1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
79 
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE	(1 << 5)
82 #define FEC_ENET_RSEM_V	0x84
83 #define FEC_ENET_RSFL_V	16
84 #define FEC_ENET_RAEM_V	0x8
85 #define FEC_ENET_RAFL_V	0x8
86 #define FEC_ENET_OPD_V	0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
88 
89 struct fec_devinfo {
90 	u32 quirks;
91 	u8 stop_gpr_reg;
92 	u8 stop_gpr_bit;
93 };
94 
95 static const struct fec_devinfo fec_imx25_info = {
96 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
97 		  FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx27_info = {
101 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
102 };
103 
104 static const struct fec_devinfo fec_imx28_info = {
105 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
106 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
107 		  FEC_QUIRK_HAS_FRREG,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC,
115 	.stop_gpr_reg = 0x34,
116 	.stop_gpr_bit = 27,
117 };
118 
119 static const struct fec_devinfo fec_mvf600_info = {
120 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
121 };
122 
123 static const struct fec_devinfo fec_imx6x_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
127 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
128 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
129 };
130 
131 static const struct fec_devinfo fec_imx6ul_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
135 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
136 		  FEC_QUIRK_HAS_COALESCE,
137 };
138 
139 static struct platform_device_id fec_devtype[] = {
140 	{
141 		/* keep it for coldfire */
142 		.name = DRIVER_NAME,
143 		.driver_data = 0,
144 	}, {
145 		.name = "imx25-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
147 	}, {
148 		.name = "imx27-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
150 	}, {
151 		.name = "imx28-fec",
152 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
153 	}, {
154 		.name = "imx6q-fec",
155 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
156 	}, {
157 		.name = "mvf600-fec",
158 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
159 	}, {
160 		.name = "imx6sx-fec",
161 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
162 	}, {
163 		.name = "imx6ul-fec",
164 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
165 	}, {
166 		/* sentinel */
167 	}
168 };
169 MODULE_DEVICE_TABLE(platform, fec_devtype);
170 
171 enum imx_fec_type {
172 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
173 	IMX27_FEC,	/* runs on i.mx27/35/51 */
174 	IMX28_FEC,
175 	IMX6Q_FEC,
176 	MVF600_FEC,
177 	IMX6SX_FEC,
178 	IMX6UL_FEC,
179 };
180 
181 static const struct of_device_id fec_dt_ids[] = {
182 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
183 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
184 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
185 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
186 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
187 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
188 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
189 	{ /* sentinel */ }
190 };
191 MODULE_DEVICE_TABLE(of, fec_dt_ids);
192 
193 static unsigned char macaddr[ETH_ALEN];
194 module_param_array(macaddr, byte, NULL, 0);
195 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
196 
197 #if defined(CONFIG_M5272)
198 /*
199  * Some hardware gets it MAC address out of local flash memory.
200  * if this is non-zero then assume it is the address to get MAC from.
201  */
202 #if defined(CONFIG_NETtel)
203 #define	FEC_FLASHMAC	0xf0006006
204 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
205 #define	FEC_FLASHMAC	0xf0006000
206 #elif defined(CONFIG_CANCam)
207 #define	FEC_FLASHMAC	0xf0020000
208 #elif defined (CONFIG_M5272C3)
209 #define	FEC_FLASHMAC	(0xffe04000 + 4)
210 #elif defined(CONFIG_MOD5272)
211 #define FEC_FLASHMAC	0xffc0406b
212 #else
213 #define	FEC_FLASHMAC	0
214 #endif
215 #endif /* CONFIG_M5272 */
216 
217 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
218  *
219  * 2048 byte skbufs are allocated. However, alignment requirements
220  * varies between FEC variants. Worst case is 64, so round down by 64.
221  */
222 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
223 #define PKT_MINBUF_SIZE		64
224 
225 /* FEC receive acceleration */
226 #define FEC_RACC_IPDIS		(1 << 1)
227 #define FEC_RACC_PRODIS		(1 << 2)
228 #define FEC_RACC_SHIFT16	BIT(7)
229 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
230 
231 /* MIB Control Register */
232 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
233 
234 /*
235  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
236  * size bits. Other FEC hardware does not, so we need to take that into
237  * account when setting it.
238  */
239 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
240     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
241     defined(CONFIG_ARM64)
242 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
243 #else
244 #define	OPT_FRAME_SIZE	0
245 #endif
246 
247 /* FEC MII MMFR bits definition */
248 #define FEC_MMFR_ST		(1 << 30)
249 #define FEC_MMFR_ST_C45		(0)
250 #define FEC_MMFR_OP_READ	(2 << 28)
251 #define FEC_MMFR_OP_READ_C45	(3 << 28)
252 #define FEC_MMFR_OP_WRITE	(1 << 28)
253 #define FEC_MMFR_OP_ADDR_WRITE	(0)
254 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
255 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
256 #define FEC_MMFR_TA		(2 << 16)
257 #define FEC_MMFR_DATA(v)	(v & 0xffff)
258 /* FEC ECR bits definition */
259 #define FEC_ECR_MAGICEN		(1 << 2)
260 #define FEC_ECR_SLEEP		(1 << 3)
261 
262 #define FEC_MII_TIMEOUT		30000 /* us */
263 
264 /* Transmitter timeout */
265 #define TX_TIMEOUT (2 * HZ)
266 
267 #define FEC_PAUSE_FLAG_AUTONEG	0x1
268 #define FEC_PAUSE_FLAG_ENABLE	0x2
269 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
270 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
271 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
272 
273 #define COPYBREAK_DEFAULT	256
274 
275 /* Max number of allowed TCP segments for software TSO */
276 #define FEC_MAX_TSO_SEGS	100
277 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
278 
279 #define IS_TSO_HEADER(txq, addr) \
280 	((addr >= txq->tso_hdrs_dma) && \
281 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
282 
283 static int mii_cnt;
284 
285 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
286 					     struct bufdesc_prop *bd)
287 {
288 	return (bdp >= bd->last) ? bd->base
289 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
290 }
291 
292 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
293 					     struct bufdesc_prop *bd)
294 {
295 	return (bdp <= bd->base) ? bd->last
296 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
297 }
298 
299 static int fec_enet_get_bd_index(struct bufdesc *bdp,
300 				 struct bufdesc_prop *bd)
301 {
302 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
303 }
304 
305 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
306 {
307 	int entries;
308 
309 	entries = (((const char *)txq->dirty_tx -
310 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
311 
312 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
313 }
314 
315 static void swap_buffer(void *bufaddr, int len)
316 {
317 	int i;
318 	unsigned int *buf = bufaddr;
319 
320 	for (i = 0; i < len; i += 4, buf++)
321 		swab32s(buf);
322 }
323 
324 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
325 {
326 	int i;
327 	unsigned int *src = src_buf;
328 	unsigned int *dst = dst_buf;
329 
330 	for (i = 0; i < len; i += 4, src++, dst++)
331 		*dst = swab32p(src);
332 }
333 
334 static void fec_dump(struct net_device *ndev)
335 {
336 	struct fec_enet_private *fep = netdev_priv(ndev);
337 	struct bufdesc *bdp;
338 	struct fec_enet_priv_tx_q *txq;
339 	int index = 0;
340 
341 	netdev_info(ndev, "TX ring dump\n");
342 	pr_info("Nr     SC     addr       len  SKB\n");
343 
344 	txq = fep->tx_queue[0];
345 	bdp = txq->bd.base;
346 
347 	do {
348 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
349 			index,
350 			bdp == txq->bd.cur ? 'S' : ' ',
351 			bdp == txq->dirty_tx ? 'H' : ' ',
352 			fec16_to_cpu(bdp->cbd_sc),
353 			fec32_to_cpu(bdp->cbd_bufaddr),
354 			fec16_to_cpu(bdp->cbd_datlen),
355 			txq->tx_skbuff[index]);
356 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
357 		index++;
358 	} while (bdp != txq->bd.base);
359 }
360 
361 static inline bool is_ipv4_pkt(struct sk_buff *skb)
362 {
363 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
364 }
365 
366 static int
367 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
368 {
369 	/* Only run for packets requiring a checksum. */
370 	if (skb->ip_summed != CHECKSUM_PARTIAL)
371 		return 0;
372 
373 	if (unlikely(skb_cow_head(skb, 0)))
374 		return -1;
375 
376 	if (is_ipv4_pkt(skb))
377 		ip_hdr(skb)->check = 0;
378 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
379 
380 	return 0;
381 }
382 
383 static struct bufdesc *
384 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
385 			     struct sk_buff *skb,
386 			     struct net_device *ndev)
387 {
388 	struct fec_enet_private *fep = netdev_priv(ndev);
389 	struct bufdesc *bdp = txq->bd.cur;
390 	struct bufdesc_ex *ebdp;
391 	int nr_frags = skb_shinfo(skb)->nr_frags;
392 	int frag, frag_len;
393 	unsigned short status;
394 	unsigned int estatus = 0;
395 	skb_frag_t *this_frag;
396 	unsigned int index;
397 	void *bufaddr;
398 	dma_addr_t addr;
399 	int i;
400 
401 	for (frag = 0; frag < nr_frags; frag++) {
402 		this_frag = &skb_shinfo(skb)->frags[frag];
403 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
404 		ebdp = (struct bufdesc_ex *)bdp;
405 
406 		status = fec16_to_cpu(bdp->cbd_sc);
407 		status &= ~BD_ENET_TX_STATS;
408 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
409 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
410 
411 		/* Handle the last BD specially */
412 		if (frag == nr_frags - 1) {
413 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
414 			if (fep->bufdesc_ex) {
415 				estatus |= BD_ENET_TX_INT;
416 				if (unlikely(skb_shinfo(skb)->tx_flags &
417 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
418 					estatus |= BD_ENET_TX_TS;
419 			}
420 		}
421 
422 		if (fep->bufdesc_ex) {
423 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
424 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
425 			if (skb->ip_summed == CHECKSUM_PARTIAL)
426 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
427 			ebdp->cbd_bdu = 0;
428 			ebdp->cbd_esc = cpu_to_fec32(estatus);
429 		}
430 
431 		bufaddr = skb_frag_address(this_frag);
432 
433 		index = fec_enet_get_bd_index(bdp, &txq->bd);
434 		if (((unsigned long) bufaddr) & fep->tx_align ||
435 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
436 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
437 			bufaddr = txq->tx_bounce[index];
438 
439 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
440 				swap_buffer(bufaddr, frag_len);
441 		}
442 
443 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
444 				      DMA_TO_DEVICE);
445 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
446 			if (net_ratelimit())
447 				netdev_err(ndev, "Tx DMA memory map failed\n");
448 			goto dma_mapping_error;
449 		}
450 
451 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
452 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
453 		/* Make sure the updates to rest of the descriptor are
454 		 * performed before transferring ownership.
455 		 */
456 		wmb();
457 		bdp->cbd_sc = cpu_to_fec16(status);
458 	}
459 
460 	return bdp;
461 dma_mapping_error:
462 	bdp = txq->bd.cur;
463 	for (i = 0; i < frag; i++) {
464 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
465 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
466 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
467 	}
468 	return ERR_PTR(-ENOMEM);
469 }
470 
471 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
472 				   struct sk_buff *skb, struct net_device *ndev)
473 {
474 	struct fec_enet_private *fep = netdev_priv(ndev);
475 	int nr_frags = skb_shinfo(skb)->nr_frags;
476 	struct bufdesc *bdp, *last_bdp;
477 	void *bufaddr;
478 	dma_addr_t addr;
479 	unsigned short status;
480 	unsigned short buflen;
481 	unsigned int estatus = 0;
482 	unsigned int index;
483 	int entries_free;
484 
485 	entries_free = fec_enet_get_free_txdesc_num(txq);
486 	if (entries_free < MAX_SKB_FRAGS + 1) {
487 		dev_kfree_skb_any(skb);
488 		if (net_ratelimit())
489 			netdev_err(ndev, "NOT enough BD for SG!\n");
490 		return NETDEV_TX_OK;
491 	}
492 
493 	/* Protocol checksum off-load for TCP and UDP. */
494 	if (fec_enet_clear_csum(skb, ndev)) {
495 		dev_kfree_skb_any(skb);
496 		return NETDEV_TX_OK;
497 	}
498 
499 	/* Fill in a Tx ring entry */
500 	bdp = txq->bd.cur;
501 	last_bdp = bdp;
502 	status = fec16_to_cpu(bdp->cbd_sc);
503 	status &= ~BD_ENET_TX_STATS;
504 
505 	/* Set buffer length and buffer pointer */
506 	bufaddr = skb->data;
507 	buflen = skb_headlen(skb);
508 
509 	index = fec_enet_get_bd_index(bdp, &txq->bd);
510 	if (((unsigned long) bufaddr) & fep->tx_align ||
511 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
512 		memcpy(txq->tx_bounce[index], skb->data, buflen);
513 		bufaddr = txq->tx_bounce[index];
514 
515 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
516 			swap_buffer(bufaddr, buflen);
517 	}
518 
519 	/* Push the data cache so the CPM does not get stale memory data. */
520 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
521 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
522 		dev_kfree_skb_any(skb);
523 		if (net_ratelimit())
524 			netdev_err(ndev, "Tx DMA memory map failed\n");
525 		return NETDEV_TX_OK;
526 	}
527 
528 	if (nr_frags) {
529 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
530 		if (IS_ERR(last_bdp)) {
531 			dma_unmap_single(&fep->pdev->dev, addr,
532 					 buflen, DMA_TO_DEVICE);
533 			dev_kfree_skb_any(skb);
534 			return NETDEV_TX_OK;
535 		}
536 	} else {
537 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
538 		if (fep->bufdesc_ex) {
539 			estatus = BD_ENET_TX_INT;
540 			if (unlikely(skb_shinfo(skb)->tx_flags &
541 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
542 				estatus |= BD_ENET_TX_TS;
543 		}
544 	}
545 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
546 	bdp->cbd_datlen = cpu_to_fec16(buflen);
547 
548 	if (fep->bufdesc_ex) {
549 
550 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
551 
552 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
553 			fep->hwts_tx_en))
554 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
555 
556 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
557 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
558 
559 		if (skb->ip_summed == CHECKSUM_PARTIAL)
560 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
561 
562 		ebdp->cbd_bdu = 0;
563 		ebdp->cbd_esc = cpu_to_fec32(estatus);
564 	}
565 
566 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
567 	/* Save skb pointer */
568 	txq->tx_skbuff[index] = skb;
569 
570 	/* Make sure the updates to rest of the descriptor are performed before
571 	 * transferring ownership.
572 	 */
573 	wmb();
574 
575 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
576 	 * it's the last BD of the frame, and to put the CRC on the end.
577 	 */
578 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
579 	bdp->cbd_sc = cpu_to_fec16(status);
580 
581 	/* If this was the last BD in the ring, start at the beginning again. */
582 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
583 
584 	skb_tx_timestamp(skb);
585 
586 	/* Make sure the update to bdp and tx_skbuff are performed before
587 	 * txq->bd.cur.
588 	 */
589 	wmb();
590 	txq->bd.cur = bdp;
591 
592 	/* Trigger transmission start */
593 	writel(0, txq->bd.reg_desc_active);
594 
595 	return 0;
596 }
597 
598 static int
599 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
600 			  struct net_device *ndev,
601 			  struct bufdesc *bdp, int index, char *data,
602 			  int size, bool last_tcp, bool is_last)
603 {
604 	struct fec_enet_private *fep = netdev_priv(ndev);
605 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
606 	unsigned short status;
607 	unsigned int estatus = 0;
608 	dma_addr_t addr;
609 
610 	status = fec16_to_cpu(bdp->cbd_sc);
611 	status &= ~BD_ENET_TX_STATS;
612 
613 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
614 
615 	if (((unsigned long) data) & fep->tx_align ||
616 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
617 		memcpy(txq->tx_bounce[index], data, size);
618 		data = txq->tx_bounce[index];
619 
620 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
621 			swap_buffer(data, size);
622 	}
623 
624 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
625 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
626 		dev_kfree_skb_any(skb);
627 		if (net_ratelimit())
628 			netdev_err(ndev, "Tx DMA memory map failed\n");
629 		return NETDEV_TX_BUSY;
630 	}
631 
632 	bdp->cbd_datlen = cpu_to_fec16(size);
633 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
634 
635 	if (fep->bufdesc_ex) {
636 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
637 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
638 		if (skb->ip_summed == CHECKSUM_PARTIAL)
639 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
640 		ebdp->cbd_bdu = 0;
641 		ebdp->cbd_esc = cpu_to_fec32(estatus);
642 	}
643 
644 	/* Handle the last BD specially */
645 	if (last_tcp)
646 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
647 	if (is_last) {
648 		status |= BD_ENET_TX_INTR;
649 		if (fep->bufdesc_ex)
650 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
651 	}
652 
653 	bdp->cbd_sc = cpu_to_fec16(status);
654 
655 	return 0;
656 }
657 
658 static int
659 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
660 			 struct sk_buff *skb, struct net_device *ndev,
661 			 struct bufdesc *bdp, int index)
662 {
663 	struct fec_enet_private *fep = netdev_priv(ndev);
664 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
665 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
666 	void *bufaddr;
667 	unsigned long dmabuf;
668 	unsigned short status;
669 	unsigned int estatus = 0;
670 
671 	status = fec16_to_cpu(bdp->cbd_sc);
672 	status &= ~BD_ENET_TX_STATS;
673 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
674 
675 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
676 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
677 	if (((unsigned long)bufaddr) & fep->tx_align ||
678 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
679 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
680 		bufaddr = txq->tx_bounce[index];
681 
682 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
683 			swap_buffer(bufaddr, hdr_len);
684 
685 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
686 					hdr_len, DMA_TO_DEVICE);
687 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
688 			dev_kfree_skb_any(skb);
689 			if (net_ratelimit())
690 				netdev_err(ndev, "Tx DMA memory map failed\n");
691 			return NETDEV_TX_BUSY;
692 		}
693 	}
694 
695 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
696 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
697 
698 	if (fep->bufdesc_ex) {
699 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
700 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
701 		if (skb->ip_summed == CHECKSUM_PARTIAL)
702 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
703 		ebdp->cbd_bdu = 0;
704 		ebdp->cbd_esc = cpu_to_fec32(estatus);
705 	}
706 
707 	bdp->cbd_sc = cpu_to_fec16(status);
708 
709 	return 0;
710 }
711 
712 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
713 				   struct sk_buff *skb,
714 				   struct net_device *ndev)
715 {
716 	struct fec_enet_private *fep = netdev_priv(ndev);
717 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
718 	int total_len, data_left;
719 	struct bufdesc *bdp = txq->bd.cur;
720 	struct tso_t tso;
721 	unsigned int index = 0;
722 	int ret;
723 
724 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
725 		dev_kfree_skb_any(skb);
726 		if (net_ratelimit())
727 			netdev_err(ndev, "NOT enough BD for TSO!\n");
728 		return NETDEV_TX_OK;
729 	}
730 
731 	/* Protocol checksum off-load for TCP and UDP. */
732 	if (fec_enet_clear_csum(skb, ndev)) {
733 		dev_kfree_skb_any(skb);
734 		return NETDEV_TX_OK;
735 	}
736 
737 	/* Initialize the TSO handler, and prepare the first payload */
738 	tso_start(skb, &tso);
739 
740 	total_len = skb->len - hdr_len;
741 	while (total_len > 0) {
742 		char *hdr;
743 
744 		index = fec_enet_get_bd_index(bdp, &txq->bd);
745 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
746 		total_len -= data_left;
747 
748 		/* prepare packet headers: MAC + IP + TCP */
749 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
750 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
751 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
752 		if (ret)
753 			goto err_release;
754 
755 		while (data_left > 0) {
756 			int size;
757 
758 			size = min_t(int, tso.size, data_left);
759 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
760 			index = fec_enet_get_bd_index(bdp, &txq->bd);
761 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
762 							bdp, index,
763 							tso.data, size,
764 							size == data_left,
765 							total_len == 0);
766 			if (ret)
767 				goto err_release;
768 
769 			data_left -= size;
770 			tso_build_data(skb, &tso, size);
771 		}
772 
773 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
774 	}
775 
776 	/* Save skb pointer */
777 	txq->tx_skbuff[index] = skb;
778 
779 	skb_tx_timestamp(skb);
780 	txq->bd.cur = bdp;
781 
782 	/* Trigger transmission start */
783 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
784 	    !readl(txq->bd.reg_desc_active) ||
785 	    !readl(txq->bd.reg_desc_active) ||
786 	    !readl(txq->bd.reg_desc_active) ||
787 	    !readl(txq->bd.reg_desc_active))
788 		writel(0, txq->bd.reg_desc_active);
789 
790 	return 0;
791 
792 err_release:
793 	/* TODO: Release all used data descriptors for TSO */
794 	return ret;
795 }
796 
797 static netdev_tx_t
798 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
799 {
800 	struct fec_enet_private *fep = netdev_priv(ndev);
801 	int entries_free;
802 	unsigned short queue;
803 	struct fec_enet_priv_tx_q *txq;
804 	struct netdev_queue *nq;
805 	int ret;
806 
807 	queue = skb_get_queue_mapping(skb);
808 	txq = fep->tx_queue[queue];
809 	nq = netdev_get_tx_queue(ndev, queue);
810 
811 	if (skb_is_gso(skb))
812 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
813 	else
814 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
815 	if (ret)
816 		return ret;
817 
818 	entries_free = fec_enet_get_free_txdesc_num(txq);
819 	if (entries_free <= txq->tx_stop_threshold)
820 		netif_tx_stop_queue(nq);
821 
822 	return NETDEV_TX_OK;
823 }
824 
825 /* Init RX & TX buffer descriptors
826  */
827 static void fec_enet_bd_init(struct net_device *dev)
828 {
829 	struct fec_enet_private *fep = netdev_priv(dev);
830 	struct fec_enet_priv_tx_q *txq;
831 	struct fec_enet_priv_rx_q *rxq;
832 	struct bufdesc *bdp;
833 	unsigned int i;
834 	unsigned int q;
835 
836 	for (q = 0; q < fep->num_rx_queues; q++) {
837 		/* Initialize the receive buffer descriptors. */
838 		rxq = fep->rx_queue[q];
839 		bdp = rxq->bd.base;
840 
841 		for (i = 0; i < rxq->bd.ring_size; i++) {
842 
843 			/* Initialize the BD for every fragment in the page. */
844 			if (bdp->cbd_bufaddr)
845 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
846 			else
847 				bdp->cbd_sc = cpu_to_fec16(0);
848 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
849 		}
850 
851 		/* Set the last buffer to wrap */
852 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
853 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
854 
855 		rxq->bd.cur = rxq->bd.base;
856 	}
857 
858 	for (q = 0; q < fep->num_tx_queues; q++) {
859 		/* ...and the same for transmit */
860 		txq = fep->tx_queue[q];
861 		bdp = txq->bd.base;
862 		txq->bd.cur = bdp;
863 
864 		for (i = 0; i < txq->bd.ring_size; i++) {
865 			/* Initialize the BD for every fragment in the page. */
866 			bdp->cbd_sc = cpu_to_fec16(0);
867 			if (bdp->cbd_bufaddr &&
868 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
869 				dma_unmap_single(&fep->pdev->dev,
870 						 fec32_to_cpu(bdp->cbd_bufaddr),
871 						 fec16_to_cpu(bdp->cbd_datlen),
872 						 DMA_TO_DEVICE);
873 			if (txq->tx_skbuff[i]) {
874 				dev_kfree_skb_any(txq->tx_skbuff[i]);
875 				txq->tx_skbuff[i] = NULL;
876 			}
877 			bdp->cbd_bufaddr = cpu_to_fec32(0);
878 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
879 		}
880 
881 		/* Set the last buffer to wrap */
882 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
883 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
884 		txq->dirty_tx = bdp;
885 	}
886 }
887 
888 static void fec_enet_active_rxring(struct net_device *ndev)
889 {
890 	struct fec_enet_private *fep = netdev_priv(ndev);
891 	int i;
892 
893 	for (i = 0; i < fep->num_rx_queues; i++)
894 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
895 }
896 
897 static void fec_enet_enable_ring(struct net_device *ndev)
898 {
899 	struct fec_enet_private *fep = netdev_priv(ndev);
900 	struct fec_enet_priv_tx_q *txq;
901 	struct fec_enet_priv_rx_q *rxq;
902 	int i;
903 
904 	for (i = 0; i < fep->num_rx_queues; i++) {
905 		rxq = fep->rx_queue[i];
906 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
907 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
908 
909 		/* enable DMA1/2 */
910 		if (i)
911 			writel(RCMR_MATCHEN | RCMR_CMP(i),
912 			       fep->hwp + FEC_RCMR(i));
913 	}
914 
915 	for (i = 0; i < fep->num_tx_queues; i++) {
916 		txq = fep->tx_queue[i];
917 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
918 
919 		/* enable DMA1/2 */
920 		if (i)
921 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
922 			       fep->hwp + FEC_DMA_CFG(i));
923 	}
924 }
925 
926 static void fec_enet_reset_skb(struct net_device *ndev)
927 {
928 	struct fec_enet_private *fep = netdev_priv(ndev);
929 	struct fec_enet_priv_tx_q *txq;
930 	int i, j;
931 
932 	for (i = 0; i < fep->num_tx_queues; i++) {
933 		txq = fep->tx_queue[i];
934 
935 		for (j = 0; j < txq->bd.ring_size; j++) {
936 			if (txq->tx_skbuff[j]) {
937 				dev_kfree_skb_any(txq->tx_skbuff[j]);
938 				txq->tx_skbuff[j] = NULL;
939 			}
940 		}
941 	}
942 }
943 
944 /*
945  * This function is called to start or restart the FEC during a link
946  * change, transmit timeout, or to reconfigure the FEC.  The network
947  * packet processing for this device must be stopped before this call.
948  */
949 static void
950 fec_restart(struct net_device *ndev)
951 {
952 	struct fec_enet_private *fep = netdev_priv(ndev);
953 	u32 val;
954 	u32 temp_mac[2];
955 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
956 	u32 ecntl = 0x2; /* ETHEREN */
957 
958 	/* Whack a reset.  We should wait for this.
959 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
960 	 * instead of reset MAC itself.
961 	 */
962 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
963 		writel(0, fep->hwp + FEC_ECNTRL);
964 	} else {
965 		writel(1, fep->hwp + FEC_ECNTRL);
966 		udelay(10);
967 	}
968 
969 	/*
970 	 * enet-mac reset will reset mac address registers too,
971 	 * so need to reconfigure it.
972 	 */
973 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
974 	writel((__force u32)cpu_to_be32(temp_mac[0]),
975 	       fep->hwp + FEC_ADDR_LOW);
976 	writel((__force u32)cpu_to_be32(temp_mac[1]),
977 	       fep->hwp + FEC_ADDR_HIGH);
978 
979 	/* Clear any outstanding interrupt. */
980 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
981 
982 	fec_enet_bd_init(ndev);
983 
984 	fec_enet_enable_ring(ndev);
985 
986 	/* Reset tx SKB buffers. */
987 	fec_enet_reset_skb(ndev);
988 
989 	/* Enable MII mode */
990 	if (fep->full_duplex == DUPLEX_FULL) {
991 		/* FD enable */
992 		writel(0x04, fep->hwp + FEC_X_CNTRL);
993 	} else {
994 		/* No Rcv on Xmit */
995 		rcntl |= 0x02;
996 		writel(0x0, fep->hwp + FEC_X_CNTRL);
997 	}
998 
999 	/* Set MII speed */
1000 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1001 
1002 #if !defined(CONFIG_M5272)
1003 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1004 		val = readl(fep->hwp + FEC_RACC);
1005 		/* align IP header */
1006 		val |= FEC_RACC_SHIFT16;
1007 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1008 			/* set RX checksum */
1009 			val |= FEC_RACC_OPTIONS;
1010 		else
1011 			val &= ~FEC_RACC_OPTIONS;
1012 		writel(val, fep->hwp + FEC_RACC);
1013 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1014 	}
1015 #endif
1016 
1017 	/*
1018 	 * The phy interface and speed need to get configured
1019 	 * differently on enet-mac.
1020 	 */
1021 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1022 		/* Enable flow control and length check */
1023 		rcntl |= 0x40000000 | 0x00000020;
1024 
1025 		/* RGMII, RMII or MII */
1026 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1027 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1028 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1029 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1030 			rcntl |= (1 << 6);
1031 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1032 			rcntl |= (1 << 8);
1033 		else
1034 			rcntl &= ~(1 << 8);
1035 
1036 		/* 1G, 100M or 10M */
1037 		if (ndev->phydev) {
1038 			if (ndev->phydev->speed == SPEED_1000)
1039 				ecntl |= (1 << 5);
1040 			else if (ndev->phydev->speed == SPEED_100)
1041 				rcntl &= ~(1 << 9);
1042 			else
1043 				rcntl |= (1 << 9);
1044 		}
1045 	} else {
1046 #ifdef FEC_MIIGSK_ENR
1047 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1048 			u32 cfgr;
1049 			/* disable the gasket and wait */
1050 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1051 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1052 				udelay(1);
1053 
1054 			/*
1055 			 * configure the gasket:
1056 			 *   RMII, 50 MHz, no loopback, no echo
1057 			 *   MII, 25 MHz, no loopback, no echo
1058 			 */
1059 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1060 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1061 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1062 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1063 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1064 
1065 			/* re-enable the gasket */
1066 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1067 		}
1068 #endif
1069 	}
1070 
1071 #if !defined(CONFIG_M5272)
1072 	/* enable pause frame*/
1073 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1074 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1075 	     ndev->phydev && ndev->phydev->pause)) {
1076 		rcntl |= FEC_ENET_FCE;
1077 
1078 		/* set FIFO threshold parameter to reduce overrun */
1079 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1080 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1081 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1082 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1083 
1084 		/* OPD */
1085 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1086 	} else {
1087 		rcntl &= ~FEC_ENET_FCE;
1088 	}
1089 #endif /* !defined(CONFIG_M5272) */
1090 
1091 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1092 
1093 	/* Setup multicast filter. */
1094 	set_multicast_list(ndev);
1095 #ifndef CONFIG_M5272
1096 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1097 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1098 #endif
1099 
1100 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1101 		/* enable ENET endian swap */
1102 		ecntl |= (1 << 8);
1103 		/* enable ENET store and forward mode */
1104 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1105 	}
1106 
1107 	if (fep->bufdesc_ex)
1108 		ecntl |= (1 << 4);
1109 
1110 #ifndef CONFIG_M5272
1111 	/* Enable the MIB statistic event counters */
1112 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1113 #endif
1114 
1115 	/* And last, enable the transmit and receive processing */
1116 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1117 	fec_enet_active_rxring(ndev);
1118 
1119 	if (fep->bufdesc_ex)
1120 		fec_ptp_start_cyclecounter(ndev);
1121 
1122 	/* Enable interrupts we wish to service */
1123 	if (fep->link)
1124 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1125 	else
1126 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1127 
1128 	/* Init the interrupt coalescing */
1129 	fec_enet_itr_coal_init(ndev);
1130 
1131 }
1132 
1133 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1134 {
1135 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1136 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1137 
1138 	if (stop_gpr->gpr) {
1139 		if (enabled)
1140 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 					   BIT(stop_gpr->bit),
1142 					   BIT(stop_gpr->bit));
1143 		else
1144 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1145 					   BIT(stop_gpr->bit), 0);
1146 	} else if (pdata && pdata->sleep_mode_enable) {
1147 		pdata->sleep_mode_enable(enabled);
1148 	}
1149 }
1150 
1151 static void
1152 fec_stop(struct net_device *ndev)
1153 {
1154 	struct fec_enet_private *fep = netdev_priv(ndev);
1155 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1156 	u32 val;
1157 
1158 	/* We cannot expect a graceful transmit stop without link !!! */
1159 	if (fep->link) {
1160 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1161 		udelay(10);
1162 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1163 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1164 	}
1165 
1166 	/* Whack a reset.  We should wait for this.
1167 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1168 	 * instead of reset MAC itself.
1169 	 */
1170 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1171 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1172 			writel(0, fep->hwp + FEC_ECNTRL);
1173 		} else {
1174 			writel(1, fep->hwp + FEC_ECNTRL);
1175 			udelay(10);
1176 		}
1177 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1178 	} else {
1179 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1180 		val = readl(fep->hwp + FEC_ECNTRL);
1181 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1182 		writel(val, fep->hwp + FEC_ECNTRL);
1183 		fec_enet_stop_mode(fep, true);
1184 	}
1185 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186 
1187 	/* We have to keep ENET enabled to have MII interrupt stay working */
1188 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1189 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1190 		writel(2, fep->hwp + FEC_ECNTRL);
1191 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1192 	}
1193 }
1194 
1195 
1196 static void
1197 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1198 {
1199 	struct fec_enet_private *fep = netdev_priv(ndev);
1200 
1201 	fec_dump(ndev);
1202 
1203 	ndev->stats.tx_errors++;
1204 
1205 	schedule_work(&fep->tx_timeout_work);
1206 }
1207 
1208 static void fec_enet_timeout_work(struct work_struct *work)
1209 {
1210 	struct fec_enet_private *fep =
1211 		container_of(work, struct fec_enet_private, tx_timeout_work);
1212 	struct net_device *ndev = fep->netdev;
1213 
1214 	rtnl_lock();
1215 	if (netif_device_present(ndev) || netif_running(ndev)) {
1216 		napi_disable(&fep->napi);
1217 		netif_tx_lock_bh(ndev);
1218 		fec_restart(ndev);
1219 		netif_tx_wake_all_queues(ndev);
1220 		netif_tx_unlock_bh(ndev);
1221 		napi_enable(&fep->napi);
1222 	}
1223 	rtnl_unlock();
1224 }
1225 
1226 static void
1227 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1228 	struct skb_shared_hwtstamps *hwtstamps)
1229 {
1230 	unsigned long flags;
1231 	u64 ns;
1232 
1233 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1234 	ns = timecounter_cyc2time(&fep->tc, ts);
1235 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1236 
1237 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1238 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1239 }
1240 
1241 static void
1242 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1243 {
1244 	struct	fec_enet_private *fep;
1245 	struct bufdesc *bdp;
1246 	unsigned short status;
1247 	struct	sk_buff	*skb;
1248 	struct fec_enet_priv_tx_q *txq;
1249 	struct netdev_queue *nq;
1250 	int	index = 0;
1251 	int	entries_free;
1252 
1253 	fep = netdev_priv(ndev);
1254 
1255 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1256 
1257 	txq = fep->tx_queue[queue_id];
1258 	/* get next bdp of dirty_tx */
1259 	nq = netdev_get_tx_queue(ndev, queue_id);
1260 	bdp = txq->dirty_tx;
1261 
1262 	/* get next bdp of dirty_tx */
1263 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264 
1265 	while (bdp != READ_ONCE(txq->bd.cur)) {
1266 		/* Order the load of bd.cur and cbd_sc */
1267 		rmb();
1268 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1269 		if (status & BD_ENET_TX_READY)
1270 			break;
1271 
1272 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1273 
1274 		skb = txq->tx_skbuff[index];
1275 		txq->tx_skbuff[index] = NULL;
1276 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1277 			dma_unmap_single(&fep->pdev->dev,
1278 					 fec32_to_cpu(bdp->cbd_bufaddr),
1279 					 fec16_to_cpu(bdp->cbd_datlen),
1280 					 DMA_TO_DEVICE);
1281 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1282 		if (!skb)
1283 			goto skb_done;
1284 
1285 		/* Check for errors. */
1286 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1287 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1288 				   BD_ENET_TX_CSL)) {
1289 			ndev->stats.tx_errors++;
1290 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1291 				ndev->stats.tx_heartbeat_errors++;
1292 			if (status & BD_ENET_TX_LC)  /* Late collision */
1293 				ndev->stats.tx_window_errors++;
1294 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1295 				ndev->stats.tx_aborted_errors++;
1296 			if (status & BD_ENET_TX_UN)  /* Underrun */
1297 				ndev->stats.tx_fifo_errors++;
1298 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1299 				ndev->stats.tx_carrier_errors++;
1300 		} else {
1301 			ndev->stats.tx_packets++;
1302 			ndev->stats.tx_bytes += skb->len;
1303 		}
1304 
1305 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1306 			fep->bufdesc_ex) {
1307 			struct skb_shared_hwtstamps shhwtstamps;
1308 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1309 
1310 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1311 			skb_tstamp_tx(skb, &shhwtstamps);
1312 		}
1313 
1314 		/* Deferred means some collisions occurred during transmit,
1315 		 * but we eventually sent the packet OK.
1316 		 */
1317 		if (status & BD_ENET_TX_DEF)
1318 			ndev->stats.collisions++;
1319 
1320 		/* Free the sk buffer associated with this last transmit */
1321 		dev_kfree_skb_any(skb);
1322 skb_done:
1323 		/* Make sure the update to bdp and tx_skbuff are performed
1324 		 * before dirty_tx
1325 		 */
1326 		wmb();
1327 		txq->dirty_tx = bdp;
1328 
1329 		/* Update pointer to next buffer descriptor to be transmitted */
1330 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1331 
1332 		/* Since we have freed up a buffer, the ring is no longer full
1333 		 */
1334 		if (netif_tx_queue_stopped(nq)) {
1335 			entries_free = fec_enet_get_free_txdesc_num(txq);
1336 			if (entries_free >= txq->tx_wake_threshold)
1337 				netif_tx_wake_queue(nq);
1338 		}
1339 	}
1340 
1341 	/* ERR006358: Keep the transmitter going */
1342 	if (bdp != txq->bd.cur &&
1343 	    readl(txq->bd.reg_desc_active) == 0)
1344 		writel(0, txq->bd.reg_desc_active);
1345 }
1346 
1347 static void
1348 fec_enet_tx(struct net_device *ndev)
1349 {
1350 	struct fec_enet_private *fep = netdev_priv(ndev);
1351 	u16 queue_id;
1352 	/* First process class A queue, then Class B and Best Effort queue */
1353 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1354 		clear_bit(queue_id, &fep->work_tx);
1355 		fec_enet_tx_queue(ndev, queue_id);
1356 	}
1357 	return;
1358 }
1359 
1360 static int
1361 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1362 {
1363 	struct  fec_enet_private *fep = netdev_priv(ndev);
1364 	int off;
1365 
1366 	off = ((unsigned long)skb->data) & fep->rx_align;
1367 	if (off)
1368 		skb_reserve(skb, fep->rx_align + 1 - off);
1369 
1370 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1371 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1372 		if (net_ratelimit())
1373 			netdev_err(ndev, "Rx DMA memory map failed\n");
1374 		return -ENOMEM;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1381 			       struct bufdesc *bdp, u32 length, bool swap)
1382 {
1383 	struct  fec_enet_private *fep = netdev_priv(ndev);
1384 	struct sk_buff *new_skb;
1385 
1386 	if (length > fep->rx_copybreak)
1387 		return false;
1388 
1389 	new_skb = netdev_alloc_skb(ndev, length);
1390 	if (!new_skb)
1391 		return false;
1392 
1393 	dma_sync_single_for_cpu(&fep->pdev->dev,
1394 				fec32_to_cpu(bdp->cbd_bufaddr),
1395 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1396 				DMA_FROM_DEVICE);
1397 	if (!swap)
1398 		memcpy(new_skb->data, (*skb)->data, length);
1399 	else
1400 		swap_buffer2(new_skb->data, (*skb)->data, length);
1401 	*skb = new_skb;
1402 
1403 	return true;
1404 }
1405 
1406 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1407  * When we update through the ring, if the next incoming buffer has
1408  * not been given to the system, we just set the empty indicator,
1409  * effectively tossing the packet.
1410  */
1411 static int
1412 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1413 {
1414 	struct fec_enet_private *fep = netdev_priv(ndev);
1415 	struct fec_enet_priv_rx_q *rxq;
1416 	struct bufdesc *bdp;
1417 	unsigned short status;
1418 	struct  sk_buff *skb_new = NULL;
1419 	struct  sk_buff *skb;
1420 	ushort	pkt_len;
1421 	__u8 *data;
1422 	int	pkt_received = 0;
1423 	struct	bufdesc_ex *ebdp = NULL;
1424 	bool	vlan_packet_rcvd = false;
1425 	u16	vlan_tag;
1426 	int	index = 0;
1427 	bool	is_copybreak;
1428 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1429 
1430 #ifdef CONFIG_M532x
1431 	flush_cache_all();
1432 #endif
1433 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1434 	rxq = fep->rx_queue[queue_id];
1435 
1436 	/* First, grab all of the stats for the incoming packet.
1437 	 * These get messed up if we get called due to a busy condition.
1438 	 */
1439 	bdp = rxq->bd.cur;
1440 
1441 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1442 
1443 		if (pkt_received >= budget)
1444 			break;
1445 		pkt_received++;
1446 
1447 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1448 
1449 		/* Check for errors. */
1450 		status ^= BD_ENET_RX_LAST;
1451 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1452 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1453 			   BD_ENET_RX_CL)) {
1454 			ndev->stats.rx_errors++;
1455 			if (status & BD_ENET_RX_OV) {
1456 				/* FIFO overrun */
1457 				ndev->stats.rx_fifo_errors++;
1458 				goto rx_processing_done;
1459 			}
1460 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1461 						| BD_ENET_RX_LAST)) {
1462 				/* Frame too long or too short. */
1463 				ndev->stats.rx_length_errors++;
1464 				if (status & BD_ENET_RX_LAST)
1465 					netdev_err(ndev, "rcv is not +last\n");
1466 			}
1467 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1468 				ndev->stats.rx_crc_errors++;
1469 			/* Report late collisions as a frame error. */
1470 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1471 				ndev->stats.rx_frame_errors++;
1472 			goto rx_processing_done;
1473 		}
1474 
1475 		/* Process the incoming frame. */
1476 		ndev->stats.rx_packets++;
1477 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1478 		ndev->stats.rx_bytes += pkt_len;
1479 
1480 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1481 		skb = rxq->rx_skbuff[index];
1482 
1483 		/* The packet length includes FCS, but we don't want to
1484 		 * include that when passing upstream as it messes up
1485 		 * bridging applications.
1486 		 */
1487 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1488 						  need_swap);
1489 		if (!is_copybreak) {
1490 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1491 			if (unlikely(!skb_new)) {
1492 				ndev->stats.rx_dropped++;
1493 				goto rx_processing_done;
1494 			}
1495 			dma_unmap_single(&fep->pdev->dev,
1496 					 fec32_to_cpu(bdp->cbd_bufaddr),
1497 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1498 					 DMA_FROM_DEVICE);
1499 		}
1500 
1501 		prefetch(skb->data - NET_IP_ALIGN);
1502 		skb_put(skb, pkt_len - 4);
1503 		data = skb->data;
1504 
1505 		if (!is_copybreak && need_swap)
1506 			swap_buffer(data, pkt_len);
1507 
1508 #if !defined(CONFIG_M5272)
1509 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1510 			data = skb_pull_inline(skb, 2);
1511 #endif
1512 
1513 		/* Extract the enhanced buffer descriptor */
1514 		ebdp = NULL;
1515 		if (fep->bufdesc_ex)
1516 			ebdp = (struct bufdesc_ex *)bdp;
1517 
1518 		/* If this is a VLAN packet remove the VLAN Tag */
1519 		vlan_packet_rcvd = false;
1520 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1521 		    fep->bufdesc_ex &&
1522 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1523 			/* Push and remove the vlan tag */
1524 			struct vlan_hdr *vlan_header =
1525 					(struct vlan_hdr *) (data + ETH_HLEN);
1526 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1527 
1528 			vlan_packet_rcvd = true;
1529 
1530 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1531 			skb_pull(skb, VLAN_HLEN);
1532 		}
1533 
1534 		skb->protocol = eth_type_trans(skb, ndev);
1535 
1536 		/* Get receive timestamp from the skb */
1537 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1538 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1539 					  skb_hwtstamps(skb));
1540 
1541 		if (fep->bufdesc_ex &&
1542 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1543 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1544 				/* don't check it */
1545 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1546 			} else {
1547 				skb_checksum_none_assert(skb);
1548 			}
1549 		}
1550 
1551 		/* Handle received VLAN packets */
1552 		if (vlan_packet_rcvd)
1553 			__vlan_hwaccel_put_tag(skb,
1554 					       htons(ETH_P_8021Q),
1555 					       vlan_tag);
1556 
1557 		napi_gro_receive(&fep->napi, skb);
1558 
1559 		if (is_copybreak) {
1560 			dma_sync_single_for_device(&fep->pdev->dev,
1561 						   fec32_to_cpu(bdp->cbd_bufaddr),
1562 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1563 						   DMA_FROM_DEVICE);
1564 		} else {
1565 			rxq->rx_skbuff[index] = skb_new;
1566 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1567 		}
1568 
1569 rx_processing_done:
1570 		/* Clear the status flags for this buffer */
1571 		status &= ~BD_ENET_RX_STATS;
1572 
1573 		/* Mark the buffer empty */
1574 		status |= BD_ENET_RX_EMPTY;
1575 
1576 		if (fep->bufdesc_ex) {
1577 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1578 
1579 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1580 			ebdp->cbd_prot = 0;
1581 			ebdp->cbd_bdu = 0;
1582 		}
1583 		/* Make sure the updates to rest of the descriptor are
1584 		 * performed before transferring ownership.
1585 		 */
1586 		wmb();
1587 		bdp->cbd_sc = cpu_to_fec16(status);
1588 
1589 		/* Update BD pointer to next entry */
1590 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1591 
1592 		/* Doing this here will keep the FEC running while we process
1593 		 * incoming frames.  On a heavily loaded network, we should be
1594 		 * able to keep up at the expense of system resources.
1595 		 */
1596 		writel(0, rxq->bd.reg_desc_active);
1597 	}
1598 	rxq->bd.cur = bdp;
1599 	return pkt_received;
1600 }
1601 
1602 static int
1603 fec_enet_rx(struct net_device *ndev, int budget)
1604 {
1605 	int     pkt_received = 0;
1606 	u16	queue_id;
1607 	struct fec_enet_private *fep = netdev_priv(ndev);
1608 
1609 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1610 		int ret;
1611 
1612 		ret = fec_enet_rx_queue(ndev,
1613 					budget - pkt_received, queue_id);
1614 
1615 		if (ret < budget - pkt_received)
1616 			clear_bit(queue_id, &fep->work_rx);
1617 
1618 		pkt_received += ret;
1619 	}
1620 	return pkt_received;
1621 }
1622 
1623 static bool
1624 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1625 {
1626 	if (int_events == 0)
1627 		return false;
1628 
1629 	if (int_events & FEC_ENET_RXF_0)
1630 		fep->work_rx |= (1 << 2);
1631 	if (int_events & FEC_ENET_RXF_1)
1632 		fep->work_rx |= (1 << 0);
1633 	if (int_events & FEC_ENET_RXF_2)
1634 		fep->work_rx |= (1 << 1);
1635 
1636 	if (int_events & FEC_ENET_TXF_0)
1637 		fep->work_tx |= (1 << 2);
1638 	if (int_events & FEC_ENET_TXF_1)
1639 		fep->work_tx |= (1 << 0);
1640 	if (int_events & FEC_ENET_TXF_2)
1641 		fep->work_tx |= (1 << 1);
1642 
1643 	return true;
1644 }
1645 
1646 static irqreturn_t
1647 fec_enet_interrupt(int irq, void *dev_id)
1648 {
1649 	struct net_device *ndev = dev_id;
1650 	struct fec_enet_private *fep = netdev_priv(ndev);
1651 	uint int_events;
1652 	irqreturn_t ret = IRQ_NONE;
1653 
1654 	int_events = readl(fep->hwp + FEC_IEVENT);
1655 	writel(int_events, fep->hwp + FEC_IEVENT);
1656 	fec_enet_collect_events(fep, int_events);
1657 
1658 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1659 		ret = IRQ_HANDLED;
1660 
1661 		if (napi_schedule_prep(&fep->napi)) {
1662 			/* Disable the NAPI interrupts */
1663 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1664 			__napi_schedule(&fep->napi);
1665 		}
1666 	}
1667 
1668 	if (int_events & FEC_ENET_MII) {
1669 		ret = IRQ_HANDLED;
1670 		complete(&fep->mdio_done);
1671 	}
1672 	return ret;
1673 }
1674 
1675 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1676 {
1677 	struct net_device *ndev = napi->dev;
1678 	struct fec_enet_private *fep = netdev_priv(ndev);
1679 	int pkts;
1680 
1681 	pkts = fec_enet_rx(ndev, budget);
1682 
1683 	fec_enet_tx(ndev);
1684 
1685 	if (pkts < budget) {
1686 		napi_complete_done(napi, pkts);
1687 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1688 	}
1689 	return pkts;
1690 }
1691 
1692 /* ------------------------------------------------------------------------- */
1693 static void fec_get_mac(struct net_device *ndev)
1694 {
1695 	struct fec_enet_private *fep = netdev_priv(ndev);
1696 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1697 	unsigned char *iap, tmpaddr[ETH_ALEN];
1698 
1699 	/*
1700 	 * try to get mac address in following order:
1701 	 *
1702 	 * 1) module parameter via kernel command line in form
1703 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1704 	 */
1705 	iap = macaddr;
1706 
1707 	/*
1708 	 * 2) from device tree data
1709 	 */
1710 	if (!is_valid_ether_addr(iap)) {
1711 		struct device_node *np = fep->pdev->dev.of_node;
1712 		if (np) {
1713 			const char *mac = of_get_mac_address(np);
1714 			if (!IS_ERR(mac))
1715 				iap = (unsigned char *) mac;
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * 3) from flash or fuse (via platform data)
1721 	 */
1722 	if (!is_valid_ether_addr(iap)) {
1723 #ifdef CONFIG_M5272
1724 		if (FEC_FLASHMAC)
1725 			iap = (unsigned char *)FEC_FLASHMAC;
1726 #else
1727 		if (pdata)
1728 			iap = (unsigned char *)&pdata->mac;
1729 #endif
1730 	}
1731 
1732 	/*
1733 	 * 4) FEC mac registers set by bootloader
1734 	 */
1735 	if (!is_valid_ether_addr(iap)) {
1736 		*((__be32 *) &tmpaddr[0]) =
1737 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1738 		*((__be16 *) &tmpaddr[4]) =
1739 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1740 		iap = &tmpaddr[0];
1741 	}
1742 
1743 	/*
1744 	 * 5) random mac address
1745 	 */
1746 	if (!is_valid_ether_addr(iap)) {
1747 		/* Report it and use a random ethernet address instead */
1748 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1749 		eth_hw_addr_random(ndev);
1750 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1751 			 ndev->dev_addr);
1752 		return;
1753 	}
1754 
1755 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1756 
1757 	/* Adjust MAC if using macaddr */
1758 	if (iap == macaddr)
1759 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1760 }
1761 
1762 /* ------------------------------------------------------------------------- */
1763 
1764 /*
1765  * Phy section
1766  */
1767 static void fec_enet_adjust_link(struct net_device *ndev)
1768 {
1769 	struct fec_enet_private *fep = netdev_priv(ndev);
1770 	struct phy_device *phy_dev = ndev->phydev;
1771 	int status_change = 0;
1772 
1773 	/*
1774 	 * If the netdev is down, or is going down, we're not interested
1775 	 * in link state events, so just mark our idea of the link as down
1776 	 * and ignore the event.
1777 	 */
1778 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1779 		fep->link = 0;
1780 	} else if (phy_dev->link) {
1781 		if (!fep->link) {
1782 			fep->link = phy_dev->link;
1783 			status_change = 1;
1784 		}
1785 
1786 		if (fep->full_duplex != phy_dev->duplex) {
1787 			fep->full_duplex = phy_dev->duplex;
1788 			status_change = 1;
1789 		}
1790 
1791 		if (phy_dev->speed != fep->speed) {
1792 			fep->speed = phy_dev->speed;
1793 			status_change = 1;
1794 		}
1795 
1796 		/* if any of the above changed restart the FEC */
1797 		if (status_change) {
1798 			napi_disable(&fep->napi);
1799 			netif_tx_lock_bh(ndev);
1800 			fec_restart(ndev);
1801 			netif_tx_wake_all_queues(ndev);
1802 			netif_tx_unlock_bh(ndev);
1803 			napi_enable(&fep->napi);
1804 		}
1805 	} else {
1806 		if (fep->link) {
1807 			napi_disable(&fep->napi);
1808 			netif_tx_lock_bh(ndev);
1809 			fec_stop(ndev);
1810 			netif_tx_unlock_bh(ndev);
1811 			napi_enable(&fep->napi);
1812 			fep->link = phy_dev->link;
1813 			status_change = 1;
1814 		}
1815 	}
1816 
1817 	if (status_change)
1818 		phy_print_status(phy_dev);
1819 }
1820 
1821 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1822 {
1823 	struct fec_enet_private *fep = bus->priv;
1824 	struct device *dev = &fep->pdev->dev;
1825 	unsigned long time_left;
1826 	int ret = 0, frame_start, frame_addr, frame_op;
1827 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1828 
1829 	ret = pm_runtime_get_sync(dev);
1830 	if (ret < 0)
1831 		return ret;
1832 
1833 	reinit_completion(&fep->mdio_done);
1834 
1835 	if (is_c45) {
1836 		frame_start = FEC_MMFR_ST_C45;
1837 
1838 		/* write address */
1839 		frame_addr = (regnum >> 16);
1840 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1841 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1842 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1843 		       fep->hwp + FEC_MII_DATA);
1844 
1845 		/* wait for end of transfer */
1846 		time_left = wait_for_completion_timeout(&fep->mdio_done,
1847 				usecs_to_jiffies(FEC_MII_TIMEOUT));
1848 		if (time_left == 0) {
1849 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1850 			ret = -ETIMEDOUT;
1851 			goto out;
1852 		}
1853 
1854 		frame_op = FEC_MMFR_OP_READ_C45;
1855 
1856 	} else {
1857 		/* C22 read */
1858 		frame_op = FEC_MMFR_OP_READ;
1859 		frame_start = FEC_MMFR_ST;
1860 		frame_addr = regnum;
1861 	}
1862 
1863 	/* start a read op */
1864 	writel(frame_start | frame_op |
1865 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1866 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1867 
1868 	/* wait for end of transfer */
1869 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1870 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1871 	if (time_left == 0) {
1872 		netdev_err(fep->netdev, "MDIO read timeout\n");
1873 		ret = -ETIMEDOUT;
1874 		goto out;
1875 	}
1876 
1877 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1878 
1879 out:
1880 	pm_runtime_mark_last_busy(dev);
1881 	pm_runtime_put_autosuspend(dev);
1882 
1883 	return ret;
1884 }
1885 
1886 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1887 			   u16 value)
1888 {
1889 	struct fec_enet_private *fep = bus->priv;
1890 	struct device *dev = &fep->pdev->dev;
1891 	unsigned long time_left;
1892 	int ret, frame_start, frame_addr;
1893 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1894 
1895 	ret = pm_runtime_get_sync(dev);
1896 	if (ret < 0)
1897 		return ret;
1898 	else
1899 		ret = 0;
1900 
1901 	reinit_completion(&fep->mdio_done);
1902 
1903 	if (is_c45) {
1904 		frame_start = FEC_MMFR_ST_C45;
1905 
1906 		/* write address */
1907 		frame_addr = (regnum >> 16);
1908 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1909 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1910 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1911 		       fep->hwp + FEC_MII_DATA);
1912 
1913 		/* wait for end of transfer */
1914 		time_left = wait_for_completion_timeout(&fep->mdio_done,
1915 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1916 		if (time_left == 0) {
1917 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1918 			ret = -ETIMEDOUT;
1919 			goto out;
1920 		}
1921 	} else {
1922 		/* C22 write */
1923 		frame_start = FEC_MMFR_ST;
1924 		frame_addr = regnum;
1925 	}
1926 
1927 	/* start a write op */
1928 	writel(frame_start | FEC_MMFR_OP_WRITE |
1929 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1930 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1931 		fep->hwp + FEC_MII_DATA);
1932 
1933 	/* wait for end of transfer */
1934 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1935 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1936 	if (time_left == 0) {
1937 		netdev_err(fep->netdev, "MDIO write timeout\n");
1938 		ret  = -ETIMEDOUT;
1939 	}
1940 
1941 out:
1942 	pm_runtime_mark_last_busy(dev);
1943 	pm_runtime_put_autosuspend(dev);
1944 
1945 	return ret;
1946 }
1947 
1948 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1949 {
1950 	struct fec_enet_private *fep = netdev_priv(ndev);
1951 	int ret;
1952 
1953 	if (enable) {
1954 		ret = clk_prepare_enable(fep->clk_enet_out);
1955 		if (ret)
1956 			return ret;
1957 
1958 		if (fep->clk_ptp) {
1959 			mutex_lock(&fep->ptp_clk_mutex);
1960 			ret = clk_prepare_enable(fep->clk_ptp);
1961 			if (ret) {
1962 				mutex_unlock(&fep->ptp_clk_mutex);
1963 				goto failed_clk_ptp;
1964 			} else {
1965 				fep->ptp_clk_on = true;
1966 			}
1967 			mutex_unlock(&fep->ptp_clk_mutex);
1968 		}
1969 
1970 		ret = clk_prepare_enable(fep->clk_ref);
1971 		if (ret)
1972 			goto failed_clk_ref;
1973 
1974 		phy_reset_after_clk_enable(ndev->phydev);
1975 	} else {
1976 		clk_disable_unprepare(fep->clk_enet_out);
1977 		if (fep->clk_ptp) {
1978 			mutex_lock(&fep->ptp_clk_mutex);
1979 			clk_disable_unprepare(fep->clk_ptp);
1980 			fep->ptp_clk_on = false;
1981 			mutex_unlock(&fep->ptp_clk_mutex);
1982 		}
1983 		clk_disable_unprepare(fep->clk_ref);
1984 	}
1985 
1986 	return 0;
1987 
1988 failed_clk_ref:
1989 	if (fep->clk_ref)
1990 		clk_disable_unprepare(fep->clk_ref);
1991 failed_clk_ptp:
1992 	if (fep->clk_enet_out)
1993 		clk_disable_unprepare(fep->clk_enet_out);
1994 
1995 	return ret;
1996 }
1997 
1998 static int fec_enet_mii_probe(struct net_device *ndev)
1999 {
2000 	struct fec_enet_private *fep = netdev_priv(ndev);
2001 	struct phy_device *phy_dev = NULL;
2002 	char mdio_bus_id[MII_BUS_ID_SIZE];
2003 	char phy_name[MII_BUS_ID_SIZE + 3];
2004 	int phy_id;
2005 	int dev_id = fep->dev_id;
2006 
2007 	if (fep->phy_node) {
2008 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2009 					 &fec_enet_adjust_link, 0,
2010 					 fep->phy_interface);
2011 		if (!phy_dev) {
2012 			netdev_err(ndev, "Unable to connect to phy\n");
2013 			return -ENODEV;
2014 		}
2015 	} else {
2016 		/* check for attached phy */
2017 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2018 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2019 				continue;
2020 			if (dev_id--)
2021 				continue;
2022 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2023 			break;
2024 		}
2025 
2026 		if (phy_id >= PHY_MAX_ADDR) {
2027 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2028 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2029 			phy_id = 0;
2030 		}
2031 
2032 		snprintf(phy_name, sizeof(phy_name),
2033 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2034 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2035 				      fep->phy_interface);
2036 	}
2037 
2038 	if (IS_ERR(phy_dev)) {
2039 		netdev_err(ndev, "could not attach to PHY\n");
2040 		return PTR_ERR(phy_dev);
2041 	}
2042 
2043 	/* mask with MAC supported features */
2044 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2045 		phy_set_max_speed(phy_dev, 1000);
2046 		phy_remove_link_mode(phy_dev,
2047 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2048 #if !defined(CONFIG_M5272)
2049 		phy_support_sym_pause(phy_dev);
2050 #endif
2051 	}
2052 	else
2053 		phy_set_max_speed(phy_dev, 100);
2054 
2055 	fep->link = 0;
2056 	fep->full_duplex = 0;
2057 
2058 	phy_attached_info(phy_dev);
2059 
2060 	return 0;
2061 }
2062 
2063 static int fec_enet_mii_init(struct platform_device *pdev)
2064 {
2065 	static struct mii_bus *fec0_mii_bus;
2066 	struct net_device *ndev = platform_get_drvdata(pdev);
2067 	struct fec_enet_private *fep = netdev_priv(ndev);
2068 	struct device_node *node;
2069 	int err = -ENXIO;
2070 	u32 mii_speed, holdtime;
2071 
2072 	/*
2073 	 * The i.MX28 dual fec interfaces are not equal.
2074 	 * Here are the differences:
2075 	 *
2076 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2077 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2078 	 *  - external phys can only be configured by fec0
2079 	 *
2080 	 * That is to say fec1 can not work independently. It only works
2081 	 * when fec0 is working. The reason behind this design is that the
2082 	 * second interface is added primarily for Switch mode.
2083 	 *
2084 	 * Because of the last point above, both phys are attached on fec0
2085 	 * mdio interface in board design, and need to be configured by
2086 	 * fec0 mii_bus.
2087 	 */
2088 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2089 		/* fec1 uses fec0 mii_bus */
2090 		if (mii_cnt && fec0_mii_bus) {
2091 			fep->mii_bus = fec0_mii_bus;
2092 			mii_cnt++;
2093 			return 0;
2094 		}
2095 		return -ENOENT;
2096 	}
2097 
2098 	/*
2099 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2100 	 *
2101 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2102 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2103 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2104 	 * document.
2105 	 */
2106 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2107 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2108 		mii_speed--;
2109 	if (mii_speed > 63) {
2110 		dev_err(&pdev->dev,
2111 			"fec clock (%lu) too fast to get right mii speed\n",
2112 			clk_get_rate(fep->clk_ipg));
2113 		err = -EINVAL;
2114 		goto err_out;
2115 	}
2116 
2117 	/*
2118 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2119 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2120 	 * versions are RAZ there, so just ignore the difference and write the
2121 	 * register always.
2122 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2123 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2124 	 * output.
2125 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2126 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2127 	 * holdtime cannot result in a value greater than 3.
2128 	 */
2129 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2130 
2131 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2132 
2133 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2134 
2135 	fep->mii_bus = mdiobus_alloc();
2136 	if (fep->mii_bus == NULL) {
2137 		err = -ENOMEM;
2138 		goto err_out;
2139 	}
2140 
2141 	fep->mii_bus->name = "fec_enet_mii_bus";
2142 	fep->mii_bus->read = fec_enet_mdio_read;
2143 	fep->mii_bus->write = fec_enet_mdio_write;
2144 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2145 		pdev->name, fep->dev_id + 1);
2146 	fep->mii_bus->priv = fep;
2147 	fep->mii_bus->parent = &pdev->dev;
2148 
2149 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2150 	err = of_mdiobus_register(fep->mii_bus, node);
2151 	of_node_put(node);
2152 	if (err)
2153 		goto err_out_free_mdiobus;
2154 
2155 	mii_cnt++;
2156 
2157 	/* save fec0 mii_bus */
2158 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2159 		fec0_mii_bus = fep->mii_bus;
2160 
2161 	return 0;
2162 
2163 err_out_free_mdiobus:
2164 	mdiobus_free(fep->mii_bus);
2165 err_out:
2166 	return err;
2167 }
2168 
2169 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2170 {
2171 	if (--mii_cnt == 0) {
2172 		mdiobus_unregister(fep->mii_bus);
2173 		mdiobus_free(fep->mii_bus);
2174 	}
2175 }
2176 
2177 static void fec_enet_get_drvinfo(struct net_device *ndev,
2178 				 struct ethtool_drvinfo *info)
2179 {
2180 	struct fec_enet_private *fep = netdev_priv(ndev);
2181 
2182 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2183 		sizeof(info->driver));
2184 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2185 }
2186 
2187 static int fec_enet_get_regs_len(struct net_device *ndev)
2188 {
2189 	struct fec_enet_private *fep = netdev_priv(ndev);
2190 	struct resource *r;
2191 	int s = 0;
2192 
2193 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2194 	if (r)
2195 		s = resource_size(r);
2196 
2197 	return s;
2198 }
2199 
2200 /* List of registers that can be safety be read to dump them with ethtool */
2201 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2202 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2203 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2204 static __u32 fec_enet_register_version = 2;
2205 static u32 fec_enet_register_offset[] = {
2206 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2207 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2208 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2209 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2210 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2211 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2212 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2213 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2214 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2215 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2216 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2217 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2218 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2219 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2220 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2221 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2222 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2223 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2224 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2225 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2226 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2227 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2228 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2229 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2230 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2231 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2232 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2233 };
2234 #else
2235 static __u32 fec_enet_register_version = 1;
2236 static u32 fec_enet_register_offset[] = {
2237 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2238 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2239 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2240 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2241 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2242 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2243 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2244 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2245 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2246 };
2247 #endif
2248 
2249 static void fec_enet_get_regs(struct net_device *ndev,
2250 			      struct ethtool_regs *regs, void *regbuf)
2251 {
2252 	struct fec_enet_private *fep = netdev_priv(ndev);
2253 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2254 	struct device *dev = &fep->pdev->dev;
2255 	u32 *buf = (u32 *)regbuf;
2256 	u32 i, off;
2257 	int ret;
2258 
2259 	ret = pm_runtime_get_sync(dev);
2260 	if (ret < 0)
2261 		return;
2262 
2263 	regs->version = fec_enet_register_version;
2264 
2265 	memset(buf, 0, regs->len);
2266 
2267 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2268 		off = fec_enet_register_offset[i];
2269 
2270 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2271 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2272 			continue;
2273 
2274 		off >>= 2;
2275 		buf[off] = readl(&theregs[off]);
2276 	}
2277 
2278 	pm_runtime_mark_last_busy(dev);
2279 	pm_runtime_put_autosuspend(dev);
2280 }
2281 
2282 static int fec_enet_get_ts_info(struct net_device *ndev,
2283 				struct ethtool_ts_info *info)
2284 {
2285 	struct fec_enet_private *fep = netdev_priv(ndev);
2286 
2287 	if (fep->bufdesc_ex) {
2288 
2289 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2290 					SOF_TIMESTAMPING_RX_SOFTWARE |
2291 					SOF_TIMESTAMPING_SOFTWARE |
2292 					SOF_TIMESTAMPING_TX_HARDWARE |
2293 					SOF_TIMESTAMPING_RX_HARDWARE |
2294 					SOF_TIMESTAMPING_RAW_HARDWARE;
2295 		if (fep->ptp_clock)
2296 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2297 		else
2298 			info->phc_index = -1;
2299 
2300 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2301 				 (1 << HWTSTAMP_TX_ON);
2302 
2303 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2304 				   (1 << HWTSTAMP_FILTER_ALL);
2305 		return 0;
2306 	} else {
2307 		return ethtool_op_get_ts_info(ndev, info);
2308 	}
2309 }
2310 
2311 #if !defined(CONFIG_M5272)
2312 
2313 static void fec_enet_get_pauseparam(struct net_device *ndev,
2314 				    struct ethtool_pauseparam *pause)
2315 {
2316 	struct fec_enet_private *fep = netdev_priv(ndev);
2317 
2318 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2319 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2320 	pause->rx_pause = pause->tx_pause;
2321 }
2322 
2323 static int fec_enet_set_pauseparam(struct net_device *ndev,
2324 				   struct ethtool_pauseparam *pause)
2325 {
2326 	struct fec_enet_private *fep = netdev_priv(ndev);
2327 
2328 	if (!ndev->phydev)
2329 		return -ENODEV;
2330 
2331 	if (pause->tx_pause != pause->rx_pause) {
2332 		netdev_info(ndev,
2333 			"hardware only support enable/disable both tx and rx");
2334 		return -EINVAL;
2335 	}
2336 
2337 	fep->pause_flag = 0;
2338 
2339 	/* tx pause must be same as rx pause */
2340 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2341 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2342 
2343 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2344 			  pause->autoneg);
2345 
2346 	if (pause->autoneg) {
2347 		if (netif_running(ndev))
2348 			fec_stop(ndev);
2349 		phy_start_aneg(ndev->phydev);
2350 	}
2351 	if (netif_running(ndev)) {
2352 		napi_disable(&fep->napi);
2353 		netif_tx_lock_bh(ndev);
2354 		fec_restart(ndev);
2355 		netif_tx_wake_all_queues(ndev);
2356 		netif_tx_unlock_bh(ndev);
2357 		napi_enable(&fep->napi);
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 static const struct fec_stat {
2364 	char name[ETH_GSTRING_LEN];
2365 	u16 offset;
2366 } fec_stats[] = {
2367 	/* RMON TX */
2368 	{ "tx_dropped", RMON_T_DROP },
2369 	{ "tx_packets", RMON_T_PACKETS },
2370 	{ "tx_broadcast", RMON_T_BC_PKT },
2371 	{ "tx_multicast", RMON_T_MC_PKT },
2372 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2373 	{ "tx_undersize", RMON_T_UNDERSIZE },
2374 	{ "tx_oversize", RMON_T_OVERSIZE },
2375 	{ "tx_fragment", RMON_T_FRAG },
2376 	{ "tx_jabber", RMON_T_JAB },
2377 	{ "tx_collision", RMON_T_COL },
2378 	{ "tx_64byte", RMON_T_P64 },
2379 	{ "tx_65to127byte", RMON_T_P65TO127 },
2380 	{ "tx_128to255byte", RMON_T_P128TO255 },
2381 	{ "tx_256to511byte", RMON_T_P256TO511 },
2382 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2383 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2384 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2385 	{ "tx_octets", RMON_T_OCTETS },
2386 
2387 	/* IEEE TX */
2388 	{ "IEEE_tx_drop", IEEE_T_DROP },
2389 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2390 	{ "IEEE_tx_1col", IEEE_T_1COL },
2391 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2392 	{ "IEEE_tx_def", IEEE_T_DEF },
2393 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2394 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2395 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2396 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2397 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2398 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2399 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2400 
2401 	/* RMON RX */
2402 	{ "rx_packets", RMON_R_PACKETS },
2403 	{ "rx_broadcast", RMON_R_BC_PKT },
2404 	{ "rx_multicast", RMON_R_MC_PKT },
2405 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2406 	{ "rx_undersize", RMON_R_UNDERSIZE },
2407 	{ "rx_oversize", RMON_R_OVERSIZE },
2408 	{ "rx_fragment", RMON_R_FRAG },
2409 	{ "rx_jabber", RMON_R_JAB },
2410 	{ "rx_64byte", RMON_R_P64 },
2411 	{ "rx_65to127byte", RMON_R_P65TO127 },
2412 	{ "rx_128to255byte", RMON_R_P128TO255 },
2413 	{ "rx_256to511byte", RMON_R_P256TO511 },
2414 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2415 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2416 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2417 	{ "rx_octets", RMON_R_OCTETS },
2418 
2419 	/* IEEE RX */
2420 	{ "IEEE_rx_drop", IEEE_R_DROP },
2421 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2422 	{ "IEEE_rx_crc", IEEE_R_CRC },
2423 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2424 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2425 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2426 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2427 };
2428 
2429 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2430 
2431 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2432 {
2433 	struct fec_enet_private *fep = netdev_priv(dev);
2434 	int i;
2435 
2436 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2437 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2438 }
2439 
2440 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2441 				       struct ethtool_stats *stats, u64 *data)
2442 {
2443 	struct fec_enet_private *fep = netdev_priv(dev);
2444 
2445 	if (netif_running(dev))
2446 		fec_enet_update_ethtool_stats(dev);
2447 
2448 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2449 }
2450 
2451 static void fec_enet_get_strings(struct net_device *netdev,
2452 	u32 stringset, u8 *data)
2453 {
2454 	int i;
2455 	switch (stringset) {
2456 	case ETH_SS_STATS:
2457 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2458 			memcpy(data + i * ETH_GSTRING_LEN,
2459 				fec_stats[i].name, ETH_GSTRING_LEN);
2460 		break;
2461 	}
2462 }
2463 
2464 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2465 {
2466 	switch (sset) {
2467 	case ETH_SS_STATS:
2468 		return ARRAY_SIZE(fec_stats);
2469 	default:
2470 		return -EOPNOTSUPP;
2471 	}
2472 }
2473 
2474 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2475 {
2476 	struct fec_enet_private *fep = netdev_priv(dev);
2477 	int i;
2478 
2479 	/* Disable MIB statistics counters */
2480 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2481 
2482 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2483 		writel(0, fep->hwp + fec_stats[i].offset);
2484 
2485 	/* Don't disable MIB statistics counters */
2486 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2487 }
2488 
2489 #else	/* !defined(CONFIG_M5272) */
2490 #define FEC_STATS_SIZE	0
2491 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2492 {
2493 }
2494 
2495 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2496 {
2497 }
2498 #endif /* !defined(CONFIG_M5272) */
2499 
2500 /* ITR clock source is enet system clock (clk_ahb).
2501  * TCTT unit is cycle_ns * 64 cycle
2502  * So, the ICTT value = X us / (cycle_ns * 64)
2503  */
2504 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2505 {
2506 	struct fec_enet_private *fep = netdev_priv(ndev);
2507 
2508 	return us * (fep->itr_clk_rate / 64000) / 1000;
2509 }
2510 
2511 /* Set threshold for interrupt coalescing */
2512 static void fec_enet_itr_coal_set(struct net_device *ndev)
2513 {
2514 	struct fec_enet_private *fep = netdev_priv(ndev);
2515 	int rx_itr, tx_itr;
2516 
2517 	/* Must be greater than zero to avoid unpredictable behavior */
2518 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2519 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2520 		return;
2521 
2522 	/* Select enet system clock as Interrupt Coalescing
2523 	 * timer Clock Source
2524 	 */
2525 	rx_itr = FEC_ITR_CLK_SEL;
2526 	tx_itr = FEC_ITR_CLK_SEL;
2527 
2528 	/* set ICFT and ICTT */
2529 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2530 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2531 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2532 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2533 
2534 	rx_itr |= FEC_ITR_EN;
2535 	tx_itr |= FEC_ITR_EN;
2536 
2537 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2538 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2539 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2540 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2541 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2542 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2543 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2544 	}
2545 }
2546 
2547 static int
2548 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2549 {
2550 	struct fec_enet_private *fep = netdev_priv(ndev);
2551 
2552 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2553 		return -EOPNOTSUPP;
2554 
2555 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2556 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2557 
2558 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2559 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2560 
2561 	return 0;
2562 }
2563 
2564 static int
2565 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2566 {
2567 	struct fec_enet_private *fep = netdev_priv(ndev);
2568 	struct device *dev = &fep->pdev->dev;
2569 	unsigned int cycle;
2570 
2571 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2572 		return -EOPNOTSUPP;
2573 
2574 	if (ec->rx_max_coalesced_frames > 255) {
2575 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2576 		return -EINVAL;
2577 	}
2578 
2579 	if (ec->tx_max_coalesced_frames > 255) {
2580 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2581 		return -EINVAL;
2582 	}
2583 
2584 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2585 	if (cycle > 0xFFFF) {
2586 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2587 		return -EINVAL;
2588 	}
2589 
2590 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2591 	if (cycle > 0xFFFF) {
2592 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2593 		return -EINVAL;
2594 	}
2595 
2596 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2597 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2598 
2599 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2600 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2601 
2602 	fec_enet_itr_coal_set(ndev);
2603 
2604 	return 0;
2605 }
2606 
2607 static void fec_enet_itr_coal_init(struct net_device *ndev)
2608 {
2609 	struct ethtool_coalesce ec;
2610 
2611 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2612 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2613 
2614 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2615 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2616 
2617 	fec_enet_set_coalesce(ndev, &ec);
2618 }
2619 
2620 static int fec_enet_get_tunable(struct net_device *netdev,
2621 				const struct ethtool_tunable *tuna,
2622 				void *data)
2623 {
2624 	struct fec_enet_private *fep = netdev_priv(netdev);
2625 	int ret = 0;
2626 
2627 	switch (tuna->id) {
2628 	case ETHTOOL_RX_COPYBREAK:
2629 		*(u32 *)data = fep->rx_copybreak;
2630 		break;
2631 	default:
2632 		ret = -EINVAL;
2633 		break;
2634 	}
2635 
2636 	return ret;
2637 }
2638 
2639 static int fec_enet_set_tunable(struct net_device *netdev,
2640 				const struct ethtool_tunable *tuna,
2641 				const void *data)
2642 {
2643 	struct fec_enet_private *fep = netdev_priv(netdev);
2644 	int ret = 0;
2645 
2646 	switch (tuna->id) {
2647 	case ETHTOOL_RX_COPYBREAK:
2648 		fep->rx_copybreak = *(u32 *)data;
2649 		break;
2650 	default:
2651 		ret = -EINVAL;
2652 		break;
2653 	}
2654 
2655 	return ret;
2656 }
2657 
2658 static void
2659 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2660 {
2661 	struct fec_enet_private *fep = netdev_priv(ndev);
2662 
2663 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2664 		wol->supported = WAKE_MAGIC;
2665 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2666 	} else {
2667 		wol->supported = wol->wolopts = 0;
2668 	}
2669 }
2670 
2671 static int
2672 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2673 {
2674 	struct fec_enet_private *fep = netdev_priv(ndev);
2675 
2676 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2677 		return -EINVAL;
2678 
2679 	if (wol->wolopts & ~WAKE_MAGIC)
2680 		return -EINVAL;
2681 
2682 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2683 	if (device_may_wakeup(&ndev->dev)) {
2684 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2685 		if (fep->irq[0] > 0)
2686 			enable_irq_wake(fep->irq[0]);
2687 	} else {
2688 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2689 		if (fep->irq[0] > 0)
2690 			disable_irq_wake(fep->irq[0]);
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 static const struct ethtool_ops fec_enet_ethtool_ops = {
2697 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2698 				     ETHTOOL_COALESCE_MAX_FRAMES,
2699 	.get_drvinfo		= fec_enet_get_drvinfo,
2700 	.get_regs_len		= fec_enet_get_regs_len,
2701 	.get_regs		= fec_enet_get_regs,
2702 	.nway_reset		= phy_ethtool_nway_reset,
2703 	.get_link		= ethtool_op_get_link,
2704 	.get_coalesce		= fec_enet_get_coalesce,
2705 	.set_coalesce		= fec_enet_set_coalesce,
2706 #ifndef CONFIG_M5272
2707 	.get_pauseparam		= fec_enet_get_pauseparam,
2708 	.set_pauseparam		= fec_enet_set_pauseparam,
2709 	.get_strings		= fec_enet_get_strings,
2710 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2711 	.get_sset_count		= fec_enet_get_sset_count,
2712 #endif
2713 	.get_ts_info		= fec_enet_get_ts_info,
2714 	.get_tunable		= fec_enet_get_tunable,
2715 	.set_tunable		= fec_enet_set_tunable,
2716 	.get_wol		= fec_enet_get_wol,
2717 	.set_wol		= fec_enet_set_wol,
2718 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2719 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2720 };
2721 
2722 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2723 {
2724 	struct fec_enet_private *fep = netdev_priv(ndev);
2725 	struct phy_device *phydev = ndev->phydev;
2726 
2727 	if (!netif_running(ndev))
2728 		return -EINVAL;
2729 
2730 	if (!phydev)
2731 		return -ENODEV;
2732 
2733 	if (fep->bufdesc_ex) {
2734 		if (cmd == SIOCSHWTSTAMP)
2735 			return fec_ptp_set(ndev, rq);
2736 		if (cmd == SIOCGHWTSTAMP)
2737 			return fec_ptp_get(ndev, rq);
2738 	}
2739 
2740 	return phy_mii_ioctl(phydev, rq, cmd);
2741 }
2742 
2743 static void fec_enet_free_buffers(struct net_device *ndev)
2744 {
2745 	struct fec_enet_private *fep = netdev_priv(ndev);
2746 	unsigned int i;
2747 	struct sk_buff *skb;
2748 	struct bufdesc	*bdp;
2749 	struct fec_enet_priv_tx_q *txq;
2750 	struct fec_enet_priv_rx_q *rxq;
2751 	unsigned int q;
2752 
2753 	for (q = 0; q < fep->num_rx_queues; q++) {
2754 		rxq = fep->rx_queue[q];
2755 		bdp = rxq->bd.base;
2756 		for (i = 0; i < rxq->bd.ring_size; i++) {
2757 			skb = rxq->rx_skbuff[i];
2758 			rxq->rx_skbuff[i] = NULL;
2759 			if (skb) {
2760 				dma_unmap_single(&fep->pdev->dev,
2761 						 fec32_to_cpu(bdp->cbd_bufaddr),
2762 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2763 						 DMA_FROM_DEVICE);
2764 				dev_kfree_skb(skb);
2765 			}
2766 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2767 		}
2768 	}
2769 
2770 	for (q = 0; q < fep->num_tx_queues; q++) {
2771 		txq = fep->tx_queue[q];
2772 		for (i = 0; i < txq->bd.ring_size; i++) {
2773 			kfree(txq->tx_bounce[i]);
2774 			txq->tx_bounce[i] = NULL;
2775 			skb = txq->tx_skbuff[i];
2776 			txq->tx_skbuff[i] = NULL;
2777 			dev_kfree_skb(skb);
2778 		}
2779 	}
2780 }
2781 
2782 static void fec_enet_free_queue(struct net_device *ndev)
2783 {
2784 	struct fec_enet_private *fep = netdev_priv(ndev);
2785 	int i;
2786 	struct fec_enet_priv_tx_q *txq;
2787 
2788 	for (i = 0; i < fep->num_tx_queues; i++)
2789 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2790 			txq = fep->tx_queue[i];
2791 			dma_free_coherent(&fep->pdev->dev,
2792 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2793 					  txq->tso_hdrs,
2794 					  txq->tso_hdrs_dma);
2795 		}
2796 
2797 	for (i = 0; i < fep->num_rx_queues; i++)
2798 		kfree(fep->rx_queue[i]);
2799 	for (i = 0; i < fep->num_tx_queues; i++)
2800 		kfree(fep->tx_queue[i]);
2801 }
2802 
2803 static int fec_enet_alloc_queue(struct net_device *ndev)
2804 {
2805 	struct fec_enet_private *fep = netdev_priv(ndev);
2806 	int i;
2807 	int ret = 0;
2808 	struct fec_enet_priv_tx_q *txq;
2809 
2810 	for (i = 0; i < fep->num_tx_queues; i++) {
2811 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2812 		if (!txq) {
2813 			ret = -ENOMEM;
2814 			goto alloc_failed;
2815 		}
2816 
2817 		fep->tx_queue[i] = txq;
2818 		txq->bd.ring_size = TX_RING_SIZE;
2819 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2820 
2821 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2822 		txq->tx_wake_threshold =
2823 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2824 
2825 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2826 					txq->bd.ring_size * TSO_HEADER_SIZE,
2827 					&txq->tso_hdrs_dma,
2828 					GFP_KERNEL);
2829 		if (!txq->tso_hdrs) {
2830 			ret = -ENOMEM;
2831 			goto alloc_failed;
2832 		}
2833 	}
2834 
2835 	for (i = 0; i < fep->num_rx_queues; i++) {
2836 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2837 					   GFP_KERNEL);
2838 		if (!fep->rx_queue[i]) {
2839 			ret = -ENOMEM;
2840 			goto alloc_failed;
2841 		}
2842 
2843 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2844 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2845 	}
2846 	return ret;
2847 
2848 alloc_failed:
2849 	fec_enet_free_queue(ndev);
2850 	return ret;
2851 }
2852 
2853 static int
2854 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2855 {
2856 	struct fec_enet_private *fep = netdev_priv(ndev);
2857 	unsigned int i;
2858 	struct sk_buff *skb;
2859 	struct bufdesc	*bdp;
2860 	struct fec_enet_priv_rx_q *rxq;
2861 
2862 	rxq = fep->rx_queue[queue];
2863 	bdp = rxq->bd.base;
2864 	for (i = 0; i < rxq->bd.ring_size; i++) {
2865 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2866 		if (!skb)
2867 			goto err_alloc;
2868 
2869 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2870 			dev_kfree_skb(skb);
2871 			goto err_alloc;
2872 		}
2873 
2874 		rxq->rx_skbuff[i] = skb;
2875 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2876 
2877 		if (fep->bufdesc_ex) {
2878 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2879 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2880 		}
2881 
2882 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2883 	}
2884 
2885 	/* Set the last buffer to wrap. */
2886 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2887 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2888 	return 0;
2889 
2890  err_alloc:
2891 	fec_enet_free_buffers(ndev);
2892 	return -ENOMEM;
2893 }
2894 
2895 static int
2896 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2897 {
2898 	struct fec_enet_private *fep = netdev_priv(ndev);
2899 	unsigned int i;
2900 	struct bufdesc  *bdp;
2901 	struct fec_enet_priv_tx_q *txq;
2902 
2903 	txq = fep->tx_queue[queue];
2904 	bdp = txq->bd.base;
2905 	for (i = 0; i < txq->bd.ring_size; i++) {
2906 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2907 		if (!txq->tx_bounce[i])
2908 			goto err_alloc;
2909 
2910 		bdp->cbd_sc = cpu_to_fec16(0);
2911 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2912 
2913 		if (fep->bufdesc_ex) {
2914 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2915 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2916 		}
2917 
2918 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2919 	}
2920 
2921 	/* Set the last buffer to wrap. */
2922 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2923 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2924 
2925 	return 0;
2926 
2927  err_alloc:
2928 	fec_enet_free_buffers(ndev);
2929 	return -ENOMEM;
2930 }
2931 
2932 static int fec_enet_alloc_buffers(struct net_device *ndev)
2933 {
2934 	struct fec_enet_private *fep = netdev_priv(ndev);
2935 	unsigned int i;
2936 
2937 	for (i = 0; i < fep->num_rx_queues; i++)
2938 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2939 			return -ENOMEM;
2940 
2941 	for (i = 0; i < fep->num_tx_queues; i++)
2942 		if (fec_enet_alloc_txq_buffers(ndev, i))
2943 			return -ENOMEM;
2944 	return 0;
2945 }
2946 
2947 static int
2948 fec_enet_open(struct net_device *ndev)
2949 {
2950 	struct fec_enet_private *fep = netdev_priv(ndev);
2951 	int ret;
2952 	bool reset_again;
2953 
2954 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2955 	if (ret < 0)
2956 		return ret;
2957 
2958 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2959 	ret = fec_enet_clk_enable(ndev, true);
2960 	if (ret)
2961 		goto clk_enable;
2962 
2963 	/* During the first fec_enet_open call the PHY isn't probed at this
2964 	 * point. Therefore the phy_reset_after_clk_enable() call within
2965 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2966 	 * sure the PHY is working correctly we check if we need to reset again
2967 	 * later when the PHY is probed
2968 	 */
2969 	if (ndev->phydev && ndev->phydev->drv)
2970 		reset_again = false;
2971 	else
2972 		reset_again = true;
2973 
2974 	/* I should reset the ring buffers here, but I don't yet know
2975 	 * a simple way to do that.
2976 	 */
2977 
2978 	ret = fec_enet_alloc_buffers(ndev);
2979 	if (ret)
2980 		goto err_enet_alloc;
2981 
2982 	/* Init MAC prior to mii bus probe */
2983 	fec_restart(ndev);
2984 
2985 	/* Probe and connect to PHY when open the interface */
2986 	ret = fec_enet_mii_probe(ndev);
2987 	if (ret)
2988 		goto err_enet_mii_probe;
2989 
2990 	/* Call phy_reset_after_clk_enable() again if it failed during
2991 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2992 	 */
2993 	if (reset_again)
2994 		phy_reset_after_clk_enable(ndev->phydev);
2995 
2996 	if (fep->quirks & FEC_QUIRK_ERR006687)
2997 		imx6q_cpuidle_fec_irqs_used();
2998 
2999 	napi_enable(&fep->napi);
3000 	phy_start(ndev->phydev);
3001 	netif_tx_start_all_queues(ndev);
3002 
3003 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3004 				 FEC_WOL_FLAG_ENABLE);
3005 
3006 	return 0;
3007 
3008 err_enet_mii_probe:
3009 	fec_enet_free_buffers(ndev);
3010 err_enet_alloc:
3011 	fec_enet_clk_enable(ndev, false);
3012 clk_enable:
3013 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3014 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3015 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3016 	return ret;
3017 }
3018 
3019 static int
3020 fec_enet_close(struct net_device *ndev)
3021 {
3022 	struct fec_enet_private *fep = netdev_priv(ndev);
3023 
3024 	phy_stop(ndev->phydev);
3025 
3026 	if (netif_device_present(ndev)) {
3027 		napi_disable(&fep->napi);
3028 		netif_tx_disable(ndev);
3029 		fec_stop(ndev);
3030 	}
3031 
3032 	phy_disconnect(ndev->phydev);
3033 
3034 	if (fep->quirks & FEC_QUIRK_ERR006687)
3035 		imx6q_cpuidle_fec_irqs_unused();
3036 
3037 	fec_enet_update_ethtool_stats(ndev);
3038 
3039 	fec_enet_clk_enable(ndev, false);
3040 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3041 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3042 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3043 
3044 	fec_enet_free_buffers(ndev);
3045 
3046 	return 0;
3047 }
3048 
3049 /* Set or clear the multicast filter for this adaptor.
3050  * Skeleton taken from sunlance driver.
3051  * The CPM Ethernet implementation allows Multicast as well as individual
3052  * MAC address filtering.  Some of the drivers check to make sure it is
3053  * a group multicast address, and discard those that are not.  I guess I
3054  * will do the same for now, but just remove the test if you want
3055  * individual filtering as well (do the upper net layers want or support
3056  * this kind of feature?).
3057  */
3058 
3059 #define FEC_HASH_BITS	6		/* #bits in hash */
3060 
3061 static void set_multicast_list(struct net_device *ndev)
3062 {
3063 	struct fec_enet_private *fep = netdev_priv(ndev);
3064 	struct netdev_hw_addr *ha;
3065 	unsigned int crc, tmp;
3066 	unsigned char hash;
3067 	unsigned int hash_high = 0, hash_low = 0;
3068 
3069 	if (ndev->flags & IFF_PROMISC) {
3070 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3071 		tmp |= 0x8;
3072 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3073 		return;
3074 	}
3075 
3076 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3077 	tmp &= ~0x8;
3078 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3079 
3080 	if (ndev->flags & IFF_ALLMULTI) {
3081 		/* Catch all multicast addresses, so set the
3082 		 * filter to all 1's
3083 		 */
3084 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3085 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3086 
3087 		return;
3088 	}
3089 
3090 	/* Add the addresses in hash register */
3091 	netdev_for_each_mc_addr(ha, ndev) {
3092 		/* calculate crc32 value of mac address */
3093 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3094 
3095 		/* only upper 6 bits (FEC_HASH_BITS) are used
3096 		 * which point to specific bit in the hash registers
3097 		 */
3098 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3099 
3100 		if (hash > 31)
3101 			hash_high |= 1 << (hash - 32);
3102 		else
3103 			hash_low |= 1 << hash;
3104 	}
3105 
3106 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3107 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3108 }
3109 
3110 /* Set a MAC change in hardware. */
3111 static int
3112 fec_set_mac_address(struct net_device *ndev, void *p)
3113 {
3114 	struct fec_enet_private *fep = netdev_priv(ndev);
3115 	struct sockaddr *addr = p;
3116 
3117 	if (addr) {
3118 		if (!is_valid_ether_addr(addr->sa_data))
3119 			return -EADDRNOTAVAIL;
3120 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3121 	}
3122 
3123 	/* Add netif status check here to avoid system hang in below case:
3124 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3125 	 * After ethx down, fec all clocks are gated off and then register
3126 	 * access causes system hang.
3127 	 */
3128 	if (!netif_running(ndev))
3129 		return 0;
3130 
3131 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3132 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3133 		fep->hwp + FEC_ADDR_LOW);
3134 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3135 		fep->hwp + FEC_ADDR_HIGH);
3136 	return 0;
3137 }
3138 
3139 #ifdef CONFIG_NET_POLL_CONTROLLER
3140 /**
3141  * fec_poll_controller - FEC Poll controller function
3142  * @dev: The FEC network adapter
3143  *
3144  * Polled functionality used by netconsole and others in non interrupt mode
3145  *
3146  */
3147 static void fec_poll_controller(struct net_device *dev)
3148 {
3149 	int i;
3150 	struct fec_enet_private *fep = netdev_priv(dev);
3151 
3152 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3153 		if (fep->irq[i] > 0) {
3154 			disable_irq(fep->irq[i]);
3155 			fec_enet_interrupt(fep->irq[i], dev);
3156 			enable_irq(fep->irq[i]);
3157 		}
3158 	}
3159 }
3160 #endif
3161 
3162 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3163 	netdev_features_t features)
3164 {
3165 	struct fec_enet_private *fep = netdev_priv(netdev);
3166 	netdev_features_t changed = features ^ netdev->features;
3167 
3168 	netdev->features = features;
3169 
3170 	/* Receive checksum has been changed */
3171 	if (changed & NETIF_F_RXCSUM) {
3172 		if (features & NETIF_F_RXCSUM)
3173 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3174 		else
3175 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3176 	}
3177 }
3178 
3179 static int fec_set_features(struct net_device *netdev,
3180 	netdev_features_t features)
3181 {
3182 	struct fec_enet_private *fep = netdev_priv(netdev);
3183 	netdev_features_t changed = features ^ netdev->features;
3184 
3185 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3186 		napi_disable(&fep->napi);
3187 		netif_tx_lock_bh(netdev);
3188 		fec_stop(netdev);
3189 		fec_enet_set_netdev_features(netdev, features);
3190 		fec_restart(netdev);
3191 		netif_tx_wake_all_queues(netdev);
3192 		netif_tx_unlock_bh(netdev);
3193 		napi_enable(&fep->napi);
3194 	} else {
3195 		fec_enet_set_netdev_features(netdev, features);
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 static const struct net_device_ops fec_netdev_ops = {
3202 	.ndo_open		= fec_enet_open,
3203 	.ndo_stop		= fec_enet_close,
3204 	.ndo_start_xmit		= fec_enet_start_xmit,
3205 	.ndo_set_rx_mode	= set_multicast_list,
3206 	.ndo_validate_addr	= eth_validate_addr,
3207 	.ndo_tx_timeout		= fec_timeout,
3208 	.ndo_set_mac_address	= fec_set_mac_address,
3209 	.ndo_do_ioctl		= fec_enet_ioctl,
3210 #ifdef CONFIG_NET_POLL_CONTROLLER
3211 	.ndo_poll_controller	= fec_poll_controller,
3212 #endif
3213 	.ndo_set_features	= fec_set_features,
3214 };
3215 
3216 static const unsigned short offset_des_active_rxq[] = {
3217 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3218 };
3219 
3220 static const unsigned short offset_des_active_txq[] = {
3221 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3222 };
3223 
3224  /*
3225   * XXX:  We need to clean up on failure exits here.
3226   *
3227   */
3228 static int fec_enet_init(struct net_device *ndev)
3229 {
3230 	struct fec_enet_private *fep = netdev_priv(ndev);
3231 	struct bufdesc *cbd_base;
3232 	dma_addr_t bd_dma;
3233 	int bd_size;
3234 	unsigned int i;
3235 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3236 			sizeof(struct bufdesc);
3237 	unsigned dsize_log2 = __fls(dsize);
3238 	int ret;
3239 
3240 	WARN_ON(dsize != (1 << dsize_log2));
3241 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3242 	fep->rx_align = 0xf;
3243 	fep->tx_align = 0xf;
3244 #else
3245 	fep->rx_align = 0x3;
3246 	fep->tx_align = 0x3;
3247 #endif
3248 
3249 	/* Check mask of the streaming and coherent API */
3250 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3251 	if (ret < 0) {
3252 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3253 		return ret;
3254 	}
3255 
3256 	fec_enet_alloc_queue(ndev);
3257 
3258 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3259 
3260 	/* Allocate memory for buffer descriptors. */
3261 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3262 				       GFP_KERNEL);
3263 	if (!cbd_base) {
3264 		return -ENOMEM;
3265 	}
3266 
3267 	/* Get the Ethernet address */
3268 	fec_get_mac(ndev);
3269 	/* make sure MAC we just acquired is programmed into the hw */
3270 	fec_set_mac_address(ndev, NULL);
3271 
3272 	/* Set receive and transmit descriptor base. */
3273 	for (i = 0; i < fep->num_rx_queues; i++) {
3274 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3275 		unsigned size = dsize * rxq->bd.ring_size;
3276 
3277 		rxq->bd.qid = i;
3278 		rxq->bd.base = cbd_base;
3279 		rxq->bd.cur = cbd_base;
3280 		rxq->bd.dma = bd_dma;
3281 		rxq->bd.dsize = dsize;
3282 		rxq->bd.dsize_log2 = dsize_log2;
3283 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3284 		bd_dma += size;
3285 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3286 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3287 	}
3288 
3289 	for (i = 0; i < fep->num_tx_queues; i++) {
3290 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3291 		unsigned size = dsize * txq->bd.ring_size;
3292 
3293 		txq->bd.qid = i;
3294 		txq->bd.base = cbd_base;
3295 		txq->bd.cur = cbd_base;
3296 		txq->bd.dma = bd_dma;
3297 		txq->bd.dsize = dsize;
3298 		txq->bd.dsize_log2 = dsize_log2;
3299 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3300 		bd_dma += size;
3301 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3302 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3303 	}
3304 
3305 
3306 	/* The FEC Ethernet specific entries in the device structure */
3307 	ndev->watchdog_timeo = TX_TIMEOUT;
3308 	ndev->netdev_ops = &fec_netdev_ops;
3309 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3310 
3311 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3312 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3313 
3314 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3315 		/* enable hw VLAN support */
3316 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3317 
3318 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3319 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3320 
3321 		/* enable hw accelerator */
3322 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3323 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3324 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3325 	}
3326 
3327 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3328 		fep->tx_align = 0;
3329 		fep->rx_align = 0x3f;
3330 	}
3331 
3332 	ndev->hw_features = ndev->features;
3333 
3334 	fec_restart(ndev);
3335 
3336 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3337 		fec_enet_clear_ethtool_stats(ndev);
3338 	else
3339 		fec_enet_update_ethtool_stats(ndev);
3340 
3341 	return 0;
3342 }
3343 
3344 #ifdef CONFIG_OF
3345 static int fec_reset_phy(struct platform_device *pdev)
3346 {
3347 	int err, phy_reset;
3348 	bool active_high = false;
3349 	int msec = 1, phy_post_delay = 0;
3350 	struct device_node *np = pdev->dev.of_node;
3351 
3352 	if (!np)
3353 		return 0;
3354 
3355 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3356 	/* A sane reset duration should not be longer than 1s */
3357 	if (!err && msec > 1000)
3358 		msec = 1;
3359 
3360 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3361 	if (phy_reset == -EPROBE_DEFER)
3362 		return phy_reset;
3363 	else if (!gpio_is_valid(phy_reset))
3364 		return 0;
3365 
3366 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3367 	/* valid reset duration should be less than 1s */
3368 	if (!err && phy_post_delay > 1000)
3369 		return -EINVAL;
3370 
3371 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3372 
3373 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3374 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3375 			"phy-reset");
3376 	if (err) {
3377 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3378 		return err;
3379 	}
3380 
3381 	if (msec > 20)
3382 		msleep(msec);
3383 	else
3384 		usleep_range(msec * 1000, msec * 1000 + 1000);
3385 
3386 	gpio_set_value_cansleep(phy_reset, !active_high);
3387 
3388 	if (!phy_post_delay)
3389 		return 0;
3390 
3391 	if (phy_post_delay > 20)
3392 		msleep(phy_post_delay);
3393 	else
3394 		usleep_range(phy_post_delay * 1000,
3395 			     phy_post_delay * 1000 + 1000);
3396 
3397 	return 0;
3398 }
3399 #else /* CONFIG_OF */
3400 static int fec_reset_phy(struct platform_device *pdev)
3401 {
3402 	/*
3403 	 * In case of platform probe, the reset has been done
3404 	 * by machine code.
3405 	 */
3406 	return 0;
3407 }
3408 #endif /* CONFIG_OF */
3409 
3410 static void
3411 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3412 {
3413 	struct device_node *np = pdev->dev.of_node;
3414 
3415 	*num_tx = *num_rx = 1;
3416 
3417 	if (!np || !of_device_is_available(np))
3418 		return;
3419 
3420 	/* parse the num of tx and rx queues */
3421 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3422 
3423 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3424 
3425 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3426 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3427 			 *num_tx);
3428 		*num_tx = 1;
3429 		return;
3430 	}
3431 
3432 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3433 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3434 			 *num_rx);
3435 		*num_rx = 1;
3436 		return;
3437 	}
3438 
3439 }
3440 
3441 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3442 {
3443 	int irq_cnt = platform_irq_count(pdev);
3444 
3445 	if (irq_cnt > FEC_IRQ_NUM)
3446 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3447 	else if (irq_cnt == 2)
3448 		irq_cnt = 1;	/* last for pps */
3449 	else if (irq_cnt <= 0)
3450 		irq_cnt = 1;	/* At least 1 irq is needed */
3451 	return irq_cnt;
3452 }
3453 
3454 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3455 				   struct fec_devinfo *dev_info,
3456 				   struct device_node *np)
3457 {
3458 	struct device_node *gpr_np;
3459 	int ret = 0;
3460 
3461 	if (!dev_info)
3462 		return 0;
3463 
3464 	gpr_np = of_parse_phandle(np, "gpr", 0);
3465 	if (!gpr_np)
3466 		return 0;
3467 
3468 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3469 	if (IS_ERR(fep->stop_gpr.gpr)) {
3470 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3471 		ret = PTR_ERR(fep->stop_gpr.gpr);
3472 		fep->stop_gpr.gpr = NULL;
3473 		goto out;
3474 	}
3475 
3476 	fep->stop_gpr.reg = dev_info->stop_gpr_reg;
3477 	fep->stop_gpr.bit = dev_info->stop_gpr_bit;
3478 
3479 out:
3480 	of_node_put(gpr_np);
3481 
3482 	return ret;
3483 }
3484 
3485 static int
3486 fec_probe(struct platform_device *pdev)
3487 {
3488 	struct fec_enet_private *fep;
3489 	struct fec_platform_data *pdata;
3490 	phy_interface_t interface;
3491 	struct net_device *ndev;
3492 	int i, irq, ret = 0;
3493 	const struct of_device_id *of_id;
3494 	static int dev_id;
3495 	struct device_node *np = pdev->dev.of_node, *phy_node;
3496 	int num_tx_qs;
3497 	int num_rx_qs;
3498 	char irq_name[8];
3499 	int irq_cnt;
3500 	struct fec_devinfo *dev_info;
3501 
3502 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3503 
3504 	/* Init network device */
3505 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3506 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3507 	if (!ndev)
3508 		return -ENOMEM;
3509 
3510 	SET_NETDEV_DEV(ndev, &pdev->dev);
3511 
3512 	/* setup board info structure */
3513 	fep = netdev_priv(ndev);
3514 
3515 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3516 	if (of_id)
3517 		pdev->id_entry = of_id->data;
3518 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3519 	if (dev_info)
3520 		fep->quirks = dev_info->quirks;
3521 
3522 	fep->netdev = ndev;
3523 	fep->num_rx_queues = num_rx_qs;
3524 	fep->num_tx_queues = num_tx_qs;
3525 
3526 #if !defined(CONFIG_M5272)
3527 	/* default enable pause frame auto negotiation */
3528 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3529 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3530 #endif
3531 
3532 	/* Select default pin state */
3533 	pinctrl_pm_select_default_state(&pdev->dev);
3534 
3535 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3536 	if (IS_ERR(fep->hwp)) {
3537 		ret = PTR_ERR(fep->hwp);
3538 		goto failed_ioremap;
3539 	}
3540 
3541 	fep->pdev = pdev;
3542 	fep->dev_id = dev_id++;
3543 
3544 	platform_set_drvdata(pdev, ndev);
3545 
3546 	if ((of_machine_is_compatible("fsl,imx6q") ||
3547 	     of_machine_is_compatible("fsl,imx6dl")) &&
3548 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3549 		fep->quirks |= FEC_QUIRK_ERR006687;
3550 
3551 	if (of_get_property(np, "fsl,magic-packet", NULL))
3552 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3553 
3554 	ret = fec_enet_init_stop_mode(fep, dev_info, np);
3555 	if (ret)
3556 		goto failed_stop_mode;
3557 
3558 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3559 	if (!phy_node && of_phy_is_fixed_link(np)) {
3560 		ret = of_phy_register_fixed_link(np);
3561 		if (ret < 0) {
3562 			dev_err(&pdev->dev,
3563 				"broken fixed-link specification\n");
3564 			goto failed_phy;
3565 		}
3566 		phy_node = of_node_get(np);
3567 	}
3568 	fep->phy_node = phy_node;
3569 
3570 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3571 	if (ret) {
3572 		pdata = dev_get_platdata(&pdev->dev);
3573 		if (pdata)
3574 			fep->phy_interface = pdata->phy;
3575 		else
3576 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3577 	} else {
3578 		fep->phy_interface = interface;
3579 	}
3580 
3581 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3582 	if (IS_ERR(fep->clk_ipg)) {
3583 		ret = PTR_ERR(fep->clk_ipg);
3584 		goto failed_clk;
3585 	}
3586 
3587 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3588 	if (IS_ERR(fep->clk_ahb)) {
3589 		ret = PTR_ERR(fep->clk_ahb);
3590 		goto failed_clk;
3591 	}
3592 
3593 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3594 
3595 	/* enet_out is optional, depends on board */
3596 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3597 	if (IS_ERR(fep->clk_enet_out))
3598 		fep->clk_enet_out = NULL;
3599 
3600 	fep->ptp_clk_on = false;
3601 	mutex_init(&fep->ptp_clk_mutex);
3602 
3603 	/* clk_ref is optional, depends on board */
3604 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3605 	if (IS_ERR(fep->clk_ref))
3606 		fep->clk_ref = NULL;
3607 
3608 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3609 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3610 	if (IS_ERR(fep->clk_ptp)) {
3611 		fep->clk_ptp = NULL;
3612 		fep->bufdesc_ex = false;
3613 	}
3614 
3615 	ret = fec_enet_clk_enable(ndev, true);
3616 	if (ret)
3617 		goto failed_clk;
3618 
3619 	ret = clk_prepare_enable(fep->clk_ipg);
3620 	if (ret)
3621 		goto failed_clk_ipg;
3622 	ret = clk_prepare_enable(fep->clk_ahb);
3623 	if (ret)
3624 		goto failed_clk_ahb;
3625 
3626 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3627 	if (!IS_ERR(fep->reg_phy)) {
3628 		ret = regulator_enable(fep->reg_phy);
3629 		if (ret) {
3630 			dev_err(&pdev->dev,
3631 				"Failed to enable phy regulator: %d\n", ret);
3632 			goto failed_regulator;
3633 		}
3634 	} else {
3635 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3636 			ret = -EPROBE_DEFER;
3637 			goto failed_regulator;
3638 		}
3639 		fep->reg_phy = NULL;
3640 	}
3641 
3642 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3643 	pm_runtime_use_autosuspend(&pdev->dev);
3644 	pm_runtime_get_noresume(&pdev->dev);
3645 	pm_runtime_set_active(&pdev->dev);
3646 	pm_runtime_enable(&pdev->dev);
3647 
3648 	ret = fec_reset_phy(pdev);
3649 	if (ret)
3650 		goto failed_reset;
3651 
3652 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3653 	if (fep->bufdesc_ex)
3654 		fec_ptp_init(pdev, irq_cnt);
3655 
3656 	ret = fec_enet_init(ndev);
3657 	if (ret)
3658 		goto failed_init;
3659 
3660 	for (i = 0; i < irq_cnt; i++) {
3661 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3662 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3663 		if (irq < 0)
3664 			irq = platform_get_irq(pdev, i);
3665 		if (irq < 0) {
3666 			ret = irq;
3667 			goto failed_irq;
3668 		}
3669 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3670 				       0, pdev->name, ndev);
3671 		if (ret)
3672 			goto failed_irq;
3673 
3674 		fep->irq[i] = irq;
3675 	}
3676 
3677 	init_completion(&fep->mdio_done);
3678 	ret = fec_enet_mii_init(pdev);
3679 	if (ret)
3680 		goto failed_mii_init;
3681 
3682 	/* Carrier starts down, phylib will bring it up */
3683 	netif_carrier_off(ndev);
3684 	fec_enet_clk_enable(ndev, false);
3685 	pinctrl_pm_select_sleep_state(&pdev->dev);
3686 
3687 	ret = register_netdev(ndev);
3688 	if (ret)
3689 		goto failed_register;
3690 
3691 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3692 			   FEC_WOL_HAS_MAGIC_PACKET);
3693 
3694 	if (fep->bufdesc_ex && fep->ptp_clock)
3695 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3696 
3697 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3698 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3699 
3700 	pm_runtime_mark_last_busy(&pdev->dev);
3701 	pm_runtime_put_autosuspend(&pdev->dev);
3702 
3703 	return 0;
3704 
3705 failed_register:
3706 	fec_enet_mii_remove(fep);
3707 failed_mii_init:
3708 failed_irq:
3709 failed_init:
3710 	fec_ptp_stop(pdev);
3711 	if (fep->reg_phy)
3712 		regulator_disable(fep->reg_phy);
3713 failed_reset:
3714 	pm_runtime_put_noidle(&pdev->dev);
3715 	pm_runtime_disable(&pdev->dev);
3716 failed_regulator:
3717 	clk_disable_unprepare(fep->clk_ahb);
3718 failed_clk_ahb:
3719 	clk_disable_unprepare(fep->clk_ipg);
3720 failed_clk_ipg:
3721 	fec_enet_clk_enable(ndev, false);
3722 failed_clk:
3723 	if (of_phy_is_fixed_link(np))
3724 		of_phy_deregister_fixed_link(np);
3725 	of_node_put(phy_node);
3726 failed_stop_mode:
3727 failed_phy:
3728 	dev_id--;
3729 failed_ioremap:
3730 	free_netdev(ndev);
3731 
3732 	return ret;
3733 }
3734 
3735 static int
3736 fec_drv_remove(struct platform_device *pdev)
3737 {
3738 	struct net_device *ndev = platform_get_drvdata(pdev);
3739 	struct fec_enet_private *fep = netdev_priv(ndev);
3740 	struct device_node *np = pdev->dev.of_node;
3741 	int ret;
3742 
3743 	ret = pm_runtime_get_sync(&pdev->dev);
3744 	if (ret < 0)
3745 		return ret;
3746 
3747 	cancel_work_sync(&fep->tx_timeout_work);
3748 	fec_ptp_stop(pdev);
3749 	unregister_netdev(ndev);
3750 	fec_enet_mii_remove(fep);
3751 	if (fep->reg_phy)
3752 		regulator_disable(fep->reg_phy);
3753 
3754 	if (of_phy_is_fixed_link(np))
3755 		of_phy_deregister_fixed_link(np);
3756 	of_node_put(fep->phy_node);
3757 	free_netdev(ndev);
3758 
3759 	clk_disable_unprepare(fep->clk_ahb);
3760 	clk_disable_unprepare(fep->clk_ipg);
3761 	pm_runtime_put_noidle(&pdev->dev);
3762 	pm_runtime_disable(&pdev->dev);
3763 
3764 	return 0;
3765 }
3766 
3767 static int __maybe_unused fec_suspend(struct device *dev)
3768 {
3769 	struct net_device *ndev = dev_get_drvdata(dev);
3770 	struct fec_enet_private *fep = netdev_priv(ndev);
3771 
3772 	rtnl_lock();
3773 	if (netif_running(ndev)) {
3774 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3775 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3776 		phy_stop(ndev->phydev);
3777 		napi_disable(&fep->napi);
3778 		netif_tx_lock_bh(ndev);
3779 		netif_device_detach(ndev);
3780 		netif_tx_unlock_bh(ndev);
3781 		fec_stop(ndev);
3782 		fec_enet_clk_enable(ndev, false);
3783 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3784 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3785 	}
3786 	rtnl_unlock();
3787 
3788 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3789 		regulator_disable(fep->reg_phy);
3790 
3791 	/* SOC supply clock to phy, when clock is disabled, phy link down
3792 	 * SOC control phy regulator, when regulator is disabled, phy link down
3793 	 */
3794 	if (fep->clk_enet_out || fep->reg_phy)
3795 		fep->link = 0;
3796 
3797 	return 0;
3798 }
3799 
3800 static int __maybe_unused fec_resume(struct device *dev)
3801 {
3802 	struct net_device *ndev = dev_get_drvdata(dev);
3803 	struct fec_enet_private *fep = netdev_priv(ndev);
3804 	int ret;
3805 	int val;
3806 
3807 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3808 		ret = regulator_enable(fep->reg_phy);
3809 		if (ret)
3810 			return ret;
3811 	}
3812 
3813 	rtnl_lock();
3814 	if (netif_running(ndev)) {
3815 		ret = fec_enet_clk_enable(ndev, true);
3816 		if (ret) {
3817 			rtnl_unlock();
3818 			goto failed_clk;
3819 		}
3820 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3821 			fec_enet_stop_mode(fep, false);
3822 
3823 			val = readl(fep->hwp + FEC_ECNTRL);
3824 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3825 			writel(val, fep->hwp + FEC_ECNTRL);
3826 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3827 		} else {
3828 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3829 		}
3830 		fec_restart(ndev);
3831 		netif_tx_lock_bh(ndev);
3832 		netif_device_attach(ndev);
3833 		netif_tx_unlock_bh(ndev);
3834 		napi_enable(&fep->napi);
3835 		phy_start(ndev->phydev);
3836 	}
3837 	rtnl_unlock();
3838 
3839 	return 0;
3840 
3841 failed_clk:
3842 	if (fep->reg_phy)
3843 		regulator_disable(fep->reg_phy);
3844 	return ret;
3845 }
3846 
3847 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3848 {
3849 	struct net_device *ndev = dev_get_drvdata(dev);
3850 	struct fec_enet_private *fep = netdev_priv(ndev);
3851 
3852 	clk_disable_unprepare(fep->clk_ahb);
3853 	clk_disable_unprepare(fep->clk_ipg);
3854 
3855 	return 0;
3856 }
3857 
3858 static int __maybe_unused fec_runtime_resume(struct device *dev)
3859 {
3860 	struct net_device *ndev = dev_get_drvdata(dev);
3861 	struct fec_enet_private *fep = netdev_priv(ndev);
3862 	int ret;
3863 
3864 	ret = clk_prepare_enable(fep->clk_ahb);
3865 	if (ret)
3866 		return ret;
3867 	ret = clk_prepare_enable(fep->clk_ipg);
3868 	if (ret)
3869 		goto failed_clk_ipg;
3870 
3871 	return 0;
3872 
3873 failed_clk_ipg:
3874 	clk_disable_unprepare(fep->clk_ahb);
3875 	return ret;
3876 }
3877 
3878 static const struct dev_pm_ops fec_pm_ops = {
3879 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3880 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3881 };
3882 
3883 static struct platform_driver fec_driver = {
3884 	.driver	= {
3885 		.name	= DRIVER_NAME,
3886 		.pm	= &fec_pm_ops,
3887 		.of_match_table = fec_dt_ids,
3888 		.suppress_bind_attrs = true,
3889 	},
3890 	.id_table = fec_devtype,
3891 	.probe	= fec_probe,
3892 	.remove	= fec_drv_remove,
3893 };
3894 
3895 module_platform_driver(fec_driver);
3896 
3897 MODULE_ALIAS("platform:"DRIVER_NAME);
3898 MODULE_LICENSE("GPL");
3899