1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <soc/imx/cpuidle.h> 66 67 #include <asm/cacheflush.h> 68 69 #include "fec.h" 70 71 static void set_multicast_list(struct net_device *ndev); 72 static void fec_enet_itr_coal_init(struct net_device *ndev); 73 74 #define DRIVER_NAME "fec" 75 76 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 static struct platform_device_id fec_devtype[] = { 88 { 89 /* keep it for coldfire */ 90 .name = DRIVER_NAME, 91 .driver_data = 0, 92 }, { 93 .name = "imx25-fec", 94 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 95 FEC_QUIRK_HAS_FRREG, 96 }, { 97 .name = "imx27-fec", 98 .driver_data = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 99 }, { 100 .name = "imx28-fec", 101 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG, 104 }, { 105 .name = "imx6q-fec", 106 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 107 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 108 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 109 FEC_QUIRK_HAS_RACC, 110 }, { 111 .name = "mvf600-fec", 112 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 113 }, { 114 .name = "imx6sx-fec", 115 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 116 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 117 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 118 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 119 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 120 }, { 121 .name = "imx6ul-fec", 122 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 125 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 126 FEC_QUIRK_HAS_COALESCE, 127 }, { 128 /* sentinel */ 129 } 130 }; 131 MODULE_DEVICE_TABLE(platform, fec_devtype); 132 133 enum imx_fec_type { 134 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 135 IMX27_FEC, /* runs on i.mx27/35/51 */ 136 IMX28_FEC, 137 IMX6Q_FEC, 138 MVF600_FEC, 139 IMX6SX_FEC, 140 IMX6UL_FEC, 141 }; 142 143 static const struct of_device_id fec_dt_ids[] = { 144 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 145 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 146 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 147 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 148 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 149 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 150 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 151 { /* sentinel */ } 152 }; 153 MODULE_DEVICE_TABLE(of, fec_dt_ids); 154 155 static unsigned char macaddr[ETH_ALEN]; 156 module_param_array(macaddr, byte, NULL, 0); 157 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 158 159 #if defined(CONFIG_M5272) 160 /* 161 * Some hardware gets it MAC address out of local flash memory. 162 * if this is non-zero then assume it is the address to get MAC from. 163 */ 164 #if defined(CONFIG_NETtel) 165 #define FEC_FLASHMAC 0xf0006006 166 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 167 #define FEC_FLASHMAC 0xf0006000 168 #elif defined(CONFIG_CANCam) 169 #define FEC_FLASHMAC 0xf0020000 170 #elif defined (CONFIG_M5272C3) 171 #define FEC_FLASHMAC (0xffe04000 + 4) 172 #elif defined(CONFIG_MOD5272) 173 #define FEC_FLASHMAC 0xffc0406b 174 #else 175 #define FEC_FLASHMAC 0 176 #endif 177 #endif /* CONFIG_M5272 */ 178 179 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 180 * 181 * 2048 byte skbufs are allocated. However, alignment requirements 182 * varies between FEC variants. Worst case is 64, so round down by 64. 183 */ 184 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 185 #define PKT_MINBUF_SIZE 64 186 187 /* FEC receive acceleration */ 188 #define FEC_RACC_IPDIS (1 << 1) 189 #define FEC_RACC_PRODIS (1 << 2) 190 #define FEC_RACC_SHIFT16 BIT(7) 191 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 192 193 /* MIB Control Register */ 194 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 195 196 /* 197 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 198 * size bits. Other FEC hardware does not, so we need to take that into 199 * account when setting it. 200 */ 201 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 202 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 203 defined(CONFIG_ARM64) 204 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 205 #else 206 #define OPT_FRAME_SIZE 0 207 #endif 208 209 /* FEC MII MMFR bits definition */ 210 #define FEC_MMFR_ST (1 << 30) 211 #define FEC_MMFR_OP_READ (2 << 28) 212 #define FEC_MMFR_OP_WRITE (1 << 28) 213 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 214 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 215 #define FEC_MMFR_TA (2 << 16) 216 #define FEC_MMFR_DATA(v) (v & 0xffff) 217 /* FEC ECR bits definition */ 218 #define FEC_ECR_MAGICEN (1 << 2) 219 #define FEC_ECR_SLEEP (1 << 3) 220 221 #define FEC_MII_TIMEOUT 30000 /* us */ 222 223 /* Transmitter timeout */ 224 #define TX_TIMEOUT (2 * HZ) 225 226 #define FEC_PAUSE_FLAG_AUTONEG 0x1 227 #define FEC_PAUSE_FLAG_ENABLE 0x2 228 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 229 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 230 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 231 232 #define COPYBREAK_DEFAULT 256 233 234 /* Max number of allowed TCP segments for software TSO */ 235 #define FEC_MAX_TSO_SEGS 100 236 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 237 238 #define IS_TSO_HEADER(txq, addr) \ 239 ((addr >= txq->tso_hdrs_dma) && \ 240 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 241 242 static int mii_cnt; 243 244 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 245 struct bufdesc_prop *bd) 246 { 247 return (bdp >= bd->last) ? bd->base 248 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 249 } 250 251 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 252 struct bufdesc_prop *bd) 253 { 254 return (bdp <= bd->base) ? bd->last 255 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 256 } 257 258 static int fec_enet_get_bd_index(struct bufdesc *bdp, 259 struct bufdesc_prop *bd) 260 { 261 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 262 } 263 264 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 265 { 266 int entries; 267 268 entries = (((const char *)txq->dirty_tx - 269 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 270 271 return entries >= 0 ? entries : entries + txq->bd.ring_size; 272 } 273 274 static void swap_buffer(void *bufaddr, int len) 275 { 276 int i; 277 unsigned int *buf = bufaddr; 278 279 for (i = 0; i < len; i += 4, buf++) 280 swab32s(buf); 281 } 282 283 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 284 { 285 int i; 286 unsigned int *src = src_buf; 287 unsigned int *dst = dst_buf; 288 289 for (i = 0; i < len; i += 4, src++, dst++) 290 *dst = swab32p(src); 291 } 292 293 static void fec_dump(struct net_device *ndev) 294 { 295 struct fec_enet_private *fep = netdev_priv(ndev); 296 struct bufdesc *bdp; 297 struct fec_enet_priv_tx_q *txq; 298 int index = 0; 299 300 netdev_info(ndev, "TX ring dump\n"); 301 pr_info("Nr SC addr len SKB\n"); 302 303 txq = fep->tx_queue[0]; 304 bdp = txq->bd.base; 305 306 do { 307 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 308 index, 309 bdp == txq->bd.cur ? 'S' : ' ', 310 bdp == txq->dirty_tx ? 'H' : ' ', 311 fec16_to_cpu(bdp->cbd_sc), 312 fec32_to_cpu(bdp->cbd_bufaddr), 313 fec16_to_cpu(bdp->cbd_datlen), 314 txq->tx_skbuff[index]); 315 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 316 index++; 317 } while (bdp != txq->bd.base); 318 } 319 320 static inline bool is_ipv4_pkt(struct sk_buff *skb) 321 { 322 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 323 } 324 325 static int 326 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 327 { 328 /* Only run for packets requiring a checksum. */ 329 if (skb->ip_summed != CHECKSUM_PARTIAL) 330 return 0; 331 332 if (unlikely(skb_cow_head(skb, 0))) 333 return -1; 334 335 if (is_ipv4_pkt(skb)) 336 ip_hdr(skb)->check = 0; 337 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 338 339 return 0; 340 } 341 342 static struct bufdesc * 343 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 344 struct sk_buff *skb, 345 struct net_device *ndev) 346 { 347 struct fec_enet_private *fep = netdev_priv(ndev); 348 struct bufdesc *bdp = txq->bd.cur; 349 struct bufdesc_ex *ebdp; 350 int nr_frags = skb_shinfo(skb)->nr_frags; 351 int frag, frag_len; 352 unsigned short status; 353 unsigned int estatus = 0; 354 skb_frag_t *this_frag; 355 unsigned int index; 356 void *bufaddr; 357 dma_addr_t addr; 358 int i; 359 360 for (frag = 0; frag < nr_frags; frag++) { 361 this_frag = &skb_shinfo(skb)->frags[frag]; 362 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 363 ebdp = (struct bufdesc_ex *)bdp; 364 365 status = fec16_to_cpu(bdp->cbd_sc); 366 status &= ~BD_ENET_TX_STATS; 367 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 368 frag_len = skb_shinfo(skb)->frags[frag].size; 369 370 /* Handle the last BD specially */ 371 if (frag == nr_frags - 1) { 372 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 373 if (fep->bufdesc_ex) { 374 estatus |= BD_ENET_TX_INT; 375 if (unlikely(skb_shinfo(skb)->tx_flags & 376 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 377 estatus |= BD_ENET_TX_TS; 378 } 379 } 380 381 if (fep->bufdesc_ex) { 382 if (fep->quirks & FEC_QUIRK_HAS_AVB) 383 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 384 if (skb->ip_summed == CHECKSUM_PARTIAL) 385 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 386 ebdp->cbd_bdu = 0; 387 ebdp->cbd_esc = cpu_to_fec32(estatus); 388 } 389 390 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset; 391 392 index = fec_enet_get_bd_index(bdp, &txq->bd); 393 if (((unsigned long) bufaddr) & fep->tx_align || 394 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 395 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 396 bufaddr = txq->tx_bounce[index]; 397 398 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 399 swap_buffer(bufaddr, frag_len); 400 } 401 402 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 403 DMA_TO_DEVICE); 404 if (dma_mapping_error(&fep->pdev->dev, addr)) { 405 if (net_ratelimit()) 406 netdev_err(ndev, "Tx DMA memory map failed\n"); 407 goto dma_mapping_error; 408 } 409 410 bdp->cbd_bufaddr = cpu_to_fec32(addr); 411 bdp->cbd_datlen = cpu_to_fec16(frag_len); 412 /* Make sure the updates to rest of the descriptor are 413 * performed before transferring ownership. 414 */ 415 wmb(); 416 bdp->cbd_sc = cpu_to_fec16(status); 417 } 418 419 return bdp; 420 dma_mapping_error: 421 bdp = txq->bd.cur; 422 for (i = 0; i < frag; i++) { 423 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 424 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 425 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 426 } 427 return ERR_PTR(-ENOMEM); 428 } 429 430 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 431 struct sk_buff *skb, struct net_device *ndev) 432 { 433 struct fec_enet_private *fep = netdev_priv(ndev); 434 int nr_frags = skb_shinfo(skb)->nr_frags; 435 struct bufdesc *bdp, *last_bdp; 436 void *bufaddr; 437 dma_addr_t addr; 438 unsigned short status; 439 unsigned short buflen; 440 unsigned int estatus = 0; 441 unsigned int index; 442 int entries_free; 443 444 entries_free = fec_enet_get_free_txdesc_num(txq); 445 if (entries_free < MAX_SKB_FRAGS + 1) { 446 dev_kfree_skb_any(skb); 447 if (net_ratelimit()) 448 netdev_err(ndev, "NOT enough BD for SG!\n"); 449 return NETDEV_TX_OK; 450 } 451 452 /* Protocol checksum off-load for TCP and UDP. */ 453 if (fec_enet_clear_csum(skb, ndev)) { 454 dev_kfree_skb_any(skb); 455 return NETDEV_TX_OK; 456 } 457 458 /* Fill in a Tx ring entry */ 459 bdp = txq->bd.cur; 460 last_bdp = bdp; 461 status = fec16_to_cpu(bdp->cbd_sc); 462 status &= ~BD_ENET_TX_STATS; 463 464 /* Set buffer length and buffer pointer */ 465 bufaddr = skb->data; 466 buflen = skb_headlen(skb); 467 468 index = fec_enet_get_bd_index(bdp, &txq->bd); 469 if (((unsigned long) bufaddr) & fep->tx_align || 470 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 471 memcpy(txq->tx_bounce[index], skb->data, buflen); 472 bufaddr = txq->tx_bounce[index]; 473 474 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 475 swap_buffer(bufaddr, buflen); 476 } 477 478 /* Push the data cache so the CPM does not get stale memory data. */ 479 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 480 if (dma_mapping_error(&fep->pdev->dev, addr)) { 481 dev_kfree_skb_any(skb); 482 if (net_ratelimit()) 483 netdev_err(ndev, "Tx DMA memory map failed\n"); 484 return NETDEV_TX_OK; 485 } 486 487 if (nr_frags) { 488 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 489 if (IS_ERR(last_bdp)) { 490 dma_unmap_single(&fep->pdev->dev, addr, 491 buflen, DMA_TO_DEVICE); 492 dev_kfree_skb_any(skb); 493 return NETDEV_TX_OK; 494 } 495 } else { 496 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 497 if (fep->bufdesc_ex) { 498 estatus = BD_ENET_TX_INT; 499 if (unlikely(skb_shinfo(skb)->tx_flags & 500 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 501 estatus |= BD_ENET_TX_TS; 502 } 503 } 504 bdp->cbd_bufaddr = cpu_to_fec32(addr); 505 bdp->cbd_datlen = cpu_to_fec16(buflen); 506 507 if (fep->bufdesc_ex) { 508 509 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 510 511 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 512 fep->hwts_tx_en)) 513 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 514 515 if (fep->quirks & FEC_QUIRK_HAS_AVB) 516 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 517 518 if (skb->ip_summed == CHECKSUM_PARTIAL) 519 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 520 521 ebdp->cbd_bdu = 0; 522 ebdp->cbd_esc = cpu_to_fec32(estatus); 523 } 524 525 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 526 /* Save skb pointer */ 527 txq->tx_skbuff[index] = skb; 528 529 /* Make sure the updates to rest of the descriptor are performed before 530 * transferring ownership. 531 */ 532 wmb(); 533 534 /* Send it on its way. Tell FEC it's ready, interrupt when done, 535 * it's the last BD of the frame, and to put the CRC on the end. 536 */ 537 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 538 bdp->cbd_sc = cpu_to_fec16(status); 539 540 /* If this was the last BD in the ring, start at the beginning again. */ 541 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 542 543 skb_tx_timestamp(skb); 544 545 /* Make sure the update to bdp and tx_skbuff are performed before 546 * txq->bd.cur. 547 */ 548 wmb(); 549 txq->bd.cur = bdp; 550 551 /* Trigger transmission start */ 552 writel(0, txq->bd.reg_desc_active); 553 554 return 0; 555 } 556 557 static int 558 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 559 struct net_device *ndev, 560 struct bufdesc *bdp, int index, char *data, 561 int size, bool last_tcp, bool is_last) 562 { 563 struct fec_enet_private *fep = netdev_priv(ndev); 564 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 565 unsigned short status; 566 unsigned int estatus = 0; 567 dma_addr_t addr; 568 569 status = fec16_to_cpu(bdp->cbd_sc); 570 status &= ~BD_ENET_TX_STATS; 571 572 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 573 574 if (((unsigned long) data) & fep->tx_align || 575 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 576 memcpy(txq->tx_bounce[index], data, size); 577 data = txq->tx_bounce[index]; 578 579 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 580 swap_buffer(data, size); 581 } 582 583 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 584 if (dma_mapping_error(&fep->pdev->dev, addr)) { 585 dev_kfree_skb_any(skb); 586 if (net_ratelimit()) 587 netdev_err(ndev, "Tx DMA memory map failed\n"); 588 return NETDEV_TX_BUSY; 589 } 590 591 bdp->cbd_datlen = cpu_to_fec16(size); 592 bdp->cbd_bufaddr = cpu_to_fec32(addr); 593 594 if (fep->bufdesc_ex) { 595 if (fep->quirks & FEC_QUIRK_HAS_AVB) 596 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 597 if (skb->ip_summed == CHECKSUM_PARTIAL) 598 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 599 ebdp->cbd_bdu = 0; 600 ebdp->cbd_esc = cpu_to_fec32(estatus); 601 } 602 603 /* Handle the last BD specially */ 604 if (last_tcp) 605 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 606 if (is_last) { 607 status |= BD_ENET_TX_INTR; 608 if (fep->bufdesc_ex) 609 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 610 } 611 612 bdp->cbd_sc = cpu_to_fec16(status); 613 614 return 0; 615 } 616 617 static int 618 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 619 struct sk_buff *skb, struct net_device *ndev, 620 struct bufdesc *bdp, int index) 621 { 622 struct fec_enet_private *fep = netdev_priv(ndev); 623 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 624 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 625 void *bufaddr; 626 unsigned long dmabuf; 627 unsigned short status; 628 unsigned int estatus = 0; 629 630 status = fec16_to_cpu(bdp->cbd_sc); 631 status &= ~BD_ENET_TX_STATS; 632 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 633 634 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 635 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 636 if (((unsigned long)bufaddr) & fep->tx_align || 637 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 638 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 639 bufaddr = txq->tx_bounce[index]; 640 641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 642 swap_buffer(bufaddr, hdr_len); 643 644 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 645 hdr_len, DMA_TO_DEVICE); 646 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 647 dev_kfree_skb_any(skb); 648 if (net_ratelimit()) 649 netdev_err(ndev, "Tx DMA memory map failed\n"); 650 return NETDEV_TX_BUSY; 651 } 652 } 653 654 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 655 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 656 657 if (fep->bufdesc_ex) { 658 if (fep->quirks & FEC_QUIRK_HAS_AVB) 659 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 660 if (skb->ip_summed == CHECKSUM_PARTIAL) 661 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 662 ebdp->cbd_bdu = 0; 663 ebdp->cbd_esc = cpu_to_fec32(estatus); 664 } 665 666 bdp->cbd_sc = cpu_to_fec16(status); 667 668 return 0; 669 } 670 671 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 672 struct sk_buff *skb, 673 struct net_device *ndev) 674 { 675 struct fec_enet_private *fep = netdev_priv(ndev); 676 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 677 int total_len, data_left; 678 struct bufdesc *bdp = txq->bd.cur; 679 struct tso_t tso; 680 unsigned int index = 0; 681 int ret; 682 683 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 684 dev_kfree_skb_any(skb); 685 if (net_ratelimit()) 686 netdev_err(ndev, "NOT enough BD for TSO!\n"); 687 return NETDEV_TX_OK; 688 } 689 690 /* Protocol checksum off-load for TCP and UDP. */ 691 if (fec_enet_clear_csum(skb, ndev)) { 692 dev_kfree_skb_any(skb); 693 return NETDEV_TX_OK; 694 } 695 696 /* Initialize the TSO handler, and prepare the first payload */ 697 tso_start(skb, &tso); 698 699 total_len = skb->len - hdr_len; 700 while (total_len > 0) { 701 char *hdr; 702 703 index = fec_enet_get_bd_index(bdp, &txq->bd); 704 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 705 total_len -= data_left; 706 707 /* prepare packet headers: MAC + IP + TCP */ 708 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 709 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 710 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 711 if (ret) 712 goto err_release; 713 714 while (data_left > 0) { 715 int size; 716 717 size = min_t(int, tso.size, data_left); 718 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 719 index = fec_enet_get_bd_index(bdp, &txq->bd); 720 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 721 bdp, index, 722 tso.data, size, 723 size == data_left, 724 total_len == 0); 725 if (ret) 726 goto err_release; 727 728 data_left -= size; 729 tso_build_data(skb, &tso, size); 730 } 731 732 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 733 } 734 735 /* Save skb pointer */ 736 txq->tx_skbuff[index] = skb; 737 738 skb_tx_timestamp(skb); 739 txq->bd.cur = bdp; 740 741 /* Trigger transmission start */ 742 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 743 !readl(txq->bd.reg_desc_active) || 744 !readl(txq->bd.reg_desc_active) || 745 !readl(txq->bd.reg_desc_active) || 746 !readl(txq->bd.reg_desc_active)) 747 writel(0, txq->bd.reg_desc_active); 748 749 return 0; 750 751 err_release: 752 /* TODO: Release all used data descriptors for TSO */ 753 return ret; 754 } 755 756 static netdev_tx_t 757 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 758 { 759 struct fec_enet_private *fep = netdev_priv(ndev); 760 int entries_free; 761 unsigned short queue; 762 struct fec_enet_priv_tx_q *txq; 763 struct netdev_queue *nq; 764 int ret; 765 766 queue = skb_get_queue_mapping(skb); 767 txq = fep->tx_queue[queue]; 768 nq = netdev_get_tx_queue(ndev, queue); 769 770 if (skb_is_gso(skb)) 771 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 772 else 773 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 774 if (ret) 775 return ret; 776 777 entries_free = fec_enet_get_free_txdesc_num(txq); 778 if (entries_free <= txq->tx_stop_threshold) 779 netif_tx_stop_queue(nq); 780 781 return NETDEV_TX_OK; 782 } 783 784 /* Init RX & TX buffer descriptors 785 */ 786 static void fec_enet_bd_init(struct net_device *dev) 787 { 788 struct fec_enet_private *fep = netdev_priv(dev); 789 struct fec_enet_priv_tx_q *txq; 790 struct fec_enet_priv_rx_q *rxq; 791 struct bufdesc *bdp; 792 unsigned int i; 793 unsigned int q; 794 795 for (q = 0; q < fep->num_rx_queues; q++) { 796 /* Initialize the receive buffer descriptors. */ 797 rxq = fep->rx_queue[q]; 798 bdp = rxq->bd.base; 799 800 for (i = 0; i < rxq->bd.ring_size; i++) { 801 802 /* Initialize the BD for every fragment in the page. */ 803 if (bdp->cbd_bufaddr) 804 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 805 else 806 bdp->cbd_sc = cpu_to_fec16(0); 807 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 808 } 809 810 /* Set the last buffer to wrap */ 811 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 812 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 813 814 rxq->bd.cur = rxq->bd.base; 815 } 816 817 for (q = 0; q < fep->num_tx_queues; q++) { 818 /* ...and the same for transmit */ 819 txq = fep->tx_queue[q]; 820 bdp = txq->bd.base; 821 txq->bd.cur = bdp; 822 823 for (i = 0; i < txq->bd.ring_size; i++) { 824 /* Initialize the BD for every fragment in the page. */ 825 bdp->cbd_sc = cpu_to_fec16(0); 826 if (bdp->cbd_bufaddr && 827 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 828 dma_unmap_single(&fep->pdev->dev, 829 fec32_to_cpu(bdp->cbd_bufaddr), 830 fec16_to_cpu(bdp->cbd_datlen), 831 DMA_TO_DEVICE); 832 if (txq->tx_skbuff[i]) { 833 dev_kfree_skb_any(txq->tx_skbuff[i]); 834 txq->tx_skbuff[i] = NULL; 835 } 836 bdp->cbd_bufaddr = cpu_to_fec32(0); 837 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 838 } 839 840 /* Set the last buffer to wrap */ 841 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 842 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 843 txq->dirty_tx = bdp; 844 } 845 } 846 847 static void fec_enet_active_rxring(struct net_device *ndev) 848 { 849 struct fec_enet_private *fep = netdev_priv(ndev); 850 int i; 851 852 for (i = 0; i < fep->num_rx_queues; i++) 853 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 854 } 855 856 static void fec_enet_enable_ring(struct net_device *ndev) 857 { 858 struct fec_enet_private *fep = netdev_priv(ndev); 859 struct fec_enet_priv_tx_q *txq; 860 struct fec_enet_priv_rx_q *rxq; 861 int i; 862 863 for (i = 0; i < fep->num_rx_queues; i++) { 864 rxq = fep->rx_queue[i]; 865 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 866 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 867 868 /* enable DMA1/2 */ 869 if (i) 870 writel(RCMR_MATCHEN | RCMR_CMP(i), 871 fep->hwp + FEC_RCMR(i)); 872 } 873 874 for (i = 0; i < fep->num_tx_queues; i++) { 875 txq = fep->tx_queue[i]; 876 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 877 878 /* enable DMA1/2 */ 879 if (i) 880 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 881 fep->hwp + FEC_DMA_CFG(i)); 882 } 883 } 884 885 static void fec_enet_reset_skb(struct net_device *ndev) 886 { 887 struct fec_enet_private *fep = netdev_priv(ndev); 888 struct fec_enet_priv_tx_q *txq; 889 int i, j; 890 891 for (i = 0; i < fep->num_tx_queues; i++) { 892 txq = fep->tx_queue[i]; 893 894 for (j = 0; j < txq->bd.ring_size; j++) { 895 if (txq->tx_skbuff[j]) { 896 dev_kfree_skb_any(txq->tx_skbuff[j]); 897 txq->tx_skbuff[j] = NULL; 898 } 899 } 900 } 901 } 902 903 /* 904 * This function is called to start or restart the FEC during a link 905 * change, transmit timeout, or to reconfigure the FEC. The network 906 * packet processing for this device must be stopped before this call. 907 */ 908 static void 909 fec_restart(struct net_device *ndev) 910 { 911 struct fec_enet_private *fep = netdev_priv(ndev); 912 u32 val; 913 u32 temp_mac[2]; 914 u32 rcntl = OPT_FRAME_SIZE | 0x04; 915 u32 ecntl = 0x2; /* ETHEREN */ 916 917 /* Whack a reset. We should wait for this. 918 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 919 * instead of reset MAC itself. 920 */ 921 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 922 writel(0, fep->hwp + FEC_ECNTRL); 923 } else { 924 writel(1, fep->hwp + FEC_ECNTRL); 925 udelay(10); 926 } 927 928 /* 929 * enet-mac reset will reset mac address registers too, 930 * so need to reconfigure it. 931 */ 932 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 933 writel((__force u32)cpu_to_be32(temp_mac[0]), 934 fep->hwp + FEC_ADDR_LOW); 935 writel((__force u32)cpu_to_be32(temp_mac[1]), 936 fep->hwp + FEC_ADDR_HIGH); 937 938 /* Clear any outstanding interrupt. */ 939 writel(0xffffffff, fep->hwp + FEC_IEVENT); 940 941 fec_enet_bd_init(ndev); 942 943 fec_enet_enable_ring(ndev); 944 945 /* Reset tx SKB buffers. */ 946 fec_enet_reset_skb(ndev); 947 948 /* Enable MII mode */ 949 if (fep->full_duplex == DUPLEX_FULL) { 950 /* FD enable */ 951 writel(0x04, fep->hwp + FEC_X_CNTRL); 952 } else { 953 /* No Rcv on Xmit */ 954 rcntl |= 0x02; 955 writel(0x0, fep->hwp + FEC_X_CNTRL); 956 } 957 958 /* Set MII speed */ 959 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 960 961 #if !defined(CONFIG_M5272) 962 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 963 val = readl(fep->hwp + FEC_RACC); 964 /* align IP header */ 965 val |= FEC_RACC_SHIFT16; 966 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 967 /* set RX checksum */ 968 val |= FEC_RACC_OPTIONS; 969 else 970 val &= ~FEC_RACC_OPTIONS; 971 writel(val, fep->hwp + FEC_RACC); 972 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 973 } 974 #endif 975 976 /* 977 * The phy interface and speed need to get configured 978 * differently on enet-mac. 979 */ 980 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 981 /* Enable flow control and length check */ 982 rcntl |= 0x40000000 | 0x00000020; 983 984 /* RGMII, RMII or MII */ 985 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 986 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 987 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 988 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 989 rcntl |= (1 << 6); 990 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 991 rcntl |= (1 << 8); 992 else 993 rcntl &= ~(1 << 8); 994 995 /* 1G, 100M or 10M */ 996 if (ndev->phydev) { 997 if (ndev->phydev->speed == SPEED_1000) 998 ecntl |= (1 << 5); 999 else if (ndev->phydev->speed == SPEED_100) 1000 rcntl &= ~(1 << 9); 1001 else 1002 rcntl |= (1 << 9); 1003 } 1004 } else { 1005 #ifdef FEC_MIIGSK_ENR 1006 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1007 u32 cfgr; 1008 /* disable the gasket and wait */ 1009 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1010 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1011 udelay(1); 1012 1013 /* 1014 * configure the gasket: 1015 * RMII, 50 MHz, no loopback, no echo 1016 * MII, 25 MHz, no loopback, no echo 1017 */ 1018 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1019 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1020 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1021 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1022 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1023 1024 /* re-enable the gasket */ 1025 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1026 } 1027 #endif 1028 } 1029 1030 #if !defined(CONFIG_M5272) 1031 /* enable pause frame*/ 1032 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1033 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1034 ndev->phydev && ndev->phydev->pause)) { 1035 rcntl |= FEC_ENET_FCE; 1036 1037 /* set FIFO threshold parameter to reduce overrun */ 1038 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1039 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1040 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1041 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1042 1043 /* OPD */ 1044 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1045 } else { 1046 rcntl &= ~FEC_ENET_FCE; 1047 } 1048 #endif /* !defined(CONFIG_M5272) */ 1049 1050 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1051 1052 /* Setup multicast filter. */ 1053 set_multicast_list(ndev); 1054 #ifndef CONFIG_M5272 1055 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1056 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1057 #endif 1058 1059 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1060 /* enable ENET endian swap */ 1061 ecntl |= (1 << 8); 1062 /* enable ENET store and forward mode */ 1063 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1064 } 1065 1066 if (fep->bufdesc_ex) 1067 ecntl |= (1 << 4); 1068 1069 #ifndef CONFIG_M5272 1070 /* Enable the MIB statistic event counters */ 1071 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1072 #endif 1073 1074 /* And last, enable the transmit and receive processing */ 1075 writel(ecntl, fep->hwp + FEC_ECNTRL); 1076 fec_enet_active_rxring(ndev); 1077 1078 if (fep->bufdesc_ex) 1079 fec_ptp_start_cyclecounter(ndev); 1080 1081 /* Enable interrupts we wish to service */ 1082 if (fep->link) 1083 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1084 else 1085 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); 1086 1087 /* Init the interrupt coalescing */ 1088 fec_enet_itr_coal_init(ndev); 1089 1090 } 1091 1092 static void 1093 fec_stop(struct net_device *ndev) 1094 { 1095 struct fec_enet_private *fep = netdev_priv(ndev); 1096 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1097 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1098 u32 val; 1099 1100 /* We cannot expect a graceful transmit stop without link !!! */ 1101 if (fep->link) { 1102 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1103 udelay(10); 1104 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1105 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1106 } 1107 1108 /* Whack a reset. We should wait for this. 1109 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1110 * instead of reset MAC itself. 1111 */ 1112 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1113 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1114 writel(0, fep->hwp + FEC_ECNTRL); 1115 } else { 1116 writel(1, fep->hwp + FEC_ECNTRL); 1117 udelay(10); 1118 } 1119 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1120 } else { 1121 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1122 val = readl(fep->hwp + FEC_ECNTRL); 1123 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1124 writel(val, fep->hwp + FEC_ECNTRL); 1125 1126 if (pdata && pdata->sleep_mode_enable) 1127 pdata->sleep_mode_enable(true); 1128 } 1129 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1130 1131 /* We have to keep ENET enabled to have MII interrupt stay working */ 1132 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1133 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1134 writel(2, fep->hwp + FEC_ECNTRL); 1135 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1136 } 1137 } 1138 1139 1140 static void 1141 fec_timeout(struct net_device *ndev) 1142 { 1143 struct fec_enet_private *fep = netdev_priv(ndev); 1144 1145 fec_dump(ndev); 1146 1147 ndev->stats.tx_errors++; 1148 1149 schedule_work(&fep->tx_timeout_work); 1150 } 1151 1152 static void fec_enet_timeout_work(struct work_struct *work) 1153 { 1154 struct fec_enet_private *fep = 1155 container_of(work, struct fec_enet_private, tx_timeout_work); 1156 struct net_device *ndev = fep->netdev; 1157 1158 rtnl_lock(); 1159 if (netif_device_present(ndev) || netif_running(ndev)) { 1160 napi_disable(&fep->napi); 1161 netif_tx_lock_bh(ndev); 1162 fec_restart(ndev); 1163 netif_tx_wake_all_queues(ndev); 1164 netif_tx_unlock_bh(ndev); 1165 napi_enable(&fep->napi); 1166 } 1167 rtnl_unlock(); 1168 } 1169 1170 static void 1171 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1172 struct skb_shared_hwtstamps *hwtstamps) 1173 { 1174 unsigned long flags; 1175 u64 ns; 1176 1177 spin_lock_irqsave(&fep->tmreg_lock, flags); 1178 ns = timecounter_cyc2time(&fep->tc, ts); 1179 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1180 1181 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1182 hwtstamps->hwtstamp = ns_to_ktime(ns); 1183 } 1184 1185 static void 1186 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1187 { 1188 struct fec_enet_private *fep; 1189 struct bufdesc *bdp; 1190 unsigned short status; 1191 struct sk_buff *skb; 1192 struct fec_enet_priv_tx_q *txq; 1193 struct netdev_queue *nq; 1194 int index = 0; 1195 int entries_free; 1196 1197 fep = netdev_priv(ndev); 1198 1199 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1200 1201 txq = fep->tx_queue[queue_id]; 1202 /* get next bdp of dirty_tx */ 1203 nq = netdev_get_tx_queue(ndev, queue_id); 1204 bdp = txq->dirty_tx; 1205 1206 /* get next bdp of dirty_tx */ 1207 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1208 1209 while (bdp != READ_ONCE(txq->bd.cur)) { 1210 /* Order the load of bd.cur and cbd_sc */ 1211 rmb(); 1212 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1213 if (status & BD_ENET_TX_READY) 1214 break; 1215 1216 index = fec_enet_get_bd_index(bdp, &txq->bd); 1217 1218 skb = txq->tx_skbuff[index]; 1219 txq->tx_skbuff[index] = NULL; 1220 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1221 dma_unmap_single(&fep->pdev->dev, 1222 fec32_to_cpu(bdp->cbd_bufaddr), 1223 fec16_to_cpu(bdp->cbd_datlen), 1224 DMA_TO_DEVICE); 1225 bdp->cbd_bufaddr = cpu_to_fec32(0); 1226 if (!skb) 1227 goto skb_done; 1228 1229 /* Check for errors. */ 1230 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1231 BD_ENET_TX_RL | BD_ENET_TX_UN | 1232 BD_ENET_TX_CSL)) { 1233 ndev->stats.tx_errors++; 1234 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1235 ndev->stats.tx_heartbeat_errors++; 1236 if (status & BD_ENET_TX_LC) /* Late collision */ 1237 ndev->stats.tx_window_errors++; 1238 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1239 ndev->stats.tx_aborted_errors++; 1240 if (status & BD_ENET_TX_UN) /* Underrun */ 1241 ndev->stats.tx_fifo_errors++; 1242 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1243 ndev->stats.tx_carrier_errors++; 1244 } else { 1245 ndev->stats.tx_packets++; 1246 ndev->stats.tx_bytes += skb->len; 1247 } 1248 1249 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && 1250 fep->bufdesc_ex) { 1251 struct skb_shared_hwtstamps shhwtstamps; 1252 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1253 1254 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1255 skb_tstamp_tx(skb, &shhwtstamps); 1256 } 1257 1258 /* Deferred means some collisions occurred during transmit, 1259 * but we eventually sent the packet OK. 1260 */ 1261 if (status & BD_ENET_TX_DEF) 1262 ndev->stats.collisions++; 1263 1264 /* Free the sk buffer associated with this last transmit */ 1265 dev_kfree_skb_any(skb); 1266 skb_done: 1267 /* Make sure the update to bdp and tx_skbuff are performed 1268 * before dirty_tx 1269 */ 1270 wmb(); 1271 txq->dirty_tx = bdp; 1272 1273 /* Update pointer to next buffer descriptor to be transmitted */ 1274 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1275 1276 /* Since we have freed up a buffer, the ring is no longer full 1277 */ 1278 if (netif_tx_queue_stopped(nq)) { 1279 entries_free = fec_enet_get_free_txdesc_num(txq); 1280 if (entries_free >= txq->tx_wake_threshold) 1281 netif_tx_wake_queue(nq); 1282 } 1283 } 1284 1285 /* ERR006358: Keep the transmitter going */ 1286 if (bdp != txq->bd.cur && 1287 readl(txq->bd.reg_desc_active) == 0) 1288 writel(0, txq->bd.reg_desc_active); 1289 } 1290 1291 static void 1292 fec_enet_tx(struct net_device *ndev) 1293 { 1294 struct fec_enet_private *fep = netdev_priv(ndev); 1295 u16 queue_id; 1296 /* First process class A queue, then Class B and Best Effort queue */ 1297 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { 1298 clear_bit(queue_id, &fep->work_tx); 1299 fec_enet_tx_queue(ndev, queue_id); 1300 } 1301 return; 1302 } 1303 1304 static int 1305 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1306 { 1307 struct fec_enet_private *fep = netdev_priv(ndev); 1308 int off; 1309 1310 off = ((unsigned long)skb->data) & fep->rx_align; 1311 if (off) 1312 skb_reserve(skb, fep->rx_align + 1 - off); 1313 1314 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1315 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1316 if (net_ratelimit()) 1317 netdev_err(ndev, "Rx DMA memory map failed\n"); 1318 return -ENOMEM; 1319 } 1320 1321 return 0; 1322 } 1323 1324 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1325 struct bufdesc *bdp, u32 length, bool swap) 1326 { 1327 struct fec_enet_private *fep = netdev_priv(ndev); 1328 struct sk_buff *new_skb; 1329 1330 if (length > fep->rx_copybreak) 1331 return false; 1332 1333 new_skb = netdev_alloc_skb(ndev, length); 1334 if (!new_skb) 1335 return false; 1336 1337 dma_sync_single_for_cpu(&fep->pdev->dev, 1338 fec32_to_cpu(bdp->cbd_bufaddr), 1339 FEC_ENET_RX_FRSIZE - fep->rx_align, 1340 DMA_FROM_DEVICE); 1341 if (!swap) 1342 memcpy(new_skb->data, (*skb)->data, length); 1343 else 1344 swap_buffer2(new_skb->data, (*skb)->data, length); 1345 *skb = new_skb; 1346 1347 return true; 1348 } 1349 1350 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1351 * When we update through the ring, if the next incoming buffer has 1352 * not been given to the system, we just set the empty indicator, 1353 * effectively tossing the packet. 1354 */ 1355 static int 1356 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1357 { 1358 struct fec_enet_private *fep = netdev_priv(ndev); 1359 struct fec_enet_priv_rx_q *rxq; 1360 struct bufdesc *bdp; 1361 unsigned short status; 1362 struct sk_buff *skb_new = NULL; 1363 struct sk_buff *skb; 1364 ushort pkt_len; 1365 __u8 *data; 1366 int pkt_received = 0; 1367 struct bufdesc_ex *ebdp = NULL; 1368 bool vlan_packet_rcvd = false; 1369 u16 vlan_tag; 1370 int index = 0; 1371 bool is_copybreak; 1372 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1373 1374 #ifdef CONFIG_M532x 1375 flush_cache_all(); 1376 #endif 1377 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1378 rxq = fep->rx_queue[queue_id]; 1379 1380 /* First, grab all of the stats for the incoming packet. 1381 * These get messed up if we get called due to a busy condition. 1382 */ 1383 bdp = rxq->bd.cur; 1384 1385 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1386 1387 if (pkt_received >= budget) 1388 break; 1389 pkt_received++; 1390 1391 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1392 1393 /* Check for errors. */ 1394 status ^= BD_ENET_RX_LAST; 1395 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1396 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1397 BD_ENET_RX_CL)) { 1398 ndev->stats.rx_errors++; 1399 if (status & BD_ENET_RX_OV) { 1400 /* FIFO overrun */ 1401 ndev->stats.rx_fifo_errors++; 1402 goto rx_processing_done; 1403 } 1404 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1405 | BD_ENET_RX_LAST)) { 1406 /* Frame too long or too short. */ 1407 ndev->stats.rx_length_errors++; 1408 if (status & BD_ENET_RX_LAST) 1409 netdev_err(ndev, "rcv is not +last\n"); 1410 } 1411 if (status & BD_ENET_RX_CR) /* CRC Error */ 1412 ndev->stats.rx_crc_errors++; 1413 /* Report late collisions as a frame error. */ 1414 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1415 ndev->stats.rx_frame_errors++; 1416 goto rx_processing_done; 1417 } 1418 1419 /* Process the incoming frame. */ 1420 ndev->stats.rx_packets++; 1421 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1422 ndev->stats.rx_bytes += pkt_len; 1423 1424 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1425 skb = rxq->rx_skbuff[index]; 1426 1427 /* The packet length includes FCS, but we don't want to 1428 * include that when passing upstream as it messes up 1429 * bridging applications. 1430 */ 1431 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1432 need_swap); 1433 if (!is_copybreak) { 1434 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1435 if (unlikely(!skb_new)) { 1436 ndev->stats.rx_dropped++; 1437 goto rx_processing_done; 1438 } 1439 dma_unmap_single(&fep->pdev->dev, 1440 fec32_to_cpu(bdp->cbd_bufaddr), 1441 FEC_ENET_RX_FRSIZE - fep->rx_align, 1442 DMA_FROM_DEVICE); 1443 } 1444 1445 prefetch(skb->data - NET_IP_ALIGN); 1446 skb_put(skb, pkt_len - 4); 1447 data = skb->data; 1448 1449 if (!is_copybreak && need_swap) 1450 swap_buffer(data, pkt_len); 1451 1452 #if !defined(CONFIG_M5272) 1453 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1454 data = skb_pull_inline(skb, 2); 1455 #endif 1456 1457 /* Extract the enhanced buffer descriptor */ 1458 ebdp = NULL; 1459 if (fep->bufdesc_ex) 1460 ebdp = (struct bufdesc_ex *)bdp; 1461 1462 /* If this is a VLAN packet remove the VLAN Tag */ 1463 vlan_packet_rcvd = false; 1464 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1465 fep->bufdesc_ex && 1466 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1467 /* Push and remove the vlan tag */ 1468 struct vlan_hdr *vlan_header = 1469 (struct vlan_hdr *) (data + ETH_HLEN); 1470 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1471 1472 vlan_packet_rcvd = true; 1473 1474 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1475 skb_pull(skb, VLAN_HLEN); 1476 } 1477 1478 skb->protocol = eth_type_trans(skb, ndev); 1479 1480 /* Get receive timestamp from the skb */ 1481 if (fep->hwts_rx_en && fep->bufdesc_ex) 1482 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1483 skb_hwtstamps(skb)); 1484 1485 if (fep->bufdesc_ex && 1486 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1487 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1488 /* don't check it */ 1489 skb->ip_summed = CHECKSUM_UNNECESSARY; 1490 } else { 1491 skb_checksum_none_assert(skb); 1492 } 1493 } 1494 1495 /* Handle received VLAN packets */ 1496 if (vlan_packet_rcvd) 1497 __vlan_hwaccel_put_tag(skb, 1498 htons(ETH_P_8021Q), 1499 vlan_tag); 1500 1501 napi_gro_receive(&fep->napi, skb); 1502 1503 if (is_copybreak) { 1504 dma_sync_single_for_device(&fep->pdev->dev, 1505 fec32_to_cpu(bdp->cbd_bufaddr), 1506 FEC_ENET_RX_FRSIZE - fep->rx_align, 1507 DMA_FROM_DEVICE); 1508 } else { 1509 rxq->rx_skbuff[index] = skb_new; 1510 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1511 } 1512 1513 rx_processing_done: 1514 /* Clear the status flags for this buffer */ 1515 status &= ~BD_ENET_RX_STATS; 1516 1517 /* Mark the buffer empty */ 1518 status |= BD_ENET_RX_EMPTY; 1519 1520 if (fep->bufdesc_ex) { 1521 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1522 1523 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1524 ebdp->cbd_prot = 0; 1525 ebdp->cbd_bdu = 0; 1526 } 1527 /* Make sure the updates to rest of the descriptor are 1528 * performed before transferring ownership. 1529 */ 1530 wmb(); 1531 bdp->cbd_sc = cpu_to_fec16(status); 1532 1533 /* Update BD pointer to next entry */ 1534 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1535 1536 /* Doing this here will keep the FEC running while we process 1537 * incoming frames. On a heavily loaded network, we should be 1538 * able to keep up at the expense of system resources. 1539 */ 1540 writel(0, rxq->bd.reg_desc_active); 1541 } 1542 rxq->bd.cur = bdp; 1543 return pkt_received; 1544 } 1545 1546 static int 1547 fec_enet_rx(struct net_device *ndev, int budget) 1548 { 1549 int pkt_received = 0; 1550 u16 queue_id; 1551 struct fec_enet_private *fep = netdev_priv(ndev); 1552 1553 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { 1554 int ret; 1555 1556 ret = fec_enet_rx_queue(ndev, 1557 budget - pkt_received, queue_id); 1558 1559 if (ret < budget - pkt_received) 1560 clear_bit(queue_id, &fep->work_rx); 1561 1562 pkt_received += ret; 1563 } 1564 return pkt_received; 1565 } 1566 1567 static bool 1568 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) 1569 { 1570 if (int_events == 0) 1571 return false; 1572 1573 if (int_events & FEC_ENET_RXF_0) 1574 fep->work_rx |= (1 << 2); 1575 if (int_events & FEC_ENET_RXF_1) 1576 fep->work_rx |= (1 << 0); 1577 if (int_events & FEC_ENET_RXF_2) 1578 fep->work_rx |= (1 << 1); 1579 1580 if (int_events & FEC_ENET_TXF_0) 1581 fep->work_tx |= (1 << 2); 1582 if (int_events & FEC_ENET_TXF_1) 1583 fep->work_tx |= (1 << 0); 1584 if (int_events & FEC_ENET_TXF_2) 1585 fep->work_tx |= (1 << 1); 1586 1587 return true; 1588 } 1589 1590 static irqreturn_t 1591 fec_enet_interrupt(int irq, void *dev_id) 1592 { 1593 struct net_device *ndev = dev_id; 1594 struct fec_enet_private *fep = netdev_priv(ndev); 1595 uint int_events; 1596 irqreturn_t ret = IRQ_NONE; 1597 1598 int_events = readl(fep->hwp + FEC_IEVENT); 1599 writel(int_events, fep->hwp + FEC_IEVENT); 1600 fec_enet_collect_events(fep, int_events); 1601 1602 if ((fep->work_tx || fep->work_rx) && fep->link) { 1603 ret = IRQ_HANDLED; 1604 1605 if (napi_schedule_prep(&fep->napi)) { 1606 /* Disable the NAPI interrupts */ 1607 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK); 1608 __napi_schedule(&fep->napi); 1609 } 1610 } 1611 1612 if (int_events & FEC_ENET_MII) { 1613 ret = IRQ_HANDLED; 1614 complete(&fep->mdio_done); 1615 } 1616 return ret; 1617 } 1618 1619 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1620 { 1621 struct net_device *ndev = napi->dev; 1622 struct fec_enet_private *fep = netdev_priv(ndev); 1623 int pkts; 1624 1625 pkts = fec_enet_rx(ndev, budget); 1626 1627 fec_enet_tx(ndev); 1628 1629 if (pkts < budget) { 1630 napi_complete_done(napi, pkts); 1631 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1632 } 1633 return pkts; 1634 } 1635 1636 /* ------------------------------------------------------------------------- */ 1637 static void fec_get_mac(struct net_device *ndev) 1638 { 1639 struct fec_enet_private *fep = netdev_priv(ndev); 1640 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1641 unsigned char *iap, tmpaddr[ETH_ALEN]; 1642 1643 /* 1644 * try to get mac address in following order: 1645 * 1646 * 1) module parameter via kernel command line in form 1647 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1648 */ 1649 iap = macaddr; 1650 1651 /* 1652 * 2) from device tree data 1653 */ 1654 if (!is_valid_ether_addr(iap)) { 1655 struct device_node *np = fep->pdev->dev.of_node; 1656 if (np) { 1657 const char *mac = of_get_mac_address(np); 1658 if (mac) 1659 iap = (unsigned char *) mac; 1660 } 1661 } 1662 1663 /* 1664 * 3) from flash or fuse (via platform data) 1665 */ 1666 if (!is_valid_ether_addr(iap)) { 1667 #ifdef CONFIG_M5272 1668 if (FEC_FLASHMAC) 1669 iap = (unsigned char *)FEC_FLASHMAC; 1670 #else 1671 if (pdata) 1672 iap = (unsigned char *)&pdata->mac; 1673 #endif 1674 } 1675 1676 /* 1677 * 4) FEC mac registers set by bootloader 1678 */ 1679 if (!is_valid_ether_addr(iap)) { 1680 *((__be32 *) &tmpaddr[0]) = 1681 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1682 *((__be16 *) &tmpaddr[4]) = 1683 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1684 iap = &tmpaddr[0]; 1685 } 1686 1687 /* 1688 * 5) random mac address 1689 */ 1690 if (!is_valid_ether_addr(iap)) { 1691 /* Report it and use a random ethernet address instead */ 1692 netdev_err(ndev, "Invalid MAC address: %pM\n", iap); 1693 eth_hw_addr_random(ndev); 1694 netdev_info(ndev, "Using random MAC address: %pM\n", 1695 ndev->dev_addr); 1696 return; 1697 } 1698 1699 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1700 1701 /* Adjust MAC if using macaddr */ 1702 if (iap == macaddr) 1703 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1704 } 1705 1706 /* ------------------------------------------------------------------------- */ 1707 1708 /* 1709 * Phy section 1710 */ 1711 static void fec_enet_adjust_link(struct net_device *ndev) 1712 { 1713 struct fec_enet_private *fep = netdev_priv(ndev); 1714 struct phy_device *phy_dev = ndev->phydev; 1715 int status_change = 0; 1716 1717 /* 1718 * If the netdev is down, or is going down, we're not interested 1719 * in link state events, so just mark our idea of the link as down 1720 * and ignore the event. 1721 */ 1722 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1723 fep->link = 0; 1724 } else if (phy_dev->link) { 1725 if (!fep->link) { 1726 fep->link = phy_dev->link; 1727 status_change = 1; 1728 } 1729 1730 if (fep->full_duplex != phy_dev->duplex) { 1731 fep->full_duplex = phy_dev->duplex; 1732 status_change = 1; 1733 } 1734 1735 if (phy_dev->speed != fep->speed) { 1736 fep->speed = phy_dev->speed; 1737 status_change = 1; 1738 } 1739 1740 /* if any of the above changed restart the FEC */ 1741 if (status_change) { 1742 napi_disable(&fep->napi); 1743 netif_tx_lock_bh(ndev); 1744 fec_restart(ndev); 1745 netif_tx_wake_all_queues(ndev); 1746 netif_tx_unlock_bh(ndev); 1747 napi_enable(&fep->napi); 1748 } 1749 } else { 1750 if (fep->link) { 1751 napi_disable(&fep->napi); 1752 netif_tx_lock_bh(ndev); 1753 fec_stop(ndev); 1754 netif_tx_unlock_bh(ndev); 1755 napi_enable(&fep->napi); 1756 fep->link = phy_dev->link; 1757 status_change = 1; 1758 } 1759 } 1760 1761 if (status_change) 1762 phy_print_status(phy_dev); 1763 } 1764 1765 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1766 { 1767 struct fec_enet_private *fep = bus->priv; 1768 struct device *dev = &fep->pdev->dev; 1769 unsigned long time_left; 1770 int ret = 0; 1771 1772 ret = pm_runtime_get_sync(dev); 1773 if (ret < 0) 1774 return ret; 1775 1776 reinit_completion(&fep->mdio_done); 1777 1778 /* start a read op */ 1779 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | 1780 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1781 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1782 1783 /* wait for end of transfer */ 1784 time_left = wait_for_completion_timeout(&fep->mdio_done, 1785 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1786 if (time_left == 0) { 1787 netdev_err(fep->netdev, "MDIO read timeout\n"); 1788 ret = -ETIMEDOUT; 1789 goto out; 1790 } 1791 1792 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1793 1794 out: 1795 pm_runtime_mark_last_busy(dev); 1796 pm_runtime_put_autosuspend(dev); 1797 1798 return ret; 1799 } 1800 1801 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1802 u16 value) 1803 { 1804 struct fec_enet_private *fep = bus->priv; 1805 struct device *dev = &fep->pdev->dev; 1806 unsigned long time_left; 1807 int ret; 1808 1809 ret = pm_runtime_get_sync(dev); 1810 if (ret < 0) 1811 return ret; 1812 else 1813 ret = 0; 1814 1815 reinit_completion(&fep->mdio_done); 1816 1817 /* start a write op */ 1818 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | 1819 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1820 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1821 fep->hwp + FEC_MII_DATA); 1822 1823 /* wait for end of transfer */ 1824 time_left = wait_for_completion_timeout(&fep->mdio_done, 1825 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1826 if (time_left == 0) { 1827 netdev_err(fep->netdev, "MDIO write timeout\n"); 1828 ret = -ETIMEDOUT; 1829 } 1830 1831 pm_runtime_mark_last_busy(dev); 1832 pm_runtime_put_autosuspend(dev); 1833 1834 return ret; 1835 } 1836 1837 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1838 { 1839 struct fec_enet_private *fep = netdev_priv(ndev); 1840 int ret; 1841 1842 if (enable) { 1843 ret = clk_prepare_enable(fep->clk_ahb); 1844 if (ret) 1845 return ret; 1846 1847 ret = clk_prepare_enable(fep->clk_enet_out); 1848 if (ret) 1849 goto failed_clk_enet_out; 1850 1851 if (fep->clk_ptp) { 1852 mutex_lock(&fep->ptp_clk_mutex); 1853 ret = clk_prepare_enable(fep->clk_ptp); 1854 if (ret) { 1855 mutex_unlock(&fep->ptp_clk_mutex); 1856 goto failed_clk_ptp; 1857 } else { 1858 fep->ptp_clk_on = true; 1859 } 1860 mutex_unlock(&fep->ptp_clk_mutex); 1861 } 1862 1863 ret = clk_prepare_enable(fep->clk_ref); 1864 if (ret) 1865 goto failed_clk_ref; 1866 1867 phy_reset_after_clk_enable(ndev->phydev); 1868 } else { 1869 clk_disable_unprepare(fep->clk_ahb); 1870 clk_disable_unprepare(fep->clk_enet_out); 1871 if (fep->clk_ptp) { 1872 mutex_lock(&fep->ptp_clk_mutex); 1873 clk_disable_unprepare(fep->clk_ptp); 1874 fep->ptp_clk_on = false; 1875 mutex_unlock(&fep->ptp_clk_mutex); 1876 } 1877 clk_disable_unprepare(fep->clk_ref); 1878 } 1879 1880 return 0; 1881 1882 failed_clk_ref: 1883 if (fep->clk_ref) 1884 clk_disable_unprepare(fep->clk_ref); 1885 failed_clk_ptp: 1886 if (fep->clk_enet_out) 1887 clk_disable_unprepare(fep->clk_enet_out); 1888 failed_clk_enet_out: 1889 clk_disable_unprepare(fep->clk_ahb); 1890 1891 return ret; 1892 } 1893 1894 static int fec_enet_mii_probe(struct net_device *ndev) 1895 { 1896 struct fec_enet_private *fep = netdev_priv(ndev); 1897 struct phy_device *phy_dev = NULL; 1898 char mdio_bus_id[MII_BUS_ID_SIZE]; 1899 char phy_name[MII_BUS_ID_SIZE + 3]; 1900 int phy_id; 1901 int dev_id = fep->dev_id; 1902 1903 if (fep->phy_node) { 1904 phy_dev = of_phy_connect(ndev, fep->phy_node, 1905 &fec_enet_adjust_link, 0, 1906 fep->phy_interface); 1907 if (!phy_dev) { 1908 netdev_err(ndev, "Unable to connect to phy\n"); 1909 return -ENODEV; 1910 } 1911 } else { 1912 /* check for attached phy */ 1913 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 1914 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 1915 continue; 1916 if (dev_id--) 1917 continue; 1918 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 1919 break; 1920 } 1921 1922 if (phy_id >= PHY_MAX_ADDR) { 1923 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 1924 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 1925 phy_id = 0; 1926 } 1927 1928 snprintf(phy_name, sizeof(phy_name), 1929 PHY_ID_FMT, mdio_bus_id, phy_id); 1930 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 1931 fep->phy_interface); 1932 } 1933 1934 if (IS_ERR(phy_dev)) { 1935 netdev_err(ndev, "could not attach to PHY\n"); 1936 return PTR_ERR(phy_dev); 1937 } 1938 1939 /* mask with MAC supported features */ 1940 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 1941 phy_set_max_speed(phy_dev, 1000); 1942 phy_remove_link_mode(phy_dev, 1943 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1944 #if !defined(CONFIG_M5272) 1945 phy_support_sym_pause(phy_dev); 1946 #endif 1947 } 1948 else 1949 phy_set_max_speed(phy_dev, 100); 1950 1951 fep->link = 0; 1952 fep->full_duplex = 0; 1953 1954 phy_attached_info(phy_dev); 1955 1956 return 0; 1957 } 1958 1959 static int fec_enet_mii_init(struct platform_device *pdev) 1960 { 1961 static struct mii_bus *fec0_mii_bus; 1962 struct net_device *ndev = platform_get_drvdata(pdev); 1963 struct fec_enet_private *fep = netdev_priv(ndev); 1964 struct device_node *node; 1965 int err = -ENXIO; 1966 u32 mii_speed, holdtime; 1967 1968 /* 1969 * The i.MX28 dual fec interfaces are not equal. 1970 * Here are the differences: 1971 * 1972 * - fec0 supports MII & RMII modes while fec1 only supports RMII 1973 * - fec0 acts as the 1588 time master while fec1 is slave 1974 * - external phys can only be configured by fec0 1975 * 1976 * That is to say fec1 can not work independently. It only works 1977 * when fec0 is working. The reason behind this design is that the 1978 * second interface is added primarily for Switch mode. 1979 * 1980 * Because of the last point above, both phys are attached on fec0 1981 * mdio interface in board design, and need to be configured by 1982 * fec0 mii_bus. 1983 */ 1984 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 1985 /* fec1 uses fec0 mii_bus */ 1986 if (mii_cnt && fec0_mii_bus) { 1987 fep->mii_bus = fec0_mii_bus; 1988 mii_cnt++; 1989 return 0; 1990 } 1991 return -ENOENT; 1992 } 1993 1994 /* 1995 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) 1996 * 1997 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 1998 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 1999 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2000 * document. 2001 */ 2002 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); 2003 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2004 mii_speed--; 2005 if (mii_speed > 63) { 2006 dev_err(&pdev->dev, 2007 "fec clock (%lu) too fast to get right mii speed\n", 2008 clk_get_rate(fep->clk_ipg)); 2009 err = -EINVAL; 2010 goto err_out; 2011 } 2012 2013 /* 2014 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2015 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2016 * versions are RAZ there, so just ignore the difference and write the 2017 * register always. 2018 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2019 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2020 * output. 2021 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2022 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2023 * holdtime cannot result in a value greater than 3. 2024 */ 2025 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2026 2027 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2028 2029 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2030 2031 fep->mii_bus = mdiobus_alloc(); 2032 if (fep->mii_bus == NULL) { 2033 err = -ENOMEM; 2034 goto err_out; 2035 } 2036 2037 fep->mii_bus->name = "fec_enet_mii_bus"; 2038 fep->mii_bus->read = fec_enet_mdio_read; 2039 fep->mii_bus->write = fec_enet_mdio_write; 2040 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2041 pdev->name, fep->dev_id + 1); 2042 fep->mii_bus->priv = fep; 2043 fep->mii_bus->parent = &pdev->dev; 2044 2045 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2046 err = of_mdiobus_register(fep->mii_bus, node); 2047 of_node_put(node); 2048 if (err) 2049 goto err_out_free_mdiobus; 2050 2051 mii_cnt++; 2052 2053 /* save fec0 mii_bus */ 2054 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2055 fec0_mii_bus = fep->mii_bus; 2056 2057 return 0; 2058 2059 err_out_free_mdiobus: 2060 mdiobus_free(fep->mii_bus); 2061 err_out: 2062 return err; 2063 } 2064 2065 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2066 { 2067 if (--mii_cnt == 0) { 2068 mdiobus_unregister(fep->mii_bus); 2069 mdiobus_free(fep->mii_bus); 2070 } 2071 } 2072 2073 static void fec_enet_get_drvinfo(struct net_device *ndev, 2074 struct ethtool_drvinfo *info) 2075 { 2076 struct fec_enet_private *fep = netdev_priv(ndev); 2077 2078 strlcpy(info->driver, fep->pdev->dev.driver->name, 2079 sizeof(info->driver)); 2080 strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); 2081 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2082 } 2083 2084 static int fec_enet_get_regs_len(struct net_device *ndev) 2085 { 2086 struct fec_enet_private *fep = netdev_priv(ndev); 2087 struct resource *r; 2088 int s = 0; 2089 2090 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2091 if (r) 2092 s = resource_size(r); 2093 2094 return s; 2095 } 2096 2097 /* List of registers that can be safety be read to dump them with ethtool */ 2098 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2099 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2100 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2101 static u32 fec_enet_register_offset[] = { 2102 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2103 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2104 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2105 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2106 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2107 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2108 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2109 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2110 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2111 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2112 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2113 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2114 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2115 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2116 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2117 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2118 RMON_T_P_GTE2048, RMON_T_OCTETS, 2119 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2120 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2121 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2122 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2123 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2124 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2125 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2126 RMON_R_P_GTE2048, RMON_R_OCTETS, 2127 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2128 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2129 }; 2130 #else 2131 static u32 fec_enet_register_offset[] = { 2132 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2133 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2134 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2135 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2136 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2137 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2138 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2139 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2140 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2141 }; 2142 #endif 2143 2144 static void fec_enet_get_regs(struct net_device *ndev, 2145 struct ethtool_regs *regs, void *regbuf) 2146 { 2147 struct fec_enet_private *fep = netdev_priv(ndev); 2148 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2149 u32 *buf = (u32 *)regbuf; 2150 u32 i, off; 2151 2152 memset(buf, 0, regs->len); 2153 2154 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2155 off = fec_enet_register_offset[i]; 2156 2157 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2158 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2159 continue; 2160 2161 off >>= 2; 2162 buf[off] = readl(&theregs[off]); 2163 } 2164 } 2165 2166 static int fec_enet_get_ts_info(struct net_device *ndev, 2167 struct ethtool_ts_info *info) 2168 { 2169 struct fec_enet_private *fep = netdev_priv(ndev); 2170 2171 if (fep->bufdesc_ex) { 2172 2173 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2174 SOF_TIMESTAMPING_RX_SOFTWARE | 2175 SOF_TIMESTAMPING_SOFTWARE | 2176 SOF_TIMESTAMPING_TX_HARDWARE | 2177 SOF_TIMESTAMPING_RX_HARDWARE | 2178 SOF_TIMESTAMPING_RAW_HARDWARE; 2179 if (fep->ptp_clock) 2180 info->phc_index = ptp_clock_index(fep->ptp_clock); 2181 else 2182 info->phc_index = -1; 2183 2184 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2185 (1 << HWTSTAMP_TX_ON); 2186 2187 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2188 (1 << HWTSTAMP_FILTER_ALL); 2189 return 0; 2190 } else { 2191 return ethtool_op_get_ts_info(ndev, info); 2192 } 2193 } 2194 2195 #if !defined(CONFIG_M5272) 2196 2197 static void fec_enet_get_pauseparam(struct net_device *ndev, 2198 struct ethtool_pauseparam *pause) 2199 { 2200 struct fec_enet_private *fep = netdev_priv(ndev); 2201 2202 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2203 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2204 pause->rx_pause = pause->tx_pause; 2205 } 2206 2207 static int fec_enet_set_pauseparam(struct net_device *ndev, 2208 struct ethtool_pauseparam *pause) 2209 { 2210 struct fec_enet_private *fep = netdev_priv(ndev); 2211 2212 if (!ndev->phydev) 2213 return -ENODEV; 2214 2215 if (pause->tx_pause != pause->rx_pause) { 2216 netdev_info(ndev, 2217 "hardware only support enable/disable both tx and rx"); 2218 return -EINVAL; 2219 } 2220 2221 fep->pause_flag = 0; 2222 2223 /* tx pause must be same as rx pause */ 2224 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2225 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2226 2227 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2228 pause->autoneg); 2229 2230 if (pause->autoneg) { 2231 if (netif_running(ndev)) 2232 fec_stop(ndev); 2233 phy_start_aneg(ndev->phydev); 2234 } 2235 if (netif_running(ndev)) { 2236 napi_disable(&fep->napi); 2237 netif_tx_lock_bh(ndev); 2238 fec_restart(ndev); 2239 netif_tx_wake_all_queues(ndev); 2240 netif_tx_unlock_bh(ndev); 2241 napi_enable(&fep->napi); 2242 } 2243 2244 return 0; 2245 } 2246 2247 static const struct fec_stat { 2248 char name[ETH_GSTRING_LEN]; 2249 u16 offset; 2250 } fec_stats[] = { 2251 /* RMON TX */ 2252 { "tx_dropped", RMON_T_DROP }, 2253 { "tx_packets", RMON_T_PACKETS }, 2254 { "tx_broadcast", RMON_T_BC_PKT }, 2255 { "tx_multicast", RMON_T_MC_PKT }, 2256 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2257 { "tx_undersize", RMON_T_UNDERSIZE }, 2258 { "tx_oversize", RMON_T_OVERSIZE }, 2259 { "tx_fragment", RMON_T_FRAG }, 2260 { "tx_jabber", RMON_T_JAB }, 2261 { "tx_collision", RMON_T_COL }, 2262 { "tx_64byte", RMON_T_P64 }, 2263 { "tx_65to127byte", RMON_T_P65TO127 }, 2264 { "tx_128to255byte", RMON_T_P128TO255 }, 2265 { "tx_256to511byte", RMON_T_P256TO511 }, 2266 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2267 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2268 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2269 { "tx_octets", RMON_T_OCTETS }, 2270 2271 /* IEEE TX */ 2272 { "IEEE_tx_drop", IEEE_T_DROP }, 2273 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2274 { "IEEE_tx_1col", IEEE_T_1COL }, 2275 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2276 { "IEEE_tx_def", IEEE_T_DEF }, 2277 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2278 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2279 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2280 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2281 { "IEEE_tx_sqe", IEEE_T_SQE }, 2282 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2283 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2284 2285 /* RMON RX */ 2286 { "rx_packets", RMON_R_PACKETS }, 2287 { "rx_broadcast", RMON_R_BC_PKT }, 2288 { "rx_multicast", RMON_R_MC_PKT }, 2289 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2290 { "rx_undersize", RMON_R_UNDERSIZE }, 2291 { "rx_oversize", RMON_R_OVERSIZE }, 2292 { "rx_fragment", RMON_R_FRAG }, 2293 { "rx_jabber", RMON_R_JAB }, 2294 { "rx_64byte", RMON_R_P64 }, 2295 { "rx_65to127byte", RMON_R_P65TO127 }, 2296 { "rx_128to255byte", RMON_R_P128TO255 }, 2297 { "rx_256to511byte", RMON_R_P256TO511 }, 2298 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2299 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2300 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2301 { "rx_octets", RMON_R_OCTETS }, 2302 2303 /* IEEE RX */ 2304 { "IEEE_rx_drop", IEEE_R_DROP }, 2305 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2306 { "IEEE_rx_crc", IEEE_R_CRC }, 2307 { "IEEE_rx_align", IEEE_R_ALIGN }, 2308 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2309 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2310 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2311 }; 2312 2313 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2314 2315 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2316 { 2317 struct fec_enet_private *fep = netdev_priv(dev); 2318 int i; 2319 2320 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2321 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2322 } 2323 2324 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2325 struct ethtool_stats *stats, u64 *data) 2326 { 2327 struct fec_enet_private *fep = netdev_priv(dev); 2328 2329 if (netif_running(dev)) 2330 fec_enet_update_ethtool_stats(dev); 2331 2332 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2333 } 2334 2335 static void fec_enet_get_strings(struct net_device *netdev, 2336 u32 stringset, u8 *data) 2337 { 2338 int i; 2339 switch (stringset) { 2340 case ETH_SS_STATS: 2341 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2342 memcpy(data + i * ETH_GSTRING_LEN, 2343 fec_stats[i].name, ETH_GSTRING_LEN); 2344 break; 2345 } 2346 } 2347 2348 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2349 { 2350 switch (sset) { 2351 case ETH_SS_STATS: 2352 return ARRAY_SIZE(fec_stats); 2353 default: 2354 return -EOPNOTSUPP; 2355 } 2356 } 2357 2358 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2359 { 2360 struct fec_enet_private *fep = netdev_priv(dev); 2361 int i; 2362 2363 /* Disable MIB statistics counters */ 2364 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2365 2366 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2367 writel(0, fep->hwp + fec_stats[i].offset); 2368 2369 /* Don't disable MIB statistics counters */ 2370 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2371 } 2372 2373 #else /* !defined(CONFIG_M5272) */ 2374 #define FEC_STATS_SIZE 0 2375 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2376 { 2377 } 2378 2379 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2380 { 2381 } 2382 #endif /* !defined(CONFIG_M5272) */ 2383 2384 /* ITR clock source is enet system clock (clk_ahb). 2385 * TCTT unit is cycle_ns * 64 cycle 2386 * So, the ICTT value = X us / (cycle_ns * 64) 2387 */ 2388 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2389 { 2390 struct fec_enet_private *fep = netdev_priv(ndev); 2391 2392 return us * (fep->itr_clk_rate / 64000) / 1000; 2393 } 2394 2395 /* Set threshold for interrupt coalescing */ 2396 static void fec_enet_itr_coal_set(struct net_device *ndev) 2397 { 2398 struct fec_enet_private *fep = netdev_priv(ndev); 2399 int rx_itr, tx_itr; 2400 2401 /* Must be greater than zero to avoid unpredictable behavior */ 2402 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2403 !fep->tx_time_itr || !fep->tx_pkts_itr) 2404 return; 2405 2406 /* Select enet system clock as Interrupt Coalescing 2407 * timer Clock Source 2408 */ 2409 rx_itr = FEC_ITR_CLK_SEL; 2410 tx_itr = FEC_ITR_CLK_SEL; 2411 2412 /* set ICFT and ICTT */ 2413 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2414 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2415 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2416 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2417 2418 rx_itr |= FEC_ITR_EN; 2419 tx_itr |= FEC_ITR_EN; 2420 2421 writel(tx_itr, fep->hwp + FEC_TXIC0); 2422 writel(rx_itr, fep->hwp + FEC_RXIC0); 2423 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2424 writel(tx_itr, fep->hwp + FEC_TXIC1); 2425 writel(rx_itr, fep->hwp + FEC_RXIC1); 2426 writel(tx_itr, fep->hwp + FEC_TXIC2); 2427 writel(rx_itr, fep->hwp + FEC_RXIC2); 2428 } 2429 } 2430 2431 static int 2432 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2433 { 2434 struct fec_enet_private *fep = netdev_priv(ndev); 2435 2436 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2437 return -EOPNOTSUPP; 2438 2439 ec->rx_coalesce_usecs = fep->rx_time_itr; 2440 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2441 2442 ec->tx_coalesce_usecs = fep->tx_time_itr; 2443 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2444 2445 return 0; 2446 } 2447 2448 static int 2449 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2450 { 2451 struct fec_enet_private *fep = netdev_priv(ndev); 2452 unsigned int cycle; 2453 2454 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2455 return -EOPNOTSUPP; 2456 2457 if (ec->rx_max_coalesced_frames > 255) { 2458 pr_err("Rx coalesced frames exceed hardware limitation\n"); 2459 return -EINVAL; 2460 } 2461 2462 if (ec->tx_max_coalesced_frames > 255) { 2463 pr_err("Tx coalesced frame exceed hardware limitation\n"); 2464 return -EINVAL; 2465 } 2466 2467 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr); 2468 if (cycle > 0xFFFF) { 2469 pr_err("Rx coalesced usec exceed hardware limitation\n"); 2470 return -EINVAL; 2471 } 2472 2473 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr); 2474 if (cycle > 0xFFFF) { 2475 pr_err("Rx coalesced usec exceed hardware limitation\n"); 2476 return -EINVAL; 2477 } 2478 2479 fep->rx_time_itr = ec->rx_coalesce_usecs; 2480 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2481 2482 fep->tx_time_itr = ec->tx_coalesce_usecs; 2483 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2484 2485 fec_enet_itr_coal_set(ndev); 2486 2487 return 0; 2488 } 2489 2490 static void fec_enet_itr_coal_init(struct net_device *ndev) 2491 { 2492 struct ethtool_coalesce ec; 2493 2494 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2495 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2496 2497 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2498 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2499 2500 fec_enet_set_coalesce(ndev, &ec); 2501 } 2502 2503 static int fec_enet_get_tunable(struct net_device *netdev, 2504 const struct ethtool_tunable *tuna, 2505 void *data) 2506 { 2507 struct fec_enet_private *fep = netdev_priv(netdev); 2508 int ret = 0; 2509 2510 switch (tuna->id) { 2511 case ETHTOOL_RX_COPYBREAK: 2512 *(u32 *)data = fep->rx_copybreak; 2513 break; 2514 default: 2515 ret = -EINVAL; 2516 break; 2517 } 2518 2519 return ret; 2520 } 2521 2522 static int fec_enet_set_tunable(struct net_device *netdev, 2523 const struct ethtool_tunable *tuna, 2524 const void *data) 2525 { 2526 struct fec_enet_private *fep = netdev_priv(netdev); 2527 int ret = 0; 2528 2529 switch (tuna->id) { 2530 case ETHTOOL_RX_COPYBREAK: 2531 fep->rx_copybreak = *(u32 *)data; 2532 break; 2533 default: 2534 ret = -EINVAL; 2535 break; 2536 } 2537 2538 return ret; 2539 } 2540 2541 static void 2542 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2543 { 2544 struct fec_enet_private *fep = netdev_priv(ndev); 2545 2546 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2547 wol->supported = WAKE_MAGIC; 2548 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2549 } else { 2550 wol->supported = wol->wolopts = 0; 2551 } 2552 } 2553 2554 static int 2555 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2556 { 2557 struct fec_enet_private *fep = netdev_priv(ndev); 2558 2559 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2560 return -EINVAL; 2561 2562 if (wol->wolopts & ~WAKE_MAGIC) 2563 return -EINVAL; 2564 2565 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2566 if (device_may_wakeup(&ndev->dev)) { 2567 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2568 if (fep->irq[0] > 0) 2569 enable_irq_wake(fep->irq[0]); 2570 } else { 2571 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2572 if (fep->irq[0] > 0) 2573 disable_irq_wake(fep->irq[0]); 2574 } 2575 2576 return 0; 2577 } 2578 2579 static const struct ethtool_ops fec_enet_ethtool_ops = { 2580 .get_drvinfo = fec_enet_get_drvinfo, 2581 .get_regs_len = fec_enet_get_regs_len, 2582 .get_regs = fec_enet_get_regs, 2583 .nway_reset = phy_ethtool_nway_reset, 2584 .get_link = ethtool_op_get_link, 2585 .get_coalesce = fec_enet_get_coalesce, 2586 .set_coalesce = fec_enet_set_coalesce, 2587 #ifndef CONFIG_M5272 2588 .get_pauseparam = fec_enet_get_pauseparam, 2589 .set_pauseparam = fec_enet_set_pauseparam, 2590 .get_strings = fec_enet_get_strings, 2591 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2592 .get_sset_count = fec_enet_get_sset_count, 2593 #endif 2594 .get_ts_info = fec_enet_get_ts_info, 2595 .get_tunable = fec_enet_get_tunable, 2596 .set_tunable = fec_enet_set_tunable, 2597 .get_wol = fec_enet_get_wol, 2598 .set_wol = fec_enet_set_wol, 2599 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2600 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2601 }; 2602 2603 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2604 { 2605 struct fec_enet_private *fep = netdev_priv(ndev); 2606 struct phy_device *phydev = ndev->phydev; 2607 2608 if (!netif_running(ndev)) 2609 return -EINVAL; 2610 2611 if (!phydev) 2612 return -ENODEV; 2613 2614 if (fep->bufdesc_ex) { 2615 if (cmd == SIOCSHWTSTAMP) 2616 return fec_ptp_set(ndev, rq); 2617 if (cmd == SIOCGHWTSTAMP) 2618 return fec_ptp_get(ndev, rq); 2619 } 2620 2621 return phy_mii_ioctl(phydev, rq, cmd); 2622 } 2623 2624 static void fec_enet_free_buffers(struct net_device *ndev) 2625 { 2626 struct fec_enet_private *fep = netdev_priv(ndev); 2627 unsigned int i; 2628 struct sk_buff *skb; 2629 struct bufdesc *bdp; 2630 struct fec_enet_priv_tx_q *txq; 2631 struct fec_enet_priv_rx_q *rxq; 2632 unsigned int q; 2633 2634 for (q = 0; q < fep->num_rx_queues; q++) { 2635 rxq = fep->rx_queue[q]; 2636 bdp = rxq->bd.base; 2637 for (i = 0; i < rxq->bd.ring_size; i++) { 2638 skb = rxq->rx_skbuff[i]; 2639 rxq->rx_skbuff[i] = NULL; 2640 if (skb) { 2641 dma_unmap_single(&fep->pdev->dev, 2642 fec32_to_cpu(bdp->cbd_bufaddr), 2643 FEC_ENET_RX_FRSIZE - fep->rx_align, 2644 DMA_FROM_DEVICE); 2645 dev_kfree_skb(skb); 2646 } 2647 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2648 } 2649 } 2650 2651 for (q = 0; q < fep->num_tx_queues; q++) { 2652 txq = fep->tx_queue[q]; 2653 bdp = txq->bd.base; 2654 for (i = 0; i < txq->bd.ring_size; i++) { 2655 kfree(txq->tx_bounce[i]); 2656 txq->tx_bounce[i] = NULL; 2657 skb = txq->tx_skbuff[i]; 2658 txq->tx_skbuff[i] = NULL; 2659 dev_kfree_skb(skb); 2660 } 2661 } 2662 } 2663 2664 static void fec_enet_free_queue(struct net_device *ndev) 2665 { 2666 struct fec_enet_private *fep = netdev_priv(ndev); 2667 int i; 2668 struct fec_enet_priv_tx_q *txq; 2669 2670 for (i = 0; i < fep->num_tx_queues; i++) 2671 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2672 txq = fep->tx_queue[i]; 2673 dma_free_coherent(&fep->pdev->dev, 2674 txq->bd.ring_size * TSO_HEADER_SIZE, 2675 txq->tso_hdrs, 2676 txq->tso_hdrs_dma); 2677 } 2678 2679 for (i = 0; i < fep->num_rx_queues; i++) 2680 kfree(fep->rx_queue[i]); 2681 for (i = 0; i < fep->num_tx_queues; i++) 2682 kfree(fep->tx_queue[i]); 2683 } 2684 2685 static int fec_enet_alloc_queue(struct net_device *ndev) 2686 { 2687 struct fec_enet_private *fep = netdev_priv(ndev); 2688 int i; 2689 int ret = 0; 2690 struct fec_enet_priv_tx_q *txq; 2691 2692 for (i = 0; i < fep->num_tx_queues; i++) { 2693 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2694 if (!txq) { 2695 ret = -ENOMEM; 2696 goto alloc_failed; 2697 } 2698 2699 fep->tx_queue[i] = txq; 2700 txq->bd.ring_size = TX_RING_SIZE; 2701 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2702 2703 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2704 txq->tx_wake_threshold = 2705 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2706 2707 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2708 txq->bd.ring_size * TSO_HEADER_SIZE, 2709 &txq->tso_hdrs_dma, 2710 GFP_KERNEL); 2711 if (!txq->tso_hdrs) { 2712 ret = -ENOMEM; 2713 goto alloc_failed; 2714 } 2715 } 2716 2717 for (i = 0; i < fep->num_rx_queues; i++) { 2718 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2719 GFP_KERNEL); 2720 if (!fep->rx_queue[i]) { 2721 ret = -ENOMEM; 2722 goto alloc_failed; 2723 } 2724 2725 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2726 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2727 } 2728 return ret; 2729 2730 alloc_failed: 2731 fec_enet_free_queue(ndev); 2732 return ret; 2733 } 2734 2735 static int 2736 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2737 { 2738 struct fec_enet_private *fep = netdev_priv(ndev); 2739 unsigned int i; 2740 struct sk_buff *skb; 2741 struct bufdesc *bdp; 2742 struct fec_enet_priv_rx_q *rxq; 2743 2744 rxq = fep->rx_queue[queue]; 2745 bdp = rxq->bd.base; 2746 for (i = 0; i < rxq->bd.ring_size; i++) { 2747 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2748 if (!skb) 2749 goto err_alloc; 2750 2751 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2752 dev_kfree_skb(skb); 2753 goto err_alloc; 2754 } 2755 2756 rxq->rx_skbuff[i] = skb; 2757 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2758 2759 if (fep->bufdesc_ex) { 2760 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2761 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2762 } 2763 2764 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2765 } 2766 2767 /* Set the last buffer to wrap. */ 2768 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2769 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2770 return 0; 2771 2772 err_alloc: 2773 fec_enet_free_buffers(ndev); 2774 return -ENOMEM; 2775 } 2776 2777 static int 2778 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2779 { 2780 struct fec_enet_private *fep = netdev_priv(ndev); 2781 unsigned int i; 2782 struct bufdesc *bdp; 2783 struct fec_enet_priv_tx_q *txq; 2784 2785 txq = fep->tx_queue[queue]; 2786 bdp = txq->bd.base; 2787 for (i = 0; i < txq->bd.ring_size; i++) { 2788 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2789 if (!txq->tx_bounce[i]) 2790 goto err_alloc; 2791 2792 bdp->cbd_sc = cpu_to_fec16(0); 2793 bdp->cbd_bufaddr = cpu_to_fec32(0); 2794 2795 if (fep->bufdesc_ex) { 2796 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2797 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2798 } 2799 2800 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2801 } 2802 2803 /* Set the last buffer to wrap. */ 2804 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2805 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2806 2807 return 0; 2808 2809 err_alloc: 2810 fec_enet_free_buffers(ndev); 2811 return -ENOMEM; 2812 } 2813 2814 static int fec_enet_alloc_buffers(struct net_device *ndev) 2815 { 2816 struct fec_enet_private *fep = netdev_priv(ndev); 2817 unsigned int i; 2818 2819 for (i = 0; i < fep->num_rx_queues; i++) 2820 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2821 return -ENOMEM; 2822 2823 for (i = 0; i < fep->num_tx_queues; i++) 2824 if (fec_enet_alloc_txq_buffers(ndev, i)) 2825 return -ENOMEM; 2826 return 0; 2827 } 2828 2829 static int 2830 fec_enet_open(struct net_device *ndev) 2831 { 2832 struct fec_enet_private *fep = netdev_priv(ndev); 2833 int ret; 2834 bool reset_again; 2835 2836 ret = pm_runtime_get_sync(&fep->pdev->dev); 2837 if (ret < 0) 2838 return ret; 2839 2840 pinctrl_pm_select_default_state(&fep->pdev->dev); 2841 ret = fec_enet_clk_enable(ndev, true); 2842 if (ret) 2843 goto clk_enable; 2844 2845 /* During the first fec_enet_open call the PHY isn't probed at this 2846 * point. Therefore the phy_reset_after_clk_enable() call within 2847 * fec_enet_clk_enable() fails. As we need this reset in order to be 2848 * sure the PHY is working correctly we check if we need to reset again 2849 * later when the PHY is probed 2850 */ 2851 if (ndev->phydev && ndev->phydev->drv) 2852 reset_again = false; 2853 else 2854 reset_again = true; 2855 2856 /* I should reset the ring buffers here, but I don't yet know 2857 * a simple way to do that. 2858 */ 2859 2860 ret = fec_enet_alloc_buffers(ndev); 2861 if (ret) 2862 goto err_enet_alloc; 2863 2864 /* Init MAC prior to mii bus probe */ 2865 fec_restart(ndev); 2866 2867 /* Probe and connect to PHY when open the interface */ 2868 ret = fec_enet_mii_probe(ndev); 2869 if (ret) 2870 goto err_enet_mii_probe; 2871 2872 /* Call phy_reset_after_clk_enable() again if it failed during 2873 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 2874 */ 2875 if (reset_again) 2876 phy_reset_after_clk_enable(ndev->phydev); 2877 2878 if (fep->quirks & FEC_QUIRK_ERR006687) 2879 imx6q_cpuidle_fec_irqs_used(); 2880 2881 napi_enable(&fep->napi); 2882 phy_start(ndev->phydev); 2883 netif_tx_start_all_queues(ndev); 2884 2885 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 2886 FEC_WOL_FLAG_ENABLE); 2887 2888 return 0; 2889 2890 err_enet_mii_probe: 2891 fec_enet_free_buffers(ndev); 2892 err_enet_alloc: 2893 fec_enet_clk_enable(ndev, false); 2894 clk_enable: 2895 pm_runtime_mark_last_busy(&fep->pdev->dev); 2896 pm_runtime_put_autosuspend(&fep->pdev->dev); 2897 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2898 return ret; 2899 } 2900 2901 static int 2902 fec_enet_close(struct net_device *ndev) 2903 { 2904 struct fec_enet_private *fep = netdev_priv(ndev); 2905 2906 phy_stop(ndev->phydev); 2907 2908 if (netif_device_present(ndev)) { 2909 napi_disable(&fep->napi); 2910 netif_tx_disable(ndev); 2911 fec_stop(ndev); 2912 } 2913 2914 phy_disconnect(ndev->phydev); 2915 2916 if (fep->quirks & FEC_QUIRK_ERR006687) 2917 imx6q_cpuidle_fec_irqs_unused(); 2918 2919 fec_enet_update_ethtool_stats(ndev); 2920 2921 fec_enet_clk_enable(ndev, false); 2922 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2923 pm_runtime_mark_last_busy(&fep->pdev->dev); 2924 pm_runtime_put_autosuspend(&fep->pdev->dev); 2925 2926 fec_enet_free_buffers(ndev); 2927 2928 return 0; 2929 } 2930 2931 /* Set or clear the multicast filter for this adaptor. 2932 * Skeleton taken from sunlance driver. 2933 * The CPM Ethernet implementation allows Multicast as well as individual 2934 * MAC address filtering. Some of the drivers check to make sure it is 2935 * a group multicast address, and discard those that are not. I guess I 2936 * will do the same for now, but just remove the test if you want 2937 * individual filtering as well (do the upper net layers want or support 2938 * this kind of feature?). 2939 */ 2940 2941 #define FEC_HASH_BITS 6 /* #bits in hash */ 2942 2943 static void set_multicast_list(struct net_device *ndev) 2944 { 2945 struct fec_enet_private *fep = netdev_priv(ndev); 2946 struct netdev_hw_addr *ha; 2947 unsigned int crc, tmp; 2948 unsigned char hash; 2949 unsigned int hash_high = 0, hash_low = 0; 2950 2951 if (ndev->flags & IFF_PROMISC) { 2952 tmp = readl(fep->hwp + FEC_R_CNTRL); 2953 tmp |= 0x8; 2954 writel(tmp, fep->hwp + FEC_R_CNTRL); 2955 return; 2956 } 2957 2958 tmp = readl(fep->hwp + FEC_R_CNTRL); 2959 tmp &= ~0x8; 2960 writel(tmp, fep->hwp + FEC_R_CNTRL); 2961 2962 if (ndev->flags & IFF_ALLMULTI) { 2963 /* Catch all multicast addresses, so set the 2964 * filter to all 1's 2965 */ 2966 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2967 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2968 2969 return; 2970 } 2971 2972 /* Add the addresses in hash register */ 2973 netdev_for_each_mc_addr(ha, ndev) { 2974 /* calculate crc32 value of mac address */ 2975 crc = ether_crc_le(ndev->addr_len, ha->addr); 2976 2977 /* only upper 6 bits (FEC_HASH_BITS) are used 2978 * which point to specific bit in the hash registers 2979 */ 2980 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 2981 2982 if (hash > 31) 2983 hash_high |= 1 << (hash - 32); 2984 else 2985 hash_low |= 1 << hash; 2986 } 2987 2988 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2989 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2990 } 2991 2992 /* Set a MAC change in hardware. */ 2993 static int 2994 fec_set_mac_address(struct net_device *ndev, void *p) 2995 { 2996 struct fec_enet_private *fep = netdev_priv(ndev); 2997 struct sockaddr *addr = p; 2998 2999 if (addr) { 3000 if (!is_valid_ether_addr(addr->sa_data)) 3001 return -EADDRNOTAVAIL; 3002 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3003 } 3004 3005 /* Add netif status check here to avoid system hang in below case: 3006 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3007 * After ethx down, fec all clocks are gated off and then register 3008 * access causes system hang. 3009 */ 3010 if (!netif_running(ndev)) 3011 return 0; 3012 3013 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3014 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3015 fep->hwp + FEC_ADDR_LOW); 3016 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3017 fep->hwp + FEC_ADDR_HIGH); 3018 return 0; 3019 } 3020 3021 #ifdef CONFIG_NET_POLL_CONTROLLER 3022 /** 3023 * fec_poll_controller - FEC Poll controller function 3024 * @dev: The FEC network adapter 3025 * 3026 * Polled functionality used by netconsole and others in non interrupt mode 3027 * 3028 */ 3029 static void fec_poll_controller(struct net_device *dev) 3030 { 3031 int i; 3032 struct fec_enet_private *fep = netdev_priv(dev); 3033 3034 for (i = 0; i < FEC_IRQ_NUM; i++) { 3035 if (fep->irq[i] > 0) { 3036 disable_irq(fep->irq[i]); 3037 fec_enet_interrupt(fep->irq[i], dev); 3038 enable_irq(fep->irq[i]); 3039 } 3040 } 3041 } 3042 #endif 3043 3044 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3045 netdev_features_t features) 3046 { 3047 struct fec_enet_private *fep = netdev_priv(netdev); 3048 netdev_features_t changed = features ^ netdev->features; 3049 3050 netdev->features = features; 3051 3052 /* Receive checksum has been changed */ 3053 if (changed & NETIF_F_RXCSUM) { 3054 if (features & NETIF_F_RXCSUM) 3055 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3056 else 3057 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3058 } 3059 } 3060 3061 static int fec_set_features(struct net_device *netdev, 3062 netdev_features_t features) 3063 { 3064 struct fec_enet_private *fep = netdev_priv(netdev); 3065 netdev_features_t changed = features ^ netdev->features; 3066 3067 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3068 napi_disable(&fep->napi); 3069 netif_tx_lock_bh(netdev); 3070 fec_stop(netdev); 3071 fec_enet_set_netdev_features(netdev, features); 3072 fec_restart(netdev); 3073 netif_tx_wake_all_queues(netdev); 3074 netif_tx_unlock_bh(netdev); 3075 napi_enable(&fep->napi); 3076 } else { 3077 fec_enet_set_netdev_features(netdev, features); 3078 } 3079 3080 return 0; 3081 } 3082 3083 static const struct net_device_ops fec_netdev_ops = { 3084 .ndo_open = fec_enet_open, 3085 .ndo_stop = fec_enet_close, 3086 .ndo_start_xmit = fec_enet_start_xmit, 3087 .ndo_set_rx_mode = set_multicast_list, 3088 .ndo_validate_addr = eth_validate_addr, 3089 .ndo_tx_timeout = fec_timeout, 3090 .ndo_set_mac_address = fec_set_mac_address, 3091 .ndo_do_ioctl = fec_enet_ioctl, 3092 #ifdef CONFIG_NET_POLL_CONTROLLER 3093 .ndo_poll_controller = fec_poll_controller, 3094 #endif 3095 .ndo_set_features = fec_set_features, 3096 }; 3097 3098 static const unsigned short offset_des_active_rxq[] = { 3099 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3100 }; 3101 3102 static const unsigned short offset_des_active_txq[] = { 3103 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3104 }; 3105 3106 /* 3107 * XXX: We need to clean up on failure exits here. 3108 * 3109 */ 3110 static int fec_enet_init(struct net_device *ndev) 3111 { 3112 struct fec_enet_private *fep = netdev_priv(ndev); 3113 struct bufdesc *cbd_base; 3114 dma_addr_t bd_dma; 3115 int bd_size; 3116 unsigned int i; 3117 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3118 sizeof(struct bufdesc); 3119 unsigned dsize_log2 = __fls(dsize); 3120 int ret; 3121 3122 WARN_ON(dsize != (1 << dsize_log2)); 3123 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3124 fep->rx_align = 0xf; 3125 fep->tx_align = 0xf; 3126 #else 3127 fep->rx_align = 0x3; 3128 fep->tx_align = 0x3; 3129 #endif 3130 3131 /* Check mask of the streaming and coherent API */ 3132 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3133 if (ret < 0) { 3134 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3135 return ret; 3136 } 3137 3138 fec_enet_alloc_queue(ndev); 3139 3140 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3141 3142 /* Allocate memory for buffer descriptors. */ 3143 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3144 GFP_KERNEL); 3145 if (!cbd_base) { 3146 return -ENOMEM; 3147 } 3148 3149 memset(cbd_base, 0, bd_size); 3150 3151 /* Get the Ethernet address */ 3152 fec_get_mac(ndev); 3153 /* make sure MAC we just acquired is programmed into the hw */ 3154 fec_set_mac_address(ndev, NULL); 3155 3156 /* Set receive and transmit descriptor base. */ 3157 for (i = 0; i < fep->num_rx_queues; i++) { 3158 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3159 unsigned size = dsize * rxq->bd.ring_size; 3160 3161 rxq->bd.qid = i; 3162 rxq->bd.base = cbd_base; 3163 rxq->bd.cur = cbd_base; 3164 rxq->bd.dma = bd_dma; 3165 rxq->bd.dsize = dsize; 3166 rxq->bd.dsize_log2 = dsize_log2; 3167 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3168 bd_dma += size; 3169 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3170 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3171 } 3172 3173 for (i = 0; i < fep->num_tx_queues; i++) { 3174 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3175 unsigned size = dsize * txq->bd.ring_size; 3176 3177 txq->bd.qid = i; 3178 txq->bd.base = cbd_base; 3179 txq->bd.cur = cbd_base; 3180 txq->bd.dma = bd_dma; 3181 txq->bd.dsize = dsize; 3182 txq->bd.dsize_log2 = dsize_log2; 3183 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3184 bd_dma += size; 3185 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3186 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3187 } 3188 3189 3190 /* The FEC Ethernet specific entries in the device structure */ 3191 ndev->watchdog_timeo = TX_TIMEOUT; 3192 ndev->netdev_ops = &fec_netdev_ops; 3193 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3194 3195 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3196 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3197 3198 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3199 /* enable hw VLAN support */ 3200 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3201 3202 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3203 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3204 3205 /* enable hw accelerator */ 3206 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3207 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3208 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3209 } 3210 3211 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3212 fep->tx_align = 0; 3213 fep->rx_align = 0x3f; 3214 } 3215 3216 ndev->hw_features = ndev->features; 3217 3218 fec_restart(ndev); 3219 3220 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3221 fec_enet_clear_ethtool_stats(ndev); 3222 else 3223 fec_enet_update_ethtool_stats(ndev); 3224 3225 return 0; 3226 } 3227 3228 #ifdef CONFIG_OF 3229 static int fec_reset_phy(struct platform_device *pdev) 3230 { 3231 int err, phy_reset; 3232 bool active_high = false; 3233 int msec = 1, phy_post_delay = 0; 3234 struct device_node *np = pdev->dev.of_node; 3235 3236 if (!np) 3237 return 0; 3238 3239 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3240 /* A sane reset duration should not be longer than 1s */ 3241 if (!err && msec > 1000) 3242 msec = 1; 3243 3244 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3245 if (phy_reset == -EPROBE_DEFER) 3246 return phy_reset; 3247 else if (!gpio_is_valid(phy_reset)) 3248 return 0; 3249 3250 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3251 /* valid reset duration should be less than 1s */ 3252 if (!err && phy_post_delay > 1000) 3253 return -EINVAL; 3254 3255 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3256 3257 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3258 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3259 "phy-reset"); 3260 if (err) { 3261 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3262 return err; 3263 } 3264 3265 if (msec > 20) 3266 msleep(msec); 3267 else 3268 usleep_range(msec * 1000, msec * 1000 + 1000); 3269 3270 gpio_set_value_cansleep(phy_reset, !active_high); 3271 3272 if (!phy_post_delay) 3273 return 0; 3274 3275 if (phy_post_delay > 20) 3276 msleep(phy_post_delay); 3277 else 3278 usleep_range(phy_post_delay * 1000, 3279 phy_post_delay * 1000 + 1000); 3280 3281 return 0; 3282 } 3283 #else /* CONFIG_OF */ 3284 static int fec_reset_phy(struct platform_device *pdev) 3285 { 3286 /* 3287 * In case of platform probe, the reset has been done 3288 * by machine code. 3289 */ 3290 return 0; 3291 } 3292 #endif /* CONFIG_OF */ 3293 3294 static void 3295 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3296 { 3297 struct device_node *np = pdev->dev.of_node; 3298 3299 *num_tx = *num_rx = 1; 3300 3301 if (!np || !of_device_is_available(np)) 3302 return; 3303 3304 /* parse the num of tx and rx queues */ 3305 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3306 3307 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3308 3309 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3310 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3311 *num_tx); 3312 *num_tx = 1; 3313 return; 3314 } 3315 3316 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3317 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3318 *num_rx); 3319 *num_rx = 1; 3320 return; 3321 } 3322 3323 } 3324 3325 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3326 { 3327 int irq_cnt = platform_irq_count(pdev); 3328 3329 if (irq_cnt > FEC_IRQ_NUM) 3330 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3331 else if (irq_cnt == 2) 3332 irq_cnt = 1; /* last for pps */ 3333 else if (irq_cnt <= 0) 3334 irq_cnt = 1; /* At least 1 irq is needed */ 3335 return irq_cnt; 3336 } 3337 3338 static int 3339 fec_probe(struct platform_device *pdev) 3340 { 3341 struct fec_enet_private *fep; 3342 struct fec_platform_data *pdata; 3343 struct net_device *ndev; 3344 int i, irq, ret = 0; 3345 struct resource *r; 3346 const struct of_device_id *of_id; 3347 static int dev_id; 3348 struct device_node *np = pdev->dev.of_node, *phy_node; 3349 int num_tx_qs; 3350 int num_rx_qs; 3351 char irq_name[8]; 3352 int irq_cnt; 3353 3354 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3355 3356 /* Init network device */ 3357 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3358 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3359 if (!ndev) 3360 return -ENOMEM; 3361 3362 SET_NETDEV_DEV(ndev, &pdev->dev); 3363 3364 /* setup board info structure */ 3365 fep = netdev_priv(ndev); 3366 3367 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3368 if (of_id) 3369 pdev->id_entry = of_id->data; 3370 fep->quirks = pdev->id_entry->driver_data; 3371 3372 fep->netdev = ndev; 3373 fep->num_rx_queues = num_rx_qs; 3374 fep->num_tx_queues = num_tx_qs; 3375 3376 #if !defined(CONFIG_M5272) 3377 /* default enable pause frame auto negotiation */ 3378 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3379 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3380 #endif 3381 3382 /* Select default pin state */ 3383 pinctrl_pm_select_default_state(&pdev->dev); 3384 3385 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3386 fep->hwp = devm_ioremap_resource(&pdev->dev, r); 3387 if (IS_ERR(fep->hwp)) { 3388 ret = PTR_ERR(fep->hwp); 3389 goto failed_ioremap; 3390 } 3391 3392 fep->pdev = pdev; 3393 fep->dev_id = dev_id++; 3394 3395 platform_set_drvdata(pdev, ndev); 3396 3397 if ((of_machine_is_compatible("fsl,imx6q") || 3398 of_machine_is_compatible("fsl,imx6dl")) && 3399 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3400 fep->quirks |= FEC_QUIRK_ERR006687; 3401 3402 if (of_get_property(np, "fsl,magic-packet", NULL)) 3403 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3404 3405 phy_node = of_parse_phandle(np, "phy-handle", 0); 3406 if (!phy_node && of_phy_is_fixed_link(np)) { 3407 ret = of_phy_register_fixed_link(np); 3408 if (ret < 0) { 3409 dev_err(&pdev->dev, 3410 "broken fixed-link specification\n"); 3411 goto failed_phy; 3412 } 3413 phy_node = of_node_get(np); 3414 } 3415 fep->phy_node = phy_node; 3416 3417 ret = of_get_phy_mode(pdev->dev.of_node); 3418 if (ret < 0) { 3419 pdata = dev_get_platdata(&pdev->dev); 3420 if (pdata) 3421 fep->phy_interface = pdata->phy; 3422 else 3423 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3424 } else { 3425 fep->phy_interface = ret; 3426 } 3427 3428 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3429 if (IS_ERR(fep->clk_ipg)) { 3430 ret = PTR_ERR(fep->clk_ipg); 3431 goto failed_clk; 3432 } 3433 3434 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3435 if (IS_ERR(fep->clk_ahb)) { 3436 ret = PTR_ERR(fep->clk_ahb); 3437 goto failed_clk; 3438 } 3439 3440 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3441 3442 /* enet_out is optional, depends on board */ 3443 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3444 if (IS_ERR(fep->clk_enet_out)) 3445 fep->clk_enet_out = NULL; 3446 3447 fep->ptp_clk_on = false; 3448 mutex_init(&fep->ptp_clk_mutex); 3449 3450 /* clk_ref is optional, depends on board */ 3451 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3452 if (IS_ERR(fep->clk_ref)) 3453 fep->clk_ref = NULL; 3454 3455 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3456 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3457 if (IS_ERR(fep->clk_ptp)) { 3458 fep->clk_ptp = NULL; 3459 fep->bufdesc_ex = false; 3460 } 3461 3462 ret = fec_enet_clk_enable(ndev, true); 3463 if (ret) 3464 goto failed_clk; 3465 3466 ret = clk_prepare_enable(fep->clk_ipg); 3467 if (ret) 3468 goto failed_clk_ipg; 3469 3470 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy"); 3471 if (!IS_ERR(fep->reg_phy)) { 3472 ret = regulator_enable(fep->reg_phy); 3473 if (ret) { 3474 dev_err(&pdev->dev, 3475 "Failed to enable phy regulator: %d\n", ret); 3476 clk_disable_unprepare(fep->clk_ipg); 3477 goto failed_regulator; 3478 } 3479 } else { 3480 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3481 ret = -EPROBE_DEFER; 3482 goto failed_regulator; 3483 } 3484 fep->reg_phy = NULL; 3485 } 3486 3487 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3488 pm_runtime_use_autosuspend(&pdev->dev); 3489 pm_runtime_get_noresume(&pdev->dev); 3490 pm_runtime_set_active(&pdev->dev); 3491 pm_runtime_enable(&pdev->dev); 3492 3493 ret = fec_reset_phy(pdev); 3494 if (ret) 3495 goto failed_reset; 3496 3497 irq_cnt = fec_enet_get_irq_cnt(pdev); 3498 if (fep->bufdesc_ex) 3499 fec_ptp_init(pdev, irq_cnt); 3500 3501 ret = fec_enet_init(ndev); 3502 if (ret) 3503 goto failed_init; 3504 3505 for (i = 0; i < irq_cnt; i++) { 3506 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3507 irq = platform_get_irq_byname(pdev, irq_name); 3508 if (irq < 0) 3509 irq = platform_get_irq(pdev, i); 3510 if (irq < 0) { 3511 ret = irq; 3512 goto failed_irq; 3513 } 3514 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3515 0, pdev->name, ndev); 3516 if (ret) 3517 goto failed_irq; 3518 3519 fep->irq[i] = irq; 3520 } 3521 3522 init_completion(&fep->mdio_done); 3523 ret = fec_enet_mii_init(pdev); 3524 if (ret) 3525 goto failed_mii_init; 3526 3527 /* Carrier starts down, phylib will bring it up */ 3528 netif_carrier_off(ndev); 3529 fec_enet_clk_enable(ndev, false); 3530 pinctrl_pm_select_sleep_state(&pdev->dev); 3531 3532 ret = register_netdev(ndev); 3533 if (ret) 3534 goto failed_register; 3535 3536 device_init_wakeup(&ndev->dev, fep->wol_flag & 3537 FEC_WOL_HAS_MAGIC_PACKET); 3538 3539 if (fep->bufdesc_ex && fep->ptp_clock) 3540 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3541 3542 fep->rx_copybreak = COPYBREAK_DEFAULT; 3543 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3544 3545 pm_runtime_mark_last_busy(&pdev->dev); 3546 pm_runtime_put_autosuspend(&pdev->dev); 3547 3548 return 0; 3549 3550 failed_register: 3551 fec_enet_mii_remove(fep); 3552 failed_mii_init: 3553 failed_irq: 3554 failed_init: 3555 fec_ptp_stop(pdev); 3556 if (fep->reg_phy) 3557 regulator_disable(fep->reg_phy); 3558 failed_reset: 3559 pm_runtime_put(&pdev->dev); 3560 pm_runtime_disable(&pdev->dev); 3561 failed_regulator: 3562 failed_clk_ipg: 3563 fec_enet_clk_enable(ndev, false); 3564 failed_clk: 3565 if (of_phy_is_fixed_link(np)) 3566 of_phy_deregister_fixed_link(np); 3567 of_node_put(phy_node); 3568 failed_phy: 3569 dev_id--; 3570 failed_ioremap: 3571 free_netdev(ndev); 3572 3573 return ret; 3574 } 3575 3576 static int 3577 fec_drv_remove(struct platform_device *pdev) 3578 { 3579 struct net_device *ndev = platform_get_drvdata(pdev); 3580 struct fec_enet_private *fep = netdev_priv(ndev); 3581 struct device_node *np = pdev->dev.of_node; 3582 3583 cancel_work_sync(&fep->tx_timeout_work); 3584 fec_ptp_stop(pdev); 3585 unregister_netdev(ndev); 3586 fec_enet_mii_remove(fep); 3587 if (fep->reg_phy) 3588 regulator_disable(fep->reg_phy); 3589 pm_runtime_put(&pdev->dev); 3590 pm_runtime_disable(&pdev->dev); 3591 if (of_phy_is_fixed_link(np)) 3592 of_phy_deregister_fixed_link(np); 3593 of_node_put(fep->phy_node); 3594 free_netdev(ndev); 3595 3596 return 0; 3597 } 3598 3599 static int __maybe_unused fec_suspend(struct device *dev) 3600 { 3601 struct net_device *ndev = dev_get_drvdata(dev); 3602 struct fec_enet_private *fep = netdev_priv(ndev); 3603 3604 rtnl_lock(); 3605 if (netif_running(ndev)) { 3606 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3607 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3608 phy_stop(ndev->phydev); 3609 napi_disable(&fep->napi); 3610 netif_tx_lock_bh(ndev); 3611 netif_device_detach(ndev); 3612 netif_tx_unlock_bh(ndev); 3613 fec_stop(ndev); 3614 fec_enet_clk_enable(ndev, false); 3615 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3616 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3617 } 3618 rtnl_unlock(); 3619 3620 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3621 regulator_disable(fep->reg_phy); 3622 3623 /* SOC supply clock to phy, when clock is disabled, phy link down 3624 * SOC control phy regulator, when regulator is disabled, phy link down 3625 */ 3626 if (fep->clk_enet_out || fep->reg_phy) 3627 fep->link = 0; 3628 3629 return 0; 3630 } 3631 3632 static int __maybe_unused fec_resume(struct device *dev) 3633 { 3634 struct net_device *ndev = dev_get_drvdata(dev); 3635 struct fec_enet_private *fep = netdev_priv(ndev); 3636 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 3637 int ret; 3638 int val; 3639 3640 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3641 ret = regulator_enable(fep->reg_phy); 3642 if (ret) 3643 return ret; 3644 } 3645 3646 rtnl_lock(); 3647 if (netif_running(ndev)) { 3648 ret = fec_enet_clk_enable(ndev, true); 3649 if (ret) { 3650 rtnl_unlock(); 3651 goto failed_clk; 3652 } 3653 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3654 if (pdata && pdata->sleep_mode_enable) 3655 pdata->sleep_mode_enable(false); 3656 val = readl(fep->hwp + FEC_ECNTRL); 3657 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3658 writel(val, fep->hwp + FEC_ECNTRL); 3659 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3660 } else { 3661 pinctrl_pm_select_default_state(&fep->pdev->dev); 3662 } 3663 fec_restart(ndev); 3664 netif_tx_lock_bh(ndev); 3665 netif_device_attach(ndev); 3666 netif_tx_unlock_bh(ndev); 3667 napi_enable(&fep->napi); 3668 phy_start(ndev->phydev); 3669 } 3670 rtnl_unlock(); 3671 3672 return 0; 3673 3674 failed_clk: 3675 if (fep->reg_phy) 3676 regulator_disable(fep->reg_phy); 3677 return ret; 3678 } 3679 3680 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3681 { 3682 struct net_device *ndev = dev_get_drvdata(dev); 3683 struct fec_enet_private *fep = netdev_priv(ndev); 3684 3685 clk_disable_unprepare(fep->clk_ipg); 3686 3687 return 0; 3688 } 3689 3690 static int __maybe_unused fec_runtime_resume(struct device *dev) 3691 { 3692 struct net_device *ndev = dev_get_drvdata(dev); 3693 struct fec_enet_private *fep = netdev_priv(ndev); 3694 3695 return clk_prepare_enable(fep->clk_ipg); 3696 } 3697 3698 static const struct dev_pm_ops fec_pm_ops = { 3699 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3700 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3701 }; 3702 3703 static struct platform_driver fec_driver = { 3704 .driver = { 3705 .name = DRIVER_NAME, 3706 .pm = &fec_pm_ops, 3707 .of_match_table = fec_dt_ids, 3708 }, 3709 .id_table = fec_devtype, 3710 .probe = fec_probe, 3711 .remove = fec_drv_remove, 3712 }; 3713 3714 module_platform_driver(fec_driver); 3715 3716 MODULE_ALIAS("platform:"DRIVER_NAME); 3717 MODULE_LICENSE("GPL"); 3718