1524 		fep->phy_dev->supported |= ADVERTISED_Pause;
1525 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1526 	} else {
1527 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1528 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1529 	}
1530 
1531 	if (pause->autoneg) {
1532 		if (netif_running(ndev))
1533 			fec_stop(ndev);
1534 		phy_start_aneg(fep->phy_dev);
1535 	}
1536 	if (netif_running(ndev))
1537 		fec_restart(ndev, 0);
1538 
1539 	return 0;
1540 }
1541 
1542 static const struct fec_stat {
1543 	char name[ETH_GSTRING_LEN];
1544 	u16 offset;
1545 } fec_stats[] = {
1546 	/* RMON TX */
1547 	{ "tx_dropped", RMON_T_DROP },
1548 	{ "tx_packets", RMON_T_PACKETS },
1549 	{ "tx_broadcast", RMON_T_BC_PKT },
1550 	{ "tx_multicast", RMON_T_MC_PKT },
1551 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1552 	{ "tx_undersize", RMON_T_UNDERSIZE },
1553 	{ "tx_oversize", RMON_T_OVERSIZE },
1554 	{ "tx_fragment", RMON_T_FRAG },
1555 	{ "tx_jabber", RMON_T_JAB },
1556 	{ "tx_collision", RMON_T_COL },
1557 	{ "tx_64byte", RMON_T_P64 },
1558 	{ "tx_65to127byte", RMON_T_P65TO127 },
1559 	{ "tx_128to255byte", RMON_T_P128TO255 },
1560 	{ "tx_256to511byte", RMON_T_P256TO511 },
1561 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1562 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1563 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1564 	{ "tx_octets", RMON_T_OCTETS },
1565 
1566 	/* IEEE TX */
1567 	{ "IEEE_tx_drop", IEEE_T_DROP },
1568 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1569 	{ "IEEE_tx_1col", IEEE_T_1COL },
1570 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1571 	{ "IEEE_tx_def", IEEE_T_DEF },
1572 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1573 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1574 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1575 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1576 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1577 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1578 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1579 
1580 	/* RMON RX */
1581 	{ "rx_packets", RMON_R_PACKETS },
1582 	{ "rx_broadcast", RMON_R_BC_PKT },
1583 	{ "rx_multicast", RMON_R_MC_PKT },
1584 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1585 	{ "rx_undersize", RMON_R_UNDERSIZE },
1586 	{ "rx_oversize", RMON_R_OVERSIZE },
1587 	{ "rx_fragment", RMON_R_FRAG },
1588 	{ "rx_jabber", RMON_R_JAB },
1589 	{ "rx_64byte", RMON_R_P64 },
1590 	{ "rx_65to127byte", RMON_R_P65TO127 },
1591 	{ "rx_128to255byte", RMON_R_P128TO255 },
1592 	{ "rx_256to511byte", RMON_R_P256TO511 },
1593 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1594 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1595 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1596 	{ "rx_octets", RMON_R_OCTETS },
1597 
1598 	/* IEEE RX */
1599 	{ "IEEE_rx_drop", IEEE_R_DROP },
1600 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1601 	{ "IEEE_rx_crc", IEEE_R_CRC },
1602 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1603 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1604 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1605 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1606 };
1607 
1608 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1609 	struct ethtool_stats *stats, u64 *data)
1610 {
1611 	struct fec_enet_private *fep = netdev_priv(dev);
1612 	int i;
1613 
1614 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1615 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1616 }
1617 
1618 static void fec_enet_get_strings(struct net_device *netdev,
1619 	u32 stringset, u8 *data)
1620 {
1621 	int i;
1622 	switch (stringset) {
1623 	case ETH_SS_STATS:
1624 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1625 			memcpy(data + i * ETH_GSTRING_LEN,
1626 				fec_stats[i].name, ETH_GSTRING_LEN);
1627 		break;
1628 	}
1629 }
1630 
1631 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1632 {
1633 	switch (sset) {
1634 	case ETH_SS_STATS:
1635 		return ARRAY_SIZE(fec_stats);
1636 	default:
1637 		return -EOPNOTSUPP;
1638 	}
1639 }
1640 #endif /* !defined(CONFIG_M5272) */
1641 
1642 static int fec_enet_nway_reset(struct net_device *dev)
1643 {
1644 	struct fec_enet_private *fep = netdev_priv(dev);
1645 	struct phy_device *phydev = fep->phy_dev;
1646 
1647 	if (!phydev)
1648 		return -ENODEV;
1649 
1650 	return genphy_restart_aneg(phydev);
1651 }
1652 
1653 static const struct ethtool_ops fec_enet_ethtool_ops = {
1654 #if !defined(CONFIG_M5272)
1655 	.get_pauseparam		= fec_enet_get_pauseparam,
1656 	.set_pauseparam		= fec_enet_set_pauseparam,
1657 #endif
1658 	.get_settings		= fec_enet_get_settings,
1659 	.set_settings		= fec_enet_set_settings,
1660 	.get_drvinfo		= fec_enet_get_drvinfo,
1661 	.get_link		= ethtool_op_get_link,
1662 	.get_ts_info		= fec_enet_get_ts_info,
1663 	.nway_reset		= fec_enet_nway_reset,
1664 #ifndef CONFIG_M5272
1665 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1666 	.get_strings		= fec_enet_get_strings,
1667 	.get_sset_count		= fec_enet_get_sset_count,
1668 #endif
1669 };
1670 
1671 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1672 {
1673 	struct fec_enet_private *fep = netdev_priv(ndev);
1674 	struct phy_device *phydev = fep->phy_dev;
1675 
1676 	if (!netif_running(ndev))
1677 		return -EINVAL;
1678 
1679 	if (!phydev)
1680 		return -ENODEV;
1681 
1682 	if (fep->bufdesc_ex) {
1683 		if (cmd == SIOCSHWTSTAMP)
1684 			return fec_ptp_set(ndev, rq);
1685 		if (cmd == SIOCGHWTSTAMP)
1686 			return fec_ptp_get(ndev, rq);
1687 	}
1688 
1689 	return phy_mii_ioctl(phydev, rq, cmd);
1690 }
1691 
1692 static void fec_enet_free_buffers(struct net_device *ndev)
1693 {
1694 	struct fec_enet_private *fep = netdev_priv(ndev);
1695 	unsigned int i;
1696 	struct sk_buff *skb;
1697 	struct bufdesc	*bdp;
1698 
1699 	bdp = fep->rx_bd_base;
1700 	for (i = 0; i < fep->rx_ring_size; i++) {
1701 		skb = fep->rx_skbuff[i];
1702 
1703 		if (bdp->cbd_bufaddr)
1704 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1705 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1706 		if (skb)
1707 			dev_kfree_skb(skb);
1708 		bdp = fec_enet_get_nextdesc(bdp, fep);
1709 	}
1710 
1711 	bdp = fep->tx_bd_base;
1712 	for (i = 0; i < fep->tx_ring_size; i++)
1713 		kfree(fep->tx_bounce[i]);
1714 }
1715 
1716 static int fec_enet_alloc_buffers(struct net_device *ndev)
1717 {
1718 	struct fec_enet_private *fep = netdev_priv(ndev);
1719 	unsigned int i;
1720 	struct sk_buff *skb;
1721 	struct bufdesc	*bdp;
1722 
1723 	bdp = fep->rx_bd_base;
1724 	for (i = 0; i < fep->rx_ring_size; i++) {
1725 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1726 		if (!skb) {
1727 			fec_enet_free_buffers(ndev);
1728 			return -ENOMEM;
1729 		}
1730 		fep->rx_skbuff[i] = skb;
1731 
1732 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1733 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1734 		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1735 			fec_enet_free_buffers(ndev);
1736 			if (net_ratelimit())
1737 				netdev_err(ndev, "Rx DMA memory map failed\n");
1738 			return -ENOMEM;
1739 		}
1740 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1741 
1742 		if (fep->bufdesc_ex) {
1743 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1744 			ebdp->cbd_esc = BD_ENET_RX_INT;
1745 		}
1746 
1747 		bdp = fec_enet_get_nextdesc(bdp, fep);
1748 	}
1749 
1750 	/* Set the last buffer to wrap. */
1751 	bdp = fec_enet_get_prevdesc(bdp, fep);
1752 	bdp->cbd_sc |= BD_SC_WRAP;
1753 
1754 	bdp = fep->tx_bd_base;
1755 	for (i = 0; i < fep->tx_ring_size; i++) {
1756 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1757 
1758 		bdp->cbd_sc = 0;
1759 		bdp->cbd_bufaddr = 0;
1760 
1761 		if (fep->bufdesc_ex) {
1762 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1763 			ebdp->cbd_esc = BD_ENET_TX_INT;
1764 		}
1765 
1766 		bdp = fec_enet_get_nextdesc(bdp, fep);
1767 	}
1768 
1769 	/* Set the last buffer to wrap. */
1770 	bdp = fec_enet_get_prevdesc(bdp, fep);
1771 	bdp->cbd_sc |= BD_SC_WRAP;
1772 
1773 	return 0;
1774 }
1775 
1776 static int
1777 fec_enet_open(struct net_device *ndev)
1778 {
1779 	struct fec_enet_private *fep = netdev_priv(ndev);
1780 	int ret;
1781 
1782 	/* I should reset the ring buffers here, but I don't yet know
1783 	 * a simple way to do that.
1784 	 */
1785 
1786 	ret = fec_enet_alloc_buffers(ndev);
1787 	if (ret)
1788 		return ret;
1789 
1790 	/* Probe and connect to PHY when open the interface */
1791 	ret = fec_enet_mii_probe(ndev);
1792 	if (ret) {
1793 		fec_enet_free_buffers(ndev);
1794 		return ret;
1795 	}
1796 
1797 	napi_enable(&fep->napi);
1798 	phy_start(fep->phy_dev);
1799 	netif_start_queue(ndev);
1800 	fep->opened = 1;
1801 	return 0;
1802 }
1803 
1804 static int
1805 fec_enet_close(struct net_device *ndev)
1806 {
1807 	struct fec_enet_private *fep = netdev_priv(ndev);
1808 
1809 	/* Don't know what to do yet. */
1810 	napi_disable(&fep->napi);
1811 	fep->opened = 0;
1812 	netif_stop_queue(ndev);
1813 	fec_stop(ndev);
1814 
1815 	if (fep->phy_dev) {
1816 		phy_stop(fep->phy_dev);
1817 		phy_disconnect(fep->phy_dev);
1818 	}
1819 
1820 	fec_enet_free_buffers(ndev);
1821 
1822 	return 0;
1823 }
1824 
1825 /* Set or clear the multicast filter for this adaptor.
1826  * Skeleton taken from sunlance driver.
1827  * The CPM Ethernet implementation allows Multicast as well as individual
1828  * MAC address filtering.  Some of the drivers check to make sure it is
1829  * a group multicast address, and discard those that are not.  I guess I
1830  * will do the same for now, but just remove the test if you want
1831  * individual filtering as well (do the upper net layers want or support
1832  * this kind of feature?).
1833  */
1834 
1835 #define HASH_BITS	6		/* #bits in hash */
1836 #define CRC32_POLY	0xEDB88320
1837 
1838 static void set_multicast_list(struct net_device *ndev)
1839 {
1840 	struct fec_enet_private *fep = netdev_priv(ndev);
1841 	struct netdev_hw_addr *ha;
1842 	unsigned int i, bit, data, crc, tmp;
1843 	unsigned char hash;
1844 
1845 	if (ndev->flags & IFF_PROMISC) {
1846 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1847 		tmp |= 0x8;
1848 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1849 		return;
1850 	}
1851 
1852 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1853 	tmp &= ~0x8;
1854 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1855 
1856 	if (ndev->flags & IFF_ALLMULTI) {
1857 		/* Catch all multicast addresses, so set the
1858 		 * filter to all 1's
1859 		 */
1860 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1861 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1862 
1863 		return;
1864 	}
1865 
1866 	/* Clear filter and add the addresses in hash register
1867 	 */
1868 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1869 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1870 
1871 	netdev_for_each_mc_addr(ha, ndev) {
1872 		/* calculate crc32 value of mac address */
1873 		crc = 0xffffffff;
1874 
1875 		for (i = 0; i < ndev->addr_len; i++) {
1876 			data = ha->addr[i];
1877 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1878 				crc = (crc >> 1) ^
1879 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1880 			}
1881 		}
1882 
1883 		/* only upper 6 bits (HASH_BITS) are used
1884 		 * which point to specific bit in he hash registers
1885 		 */
1886 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1887 
1888 		if (hash > 31) {
1889 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1890 			tmp |= 1 << (hash - 32);
1891 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1892 		} else {
1893 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1894 			tmp |= 1 << hash;
1895 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1896 		}
1897 	}
1898 }
1899 
1900 /* Set a MAC change in hardware. */
1901 static int
1902 fec_set_mac_address(struct net_device *ndev, void *p)
1903 {
1904 	struct fec_enet_private *fep = netdev_priv(ndev);
1905 	struct sockaddr *addr = p;
1906 
1907 	if (!is_valid_ether_addr(addr->sa_data))
1908 		return -EADDRNOTAVAIL;
1909 
1910 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1911 
1912 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1913 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1914 		fep->hwp + FEC_ADDR_LOW);
1915 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1916 		fep->hwp + FEC_ADDR_HIGH);
1917 	return 0;
1918 }
1919 
1920 #ifdef CONFIG_NET_POLL_CONTROLLER
1921 /**
1922  * fec_poll_controller - FEC Poll controller function
1923  * @dev: The FEC network adapter
1924  *
1925  * Polled functionality used by netconsole and others in non interrupt mode
1926  *
1927  */
1928 static void fec_poll_controller(struct net_device *dev)
1929 {
1930 	int i;
1931 	struct fec_enet_private *fep = netdev_priv(dev);
1932 
1933 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1934 		if (fep->irq[i] > 0) {
1935 			disable_irq(fep->irq[i]);
1936 			fec_enet_interrupt(fep->irq[i], dev);
1937 			enable_irq(fep->irq[i]);
1938 		}
1939 	}
1940 }
1941 #endif
1942 
1943 static int fec_set_features(struct net_device *netdev,
1944 	netdev_features_t features)
1945 {
1946 	struct fec_enet_private *fep = netdev_priv(netdev);
1947 	netdev_features_t changed = features ^ netdev->features;
1948 
1949 	netdev->features = features;
1950 
1951 	/* Receive checksum has been changed */
1952 	if (changed & NETIF_F_RXCSUM) {
1953 		if (features & NETIF_F_RXCSUM)
1954 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1955 		else
1956 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1957 
1958 		if (netif_running(netdev)) {
1959 			fec_stop(netdev);
1960 			fec_restart(netdev, fep->phy_dev->duplex);
1961 			netif_wake_queue(netdev);
1962 		} else {
1963 			fec_restart(netdev, fep->phy_dev->duplex);
1964 		}
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static const struct net_device_ops fec_netdev_ops = {
1971 	.ndo_open		= fec_enet_open,
1972 	.ndo_stop		= fec_enet_close,
1973 	.ndo_start_xmit		= fec_enet_start_xmit,
1974 	.ndo_set_rx_mode	= set_multicast_list,
1975 	.ndo_change_mtu		= eth_change_mtu,
1976 	.ndo_validate_addr	= eth_validate_addr,
1977 	.ndo_tx_timeout		= fec_timeout,
1978 	.ndo_set_mac_address	= fec_set_mac_address,
1979 	.ndo_do_ioctl		= fec_enet_ioctl,
1980 #ifdef CONFIG_NET_POLL_CONTROLLER
1981 	.ndo_poll_controller	= fec_poll_controller,
1982 #endif
1983 	.ndo_set_features	= fec_set_features,
1984 };
1985 
1986  /*
1987   * XXX:  We need to clean up on failure exits here.
1988   *
1989   */
1990 static int fec_enet_init(struct net_device *ndev)
1991 {
1992 	struct fec_enet_private *fep = netdev_priv(ndev);
1993 	const struct platform_device_id *id_entry =
1994 				platform_get_device_id(fep->pdev);
1995 	struct bufdesc *cbd_base;
1996 
1997 	/* Allocate memory for buffer descriptors. */
1998 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1999 				      GFP_KERNEL);
2000 	if (!cbd_base)
2001 		return -ENOMEM;
2002 
2003 	memset(cbd_base, 0, PAGE_SIZE);
2004 
2005 	fep->netdev = ndev;
2006 
2007 	/* Get the Ethernet address */
2008 	fec_get_mac(ndev);
2009 
2010 	/* init the tx & rx ring size */
2011 	fep->tx_ring_size = TX_RING_SIZE;
2012 	fep->rx_ring_size = RX_RING_SIZE;
2013 
2014 	/* Set receive and transmit descriptor base. */
2015 	fep->rx_bd_base = cbd_base;
2016 	if (fep->bufdesc_ex)
2017 		fep->tx_bd_base = (struct bufdesc *)
2018 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2019 	else
2020 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2021 
2022 	/* The FEC Ethernet specific entries in the device structure */
2023 	ndev->watchdog_timeo = TX_TIMEOUT;
2024 	ndev->netdev_ops = &fec_netdev_ops;
2025 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2026 
2027 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2028 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2029 
2030 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2031 		/* enable hw VLAN support */
2032 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2033 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2034 	}
2035 
2036 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2037 		/* enable hw accelerator */
2038 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2039 				| NETIF_F_RXCSUM);
2040 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2041 				| NETIF_F_RXCSUM);
2042 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2043 	}
2044 
2045 	fec_restart(ndev, 0);
2046 
2047 	return 0;
2048 }
2049 
2050 #ifdef CONFIG_OF
2051 static void fec_reset_phy(struct platform_device *pdev)
2052 {
2053 	int err, phy_reset;
2054 	int msec = 1;
2055 	struct device_node *np = pdev->dev.of_node;
2056 
2057 	if (!np)
2058 		return;
2059 
2060 	of_property_read_u32(np, "phy-reset-duration", &msec);
2061 	/* A sane reset duration should not be longer than 1s */
2062 	if (msec > 1000)
2063 		msec = 1;
2064 
2065 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2066 	if (!gpio_is_valid(phy_reset))
2067 		return;
2068 
2069 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2070 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2071 	if (err) {
2072 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2073 		return;
2074 	}
2075 	msleep(msec);
2076 	gpio_set_value(phy_reset, 1);
2077 }
2078 #else /* CONFIG_OF */
2079 static void fec_reset_phy(struct platform_device *pdev)
2080 {
2081 	/*
2082 	 * In case of platform probe, the reset has been done
2083 	 * by machine code.
2084 	 */
2085 }
2086 #endif /* CONFIG_OF */
2087 
2088 static int
2089 fec_probe(struct platform_device *pdev)
2090 {
2091 	struct fec_enet_private *fep;
2092 	struct fec_platform_data *pdata;
2093 	struct net_device *ndev;
2094 	int i, irq, ret = 0;
2095 	struct resource *r;
2096 	const struct of_device_id *of_id;
2097 	static int dev_id;
2098 
2099 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2100 	if (of_id)
2101 		pdev->id_entry = of_id->data;
2102 
2103 	/* Init network device */
2104 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2105 	if (!ndev)
2106 		return -ENOMEM;
2107 
2108 	SET_NETDEV_DEV(ndev, &pdev->dev);
2109 
2110 	/* setup board info structure */
2111 	fep = netdev_priv(ndev);
2112 
2113 #if !defined(CONFIG_M5272)
2114 	/* default enable pause frame auto negotiation */
2115 	if (pdev->id_entry &&
2116 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2117 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2118 #endif
2119 
2120 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2121 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2122 	if (IS_ERR(fep->hwp)) {
2123 		ret = PTR_ERR(fep->hwp);
2124 		goto failed_ioremap;
2125 	}
2126 
2127 	fep->pdev = pdev;
2128 	fep->dev_id = dev_id++;
2129 
2130 	fep->bufdesc_ex = 0;
2131 
2132 	platform_set_drvdata(pdev, ndev);
2133 
2134 	ret = of_get_phy_mode(pdev->dev.of_node);
2135 	if (ret < 0) {
2136 		pdata = dev_get_platdata(&pdev->dev);
2137 		if (pdata)
2138 			fep->phy_interface = pdata->phy;
2139 		else
2140 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2141 	} else {
2142 		fep->phy_interface = ret;
2143 	}
2144 
2145 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2146 	if (IS_ERR(fep->clk_ipg)) {
2147 		ret = PTR_ERR(fep->clk_ipg);
2148 		goto failed_clk;
2149 	}
2150 
2151 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2152 	if (IS_ERR(fep->clk_ahb)) {
2153 		ret = PTR_ERR(fep->clk_ahb);
2154 		goto failed_clk;
2155 	}
2156 
2157 	/* enet_out is optional, depends on board */
2158 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2159 	if (IS_ERR(fep->clk_enet_out))
2160 		fep->clk_enet_out = NULL;
2161 
2162 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2163 	fep->bufdesc_ex =
2164 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2165 	if (IS_ERR(fep->clk_ptp)) {
2166 		fep->clk_ptp = NULL;
2167 		fep->bufdesc_ex = 0;
2168 	}
2169 
2170 	ret = clk_prepare_enable(fep->clk_ahb);
2171 	if (ret)
2172 		goto failed_clk;
2173 
2174 	ret = clk_prepare_enable(fep->clk_ipg);
2175 	if (ret)
2176 		goto failed_clk_ipg;
2177 
2178 	if (fep->clk_enet_out) {
2179 		ret = clk_prepare_enable(fep->clk_enet_out);
2180 		if (ret)
2181 			goto failed_clk_enet_out;
2182 	}
2183 
2184 	if (fep->clk_ptp) {
2185 		ret = clk_prepare_enable(fep->clk_ptp);
2186 		if (ret)
2187 			goto failed_clk_ptp;
2188 	}
2189 
2190 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2191 	if (!IS_ERR(fep->reg_phy)) {
2192 		ret = regulator_enable(fep->reg_phy);
2193 		if (ret) {
2194 			dev_err(&pdev->dev,
2195 				"Failed to enable phy regulator: %d\n", ret);
2196 			goto failed_regulator;
2197 		}
2198 	} else {
2199 		fep->reg_phy = NULL;
2200 	}
2201 
2202 	fec_reset_phy(pdev);
2203 
2204 	if (fep->bufdesc_ex)
2205 		fec_ptp_init(pdev);
2206 
2207 	ret = fec_enet_init(ndev);
2208 	if (ret)
2209 		goto failed_init;
2210 
2211 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2212 		irq = platform_get_irq(pdev, i);
2213 		if (irq < 0) {
2214 			if (i)
2215 				break;
2216 			ret = irq;
2217 			goto failed_irq;
2218 		}
2219 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2220 				       0, pdev->name, ndev);
2221 		if (ret)
2222 			goto failed_irq;
2223 	}
2224 
2225 	ret = fec_enet_mii_init(pdev);
2226 	if (ret)
2227 		goto failed_mii_init;
2228 
2229 	/* Carrier starts down, phylib will bring it up */
2230 	netif_carrier_off(ndev);
2231 
2232 	ret = register_netdev(ndev);
2233 	if (ret)
2234 		goto failed_register;
2235 
2236 	if (fep->bufdesc_ex && fep->ptp_clock)
2237 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2238 
2239 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2240 	return 0;
2241 
2242 failed_register:
2243 	fec_enet_mii_remove(fep);
2244 failed_mii_init:
2245 failed_irq:
2246 failed_init:
2247 	if (fep->reg_phy)
2248 		regulator_disable(fep->reg_phy);
2249 failed_regulator:
2250 	if (fep->clk_ptp)
2251 		clk_disable_unprepare(fep->clk_ptp);
2252 failed_clk_ptp:
2253 	if (fep->clk_enet_out)
2254 		clk_disable_unprepare(fep->clk_enet_out);
2255 failed_clk_enet_out:
2256 	clk_disable_unprepare(fep->clk_ipg);
2257 failed_clk_ipg:
2258 	clk_disable_unprepare(fep->clk_ahb);
2259 failed_clk:
2260 failed_ioremap:
2261 	free_netdev(ndev);
2262 
2263 	return ret;
2264 }
2265 
2266 static int
2267 fec_drv_remove(struct platform_device *pdev)
2268 {
2269 	struct net_device *ndev = platform_get_drvdata(pdev);
2270 	struct fec_enet_private *fep = netdev_priv(ndev);
2271 
2272 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2273 	unregister_netdev(ndev);
2274 	fec_enet_mii_remove(fep);
2275 	del_timer_sync(&fep->time_keep);
2276 	if (fep->reg_phy)
2277 		regulator_disable(fep->reg_phy);
2278 	if (fep->clk_ptp)
2279 		clk_disable_unprepare(fep->clk_ptp);
2280 	if (fep->ptp_clock)
2281 		ptp_clock_unregister(fep->ptp_clock);
2282 	if (fep->clk_enet_out)
2283 		clk_disable_unprepare(fep->clk_enet_out);
2284 	clk_disable_unprepare(fep->clk_ipg);
2285 	clk_disable_unprepare(fep->clk_ahb);
2286 	free_netdev(ndev);
2287 
2288 	return 0;
2289 }
2290 
2291 #ifdef CONFIG_PM_SLEEP
2292 static int
2293 fec_suspend(struct device *dev)
2294 {
2295 	struct net_device *ndev = dev_get_drvdata(dev);
2296 	struct fec_enet_private *fep = netdev_priv(ndev);
2297 
2298 	if (netif_running(ndev)) {
2299 		fec_stop(ndev);
2300 		netif_device_detach(ndev);
2301 	}
2302 	if (fep->clk_ptp)
2303 		clk_disable_unprepare(fep->clk_ptp);
2304 	if (fep->clk_enet_out)
2305 		clk_disable_unprepare(fep->clk_enet_out);
2306 	clk_disable_unprepare(fep->clk_ipg);
2307 	clk_disable_unprepare(fep->clk_ahb);
2308 
2309 	if (fep->reg_phy)
2310 		regulator_disable(fep->reg_phy);
2311 
2312 	return 0;
2313 }
2314 
2315 static int
2316 fec_resume(struct device *dev)
2317 {
2318 	struct net_device *ndev = dev_get_drvdata(dev);
2319 	struct fec_enet_private *fep = netdev_priv(ndev);
2320 	int ret;
2321 
2322 	if (fep->reg_phy) {
2323 		ret = regulator_enable(fep->reg_phy);
2324 		if (ret)
2325 			return ret;
2326 	}
2327 
2328 	ret = clk_prepare_enable(fep->clk_ahb);
2329 	if (ret)
2330 		goto failed_clk_ahb;
2331 
2332 	ret = clk_prepare_enable(fep->clk_ipg);
2333 	if (ret)
2334 		goto failed_clk_ipg;
2335 
2336 	if (fep->clk_enet_out) {
2337 		ret = clk_prepare_enable(fep->clk_enet_out);
2338 		if (ret)
2339 			goto failed_clk_enet_out;
2340 	}
2341 
2342 	if (fep->clk_ptp) {
2343 		ret = clk_prepare_enable(fep->clk_ptp);
2344 		if (ret)
2345 			goto failed_clk_ptp;
2346 	}
2347 
2348 	if (netif_running(ndev)) {
2349 		fec_restart(ndev, fep->full_duplex);
2350 		netif_device_attach(ndev);
2351 	}
2352 
2353 	return 0;
2354 
2355 failed_clk_ptp:
2356 	if (fep->clk_enet_out)
2357 		clk_disable_unprepare(fep->clk_enet_out);
2358 failed_clk_enet_out:
2359 	clk_disable_unprepare(fep->clk_ipg);
2360 failed_clk_ipg:
2361 	clk_disable_unprepare(fep->clk_ahb);
2362 failed_clk_ahb:
2363 	if (fep->reg_phy)
2364 		regulator_disable(fep->reg_phy);
2365 	return ret;
2366 }
2367 #endif /* CONFIG_PM_SLEEP */
2368 
2369 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2370 
2371 static struct platform_driver fec_driver = {
2372 	.driver	= {
2373 		.name	= DRIVER_NAME,
2374 		.owner	= THIS_MODULE,
2375 		.pm	= &fec_pm_ops,
2376 		.of_match_table = fec_dt_ids,
2377 	},
2378 	.id_table = fec_devtype,
2379 	.probe	= fec_probe,
2380 	.remove	= fec_drv_remove,
2381 };
2382 
2383 module_platform_driver(fec_driver);
2384 
2385 MODULE_ALIAS("platform:"DRIVER_NAME);
2386 MODULE_LICENSE("GPL");
2387