xref: /openbmc/linux/drivers/net/ethernet/freescale/fec_main.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = FEC_QUIRK_MIB_CLEAR,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 				FEC_QUIRK_HAS_COALESCE,
123 	}, {
124 		/* sentinel */
125 	}
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128 
129 enum imx_fec_type {
130 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
131 	IMX27_FEC,	/* runs on i.mx27/35/51 */
132 	IMX28_FEC,
133 	IMX6Q_FEC,
134 	MVF600_FEC,
135 	IMX6SX_FEC,
136 	IMX6UL_FEC,
137 };
138 
139 static const struct of_device_id fec_dt_ids[] = {
140 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176  *
177  * 2048 byte skbufs are allocated. However, alignment requirements
178  * varies between FEC variants. Worst case is 64, so round down by 64.
179  */
180 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE		64
182 
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS		(1 << 1)
185 #define FEC_RACC_PRODIS		(1 << 2)
186 #define FEC_RACC_SHIFT16	BIT(7)
187 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
188 
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
191 
192 /*
193  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194  * size bits. Other FEC hardware does not, so we need to take that into
195  * account when setting it.
196  */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
200 #else
201 #define	OPT_FRAME_SIZE	0
202 #endif
203 
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST		(1 << 30)
206 #define FEC_MMFR_OP_READ	(2 << 28)
207 #define FEC_MMFR_OP_WRITE	(1 << 28)
208 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
210 #define FEC_MMFR_TA		(2 << 16)
211 #define FEC_MMFR_DATA(v)	(v & 0xffff)
212 /* FEC ECR bits definition */
213 #define FEC_ECR_MAGICEN		(1 << 2)
214 #define FEC_ECR_SLEEP		(1 << 3)
215 
216 #define FEC_MII_TIMEOUT		30000 /* us */
217 
218 /* Transmitter timeout */
219 #define TX_TIMEOUT (2 * HZ)
220 
221 #define FEC_PAUSE_FLAG_AUTONEG	0x1
222 #define FEC_PAUSE_FLAG_ENABLE	0x2
223 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
224 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
225 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
226 
227 #define COPYBREAK_DEFAULT	256
228 
229 /* Max number of allowed TCP segments for software TSO */
230 #define FEC_MAX_TSO_SEGS	100
231 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
232 
233 #define IS_TSO_HEADER(txq, addr) \
234 	((addr >= txq->tso_hdrs_dma) && \
235 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
236 
237 static int mii_cnt;
238 
239 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
240 					     struct bufdesc_prop *bd)
241 {
242 	return (bdp >= bd->last) ? bd->base
243 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
244 }
245 
246 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
247 					     struct bufdesc_prop *bd)
248 {
249 	return (bdp <= bd->base) ? bd->last
250 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
251 }
252 
253 static int fec_enet_get_bd_index(struct bufdesc *bdp,
254 				 struct bufdesc_prop *bd)
255 {
256 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
257 }
258 
259 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
260 {
261 	int entries;
262 
263 	entries = (((const char *)txq->dirty_tx -
264 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
265 
266 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
267 }
268 
269 static void swap_buffer(void *bufaddr, int len)
270 {
271 	int i;
272 	unsigned int *buf = bufaddr;
273 
274 	for (i = 0; i < len; i += 4, buf++)
275 		swab32s(buf);
276 }
277 
278 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
279 {
280 	int i;
281 	unsigned int *src = src_buf;
282 	unsigned int *dst = dst_buf;
283 
284 	for (i = 0; i < len; i += 4, src++, dst++)
285 		*dst = swab32p(src);
286 }
287 
288 static void fec_dump(struct net_device *ndev)
289 {
290 	struct fec_enet_private *fep = netdev_priv(ndev);
291 	struct bufdesc *bdp;
292 	struct fec_enet_priv_tx_q *txq;
293 	int index = 0;
294 
295 	netdev_info(ndev, "TX ring dump\n");
296 	pr_info("Nr     SC     addr       len  SKB\n");
297 
298 	txq = fep->tx_queue[0];
299 	bdp = txq->bd.base;
300 
301 	do {
302 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
303 			index,
304 			bdp == txq->bd.cur ? 'S' : ' ',
305 			bdp == txq->dirty_tx ? 'H' : ' ',
306 			fec16_to_cpu(bdp->cbd_sc),
307 			fec32_to_cpu(bdp->cbd_bufaddr),
308 			fec16_to_cpu(bdp->cbd_datlen),
309 			txq->tx_skbuff[index]);
310 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
311 		index++;
312 	} while (bdp != txq->bd.base);
313 }
314 
315 static inline bool is_ipv4_pkt(struct sk_buff *skb)
316 {
317 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
318 }
319 
320 static int
321 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
322 {
323 	/* Only run for packets requiring a checksum. */
324 	if (skb->ip_summed != CHECKSUM_PARTIAL)
325 		return 0;
326 
327 	if (unlikely(skb_cow_head(skb, 0)))
328 		return -1;
329 
330 	if (is_ipv4_pkt(skb))
331 		ip_hdr(skb)->check = 0;
332 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
333 
334 	return 0;
335 }
336 
337 static struct bufdesc *
338 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
339 			     struct sk_buff *skb,
340 			     struct net_device *ndev)
341 {
342 	struct fec_enet_private *fep = netdev_priv(ndev);
343 	struct bufdesc *bdp = txq->bd.cur;
344 	struct bufdesc_ex *ebdp;
345 	int nr_frags = skb_shinfo(skb)->nr_frags;
346 	int frag, frag_len;
347 	unsigned short status;
348 	unsigned int estatus = 0;
349 	skb_frag_t *this_frag;
350 	unsigned int index;
351 	void *bufaddr;
352 	dma_addr_t addr;
353 	int i;
354 
355 	for (frag = 0; frag < nr_frags; frag++) {
356 		this_frag = &skb_shinfo(skb)->frags[frag];
357 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
358 		ebdp = (struct bufdesc_ex *)bdp;
359 
360 		status = fec16_to_cpu(bdp->cbd_sc);
361 		status &= ~BD_ENET_TX_STATS;
362 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
363 		frag_len = skb_shinfo(skb)->frags[frag].size;
364 
365 		/* Handle the last BD specially */
366 		if (frag == nr_frags - 1) {
367 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
368 			if (fep->bufdesc_ex) {
369 				estatus |= BD_ENET_TX_INT;
370 				if (unlikely(skb_shinfo(skb)->tx_flags &
371 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
372 					estatus |= BD_ENET_TX_TS;
373 			}
374 		}
375 
376 		if (fep->bufdesc_ex) {
377 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
378 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
379 			if (skb->ip_summed == CHECKSUM_PARTIAL)
380 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
381 			ebdp->cbd_bdu = 0;
382 			ebdp->cbd_esc = cpu_to_fec32(estatus);
383 		}
384 
385 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
386 
387 		index = fec_enet_get_bd_index(bdp, &txq->bd);
388 		if (((unsigned long) bufaddr) & fep->tx_align ||
389 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
390 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
391 			bufaddr = txq->tx_bounce[index];
392 
393 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
394 				swap_buffer(bufaddr, frag_len);
395 		}
396 
397 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
398 				      DMA_TO_DEVICE);
399 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
400 			if (net_ratelimit())
401 				netdev_err(ndev, "Tx DMA memory map failed\n");
402 			goto dma_mapping_error;
403 		}
404 
405 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
406 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
407 		/* Make sure the updates to rest of the descriptor are
408 		 * performed before transferring ownership.
409 		 */
410 		wmb();
411 		bdp->cbd_sc = cpu_to_fec16(status);
412 	}
413 
414 	return bdp;
415 dma_mapping_error:
416 	bdp = txq->bd.cur;
417 	for (i = 0; i < frag; i++) {
418 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
419 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
420 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
421 	}
422 	return ERR_PTR(-ENOMEM);
423 }
424 
425 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
426 				   struct sk_buff *skb, struct net_device *ndev)
427 {
428 	struct fec_enet_private *fep = netdev_priv(ndev);
429 	int nr_frags = skb_shinfo(skb)->nr_frags;
430 	struct bufdesc *bdp, *last_bdp;
431 	void *bufaddr;
432 	dma_addr_t addr;
433 	unsigned short status;
434 	unsigned short buflen;
435 	unsigned int estatus = 0;
436 	unsigned int index;
437 	int entries_free;
438 
439 	entries_free = fec_enet_get_free_txdesc_num(txq);
440 	if (entries_free < MAX_SKB_FRAGS + 1) {
441 		dev_kfree_skb_any(skb);
442 		if (net_ratelimit())
443 			netdev_err(ndev, "NOT enough BD for SG!\n");
444 		return NETDEV_TX_OK;
445 	}
446 
447 	/* Protocol checksum off-load for TCP and UDP. */
448 	if (fec_enet_clear_csum(skb, ndev)) {
449 		dev_kfree_skb_any(skb);
450 		return NETDEV_TX_OK;
451 	}
452 
453 	/* Fill in a Tx ring entry */
454 	bdp = txq->bd.cur;
455 	last_bdp = bdp;
456 	status = fec16_to_cpu(bdp->cbd_sc);
457 	status &= ~BD_ENET_TX_STATS;
458 
459 	/* Set buffer length and buffer pointer */
460 	bufaddr = skb->data;
461 	buflen = skb_headlen(skb);
462 
463 	index = fec_enet_get_bd_index(bdp, &txq->bd);
464 	if (((unsigned long) bufaddr) & fep->tx_align ||
465 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 		memcpy(txq->tx_bounce[index], skb->data, buflen);
467 		bufaddr = txq->tx_bounce[index];
468 
469 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 			swap_buffer(bufaddr, buflen);
471 	}
472 
473 	/* Push the data cache so the CPM does not get stale memory data. */
474 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
475 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 		dev_kfree_skb_any(skb);
477 		if (net_ratelimit())
478 			netdev_err(ndev, "Tx DMA memory map failed\n");
479 		return NETDEV_TX_OK;
480 	}
481 
482 	if (nr_frags) {
483 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
484 		if (IS_ERR(last_bdp)) {
485 			dma_unmap_single(&fep->pdev->dev, addr,
486 					 buflen, DMA_TO_DEVICE);
487 			dev_kfree_skb_any(skb);
488 			return NETDEV_TX_OK;
489 		}
490 	} else {
491 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
492 		if (fep->bufdesc_ex) {
493 			estatus = BD_ENET_TX_INT;
494 			if (unlikely(skb_shinfo(skb)->tx_flags &
495 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
496 				estatus |= BD_ENET_TX_TS;
497 		}
498 	}
499 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
500 	bdp->cbd_datlen = cpu_to_fec16(buflen);
501 
502 	if (fep->bufdesc_ex) {
503 
504 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
505 
506 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
507 			fep->hwts_tx_en))
508 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
509 
510 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
511 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
512 
513 		if (skb->ip_summed == CHECKSUM_PARTIAL)
514 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515 
516 		ebdp->cbd_bdu = 0;
517 		ebdp->cbd_esc = cpu_to_fec32(estatus);
518 	}
519 
520 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
521 	/* Save skb pointer */
522 	txq->tx_skbuff[index] = skb;
523 
524 	/* Make sure the updates to rest of the descriptor are performed before
525 	 * transferring ownership.
526 	 */
527 	wmb();
528 
529 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
530 	 * it's the last BD of the frame, and to put the CRC on the end.
531 	 */
532 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
533 	bdp->cbd_sc = cpu_to_fec16(status);
534 
535 	/* If this was the last BD in the ring, start at the beginning again. */
536 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
537 
538 	skb_tx_timestamp(skb);
539 
540 	/* Make sure the update to bdp and tx_skbuff are performed before
541 	 * txq->bd.cur.
542 	 */
543 	wmb();
544 	txq->bd.cur = bdp;
545 
546 	/* Trigger transmission start */
547 	writel(0, txq->bd.reg_desc_active);
548 
549 	return 0;
550 }
551 
552 static int
553 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
554 			  struct net_device *ndev,
555 			  struct bufdesc *bdp, int index, char *data,
556 			  int size, bool last_tcp, bool is_last)
557 {
558 	struct fec_enet_private *fep = netdev_priv(ndev);
559 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
560 	unsigned short status;
561 	unsigned int estatus = 0;
562 	dma_addr_t addr;
563 
564 	status = fec16_to_cpu(bdp->cbd_sc);
565 	status &= ~BD_ENET_TX_STATS;
566 
567 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
568 
569 	if (((unsigned long) data) & fep->tx_align ||
570 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
571 		memcpy(txq->tx_bounce[index], data, size);
572 		data = txq->tx_bounce[index];
573 
574 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
575 			swap_buffer(data, size);
576 	}
577 
578 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
579 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
580 		dev_kfree_skb_any(skb);
581 		if (net_ratelimit())
582 			netdev_err(ndev, "Tx DMA memory map failed\n");
583 		return NETDEV_TX_BUSY;
584 	}
585 
586 	bdp->cbd_datlen = cpu_to_fec16(size);
587 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
588 
589 	if (fep->bufdesc_ex) {
590 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
591 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
592 		if (skb->ip_summed == CHECKSUM_PARTIAL)
593 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
594 		ebdp->cbd_bdu = 0;
595 		ebdp->cbd_esc = cpu_to_fec32(estatus);
596 	}
597 
598 	/* Handle the last BD specially */
599 	if (last_tcp)
600 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
601 	if (is_last) {
602 		status |= BD_ENET_TX_INTR;
603 		if (fep->bufdesc_ex)
604 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
605 	}
606 
607 	bdp->cbd_sc = cpu_to_fec16(status);
608 
609 	return 0;
610 }
611 
612 static int
613 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
614 			 struct sk_buff *skb, struct net_device *ndev,
615 			 struct bufdesc *bdp, int index)
616 {
617 	struct fec_enet_private *fep = netdev_priv(ndev);
618 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
619 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
620 	void *bufaddr;
621 	unsigned long dmabuf;
622 	unsigned short status;
623 	unsigned int estatus = 0;
624 
625 	status = fec16_to_cpu(bdp->cbd_sc);
626 	status &= ~BD_ENET_TX_STATS;
627 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
628 
629 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
630 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
631 	if (((unsigned long)bufaddr) & fep->tx_align ||
632 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
633 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
634 		bufaddr = txq->tx_bounce[index];
635 
636 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
637 			swap_buffer(bufaddr, hdr_len);
638 
639 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
640 					hdr_len, DMA_TO_DEVICE);
641 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
642 			dev_kfree_skb_any(skb);
643 			if (net_ratelimit())
644 				netdev_err(ndev, "Tx DMA memory map failed\n");
645 			return NETDEV_TX_BUSY;
646 		}
647 	}
648 
649 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
650 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
651 
652 	if (fep->bufdesc_ex) {
653 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
654 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
655 		if (skb->ip_summed == CHECKSUM_PARTIAL)
656 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
657 		ebdp->cbd_bdu = 0;
658 		ebdp->cbd_esc = cpu_to_fec32(estatus);
659 	}
660 
661 	bdp->cbd_sc = cpu_to_fec16(status);
662 
663 	return 0;
664 }
665 
666 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
667 				   struct sk_buff *skb,
668 				   struct net_device *ndev)
669 {
670 	struct fec_enet_private *fep = netdev_priv(ndev);
671 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 	int total_len, data_left;
673 	struct bufdesc *bdp = txq->bd.cur;
674 	struct tso_t tso;
675 	unsigned int index = 0;
676 	int ret;
677 
678 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
679 		dev_kfree_skb_any(skb);
680 		if (net_ratelimit())
681 			netdev_err(ndev, "NOT enough BD for TSO!\n");
682 		return NETDEV_TX_OK;
683 	}
684 
685 	/* Protocol checksum off-load for TCP and UDP. */
686 	if (fec_enet_clear_csum(skb, ndev)) {
687 		dev_kfree_skb_any(skb);
688 		return NETDEV_TX_OK;
689 	}
690 
691 	/* Initialize the TSO handler, and prepare the first payload */
692 	tso_start(skb, &tso);
693 
694 	total_len = skb->len - hdr_len;
695 	while (total_len > 0) {
696 		char *hdr;
697 
698 		index = fec_enet_get_bd_index(bdp, &txq->bd);
699 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
700 		total_len -= data_left;
701 
702 		/* prepare packet headers: MAC + IP + TCP */
703 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
704 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
705 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
706 		if (ret)
707 			goto err_release;
708 
709 		while (data_left > 0) {
710 			int size;
711 
712 			size = min_t(int, tso.size, data_left);
713 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
714 			index = fec_enet_get_bd_index(bdp, &txq->bd);
715 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
716 							bdp, index,
717 							tso.data, size,
718 							size == data_left,
719 							total_len == 0);
720 			if (ret)
721 				goto err_release;
722 
723 			data_left -= size;
724 			tso_build_data(skb, &tso, size);
725 		}
726 
727 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
728 	}
729 
730 	/* Save skb pointer */
731 	txq->tx_skbuff[index] = skb;
732 
733 	skb_tx_timestamp(skb);
734 	txq->bd.cur = bdp;
735 
736 	/* Trigger transmission start */
737 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
738 	    !readl(txq->bd.reg_desc_active) ||
739 	    !readl(txq->bd.reg_desc_active) ||
740 	    !readl(txq->bd.reg_desc_active) ||
741 	    !readl(txq->bd.reg_desc_active))
742 		writel(0, txq->bd.reg_desc_active);
743 
744 	return 0;
745 
746 err_release:
747 	/* TODO: Release all used data descriptors for TSO */
748 	return ret;
749 }
750 
751 static netdev_tx_t
752 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
753 {
754 	struct fec_enet_private *fep = netdev_priv(ndev);
755 	int entries_free;
756 	unsigned short queue;
757 	struct fec_enet_priv_tx_q *txq;
758 	struct netdev_queue *nq;
759 	int ret;
760 
761 	queue = skb_get_queue_mapping(skb);
762 	txq = fep->tx_queue[queue];
763 	nq = netdev_get_tx_queue(ndev, queue);
764 
765 	if (skb_is_gso(skb))
766 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
767 	else
768 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
769 	if (ret)
770 		return ret;
771 
772 	entries_free = fec_enet_get_free_txdesc_num(txq);
773 	if (entries_free <= txq->tx_stop_threshold)
774 		netif_tx_stop_queue(nq);
775 
776 	return NETDEV_TX_OK;
777 }
778 
779 /* Init RX & TX buffer descriptors
780  */
781 static void fec_enet_bd_init(struct net_device *dev)
782 {
783 	struct fec_enet_private *fep = netdev_priv(dev);
784 	struct fec_enet_priv_tx_q *txq;
785 	struct fec_enet_priv_rx_q *rxq;
786 	struct bufdesc *bdp;
787 	unsigned int i;
788 	unsigned int q;
789 
790 	for (q = 0; q < fep->num_rx_queues; q++) {
791 		/* Initialize the receive buffer descriptors. */
792 		rxq = fep->rx_queue[q];
793 		bdp = rxq->bd.base;
794 
795 		for (i = 0; i < rxq->bd.ring_size; i++) {
796 
797 			/* Initialize the BD for every fragment in the page. */
798 			if (bdp->cbd_bufaddr)
799 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
800 			else
801 				bdp->cbd_sc = cpu_to_fec16(0);
802 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
803 		}
804 
805 		/* Set the last buffer to wrap */
806 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
807 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
808 
809 		rxq->bd.cur = rxq->bd.base;
810 	}
811 
812 	for (q = 0; q < fep->num_tx_queues; q++) {
813 		/* ...and the same for transmit */
814 		txq = fep->tx_queue[q];
815 		bdp = txq->bd.base;
816 		txq->bd.cur = bdp;
817 
818 		for (i = 0; i < txq->bd.ring_size; i++) {
819 			/* Initialize the BD for every fragment in the page. */
820 			bdp->cbd_sc = cpu_to_fec16(0);
821 			if (bdp->cbd_bufaddr &&
822 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
823 				dma_unmap_single(&fep->pdev->dev,
824 						 fec32_to_cpu(bdp->cbd_bufaddr),
825 						 fec16_to_cpu(bdp->cbd_datlen),
826 						 DMA_TO_DEVICE);
827 			if (txq->tx_skbuff[i]) {
828 				dev_kfree_skb_any(txq->tx_skbuff[i]);
829 				txq->tx_skbuff[i] = NULL;
830 			}
831 			bdp->cbd_bufaddr = cpu_to_fec32(0);
832 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
833 		}
834 
835 		/* Set the last buffer to wrap */
836 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
837 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
838 		txq->dirty_tx = bdp;
839 	}
840 }
841 
842 static void fec_enet_active_rxring(struct net_device *ndev)
843 {
844 	struct fec_enet_private *fep = netdev_priv(ndev);
845 	int i;
846 
847 	for (i = 0; i < fep->num_rx_queues; i++)
848 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
849 }
850 
851 static void fec_enet_enable_ring(struct net_device *ndev)
852 {
853 	struct fec_enet_private *fep = netdev_priv(ndev);
854 	struct fec_enet_priv_tx_q *txq;
855 	struct fec_enet_priv_rx_q *rxq;
856 	int i;
857 
858 	for (i = 0; i < fep->num_rx_queues; i++) {
859 		rxq = fep->rx_queue[i];
860 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
861 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
862 
863 		/* enable DMA1/2 */
864 		if (i)
865 			writel(RCMR_MATCHEN | RCMR_CMP(i),
866 			       fep->hwp + FEC_RCMR(i));
867 	}
868 
869 	for (i = 0; i < fep->num_tx_queues; i++) {
870 		txq = fep->tx_queue[i];
871 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
872 
873 		/* enable DMA1/2 */
874 		if (i)
875 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
876 			       fep->hwp + FEC_DMA_CFG(i));
877 	}
878 }
879 
880 static void fec_enet_reset_skb(struct net_device *ndev)
881 {
882 	struct fec_enet_private *fep = netdev_priv(ndev);
883 	struct fec_enet_priv_tx_q *txq;
884 	int i, j;
885 
886 	for (i = 0; i < fep->num_tx_queues; i++) {
887 		txq = fep->tx_queue[i];
888 
889 		for (j = 0; j < txq->bd.ring_size; j++) {
890 			if (txq->tx_skbuff[j]) {
891 				dev_kfree_skb_any(txq->tx_skbuff[j]);
892 				txq->tx_skbuff[j] = NULL;
893 			}
894 		}
895 	}
896 }
897 
898 /*
899  * This function is called to start or restart the FEC during a link
900  * change, transmit timeout, or to reconfigure the FEC.  The network
901  * packet processing for this device must be stopped before this call.
902  */
903 static void
904 fec_restart(struct net_device *ndev)
905 {
906 	struct fec_enet_private *fep = netdev_priv(ndev);
907 	u32 val;
908 	u32 temp_mac[2];
909 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
910 	u32 ecntl = 0x2; /* ETHEREN */
911 
912 	/* Whack a reset.  We should wait for this.
913 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
914 	 * instead of reset MAC itself.
915 	 */
916 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
917 		writel(0, fep->hwp + FEC_ECNTRL);
918 	} else {
919 		writel(1, fep->hwp + FEC_ECNTRL);
920 		udelay(10);
921 	}
922 
923 	/*
924 	 * enet-mac reset will reset mac address registers too,
925 	 * so need to reconfigure it.
926 	 */
927 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
928 	writel((__force u32)cpu_to_be32(temp_mac[0]),
929 	       fep->hwp + FEC_ADDR_LOW);
930 	writel((__force u32)cpu_to_be32(temp_mac[1]),
931 	       fep->hwp + FEC_ADDR_HIGH);
932 
933 	/* Clear any outstanding interrupt. */
934 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
935 
936 	fec_enet_bd_init(ndev);
937 
938 	fec_enet_enable_ring(ndev);
939 
940 	/* Reset tx SKB buffers. */
941 	fec_enet_reset_skb(ndev);
942 
943 	/* Enable MII mode */
944 	if (fep->full_duplex == DUPLEX_FULL) {
945 		/* FD enable */
946 		writel(0x04, fep->hwp + FEC_X_CNTRL);
947 	} else {
948 		/* No Rcv on Xmit */
949 		rcntl |= 0x02;
950 		writel(0x0, fep->hwp + FEC_X_CNTRL);
951 	}
952 
953 	/* Set MII speed */
954 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
955 
956 #if !defined(CONFIG_M5272)
957 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
958 		val = readl(fep->hwp + FEC_RACC);
959 		/* align IP header */
960 		val |= FEC_RACC_SHIFT16;
961 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
962 			/* set RX checksum */
963 			val |= FEC_RACC_OPTIONS;
964 		else
965 			val &= ~FEC_RACC_OPTIONS;
966 		writel(val, fep->hwp + FEC_RACC);
967 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
968 	}
969 #endif
970 
971 	/*
972 	 * The phy interface and speed need to get configured
973 	 * differently on enet-mac.
974 	 */
975 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
976 		/* Enable flow control and length check */
977 		rcntl |= 0x40000000 | 0x00000020;
978 
979 		/* RGMII, RMII or MII */
980 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
981 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
982 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
983 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
984 			rcntl |= (1 << 6);
985 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
986 			rcntl |= (1 << 8);
987 		else
988 			rcntl &= ~(1 << 8);
989 
990 		/* 1G, 100M or 10M */
991 		if (ndev->phydev) {
992 			if (ndev->phydev->speed == SPEED_1000)
993 				ecntl |= (1 << 5);
994 			else if (ndev->phydev->speed == SPEED_100)
995 				rcntl &= ~(1 << 9);
996 			else
997 				rcntl |= (1 << 9);
998 		}
999 	} else {
1000 #ifdef FEC_MIIGSK_ENR
1001 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1002 			u32 cfgr;
1003 			/* disable the gasket and wait */
1004 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1005 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1006 				udelay(1);
1007 
1008 			/*
1009 			 * configure the gasket:
1010 			 *   RMII, 50 MHz, no loopback, no echo
1011 			 *   MII, 25 MHz, no loopback, no echo
1012 			 */
1013 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1014 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1015 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1016 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1017 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1018 
1019 			/* re-enable the gasket */
1020 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1021 		}
1022 #endif
1023 	}
1024 
1025 #if !defined(CONFIG_M5272)
1026 	/* enable pause frame*/
1027 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1028 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1029 	     ndev->phydev && ndev->phydev->pause)) {
1030 		rcntl |= FEC_ENET_FCE;
1031 
1032 		/* set FIFO threshold parameter to reduce overrun */
1033 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1034 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1035 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1036 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1037 
1038 		/* OPD */
1039 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1040 	} else {
1041 		rcntl &= ~FEC_ENET_FCE;
1042 	}
1043 #endif /* !defined(CONFIG_M5272) */
1044 
1045 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1046 
1047 	/* Setup multicast filter. */
1048 	set_multicast_list(ndev);
1049 #ifndef CONFIG_M5272
1050 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1051 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1052 #endif
1053 
1054 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1055 		/* enable ENET endian swap */
1056 		ecntl |= (1 << 8);
1057 		/* enable ENET store and forward mode */
1058 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1059 	}
1060 
1061 	if (fep->bufdesc_ex)
1062 		ecntl |= (1 << 4);
1063 
1064 #ifndef CONFIG_M5272
1065 	/* Enable the MIB statistic event counters */
1066 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1067 #endif
1068 
1069 	/* And last, enable the transmit and receive processing */
1070 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1071 	fec_enet_active_rxring(ndev);
1072 
1073 	if (fep->bufdesc_ex)
1074 		fec_ptp_start_cyclecounter(ndev);
1075 
1076 	/* Enable interrupts we wish to service */
1077 	if (fep->link)
1078 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1079 	else
1080 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1081 
1082 	/* Init the interrupt coalescing */
1083 	fec_enet_itr_coal_init(ndev);
1084 
1085 }
1086 
1087 static void
1088 fec_stop(struct net_device *ndev)
1089 {
1090 	struct fec_enet_private *fep = netdev_priv(ndev);
1091 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1092 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1093 	u32 val;
1094 
1095 	/* We cannot expect a graceful transmit stop without link !!! */
1096 	if (fep->link) {
1097 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1098 		udelay(10);
1099 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1100 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1101 	}
1102 
1103 	/* Whack a reset.  We should wait for this.
1104 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1105 	 * instead of reset MAC itself.
1106 	 */
1107 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1109 			writel(0, fep->hwp + FEC_ECNTRL);
1110 		} else {
1111 			writel(1, fep->hwp + FEC_ECNTRL);
1112 			udelay(10);
1113 		}
1114 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1115 	} else {
1116 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1117 		val = readl(fep->hwp + FEC_ECNTRL);
1118 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1119 		writel(val, fep->hwp + FEC_ECNTRL);
1120 
1121 		if (pdata && pdata->sleep_mode_enable)
1122 			pdata->sleep_mode_enable(true);
1123 	}
1124 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1125 
1126 	/* We have to keep ENET enabled to have MII interrupt stay working */
1127 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1128 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1129 		writel(2, fep->hwp + FEC_ECNTRL);
1130 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1131 	}
1132 }
1133 
1134 
1135 static void
1136 fec_timeout(struct net_device *ndev)
1137 {
1138 	struct fec_enet_private *fep = netdev_priv(ndev);
1139 
1140 	fec_dump(ndev);
1141 
1142 	ndev->stats.tx_errors++;
1143 
1144 	schedule_work(&fep->tx_timeout_work);
1145 }
1146 
1147 static void fec_enet_timeout_work(struct work_struct *work)
1148 {
1149 	struct fec_enet_private *fep =
1150 		container_of(work, struct fec_enet_private, tx_timeout_work);
1151 	struct net_device *ndev = fep->netdev;
1152 
1153 	rtnl_lock();
1154 	if (netif_device_present(ndev) || netif_running(ndev)) {
1155 		napi_disable(&fep->napi);
1156 		netif_tx_lock_bh(ndev);
1157 		fec_restart(ndev);
1158 		netif_wake_queue(ndev);
1159 		netif_tx_unlock_bh(ndev);
1160 		napi_enable(&fep->napi);
1161 	}
1162 	rtnl_unlock();
1163 }
1164 
1165 static void
1166 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1167 	struct skb_shared_hwtstamps *hwtstamps)
1168 {
1169 	unsigned long flags;
1170 	u64 ns;
1171 
1172 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1173 	ns = timecounter_cyc2time(&fep->tc, ts);
1174 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1175 
1176 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1177 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1178 }
1179 
1180 static void
1181 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1182 {
1183 	struct	fec_enet_private *fep;
1184 	struct bufdesc *bdp;
1185 	unsigned short status;
1186 	struct	sk_buff	*skb;
1187 	struct fec_enet_priv_tx_q *txq;
1188 	struct netdev_queue *nq;
1189 	int	index = 0;
1190 	int	entries_free;
1191 
1192 	fep = netdev_priv(ndev);
1193 
1194 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1195 
1196 	txq = fep->tx_queue[queue_id];
1197 	/* get next bdp of dirty_tx */
1198 	nq = netdev_get_tx_queue(ndev, queue_id);
1199 	bdp = txq->dirty_tx;
1200 
1201 	/* get next bdp of dirty_tx */
1202 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1203 
1204 	while (bdp != READ_ONCE(txq->bd.cur)) {
1205 		/* Order the load of bd.cur and cbd_sc */
1206 		rmb();
1207 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1208 		if (status & BD_ENET_TX_READY)
1209 			break;
1210 
1211 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1212 
1213 		skb = txq->tx_skbuff[index];
1214 		txq->tx_skbuff[index] = NULL;
1215 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1216 			dma_unmap_single(&fep->pdev->dev,
1217 					 fec32_to_cpu(bdp->cbd_bufaddr),
1218 					 fec16_to_cpu(bdp->cbd_datlen),
1219 					 DMA_TO_DEVICE);
1220 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1221 		if (!skb)
1222 			goto skb_done;
1223 
1224 		/* Check for errors. */
1225 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1226 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1227 				   BD_ENET_TX_CSL)) {
1228 			ndev->stats.tx_errors++;
1229 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1230 				ndev->stats.tx_heartbeat_errors++;
1231 			if (status & BD_ENET_TX_LC)  /* Late collision */
1232 				ndev->stats.tx_window_errors++;
1233 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1234 				ndev->stats.tx_aborted_errors++;
1235 			if (status & BD_ENET_TX_UN)  /* Underrun */
1236 				ndev->stats.tx_fifo_errors++;
1237 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1238 				ndev->stats.tx_carrier_errors++;
1239 		} else {
1240 			ndev->stats.tx_packets++;
1241 			ndev->stats.tx_bytes += skb->len;
1242 		}
1243 
1244 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1245 			fep->bufdesc_ex) {
1246 			struct skb_shared_hwtstamps shhwtstamps;
1247 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1248 
1249 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1250 			skb_tstamp_tx(skb, &shhwtstamps);
1251 		}
1252 
1253 		/* Deferred means some collisions occurred during transmit,
1254 		 * but we eventually sent the packet OK.
1255 		 */
1256 		if (status & BD_ENET_TX_DEF)
1257 			ndev->stats.collisions++;
1258 
1259 		/* Free the sk buffer associated with this last transmit */
1260 		dev_kfree_skb_any(skb);
1261 skb_done:
1262 		/* Make sure the update to bdp and tx_skbuff are performed
1263 		 * before dirty_tx
1264 		 */
1265 		wmb();
1266 		txq->dirty_tx = bdp;
1267 
1268 		/* Update pointer to next buffer descriptor to be transmitted */
1269 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1270 
1271 		/* Since we have freed up a buffer, the ring is no longer full
1272 		 */
1273 		if (netif_queue_stopped(ndev)) {
1274 			entries_free = fec_enet_get_free_txdesc_num(txq);
1275 			if (entries_free >= txq->tx_wake_threshold)
1276 				netif_tx_wake_queue(nq);
1277 		}
1278 	}
1279 
1280 	/* ERR006358: Keep the transmitter going */
1281 	if (bdp != txq->bd.cur &&
1282 	    readl(txq->bd.reg_desc_active) == 0)
1283 		writel(0, txq->bd.reg_desc_active);
1284 }
1285 
1286 static void
1287 fec_enet_tx(struct net_device *ndev)
1288 {
1289 	struct fec_enet_private *fep = netdev_priv(ndev);
1290 	u16 queue_id;
1291 	/* First process class A queue, then Class B and Best Effort queue */
1292 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1293 		clear_bit(queue_id, &fep->work_tx);
1294 		fec_enet_tx_queue(ndev, queue_id);
1295 	}
1296 	return;
1297 }
1298 
1299 static int
1300 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1301 {
1302 	struct  fec_enet_private *fep = netdev_priv(ndev);
1303 	int off;
1304 
1305 	off = ((unsigned long)skb->data) & fep->rx_align;
1306 	if (off)
1307 		skb_reserve(skb, fep->rx_align + 1 - off);
1308 
1309 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1310 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1311 		if (net_ratelimit())
1312 			netdev_err(ndev, "Rx DMA memory map failed\n");
1313 		return -ENOMEM;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1320 			       struct bufdesc *bdp, u32 length, bool swap)
1321 {
1322 	struct  fec_enet_private *fep = netdev_priv(ndev);
1323 	struct sk_buff *new_skb;
1324 
1325 	if (length > fep->rx_copybreak)
1326 		return false;
1327 
1328 	new_skb = netdev_alloc_skb(ndev, length);
1329 	if (!new_skb)
1330 		return false;
1331 
1332 	dma_sync_single_for_cpu(&fep->pdev->dev,
1333 				fec32_to_cpu(bdp->cbd_bufaddr),
1334 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1335 				DMA_FROM_DEVICE);
1336 	if (!swap)
1337 		memcpy(new_skb->data, (*skb)->data, length);
1338 	else
1339 		swap_buffer2(new_skb->data, (*skb)->data, length);
1340 	*skb = new_skb;
1341 
1342 	return true;
1343 }
1344 
1345 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1346  * When we update through the ring, if the next incoming buffer has
1347  * not been given to the system, we just set the empty indicator,
1348  * effectively tossing the packet.
1349  */
1350 static int
1351 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1352 {
1353 	struct fec_enet_private *fep = netdev_priv(ndev);
1354 	struct fec_enet_priv_rx_q *rxq;
1355 	struct bufdesc *bdp;
1356 	unsigned short status;
1357 	struct  sk_buff *skb_new = NULL;
1358 	struct  sk_buff *skb;
1359 	ushort	pkt_len;
1360 	__u8 *data;
1361 	int	pkt_received = 0;
1362 	struct	bufdesc_ex *ebdp = NULL;
1363 	bool	vlan_packet_rcvd = false;
1364 	u16	vlan_tag;
1365 	int	index = 0;
1366 	bool	is_copybreak;
1367 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1368 
1369 #ifdef CONFIG_M532x
1370 	flush_cache_all();
1371 #endif
1372 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1373 	rxq = fep->rx_queue[queue_id];
1374 
1375 	/* First, grab all of the stats for the incoming packet.
1376 	 * These get messed up if we get called due to a busy condition.
1377 	 */
1378 	bdp = rxq->bd.cur;
1379 
1380 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1381 
1382 		if (pkt_received >= budget)
1383 			break;
1384 		pkt_received++;
1385 
1386 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1387 
1388 		/* Check for errors. */
1389 		status ^= BD_ENET_RX_LAST;
1390 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1391 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1392 			   BD_ENET_RX_CL)) {
1393 			ndev->stats.rx_errors++;
1394 			if (status & BD_ENET_RX_OV) {
1395 				/* FIFO overrun */
1396 				ndev->stats.rx_fifo_errors++;
1397 				goto rx_processing_done;
1398 			}
1399 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1400 						| BD_ENET_RX_LAST)) {
1401 				/* Frame too long or too short. */
1402 				ndev->stats.rx_length_errors++;
1403 				if (status & BD_ENET_RX_LAST)
1404 					netdev_err(ndev, "rcv is not +last\n");
1405 			}
1406 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1407 				ndev->stats.rx_crc_errors++;
1408 			/* Report late collisions as a frame error. */
1409 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1410 				ndev->stats.rx_frame_errors++;
1411 			goto rx_processing_done;
1412 		}
1413 
1414 		/* Process the incoming frame. */
1415 		ndev->stats.rx_packets++;
1416 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1417 		ndev->stats.rx_bytes += pkt_len;
1418 
1419 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1420 		skb = rxq->rx_skbuff[index];
1421 
1422 		/* The packet length includes FCS, but we don't want to
1423 		 * include that when passing upstream as it messes up
1424 		 * bridging applications.
1425 		 */
1426 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1427 						  need_swap);
1428 		if (!is_copybreak) {
1429 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1430 			if (unlikely(!skb_new)) {
1431 				ndev->stats.rx_dropped++;
1432 				goto rx_processing_done;
1433 			}
1434 			dma_unmap_single(&fep->pdev->dev,
1435 					 fec32_to_cpu(bdp->cbd_bufaddr),
1436 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1437 					 DMA_FROM_DEVICE);
1438 		}
1439 
1440 		prefetch(skb->data - NET_IP_ALIGN);
1441 		skb_put(skb, pkt_len - 4);
1442 		data = skb->data;
1443 
1444 		if (!is_copybreak && need_swap)
1445 			swap_buffer(data, pkt_len);
1446 
1447 #if !defined(CONFIG_M5272)
1448 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1449 			data = skb_pull_inline(skb, 2);
1450 #endif
1451 
1452 		/* Extract the enhanced buffer descriptor */
1453 		ebdp = NULL;
1454 		if (fep->bufdesc_ex)
1455 			ebdp = (struct bufdesc_ex *)bdp;
1456 
1457 		/* If this is a VLAN packet remove the VLAN Tag */
1458 		vlan_packet_rcvd = false;
1459 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1460 		    fep->bufdesc_ex &&
1461 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1462 			/* Push and remove the vlan tag */
1463 			struct vlan_hdr *vlan_header =
1464 					(struct vlan_hdr *) (data + ETH_HLEN);
1465 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1466 
1467 			vlan_packet_rcvd = true;
1468 
1469 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1470 			skb_pull(skb, VLAN_HLEN);
1471 		}
1472 
1473 		skb->protocol = eth_type_trans(skb, ndev);
1474 
1475 		/* Get receive timestamp from the skb */
1476 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1477 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1478 					  skb_hwtstamps(skb));
1479 
1480 		if (fep->bufdesc_ex &&
1481 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1482 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1483 				/* don't check it */
1484 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1485 			} else {
1486 				skb_checksum_none_assert(skb);
1487 			}
1488 		}
1489 
1490 		/* Handle received VLAN packets */
1491 		if (vlan_packet_rcvd)
1492 			__vlan_hwaccel_put_tag(skb,
1493 					       htons(ETH_P_8021Q),
1494 					       vlan_tag);
1495 
1496 		napi_gro_receive(&fep->napi, skb);
1497 
1498 		if (is_copybreak) {
1499 			dma_sync_single_for_device(&fep->pdev->dev,
1500 						   fec32_to_cpu(bdp->cbd_bufaddr),
1501 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1502 						   DMA_FROM_DEVICE);
1503 		} else {
1504 			rxq->rx_skbuff[index] = skb_new;
1505 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1506 		}
1507 
1508 rx_processing_done:
1509 		/* Clear the status flags for this buffer */
1510 		status &= ~BD_ENET_RX_STATS;
1511 
1512 		/* Mark the buffer empty */
1513 		status |= BD_ENET_RX_EMPTY;
1514 
1515 		if (fep->bufdesc_ex) {
1516 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1517 
1518 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1519 			ebdp->cbd_prot = 0;
1520 			ebdp->cbd_bdu = 0;
1521 		}
1522 		/* Make sure the updates to rest of the descriptor are
1523 		 * performed before transferring ownership.
1524 		 */
1525 		wmb();
1526 		bdp->cbd_sc = cpu_to_fec16(status);
1527 
1528 		/* Update BD pointer to next entry */
1529 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1530 
1531 		/* Doing this here will keep the FEC running while we process
1532 		 * incoming frames.  On a heavily loaded network, we should be
1533 		 * able to keep up at the expense of system resources.
1534 		 */
1535 		writel(0, rxq->bd.reg_desc_active);
1536 	}
1537 	rxq->bd.cur = bdp;
1538 	return pkt_received;
1539 }
1540 
1541 static int
1542 fec_enet_rx(struct net_device *ndev, int budget)
1543 {
1544 	int     pkt_received = 0;
1545 	u16	queue_id;
1546 	struct fec_enet_private *fep = netdev_priv(ndev);
1547 
1548 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1549 		int ret;
1550 
1551 		ret = fec_enet_rx_queue(ndev,
1552 					budget - pkt_received, queue_id);
1553 
1554 		if (ret < budget - pkt_received)
1555 			clear_bit(queue_id, &fep->work_rx);
1556 
1557 		pkt_received += ret;
1558 	}
1559 	return pkt_received;
1560 }
1561 
1562 static bool
1563 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1564 {
1565 	if (int_events == 0)
1566 		return false;
1567 
1568 	if (int_events & FEC_ENET_RXF_0)
1569 		fep->work_rx |= (1 << 2);
1570 	if (int_events & FEC_ENET_RXF_1)
1571 		fep->work_rx |= (1 << 0);
1572 	if (int_events & FEC_ENET_RXF_2)
1573 		fep->work_rx |= (1 << 1);
1574 
1575 	if (int_events & FEC_ENET_TXF_0)
1576 		fep->work_tx |= (1 << 2);
1577 	if (int_events & FEC_ENET_TXF_1)
1578 		fep->work_tx |= (1 << 0);
1579 	if (int_events & FEC_ENET_TXF_2)
1580 		fep->work_tx |= (1 << 1);
1581 
1582 	return true;
1583 }
1584 
1585 static irqreturn_t
1586 fec_enet_interrupt(int irq, void *dev_id)
1587 {
1588 	struct net_device *ndev = dev_id;
1589 	struct fec_enet_private *fep = netdev_priv(ndev);
1590 	uint int_events;
1591 	irqreturn_t ret = IRQ_NONE;
1592 
1593 	int_events = readl(fep->hwp + FEC_IEVENT);
1594 	writel(int_events, fep->hwp + FEC_IEVENT);
1595 	fec_enet_collect_events(fep, int_events);
1596 
1597 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1598 		ret = IRQ_HANDLED;
1599 
1600 		if (napi_schedule_prep(&fep->napi)) {
1601 			/* Disable the NAPI interrupts */
1602 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1603 			__napi_schedule(&fep->napi);
1604 		}
1605 	}
1606 
1607 	if (int_events & FEC_ENET_MII) {
1608 		ret = IRQ_HANDLED;
1609 		complete(&fep->mdio_done);
1610 	}
1611 	return ret;
1612 }
1613 
1614 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1615 {
1616 	struct net_device *ndev = napi->dev;
1617 	struct fec_enet_private *fep = netdev_priv(ndev);
1618 	int pkts;
1619 
1620 	pkts = fec_enet_rx(ndev, budget);
1621 
1622 	fec_enet_tx(ndev);
1623 
1624 	if (pkts < budget) {
1625 		napi_complete_done(napi, pkts);
1626 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1627 	}
1628 	return pkts;
1629 }
1630 
1631 /* ------------------------------------------------------------------------- */
1632 static void fec_get_mac(struct net_device *ndev)
1633 {
1634 	struct fec_enet_private *fep = netdev_priv(ndev);
1635 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1636 	unsigned char *iap, tmpaddr[ETH_ALEN];
1637 
1638 	/*
1639 	 * try to get mac address in following order:
1640 	 *
1641 	 * 1) module parameter via kernel command line in form
1642 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1643 	 */
1644 	iap = macaddr;
1645 
1646 	/*
1647 	 * 2) from device tree data
1648 	 */
1649 	if (!is_valid_ether_addr(iap)) {
1650 		struct device_node *np = fep->pdev->dev.of_node;
1651 		if (np) {
1652 			const char *mac = of_get_mac_address(np);
1653 			if (mac)
1654 				iap = (unsigned char *) mac;
1655 		}
1656 	}
1657 
1658 	/*
1659 	 * 3) from flash or fuse (via platform data)
1660 	 */
1661 	if (!is_valid_ether_addr(iap)) {
1662 #ifdef CONFIG_M5272
1663 		if (FEC_FLASHMAC)
1664 			iap = (unsigned char *)FEC_FLASHMAC;
1665 #else
1666 		if (pdata)
1667 			iap = (unsigned char *)&pdata->mac;
1668 #endif
1669 	}
1670 
1671 	/*
1672 	 * 4) FEC mac registers set by bootloader
1673 	 */
1674 	if (!is_valid_ether_addr(iap)) {
1675 		*((__be32 *) &tmpaddr[0]) =
1676 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1677 		*((__be16 *) &tmpaddr[4]) =
1678 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1679 		iap = &tmpaddr[0];
1680 	}
1681 
1682 	/*
1683 	 * 5) random mac address
1684 	 */
1685 	if (!is_valid_ether_addr(iap)) {
1686 		/* Report it and use a random ethernet address instead */
1687 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1688 		eth_hw_addr_random(ndev);
1689 		netdev_info(ndev, "Using random MAC address: %pM\n",
1690 			    ndev->dev_addr);
1691 		return;
1692 	}
1693 
1694 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1695 
1696 	/* Adjust MAC if using macaddr */
1697 	if (iap == macaddr)
1698 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1699 }
1700 
1701 /* ------------------------------------------------------------------------- */
1702 
1703 /*
1704  * Phy section
1705  */
1706 static void fec_enet_adjust_link(struct net_device *ndev)
1707 {
1708 	struct fec_enet_private *fep = netdev_priv(ndev);
1709 	struct phy_device *phy_dev = ndev->phydev;
1710 	int status_change = 0;
1711 
1712 	/* Prevent a state halted on mii error */
1713 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1714 		phy_dev->state = PHY_RESUMING;
1715 		return;
1716 	}
1717 
1718 	/*
1719 	 * If the netdev is down, or is going down, we're not interested
1720 	 * in link state events, so just mark our idea of the link as down
1721 	 * and ignore the event.
1722 	 */
1723 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1724 		fep->link = 0;
1725 	} else if (phy_dev->link) {
1726 		if (!fep->link) {
1727 			fep->link = phy_dev->link;
1728 			status_change = 1;
1729 		}
1730 
1731 		if (fep->full_duplex != phy_dev->duplex) {
1732 			fep->full_duplex = phy_dev->duplex;
1733 			status_change = 1;
1734 		}
1735 
1736 		if (phy_dev->speed != fep->speed) {
1737 			fep->speed = phy_dev->speed;
1738 			status_change = 1;
1739 		}
1740 
1741 		/* if any of the above changed restart the FEC */
1742 		if (status_change) {
1743 			napi_disable(&fep->napi);
1744 			netif_tx_lock_bh(ndev);
1745 			fec_restart(ndev);
1746 			netif_wake_queue(ndev);
1747 			netif_tx_unlock_bh(ndev);
1748 			napi_enable(&fep->napi);
1749 		}
1750 	} else {
1751 		if (fep->link) {
1752 			napi_disable(&fep->napi);
1753 			netif_tx_lock_bh(ndev);
1754 			fec_stop(ndev);
1755 			netif_tx_unlock_bh(ndev);
1756 			napi_enable(&fep->napi);
1757 			fep->link = phy_dev->link;
1758 			status_change = 1;
1759 		}
1760 	}
1761 
1762 	if (status_change)
1763 		phy_print_status(phy_dev);
1764 }
1765 
1766 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1767 {
1768 	struct fec_enet_private *fep = bus->priv;
1769 	struct device *dev = &fep->pdev->dev;
1770 	unsigned long time_left;
1771 	int ret = 0;
1772 
1773 	ret = pm_runtime_get_sync(dev);
1774 	if (ret < 0)
1775 		return ret;
1776 
1777 	fep->mii_timeout = 0;
1778 	reinit_completion(&fep->mdio_done);
1779 
1780 	/* start a read op */
1781 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1782 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1783 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1784 
1785 	/* wait for end of transfer */
1786 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1787 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1788 	if (time_left == 0) {
1789 		fep->mii_timeout = 1;
1790 		netdev_err(fep->netdev, "MDIO read timeout\n");
1791 		ret = -ETIMEDOUT;
1792 		goto out;
1793 	}
1794 
1795 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1796 
1797 out:
1798 	pm_runtime_mark_last_busy(dev);
1799 	pm_runtime_put_autosuspend(dev);
1800 
1801 	return ret;
1802 }
1803 
1804 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1805 			   u16 value)
1806 {
1807 	struct fec_enet_private *fep = bus->priv;
1808 	struct device *dev = &fep->pdev->dev;
1809 	unsigned long time_left;
1810 	int ret;
1811 
1812 	ret = pm_runtime_get_sync(dev);
1813 	if (ret < 0)
1814 		return ret;
1815 	else
1816 		ret = 0;
1817 
1818 	fep->mii_timeout = 0;
1819 	reinit_completion(&fep->mdio_done);
1820 
1821 	/* start a write op */
1822 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1823 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1824 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1825 		fep->hwp + FEC_MII_DATA);
1826 
1827 	/* wait for end of transfer */
1828 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1829 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1830 	if (time_left == 0) {
1831 		fep->mii_timeout = 1;
1832 		netdev_err(fep->netdev, "MDIO write timeout\n");
1833 		ret  = -ETIMEDOUT;
1834 	}
1835 
1836 	pm_runtime_mark_last_busy(dev);
1837 	pm_runtime_put_autosuspend(dev);
1838 
1839 	return ret;
1840 }
1841 
1842 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1843 {
1844 	struct fec_enet_private *fep = netdev_priv(ndev);
1845 	int ret;
1846 
1847 	if (enable) {
1848 		ret = clk_prepare_enable(fep->clk_ahb);
1849 		if (ret)
1850 			return ret;
1851 
1852 		ret = clk_prepare_enable(fep->clk_enet_out);
1853 		if (ret)
1854 			goto failed_clk_enet_out;
1855 
1856 		if (fep->clk_ptp) {
1857 			mutex_lock(&fep->ptp_clk_mutex);
1858 			ret = clk_prepare_enable(fep->clk_ptp);
1859 			if (ret) {
1860 				mutex_unlock(&fep->ptp_clk_mutex);
1861 				goto failed_clk_ptp;
1862 			} else {
1863 				fep->ptp_clk_on = true;
1864 			}
1865 			mutex_unlock(&fep->ptp_clk_mutex);
1866 		}
1867 
1868 		ret = clk_prepare_enable(fep->clk_ref);
1869 		if (ret)
1870 			goto failed_clk_ref;
1871 
1872 		phy_reset_after_clk_enable(ndev->phydev);
1873 	} else {
1874 		clk_disable_unprepare(fep->clk_ahb);
1875 		clk_disable_unprepare(fep->clk_enet_out);
1876 		if (fep->clk_ptp) {
1877 			mutex_lock(&fep->ptp_clk_mutex);
1878 			clk_disable_unprepare(fep->clk_ptp);
1879 			fep->ptp_clk_on = false;
1880 			mutex_unlock(&fep->ptp_clk_mutex);
1881 		}
1882 		clk_disable_unprepare(fep->clk_ref);
1883 	}
1884 
1885 	return 0;
1886 
1887 failed_clk_ref:
1888 	if (fep->clk_ref)
1889 		clk_disable_unprepare(fep->clk_ref);
1890 failed_clk_ptp:
1891 	if (fep->clk_enet_out)
1892 		clk_disable_unprepare(fep->clk_enet_out);
1893 failed_clk_enet_out:
1894 		clk_disable_unprepare(fep->clk_ahb);
1895 
1896 	return ret;
1897 }
1898 
1899 static int fec_enet_mii_probe(struct net_device *ndev)
1900 {
1901 	struct fec_enet_private *fep = netdev_priv(ndev);
1902 	struct phy_device *phy_dev = NULL;
1903 	char mdio_bus_id[MII_BUS_ID_SIZE];
1904 	char phy_name[MII_BUS_ID_SIZE + 3];
1905 	int phy_id;
1906 	int dev_id = fep->dev_id;
1907 
1908 	if (fep->phy_node) {
1909 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1910 					 &fec_enet_adjust_link, 0,
1911 					 fep->phy_interface);
1912 		if (!phy_dev) {
1913 			netdev_err(ndev, "Unable to connect to phy\n");
1914 			return -ENODEV;
1915 		}
1916 	} else {
1917 		/* check for attached phy */
1918 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1919 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1920 				continue;
1921 			if (dev_id--)
1922 				continue;
1923 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1924 			break;
1925 		}
1926 
1927 		if (phy_id >= PHY_MAX_ADDR) {
1928 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1929 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1930 			phy_id = 0;
1931 		}
1932 
1933 		snprintf(phy_name, sizeof(phy_name),
1934 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1935 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1936 				      fep->phy_interface);
1937 	}
1938 
1939 	if (IS_ERR(phy_dev)) {
1940 		netdev_err(ndev, "could not attach to PHY\n");
1941 		return PTR_ERR(phy_dev);
1942 	}
1943 
1944 	/* mask with MAC supported features */
1945 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1946 		phy_dev->supported &= PHY_GBIT_FEATURES;
1947 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1948 #if !defined(CONFIG_M5272)
1949 		phy_dev->supported |= SUPPORTED_Pause;
1950 #endif
1951 	}
1952 	else
1953 		phy_dev->supported &= PHY_BASIC_FEATURES;
1954 
1955 	phy_dev->advertising = phy_dev->supported;
1956 
1957 	fep->link = 0;
1958 	fep->full_duplex = 0;
1959 
1960 	phy_attached_info(phy_dev);
1961 
1962 	return 0;
1963 }
1964 
1965 static int fec_enet_mii_init(struct platform_device *pdev)
1966 {
1967 	static struct mii_bus *fec0_mii_bus;
1968 	struct net_device *ndev = platform_get_drvdata(pdev);
1969 	struct fec_enet_private *fep = netdev_priv(ndev);
1970 	struct device_node *node;
1971 	int err = -ENXIO;
1972 	u32 mii_speed, holdtime;
1973 
1974 	/*
1975 	 * The i.MX28 dual fec interfaces are not equal.
1976 	 * Here are the differences:
1977 	 *
1978 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1979 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1980 	 *  - external phys can only be configured by fec0
1981 	 *
1982 	 * That is to say fec1 can not work independently. It only works
1983 	 * when fec0 is working. The reason behind this design is that the
1984 	 * second interface is added primarily for Switch mode.
1985 	 *
1986 	 * Because of the last point above, both phys are attached on fec0
1987 	 * mdio interface in board design, and need to be configured by
1988 	 * fec0 mii_bus.
1989 	 */
1990 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1991 		/* fec1 uses fec0 mii_bus */
1992 		if (mii_cnt && fec0_mii_bus) {
1993 			fep->mii_bus = fec0_mii_bus;
1994 			mii_cnt++;
1995 			return 0;
1996 		}
1997 		return -ENOENT;
1998 	}
1999 
2000 	fep->mii_timeout = 0;
2001 
2002 	/*
2003 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2004 	 *
2005 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2006 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2007 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2008 	 * document.
2009 	 */
2010 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2011 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2012 		mii_speed--;
2013 	if (mii_speed > 63) {
2014 		dev_err(&pdev->dev,
2015 			"fec clock (%lu) too fast to get right mii speed\n",
2016 			clk_get_rate(fep->clk_ipg));
2017 		err = -EINVAL;
2018 		goto err_out;
2019 	}
2020 
2021 	/*
2022 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2023 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2024 	 * versions are RAZ there, so just ignore the difference and write the
2025 	 * register always.
2026 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2027 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2028 	 * output.
2029 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2030 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2031 	 * holdtime cannot result in a value greater than 3.
2032 	 */
2033 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2034 
2035 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2036 
2037 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2038 
2039 	fep->mii_bus = mdiobus_alloc();
2040 	if (fep->mii_bus == NULL) {
2041 		err = -ENOMEM;
2042 		goto err_out;
2043 	}
2044 
2045 	fep->mii_bus->name = "fec_enet_mii_bus";
2046 	fep->mii_bus->read = fec_enet_mdio_read;
2047 	fep->mii_bus->write = fec_enet_mdio_write;
2048 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2049 		pdev->name, fep->dev_id + 1);
2050 	fep->mii_bus->priv = fep;
2051 	fep->mii_bus->parent = &pdev->dev;
2052 
2053 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2054 	if (node) {
2055 		err = of_mdiobus_register(fep->mii_bus, node);
2056 		of_node_put(node);
2057 	} else {
2058 		err = mdiobus_register(fep->mii_bus);
2059 	}
2060 
2061 	if (err)
2062 		goto err_out_free_mdiobus;
2063 
2064 	mii_cnt++;
2065 
2066 	/* save fec0 mii_bus */
2067 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2068 		fec0_mii_bus = fep->mii_bus;
2069 
2070 	return 0;
2071 
2072 err_out_free_mdiobus:
2073 	mdiobus_free(fep->mii_bus);
2074 err_out:
2075 	return err;
2076 }
2077 
2078 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2079 {
2080 	if (--mii_cnt == 0) {
2081 		mdiobus_unregister(fep->mii_bus);
2082 		mdiobus_free(fep->mii_bus);
2083 	}
2084 }
2085 
2086 static void fec_enet_get_drvinfo(struct net_device *ndev,
2087 				 struct ethtool_drvinfo *info)
2088 {
2089 	struct fec_enet_private *fep = netdev_priv(ndev);
2090 
2091 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2092 		sizeof(info->driver));
2093 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2094 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2095 }
2096 
2097 static int fec_enet_get_regs_len(struct net_device *ndev)
2098 {
2099 	struct fec_enet_private *fep = netdev_priv(ndev);
2100 	struct resource *r;
2101 	int s = 0;
2102 
2103 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2104 	if (r)
2105 		s = resource_size(r);
2106 
2107 	return s;
2108 }
2109 
2110 /* List of registers that can be safety be read to dump them with ethtool */
2111 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2112 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2113 static u32 fec_enet_register_offset[] = {
2114 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2115 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2116 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2117 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2118 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2119 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2120 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2121 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2122 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2123 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2124 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2125 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2126 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2127 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2128 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2129 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2130 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2131 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2132 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2133 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2134 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2135 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2136 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2137 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2138 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2139 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2140 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2141 };
2142 #else
2143 static u32 fec_enet_register_offset[] = {
2144 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2145 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2146 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2147 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2148 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2149 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2150 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2151 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2152 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2153 };
2154 #endif
2155 
2156 static void fec_enet_get_regs(struct net_device *ndev,
2157 			      struct ethtool_regs *regs, void *regbuf)
2158 {
2159 	struct fec_enet_private *fep = netdev_priv(ndev);
2160 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2161 	u32 *buf = (u32 *)regbuf;
2162 	u32 i, off;
2163 
2164 	memset(buf, 0, regs->len);
2165 
2166 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2167 		off = fec_enet_register_offset[i] / 4;
2168 		buf[off] = readl(&theregs[off]);
2169 	}
2170 }
2171 
2172 static int fec_enet_get_ts_info(struct net_device *ndev,
2173 				struct ethtool_ts_info *info)
2174 {
2175 	struct fec_enet_private *fep = netdev_priv(ndev);
2176 
2177 	if (fep->bufdesc_ex) {
2178 
2179 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2180 					SOF_TIMESTAMPING_RX_SOFTWARE |
2181 					SOF_TIMESTAMPING_SOFTWARE |
2182 					SOF_TIMESTAMPING_TX_HARDWARE |
2183 					SOF_TIMESTAMPING_RX_HARDWARE |
2184 					SOF_TIMESTAMPING_RAW_HARDWARE;
2185 		if (fep->ptp_clock)
2186 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2187 		else
2188 			info->phc_index = -1;
2189 
2190 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2191 				 (1 << HWTSTAMP_TX_ON);
2192 
2193 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2194 				   (1 << HWTSTAMP_FILTER_ALL);
2195 		return 0;
2196 	} else {
2197 		return ethtool_op_get_ts_info(ndev, info);
2198 	}
2199 }
2200 
2201 #if !defined(CONFIG_M5272)
2202 
2203 static void fec_enet_get_pauseparam(struct net_device *ndev,
2204 				    struct ethtool_pauseparam *pause)
2205 {
2206 	struct fec_enet_private *fep = netdev_priv(ndev);
2207 
2208 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2209 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2210 	pause->rx_pause = pause->tx_pause;
2211 }
2212 
2213 static int fec_enet_set_pauseparam(struct net_device *ndev,
2214 				   struct ethtool_pauseparam *pause)
2215 {
2216 	struct fec_enet_private *fep = netdev_priv(ndev);
2217 
2218 	if (!ndev->phydev)
2219 		return -ENODEV;
2220 
2221 	if (pause->tx_pause != pause->rx_pause) {
2222 		netdev_info(ndev,
2223 			"hardware only support enable/disable both tx and rx");
2224 		return -EINVAL;
2225 	}
2226 
2227 	fep->pause_flag = 0;
2228 
2229 	/* tx pause must be same as rx pause */
2230 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2231 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2232 
2233 	if (pause->rx_pause || pause->autoneg) {
2234 		ndev->phydev->supported |= ADVERTISED_Pause;
2235 		ndev->phydev->advertising |= ADVERTISED_Pause;
2236 	} else {
2237 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2238 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2239 	}
2240 
2241 	if (pause->autoneg) {
2242 		if (netif_running(ndev))
2243 			fec_stop(ndev);
2244 		phy_start_aneg(ndev->phydev);
2245 	}
2246 	if (netif_running(ndev)) {
2247 		napi_disable(&fep->napi);
2248 		netif_tx_lock_bh(ndev);
2249 		fec_restart(ndev);
2250 		netif_wake_queue(ndev);
2251 		netif_tx_unlock_bh(ndev);
2252 		napi_enable(&fep->napi);
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 static const struct fec_stat {
2259 	char name[ETH_GSTRING_LEN];
2260 	u16 offset;
2261 } fec_stats[] = {
2262 	/* RMON TX */
2263 	{ "tx_dropped", RMON_T_DROP },
2264 	{ "tx_packets", RMON_T_PACKETS },
2265 	{ "tx_broadcast", RMON_T_BC_PKT },
2266 	{ "tx_multicast", RMON_T_MC_PKT },
2267 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2268 	{ "tx_undersize", RMON_T_UNDERSIZE },
2269 	{ "tx_oversize", RMON_T_OVERSIZE },
2270 	{ "tx_fragment", RMON_T_FRAG },
2271 	{ "tx_jabber", RMON_T_JAB },
2272 	{ "tx_collision", RMON_T_COL },
2273 	{ "tx_64byte", RMON_T_P64 },
2274 	{ "tx_65to127byte", RMON_T_P65TO127 },
2275 	{ "tx_128to255byte", RMON_T_P128TO255 },
2276 	{ "tx_256to511byte", RMON_T_P256TO511 },
2277 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2278 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2279 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2280 	{ "tx_octets", RMON_T_OCTETS },
2281 
2282 	/* IEEE TX */
2283 	{ "IEEE_tx_drop", IEEE_T_DROP },
2284 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2285 	{ "IEEE_tx_1col", IEEE_T_1COL },
2286 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2287 	{ "IEEE_tx_def", IEEE_T_DEF },
2288 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2289 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2290 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2291 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2292 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2293 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2294 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2295 
2296 	/* RMON RX */
2297 	{ "rx_packets", RMON_R_PACKETS },
2298 	{ "rx_broadcast", RMON_R_BC_PKT },
2299 	{ "rx_multicast", RMON_R_MC_PKT },
2300 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2301 	{ "rx_undersize", RMON_R_UNDERSIZE },
2302 	{ "rx_oversize", RMON_R_OVERSIZE },
2303 	{ "rx_fragment", RMON_R_FRAG },
2304 	{ "rx_jabber", RMON_R_JAB },
2305 	{ "rx_64byte", RMON_R_P64 },
2306 	{ "rx_65to127byte", RMON_R_P65TO127 },
2307 	{ "rx_128to255byte", RMON_R_P128TO255 },
2308 	{ "rx_256to511byte", RMON_R_P256TO511 },
2309 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2310 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2311 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2312 	{ "rx_octets", RMON_R_OCTETS },
2313 
2314 	/* IEEE RX */
2315 	{ "IEEE_rx_drop", IEEE_R_DROP },
2316 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2317 	{ "IEEE_rx_crc", IEEE_R_CRC },
2318 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2319 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2320 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2321 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2322 };
2323 
2324 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2325 
2326 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2327 {
2328 	struct fec_enet_private *fep = netdev_priv(dev);
2329 	int i;
2330 
2331 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2332 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2333 }
2334 
2335 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2336 				       struct ethtool_stats *stats, u64 *data)
2337 {
2338 	struct fec_enet_private *fep = netdev_priv(dev);
2339 
2340 	if (netif_running(dev))
2341 		fec_enet_update_ethtool_stats(dev);
2342 
2343 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2344 }
2345 
2346 static void fec_enet_get_strings(struct net_device *netdev,
2347 	u32 stringset, u8 *data)
2348 {
2349 	int i;
2350 	switch (stringset) {
2351 	case ETH_SS_STATS:
2352 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2353 			memcpy(data + i * ETH_GSTRING_LEN,
2354 				fec_stats[i].name, ETH_GSTRING_LEN);
2355 		break;
2356 	}
2357 }
2358 
2359 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2360 {
2361 	switch (sset) {
2362 	case ETH_SS_STATS:
2363 		return ARRAY_SIZE(fec_stats);
2364 	default:
2365 		return -EOPNOTSUPP;
2366 	}
2367 }
2368 
2369 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2370 {
2371 	struct fec_enet_private *fep = netdev_priv(dev);
2372 	int i;
2373 
2374 	/* Disable MIB statistics counters */
2375 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2376 
2377 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2378 		writel(0, fep->hwp + fec_stats[i].offset);
2379 
2380 	/* Don't disable MIB statistics counters */
2381 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2382 }
2383 
2384 #else	/* !defined(CONFIG_M5272) */
2385 #define FEC_STATS_SIZE	0
2386 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2387 {
2388 }
2389 
2390 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2391 {
2392 }
2393 #endif /* !defined(CONFIG_M5272) */
2394 
2395 /* ITR clock source is enet system clock (clk_ahb).
2396  * TCTT unit is cycle_ns * 64 cycle
2397  * So, the ICTT value = X us / (cycle_ns * 64)
2398  */
2399 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2400 {
2401 	struct fec_enet_private *fep = netdev_priv(ndev);
2402 
2403 	return us * (fep->itr_clk_rate / 64000) / 1000;
2404 }
2405 
2406 /* Set threshold for interrupt coalescing */
2407 static void fec_enet_itr_coal_set(struct net_device *ndev)
2408 {
2409 	struct fec_enet_private *fep = netdev_priv(ndev);
2410 	int rx_itr, tx_itr;
2411 
2412 	/* Must be greater than zero to avoid unpredictable behavior */
2413 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2414 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2415 		return;
2416 
2417 	/* Select enet system clock as Interrupt Coalescing
2418 	 * timer Clock Source
2419 	 */
2420 	rx_itr = FEC_ITR_CLK_SEL;
2421 	tx_itr = FEC_ITR_CLK_SEL;
2422 
2423 	/* set ICFT and ICTT */
2424 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2425 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2426 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2427 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2428 
2429 	rx_itr |= FEC_ITR_EN;
2430 	tx_itr |= FEC_ITR_EN;
2431 
2432 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2433 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2434 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2435 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2436 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2437 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2438 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2439 	}
2440 }
2441 
2442 static int
2443 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2444 {
2445 	struct fec_enet_private *fep = netdev_priv(ndev);
2446 
2447 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2448 		return -EOPNOTSUPP;
2449 
2450 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2451 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2452 
2453 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2454 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2455 
2456 	return 0;
2457 }
2458 
2459 static int
2460 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2461 {
2462 	struct fec_enet_private *fep = netdev_priv(ndev);
2463 	unsigned int cycle;
2464 
2465 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2466 		return -EOPNOTSUPP;
2467 
2468 	if (ec->rx_max_coalesced_frames > 255) {
2469 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2470 		return -EINVAL;
2471 	}
2472 
2473 	if (ec->tx_max_coalesced_frames > 255) {
2474 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2475 		return -EINVAL;
2476 	}
2477 
2478 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2479 	if (cycle > 0xFFFF) {
2480 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2481 		return -EINVAL;
2482 	}
2483 
2484 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2485 	if (cycle > 0xFFFF) {
2486 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2487 		return -EINVAL;
2488 	}
2489 
2490 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2491 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2492 
2493 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2494 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2495 
2496 	fec_enet_itr_coal_set(ndev);
2497 
2498 	return 0;
2499 }
2500 
2501 static void fec_enet_itr_coal_init(struct net_device *ndev)
2502 {
2503 	struct ethtool_coalesce ec;
2504 
2505 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2506 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2507 
2508 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2509 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2510 
2511 	fec_enet_set_coalesce(ndev, &ec);
2512 }
2513 
2514 static int fec_enet_get_tunable(struct net_device *netdev,
2515 				const struct ethtool_tunable *tuna,
2516 				void *data)
2517 {
2518 	struct fec_enet_private *fep = netdev_priv(netdev);
2519 	int ret = 0;
2520 
2521 	switch (tuna->id) {
2522 	case ETHTOOL_RX_COPYBREAK:
2523 		*(u32 *)data = fep->rx_copybreak;
2524 		break;
2525 	default:
2526 		ret = -EINVAL;
2527 		break;
2528 	}
2529 
2530 	return ret;
2531 }
2532 
2533 static int fec_enet_set_tunable(struct net_device *netdev,
2534 				const struct ethtool_tunable *tuna,
2535 				const void *data)
2536 {
2537 	struct fec_enet_private *fep = netdev_priv(netdev);
2538 	int ret = 0;
2539 
2540 	switch (tuna->id) {
2541 	case ETHTOOL_RX_COPYBREAK:
2542 		fep->rx_copybreak = *(u32 *)data;
2543 		break;
2544 	default:
2545 		ret = -EINVAL;
2546 		break;
2547 	}
2548 
2549 	return ret;
2550 }
2551 
2552 static void
2553 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2554 {
2555 	struct fec_enet_private *fep = netdev_priv(ndev);
2556 
2557 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2558 		wol->supported = WAKE_MAGIC;
2559 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2560 	} else {
2561 		wol->supported = wol->wolopts = 0;
2562 	}
2563 }
2564 
2565 static int
2566 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2567 {
2568 	struct fec_enet_private *fep = netdev_priv(ndev);
2569 
2570 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2571 		return -EINVAL;
2572 
2573 	if (wol->wolopts & ~WAKE_MAGIC)
2574 		return -EINVAL;
2575 
2576 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2577 	if (device_may_wakeup(&ndev->dev)) {
2578 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2579 		if (fep->irq[0] > 0)
2580 			enable_irq_wake(fep->irq[0]);
2581 	} else {
2582 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2583 		if (fep->irq[0] > 0)
2584 			disable_irq_wake(fep->irq[0]);
2585 	}
2586 
2587 	return 0;
2588 }
2589 
2590 static const struct ethtool_ops fec_enet_ethtool_ops = {
2591 	.get_drvinfo		= fec_enet_get_drvinfo,
2592 	.get_regs_len		= fec_enet_get_regs_len,
2593 	.get_regs		= fec_enet_get_regs,
2594 	.nway_reset		= phy_ethtool_nway_reset,
2595 	.get_link		= ethtool_op_get_link,
2596 	.get_coalesce		= fec_enet_get_coalesce,
2597 	.set_coalesce		= fec_enet_set_coalesce,
2598 #ifndef CONFIG_M5272
2599 	.get_pauseparam		= fec_enet_get_pauseparam,
2600 	.set_pauseparam		= fec_enet_set_pauseparam,
2601 	.get_strings		= fec_enet_get_strings,
2602 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2603 	.get_sset_count		= fec_enet_get_sset_count,
2604 #endif
2605 	.get_ts_info		= fec_enet_get_ts_info,
2606 	.get_tunable		= fec_enet_get_tunable,
2607 	.set_tunable		= fec_enet_set_tunable,
2608 	.get_wol		= fec_enet_get_wol,
2609 	.set_wol		= fec_enet_set_wol,
2610 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2611 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2612 };
2613 
2614 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2615 {
2616 	struct fec_enet_private *fep = netdev_priv(ndev);
2617 	struct phy_device *phydev = ndev->phydev;
2618 
2619 	if (!netif_running(ndev))
2620 		return -EINVAL;
2621 
2622 	if (!phydev)
2623 		return -ENODEV;
2624 
2625 	if (fep->bufdesc_ex) {
2626 		if (cmd == SIOCSHWTSTAMP)
2627 			return fec_ptp_set(ndev, rq);
2628 		if (cmd == SIOCGHWTSTAMP)
2629 			return fec_ptp_get(ndev, rq);
2630 	}
2631 
2632 	return phy_mii_ioctl(phydev, rq, cmd);
2633 }
2634 
2635 static void fec_enet_free_buffers(struct net_device *ndev)
2636 {
2637 	struct fec_enet_private *fep = netdev_priv(ndev);
2638 	unsigned int i;
2639 	struct sk_buff *skb;
2640 	struct bufdesc	*bdp;
2641 	struct fec_enet_priv_tx_q *txq;
2642 	struct fec_enet_priv_rx_q *rxq;
2643 	unsigned int q;
2644 
2645 	for (q = 0; q < fep->num_rx_queues; q++) {
2646 		rxq = fep->rx_queue[q];
2647 		bdp = rxq->bd.base;
2648 		for (i = 0; i < rxq->bd.ring_size; i++) {
2649 			skb = rxq->rx_skbuff[i];
2650 			rxq->rx_skbuff[i] = NULL;
2651 			if (skb) {
2652 				dma_unmap_single(&fep->pdev->dev,
2653 						 fec32_to_cpu(bdp->cbd_bufaddr),
2654 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2655 						 DMA_FROM_DEVICE);
2656 				dev_kfree_skb(skb);
2657 			}
2658 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2659 		}
2660 	}
2661 
2662 	for (q = 0; q < fep->num_tx_queues; q++) {
2663 		txq = fep->tx_queue[q];
2664 		bdp = txq->bd.base;
2665 		for (i = 0; i < txq->bd.ring_size; i++) {
2666 			kfree(txq->tx_bounce[i]);
2667 			txq->tx_bounce[i] = NULL;
2668 			skb = txq->tx_skbuff[i];
2669 			txq->tx_skbuff[i] = NULL;
2670 			dev_kfree_skb(skb);
2671 		}
2672 	}
2673 }
2674 
2675 static void fec_enet_free_queue(struct net_device *ndev)
2676 {
2677 	struct fec_enet_private *fep = netdev_priv(ndev);
2678 	int i;
2679 	struct fec_enet_priv_tx_q *txq;
2680 
2681 	for (i = 0; i < fep->num_tx_queues; i++)
2682 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2683 			txq = fep->tx_queue[i];
2684 			dma_free_coherent(&fep->pdev->dev,
2685 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2686 					  txq->tso_hdrs,
2687 					  txq->tso_hdrs_dma);
2688 		}
2689 
2690 	for (i = 0; i < fep->num_rx_queues; i++)
2691 		kfree(fep->rx_queue[i]);
2692 	for (i = 0; i < fep->num_tx_queues; i++)
2693 		kfree(fep->tx_queue[i]);
2694 }
2695 
2696 static int fec_enet_alloc_queue(struct net_device *ndev)
2697 {
2698 	struct fec_enet_private *fep = netdev_priv(ndev);
2699 	int i;
2700 	int ret = 0;
2701 	struct fec_enet_priv_tx_q *txq;
2702 
2703 	for (i = 0; i < fep->num_tx_queues; i++) {
2704 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2705 		if (!txq) {
2706 			ret = -ENOMEM;
2707 			goto alloc_failed;
2708 		}
2709 
2710 		fep->tx_queue[i] = txq;
2711 		txq->bd.ring_size = TX_RING_SIZE;
2712 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2713 
2714 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2715 		txq->tx_wake_threshold =
2716 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2717 
2718 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2719 					txq->bd.ring_size * TSO_HEADER_SIZE,
2720 					&txq->tso_hdrs_dma,
2721 					GFP_KERNEL);
2722 		if (!txq->tso_hdrs) {
2723 			ret = -ENOMEM;
2724 			goto alloc_failed;
2725 		}
2726 	}
2727 
2728 	for (i = 0; i < fep->num_rx_queues; i++) {
2729 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2730 					   GFP_KERNEL);
2731 		if (!fep->rx_queue[i]) {
2732 			ret = -ENOMEM;
2733 			goto alloc_failed;
2734 		}
2735 
2736 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2737 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2738 	}
2739 	return ret;
2740 
2741 alloc_failed:
2742 	fec_enet_free_queue(ndev);
2743 	return ret;
2744 }
2745 
2746 static int
2747 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2748 {
2749 	struct fec_enet_private *fep = netdev_priv(ndev);
2750 	unsigned int i;
2751 	struct sk_buff *skb;
2752 	struct bufdesc	*bdp;
2753 	struct fec_enet_priv_rx_q *rxq;
2754 
2755 	rxq = fep->rx_queue[queue];
2756 	bdp = rxq->bd.base;
2757 	for (i = 0; i < rxq->bd.ring_size; i++) {
2758 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2759 		if (!skb)
2760 			goto err_alloc;
2761 
2762 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2763 			dev_kfree_skb(skb);
2764 			goto err_alloc;
2765 		}
2766 
2767 		rxq->rx_skbuff[i] = skb;
2768 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2769 
2770 		if (fep->bufdesc_ex) {
2771 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2772 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2773 		}
2774 
2775 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2776 	}
2777 
2778 	/* Set the last buffer to wrap. */
2779 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2780 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2781 	return 0;
2782 
2783  err_alloc:
2784 	fec_enet_free_buffers(ndev);
2785 	return -ENOMEM;
2786 }
2787 
2788 static int
2789 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2790 {
2791 	struct fec_enet_private *fep = netdev_priv(ndev);
2792 	unsigned int i;
2793 	struct bufdesc  *bdp;
2794 	struct fec_enet_priv_tx_q *txq;
2795 
2796 	txq = fep->tx_queue[queue];
2797 	bdp = txq->bd.base;
2798 	for (i = 0; i < txq->bd.ring_size; i++) {
2799 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2800 		if (!txq->tx_bounce[i])
2801 			goto err_alloc;
2802 
2803 		bdp->cbd_sc = cpu_to_fec16(0);
2804 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2805 
2806 		if (fep->bufdesc_ex) {
2807 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2808 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2809 		}
2810 
2811 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2812 	}
2813 
2814 	/* Set the last buffer to wrap. */
2815 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2816 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2817 
2818 	return 0;
2819 
2820  err_alloc:
2821 	fec_enet_free_buffers(ndev);
2822 	return -ENOMEM;
2823 }
2824 
2825 static int fec_enet_alloc_buffers(struct net_device *ndev)
2826 {
2827 	struct fec_enet_private *fep = netdev_priv(ndev);
2828 	unsigned int i;
2829 
2830 	for (i = 0; i < fep->num_rx_queues; i++)
2831 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2832 			return -ENOMEM;
2833 
2834 	for (i = 0; i < fep->num_tx_queues; i++)
2835 		if (fec_enet_alloc_txq_buffers(ndev, i))
2836 			return -ENOMEM;
2837 	return 0;
2838 }
2839 
2840 static int
2841 fec_enet_open(struct net_device *ndev)
2842 {
2843 	struct fec_enet_private *fep = netdev_priv(ndev);
2844 	int ret;
2845 	bool reset_again;
2846 
2847 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2848 	if (ret < 0)
2849 		return ret;
2850 
2851 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2852 	ret = fec_enet_clk_enable(ndev, true);
2853 	if (ret)
2854 		goto clk_enable;
2855 
2856 	/* During the first fec_enet_open call the PHY isn't probed at this
2857 	 * point. Therefore the phy_reset_after_clk_enable() call within
2858 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2859 	 * sure the PHY is working correctly we check if we need to reset again
2860 	 * later when the PHY is probed
2861 	 */
2862 	if (ndev->phydev && ndev->phydev->drv)
2863 		reset_again = false;
2864 	else
2865 		reset_again = true;
2866 
2867 	/* I should reset the ring buffers here, but I don't yet know
2868 	 * a simple way to do that.
2869 	 */
2870 
2871 	ret = fec_enet_alloc_buffers(ndev);
2872 	if (ret)
2873 		goto err_enet_alloc;
2874 
2875 	/* Init MAC prior to mii bus probe */
2876 	fec_restart(ndev);
2877 
2878 	/* Probe and connect to PHY when open the interface */
2879 	ret = fec_enet_mii_probe(ndev);
2880 	if (ret)
2881 		goto err_enet_mii_probe;
2882 
2883 	/* Call phy_reset_after_clk_enable() again if it failed during
2884 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2885 	 */
2886 	if (reset_again)
2887 		phy_reset_after_clk_enable(ndev->phydev);
2888 
2889 	if (fep->quirks & FEC_QUIRK_ERR006687)
2890 		imx6q_cpuidle_fec_irqs_used();
2891 
2892 	napi_enable(&fep->napi);
2893 	phy_start(ndev->phydev);
2894 	netif_tx_start_all_queues(ndev);
2895 
2896 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2897 				 FEC_WOL_FLAG_ENABLE);
2898 
2899 	return 0;
2900 
2901 err_enet_mii_probe:
2902 	fec_enet_free_buffers(ndev);
2903 err_enet_alloc:
2904 	fec_enet_clk_enable(ndev, false);
2905 clk_enable:
2906 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2907 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2908 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2909 	return ret;
2910 }
2911 
2912 static int
2913 fec_enet_close(struct net_device *ndev)
2914 {
2915 	struct fec_enet_private *fep = netdev_priv(ndev);
2916 
2917 	phy_stop(ndev->phydev);
2918 
2919 	if (netif_device_present(ndev)) {
2920 		napi_disable(&fep->napi);
2921 		netif_tx_disable(ndev);
2922 		fec_stop(ndev);
2923 	}
2924 
2925 	phy_disconnect(ndev->phydev);
2926 
2927 	if (fep->quirks & FEC_QUIRK_ERR006687)
2928 		imx6q_cpuidle_fec_irqs_unused();
2929 
2930 	fec_enet_update_ethtool_stats(ndev);
2931 
2932 	fec_enet_clk_enable(ndev, false);
2933 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2934 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2935 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2936 
2937 	fec_enet_free_buffers(ndev);
2938 
2939 	return 0;
2940 }
2941 
2942 /* Set or clear the multicast filter for this adaptor.
2943  * Skeleton taken from sunlance driver.
2944  * The CPM Ethernet implementation allows Multicast as well as individual
2945  * MAC address filtering.  Some of the drivers check to make sure it is
2946  * a group multicast address, and discard those that are not.  I guess I
2947  * will do the same for now, but just remove the test if you want
2948  * individual filtering as well (do the upper net layers want or support
2949  * this kind of feature?).
2950  */
2951 
2952 #define FEC_HASH_BITS	6		/* #bits in hash */
2953 #define CRC32_POLY	0xEDB88320
2954 
2955 static void set_multicast_list(struct net_device *ndev)
2956 {
2957 	struct fec_enet_private *fep = netdev_priv(ndev);
2958 	struct netdev_hw_addr *ha;
2959 	unsigned int i, bit, data, crc, tmp;
2960 	unsigned char hash;
2961 	unsigned int hash_high = 0, hash_low = 0;
2962 
2963 	if (ndev->flags & IFF_PROMISC) {
2964 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2965 		tmp |= 0x8;
2966 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2967 		return;
2968 	}
2969 
2970 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2971 	tmp &= ~0x8;
2972 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2973 
2974 	if (ndev->flags & IFF_ALLMULTI) {
2975 		/* Catch all multicast addresses, so set the
2976 		 * filter to all 1's
2977 		 */
2978 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2979 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2980 
2981 		return;
2982 	}
2983 
2984 	/* Add the addresses in hash register */
2985 	netdev_for_each_mc_addr(ha, ndev) {
2986 		/* calculate crc32 value of mac address */
2987 		crc = 0xffffffff;
2988 
2989 		for (i = 0; i < ndev->addr_len; i++) {
2990 			data = ha->addr[i];
2991 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2992 				crc = (crc >> 1) ^
2993 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2994 			}
2995 		}
2996 
2997 		/* only upper 6 bits (FEC_HASH_BITS) are used
2998 		 * which point to specific bit in the hash registers
2999 		 */
3000 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3001 
3002 		if (hash > 31)
3003 			hash_high |= 1 << (hash - 32);
3004 		else
3005 			hash_low |= 1 << hash;
3006 	}
3007 
3008 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3009 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3010 }
3011 
3012 /* Set a MAC change in hardware. */
3013 static int
3014 fec_set_mac_address(struct net_device *ndev, void *p)
3015 {
3016 	struct fec_enet_private *fep = netdev_priv(ndev);
3017 	struct sockaddr *addr = p;
3018 
3019 	if (addr) {
3020 		if (!is_valid_ether_addr(addr->sa_data))
3021 			return -EADDRNOTAVAIL;
3022 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3023 	}
3024 
3025 	/* Add netif status check here to avoid system hang in below case:
3026 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3027 	 * After ethx down, fec all clocks are gated off and then register
3028 	 * access causes system hang.
3029 	 */
3030 	if (!netif_running(ndev))
3031 		return 0;
3032 
3033 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3034 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3035 		fep->hwp + FEC_ADDR_LOW);
3036 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3037 		fep->hwp + FEC_ADDR_HIGH);
3038 	return 0;
3039 }
3040 
3041 #ifdef CONFIG_NET_POLL_CONTROLLER
3042 /**
3043  * fec_poll_controller - FEC Poll controller function
3044  * @dev: The FEC network adapter
3045  *
3046  * Polled functionality used by netconsole and others in non interrupt mode
3047  *
3048  */
3049 static void fec_poll_controller(struct net_device *dev)
3050 {
3051 	int i;
3052 	struct fec_enet_private *fep = netdev_priv(dev);
3053 
3054 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3055 		if (fep->irq[i] > 0) {
3056 			disable_irq(fep->irq[i]);
3057 			fec_enet_interrupt(fep->irq[i], dev);
3058 			enable_irq(fep->irq[i]);
3059 		}
3060 	}
3061 }
3062 #endif
3063 
3064 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3065 	netdev_features_t features)
3066 {
3067 	struct fec_enet_private *fep = netdev_priv(netdev);
3068 	netdev_features_t changed = features ^ netdev->features;
3069 
3070 	netdev->features = features;
3071 
3072 	/* Receive checksum has been changed */
3073 	if (changed & NETIF_F_RXCSUM) {
3074 		if (features & NETIF_F_RXCSUM)
3075 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3076 		else
3077 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3078 	}
3079 }
3080 
3081 static int fec_set_features(struct net_device *netdev,
3082 	netdev_features_t features)
3083 {
3084 	struct fec_enet_private *fep = netdev_priv(netdev);
3085 	netdev_features_t changed = features ^ netdev->features;
3086 
3087 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3088 		napi_disable(&fep->napi);
3089 		netif_tx_lock_bh(netdev);
3090 		fec_stop(netdev);
3091 		fec_enet_set_netdev_features(netdev, features);
3092 		fec_restart(netdev);
3093 		netif_tx_wake_all_queues(netdev);
3094 		netif_tx_unlock_bh(netdev);
3095 		napi_enable(&fep->napi);
3096 	} else {
3097 		fec_enet_set_netdev_features(netdev, features);
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static const struct net_device_ops fec_netdev_ops = {
3104 	.ndo_open		= fec_enet_open,
3105 	.ndo_stop		= fec_enet_close,
3106 	.ndo_start_xmit		= fec_enet_start_xmit,
3107 	.ndo_set_rx_mode	= set_multicast_list,
3108 	.ndo_validate_addr	= eth_validate_addr,
3109 	.ndo_tx_timeout		= fec_timeout,
3110 	.ndo_set_mac_address	= fec_set_mac_address,
3111 	.ndo_do_ioctl		= fec_enet_ioctl,
3112 #ifdef CONFIG_NET_POLL_CONTROLLER
3113 	.ndo_poll_controller	= fec_poll_controller,
3114 #endif
3115 	.ndo_set_features	= fec_set_features,
3116 };
3117 
3118 static const unsigned short offset_des_active_rxq[] = {
3119 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3120 };
3121 
3122 static const unsigned short offset_des_active_txq[] = {
3123 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3124 };
3125 
3126  /*
3127   * XXX:  We need to clean up on failure exits here.
3128   *
3129   */
3130 static int fec_enet_init(struct net_device *ndev)
3131 {
3132 	struct fec_enet_private *fep = netdev_priv(ndev);
3133 	struct bufdesc *cbd_base;
3134 	dma_addr_t bd_dma;
3135 	int bd_size;
3136 	unsigned int i;
3137 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3138 			sizeof(struct bufdesc);
3139 	unsigned dsize_log2 = __fls(dsize);
3140 
3141 	WARN_ON(dsize != (1 << dsize_log2));
3142 #if defined(CONFIG_ARM)
3143 	fep->rx_align = 0xf;
3144 	fep->tx_align = 0xf;
3145 #else
3146 	fep->rx_align = 0x3;
3147 	fep->tx_align = 0x3;
3148 #endif
3149 
3150 	fec_enet_alloc_queue(ndev);
3151 
3152 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3153 
3154 	/* Allocate memory for buffer descriptors. */
3155 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3156 				       GFP_KERNEL);
3157 	if (!cbd_base) {
3158 		return -ENOMEM;
3159 	}
3160 
3161 	memset(cbd_base, 0, bd_size);
3162 
3163 	/* Get the Ethernet address */
3164 	fec_get_mac(ndev);
3165 	/* make sure MAC we just acquired is programmed into the hw */
3166 	fec_set_mac_address(ndev, NULL);
3167 
3168 	/* Set receive and transmit descriptor base. */
3169 	for (i = 0; i < fep->num_rx_queues; i++) {
3170 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3171 		unsigned size = dsize * rxq->bd.ring_size;
3172 
3173 		rxq->bd.qid = i;
3174 		rxq->bd.base = cbd_base;
3175 		rxq->bd.cur = cbd_base;
3176 		rxq->bd.dma = bd_dma;
3177 		rxq->bd.dsize = dsize;
3178 		rxq->bd.dsize_log2 = dsize_log2;
3179 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3180 		bd_dma += size;
3181 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3182 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3183 	}
3184 
3185 	for (i = 0; i < fep->num_tx_queues; i++) {
3186 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3187 		unsigned size = dsize * txq->bd.ring_size;
3188 
3189 		txq->bd.qid = i;
3190 		txq->bd.base = cbd_base;
3191 		txq->bd.cur = cbd_base;
3192 		txq->bd.dma = bd_dma;
3193 		txq->bd.dsize = dsize;
3194 		txq->bd.dsize_log2 = dsize_log2;
3195 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3196 		bd_dma += size;
3197 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3198 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3199 	}
3200 
3201 
3202 	/* The FEC Ethernet specific entries in the device structure */
3203 	ndev->watchdog_timeo = TX_TIMEOUT;
3204 	ndev->netdev_ops = &fec_netdev_ops;
3205 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3206 
3207 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3208 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3209 
3210 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3211 		/* enable hw VLAN support */
3212 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3213 
3214 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3215 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3216 
3217 		/* enable hw accelerator */
3218 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3219 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3220 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3221 	}
3222 
3223 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3224 		fep->tx_align = 0;
3225 		fep->rx_align = 0x3f;
3226 	}
3227 
3228 	ndev->hw_features = ndev->features;
3229 
3230 	fec_restart(ndev);
3231 
3232 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3233 		fec_enet_clear_ethtool_stats(ndev);
3234 	else
3235 		fec_enet_update_ethtool_stats(ndev);
3236 
3237 	return 0;
3238 }
3239 
3240 #ifdef CONFIG_OF
3241 static int fec_reset_phy(struct platform_device *pdev)
3242 {
3243 	int err, phy_reset;
3244 	bool active_high = false;
3245 	int msec = 1, phy_post_delay = 0;
3246 	struct device_node *np = pdev->dev.of_node;
3247 
3248 	if (!np)
3249 		return 0;
3250 
3251 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3252 	/* A sane reset duration should not be longer than 1s */
3253 	if (!err && msec > 1000)
3254 		msec = 1;
3255 
3256 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3257 	if (phy_reset == -EPROBE_DEFER)
3258 		return phy_reset;
3259 	else if (!gpio_is_valid(phy_reset))
3260 		return 0;
3261 
3262 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3263 	/* valid reset duration should be less than 1s */
3264 	if (!err && phy_post_delay > 1000)
3265 		return -EINVAL;
3266 
3267 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3268 
3269 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3270 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3271 			"phy-reset");
3272 	if (err) {
3273 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3274 		return err;
3275 	}
3276 
3277 	if (msec > 20)
3278 		msleep(msec);
3279 	else
3280 		usleep_range(msec * 1000, msec * 1000 + 1000);
3281 
3282 	gpio_set_value_cansleep(phy_reset, !active_high);
3283 
3284 	if (!phy_post_delay)
3285 		return 0;
3286 
3287 	if (phy_post_delay > 20)
3288 		msleep(phy_post_delay);
3289 	else
3290 		usleep_range(phy_post_delay * 1000,
3291 			     phy_post_delay * 1000 + 1000);
3292 
3293 	return 0;
3294 }
3295 #else /* CONFIG_OF */
3296 static int fec_reset_phy(struct platform_device *pdev)
3297 {
3298 	/*
3299 	 * In case of platform probe, the reset has been done
3300 	 * by machine code.
3301 	 */
3302 	return 0;
3303 }
3304 #endif /* CONFIG_OF */
3305 
3306 static void
3307 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3308 {
3309 	struct device_node *np = pdev->dev.of_node;
3310 
3311 	*num_tx = *num_rx = 1;
3312 
3313 	if (!np || !of_device_is_available(np))
3314 		return;
3315 
3316 	/* parse the num of tx and rx queues */
3317 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3318 
3319 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3320 
3321 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3322 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3323 			 *num_tx);
3324 		*num_tx = 1;
3325 		return;
3326 	}
3327 
3328 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3329 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3330 			 *num_rx);
3331 		*num_rx = 1;
3332 		return;
3333 	}
3334 
3335 }
3336 
3337 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3338 {
3339 	int irq_cnt = platform_irq_count(pdev);
3340 
3341 	if (irq_cnt > FEC_IRQ_NUM)
3342 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3343 	else if (irq_cnt == 2)
3344 		irq_cnt = 1;	/* last for pps */
3345 	else if (irq_cnt <= 0)
3346 		irq_cnt = 1;	/* At least 1 irq is needed */
3347 	return irq_cnt;
3348 }
3349 
3350 static int
3351 fec_probe(struct platform_device *pdev)
3352 {
3353 	struct fec_enet_private *fep;
3354 	struct fec_platform_data *pdata;
3355 	struct net_device *ndev;
3356 	int i, irq, ret = 0;
3357 	struct resource *r;
3358 	const struct of_device_id *of_id;
3359 	static int dev_id;
3360 	struct device_node *np = pdev->dev.of_node, *phy_node;
3361 	int num_tx_qs;
3362 	int num_rx_qs;
3363 	char irq_name[8];
3364 	int irq_cnt;
3365 
3366 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3367 
3368 	/* Init network device */
3369 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3370 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3371 	if (!ndev)
3372 		return -ENOMEM;
3373 
3374 	SET_NETDEV_DEV(ndev, &pdev->dev);
3375 
3376 	/* setup board info structure */
3377 	fep = netdev_priv(ndev);
3378 
3379 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3380 	if (of_id)
3381 		pdev->id_entry = of_id->data;
3382 	fep->quirks = pdev->id_entry->driver_data;
3383 
3384 	fep->netdev = ndev;
3385 	fep->num_rx_queues = num_rx_qs;
3386 	fep->num_tx_queues = num_tx_qs;
3387 
3388 #if !defined(CONFIG_M5272)
3389 	/* default enable pause frame auto negotiation */
3390 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3391 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3392 #endif
3393 
3394 	/* Select default pin state */
3395 	pinctrl_pm_select_default_state(&pdev->dev);
3396 
3397 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3398 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3399 	if (IS_ERR(fep->hwp)) {
3400 		ret = PTR_ERR(fep->hwp);
3401 		goto failed_ioremap;
3402 	}
3403 
3404 	fep->pdev = pdev;
3405 	fep->dev_id = dev_id++;
3406 
3407 	platform_set_drvdata(pdev, ndev);
3408 
3409 	if ((of_machine_is_compatible("fsl,imx6q") ||
3410 	     of_machine_is_compatible("fsl,imx6dl")) &&
3411 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3412 		fep->quirks |= FEC_QUIRK_ERR006687;
3413 
3414 	if (of_get_property(np, "fsl,magic-packet", NULL))
3415 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3416 
3417 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3418 	if (!phy_node && of_phy_is_fixed_link(np)) {
3419 		ret = of_phy_register_fixed_link(np);
3420 		if (ret < 0) {
3421 			dev_err(&pdev->dev,
3422 				"broken fixed-link specification\n");
3423 			goto failed_phy;
3424 		}
3425 		phy_node = of_node_get(np);
3426 	}
3427 	fep->phy_node = phy_node;
3428 
3429 	ret = of_get_phy_mode(pdev->dev.of_node);
3430 	if (ret < 0) {
3431 		pdata = dev_get_platdata(&pdev->dev);
3432 		if (pdata)
3433 			fep->phy_interface = pdata->phy;
3434 		else
3435 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3436 	} else {
3437 		fep->phy_interface = ret;
3438 	}
3439 
3440 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3441 	if (IS_ERR(fep->clk_ipg)) {
3442 		ret = PTR_ERR(fep->clk_ipg);
3443 		goto failed_clk;
3444 	}
3445 
3446 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3447 	if (IS_ERR(fep->clk_ahb)) {
3448 		ret = PTR_ERR(fep->clk_ahb);
3449 		goto failed_clk;
3450 	}
3451 
3452 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3453 
3454 	/* enet_out is optional, depends on board */
3455 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3456 	if (IS_ERR(fep->clk_enet_out))
3457 		fep->clk_enet_out = NULL;
3458 
3459 	fep->ptp_clk_on = false;
3460 	mutex_init(&fep->ptp_clk_mutex);
3461 
3462 	/* clk_ref is optional, depends on board */
3463 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3464 	if (IS_ERR(fep->clk_ref))
3465 		fep->clk_ref = NULL;
3466 
3467 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3468 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3469 	if (IS_ERR(fep->clk_ptp)) {
3470 		fep->clk_ptp = NULL;
3471 		fep->bufdesc_ex = false;
3472 	}
3473 
3474 	ret = fec_enet_clk_enable(ndev, true);
3475 	if (ret)
3476 		goto failed_clk;
3477 
3478 	ret = clk_prepare_enable(fep->clk_ipg);
3479 	if (ret)
3480 		goto failed_clk_ipg;
3481 
3482 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3483 	if (!IS_ERR(fep->reg_phy)) {
3484 		ret = regulator_enable(fep->reg_phy);
3485 		if (ret) {
3486 			dev_err(&pdev->dev,
3487 				"Failed to enable phy regulator: %d\n", ret);
3488 			clk_disable_unprepare(fep->clk_ipg);
3489 			goto failed_regulator;
3490 		}
3491 	} else {
3492 		fep->reg_phy = NULL;
3493 	}
3494 
3495 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3496 	pm_runtime_use_autosuspend(&pdev->dev);
3497 	pm_runtime_get_noresume(&pdev->dev);
3498 	pm_runtime_set_active(&pdev->dev);
3499 	pm_runtime_enable(&pdev->dev);
3500 
3501 	ret = fec_reset_phy(pdev);
3502 	if (ret)
3503 		goto failed_reset;
3504 
3505 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3506 	if (fep->bufdesc_ex)
3507 		fec_ptp_init(pdev, irq_cnt);
3508 
3509 	ret = fec_enet_init(ndev);
3510 	if (ret)
3511 		goto failed_init;
3512 
3513 	for (i = 0; i < irq_cnt; i++) {
3514 		sprintf(irq_name, "int%d", i);
3515 		irq = platform_get_irq_byname(pdev, irq_name);
3516 		if (irq < 0)
3517 			irq = platform_get_irq(pdev, i);
3518 		if (irq < 0) {
3519 			ret = irq;
3520 			goto failed_irq;
3521 		}
3522 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3523 				       0, pdev->name, ndev);
3524 		if (ret)
3525 			goto failed_irq;
3526 
3527 		fep->irq[i] = irq;
3528 	}
3529 
3530 	init_completion(&fep->mdio_done);
3531 	ret = fec_enet_mii_init(pdev);
3532 	if (ret)
3533 		goto failed_mii_init;
3534 
3535 	/* Carrier starts down, phylib will bring it up */
3536 	netif_carrier_off(ndev);
3537 	fec_enet_clk_enable(ndev, false);
3538 	pinctrl_pm_select_sleep_state(&pdev->dev);
3539 
3540 	ret = register_netdev(ndev);
3541 	if (ret)
3542 		goto failed_register;
3543 
3544 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3545 			   FEC_WOL_HAS_MAGIC_PACKET);
3546 
3547 	if (fep->bufdesc_ex && fep->ptp_clock)
3548 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3549 
3550 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3551 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3552 
3553 	pm_runtime_mark_last_busy(&pdev->dev);
3554 	pm_runtime_put_autosuspend(&pdev->dev);
3555 
3556 	return 0;
3557 
3558 failed_register:
3559 	fec_enet_mii_remove(fep);
3560 failed_mii_init:
3561 failed_irq:
3562 failed_init:
3563 	fec_ptp_stop(pdev);
3564 	if (fep->reg_phy)
3565 		regulator_disable(fep->reg_phy);
3566 failed_reset:
3567 	pm_runtime_put(&pdev->dev);
3568 	pm_runtime_disable(&pdev->dev);
3569 failed_regulator:
3570 failed_clk_ipg:
3571 	fec_enet_clk_enable(ndev, false);
3572 failed_clk:
3573 	if (of_phy_is_fixed_link(np))
3574 		of_phy_deregister_fixed_link(np);
3575 failed_phy:
3576 	of_node_put(phy_node);
3577 failed_ioremap:
3578 	free_netdev(ndev);
3579 
3580 	return ret;
3581 }
3582 
3583 static int
3584 fec_drv_remove(struct platform_device *pdev)
3585 {
3586 	struct net_device *ndev = platform_get_drvdata(pdev);
3587 	struct fec_enet_private *fep = netdev_priv(ndev);
3588 	struct device_node *np = pdev->dev.of_node;
3589 
3590 	cancel_work_sync(&fep->tx_timeout_work);
3591 	fec_ptp_stop(pdev);
3592 	unregister_netdev(ndev);
3593 	fec_enet_mii_remove(fep);
3594 	if (fep->reg_phy)
3595 		regulator_disable(fep->reg_phy);
3596 	if (of_phy_is_fixed_link(np))
3597 		of_phy_deregister_fixed_link(np);
3598 	of_node_put(fep->phy_node);
3599 	free_netdev(ndev);
3600 
3601 	return 0;
3602 }
3603 
3604 static int __maybe_unused fec_suspend(struct device *dev)
3605 {
3606 	struct net_device *ndev = dev_get_drvdata(dev);
3607 	struct fec_enet_private *fep = netdev_priv(ndev);
3608 
3609 	rtnl_lock();
3610 	if (netif_running(ndev)) {
3611 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3612 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3613 		phy_stop(ndev->phydev);
3614 		napi_disable(&fep->napi);
3615 		netif_tx_lock_bh(ndev);
3616 		netif_device_detach(ndev);
3617 		netif_tx_unlock_bh(ndev);
3618 		fec_stop(ndev);
3619 		fec_enet_clk_enable(ndev, false);
3620 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3621 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3622 	}
3623 	rtnl_unlock();
3624 
3625 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3626 		regulator_disable(fep->reg_phy);
3627 
3628 	/* SOC supply clock to phy, when clock is disabled, phy link down
3629 	 * SOC control phy regulator, when regulator is disabled, phy link down
3630 	 */
3631 	if (fep->clk_enet_out || fep->reg_phy)
3632 		fep->link = 0;
3633 
3634 	return 0;
3635 }
3636 
3637 static int __maybe_unused fec_resume(struct device *dev)
3638 {
3639 	struct net_device *ndev = dev_get_drvdata(dev);
3640 	struct fec_enet_private *fep = netdev_priv(ndev);
3641 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3642 	int ret;
3643 	int val;
3644 
3645 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3646 		ret = regulator_enable(fep->reg_phy);
3647 		if (ret)
3648 			return ret;
3649 	}
3650 
3651 	rtnl_lock();
3652 	if (netif_running(ndev)) {
3653 		ret = fec_enet_clk_enable(ndev, true);
3654 		if (ret) {
3655 			rtnl_unlock();
3656 			goto failed_clk;
3657 		}
3658 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3659 			if (pdata && pdata->sleep_mode_enable)
3660 				pdata->sleep_mode_enable(false);
3661 			val = readl(fep->hwp + FEC_ECNTRL);
3662 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3663 			writel(val, fep->hwp + FEC_ECNTRL);
3664 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3665 		} else {
3666 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3667 		}
3668 		fec_restart(ndev);
3669 		netif_tx_lock_bh(ndev);
3670 		netif_device_attach(ndev);
3671 		netif_tx_unlock_bh(ndev);
3672 		napi_enable(&fep->napi);
3673 		phy_start(ndev->phydev);
3674 	}
3675 	rtnl_unlock();
3676 
3677 	return 0;
3678 
3679 failed_clk:
3680 	if (fep->reg_phy)
3681 		regulator_disable(fep->reg_phy);
3682 	return ret;
3683 }
3684 
3685 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3686 {
3687 	struct net_device *ndev = dev_get_drvdata(dev);
3688 	struct fec_enet_private *fep = netdev_priv(ndev);
3689 
3690 	clk_disable_unprepare(fep->clk_ipg);
3691 
3692 	return 0;
3693 }
3694 
3695 static int __maybe_unused fec_runtime_resume(struct device *dev)
3696 {
3697 	struct net_device *ndev = dev_get_drvdata(dev);
3698 	struct fec_enet_private *fep = netdev_priv(ndev);
3699 
3700 	return clk_prepare_enable(fep->clk_ipg);
3701 }
3702 
3703 static const struct dev_pm_ops fec_pm_ops = {
3704 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3705 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3706 };
3707 
3708 static struct platform_driver fec_driver = {
3709 	.driver	= {
3710 		.name	= DRIVER_NAME,
3711 		.pm	= &fec_pm_ops,
3712 		.of_match_table = fec_dt_ids,
3713 	},
3714 	.id_table = fec_devtype,
3715 	.probe	= fec_probe,
3716 	.remove	= fec_drv_remove,
3717 };
3718 
3719 module_platform_driver(fec_driver);
3720 
3721 MODULE_ALIAS("platform:"DRIVER_NAME);
3722 MODULE_LICENSE("GPL");
3723