1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 
64 #include <asm/cacheflush.h>
65 
66 #include "fec.h"
67 
68 static void set_multicast_list(struct net_device *ndev);
69 static void fec_enet_itr_coal_init(struct net_device *ndev);
70 
71 #define DRIVER_NAME	"fec"
72 
73 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
74 
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE	(1 << 5)
77 #define FEC_ENET_RSEM_V	0x84
78 #define FEC_ENET_RSFL_V	16
79 #define FEC_ENET_RAEM_V	0x8
80 #define FEC_ENET_RAFL_V	0x8
81 #define FEC_ENET_OPD_V	0xFFF0
82 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
83 
84 static struct platform_device_id fec_devtype[] = {
85 	{
86 		/* keep it for coldfire */
87 		.name = DRIVER_NAME,
88 		.driver_data = 0,
89 	}, {
90 		.name = "imx25-fec",
91 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
92 	}, {
93 		.name = "imx27-fec",
94 		.driver_data = FEC_QUIRK_HAS_RACC,
95 	}, {
96 		.name = "imx28-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
98 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
99 	}, {
100 		.name = "imx6q-fec",
101 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
102 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
103 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
104 				FEC_QUIRK_HAS_RACC,
105 	}, {
106 		.name = "mvf600-fec",
107 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
108 	}, {
109 		.name = "imx6sx-fec",
110 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
111 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
112 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
113 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
114 				FEC_QUIRK_HAS_RACC,
115 	}, {
116 		/* sentinel */
117 	}
118 };
119 MODULE_DEVICE_TABLE(platform, fec_devtype);
120 
121 enum imx_fec_type {
122 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
123 	IMX27_FEC,	/* runs on i.mx27/35/51 */
124 	IMX28_FEC,
125 	IMX6Q_FEC,
126 	MVF600_FEC,
127 	IMX6SX_FEC,
128 };
129 
130 static const struct of_device_id fec_dt_ids[] = {
131 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
132 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
133 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
134 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
135 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
136 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
137 	{ /* sentinel */ }
138 };
139 MODULE_DEVICE_TABLE(of, fec_dt_ids);
140 
141 static unsigned char macaddr[ETH_ALEN];
142 module_param_array(macaddr, byte, NULL, 0);
143 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
144 
145 #if defined(CONFIG_M5272)
146 /*
147  * Some hardware gets it MAC address out of local flash memory.
148  * if this is non-zero then assume it is the address to get MAC from.
149  */
150 #if defined(CONFIG_NETtel)
151 #define	FEC_FLASHMAC	0xf0006006
152 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
153 #define	FEC_FLASHMAC	0xf0006000
154 #elif defined(CONFIG_CANCam)
155 #define	FEC_FLASHMAC	0xf0020000
156 #elif defined (CONFIG_M5272C3)
157 #define	FEC_FLASHMAC	(0xffe04000 + 4)
158 #elif defined(CONFIG_MOD5272)
159 #define FEC_FLASHMAC	0xffc0406b
160 #else
161 #define	FEC_FLASHMAC	0
162 #endif
163 #endif /* CONFIG_M5272 */
164 
165 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
166  */
167 #define PKT_MAXBUF_SIZE		1522
168 #define PKT_MINBUF_SIZE		64
169 #define PKT_MAXBLR_SIZE		1536
170 
171 /* FEC receive acceleration */
172 #define FEC_RACC_IPDIS		(1 << 1)
173 #define FEC_RACC_PRODIS		(1 << 2)
174 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
175 
176 /*
177  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
178  * size bits. Other FEC hardware does not, so we need to take that into
179  * account when setting it.
180  */
181 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
182     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
183 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
184 #else
185 #define	OPT_FRAME_SIZE	0
186 #endif
187 
188 /* FEC MII MMFR bits definition */
189 #define FEC_MMFR_ST		(1 << 30)
190 #define FEC_MMFR_OP_READ	(2 << 28)
191 #define FEC_MMFR_OP_WRITE	(1 << 28)
192 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
193 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
194 #define FEC_MMFR_TA		(2 << 16)
195 #define FEC_MMFR_DATA(v)	(v & 0xffff)
196 /* FEC ECR bits definition */
197 #define FEC_ECR_MAGICEN		(1 << 2)
198 #define FEC_ECR_SLEEP		(1 << 3)
199 
200 #define FEC_MII_TIMEOUT		30000 /* us */
201 
202 /* Transmitter timeout */
203 #define TX_TIMEOUT (2 * HZ)
204 
205 #define FEC_PAUSE_FLAG_AUTONEG	0x1
206 #define FEC_PAUSE_FLAG_ENABLE	0x2
207 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
208 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
209 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
210 
211 #define COPYBREAK_DEFAULT	256
212 
213 #define TSO_HEADER_SIZE		128
214 /* Max number of allowed TCP segments for software TSO */
215 #define FEC_MAX_TSO_SEGS	100
216 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
217 
218 #define IS_TSO_HEADER(txq, addr) \
219 	((addr >= txq->tso_hdrs_dma) && \
220 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
221 
222 static int mii_cnt;
223 
224 static inline
225 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
226 				      struct fec_enet_private *fep,
227 				      int queue_id)
228 {
229 	struct bufdesc *new_bd = bdp + 1;
230 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
231 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
232 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
233 	struct bufdesc_ex *ex_base;
234 	struct bufdesc *base;
235 	int ring_size;
236 
237 	if (bdp >= txq->tx_bd_base) {
238 		base = txq->tx_bd_base;
239 		ring_size = txq->tx_ring_size;
240 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
241 	} else {
242 		base = rxq->rx_bd_base;
243 		ring_size = rxq->rx_ring_size;
244 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
245 	}
246 
247 	if (fep->bufdesc_ex)
248 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
249 			ex_base : ex_new_bd);
250 	else
251 		return (new_bd >= (base + ring_size)) ?
252 			base : new_bd;
253 }
254 
255 static inline
256 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
257 				      struct fec_enet_private *fep,
258 				      int queue_id)
259 {
260 	struct bufdesc *new_bd = bdp - 1;
261 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
262 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
263 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
264 	struct bufdesc_ex *ex_base;
265 	struct bufdesc *base;
266 	int ring_size;
267 
268 	if (bdp >= txq->tx_bd_base) {
269 		base = txq->tx_bd_base;
270 		ring_size = txq->tx_ring_size;
271 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
272 	} else {
273 		base = rxq->rx_bd_base;
274 		ring_size = rxq->rx_ring_size;
275 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
276 	}
277 
278 	if (fep->bufdesc_ex)
279 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
280 			(ex_new_bd + ring_size) : ex_new_bd);
281 	else
282 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
283 }
284 
285 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
286 				struct fec_enet_private *fep)
287 {
288 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
289 }
290 
291 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
292 					struct fec_enet_priv_tx_q *txq)
293 {
294 	int entries;
295 
296 	entries = ((const char *)txq->dirty_tx -
297 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
298 
299 	return entries > 0 ? entries : entries + txq->tx_ring_size;
300 }
301 
302 static void swap_buffer(void *bufaddr, int len)
303 {
304 	int i;
305 	unsigned int *buf = bufaddr;
306 
307 	for (i = 0; i < len; i += 4, buf++)
308 		swab32s(buf);
309 }
310 
311 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
312 {
313 	int i;
314 	unsigned int *src = src_buf;
315 	unsigned int *dst = dst_buf;
316 
317 	for (i = 0; i < len; i += 4, src++, dst++)
318 		*dst = swab32p(src);
319 }
320 
321 static void fec_dump(struct net_device *ndev)
322 {
323 	struct fec_enet_private *fep = netdev_priv(ndev);
324 	struct bufdesc *bdp;
325 	struct fec_enet_priv_tx_q *txq;
326 	int index = 0;
327 
328 	netdev_info(ndev, "TX ring dump\n");
329 	pr_info("Nr     SC     addr       len  SKB\n");
330 
331 	txq = fep->tx_queue[0];
332 	bdp = txq->tx_bd_base;
333 
334 	do {
335 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
336 			index,
337 			bdp == txq->cur_tx ? 'S' : ' ',
338 			bdp == txq->dirty_tx ? 'H' : ' ',
339 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
340 			txq->tx_skbuff[index]);
341 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
342 		index++;
343 	} while (bdp != txq->tx_bd_base);
344 }
345 
346 static inline bool is_ipv4_pkt(struct sk_buff *skb)
347 {
348 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
349 }
350 
351 static int
352 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
353 {
354 	/* Only run for packets requiring a checksum. */
355 	if (skb->ip_summed != CHECKSUM_PARTIAL)
356 		return 0;
357 
358 	if (unlikely(skb_cow_head(skb, 0)))
359 		return -1;
360 
361 	if (is_ipv4_pkt(skb))
362 		ip_hdr(skb)->check = 0;
363 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
364 
365 	return 0;
366 }
367 
368 static struct bufdesc *
369 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
370 			     struct sk_buff *skb,
371 			     struct net_device *ndev)
372 {
373 	struct fec_enet_private *fep = netdev_priv(ndev);
374 	struct bufdesc *bdp = txq->cur_tx;
375 	struct bufdesc_ex *ebdp;
376 	int nr_frags = skb_shinfo(skb)->nr_frags;
377 	unsigned short queue = skb_get_queue_mapping(skb);
378 	int frag, frag_len;
379 	unsigned short status;
380 	unsigned int estatus = 0;
381 	skb_frag_t *this_frag;
382 	unsigned int index;
383 	void *bufaddr;
384 	dma_addr_t addr;
385 	int i;
386 
387 	for (frag = 0; frag < nr_frags; frag++) {
388 		this_frag = &skb_shinfo(skb)->frags[frag];
389 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
390 		ebdp = (struct bufdesc_ex *)bdp;
391 
392 		status = bdp->cbd_sc;
393 		status &= ~BD_ENET_TX_STATS;
394 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
395 		frag_len = skb_shinfo(skb)->frags[frag].size;
396 
397 		/* Handle the last BD specially */
398 		if (frag == nr_frags - 1) {
399 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
400 			if (fep->bufdesc_ex) {
401 				estatus |= BD_ENET_TX_INT;
402 				if (unlikely(skb_shinfo(skb)->tx_flags &
403 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
404 					estatus |= BD_ENET_TX_TS;
405 			}
406 		}
407 
408 		if (fep->bufdesc_ex) {
409 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
410 				estatus |= FEC_TX_BD_FTYPE(queue);
411 			if (skb->ip_summed == CHECKSUM_PARTIAL)
412 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
413 			ebdp->cbd_bdu = 0;
414 			ebdp->cbd_esc = estatus;
415 		}
416 
417 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
418 
419 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
420 		if (((unsigned long) bufaddr) & fep->tx_align ||
421 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
422 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
423 			bufaddr = txq->tx_bounce[index];
424 
425 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
426 				swap_buffer(bufaddr, frag_len);
427 		}
428 
429 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
430 				      DMA_TO_DEVICE);
431 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
432 			dev_kfree_skb_any(skb);
433 			if (net_ratelimit())
434 				netdev_err(ndev, "Tx DMA memory map failed\n");
435 			goto dma_mapping_error;
436 		}
437 
438 		bdp->cbd_bufaddr = addr;
439 		bdp->cbd_datlen = frag_len;
440 		bdp->cbd_sc = status;
441 	}
442 
443 	return bdp;
444 dma_mapping_error:
445 	bdp = txq->cur_tx;
446 	for (i = 0; i < frag; i++) {
447 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
448 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
449 				bdp->cbd_datlen, DMA_TO_DEVICE);
450 	}
451 	return ERR_PTR(-ENOMEM);
452 }
453 
454 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
455 				   struct sk_buff *skb, struct net_device *ndev)
456 {
457 	struct fec_enet_private *fep = netdev_priv(ndev);
458 	int nr_frags = skb_shinfo(skb)->nr_frags;
459 	struct bufdesc *bdp, *last_bdp;
460 	void *bufaddr;
461 	dma_addr_t addr;
462 	unsigned short status;
463 	unsigned short buflen;
464 	unsigned short queue;
465 	unsigned int estatus = 0;
466 	unsigned int index;
467 	int entries_free;
468 
469 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
470 	if (entries_free < MAX_SKB_FRAGS + 1) {
471 		dev_kfree_skb_any(skb);
472 		if (net_ratelimit())
473 			netdev_err(ndev, "NOT enough BD for SG!\n");
474 		return NETDEV_TX_OK;
475 	}
476 
477 	/* Protocol checksum off-load for TCP and UDP. */
478 	if (fec_enet_clear_csum(skb, ndev)) {
479 		dev_kfree_skb_any(skb);
480 		return NETDEV_TX_OK;
481 	}
482 
483 	/* Fill in a Tx ring entry */
484 	bdp = txq->cur_tx;
485 	last_bdp = bdp;
486 	status = bdp->cbd_sc;
487 	status &= ~BD_ENET_TX_STATS;
488 
489 	/* Set buffer length and buffer pointer */
490 	bufaddr = skb->data;
491 	buflen = skb_headlen(skb);
492 
493 	queue = skb_get_queue_mapping(skb);
494 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
495 	if (((unsigned long) bufaddr) & fep->tx_align ||
496 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
497 		memcpy(txq->tx_bounce[index], skb->data, buflen);
498 		bufaddr = txq->tx_bounce[index];
499 
500 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
501 			swap_buffer(bufaddr, buflen);
502 	}
503 
504 	/* Push the data cache so the CPM does not get stale memory data. */
505 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
506 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
507 		dev_kfree_skb_any(skb);
508 		if (net_ratelimit())
509 			netdev_err(ndev, "Tx DMA memory map failed\n");
510 		return NETDEV_TX_OK;
511 	}
512 
513 	if (nr_frags) {
514 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
515 		if (IS_ERR(last_bdp))
516 			return NETDEV_TX_OK;
517 	} else {
518 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
519 		if (fep->bufdesc_ex) {
520 			estatus = BD_ENET_TX_INT;
521 			if (unlikely(skb_shinfo(skb)->tx_flags &
522 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
523 				estatus |= BD_ENET_TX_TS;
524 		}
525 	}
526 
527 	if (fep->bufdesc_ex) {
528 
529 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
530 
531 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
532 			fep->hwts_tx_en))
533 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
534 
535 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
536 			estatus |= FEC_TX_BD_FTYPE(queue);
537 
538 		if (skb->ip_summed == CHECKSUM_PARTIAL)
539 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
540 
541 		ebdp->cbd_bdu = 0;
542 		ebdp->cbd_esc = estatus;
543 	}
544 
545 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
546 	/* Save skb pointer */
547 	txq->tx_skbuff[index] = skb;
548 
549 	bdp->cbd_datlen = buflen;
550 	bdp->cbd_bufaddr = addr;
551 
552 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
553 	 * it's the last BD of the frame, and to put the CRC on the end.
554 	 */
555 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
556 	bdp->cbd_sc = status;
557 
558 	/* If this was the last BD in the ring, start at the beginning again. */
559 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
560 
561 	skb_tx_timestamp(skb);
562 
563 	/* Make sure the update to bdp and tx_skbuff are performed before
564 	 * cur_tx.
565 	 */
566 	wmb();
567 	txq->cur_tx = bdp;
568 
569 	/* Trigger transmission start */
570 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
571 
572 	return 0;
573 }
574 
575 static int
576 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
577 			  struct net_device *ndev,
578 			  struct bufdesc *bdp, int index, char *data,
579 			  int size, bool last_tcp, bool is_last)
580 {
581 	struct fec_enet_private *fep = netdev_priv(ndev);
582 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
583 	unsigned short queue = skb_get_queue_mapping(skb);
584 	unsigned short status;
585 	unsigned int estatus = 0;
586 	dma_addr_t addr;
587 
588 	status = bdp->cbd_sc;
589 	status &= ~BD_ENET_TX_STATS;
590 
591 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
592 
593 	if (((unsigned long) data) & fep->tx_align ||
594 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
595 		memcpy(txq->tx_bounce[index], data, size);
596 		data = txq->tx_bounce[index];
597 
598 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
599 			swap_buffer(data, size);
600 	}
601 
602 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
603 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
604 		dev_kfree_skb_any(skb);
605 		if (net_ratelimit())
606 			netdev_err(ndev, "Tx DMA memory map failed\n");
607 		return NETDEV_TX_BUSY;
608 	}
609 
610 	bdp->cbd_datlen = size;
611 	bdp->cbd_bufaddr = addr;
612 
613 	if (fep->bufdesc_ex) {
614 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
615 			estatus |= FEC_TX_BD_FTYPE(queue);
616 		if (skb->ip_summed == CHECKSUM_PARTIAL)
617 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
618 		ebdp->cbd_bdu = 0;
619 		ebdp->cbd_esc = estatus;
620 	}
621 
622 	/* Handle the last BD specially */
623 	if (last_tcp)
624 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
625 	if (is_last) {
626 		status |= BD_ENET_TX_INTR;
627 		if (fep->bufdesc_ex)
628 			ebdp->cbd_esc |= BD_ENET_TX_INT;
629 	}
630 
631 	bdp->cbd_sc = status;
632 
633 	return 0;
634 }
635 
636 static int
637 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
638 			 struct sk_buff *skb, struct net_device *ndev,
639 			 struct bufdesc *bdp, int index)
640 {
641 	struct fec_enet_private *fep = netdev_priv(ndev);
642 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
643 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
644 	unsigned short queue = skb_get_queue_mapping(skb);
645 	void *bufaddr;
646 	unsigned long dmabuf;
647 	unsigned short status;
648 	unsigned int estatus = 0;
649 
650 	status = bdp->cbd_sc;
651 	status &= ~BD_ENET_TX_STATS;
652 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
653 
654 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
655 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
656 	if (((unsigned long)bufaddr) & fep->tx_align ||
657 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
658 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
659 		bufaddr = txq->tx_bounce[index];
660 
661 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
662 			swap_buffer(bufaddr, hdr_len);
663 
664 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
665 					hdr_len, DMA_TO_DEVICE);
666 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
667 			dev_kfree_skb_any(skb);
668 			if (net_ratelimit())
669 				netdev_err(ndev, "Tx DMA memory map failed\n");
670 			return NETDEV_TX_BUSY;
671 		}
672 	}
673 
674 	bdp->cbd_bufaddr = dmabuf;
675 	bdp->cbd_datlen = hdr_len;
676 
677 	if (fep->bufdesc_ex) {
678 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
679 			estatus |= FEC_TX_BD_FTYPE(queue);
680 		if (skb->ip_summed == CHECKSUM_PARTIAL)
681 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
682 		ebdp->cbd_bdu = 0;
683 		ebdp->cbd_esc = estatus;
684 	}
685 
686 	bdp->cbd_sc = status;
687 
688 	return 0;
689 }
690 
691 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
692 				   struct sk_buff *skb,
693 				   struct net_device *ndev)
694 {
695 	struct fec_enet_private *fep = netdev_priv(ndev);
696 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
697 	int total_len, data_left;
698 	struct bufdesc *bdp = txq->cur_tx;
699 	unsigned short queue = skb_get_queue_mapping(skb);
700 	struct tso_t tso;
701 	unsigned int index = 0;
702 	int ret;
703 
704 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
705 		dev_kfree_skb_any(skb);
706 		if (net_ratelimit())
707 			netdev_err(ndev, "NOT enough BD for TSO!\n");
708 		return NETDEV_TX_OK;
709 	}
710 
711 	/* Protocol checksum off-load for TCP and UDP. */
712 	if (fec_enet_clear_csum(skb, ndev)) {
713 		dev_kfree_skb_any(skb);
714 		return NETDEV_TX_OK;
715 	}
716 
717 	/* Initialize the TSO handler, and prepare the first payload */
718 	tso_start(skb, &tso);
719 
720 	total_len = skb->len - hdr_len;
721 	while (total_len > 0) {
722 		char *hdr;
723 
724 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
725 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
726 		total_len -= data_left;
727 
728 		/* prepare packet headers: MAC + IP + TCP */
729 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
730 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
731 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
732 		if (ret)
733 			goto err_release;
734 
735 		while (data_left > 0) {
736 			int size;
737 
738 			size = min_t(int, tso.size, data_left);
739 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
740 			index = fec_enet_get_bd_index(txq->tx_bd_base,
741 						      bdp, fep);
742 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
743 							bdp, index,
744 							tso.data, size,
745 							size == data_left,
746 							total_len == 0);
747 			if (ret)
748 				goto err_release;
749 
750 			data_left -= size;
751 			tso_build_data(skb, &tso, size);
752 		}
753 
754 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
755 	}
756 
757 	/* Save skb pointer */
758 	txq->tx_skbuff[index] = skb;
759 
760 	skb_tx_timestamp(skb);
761 	txq->cur_tx = bdp;
762 
763 	/* Trigger transmission start */
764 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
765 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
768 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
769 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
770 
771 	return 0;
772 
773 err_release:
774 	/* TODO: Release all used data descriptors for TSO */
775 	return ret;
776 }
777 
778 static netdev_tx_t
779 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
780 {
781 	struct fec_enet_private *fep = netdev_priv(ndev);
782 	int entries_free;
783 	unsigned short queue;
784 	struct fec_enet_priv_tx_q *txq;
785 	struct netdev_queue *nq;
786 	int ret;
787 
788 	queue = skb_get_queue_mapping(skb);
789 	txq = fep->tx_queue[queue];
790 	nq = netdev_get_tx_queue(ndev, queue);
791 
792 	if (skb_is_gso(skb))
793 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
794 	else
795 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
796 	if (ret)
797 		return ret;
798 
799 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
800 	if (entries_free <= txq->tx_stop_threshold)
801 		netif_tx_stop_queue(nq);
802 
803 	return NETDEV_TX_OK;
804 }
805 
806 /* Init RX & TX buffer descriptors
807  */
808 static void fec_enet_bd_init(struct net_device *dev)
809 {
810 	struct fec_enet_private *fep = netdev_priv(dev);
811 	struct fec_enet_priv_tx_q *txq;
812 	struct fec_enet_priv_rx_q *rxq;
813 	struct bufdesc *bdp;
814 	unsigned int i;
815 	unsigned int q;
816 
817 	for (q = 0; q < fep->num_rx_queues; q++) {
818 		/* Initialize the receive buffer descriptors. */
819 		rxq = fep->rx_queue[q];
820 		bdp = rxq->rx_bd_base;
821 
822 		for (i = 0; i < rxq->rx_ring_size; i++) {
823 
824 			/* Initialize the BD for every fragment in the page. */
825 			if (bdp->cbd_bufaddr)
826 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
827 			else
828 				bdp->cbd_sc = 0;
829 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
830 		}
831 
832 		/* Set the last buffer to wrap */
833 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
834 		bdp->cbd_sc |= BD_SC_WRAP;
835 
836 		rxq->cur_rx = rxq->rx_bd_base;
837 	}
838 
839 	for (q = 0; q < fep->num_tx_queues; q++) {
840 		/* ...and the same for transmit */
841 		txq = fep->tx_queue[q];
842 		bdp = txq->tx_bd_base;
843 		txq->cur_tx = bdp;
844 
845 		for (i = 0; i < txq->tx_ring_size; i++) {
846 			/* Initialize the BD for every fragment in the page. */
847 			bdp->cbd_sc = 0;
848 			if (txq->tx_skbuff[i]) {
849 				dev_kfree_skb_any(txq->tx_skbuff[i]);
850 				txq->tx_skbuff[i] = NULL;
851 			}
852 			bdp->cbd_bufaddr = 0;
853 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
854 		}
855 
856 		/* Set the last buffer to wrap */
857 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
858 		bdp->cbd_sc |= BD_SC_WRAP;
859 		txq->dirty_tx = bdp;
860 	}
861 }
862 
863 static void fec_enet_active_rxring(struct net_device *ndev)
864 {
865 	struct fec_enet_private *fep = netdev_priv(ndev);
866 	int i;
867 
868 	for (i = 0; i < fep->num_rx_queues; i++)
869 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
870 }
871 
872 static void fec_enet_enable_ring(struct net_device *ndev)
873 {
874 	struct fec_enet_private *fep = netdev_priv(ndev);
875 	struct fec_enet_priv_tx_q *txq;
876 	struct fec_enet_priv_rx_q *rxq;
877 	int i;
878 
879 	for (i = 0; i < fep->num_rx_queues; i++) {
880 		rxq = fep->rx_queue[i];
881 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
882 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
883 
884 		/* enable DMA1/2 */
885 		if (i)
886 			writel(RCMR_MATCHEN | RCMR_CMP(i),
887 			       fep->hwp + FEC_RCMR(i));
888 	}
889 
890 	for (i = 0; i < fep->num_tx_queues; i++) {
891 		txq = fep->tx_queue[i];
892 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
893 
894 		/* enable DMA1/2 */
895 		if (i)
896 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
897 			       fep->hwp + FEC_DMA_CFG(i));
898 	}
899 }
900 
901 static void fec_enet_reset_skb(struct net_device *ndev)
902 {
903 	struct fec_enet_private *fep = netdev_priv(ndev);
904 	struct fec_enet_priv_tx_q *txq;
905 	int i, j;
906 
907 	for (i = 0; i < fep->num_tx_queues; i++) {
908 		txq = fep->tx_queue[i];
909 
910 		for (j = 0; j < txq->tx_ring_size; j++) {
911 			if (txq->tx_skbuff[j]) {
912 				dev_kfree_skb_any(txq->tx_skbuff[j]);
913 				txq->tx_skbuff[j] = NULL;
914 			}
915 		}
916 	}
917 }
918 
919 /*
920  * This function is called to start or restart the FEC during a link
921  * change, transmit timeout, or to reconfigure the FEC.  The network
922  * packet processing for this device must be stopped before this call.
923  */
924 static void
925 fec_restart(struct net_device *ndev)
926 {
927 	struct fec_enet_private *fep = netdev_priv(ndev);
928 	u32 val;
929 	u32 temp_mac[2];
930 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
931 	u32 ecntl = 0x2; /* ETHEREN */
932 
933 	/* Whack a reset.  We should wait for this.
934 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
935 	 * instead of reset MAC itself.
936 	 */
937 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
938 		writel(0, fep->hwp + FEC_ECNTRL);
939 	} else {
940 		writel(1, fep->hwp + FEC_ECNTRL);
941 		udelay(10);
942 	}
943 
944 	/*
945 	 * enet-mac reset will reset mac address registers too,
946 	 * so need to reconfigure it.
947 	 */
948 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
949 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
950 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
951 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
952 	}
953 
954 	/* Clear any outstanding interrupt. */
955 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
956 
957 	fec_enet_bd_init(ndev);
958 
959 	fec_enet_enable_ring(ndev);
960 
961 	/* Reset tx SKB buffers. */
962 	fec_enet_reset_skb(ndev);
963 
964 	/* Enable MII mode */
965 	if (fep->full_duplex == DUPLEX_FULL) {
966 		/* FD enable */
967 		writel(0x04, fep->hwp + FEC_X_CNTRL);
968 	} else {
969 		/* No Rcv on Xmit */
970 		rcntl |= 0x02;
971 		writel(0x0, fep->hwp + FEC_X_CNTRL);
972 	}
973 
974 	/* Set MII speed */
975 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
976 
977 #if !defined(CONFIG_M5272)
978 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
979 		/* set RX checksum */
980 		val = readl(fep->hwp + FEC_RACC);
981 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
982 			val |= FEC_RACC_OPTIONS;
983 		else
984 			val &= ~FEC_RACC_OPTIONS;
985 		writel(val, fep->hwp + FEC_RACC);
986 	}
987 #endif
988 
989 	/*
990 	 * The phy interface and speed need to get configured
991 	 * differently on enet-mac.
992 	 */
993 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
994 		/* Enable flow control and length check */
995 		rcntl |= 0x40000000 | 0x00000020;
996 
997 		/* RGMII, RMII or MII */
998 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
999 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1000 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1001 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1002 			rcntl |= (1 << 6);
1003 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1004 			rcntl |= (1 << 8);
1005 		else
1006 			rcntl &= ~(1 << 8);
1007 
1008 		/* 1G, 100M or 10M */
1009 		if (fep->phy_dev) {
1010 			if (fep->phy_dev->speed == SPEED_1000)
1011 				ecntl |= (1 << 5);
1012 			else if (fep->phy_dev->speed == SPEED_100)
1013 				rcntl &= ~(1 << 9);
1014 			else
1015 				rcntl |= (1 << 9);
1016 		}
1017 	} else {
1018 #ifdef FEC_MIIGSK_ENR
1019 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1020 			u32 cfgr;
1021 			/* disable the gasket and wait */
1022 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1023 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1024 				udelay(1);
1025 
1026 			/*
1027 			 * configure the gasket:
1028 			 *   RMII, 50 MHz, no loopback, no echo
1029 			 *   MII, 25 MHz, no loopback, no echo
1030 			 */
1031 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1032 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1033 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1034 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1035 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1036 
1037 			/* re-enable the gasket */
1038 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1039 		}
1040 #endif
1041 	}
1042 
1043 #if !defined(CONFIG_M5272)
1044 	/* enable pause frame*/
1045 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1046 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1047 	     fep->phy_dev && fep->phy_dev->pause)) {
1048 		rcntl |= FEC_ENET_FCE;
1049 
1050 		/* set FIFO threshold parameter to reduce overrun */
1051 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1052 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1053 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1054 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1055 
1056 		/* OPD */
1057 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1058 	} else {
1059 		rcntl &= ~FEC_ENET_FCE;
1060 	}
1061 #endif /* !defined(CONFIG_M5272) */
1062 
1063 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1064 
1065 	/* Setup multicast filter. */
1066 	set_multicast_list(ndev);
1067 #ifndef CONFIG_M5272
1068 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1069 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1070 #endif
1071 
1072 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1073 		/* enable ENET endian swap */
1074 		ecntl |= (1 << 8);
1075 		/* enable ENET store and forward mode */
1076 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1077 	}
1078 
1079 	if (fep->bufdesc_ex)
1080 		ecntl |= (1 << 4);
1081 
1082 #ifndef CONFIG_M5272
1083 	/* Enable the MIB statistic event counters */
1084 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1085 #endif
1086 
1087 	/* And last, enable the transmit and receive processing */
1088 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1089 	fec_enet_active_rxring(ndev);
1090 
1091 	if (fep->bufdesc_ex)
1092 		fec_ptp_start_cyclecounter(ndev);
1093 
1094 	/* Enable interrupts we wish to service */
1095 	if (fep->link)
1096 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1097 	else
1098 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1099 
1100 	/* Init the interrupt coalescing */
1101 	fec_enet_itr_coal_init(ndev);
1102 
1103 }
1104 
1105 static void
1106 fec_stop(struct net_device *ndev)
1107 {
1108 	struct fec_enet_private *fep = netdev_priv(ndev);
1109 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1110 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1111 	u32 val;
1112 
1113 	/* We cannot expect a graceful transmit stop without link !!! */
1114 	if (fep->link) {
1115 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1116 		udelay(10);
1117 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1118 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1119 	}
1120 
1121 	/* Whack a reset.  We should wait for this.
1122 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1123 	 * instead of reset MAC itself.
1124 	 */
1125 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1126 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1127 			writel(0, fep->hwp + FEC_ECNTRL);
1128 		} else {
1129 			writel(1, fep->hwp + FEC_ECNTRL);
1130 			udelay(10);
1131 		}
1132 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1133 	} else {
1134 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1135 		val = readl(fep->hwp + FEC_ECNTRL);
1136 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1137 		writel(val, fep->hwp + FEC_ECNTRL);
1138 
1139 		if (pdata && pdata->sleep_mode_enable)
1140 			pdata->sleep_mode_enable(true);
1141 	}
1142 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1143 
1144 	/* We have to keep ENET enabled to have MII interrupt stay working */
1145 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1146 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1147 		writel(2, fep->hwp + FEC_ECNTRL);
1148 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1149 	}
1150 }
1151 
1152 
1153 static void
1154 fec_timeout(struct net_device *ndev)
1155 {
1156 	struct fec_enet_private *fep = netdev_priv(ndev);
1157 
1158 	fec_dump(ndev);
1159 
1160 	ndev->stats.tx_errors++;
1161 
1162 	schedule_work(&fep->tx_timeout_work);
1163 }
1164 
1165 static void fec_enet_timeout_work(struct work_struct *work)
1166 {
1167 	struct fec_enet_private *fep =
1168 		container_of(work, struct fec_enet_private, tx_timeout_work);
1169 	struct net_device *ndev = fep->netdev;
1170 
1171 	rtnl_lock();
1172 	if (netif_device_present(ndev) || netif_running(ndev)) {
1173 		napi_disable(&fep->napi);
1174 		netif_tx_lock_bh(ndev);
1175 		fec_restart(ndev);
1176 		netif_wake_queue(ndev);
1177 		netif_tx_unlock_bh(ndev);
1178 		napi_enable(&fep->napi);
1179 	}
1180 	rtnl_unlock();
1181 }
1182 
1183 static void
1184 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1185 	struct skb_shared_hwtstamps *hwtstamps)
1186 {
1187 	unsigned long flags;
1188 	u64 ns;
1189 
1190 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1191 	ns = timecounter_cyc2time(&fep->tc, ts);
1192 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1193 
1194 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1195 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1196 }
1197 
1198 static void
1199 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1200 {
1201 	struct	fec_enet_private *fep;
1202 	struct bufdesc *bdp;
1203 	unsigned short status;
1204 	struct	sk_buff	*skb;
1205 	struct fec_enet_priv_tx_q *txq;
1206 	struct netdev_queue *nq;
1207 	int	index = 0;
1208 	int	entries_free;
1209 
1210 	fep = netdev_priv(ndev);
1211 
1212 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1213 
1214 	txq = fep->tx_queue[queue_id];
1215 	/* get next bdp of dirty_tx */
1216 	nq = netdev_get_tx_queue(ndev, queue_id);
1217 	bdp = txq->dirty_tx;
1218 
1219 	/* get next bdp of dirty_tx */
1220 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1221 
1222 	while (bdp != READ_ONCE(txq->cur_tx)) {
1223 		/* Order the load of cur_tx and cbd_sc */
1224 		rmb();
1225 		status = READ_ONCE(bdp->cbd_sc);
1226 		if (status & BD_ENET_TX_READY)
1227 			break;
1228 
1229 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1230 
1231 		skb = txq->tx_skbuff[index];
1232 		txq->tx_skbuff[index] = NULL;
1233 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1234 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1235 					bdp->cbd_datlen, DMA_TO_DEVICE);
1236 		bdp->cbd_bufaddr = 0;
1237 		if (!skb) {
1238 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1239 			continue;
1240 		}
1241 
1242 		/* Check for errors. */
1243 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1244 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1245 				   BD_ENET_TX_CSL)) {
1246 			ndev->stats.tx_errors++;
1247 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1248 				ndev->stats.tx_heartbeat_errors++;
1249 			if (status & BD_ENET_TX_LC)  /* Late collision */
1250 				ndev->stats.tx_window_errors++;
1251 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1252 				ndev->stats.tx_aborted_errors++;
1253 			if (status & BD_ENET_TX_UN)  /* Underrun */
1254 				ndev->stats.tx_fifo_errors++;
1255 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1256 				ndev->stats.tx_carrier_errors++;
1257 		} else {
1258 			ndev->stats.tx_packets++;
1259 			ndev->stats.tx_bytes += skb->len;
1260 		}
1261 
1262 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1263 			fep->bufdesc_ex) {
1264 			struct skb_shared_hwtstamps shhwtstamps;
1265 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1266 
1267 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1268 			skb_tstamp_tx(skb, &shhwtstamps);
1269 		}
1270 
1271 		/* Deferred means some collisions occurred during transmit,
1272 		 * but we eventually sent the packet OK.
1273 		 */
1274 		if (status & BD_ENET_TX_DEF)
1275 			ndev->stats.collisions++;
1276 
1277 		/* Free the sk buffer associated with this last transmit */
1278 		dev_kfree_skb_any(skb);
1279 
1280 		/* Make sure the update to bdp and tx_skbuff are performed
1281 		 * before dirty_tx
1282 		 */
1283 		wmb();
1284 		txq->dirty_tx = bdp;
1285 
1286 		/* Update pointer to next buffer descriptor to be transmitted */
1287 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1288 
1289 		/* Since we have freed up a buffer, the ring is no longer full
1290 		 */
1291 		if (netif_queue_stopped(ndev)) {
1292 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1293 			if (entries_free >= txq->tx_wake_threshold)
1294 				netif_tx_wake_queue(nq);
1295 		}
1296 	}
1297 
1298 	/* ERR006538: Keep the transmitter going */
1299 	if (bdp != txq->cur_tx &&
1300 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1301 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1302 }
1303 
1304 static void
1305 fec_enet_tx(struct net_device *ndev)
1306 {
1307 	struct fec_enet_private *fep = netdev_priv(ndev);
1308 	u16 queue_id;
1309 	/* First process class A queue, then Class B and Best Effort queue */
1310 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1311 		clear_bit(queue_id, &fep->work_tx);
1312 		fec_enet_tx_queue(ndev, queue_id);
1313 	}
1314 	return;
1315 }
1316 
1317 static int
1318 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1319 {
1320 	struct  fec_enet_private *fep = netdev_priv(ndev);
1321 	int off;
1322 
1323 	off = ((unsigned long)skb->data) & fep->rx_align;
1324 	if (off)
1325 		skb_reserve(skb, fep->rx_align + 1 - off);
1326 
1327 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1328 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1329 					  DMA_FROM_DEVICE);
1330 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1331 		if (net_ratelimit())
1332 			netdev_err(ndev, "Rx DMA memory map failed\n");
1333 		return -ENOMEM;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1340 			       struct bufdesc *bdp, u32 length, bool swap)
1341 {
1342 	struct  fec_enet_private *fep = netdev_priv(ndev);
1343 	struct sk_buff *new_skb;
1344 
1345 	if (length > fep->rx_copybreak)
1346 		return false;
1347 
1348 	new_skb = netdev_alloc_skb(ndev, length);
1349 	if (!new_skb)
1350 		return false;
1351 
1352 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1353 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1354 				DMA_FROM_DEVICE);
1355 	if (!swap)
1356 		memcpy(new_skb->data, (*skb)->data, length);
1357 	else
1358 		swap_buffer2(new_skb->data, (*skb)->data, length);
1359 	*skb = new_skb;
1360 
1361 	return true;
1362 }
1363 
1364 /* During a receive, the cur_rx points to the current incoming buffer.
1365  * When we update through the ring, if the next incoming buffer has
1366  * not been given to the system, we just set the empty indicator,
1367  * effectively tossing the packet.
1368  */
1369 static int
1370 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1371 {
1372 	struct fec_enet_private *fep = netdev_priv(ndev);
1373 	struct fec_enet_priv_rx_q *rxq;
1374 	struct bufdesc *bdp;
1375 	unsigned short status;
1376 	struct  sk_buff *skb_new = NULL;
1377 	struct  sk_buff *skb;
1378 	ushort	pkt_len;
1379 	__u8 *data;
1380 	int	pkt_received = 0;
1381 	struct	bufdesc_ex *ebdp = NULL;
1382 	bool	vlan_packet_rcvd = false;
1383 	u16	vlan_tag;
1384 	int	index = 0;
1385 	bool	is_copybreak;
1386 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1387 
1388 #ifdef CONFIG_M532x
1389 	flush_cache_all();
1390 #endif
1391 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1392 	rxq = fep->rx_queue[queue_id];
1393 
1394 	/* First, grab all of the stats for the incoming packet.
1395 	 * These get messed up if we get called due to a busy condition.
1396 	 */
1397 	bdp = rxq->cur_rx;
1398 
1399 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1400 
1401 		if (pkt_received >= budget)
1402 			break;
1403 		pkt_received++;
1404 
1405 		/* Since we have allocated space to hold a complete frame,
1406 		 * the last indicator should be set.
1407 		 */
1408 		if ((status & BD_ENET_RX_LAST) == 0)
1409 			netdev_err(ndev, "rcv is not +last\n");
1410 
1411 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1412 
1413 		/* Check for errors. */
1414 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1415 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1416 			ndev->stats.rx_errors++;
1417 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1418 				/* Frame too long or too short. */
1419 				ndev->stats.rx_length_errors++;
1420 			}
1421 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1422 				ndev->stats.rx_frame_errors++;
1423 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1424 				ndev->stats.rx_crc_errors++;
1425 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1426 				ndev->stats.rx_fifo_errors++;
1427 		}
1428 
1429 		/* Report late collisions as a frame error.
1430 		 * On this error, the BD is closed, but we don't know what we
1431 		 * have in the buffer.  So, just drop this frame on the floor.
1432 		 */
1433 		if (status & BD_ENET_RX_CL) {
1434 			ndev->stats.rx_errors++;
1435 			ndev->stats.rx_frame_errors++;
1436 			goto rx_processing_done;
1437 		}
1438 
1439 		/* Process the incoming frame. */
1440 		ndev->stats.rx_packets++;
1441 		pkt_len = bdp->cbd_datlen;
1442 		ndev->stats.rx_bytes += pkt_len;
1443 
1444 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1445 		skb = rxq->rx_skbuff[index];
1446 
1447 		/* The packet length includes FCS, but we don't want to
1448 		 * include that when passing upstream as it messes up
1449 		 * bridging applications.
1450 		 */
1451 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1452 						  need_swap);
1453 		if (!is_copybreak) {
1454 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1455 			if (unlikely(!skb_new)) {
1456 				ndev->stats.rx_dropped++;
1457 				goto rx_processing_done;
1458 			}
1459 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1460 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1461 					 DMA_FROM_DEVICE);
1462 		}
1463 
1464 		prefetch(skb->data - NET_IP_ALIGN);
1465 		skb_put(skb, pkt_len - 4);
1466 		data = skb->data;
1467 		if (!is_copybreak && need_swap)
1468 			swap_buffer(data, pkt_len);
1469 
1470 		/* Extract the enhanced buffer descriptor */
1471 		ebdp = NULL;
1472 		if (fep->bufdesc_ex)
1473 			ebdp = (struct bufdesc_ex *)bdp;
1474 
1475 		/* If this is a VLAN packet remove the VLAN Tag */
1476 		vlan_packet_rcvd = false;
1477 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1478 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1479 			/* Push and remove the vlan tag */
1480 			struct vlan_hdr *vlan_header =
1481 					(struct vlan_hdr *) (data + ETH_HLEN);
1482 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1483 
1484 			vlan_packet_rcvd = true;
1485 
1486 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1487 			skb_pull(skb, VLAN_HLEN);
1488 		}
1489 
1490 		skb->protocol = eth_type_trans(skb, ndev);
1491 
1492 		/* Get receive timestamp from the skb */
1493 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1494 			fec_enet_hwtstamp(fep, ebdp->ts,
1495 					  skb_hwtstamps(skb));
1496 
1497 		if (fep->bufdesc_ex &&
1498 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1499 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1500 				/* don't check it */
1501 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 			} else {
1503 				skb_checksum_none_assert(skb);
1504 			}
1505 		}
1506 
1507 		/* Handle received VLAN packets */
1508 		if (vlan_packet_rcvd)
1509 			__vlan_hwaccel_put_tag(skb,
1510 					       htons(ETH_P_8021Q),
1511 					       vlan_tag);
1512 
1513 		napi_gro_receive(&fep->napi, skb);
1514 
1515 		if (is_copybreak) {
1516 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1517 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1518 						   DMA_FROM_DEVICE);
1519 		} else {
1520 			rxq->rx_skbuff[index] = skb_new;
1521 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1522 		}
1523 
1524 rx_processing_done:
1525 		/* Clear the status flags for this buffer */
1526 		status &= ~BD_ENET_RX_STATS;
1527 
1528 		/* Mark the buffer empty */
1529 		status |= BD_ENET_RX_EMPTY;
1530 		bdp->cbd_sc = status;
1531 
1532 		if (fep->bufdesc_ex) {
1533 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1534 
1535 			ebdp->cbd_esc = BD_ENET_RX_INT;
1536 			ebdp->cbd_prot = 0;
1537 			ebdp->cbd_bdu = 0;
1538 		}
1539 
1540 		/* Update BD pointer to next entry */
1541 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1542 
1543 		/* Doing this here will keep the FEC running while we process
1544 		 * incoming frames.  On a heavily loaded network, we should be
1545 		 * able to keep up at the expense of system resources.
1546 		 */
1547 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1548 	}
1549 	rxq->cur_rx = bdp;
1550 	return pkt_received;
1551 }
1552 
1553 static int
1554 fec_enet_rx(struct net_device *ndev, int budget)
1555 {
1556 	int     pkt_received = 0;
1557 	u16	queue_id;
1558 	struct fec_enet_private *fep = netdev_priv(ndev);
1559 
1560 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1561 		clear_bit(queue_id, &fep->work_rx);
1562 		pkt_received += fec_enet_rx_queue(ndev,
1563 					budget - pkt_received, queue_id);
1564 	}
1565 	return pkt_received;
1566 }
1567 
1568 static bool
1569 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1570 {
1571 	if (int_events == 0)
1572 		return false;
1573 
1574 	if (int_events & FEC_ENET_RXF)
1575 		fep->work_rx |= (1 << 2);
1576 	if (int_events & FEC_ENET_RXF_1)
1577 		fep->work_rx |= (1 << 0);
1578 	if (int_events & FEC_ENET_RXF_2)
1579 		fep->work_rx |= (1 << 1);
1580 
1581 	if (int_events & FEC_ENET_TXF)
1582 		fep->work_tx |= (1 << 2);
1583 	if (int_events & FEC_ENET_TXF_1)
1584 		fep->work_tx |= (1 << 0);
1585 	if (int_events & FEC_ENET_TXF_2)
1586 		fep->work_tx |= (1 << 1);
1587 
1588 	return true;
1589 }
1590 
1591 static irqreturn_t
1592 fec_enet_interrupt(int irq, void *dev_id)
1593 {
1594 	struct net_device *ndev = dev_id;
1595 	struct fec_enet_private *fep = netdev_priv(ndev);
1596 	uint int_events;
1597 	irqreturn_t ret = IRQ_NONE;
1598 
1599 	int_events = readl(fep->hwp + FEC_IEVENT);
1600 	writel(int_events, fep->hwp + FEC_IEVENT);
1601 	fec_enet_collect_events(fep, int_events);
1602 
1603 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1604 		ret = IRQ_HANDLED;
1605 
1606 		if (napi_schedule_prep(&fep->napi)) {
1607 			/* Disable the NAPI interrupts */
1608 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1609 			__napi_schedule(&fep->napi);
1610 		}
1611 	}
1612 
1613 	if (int_events & FEC_ENET_MII) {
1614 		ret = IRQ_HANDLED;
1615 		complete(&fep->mdio_done);
1616 	}
1617 
1618 	if (fep->ptp_clock)
1619 		fec_ptp_check_pps_event(fep);
1620 
1621 	return ret;
1622 }
1623 
1624 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1625 {
1626 	struct net_device *ndev = napi->dev;
1627 	struct fec_enet_private *fep = netdev_priv(ndev);
1628 	int pkts;
1629 
1630 	pkts = fec_enet_rx(ndev, budget);
1631 
1632 	fec_enet_tx(ndev);
1633 
1634 	if (pkts < budget) {
1635 		napi_complete(napi);
1636 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1637 	}
1638 	return pkts;
1639 }
1640 
1641 /* ------------------------------------------------------------------------- */
1642 static void fec_get_mac(struct net_device *ndev)
1643 {
1644 	struct fec_enet_private *fep = netdev_priv(ndev);
1645 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1646 	unsigned char *iap, tmpaddr[ETH_ALEN];
1647 
1648 	/*
1649 	 * try to get mac address in following order:
1650 	 *
1651 	 * 1) module parameter via kernel command line in form
1652 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1653 	 */
1654 	iap = macaddr;
1655 
1656 	/*
1657 	 * 2) from device tree data
1658 	 */
1659 	if (!is_valid_ether_addr(iap)) {
1660 		struct device_node *np = fep->pdev->dev.of_node;
1661 		if (np) {
1662 			const char *mac = of_get_mac_address(np);
1663 			if (mac)
1664 				iap = (unsigned char *) mac;
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * 3) from flash or fuse (via platform data)
1670 	 */
1671 	if (!is_valid_ether_addr(iap)) {
1672 #ifdef CONFIG_M5272
1673 		if (FEC_FLASHMAC)
1674 			iap = (unsigned char *)FEC_FLASHMAC;
1675 #else
1676 		if (pdata)
1677 			iap = (unsigned char *)&pdata->mac;
1678 #endif
1679 	}
1680 
1681 	/*
1682 	 * 4) FEC mac registers set by bootloader
1683 	 */
1684 	if (!is_valid_ether_addr(iap)) {
1685 		*((__be32 *) &tmpaddr[0]) =
1686 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1687 		*((__be16 *) &tmpaddr[4]) =
1688 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1689 		iap = &tmpaddr[0];
1690 	}
1691 
1692 	/*
1693 	 * 5) random mac address
1694 	 */
1695 	if (!is_valid_ether_addr(iap)) {
1696 		/* Report it and use a random ethernet address instead */
1697 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1698 		eth_hw_addr_random(ndev);
1699 		netdev_info(ndev, "Using random MAC address: %pM\n",
1700 			    ndev->dev_addr);
1701 		return;
1702 	}
1703 
1704 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1705 
1706 	/* Adjust MAC if using macaddr */
1707 	if (iap == macaddr)
1708 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1709 }
1710 
1711 /* ------------------------------------------------------------------------- */
1712 
1713 /*
1714  * Phy section
1715  */
1716 static void fec_enet_adjust_link(struct net_device *ndev)
1717 {
1718 	struct fec_enet_private *fep = netdev_priv(ndev);
1719 	struct phy_device *phy_dev = fep->phy_dev;
1720 	int status_change = 0;
1721 
1722 	/* Prevent a state halted on mii error */
1723 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1724 		phy_dev->state = PHY_RESUMING;
1725 		return;
1726 	}
1727 
1728 	/*
1729 	 * If the netdev is down, or is going down, we're not interested
1730 	 * in link state events, so just mark our idea of the link as down
1731 	 * and ignore the event.
1732 	 */
1733 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1734 		fep->link = 0;
1735 	} else if (phy_dev->link) {
1736 		if (!fep->link) {
1737 			fep->link = phy_dev->link;
1738 			status_change = 1;
1739 		}
1740 
1741 		if (fep->full_duplex != phy_dev->duplex) {
1742 			fep->full_duplex = phy_dev->duplex;
1743 			status_change = 1;
1744 		}
1745 
1746 		if (phy_dev->speed != fep->speed) {
1747 			fep->speed = phy_dev->speed;
1748 			status_change = 1;
1749 		}
1750 
1751 		/* if any of the above changed restart the FEC */
1752 		if (status_change) {
1753 			napi_disable(&fep->napi);
1754 			netif_tx_lock_bh(ndev);
1755 			fec_restart(ndev);
1756 			netif_wake_queue(ndev);
1757 			netif_tx_unlock_bh(ndev);
1758 			napi_enable(&fep->napi);
1759 		}
1760 	} else {
1761 		if (fep->link) {
1762 			napi_disable(&fep->napi);
1763 			netif_tx_lock_bh(ndev);
1764 			fec_stop(ndev);
1765 			netif_tx_unlock_bh(ndev);
1766 			napi_enable(&fep->napi);
1767 			fep->link = phy_dev->link;
1768 			status_change = 1;
1769 		}
1770 	}
1771 
1772 	if (status_change)
1773 		phy_print_status(phy_dev);
1774 }
1775 
1776 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1777 {
1778 	struct fec_enet_private *fep = bus->priv;
1779 	struct device *dev = &fep->pdev->dev;
1780 	unsigned long time_left;
1781 	int ret = 0;
1782 
1783 	ret = pm_runtime_get_sync(dev);
1784 	if (ret < 0)
1785 		return ret;
1786 
1787 	fep->mii_timeout = 0;
1788 	reinit_completion(&fep->mdio_done);
1789 
1790 	/* start a read op */
1791 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1792 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1793 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1794 
1795 	/* wait for end of transfer */
1796 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1797 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1798 	if (time_left == 0) {
1799 		fep->mii_timeout = 1;
1800 		netdev_err(fep->netdev, "MDIO read timeout\n");
1801 		ret = -ETIMEDOUT;
1802 		goto out;
1803 	}
1804 
1805 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1806 
1807 out:
1808 	pm_runtime_mark_last_busy(dev);
1809 	pm_runtime_put_autosuspend(dev);
1810 
1811 	return ret;
1812 }
1813 
1814 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1815 			   u16 value)
1816 {
1817 	struct fec_enet_private *fep = bus->priv;
1818 	struct device *dev = &fep->pdev->dev;
1819 	unsigned long time_left;
1820 	int ret;
1821 
1822 	ret = pm_runtime_get_sync(dev);
1823 	if (ret < 0)
1824 		return ret;
1825 	else
1826 		ret = 0;
1827 
1828 	fep->mii_timeout = 0;
1829 	reinit_completion(&fep->mdio_done);
1830 
1831 	/* start a write op */
1832 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1833 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1834 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1835 		fep->hwp + FEC_MII_DATA);
1836 
1837 	/* wait for end of transfer */
1838 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1839 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1840 	if (time_left == 0) {
1841 		fep->mii_timeout = 1;
1842 		netdev_err(fep->netdev, "MDIO write timeout\n");
1843 		ret  = -ETIMEDOUT;
1844 	}
1845 
1846 	pm_runtime_mark_last_busy(dev);
1847 	pm_runtime_put_autosuspend(dev);
1848 
1849 	return ret;
1850 }
1851 
1852 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1853 {
1854 	struct fec_enet_private *fep = netdev_priv(ndev);
1855 	int ret;
1856 
1857 	if (enable) {
1858 		ret = clk_prepare_enable(fep->clk_ahb);
1859 		if (ret)
1860 			return ret;
1861 		if (fep->clk_enet_out) {
1862 			ret = clk_prepare_enable(fep->clk_enet_out);
1863 			if (ret)
1864 				goto failed_clk_enet_out;
1865 		}
1866 		if (fep->clk_ptp) {
1867 			mutex_lock(&fep->ptp_clk_mutex);
1868 			ret = clk_prepare_enable(fep->clk_ptp);
1869 			if (ret) {
1870 				mutex_unlock(&fep->ptp_clk_mutex);
1871 				goto failed_clk_ptp;
1872 			} else {
1873 				fep->ptp_clk_on = true;
1874 			}
1875 			mutex_unlock(&fep->ptp_clk_mutex);
1876 		}
1877 		if (fep->clk_ref) {
1878 			ret = clk_prepare_enable(fep->clk_ref);
1879 			if (ret)
1880 				goto failed_clk_ref;
1881 		}
1882 	} else {
1883 		clk_disable_unprepare(fep->clk_ahb);
1884 		if (fep->clk_enet_out)
1885 			clk_disable_unprepare(fep->clk_enet_out);
1886 		if (fep->clk_ptp) {
1887 			mutex_lock(&fep->ptp_clk_mutex);
1888 			clk_disable_unprepare(fep->clk_ptp);
1889 			fep->ptp_clk_on = false;
1890 			mutex_unlock(&fep->ptp_clk_mutex);
1891 		}
1892 		if (fep->clk_ref)
1893 			clk_disable_unprepare(fep->clk_ref);
1894 	}
1895 
1896 	return 0;
1897 
1898 failed_clk_ref:
1899 	if (fep->clk_ref)
1900 		clk_disable_unprepare(fep->clk_ref);
1901 failed_clk_ptp:
1902 	if (fep->clk_enet_out)
1903 		clk_disable_unprepare(fep->clk_enet_out);
1904 failed_clk_enet_out:
1905 		clk_disable_unprepare(fep->clk_ahb);
1906 
1907 	return ret;
1908 }
1909 
1910 static int fec_enet_mii_probe(struct net_device *ndev)
1911 {
1912 	struct fec_enet_private *fep = netdev_priv(ndev);
1913 	struct phy_device *phy_dev = NULL;
1914 	char mdio_bus_id[MII_BUS_ID_SIZE];
1915 	char phy_name[MII_BUS_ID_SIZE + 3];
1916 	int phy_id;
1917 	int dev_id = fep->dev_id;
1918 
1919 	fep->phy_dev = NULL;
1920 
1921 	if (fep->phy_node) {
1922 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1923 					 &fec_enet_adjust_link, 0,
1924 					 fep->phy_interface);
1925 		if (!phy_dev)
1926 			return -ENODEV;
1927 	} else {
1928 		/* check for attached phy */
1929 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1930 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1931 				continue;
1932 			if (dev_id--)
1933 				continue;
1934 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1935 			break;
1936 		}
1937 
1938 		if (phy_id >= PHY_MAX_ADDR) {
1939 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1940 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1941 			phy_id = 0;
1942 		}
1943 
1944 		snprintf(phy_name, sizeof(phy_name),
1945 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1946 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1947 				      fep->phy_interface);
1948 	}
1949 
1950 	if (IS_ERR(phy_dev)) {
1951 		netdev_err(ndev, "could not attach to PHY\n");
1952 		return PTR_ERR(phy_dev);
1953 	}
1954 
1955 	/* mask with MAC supported features */
1956 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1957 		phy_dev->supported &= PHY_GBIT_FEATURES;
1958 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1959 #if !defined(CONFIG_M5272)
1960 		phy_dev->supported |= SUPPORTED_Pause;
1961 #endif
1962 	}
1963 	else
1964 		phy_dev->supported &= PHY_BASIC_FEATURES;
1965 
1966 	phy_dev->advertising = phy_dev->supported;
1967 
1968 	fep->phy_dev = phy_dev;
1969 	fep->link = 0;
1970 	fep->full_duplex = 0;
1971 
1972 	phy_attached_info(phy_dev);
1973 
1974 	return 0;
1975 }
1976 
1977 static int fec_enet_mii_init(struct platform_device *pdev)
1978 {
1979 	static struct mii_bus *fec0_mii_bus;
1980 	struct net_device *ndev = platform_get_drvdata(pdev);
1981 	struct fec_enet_private *fep = netdev_priv(ndev);
1982 	struct device_node *node;
1983 	int err = -ENXIO;
1984 	u32 mii_speed, holdtime;
1985 
1986 	/*
1987 	 * The i.MX28 dual fec interfaces are not equal.
1988 	 * Here are the differences:
1989 	 *
1990 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1991 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1992 	 *  - external phys can only be configured by fec0
1993 	 *
1994 	 * That is to say fec1 can not work independently. It only works
1995 	 * when fec0 is working. The reason behind this design is that the
1996 	 * second interface is added primarily for Switch mode.
1997 	 *
1998 	 * Because of the last point above, both phys are attached on fec0
1999 	 * mdio interface in board design, and need to be configured by
2000 	 * fec0 mii_bus.
2001 	 */
2002 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2003 		/* fec1 uses fec0 mii_bus */
2004 		if (mii_cnt && fec0_mii_bus) {
2005 			fep->mii_bus = fec0_mii_bus;
2006 			mii_cnt++;
2007 			return 0;
2008 		}
2009 		return -ENOENT;
2010 	}
2011 
2012 	fep->mii_timeout = 0;
2013 
2014 	/*
2015 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2016 	 *
2017 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2018 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2019 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2020 	 * document.
2021 	 */
2022 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2023 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2024 		mii_speed--;
2025 	if (mii_speed > 63) {
2026 		dev_err(&pdev->dev,
2027 			"fec clock (%lu) to fast to get right mii speed\n",
2028 			clk_get_rate(fep->clk_ipg));
2029 		err = -EINVAL;
2030 		goto err_out;
2031 	}
2032 
2033 	/*
2034 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2035 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2036 	 * versions are RAZ there, so just ignore the difference and write the
2037 	 * register always.
2038 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2039 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2040 	 * output.
2041 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2042 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2043 	 * holdtime cannot result in a value greater than 3.
2044 	 */
2045 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2046 
2047 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2048 
2049 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2050 
2051 	fep->mii_bus = mdiobus_alloc();
2052 	if (fep->mii_bus == NULL) {
2053 		err = -ENOMEM;
2054 		goto err_out;
2055 	}
2056 
2057 	fep->mii_bus->name = "fec_enet_mii_bus";
2058 	fep->mii_bus->read = fec_enet_mdio_read;
2059 	fep->mii_bus->write = fec_enet_mdio_write;
2060 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2061 		pdev->name, fep->dev_id + 1);
2062 	fep->mii_bus->priv = fep;
2063 	fep->mii_bus->parent = &pdev->dev;
2064 
2065 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2066 	if (node) {
2067 		err = of_mdiobus_register(fep->mii_bus, node);
2068 		of_node_put(node);
2069 	} else {
2070 		err = mdiobus_register(fep->mii_bus);
2071 	}
2072 
2073 	if (err)
2074 		goto err_out_free_mdiobus;
2075 
2076 	mii_cnt++;
2077 
2078 	/* save fec0 mii_bus */
2079 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2080 		fec0_mii_bus = fep->mii_bus;
2081 
2082 	return 0;
2083 
2084 err_out_free_mdiobus:
2085 	mdiobus_free(fep->mii_bus);
2086 err_out:
2087 	return err;
2088 }
2089 
2090 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2091 {
2092 	if (--mii_cnt == 0) {
2093 		mdiobus_unregister(fep->mii_bus);
2094 		mdiobus_free(fep->mii_bus);
2095 	}
2096 }
2097 
2098 static int fec_enet_get_settings(struct net_device *ndev,
2099 				  struct ethtool_cmd *cmd)
2100 {
2101 	struct fec_enet_private *fep = netdev_priv(ndev);
2102 	struct phy_device *phydev = fep->phy_dev;
2103 
2104 	if (!phydev)
2105 		return -ENODEV;
2106 
2107 	return phy_ethtool_gset(phydev, cmd);
2108 }
2109 
2110 static int fec_enet_set_settings(struct net_device *ndev,
2111 				 struct ethtool_cmd *cmd)
2112 {
2113 	struct fec_enet_private *fep = netdev_priv(ndev);
2114 	struct phy_device *phydev = fep->phy_dev;
2115 
2116 	if (!phydev)
2117 		return -ENODEV;
2118 
2119 	return phy_ethtool_sset(phydev, cmd);
2120 }
2121 
2122 static void fec_enet_get_drvinfo(struct net_device *ndev,
2123 				 struct ethtool_drvinfo *info)
2124 {
2125 	struct fec_enet_private *fep = netdev_priv(ndev);
2126 
2127 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2128 		sizeof(info->driver));
2129 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2130 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2131 }
2132 
2133 static int fec_enet_get_regs_len(struct net_device *ndev)
2134 {
2135 	struct fec_enet_private *fep = netdev_priv(ndev);
2136 	struct resource *r;
2137 	int s = 0;
2138 
2139 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2140 	if (r)
2141 		s = resource_size(r);
2142 
2143 	return s;
2144 }
2145 
2146 /* List of registers that can be safety be read to dump them with ethtool */
2147 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2148 	defined(CONFIG_M520x) || defined(CONFIG_M532x) ||		\
2149 	defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2150 static u32 fec_enet_register_offset[] = {
2151 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2152 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2153 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2154 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2155 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2156 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2157 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2158 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2159 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2160 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2161 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2162 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2163 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2164 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2165 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2166 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2167 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2168 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2169 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2170 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2171 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2172 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2173 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2174 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2175 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2176 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2177 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2178 };
2179 #else
2180 static u32 fec_enet_register_offset[] = {
2181 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2182 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2183 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2184 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2185 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2186 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2187 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2188 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2189 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2190 };
2191 #endif
2192 
2193 static void fec_enet_get_regs(struct net_device *ndev,
2194 			      struct ethtool_regs *regs, void *regbuf)
2195 {
2196 	struct fec_enet_private *fep = netdev_priv(ndev);
2197 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2198 	u32 *buf = (u32 *)regbuf;
2199 	u32 i, off;
2200 
2201 	memset(buf, 0, regs->len);
2202 
2203 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2204 		off = fec_enet_register_offset[i] / 4;
2205 		buf[off] = readl(&theregs[off]);
2206 	}
2207 }
2208 
2209 static int fec_enet_get_ts_info(struct net_device *ndev,
2210 				struct ethtool_ts_info *info)
2211 {
2212 	struct fec_enet_private *fep = netdev_priv(ndev);
2213 
2214 	if (fep->bufdesc_ex) {
2215 
2216 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2217 					SOF_TIMESTAMPING_RX_SOFTWARE |
2218 					SOF_TIMESTAMPING_SOFTWARE |
2219 					SOF_TIMESTAMPING_TX_HARDWARE |
2220 					SOF_TIMESTAMPING_RX_HARDWARE |
2221 					SOF_TIMESTAMPING_RAW_HARDWARE;
2222 		if (fep->ptp_clock)
2223 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2224 		else
2225 			info->phc_index = -1;
2226 
2227 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2228 				 (1 << HWTSTAMP_TX_ON);
2229 
2230 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2231 				   (1 << HWTSTAMP_FILTER_ALL);
2232 		return 0;
2233 	} else {
2234 		return ethtool_op_get_ts_info(ndev, info);
2235 	}
2236 }
2237 
2238 #if !defined(CONFIG_M5272)
2239 
2240 static void fec_enet_get_pauseparam(struct net_device *ndev,
2241 				    struct ethtool_pauseparam *pause)
2242 {
2243 	struct fec_enet_private *fep = netdev_priv(ndev);
2244 
2245 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2246 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2247 	pause->rx_pause = pause->tx_pause;
2248 }
2249 
2250 static int fec_enet_set_pauseparam(struct net_device *ndev,
2251 				   struct ethtool_pauseparam *pause)
2252 {
2253 	struct fec_enet_private *fep = netdev_priv(ndev);
2254 
2255 	if (!fep->phy_dev)
2256 		return -ENODEV;
2257 
2258 	if (pause->tx_pause != pause->rx_pause) {
2259 		netdev_info(ndev,
2260 			"hardware only support enable/disable both tx and rx");
2261 		return -EINVAL;
2262 	}
2263 
2264 	fep->pause_flag = 0;
2265 
2266 	/* tx pause must be same as rx pause */
2267 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2268 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2269 
2270 	if (pause->rx_pause || pause->autoneg) {
2271 		fep->phy_dev->supported |= ADVERTISED_Pause;
2272 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2273 	} else {
2274 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2275 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2276 	}
2277 
2278 	if (pause->autoneg) {
2279 		if (netif_running(ndev))
2280 			fec_stop(ndev);
2281 		phy_start_aneg(fep->phy_dev);
2282 	}
2283 	if (netif_running(ndev)) {
2284 		napi_disable(&fep->napi);
2285 		netif_tx_lock_bh(ndev);
2286 		fec_restart(ndev);
2287 		netif_wake_queue(ndev);
2288 		netif_tx_unlock_bh(ndev);
2289 		napi_enable(&fep->napi);
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 static const struct fec_stat {
2296 	char name[ETH_GSTRING_LEN];
2297 	u16 offset;
2298 } fec_stats[] = {
2299 	/* RMON TX */
2300 	{ "tx_dropped", RMON_T_DROP },
2301 	{ "tx_packets", RMON_T_PACKETS },
2302 	{ "tx_broadcast", RMON_T_BC_PKT },
2303 	{ "tx_multicast", RMON_T_MC_PKT },
2304 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2305 	{ "tx_undersize", RMON_T_UNDERSIZE },
2306 	{ "tx_oversize", RMON_T_OVERSIZE },
2307 	{ "tx_fragment", RMON_T_FRAG },
2308 	{ "tx_jabber", RMON_T_JAB },
2309 	{ "tx_collision", RMON_T_COL },
2310 	{ "tx_64byte", RMON_T_P64 },
2311 	{ "tx_65to127byte", RMON_T_P65TO127 },
2312 	{ "tx_128to255byte", RMON_T_P128TO255 },
2313 	{ "tx_256to511byte", RMON_T_P256TO511 },
2314 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2315 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2316 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2317 	{ "tx_octets", RMON_T_OCTETS },
2318 
2319 	/* IEEE TX */
2320 	{ "IEEE_tx_drop", IEEE_T_DROP },
2321 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2322 	{ "IEEE_tx_1col", IEEE_T_1COL },
2323 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2324 	{ "IEEE_tx_def", IEEE_T_DEF },
2325 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2326 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2327 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2328 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2329 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2330 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2331 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2332 
2333 	/* RMON RX */
2334 	{ "rx_packets", RMON_R_PACKETS },
2335 	{ "rx_broadcast", RMON_R_BC_PKT },
2336 	{ "rx_multicast", RMON_R_MC_PKT },
2337 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2338 	{ "rx_undersize", RMON_R_UNDERSIZE },
2339 	{ "rx_oversize", RMON_R_OVERSIZE },
2340 	{ "rx_fragment", RMON_R_FRAG },
2341 	{ "rx_jabber", RMON_R_JAB },
2342 	{ "rx_64byte", RMON_R_P64 },
2343 	{ "rx_65to127byte", RMON_R_P65TO127 },
2344 	{ "rx_128to255byte", RMON_R_P128TO255 },
2345 	{ "rx_256to511byte", RMON_R_P256TO511 },
2346 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2347 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2348 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2349 	{ "rx_octets", RMON_R_OCTETS },
2350 
2351 	/* IEEE RX */
2352 	{ "IEEE_rx_drop", IEEE_R_DROP },
2353 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2354 	{ "IEEE_rx_crc", IEEE_R_CRC },
2355 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2356 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2357 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2358 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2359 };
2360 
2361 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2362 	struct ethtool_stats *stats, u64 *data)
2363 {
2364 	struct fec_enet_private *fep = netdev_priv(dev);
2365 	int i;
2366 
2367 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2368 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2369 }
2370 
2371 static void fec_enet_get_strings(struct net_device *netdev,
2372 	u32 stringset, u8 *data)
2373 {
2374 	int i;
2375 	switch (stringset) {
2376 	case ETH_SS_STATS:
2377 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2378 			memcpy(data + i * ETH_GSTRING_LEN,
2379 				fec_stats[i].name, ETH_GSTRING_LEN);
2380 		break;
2381 	}
2382 }
2383 
2384 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2385 {
2386 	switch (sset) {
2387 	case ETH_SS_STATS:
2388 		return ARRAY_SIZE(fec_stats);
2389 	default:
2390 		return -EOPNOTSUPP;
2391 	}
2392 }
2393 #endif /* !defined(CONFIG_M5272) */
2394 
2395 static int fec_enet_nway_reset(struct net_device *dev)
2396 {
2397 	struct fec_enet_private *fep = netdev_priv(dev);
2398 	struct phy_device *phydev = fep->phy_dev;
2399 
2400 	if (!phydev)
2401 		return -ENODEV;
2402 
2403 	return genphy_restart_aneg(phydev);
2404 }
2405 
2406 /* ITR clock source is enet system clock (clk_ahb).
2407  * TCTT unit is cycle_ns * 64 cycle
2408  * So, the ICTT value = X us / (cycle_ns * 64)
2409  */
2410 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2411 {
2412 	struct fec_enet_private *fep = netdev_priv(ndev);
2413 
2414 	return us * (fep->itr_clk_rate / 64000) / 1000;
2415 }
2416 
2417 /* Set threshold for interrupt coalescing */
2418 static void fec_enet_itr_coal_set(struct net_device *ndev)
2419 {
2420 	struct fec_enet_private *fep = netdev_priv(ndev);
2421 	int rx_itr, tx_itr;
2422 
2423 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2424 		return;
2425 
2426 	/* Must be greater than zero to avoid unpredictable behavior */
2427 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2428 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2429 		return;
2430 
2431 	/* Select enet system clock as Interrupt Coalescing
2432 	 * timer Clock Source
2433 	 */
2434 	rx_itr = FEC_ITR_CLK_SEL;
2435 	tx_itr = FEC_ITR_CLK_SEL;
2436 
2437 	/* set ICFT and ICTT */
2438 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2439 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2440 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2441 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2442 
2443 	rx_itr |= FEC_ITR_EN;
2444 	tx_itr |= FEC_ITR_EN;
2445 
2446 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2447 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2448 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2449 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2450 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2451 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2452 }
2453 
2454 static int
2455 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2456 {
2457 	struct fec_enet_private *fep = netdev_priv(ndev);
2458 
2459 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2460 		return -EOPNOTSUPP;
2461 
2462 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2463 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2464 
2465 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2466 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2467 
2468 	return 0;
2469 }
2470 
2471 static int
2472 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2473 {
2474 	struct fec_enet_private *fep = netdev_priv(ndev);
2475 	unsigned int cycle;
2476 
2477 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2478 		return -EOPNOTSUPP;
2479 
2480 	if (ec->rx_max_coalesced_frames > 255) {
2481 		pr_err("Rx coalesced frames exceed hardware limiation");
2482 		return -EINVAL;
2483 	}
2484 
2485 	if (ec->tx_max_coalesced_frames > 255) {
2486 		pr_err("Tx coalesced frame exceed hardware limiation");
2487 		return -EINVAL;
2488 	}
2489 
2490 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2491 	if (cycle > 0xFFFF) {
2492 		pr_err("Rx coalesed usec exceeed hardware limiation");
2493 		return -EINVAL;
2494 	}
2495 
2496 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2497 	if (cycle > 0xFFFF) {
2498 		pr_err("Rx coalesed usec exceeed hardware limiation");
2499 		return -EINVAL;
2500 	}
2501 
2502 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2503 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2504 
2505 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2506 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2507 
2508 	fec_enet_itr_coal_set(ndev);
2509 
2510 	return 0;
2511 }
2512 
2513 static void fec_enet_itr_coal_init(struct net_device *ndev)
2514 {
2515 	struct ethtool_coalesce ec;
2516 
2517 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2518 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2519 
2520 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2521 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2522 
2523 	fec_enet_set_coalesce(ndev, &ec);
2524 }
2525 
2526 static int fec_enet_get_tunable(struct net_device *netdev,
2527 				const struct ethtool_tunable *tuna,
2528 				void *data)
2529 {
2530 	struct fec_enet_private *fep = netdev_priv(netdev);
2531 	int ret = 0;
2532 
2533 	switch (tuna->id) {
2534 	case ETHTOOL_RX_COPYBREAK:
2535 		*(u32 *)data = fep->rx_copybreak;
2536 		break;
2537 	default:
2538 		ret = -EINVAL;
2539 		break;
2540 	}
2541 
2542 	return ret;
2543 }
2544 
2545 static int fec_enet_set_tunable(struct net_device *netdev,
2546 				const struct ethtool_tunable *tuna,
2547 				const void *data)
2548 {
2549 	struct fec_enet_private *fep = netdev_priv(netdev);
2550 	int ret = 0;
2551 
2552 	switch (tuna->id) {
2553 	case ETHTOOL_RX_COPYBREAK:
2554 		fep->rx_copybreak = *(u32 *)data;
2555 		break;
2556 	default:
2557 		ret = -EINVAL;
2558 		break;
2559 	}
2560 
2561 	return ret;
2562 }
2563 
2564 static void
2565 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2566 {
2567 	struct fec_enet_private *fep = netdev_priv(ndev);
2568 
2569 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2570 		wol->supported = WAKE_MAGIC;
2571 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2572 	} else {
2573 		wol->supported = wol->wolopts = 0;
2574 	}
2575 }
2576 
2577 static int
2578 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2579 {
2580 	struct fec_enet_private *fep = netdev_priv(ndev);
2581 
2582 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2583 		return -EINVAL;
2584 
2585 	if (wol->wolopts & ~WAKE_MAGIC)
2586 		return -EINVAL;
2587 
2588 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2589 	if (device_may_wakeup(&ndev->dev)) {
2590 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2591 		if (fep->irq[0] > 0)
2592 			enable_irq_wake(fep->irq[0]);
2593 	} else {
2594 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2595 		if (fep->irq[0] > 0)
2596 			disable_irq_wake(fep->irq[0]);
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 static const struct ethtool_ops fec_enet_ethtool_ops = {
2603 	.get_settings		= fec_enet_get_settings,
2604 	.set_settings		= fec_enet_set_settings,
2605 	.get_drvinfo		= fec_enet_get_drvinfo,
2606 	.get_regs_len		= fec_enet_get_regs_len,
2607 	.get_regs		= fec_enet_get_regs,
2608 	.nway_reset		= fec_enet_nway_reset,
2609 	.get_link		= ethtool_op_get_link,
2610 	.get_coalesce		= fec_enet_get_coalesce,
2611 	.set_coalesce		= fec_enet_set_coalesce,
2612 #ifndef CONFIG_M5272
2613 	.get_pauseparam		= fec_enet_get_pauseparam,
2614 	.set_pauseparam		= fec_enet_set_pauseparam,
2615 	.get_strings		= fec_enet_get_strings,
2616 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2617 	.get_sset_count		= fec_enet_get_sset_count,
2618 #endif
2619 	.get_ts_info		= fec_enet_get_ts_info,
2620 	.get_tunable		= fec_enet_get_tunable,
2621 	.set_tunable		= fec_enet_set_tunable,
2622 	.get_wol		= fec_enet_get_wol,
2623 	.set_wol		= fec_enet_set_wol,
2624 };
2625 
2626 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2627 {
2628 	struct fec_enet_private *fep = netdev_priv(ndev);
2629 	struct phy_device *phydev = fep->phy_dev;
2630 
2631 	if (!netif_running(ndev))
2632 		return -EINVAL;
2633 
2634 	if (!phydev)
2635 		return -ENODEV;
2636 
2637 	if (fep->bufdesc_ex) {
2638 		if (cmd == SIOCSHWTSTAMP)
2639 			return fec_ptp_set(ndev, rq);
2640 		if (cmd == SIOCGHWTSTAMP)
2641 			return fec_ptp_get(ndev, rq);
2642 	}
2643 
2644 	return phy_mii_ioctl(phydev, rq, cmd);
2645 }
2646 
2647 static void fec_enet_free_buffers(struct net_device *ndev)
2648 {
2649 	struct fec_enet_private *fep = netdev_priv(ndev);
2650 	unsigned int i;
2651 	struct sk_buff *skb;
2652 	struct bufdesc	*bdp;
2653 	struct fec_enet_priv_tx_q *txq;
2654 	struct fec_enet_priv_rx_q *rxq;
2655 	unsigned int q;
2656 
2657 	for (q = 0; q < fep->num_rx_queues; q++) {
2658 		rxq = fep->rx_queue[q];
2659 		bdp = rxq->rx_bd_base;
2660 		for (i = 0; i < rxq->rx_ring_size; i++) {
2661 			skb = rxq->rx_skbuff[i];
2662 			rxq->rx_skbuff[i] = NULL;
2663 			if (skb) {
2664 				dma_unmap_single(&fep->pdev->dev,
2665 						 bdp->cbd_bufaddr,
2666 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2667 						 DMA_FROM_DEVICE);
2668 				dev_kfree_skb(skb);
2669 			}
2670 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2671 		}
2672 	}
2673 
2674 	for (q = 0; q < fep->num_tx_queues; q++) {
2675 		txq = fep->tx_queue[q];
2676 		bdp = txq->tx_bd_base;
2677 		for (i = 0; i < txq->tx_ring_size; i++) {
2678 			kfree(txq->tx_bounce[i]);
2679 			txq->tx_bounce[i] = NULL;
2680 			skb = txq->tx_skbuff[i];
2681 			txq->tx_skbuff[i] = NULL;
2682 			dev_kfree_skb(skb);
2683 		}
2684 	}
2685 }
2686 
2687 static void fec_enet_free_queue(struct net_device *ndev)
2688 {
2689 	struct fec_enet_private *fep = netdev_priv(ndev);
2690 	int i;
2691 	struct fec_enet_priv_tx_q *txq;
2692 
2693 	for (i = 0; i < fep->num_tx_queues; i++)
2694 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2695 			txq = fep->tx_queue[i];
2696 			dma_free_coherent(NULL,
2697 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2698 					  txq->tso_hdrs,
2699 					  txq->tso_hdrs_dma);
2700 		}
2701 
2702 	for (i = 0; i < fep->num_rx_queues; i++)
2703 		kfree(fep->rx_queue[i]);
2704 	for (i = 0; i < fep->num_tx_queues; i++)
2705 		kfree(fep->tx_queue[i]);
2706 }
2707 
2708 static int fec_enet_alloc_queue(struct net_device *ndev)
2709 {
2710 	struct fec_enet_private *fep = netdev_priv(ndev);
2711 	int i;
2712 	int ret = 0;
2713 	struct fec_enet_priv_tx_q *txq;
2714 
2715 	for (i = 0; i < fep->num_tx_queues; i++) {
2716 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2717 		if (!txq) {
2718 			ret = -ENOMEM;
2719 			goto alloc_failed;
2720 		}
2721 
2722 		fep->tx_queue[i] = txq;
2723 		txq->tx_ring_size = TX_RING_SIZE;
2724 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2725 
2726 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2727 		txq->tx_wake_threshold =
2728 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2729 
2730 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2731 					txq->tx_ring_size * TSO_HEADER_SIZE,
2732 					&txq->tso_hdrs_dma,
2733 					GFP_KERNEL);
2734 		if (!txq->tso_hdrs) {
2735 			ret = -ENOMEM;
2736 			goto alloc_failed;
2737 		}
2738 	}
2739 
2740 	for (i = 0; i < fep->num_rx_queues; i++) {
2741 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2742 					   GFP_KERNEL);
2743 		if (!fep->rx_queue[i]) {
2744 			ret = -ENOMEM;
2745 			goto alloc_failed;
2746 		}
2747 
2748 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2749 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2750 	}
2751 	return ret;
2752 
2753 alloc_failed:
2754 	fec_enet_free_queue(ndev);
2755 	return ret;
2756 }
2757 
2758 static int
2759 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2760 {
2761 	struct fec_enet_private *fep = netdev_priv(ndev);
2762 	unsigned int i;
2763 	struct sk_buff *skb;
2764 	struct bufdesc	*bdp;
2765 	struct fec_enet_priv_rx_q *rxq;
2766 
2767 	rxq = fep->rx_queue[queue];
2768 	bdp = rxq->rx_bd_base;
2769 	for (i = 0; i < rxq->rx_ring_size; i++) {
2770 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2771 		if (!skb)
2772 			goto err_alloc;
2773 
2774 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2775 			dev_kfree_skb(skb);
2776 			goto err_alloc;
2777 		}
2778 
2779 		rxq->rx_skbuff[i] = skb;
2780 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2781 
2782 		if (fep->bufdesc_ex) {
2783 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2784 			ebdp->cbd_esc = BD_ENET_RX_INT;
2785 		}
2786 
2787 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2788 	}
2789 
2790 	/* Set the last buffer to wrap. */
2791 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2792 	bdp->cbd_sc |= BD_SC_WRAP;
2793 	return 0;
2794 
2795  err_alloc:
2796 	fec_enet_free_buffers(ndev);
2797 	return -ENOMEM;
2798 }
2799 
2800 static int
2801 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2802 {
2803 	struct fec_enet_private *fep = netdev_priv(ndev);
2804 	unsigned int i;
2805 	struct bufdesc  *bdp;
2806 	struct fec_enet_priv_tx_q *txq;
2807 
2808 	txq = fep->tx_queue[queue];
2809 	bdp = txq->tx_bd_base;
2810 	for (i = 0; i < txq->tx_ring_size; i++) {
2811 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2812 		if (!txq->tx_bounce[i])
2813 			goto err_alloc;
2814 
2815 		bdp->cbd_sc = 0;
2816 		bdp->cbd_bufaddr = 0;
2817 
2818 		if (fep->bufdesc_ex) {
2819 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2820 			ebdp->cbd_esc = BD_ENET_TX_INT;
2821 		}
2822 
2823 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2824 	}
2825 
2826 	/* Set the last buffer to wrap. */
2827 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2828 	bdp->cbd_sc |= BD_SC_WRAP;
2829 
2830 	return 0;
2831 
2832  err_alloc:
2833 	fec_enet_free_buffers(ndev);
2834 	return -ENOMEM;
2835 }
2836 
2837 static int fec_enet_alloc_buffers(struct net_device *ndev)
2838 {
2839 	struct fec_enet_private *fep = netdev_priv(ndev);
2840 	unsigned int i;
2841 
2842 	for (i = 0; i < fep->num_rx_queues; i++)
2843 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2844 			return -ENOMEM;
2845 
2846 	for (i = 0; i < fep->num_tx_queues; i++)
2847 		if (fec_enet_alloc_txq_buffers(ndev, i))
2848 			return -ENOMEM;
2849 	return 0;
2850 }
2851 
2852 static int
2853 fec_enet_open(struct net_device *ndev)
2854 {
2855 	struct fec_enet_private *fep = netdev_priv(ndev);
2856 	int ret;
2857 
2858 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2859 	if (ret < 0)
2860 		return ret;
2861 
2862 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2863 	ret = fec_enet_clk_enable(ndev, true);
2864 	if (ret)
2865 		goto clk_enable;
2866 
2867 	/* I should reset the ring buffers here, but I don't yet know
2868 	 * a simple way to do that.
2869 	 */
2870 
2871 	ret = fec_enet_alloc_buffers(ndev);
2872 	if (ret)
2873 		goto err_enet_alloc;
2874 
2875 	/* Init MAC prior to mii bus probe */
2876 	fec_restart(ndev);
2877 
2878 	/* Probe and connect to PHY when open the interface */
2879 	ret = fec_enet_mii_probe(ndev);
2880 	if (ret)
2881 		goto err_enet_mii_probe;
2882 
2883 	napi_enable(&fep->napi);
2884 	phy_start(fep->phy_dev);
2885 	netif_tx_start_all_queues(ndev);
2886 
2887 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2888 				 FEC_WOL_FLAG_ENABLE);
2889 
2890 	return 0;
2891 
2892 err_enet_mii_probe:
2893 	fec_enet_free_buffers(ndev);
2894 err_enet_alloc:
2895 	fec_enet_clk_enable(ndev, false);
2896 clk_enable:
2897 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2898 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2899 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2900 	return ret;
2901 }
2902 
2903 static int
2904 fec_enet_close(struct net_device *ndev)
2905 {
2906 	struct fec_enet_private *fep = netdev_priv(ndev);
2907 
2908 	phy_stop(fep->phy_dev);
2909 
2910 	if (netif_device_present(ndev)) {
2911 		napi_disable(&fep->napi);
2912 		netif_tx_disable(ndev);
2913 		fec_stop(ndev);
2914 	}
2915 
2916 	phy_disconnect(fep->phy_dev);
2917 	fep->phy_dev = NULL;
2918 
2919 	fec_enet_clk_enable(ndev, false);
2920 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2921 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2922 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2923 
2924 	fec_enet_free_buffers(ndev);
2925 
2926 	return 0;
2927 }
2928 
2929 /* Set or clear the multicast filter for this adaptor.
2930  * Skeleton taken from sunlance driver.
2931  * The CPM Ethernet implementation allows Multicast as well as individual
2932  * MAC address filtering.  Some of the drivers check to make sure it is
2933  * a group multicast address, and discard those that are not.  I guess I
2934  * will do the same for now, but just remove the test if you want
2935  * individual filtering as well (do the upper net layers want or support
2936  * this kind of feature?).
2937  */
2938 
2939 #define HASH_BITS	6		/* #bits in hash */
2940 #define CRC32_POLY	0xEDB88320
2941 
2942 static void set_multicast_list(struct net_device *ndev)
2943 {
2944 	struct fec_enet_private *fep = netdev_priv(ndev);
2945 	struct netdev_hw_addr *ha;
2946 	unsigned int i, bit, data, crc, tmp;
2947 	unsigned char hash;
2948 
2949 	if (ndev->flags & IFF_PROMISC) {
2950 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2951 		tmp |= 0x8;
2952 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2953 		return;
2954 	}
2955 
2956 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2957 	tmp &= ~0x8;
2958 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2959 
2960 	if (ndev->flags & IFF_ALLMULTI) {
2961 		/* Catch all multicast addresses, so set the
2962 		 * filter to all 1's
2963 		 */
2964 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2965 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2966 
2967 		return;
2968 	}
2969 
2970 	/* Clear filter and add the addresses in hash register
2971 	 */
2972 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2973 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2974 
2975 	netdev_for_each_mc_addr(ha, ndev) {
2976 		/* calculate crc32 value of mac address */
2977 		crc = 0xffffffff;
2978 
2979 		for (i = 0; i < ndev->addr_len; i++) {
2980 			data = ha->addr[i];
2981 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2982 				crc = (crc >> 1) ^
2983 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2984 			}
2985 		}
2986 
2987 		/* only upper 6 bits (HASH_BITS) are used
2988 		 * which point to specific bit in he hash registers
2989 		 */
2990 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2991 
2992 		if (hash > 31) {
2993 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2994 			tmp |= 1 << (hash - 32);
2995 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2996 		} else {
2997 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2998 			tmp |= 1 << hash;
2999 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3000 		}
3001 	}
3002 }
3003 
3004 /* Set a MAC change in hardware. */
3005 static int
3006 fec_set_mac_address(struct net_device *ndev, void *p)
3007 {
3008 	struct fec_enet_private *fep = netdev_priv(ndev);
3009 	struct sockaddr *addr = p;
3010 
3011 	if (addr) {
3012 		if (!is_valid_ether_addr(addr->sa_data))
3013 			return -EADDRNOTAVAIL;
3014 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3015 	}
3016 
3017 	/* Add netif status check here to avoid system hang in below case:
3018 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3019 	 * After ethx down, fec all clocks are gated off and then register
3020 	 * access causes system hang.
3021 	 */
3022 	if (!netif_running(ndev))
3023 		return 0;
3024 
3025 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3026 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3027 		fep->hwp + FEC_ADDR_LOW);
3028 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3029 		fep->hwp + FEC_ADDR_HIGH);
3030 	return 0;
3031 }
3032 
3033 #ifdef CONFIG_NET_POLL_CONTROLLER
3034 /**
3035  * fec_poll_controller - FEC Poll controller function
3036  * @dev: The FEC network adapter
3037  *
3038  * Polled functionality used by netconsole and others in non interrupt mode
3039  *
3040  */
3041 static void fec_poll_controller(struct net_device *dev)
3042 {
3043 	int i;
3044 	struct fec_enet_private *fep = netdev_priv(dev);
3045 
3046 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3047 		if (fep->irq[i] > 0) {
3048 			disable_irq(fep->irq[i]);
3049 			fec_enet_interrupt(fep->irq[i], dev);
3050 			enable_irq(fep->irq[i]);
3051 		}
3052 	}
3053 }
3054 #endif
3055 
3056 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3057 	netdev_features_t features)
3058 {
3059 	struct fec_enet_private *fep = netdev_priv(netdev);
3060 	netdev_features_t changed = features ^ netdev->features;
3061 
3062 	netdev->features = features;
3063 
3064 	/* Receive checksum has been changed */
3065 	if (changed & NETIF_F_RXCSUM) {
3066 		if (features & NETIF_F_RXCSUM)
3067 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3068 		else
3069 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3070 	}
3071 }
3072 
3073 static int fec_set_features(struct net_device *netdev,
3074 	netdev_features_t features)
3075 {
3076 	struct fec_enet_private *fep = netdev_priv(netdev);
3077 	netdev_features_t changed = features ^ netdev->features;
3078 
3079 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3080 		napi_disable(&fep->napi);
3081 		netif_tx_lock_bh(netdev);
3082 		fec_stop(netdev);
3083 		fec_enet_set_netdev_features(netdev, features);
3084 		fec_restart(netdev);
3085 		netif_tx_wake_all_queues(netdev);
3086 		netif_tx_unlock_bh(netdev);
3087 		napi_enable(&fep->napi);
3088 	} else {
3089 		fec_enet_set_netdev_features(netdev, features);
3090 	}
3091 
3092 	return 0;
3093 }
3094 
3095 static const struct net_device_ops fec_netdev_ops = {
3096 	.ndo_open		= fec_enet_open,
3097 	.ndo_stop		= fec_enet_close,
3098 	.ndo_start_xmit		= fec_enet_start_xmit,
3099 	.ndo_set_rx_mode	= set_multicast_list,
3100 	.ndo_change_mtu		= eth_change_mtu,
3101 	.ndo_validate_addr	= eth_validate_addr,
3102 	.ndo_tx_timeout		= fec_timeout,
3103 	.ndo_set_mac_address	= fec_set_mac_address,
3104 	.ndo_do_ioctl		= fec_enet_ioctl,
3105 #ifdef CONFIG_NET_POLL_CONTROLLER
3106 	.ndo_poll_controller	= fec_poll_controller,
3107 #endif
3108 	.ndo_set_features	= fec_set_features,
3109 };
3110 
3111  /*
3112   * XXX:  We need to clean up on failure exits here.
3113   *
3114   */
3115 static int fec_enet_init(struct net_device *ndev)
3116 {
3117 	struct fec_enet_private *fep = netdev_priv(ndev);
3118 	struct fec_enet_priv_tx_q *txq;
3119 	struct fec_enet_priv_rx_q *rxq;
3120 	struct bufdesc *cbd_base;
3121 	dma_addr_t bd_dma;
3122 	int bd_size;
3123 	unsigned int i;
3124 
3125 #if defined(CONFIG_ARM)
3126 	fep->rx_align = 0xf;
3127 	fep->tx_align = 0xf;
3128 #else
3129 	fep->rx_align = 0x3;
3130 	fep->tx_align = 0x3;
3131 #endif
3132 
3133 	fec_enet_alloc_queue(ndev);
3134 
3135 	if (fep->bufdesc_ex)
3136 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3137 	else
3138 		fep->bufdesc_size = sizeof(struct bufdesc);
3139 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3140 			fep->bufdesc_size;
3141 
3142 	/* Allocate memory for buffer descriptors. */
3143 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3144 				       GFP_KERNEL);
3145 	if (!cbd_base) {
3146 		return -ENOMEM;
3147 	}
3148 
3149 	memset(cbd_base, 0, bd_size);
3150 
3151 	/* Get the Ethernet address */
3152 	fec_get_mac(ndev);
3153 	/* make sure MAC we just acquired is programmed into the hw */
3154 	fec_set_mac_address(ndev, NULL);
3155 
3156 	/* Set receive and transmit descriptor base. */
3157 	for (i = 0; i < fep->num_rx_queues; i++) {
3158 		rxq = fep->rx_queue[i];
3159 		rxq->index = i;
3160 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3161 		rxq->bd_dma = bd_dma;
3162 		if (fep->bufdesc_ex) {
3163 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3164 			cbd_base = (struct bufdesc *)
3165 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3166 		} else {
3167 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3168 			cbd_base += rxq->rx_ring_size;
3169 		}
3170 	}
3171 
3172 	for (i = 0; i < fep->num_tx_queues; i++) {
3173 		txq = fep->tx_queue[i];
3174 		txq->index = i;
3175 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3176 		txq->bd_dma = bd_dma;
3177 		if (fep->bufdesc_ex) {
3178 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3179 			cbd_base = (struct bufdesc *)
3180 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3181 		} else {
3182 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3183 			cbd_base += txq->tx_ring_size;
3184 		}
3185 	}
3186 
3187 
3188 	/* The FEC Ethernet specific entries in the device structure */
3189 	ndev->watchdog_timeo = TX_TIMEOUT;
3190 	ndev->netdev_ops = &fec_netdev_ops;
3191 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3192 
3193 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3194 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3195 
3196 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3197 		/* enable hw VLAN support */
3198 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3199 
3200 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3201 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3202 
3203 		/* enable hw accelerator */
3204 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3205 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3206 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3207 	}
3208 
3209 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3210 		fep->tx_align = 0;
3211 		fep->rx_align = 0x3f;
3212 	}
3213 
3214 	ndev->hw_features = ndev->features;
3215 
3216 	fec_restart(ndev);
3217 
3218 	return 0;
3219 }
3220 
3221 #ifdef CONFIG_OF
3222 static void fec_reset_phy(struct platform_device *pdev)
3223 {
3224 	int err, phy_reset;
3225 	int msec = 1;
3226 	struct device_node *np = pdev->dev.of_node;
3227 
3228 	if (!np)
3229 		return;
3230 
3231 	of_property_read_u32(np, "phy-reset-duration", &msec);
3232 	/* A sane reset duration should not be longer than 1s */
3233 	if (msec > 1000)
3234 		msec = 1;
3235 
3236 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3237 	if (!gpio_is_valid(phy_reset))
3238 		return;
3239 
3240 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3241 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3242 	if (err) {
3243 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3244 		return;
3245 	}
3246 	msleep(msec);
3247 	gpio_set_value_cansleep(phy_reset, 1);
3248 }
3249 #else /* CONFIG_OF */
3250 static void fec_reset_phy(struct platform_device *pdev)
3251 {
3252 	/*
3253 	 * In case of platform probe, the reset has been done
3254 	 * by machine code.
3255 	 */
3256 }
3257 #endif /* CONFIG_OF */
3258 
3259 static void
3260 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3261 {
3262 	struct device_node *np = pdev->dev.of_node;
3263 
3264 	*num_tx = *num_rx = 1;
3265 
3266 	if (!np || !of_device_is_available(np))
3267 		return;
3268 
3269 	/* parse the num of tx and rx queues */
3270 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3271 
3272 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3273 
3274 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3275 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3276 			 *num_tx);
3277 		*num_tx = 1;
3278 		return;
3279 	}
3280 
3281 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3282 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3283 			 *num_rx);
3284 		*num_rx = 1;
3285 		return;
3286 	}
3287 
3288 }
3289 
3290 static int
3291 fec_probe(struct platform_device *pdev)
3292 {
3293 	struct fec_enet_private *fep;
3294 	struct fec_platform_data *pdata;
3295 	struct net_device *ndev;
3296 	int i, irq, ret = 0;
3297 	struct resource *r;
3298 	const struct of_device_id *of_id;
3299 	static int dev_id;
3300 	struct device_node *np = pdev->dev.of_node, *phy_node;
3301 	int num_tx_qs;
3302 	int num_rx_qs;
3303 
3304 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3305 
3306 	/* Init network device */
3307 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3308 				  num_tx_qs, num_rx_qs);
3309 	if (!ndev)
3310 		return -ENOMEM;
3311 
3312 	SET_NETDEV_DEV(ndev, &pdev->dev);
3313 
3314 	/* setup board info structure */
3315 	fep = netdev_priv(ndev);
3316 
3317 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3318 	if (of_id)
3319 		pdev->id_entry = of_id->data;
3320 	fep->quirks = pdev->id_entry->driver_data;
3321 
3322 	fep->netdev = ndev;
3323 	fep->num_rx_queues = num_rx_qs;
3324 	fep->num_tx_queues = num_tx_qs;
3325 
3326 #if !defined(CONFIG_M5272)
3327 	/* default enable pause frame auto negotiation */
3328 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3329 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3330 #endif
3331 
3332 	/* Select default pin state */
3333 	pinctrl_pm_select_default_state(&pdev->dev);
3334 
3335 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3336 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3337 	if (IS_ERR(fep->hwp)) {
3338 		ret = PTR_ERR(fep->hwp);
3339 		goto failed_ioremap;
3340 	}
3341 
3342 	fep->pdev = pdev;
3343 	fep->dev_id = dev_id++;
3344 
3345 	platform_set_drvdata(pdev, ndev);
3346 
3347 	if (of_get_property(np, "fsl,magic-packet", NULL))
3348 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3349 
3350 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3351 	if (!phy_node && of_phy_is_fixed_link(np)) {
3352 		ret = of_phy_register_fixed_link(np);
3353 		if (ret < 0) {
3354 			dev_err(&pdev->dev,
3355 				"broken fixed-link specification\n");
3356 			goto failed_phy;
3357 		}
3358 		phy_node = of_node_get(np);
3359 	}
3360 	fep->phy_node = phy_node;
3361 
3362 	ret = of_get_phy_mode(pdev->dev.of_node);
3363 	if (ret < 0) {
3364 		pdata = dev_get_platdata(&pdev->dev);
3365 		if (pdata)
3366 			fep->phy_interface = pdata->phy;
3367 		else
3368 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3369 	} else {
3370 		fep->phy_interface = ret;
3371 	}
3372 
3373 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3374 	if (IS_ERR(fep->clk_ipg)) {
3375 		ret = PTR_ERR(fep->clk_ipg);
3376 		goto failed_clk;
3377 	}
3378 
3379 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3380 	if (IS_ERR(fep->clk_ahb)) {
3381 		ret = PTR_ERR(fep->clk_ahb);
3382 		goto failed_clk;
3383 	}
3384 
3385 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3386 
3387 	/* enet_out is optional, depends on board */
3388 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3389 	if (IS_ERR(fep->clk_enet_out))
3390 		fep->clk_enet_out = NULL;
3391 
3392 	fep->ptp_clk_on = false;
3393 	mutex_init(&fep->ptp_clk_mutex);
3394 
3395 	/* clk_ref is optional, depends on board */
3396 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3397 	if (IS_ERR(fep->clk_ref))
3398 		fep->clk_ref = NULL;
3399 
3400 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3401 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3402 	if (IS_ERR(fep->clk_ptp)) {
3403 		fep->clk_ptp = NULL;
3404 		fep->bufdesc_ex = false;
3405 	}
3406 
3407 	ret = fec_enet_clk_enable(ndev, true);
3408 	if (ret)
3409 		goto failed_clk;
3410 
3411 	ret = clk_prepare_enable(fep->clk_ipg);
3412 	if (ret)
3413 		goto failed_clk_ipg;
3414 
3415 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3416 	if (!IS_ERR(fep->reg_phy)) {
3417 		ret = regulator_enable(fep->reg_phy);
3418 		if (ret) {
3419 			dev_err(&pdev->dev,
3420 				"Failed to enable phy regulator: %d\n", ret);
3421 			goto failed_regulator;
3422 		}
3423 	} else {
3424 		fep->reg_phy = NULL;
3425 	}
3426 
3427 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3428 	pm_runtime_use_autosuspend(&pdev->dev);
3429 	pm_runtime_get_noresume(&pdev->dev);
3430 	pm_runtime_set_active(&pdev->dev);
3431 	pm_runtime_enable(&pdev->dev);
3432 
3433 	fec_reset_phy(pdev);
3434 
3435 	if (fep->bufdesc_ex)
3436 		fec_ptp_init(pdev);
3437 
3438 	ret = fec_enet_init(ndev);
3439 	if (ret)
3440 		goto failed_init;
3441 
3442 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3443 		irq = platform_get_irq(pdev, i);
3444 		if (irq < 0) {
3445 			if (i)
3446 				break;
3447 			ret = irq;
3448 			goto failed_irq;
3449 		}
3450 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3451 				       0, pdev->name, ndev);
3452 		if (ret)
3453 			goto failed_irq;
3454 
3455 		fep->irq[i] = irq;
3456 	}
3457 
3458 	init_completion(&fep->mdio_done);
3459 	ret = fec_enet_mii_init(pdev);
3460 	if (ret)
3461 		goto failed_mii_init;
3462 
3463 	/* Carrier starts down, phylib will bring it up */
3464 	netif_carrier_off(ndev);
3465 	fec_enet_clk_enable(ndev, false);
3466 	pinctrl_pm_select_sleep_state(&pdev->dev);
3467 
3468 	ret = register_netdev(ndev);
3469 	if (ret)
3470 		goto failed_register;
3471 
3472 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3473 			   FEC_WOL_HAS_MAGIC_PACKET);
3474 
3475 	if (fep->bufdesc_ex && fep->ptp_clock)
3476 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3477 
3478 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3479 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3480 
3481 	pm_runtime_mark_last_busy(&pdev->dev);
3482 	pm_runtime_put_autosuspend(&pdev->dev);
3483 
3484 	return 0;
3485 
3486 failed_register:
3487 	fec_enet_mii_remove(fep);
3488 failed_mii_init:
3489 failed_irq:
3490 failed_init:
3491 	fec_ptp_stop(pdev);
3492 	if (fep->reg_phy)
3493 		regulator_disable(fep->reg_phy);
3494 failed_regulator:
3495 	clk_disable_unprepare(fep->clk_ipg);
3496 failed_clk_ipg:
3497 	fec_enet_clk_enable(ndev, false);
3498 failed_clk:
3499 failed_phy:
3500 	of_node_put(phy_node);
3501 failed_ioremap:
3502 	free_netdev(ndev);
3503 
3504 	return ret;
3505 }
3506 
3507 static int
3508 fec_drv_remove(struct platform_device *pdev)
3509 {
3510 	struct net_device *ndev = platform_get_drvdata(pdev);
3511 	struct fec_enet_private *fep = netdev_priv(ndev);
3512 
3513 	cancel_work_sync(&fep->tx_timeout_work);
3514 	fec_ptp_stop(pdev);
3515 	unregister_netdev(ndev);
3516 	fec_enet_mii_remove(fep);
3517 	if (fep->reg_phy)
3518 		regulator_disable(fep->reg_phy);
3519 	of_node_put(fep->phy_node);
3520 	free_netdev(ndev);
3521 
3522 	return 0;
3523 }
3524 
3525 static int __maybe_unused fec_suspend(struct device *dev)
3526 {
3527 	struct net_device *ndev = dev_get_drvdata(dev);
3528 	struct fec_enet_private *fep = netdev_priv(ndev);
3529 
3530 	rtnl_lock();
3531 	if (netif_running(ndev)) {
3532 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3533 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3534 		phy_stop(fep->phy_dev);
3535 		napi_disable(&fep->napi);
3536 		netif_tx_lock_bh(ndev);
3537 		netif_device_detach(ndev);
3538 		netif_tx_unlock_bh(ndev);
3539 		fec_stop(ndev);
3540 		fec_enet_clk_enable(ndev, false);
3541 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3542 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3543 	}
3544 	rtnl_unlock();
3545 
3546 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3547 		regulator_disable(fep->reg_phy);
3548 
3549 	/* SOC supply clock to phy, when clock is disabled, phy link down
3550 	 * SOC control phy regulator, when regulator is disabled, phy link down
3551 	 */
3552 	if (fep->clk_enet_out || fep->reg_phy)
3553 		fep->link = 0;
3554 
3555 	return 0;
3556 }
3557 
3558 static int __maybe_unused fec_resume(struct device *dev)
3559 {
3560 	struct net_device *ndev = dev_get_drvdata(dev);
3561 	struct fec_enet_private *fep = netdev_priv(ndev);
3562 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3563 	int ret;
3564 	int val;
3565 
3566 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3567 		ret = regulator_enable(fep->reg_phy);
3568 		if (ret)
3569 			return ret;
3570 	}
3571 
3572 	rtnl_lock();
3573 	if (netif_running(ndev)) {
3574 		ret = fec_enet_clk_enable(ndev, true);
3575 		if (ret) {
3576 			rtnl_unlock();
3577 			goto failed_clk;
3578 		}
3579 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3580 			if (pdata && pdata->sleep_mode_enable)
3581 				pdata->sleep_mode_enable(false);
3582 			val = readl(fep->hwp + FEC_ECNTRL);
3583 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3584 			writel(val, fep->hwp + FEC_ECNTRL);
3585 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3586 		} else {
3587 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3588 		}
3589 		fec_restart(ndev);
3590 		netif_tx_lock_bh(ndev);
3591 		netif_device_attach(ndev);
3592 		netif_tx_unlock_bh(ndev);
3593 		napi_enable(&fep->napi);
3594 		phy_start(fep->phy_dev);
3595 	}
3596 	rtnl_unlock();
3597 
3598 	return 0;
3599 
3600 failed_clk:
3601 	if (fep->reg_phy)
3602 		regulator_disable(fep->reg_phy);
3603 	return ret;
3604 }
3605 
3606 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3607 {
3608 	struct net_device *ndev = dev_get_drvdata(dev);
3609 	struct fec_enet_private *fep = netdev_priv(ndev);
3610 
3611 	clk_disable_unprepare(fep->clk_ipg);
3612 
3613 	return 0;
3614 }
3615 
3616 static int __maybe_unused fec_runtime_resume(struct device *dev)
3617 {
3618 	struct net_device *ndev = dev_get_drvdata(dev);
3619 	struct fec_enet_private *fep = netdev_priv(ndev);
3620 
3621 	return clk_prepare_enable(fep->clk_ipg);
3622 }
3623 
3624 static const struct dev_pm_ops fec_pm_ops = {
3625 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3626 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3627 };
3628 
3629 static struct platform_driver fec_driver = {
3630 	.driver	= {
3631 		.name	= DRIVER_NAME,
3632 		.pm	= &fec_pm_ops,
3633 		.of_match_table = fec_dt_ids,
3634 	},
3635 	.id_table = fec_devtype,
3636 	.probe	= fec_probe,
3637 	.remove	= fec_drv_remove,
3638 };
3639 
3640 module_platform_driver(fec_driver);
3641 
3642 MODULE_ALIAS("platform:"DRIVER_NAME);
3643 MODULE_LICENSE("GPL");
3644