1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 
70 #include <asm/cacheflush.h>
71 
72 #include "fec.h"
73 
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76 
77 #define DRIVER_NAME	"fec"
78 
79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
80 
81 /* Pause frame feild and FIFO threshold */
82 #define FEC_ENET_FCE	(1 << 5)
83 #define FEC_ENET_RSEM_V	0x84
84 #define FEC_ENET_RSFL_V	16
85 #define FEC_ENET_RAEM_V	0x8
86 #define FEC_ENET_RAFL_V	0x8
87 #define FEC_ENET_OPD_V	0xFFF0
88 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
89 
90 struct fec_devinfo {
91 	u32 quirks;
92 };
93 
94 static const struct fec_devinfo fec_imx25_info = {
95 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
96 		  FEC_QUIRK_HAS_FRREG,
97 };
98 
99 static const struct fec_devinfo fec_imx27_info = {
100 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
101 };
102 
103 static const struct fec_devinfo fec_imx28_info = {
104 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
105 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
107 		  FEC_QUIRK_NO_HARD_RESET,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
115 };
116 
117 static const struct fec_devinfo fec_mvf600_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
119 };
120 
121 static const struct fec_devinfo fec_imx6x_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
125 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
126 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
127 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
128 };
129 
130 static const struct fec_devinfo fec_imx6ul_info = {
131 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
132 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
133 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
134 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
135 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
136 };
137 
138 static struct platform_device_id fec_devtype[] = {
139 	{
140 		/* keep it for coldfire */
141 		.name = DRIVER_NAME,
142 		.driver_data = 0,
143 	}, {
144 		.name = "imx25-fec",
145 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
146 	}, {
147 		.name = "imx27-fec",
148 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
149 	}, {
150 		.name = "imx28-fec",
151 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
152 	}, {
153 		.name = "imx6q-fec",
154 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
155 	}, {
156 		.name = "mvf600-fec",
157 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
158 	}, {
159 		.name = "imx6sx-fec",
160 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
161 	}, {
162 		.name = "imx6ul-fec",
163 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
164 	}, {
165 		/* sentinel */
166 	}
167 };
168 MODULE_DEVICE_TABLE(platform, fec_devtype);
169 
170 enum imx_fec_type {
171 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
172 	IMX27_FEC,	/* runs on i.mx27/35/51 */
173 	IMX28_FEC,
174 	IMX6Q_FEC,
175 	MVF600_FEC,
176 	IMX6SX_FEC,
177 	IMX6UL_FEC,
178 };
179 
180 static const struct of_device_id fec_dt_ids[] = {
181 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
182 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
183 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
184 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
185 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
186 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
187 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
188 	{ /* sentinel */ }
189 };
190 MODULE_DEVICE_TABLE(of, fec_dt_ids);
191 
192 static unsigned char macaddr[ETH_ALEN];
193 module_param_array(macaddr, byte, NULL, 0);
194 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
195 
196 #if defined(CONFIG_M5272)
197 /*
198  * Some hardware gets it MAC address out of local flash memory.
199  * if this is non-zero then assume it is the address to get MAC from.
200  */
201 #if defined(CONFIG_NETtel)
202 #define	FEC_FLASHMAC	0xf0006006
203 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
204 #define	FEC_FLASHMAC	0xf0006000
205 #elif defined(CONFIG_CANCam)
206 #define	FEC_FLASHMAC	0xf0020000
207 #elif defined (CONFIG_M5272C3)
208 #define	FEC_FLASHMAC	(0xffe04000 + 4)
209 #elif defined(CONFIG_MOD5272)
210 #define FEC_FLASHMAC	0xffc0406b
211 #else
212 #define	FEC_FLASHMAC	0
213 #endif
214 #endif /* CONFIG_M5272 */
215 
216 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
217  *
218  * 2048 byte skbufs are allocated. However, alignment requirements
219  * varies between FEC variants. Worst case is 64, so round down by 64.
220  */
221 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
222 #define PKT_MINBUF_SIZE		64
223 
224 /* FEC receive acceleration */
225 #define FEC_RACC_IPDIS		(1 << 1)
226 #define FEC_RACC_PRODIS		(1 << 2)
227 #define FEC_RACC_SHIFT16	BIT(7)
228 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
229 
230 /* MIB Control Register */
231 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
232 
233 /*
234  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
235  * size bits. Other FEC hardware does not, so we need to take that into
236  * account when setting it.
237  */
238 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
239     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
240     defined(CONFIG_ARM64)
241 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
242 #else
243 #define	OPT_FRAME_SIZE	0
244 #endif
245 
246 /* FEC MII MMFR bits definition */
247 #define FEC_MMFR_ST		(1 << 30)
248 #define FEC_MMFR_ST_C45		(0)
249 #define FEC_MMFR_OP_READ	(2 << 28)
250 #define FEC_MMFR_OP_READ_C45	(3 << 28)
251 #define FEC_MMFR_OP_WRITE	(1 << 28)
252 #define FEC_MMFR_OP_ADDR_WRITE	(0)
253 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
254 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
255 #define FEC_MMFR_TA		(2 << 16)
256 #define FEC_MMFR_DATA(v)	(v & 0xffff)
257 /* FEC ECR bits definition */
258 #define FEC_ECR_MAGICEN		(1 << 2)
259 #define FEC_ECR_SLEEP		(1 << 3)
260 
261 #define FEC_MII_TIMEOUT		30000 /* us */
262 
263 /* Transmitter timeout */
264 #define TX_TIMEOUT (2 * HZ)
265 
266 #define FEC_PAUSE_FLAG_AUTONEG	0x1
267 #define FEC_PAUSE_FLAG_ENABLE	0x2
268 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
269 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
270 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
271 
272 #define COPYBREAK_DEFAULT	256
273 
274 /* Max number of allowed TCP segments for software TSO */
275 #define FEC_MAX_TSO_SEGS	100
276 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
277 
278 #define IS_TSO_HEADER(txq, addr) \
279 	((addr >= txq->tso_hdrs_dma) && \
280 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
281 
282 static int mii_cnt;
283 
284 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
285 					     struct bufdesc_prop *bd)
286 {
287 	return (bdp >= bd->last) ? bd->base
288 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
289 }
290 
291 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
292 					     struct bufdesc_prop *bd)
293 {
294 	return (bdp <= bd->base) ? bd->last
295 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
296 }
297 
298 static int fec_enet_get_bd_index(struct bufdesc *bdp,
299 				 struct bufdesc_prop *bd)
300 {
301 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
302 }
303 
304 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
305 {
306 	int entries;
307 
308 	entries = (((const char *)txq->dirty_tx -
309 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
310 
311 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
312 }
313 
314 static void swap_buffer(void *bufaddr, int len)
315 {
316 	int i;
317 	unsigned int *buf = bufaddr;
318 
319 	for (i = 0; i < len; i += 4, buf++)
320 		swab32s(buf);
321 }
322 
323 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
324 {
325 	int i;
326 	unsigned int *src = src_buf;
327 	unsigned int *dst = dst_buf;
328 
329 	for (i = 0; i < len; i += 4, src++, dst++)
330 		*dst = swab32p(src);
331 }
332 
333 static void fec_dump(struct net_device *ndev)
334 {
335 	struct fec_enet_private *fep = netdev_priv(ndev);
336 	struct bufdesc *bdp;
337 	struct fec_enet_priv_tx_q *txq;
338 	int index = 0;
339 
340 	netdev_info(ndev, "TX ring dump\n");
341 	pr_info("Nr     SC     addr       len  SKB\n");
342 
343 	txq = fep->tx_queue[0];
344 	bdp = txq->bd.base;
345 
346 	do {
347 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
348 			index,
349 			bdp == txq->bd.cur ? 'S' : ' ',
350 			bdp == txq->dirty_tx ? 'H' : ' ',
351 			fec16_to_cpu(bdp->cbd_sc),
352 			fec32_to_cpu(bdp->cbd_bufaddr),
353 			fec16_to_cpu(bdp->cbd_datlen),
354 			txq->tx_skbuff[index]);
355 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
356 		index++;
357 	} while (bdp != txq->bd.base);
358 }
359 
360 static inline bool is_ipv4_pkt(struct sk_buff *skb)
361 {
362 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
363 }
364 
365 static int
366 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
367 {
368 	/* Only run for packets requiring a checksum. */
369 	if (skb->ip_summed != CHECKSUM_PARTIAL)
370 		return 0;
371 
372 	if (unlikely(skb_cow_head(skb, 0)))
373 		return -1;
374 
375 	if (is_ipv4_pkt(skb))
376 		ip_hdr(skb)->check = 0;
377 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
378 
379 	return 0;
380 }
381 
382 static struct bufdesc *
383 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
384 			     struct sk_buff *skb,
385 			     struct net_device *ndev)
386 {
387 	struct fec_enet_private *fep = netdev_priv(ndev);
388 	struct bufdesc *bdp = txq->bd.cur;
389 	struct bufdesc_ex *ebdp;
390 	int nr_frags = skb_shinfo(skb)->nr_frags;
391 	int frag, frag_len;
392 	unsigned short status;
393 	unsigned int estatus = 0;
394 	skb_frag_t *this_frag;
395 	unsigned int index;
396 	void *bufaddr;
397 	dma_addr_t addr;
398 	int i;
399 
400 	for (frag = 0; frag < nr_frags; frag++) {
401 		this_frag = &skb_shinfo(skb)->frags[frag];
402 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
403 		ebdp = (struct bufdesc_ex *)bdp;
404 
405 		status = fec16_to_cpu(bdp->cbd_sc);
406 		status &= ~BD_ENET_TX_STATS;
407 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
408 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
409 
410 		/* Handle the last BD specially */
411 		if (frag == nr_frags - 1) {
412 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
413 			if (fep->bufdesc_ex) {
414 				estatus |= BD_ENET_TX_INT;
415 				if (unlikely(skb_shinfo(skb)->tx_flags &
416 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
417 					estatus |= BD_ENET_TX_TS;
418 			}
419 		}
420 
421 		if (fep->bufdesc_ex) {
422 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
423 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
424 			if (skb->ip_summed == CHECKSUM_PARTIAL)
425 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
426 
427 			ebdp->cbd_bdu = 0;
428 			ebdp->cbd_esc = cpu_to_fec32(estatus);
429 		}
430 
431 		bufaddr = skb_frag_address(this_frag);
432 
433 		index = fec_enet_get_bd_index(bdp, &txq->bd);
434 		if (((unsigned long) bufaddr) & fep->tx_align ||
435 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
436 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
437 			bufaddr = txq->tx_bounce[index];
438 
439 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
440 				swap_buffer(bufaddr, frag_len);
441 		}
442 
443 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
444 				      DMA_TO_DEVICE);
445 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
446 			if (net_ratelimit())
447 				netdev_err(ndev, "Tx DMA memory map failed\n");
448 			goto dma_mapping_error;
449 		}
450 
451 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
452 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
453 		/* Make sure the updates to rest of the descriptor are
454 		 * performed before transferring ownership.
455 		 */
456 		wmb();
457 		bdp->cbd_sc = cpu_to_fec16(status);
458 	}
459 
460 	return bdp;
461 dma_mapping_error:
462 	bdp = txq->bd.cur;
463 	for (i = 0; i < frag; i++) {
464 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
465 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
466 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
467 	}
468 	return ERR_PTR(-ENOMEM);
469 }
470 
471 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
472 				   struct sk_buff *skb, struct net_device *ndev)
473 {
474 	struct fec_enet_private *fep = netdev_priv(ndev);
475 	int nr_frags = skb_shinfo(skb)->nr_frags;
476 	struct bufdesc *bdp, *last_bdp;
477 	void *bufaddr;
478 	dma_addr_t addr;
479 	unsigned short status;
480 	unsigned short buflen;
481 	unsigned int estatus = 0;
482 	unsigned int index;
483 	int entries_free;
484 
485 	entries_free = fec_enet_get_free_txdesc_num(txq);
486 	if (entries_free < MAX_SKB_FRAGS + 1) {
487 		dev_kfree_skb_any(skb);
488 		if (net_ratelimit())
489 			netdev_err(ndev, "NOT enough BD for SG!\n");
490 		return NETDEV_TX_OK;
491 	}
492 
493 	/* Protocol checksum off-load for TCP and UDP. */
494 	if (fec_enet_clear_csum(skb, ndev)) {
495 		dev_kfree_skb_any(skb);
496 		return NETDEV_TX_OK;
497 	}
498 
499 	/* Fill in a Tx ring entry */
500 	bdp = txq->bd.cur;
501 	last_bdp = bdp;
502 	status = fec16_to_cpu(bdp->cbd_sc);
503 	status &= ~BD_ENET_TX_STATS;
504 
505 	/* Set buffer length and buffer pointer */
506 	bufaddr = skb->data;
507 	buflen = skb_headlen(skb);
508 
509 	index = fec_enet_get_bd_index(bdp, &txq->bd);
510 	if (((unsigned long) bufaddr) & fep->tx_align ||
511 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
512 		memcpy(txq->tx_bounce[index], skb->data, buflen);
513 		bufaddr = txq->tx_bounce[index];
514 
515 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
516 			swap_buffer(bufaddr, buflen);
517 	}
518 
519 	/* Push the data cache so the CPM does not get stale memory data. */
520 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
521 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
522 		dev_kfree_skb_any(skb);
523 		if (net_ratelimit())
524 			netdev_err(ndev, "Tx DMA memory map failed\n");
525 		return NETDEV_TX_OK;
526 	}
527 
528 	if (nr_frags) {
529 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
530 		if (IS_ERR(last_bdp)) {
531 			dma_unmap_single(&fep->pdev->dev, addr,
532 					 buflen, DMA_TO_DEVICE);
533 			dev_kfree_skb_any(skb);
534 			return NETDEV_TX_OK;
535 		}
536 	} else {
537 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
538 		if (fep->bufdesc_ex) {
539 			estatus = BD_ENET_TX_INT;
540 			if (unlikely(skb_shinfo(skb)->tx_flags &
541 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
542 				estatus |= BD_ENET_TX_TS;
543 		}
544 	}
545 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
546 	bdp->cbd_datlen = cpu_to_fec16(buflen);
547 
548 	if (fep->bufdesc_ex) {
549 
550 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
551 
552 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
553 			fep->hwts_tx_en))
554 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
555 
556 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
557 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
558 
559 		if (skb->ip_summed == CHECKSUM_PARTIAL)
560 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
561 
562 		ebdp->cbd_bdu = 0;
563 		ebdp->cbd_esc = cpu_to_fec32(estatus);
564 	}
565 
566 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
567 	/* Save skb pointer */
568 	txq->tx_skbuff[index] = skb;
569 
570 	/* Make sure the updates to rest of the descriptor are performed before
571 	 * transferring ownership.
572 	 */
573 	wmb();
574 
575 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
576 	 * it's the last BD of the frame, and to put the CRC on the end.
577 	 */
578 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
579 	bdp->cbd_sc = cpu_to_fec16(status);
580 
581 	/* If this was the last BD in the ring, start at the beginning again. */
582 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
583 
584 	skb_tx_timestamp(skb);
585 
586 	/* Make sure the update to bdp and tx_skbuff are performed before
587 	 * txq->bd.cur.
588 	 */
589 	wmb();
590 	txq->bd.cur = bdp;
591 
592 	/* Trigger transmission start */
593 	writel(0, txq->bd.reg_desc_active);
594 
595 	return 0;
596 }
597 
598 static int
599 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
600 			  struct net_device *ndev,
601 			  struct bufdesc *bdp, int index, char *data,
602 			  int size, bool last_tcp, bool is_last)
603 {
604 	struct fec_enet_private *fep = netdev_priv(ndev);
605 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
606 	unsigned short status;
607 	unsigned int estatus = 0;
608 	dma_addr_t addr;
609 
610 	status = fec16_to_cpu(bdp->cbd_sc);
611 	status &= ~BD_ENET_TX_STATS;
612 
613 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
614 
615 	if (((unsigned long) data) & fep->tx_align ||
616 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
617 		memcpy(txq->tx_bounce[index], data, size);
618 		data = txq->tx_bounce[index];
619 
620 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
621 			swap_buffer(data, size);
622 	}
623 
624 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
625 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
626 		dev_kfree_skb_any(skb);
627 		if (net_ratelimit())
628 			netdev_err(ndev, "Tx DMA memory map failed\n");
629 		return NETDEV_TX_BUSY;
630 	}
631 
632 	bdp->cbd_datlen = cpu_to_fec16(size);
633 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
634 
635 	if (fep->bufdesc_ex) {
636 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
637 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
638 		if (skb->ip_summed == CHECKSUM_PARTIAL)
639 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
640 		ebdp->cbd_bdu = 0;
641 		ebdp->cbd_esc = cpu_to_fec32(estatus);
642 	}
643 
644 	/* Handle the last BD specially */
645 	if (last_tcp)
646 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
647 	if (is_last) {
648 		status |= BD_ENET_TX_INTR;
649 		if (fep->bufdesc_ex)
650 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
651 	}
652 
653 	bdp->cbd_sc = cpu_to_fec16(status);
654 
655 	return 0;
656 }
657 
658 static int
659 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
660 			 struct sk_buff *skb, struct net_device *ndev,
661 			 struct bufdesc *bdp, int index)
662 {
663 	struct fec_enet_private *fep = netdev_priv(ndev);
664 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
665 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
666 	void *bufaddr;
667 	unsigned long dmabuf;
668 	unsigned short status;
669 	unsigned int estatus = 0;
670 
671 	status = fec16_to_cpu(bdp->cbd_sc);
672 	status &= ~BD_ENET_TX_STATS;
673 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
674 
675 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
676 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
677 	if (((unsigned long)bufaddr) & fep->tx_align ||
678 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
679 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
680 		bufaddr = txq->tx_bounce[index];
681 
682 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
683 			swap_buffer(bufaddr, hdr_len);
684 
685 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
686 					hdr_len, DMA_TO_DEVICE);
687 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
688 			dev_kfree_skb_any(skb);
689 			if (net_ratelimit())
690 				netdev_err(ndev, "Tx DMA memory map failed\n");
691 			return NETDEV_TX_BUSY;
692 		}
693 	}
694 
695 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
696 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
697 
698 	if (fep->bufdesc_ex) {
699 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
700 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
701 		if (skb->ip_summed == CHECKSUM_PARTIAL)
702 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
703 		ebdp->cbd_bdu = 0;
704 		ebdp->cbd_esc = cpu_to_fec32(estatus);
705 	}
706 
707 	bdp->cbd_sc = cpu_to_fec16(status);
708 
709 	return 0;
710 }
711 
712 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
713 				   struct sk_buff *skb,
714 				   struct net_device *ndev)
715 {
716 	struct fec_enet_private *fep = netdev_priv(ndev);
717 	int hdr_len, total_len, data_left;
718 	struct bufdesc *bdp = txq->bd.cur;
719 	struct tso_t tso;
720 	unsigned int index = 0;
721 	int ret;
722 
723 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
724 		dev_kfree_skb_any(skb);
725 		if (net_ratelimit())
726 			netdev_err(ndev, "NOT enough BD for TSO!\n");
727 		return NETDEV_TX_OK;
728 	}
729 
730 	/* Protocol checksum off-load for TCP and UDP. */
731 	if (fec_enet_clear_csum(skb, ndev)) {
732 		dev_kfree_skb_any(skb);
733 		return NETDEV_TX_OK;
734 	}
735 
736 	/* Initialize the TSO handler, and prepare the first payload */
737 	hdr_len = tso_start(skb, &tso);
738 
739 	total_len = skb->len - hdr_len;
740 	while (total_len > 0) {
741 		char *hdr;
742 
743 		index = fec_enet_get_bd_index(bdp, &txq->bd);
744 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
745 		total_len -= data_left;
746 
747 		/* prepare packet headers: MAC + IP + TCP */
748 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
749 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
750 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
751 		if (ret)
752 			goto err_release;
753 
754 		while (data_left > 0) {
755 			int size;
756 
757 			size = min_t(int, tso.size, data_left);
758 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
759 			index = fec_enet_get_bd_index(bdp, &txq->bd);
760 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
761 							bdp, index,
762 							tso.data, size,
763 							size == data_left,
764 							total_len == 0);
765 			if (ret)
766 				goto err_release;
767 
768 			data_left -= size;
769 			tso_build_data(skb, &tso, size);
770 		}
771 
772 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
773 	}
774 
775 	/* Save skb pointer */
776 	txq->tx_skbuff[index] = skb;
777 
778 	skb_tx_timestamp(skb);
779 	txq->bd.cur = bdp;
780 
781 	/* Trigger transmission start */
782 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
783 	    !readl(txq->bd.reg_desc_active) ||
784 	    !readl(txq->bd.reg_desc_active) ||
785 	    !readl(txq->bd.reg_desc_active) ||
786 	    !readl(txq->bd.reg_desc_active))
787 		writel(0, txq->bd.reg_desc_active);
788 
789 	return 0;
790 
791 err_release:
792 	/* TODO: Release all used data descriptors for TSO */
793 	return ret;
794 }
795 
796 static netdev_tx_t
797 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
798 {
799 	struct fec_enet_private *fep = netdev_priv(ndev);
800 	int entries_free;
801 	unsigned short queue;
802 	struct fec_enet_priv_tx_q *txq;
803 	struct netdev_queue *nq;
804 	int ret;
805 
806 	queue = skb_get_queue_mapping(skb);
807 	txq = fep->tx_queue[queue];
808 	nq = netdev_get_tx_queue(ndev, queue);
809 
810 	if (skb_is_gso(skb))
811 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
812 	else
813 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
814 	if (ret)
815 		return ret;
816 
817 	entries_free = fec_enet_get_free_txdesc_num(txq);
818 	if (entries_free <= txq->tx_stop_threshold)
819 		netif_tx_stop_queue(nq);
820 
821 	return NETDEV_TX_OK;
822 }
823 
824 /* Init RX & TX buffer descriptors
825  */
826 static void fec_enet_bd_init(struct net_device *dev)
827 {
828 	struct fec_enet_private *fep = netdev_priv(dev);
829 	struct fec_enet_priv_tx_q *txq;
830 	struct fec_enet_priv_rx_q *rxq;
831 	struct bufdesc *bdp;
832 	unsigned int i;
833 	unsigned int q;
834 
835 	for (q = 0; q < fep->num_rx_queues; q++) {
836 		/* Initialize the receive buffer descriptors. */
837 		rxq = fep->rx_queue[q];
838 		bdp = rxq->bd.base;
839 
840 		for (i = 0; i < rxq->bd.ring_size; i++) {
841 
842 			/* Initialize the BD for every fragment in the page. */
843 			if (bdp->cbd_bufaddr)
844 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
845 			else
846 				bdp->cbd_sc = cpu_to_fec16(0);
847 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
848 		}
849 
850 		/* Set the last buffer to wrap */
851 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
852 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
853 
854 		rxq->bd.cur = rxq->bd.base;
855 	}
856 
857 	for (q = 0; q < fep->num_tx_queues; q++) {
858 		/* ...and the same for transmit */
859 		txq = fep->tx_queue[q];
860 		bdp = txq->bd.base;
861 		txq->bd.cur = bdp;
862 
863 		for (i = 0; i < txq->bd.ring_size; i++) {
864 			/* Initialize the BD for every fragment in the page. */
865 			bdp->cbd_sc = cpu_to_fec16(0);
866 			if (bdp->cbd_bufaddr &&
867 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
868 				dma_unmap_single(&fep->pdev->dev,
869 						 fec32_to_cpu(bdp->cbd_bufaddr),
870 						 fec16_to_cpu(bdp->cbd_datlen),
871 						 DMA_TO_DEVICE);
872 			if (txq->tx_skbuff[i]) {
873 				dev_kfree_skb_any(txq->tx_skbuff[i]);
874 				txq->tx_skbuff[i] = NULL;
875 			}
876 			bdp->cbd_bufaddr = cpu_to_fec32(0);
877 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
878 		}
879 
880 		/* Set the last buffer to wrap */
881 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
882 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
883 		txq->dirty_tx = bdp;
884 	}
885 }
886 
887 static void fec_enet_active_rxring(struct net_device *ndev)
888 {
889 	struct fec_enet_private *fep = netdev_priv(ndev);
890 	int i;
891 
892 	for (i = 0; i < fep->num_rx_queues; i++)
893 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
894 }
895 
896 static void fec_enet_enable_ring(struct net_device *ndev)
897 {
898 	struct fec_enet_private *fep = netdev_priv(ndev);
899 	struct fec_enet_priv_tx_q *txq;
900 	struct fec_enet_priv_rx_q *rxq;
901 	int i;
902 
903 	for (i = 0; i < fep->num_rx_queues; i++) {
904 		rxq = fep->rx_queue[i];
905 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
906 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
907 
908 		/* enable DMA1/2 */
909 		if (i)
910 			writel(RCMR_MATCHEN | RCMR_CMP(i),
911 			       fep->hwp + FEC_RCMR(i));
912 	}
913 
914 	for (i = 0; i < fep->num_tx_queues; i++) {
915 		txq = fep->tx_queue[i];
916 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
917 
918 		/* enable DMA1/2 */
919 		if (i)
920 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
921 			       fep->hwp + FEC_DMA_CFG(i));
922 	}
923 }
924 
925 static void fec_enet_reset_skb(struct net_device *ndev)
926 {
927 	struct fec_enet_private *fep = netdev_priv(ndev);
928 	struct fec_enet_priv_tx_q *txq;
929 	int i, j;
930 
931 	for (i = 0; i < fep->num_tx_queues; i++) {
932 		txq = fep->tx_queue[i];
933 
934 		for (j = 0; j < txq->bd.ring_size; j++) {
935 			if (txq->tx_skbuff[j]) {
936 				dev_kfree_skb_any(txq->tx_skbuff[j]);
937 				txq->tx_skbuff[j] = NULL;
938 			}
939 		}
940 	}
941 }
942 
943 /*
944  * This function is called to start or restart the FEC during a link
945  * change, transmit timeout, or to reconfigure the FEC.  The network
946  * packet processing for this device must be stopped before this call.
947  */
948 static void
949 fec_restart(struct net_device *ndev)
950 {
951 	struct fec_enet_private *fep = netdev_priv(ndev);
952 	u32 temp_mac[2];
953 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
954 	u32 ecntl = 0x2; /* ETHEREN */
955 
956 	/* Whack a reset.  We should wait for this.
957 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
958 	 * instead of reset MAC itself.
959 	 */
960 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
961 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
962 		writel(0, fep->hwp + FEC_ECNTRL);
963 	} else {
964 		writel(1, fep->hwp + FEC_ECNTRL);
965 		udelay(10);
966 	}
967 
968 	/*
969 	 * enet-mac reset will reset mac address registers too,
970 	 * so need to reconfigure it.
971 	 */
972 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
973 	writel((__force u32)cpu_to_be32(temp_mac[0]),
974 	       fep->hwp + FEC_ADDR_LOW);
975 	writel((__force u32)cpu_to_be32(temp_mac[1]),
976 	       fep->hwp + FEC_ADDR_HIGH);
977 
978 	/* Clear any outstanding interrupt, except MDIO. */
979 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
980 
981 	fec_enet_bd_init(ndev);
982 
983 	fec_enet_enable_ring(ndev);
984 
985 	/* Reset tx SKB buffers. */
986 	fec_enet_reset_skb(ndev);
987 
988 	/* Enable MII mode */
989 	if (fep->full_duplex == DUPLEX_FULL) {
990 		/* FD enable */
991 		writel(0x04, fep->hwp + FEC_X_CNTRL);
992 	} else {
993 		/* No Rcv on Xmit */
994 		rcntl |= 0x02;
995 		writel(0x0, fep->hwp + FEC_X_CNTRL);
996 	}
997 
998 	/* Set MII speed */
999 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1000 
1001 #if !defined(CONFIG_M5272)
1002 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1003 		u32 val = readl(fep->hwp + FEC_RACC);
1004 
1005 		/* align IP header */
1006 		val |= FEC_RACC_SHIFT16;
1007 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1008 			/* set RX checksum */
1009 			val |= FEC_RACC_OPTIONS;
1010 		else
1011 			val &= ~FEC_RACC_OPTIONS;
1012 		writel(val, fep->hwp + FEC_RACC);
1013 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1014 	}
1015 #endif
1016 
1017 	/*
1018 	 * The phy interface and speed need to get configured
1019 	 * differently on enet-mac.
1020 	 */
1021 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1022 		/* Enable flow control and length check */
1023 		rcntl |= 0x40000000 | 0x00000020;
1024 
1025 		/* RGMII, RMII or MII */
1026 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1027 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1028 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1029 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1030 			rcntl |= (1 << 6);
1031 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1032 			rcntl |= (1 << 8);
1033 		else
1034 			rcntl &= ~(1 << 8);
1035 
1036 		/* 1G, 100M or 10M */
1037 		if (ndev->phydev) {
1038 			if (ndev->phydev->speed == SPEED_1000)
1039 				ecntl |= (1 << 5);
1040 			else if (ndev->phydev->speed == SPEED_100)
1041 				rcntl &= ~(1 << 9);
1042 			else
1043 				rcntl |= (1 << 9);
1044 		}
1045 	} else {
1046 #ifdef FEC_MIIGSK_ENR
1047 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1048 			u32 cfgr;
1049 			/* disable the gasket and wait */
1050 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1051 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1052 				udelay(1);
1053 
1054 			/*
1055 			 * configure the gasket:
1056 			 *   RMII, 50 MHz, no loopback, no echo
1057 			 *   MII, 25 MHz, no loopback, no echo
1058 			 */
1059 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1060 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1061 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1062 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1063 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1064 
1065 			/* re-enable the gasket */
1066 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1067 		}
1068 #endif
1069 	}
1070 
1071 #if !defined(CONFIG_M5272)
1072 	/* enable pause frame*/
1073 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1074 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1075 	     ndev->phydev && ndev->phydev->pause)) {
1076 		rcntl |= FEC_ENET_FCE;
1077 
1078 		/* set FIFO threshold parameter to reduce overrun */
1079 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1080 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1081 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1082 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1083 
1084 		/* OPD */
1085 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1086 	} else {
1087 		rcntl &= ~FEC_ENET_FCE;
1088 	}
1089 #endif /* !defined(CONFIG_M5272) */
1090 
1091 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1092 
1093 	/* Setup multicast filter. */
1094 	set_multicast_list(ndev);
1095 #ifndef CONFIG_M5272
1096 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1097 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1098 #endif
1099 
1100 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1101 		/* enable ENET endian swap */
1102 		ecntl |= (1 << 8);
1103 		/* enable ENET store and forward mode */
1104 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1105 	}
1106 
1107 	if (fep->bufdesc_ex)
1108 		ecntl |= (1 << 4);
1109 
1110 #ifndef CONFIG_M5272
1111 	/* Enable the MIB statistic event counters */
1112 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1113 #endif
1114 
1115 	/* And last, enable the transmit and receive processing */
1116 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1117 	fec_enet_active_rxring(ndev);
1118 
1119 	if (fep->bufdesc_ex)
1120 		fec_ptp_start_cyclecounter(ndev);
1121 
1122 	/* Enable interrupts we wish to service */
1123 	if (fep->link)
1124 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1125 	else
1126 		writel(0, fep->hwp + FEC_IMASK);
1127 
1128 	/* Init the interrupt coalescing */
1129 	fec_enet_itr_coal_init(ndev);
1130 
1131 }
1132 
1133 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1134 {
1135 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1136 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1137 
1138 	if (stop_gpr->gpr) {
1139 		if (enabled)
1140 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 					   BIT(stop_gpr->bit),
1142 					   BIT(stop_gpr->bit));
1143 		else
1144 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1145 					   BIT(stop_gpr->bit), 0);
1146 	} else if (pdata && pdata->sleep_mode_enable) {
1147 		pdata->sleep_mode_enable(enabled);
1148 	}
1149 }
1150 
1151 static void
1152 fec_stop(struct net_device *ndev)
1153 {
1154 	struct fec_enet_private *fep = netdev_priv(ndev);
1155 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1156 	u32 val;
1157 
1158 	/* We cannot expect a graceful transmit stop without link !!! */
1159 	if (fep->link) {
1160 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1161 		udelay(10);
1162 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1163 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1164 	}
1165 
1166 	/* Whack a reset.  We should wait for this.
1167 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1168 	 * instead of reset MAC itself.
1169 	 */
1170 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1171 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1172 			writel(0, fep->hwp + FEC_ECNTRL);
1173 		} else {
1174 			writel(1, fep->hwp + FEC_ECNTRL);
1175 			udelay(10);
1176 		}
1177 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1178 	} else {
1179 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1180 		val = readl(fep->hwp + FEC_ECNTRL);
1181 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1182 		writel(val, fep->hwp + FEC_ECNTRL);
1183 		fec_enet_stop_mode(fep, true);
1184 	}
1185 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186 
1187 	/* We have to keep ENET enabled to have MII interrupt stay working */
1188 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1189 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1190 		writel(2, fep->hwp + FEC_ECNTRL);
1191 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1192 	}
1193 }
1194 
1195 
1196 static void
1197 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1198 {
1199 	struct fec_enet_private *fep = netdev_priv(ndev);
1200 
1201 	fec_dump(ndev);
1202 
1203 	ndev->stats.tx_errors++;
1204 
1205 	schedule_work(&fep->tx_timeout_work);
1206 }
1207 
1208 static void fec_enet_timeout_work(struct work_struct *work)
1209 {
1210 	struct fec_enet_private *fep =
1211 		container_of(work, struct fec_enet_private, tx_timeout_work);
1212 	struct net_device *ndev = fep->netdev;
1213 
1214 	rtnl_lock();
1215 	if (netif_device_present(ndev) || netif_running(ndev)) {
1216 		napi_disable(&fep->napi);
1217 		netif_tx_lock_bh(ndev);
1218 		fec_restart(ndev);
1219 		netif_tx_wake_all_queues(ndev);
1220 		netif_tx_unlock_bh(ndev);
1221 		napi_enable(&fep->napi);
1222 	}
1223 	rtnl_unlock();
1224 }
1225 
1226 static void
1227 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1228 	struct skb_shared_hwtstamps *hwtstamps)
1229 {
1230 	unsigned long flags;
1231 	u64 ns;
1232 
1233 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1234 	ns = timecounter_cyc2time(&fep->tc, ts);
1235 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1236 
1237 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1238 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1239 }
1240 
1241 static void
1242 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1243 {
1244 	struct	fec_enet_private *fep;
1245 	struct bufdesc *bdp;
1246 	unsigned short status;
1247 	struct	sk_buff	*skb;
1248 	struct fec_enet_priv_tx_q *txq;
1249 	struct netdev_queue *nq;
1250 	int	index = 0;
1251 	int	entries_free;
1252 
1253 	fep = netdev_priv(ndev);
1254 
1255 	txq = fep->tx_queue[queue_id];
1256 	/* get next bdp of dirty_tx */
1257 	nq = netdev_get_tx_queue(ndev, queue_id);
1258 	bdp = txq->dirty_tx;
1259 
1260 	/* get next bdp of dirty_tx */
1261 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1262 
1263 	while (bdp != READ_ONCE(txq->bd.cur)) {
1264 		/* Order the load of bd.cur and cbd_sc */
1265 		rmb();
1266 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1267 		if (status & BD_ENET_TX_READY)
1268 			break;
1269 
1270 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1271 
1272 		skb = txq->tx_skbuff[index];
1273 		txq->tx_skbuff[index] = NULL;
1274 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1275 			dma_unmap_single(&fep->pdev->dev,
1276 					 fec32_to_cpu(bdp->cbd_bufaddr),
1277 					 fec16_to_cpu(bdp->cbd_datlen),
1278 					 DMA_TO_DEVICE);
1279 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1280 		if (!skb)
1281 			goto skb_done;
1282 
1283 		/* Check for errors. */
1284 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1285 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1286 				   BD_ENET_TX_CSL)) {
1287 			ndev->stats.tx_errors++;
1288 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1289 				ndev->stats.tx_heartbeat_errors++;
1290 			if (status & BD_ENET_TX_LC)  /* Late collision */
1291 				ndev->stats.tx_window_errors++;
1292 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1293 				ndev->stats.tx_aborted_errors++;
1294 			if (status & BD_ENET_TX_UN)  /* Underrun */
1295 				ndev->stats.tx_fifo_errors++;
1296 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1297 				ndev->stats.tx_carrier_errors++;
1298 		} else {
1299 			ndev->stats.tx_packets++;
1300 			ndev->stats.tx_bytes += skb->len;
1301 		}
1302 
1303 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1304 		 * are to time stamp the packet, so we still need to check time
1305 		 * stamping enabled flag.
1306 		 */
1307 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1308 			     fep->hwts_tx_en) &&
1309 		    fep->bufdesc_ex) {
1310 			struct skb_shared_hwtstamps shhwtstamps;
1311 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1312 
1313 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1314 			skb_tstamp_tx(skb, &shhwtstamps);
1315 		}
1316 
1317 		/* Deferred means some collisions occurred during transmit,
1318 		 * but we eventually sent the packet OK.
1319 		 */
1320 		if (status & BD_ENET_TX_DEF)
1321 			ndev->stats.collisions++;
1322 
1323 		/* Free the sk buffer associated with this last transmit */
1324 		dev_kfree_skb_any(skb);
1325 skb_done:
1326 		/* Make sure the update to bdp and tx_skbuff are performed
1327 		 * before dirty_tx
1328 		 */
1329 		wmb();
1330 		txq->dirty_tx = bdp;
1331 
1332 		/* Update pointer to next buffer descriptor to be transmitted */
1333 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1334 
1335 		/* Since we have freed up a buffer, the ring is no longer full
1336 		 */
1337 		if (netif_tx_queue_stopped(nq)) {
1338 			entries_free = fec_enet_get_free_txdesc_num(txq);
1339 			if (entries_free >= txq->tx_wake_threshold)
1340 				netif_tx_wake_queue(nq);
1341 		}
1342 	}
1343 
1344 	/* ERR006358: Keep the transmitter going */
1345 	if (bdp != txq->bd.cur &&
1346 	    readl(txq->bd.reg_desc_active) == 0)
1347 		writel(0, txq->bd.reg_desc_active);
1348 }
1349 
1350 static void fec_enet_tx(struct net_device *ndev)
1351 {
1352 	struct fec_enet_private *fep = netdev_priv(ndev);
1353 	int i;
1354 
1355 	/* Make sure that AVB queues are processed first. */
1356 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1357 		fec_enet_tx_queue(ndev, i);
1358 }
1359 
1360 static int
1361 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1362 {
1363 	struct  fec_enet_private *fep = netdev_priv(ndev);
1364 	int off;
1365 
1366 	off = ((unsigned long)skb->data) & fep->rx_align;
1367 	if (off)
1368 		skb_reserve(skb, fep->rx_align + 1 - off);
1369 
1370 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1371 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1372 		if (net_ratelimit())
1373 			netdev_err(ndev, "Rx DMA memory map failed\n");
1374 		return -ENOMEM;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1381 			       struct bufdesc *bdp, u32 length, bool swap)
1382 {
1383 	struct  fec_enet_private *fep = netdev_priv(ndev);
1384 	struct sk_buff *new_skb;
1385 
1386 	if (length > fep->rx_copybreak)
1387 		return false;
1388 
1389 	new_skb = netdev_alloc_skb(ndev, length);
1390 	if (!new_skb)
1391 		return false;
1392 
1393 	dma_sync_single_for_cpu(&fep->pdev->dev,
1394 				fec32_to_cpu(bdp->cbd_bufaddr),
1395 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1396 				DMA_FROM_DEVICE);
1397 	if (!swap)
1398 		memcpy(new_skb->data, (*skb)->data, length);
1399 	else
1400 		swap_buffer2(new_skb->data, (*skb)->data, length);
1401 	*skb = new_skb;
1402 
1403 	return true;
1404 }
1405 
1406 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1407  * When we update through the ring, if the next incoming buffer has
1408  * not been given to the system, we just set the empty indicator,
1409  * effectively tossing the packet.
1410  */
1411 static int
1412 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1413 {
1414 	struct fec_enet_private *fep = netdev_priv(ndev);
1415 	struct fec_enet_priv_rx_q *rxq;
1416 	struct bufdesc *bdp;
1417 	unsigned short status;
1418 	struct  sk_buff *skb_new = NULL;
1419 	struct  sk_buff *skb;
1420 	ushort	pkt_len;
1421 	__u8 *data;
1422 	int	pkt_received = 0;
1423 	struct	bufdesc_ex *ebdp = NULL;
1424 	bool	vlan_packet_rcvd = false;
1425 	u16	vlan_tag;
1426 	int	index = 0;
1427 	bool	is_copybreak;
1428 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1429 
1430 #ifdef CONFIG_M532x
1431 	flush_cache_all();
1432 #endif
1433 	rxq = fep->rx_queue[queue_id];
1434 
1435 	/* First, grab all of the stats for the incoming packet.
1436 	 * These get messed up if we get called due to a busy condition.
1437 	 */
1438 	bdp = rxq->bd.cur;
1439 
1440 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1441 
1442 		if (pkt_received >= budget)
1443 			break;
1444 		pkt_received++;
1445 
1446 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1447 
1448 		/* Check for errors. */
1449 		status ^= BD_ENET_RX_LAST;
1450 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1451 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1452 			   BD_ENET_RX_CL)) {
1453 			ndev->stats.rx_errors++;
1454 			if (status & BD_ENET_RX_OV) {
1455 				/* FIFO overrun */
1456 				ndev->stats.rx_fifo_errors++;
1457 				goto rx_processing_done;
1458 			}
1459 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1460 						| BD_ENET_RX_LAST)) {
1461 				/* Frame too long or too short. */
1462 				ndev->stats.rx_length_errors++;
1463 				if (status & BD_ENET_RX_LAST)
1464 					netdev_err(ndev, "rcv is not +last\n");
1465 			}
1466 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1467 				ndev->stats.rx_crc_errors++;
1468 			/* Report late collisions as a frame error. */
1469 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1470 				ndev->stats.rx_frame_errors++;
1471 			goto rx_processing_done;
1472 		}
1473 
1474 		/* Process the incoming frame. */
1475 		ndev->stats.rx_packets++;
1476 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1477 		ndev->stats.rx_bytes += pkt_len;
1478 
1479 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1480 		skb = rxq->rx_skbuff[index];
1481 
1482 		/* The packet length includes FCS, but we don't want to
1483 		 * include that when passing upstream as it messes up
1484 		 * bridging applications.
1485 		 */
1486 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1487 						  need_swap);
1488 		if (!is_copybreak) {
1489 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1490 			if (unlikely(!skb_new)) {
1491 				ndev->stats.rx_dropped++;
1492 				goto rx_processing_done;
1493 			}
1494 			dma_unmap_single(&fep->pdev->dev,
1495 					 fec32_to_cpu(bdp->cbd_bufaddr),
1496 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1497 					 DMA_FROM_DEVICE);
1498 		}
1499 
1500 		prefetch(skb->data - NET_IP_ALIGN);
1501 		skb_put(skb, pkt_len - 4);
1502 		data = skb->data;
1503 
1504 		if (!is_copybreak && need_swap)
1505 			swap_buffer(data, pkt_len);
1506 
1507 #if !defined(CONFIG_M5272)
1508 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1509 			data = skb_pull_inline(skb, 2);
1510 #endif
1511 
1512 		/* Extract the enhanced buffer descriptor */
1513 		ebdp = NULL;
1514 		if (fep->bufdesc_ex)
1515 			ebdp = (struct bufdesc_ex *)bdp;
1516 
1517 		/* If this is a VLAN packet remove the VLAN Tag */
1518 		vlan_packet_rcvd = false;
1519 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1520 		    fep->bufdesc_ex &&
1521 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1522 			/* Push and remove the vlan tag */
1523 			struct vlan_hdr *vlan_header =
1524 					(struct vlan_hdr *) (data + ETH_HLEN);
1525 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1526 
1527 			vlan_packet_rcvd = true;
1528 
1529 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1530 			skb_pull(skb, VLAN_HLEN);
1531 		}
1532 
1533 		skb->protocol = eth_type_trans(skb, ndev);
1534 
1535 		/* Get receive timestamp from the skb */
1536 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1537 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1538 					  skb_hwtstamps(skb));
1539 
1540 		if (fep->bufdesc_ex &&
1541 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1542 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1543 				/* don't check it */
1544 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1545 			} else {
1546 				skb_checksum_none_assert(skb);
1547 			}
1548 		}
1549 
1550 		/* Handle received VLAN packets */
1551 		if (vlan_packet_rcvd)
1552 			__vlan_hwaccel_put_tag(skb,
1553 					       htons(ETH_P_8021Q),
1554 					       vlan_tag);
1555 
1556 		skb_record_rx_queue(skb, queue_id);
1557 		napi_gro_receive(&fep->napi, skb);
1558 
1559 		if (is_copybreak) {
1560 			dma_sync_single_for_device(&fep->pdev->dev,
1561 						   fec32_to_cpu(bdp->cbd_bufaddr),
1562 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1563 						   DMA_FROM_DEVICE);
1564 		} else {
1565 			rxq->rx_skbuff[index] = skb_new;
1566 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1567 		}
1568 
1569 rx_processing_done:
1570 		/* Clear the status flags for this buffer */
1571 		status &= ~BD_ENET_RX_STATS;
1572 
1573 		/* Mark the buffer empty */
1574 		status |= BD_ENET_RX_EMPTY;
1575 
1576 		if (fep->bufdesc_ex) {
1577 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1578 
1579 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1580 			ebdp->cbd_prot = 0;
1581 			ebdp->cbd_bdu = 0;
1582 		}
1583 		/* Make sure the updates to rest of the descriptor are
1584 		 * performed before transferring ownership.
1585 		 */
1586 		wmb();
1587 		bdp->cbd_sc = cpu_to_fec16(status);
1588 
1589 		/* Update BD pointer to next entry */
1590 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1591 
1592 		/* Doing this here will keep the FEC running while we process
1593 		 * incoming frames.  On a heavily loaded network, we should be
1594 		 * able to keep up at the expense of system resources.
1595 		 */
1596 		writel(0, rxq->bd.reg_desc_active);
1597 	}
1598 	rxq->bd.cur = bdp;
1599 	return pkt_received;
1600 }
1601 
1602 static int fec_enet_rx(struct net_device *ndev, int budget)
1603 {
1604 	struct fec_enet_private *fep = netdev_priv(ndev);
1605 	int i, done = 0;
1606 
1607 	/* Make sure that AVB queues are processed first. */
1608 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1609 		done += fec_enet_rx_queue(ndev, budget - done, i);
1610 
1611 	return done;
1612 }
1613 
1614 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1615 {
1616 	uint int_events;
1617 
1618 	int_events = readl(fep->hwp + FEC_IEVENT);
1619 
1620 	/* Don't clear MDIO events, we poll for those */
1621 	int_events &= ~FEC_ENET_MII;
1622 
1623 	writel(int_events, fep->hwp + FEC_IEVENT);
1624 
1625 	return int_events != 0;
1626 }
1627 
1628 static irqreturn_t
1629 fec_enet_interrupt(int irq, void *dev_id)
1630 {
1631 	struct net_device *ndev = dev_id;
1632 	struct fec_enet_private *fep = netdev_priv(ndev);
1633 	irqreturn_t ret = IRQ_NONE;
1634 
1635 	if (fec_enet_collect_events(fep) && fep->link) {
1636 		ret = IRQ_HANDLED;
1637 
1638 		if (napi_schedule_prep(&fep->napi)) {
1639 			/* Disable interrupts */
1640 			writel(0, fep->hwp + FEC_IMASK);
1641 			__napi_schedule(&fep->napi);
1642 		}
1643 	}
1644 
1645 	return ret;
1646 }
1647 
1648 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1649 {
1650 	struct net_device *ndev = napi->dev;
1651 	struct fec_enet_private *fep = netdev_priv(ndev);
1652 	int done = 0;
1653 
1654 	do {
1655 		done += fec_enet_rx(ndev, budget - done);
1656 		fec_enet_tx(ndev);
1657 	} while ((done < budget) && fec_enet_collect_events(fep));
1658 
1659 	if (done < budget) {
1660 		napi_complete_done(napi, done);
1661 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1662 	}
1663 
1664 	return done;
1665 }
1666 
1667 /* ------------------------------------------------------------------------- */
1668 static int fec_get_mac(struct net_device *ndev)
1669 {
1670 	struct fec_enet_private *fep = netdev_priv(ndev);
1671 	unsigned char *iap, tmpaddr[ETH_ALEN];
1672 	int ret;
1673 
1674 	/*
1675 	 * try to get mac address in following order:
1676 	 *
1677 	 * 1) module parameter via kernel command line in form
1678 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1679 	 */
1680 	iap = macaddr;
1681 
1682 	/*
1683 	 * 2) from device tree data
1684 	 */
1685 	if (!is_valid_ether_addr(iap)) {
1686 		struct device_node *np = fep->pdev->dev.of_node;
1687 		if (np) {
1688 			ret = of_get_mac_address(np, tmpaddr);
1689 			if (!ret)
1690 				iap = tmpaddr;
1691 			else if (ret == -EPROBE_DEFER)
1692 				return ret;
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * 3) from flash or fuse (via platform data)
1698 	 */
1699 	if (!is_valid_ether_addr(iap)) {
1700 #ifdef CONFIG_M5272
1701 		if (FEC_FLASHMAC)
1702 			iap = (unsigned char *)FEC_FLASHMAC;
1703 #else
1704 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1705 
1706 		if (pdata)
1707 			iap = (unsigned char *)&pdata->mac;
1708 #endif
1709 	}
1710 
1711 	/*
1712 	 * 4) FEC mac registers set by bootloader
1713 	 */
1714 	if (!is_valid_ether_addr(iap)) {
1715 		*((__be32 *) &tmpaddr[0]) =
1716 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1717 		*((__be16 *) &tmpaddr[4]) =
1718 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1719 		iap = &tmpaddr[0];
1720 	}
1721 
1722 	/*
1723 	 * 5) random mac address
1724 	 */
1725 	if (!is_valid_ether_addr(iap)) {
1726 		/* Report it and use a random ethernet address instead */
1727 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1728 		eth_hw_addr_random(ndev);
1729 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1730 			 ndev->dev_addr);
1731 		return 0;
1732 	}
1733 
1734 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1735 
1736 	/* Adjust MAC if using macaddr */
1737 	if (iap == macaddr)
1738 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1739 
1740 	return 0;
1741 }
1742 
1743 /* ------------------------------------------------------------------------- */
1744 
1745 /*
1746  * Phy section
1747  */
1748 static void fec_enet_adjust_link(struct net_device *ndev)
1749 {
1750 	struct fec_enet_private *fep = netdev_priv(ndev);
1751 	struct phy_device *phy_dev = ndev->phydev;
1752 	int status_change = 0;
1753 
1754 	/*
1755 	 * If the netdev is down, or is going down, we're not interested
1756 	 * in link state events, so just mark our idea of the link as down
1757 	 * and ignore the event.
1758 	 */
1759 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1760 		fep->link = 0;
1761 	} else if (phy_dev->link) {
1762 		if (!fep->link) {
1763 			fep->link = phy_dev->link;
1764 			status_change = 1;
1765 		}
1766 
1767 		if (fep->full_duplex != phy_dev->duplex) {
1768 			fep->full_duplex = phy_dev->duplex;
1769 			status_change = 1;
1770 		}
1771 
1772 		if (phy_dev->speed != fep->speed) {
1773 			fep->speed = phy_dev->speed;
1774 			status_change = 1;
1775 		}
1776 
1777 		/* if any of the above changed restart the FEC */
1778 		if (status_change) {
1779 			napi_disable(&fep->napi);
1780 			netif_tx_lock_bh(ndev);
1781 			fec_restart(ndev);
1782 			netif_tx_wake_all_queues(ndev);
1783 			netif_tx_unlock_bh(ndev);
1784 			napi_enable(&fep->napi);
1785 		}
1786 	} else {
1787 		if (fep->link) {
1788 			napi_disable(&fep->napi);
1789 			netif_tx_lock_bh(ndev);
1790 			fec_stop(ndev);
1791 			netif_tx_unlock_bh(ndev);
1792 			napi_enable(&fep->napi);
1793 			fep->link = phy_dev->link;
1794 			status_change = 1;
1795 		}
1796 	}
1797 
1798 	if (status_change)
1799 		phy_print_status(phy_dev);
1800 }
1801 
1802 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1803 {
1804 	uint ievent;
1805 	int ret;
1806 
1807 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1808 					ievent & FEC_ENET_MII, 2, 30000);
1809 
1810 	if (!ret)
1811 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1812 
1813 	return ret;
1814 }
1815 
1816 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1817 {
1818 	struct fec_enet_private *fep = bus->priv;
1819 	struct device *dev = &fep->pdev->dev;
1820 	int ret = 0, frame_start, frame_addr, frame_op;
1821 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1822 
1823 	ret = pm_runtime_resume_and_get(dev);
1824 	if (ret < 0)
1825 		return ret;
1826 
1827 	if (is_c45) {
1828 		frame_start = FEC_MMFR_ST_C45;
1829 
1830 		/* write address */
1831 		frame_addr = (regnum >> 16);
1832 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1833 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1834 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1835 		       fep->hwp + FEC_MII_DATA);
1836 
1837 		/* wait for end of transfer */
1838 		ret = fec_enet_mdio_wait(fep);
1839 		if (ret) {
1840 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1841 			goto out;
1842 		}
1843 
1844 		frame_op = FEC_MMFR_OP_READ_C45;
1845 
1846 	} else {
1847 		/* C22 read */
1848 		frame_op = FEC_MMFR_OP_READ;
1849 		frame_start = FEC_MMFR_ST;
1850 		frame_addr = regnum;
1851 	}
1852 
1853 	/* start a read op */
1854 	writel(frame_start | frame_op |
1855 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1856 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1857 
1858 	/* wait for end of transfer */
1859 	ret = fec_enet_mdio_wait(fep);
1860 	if (ret) {
1861 		netdev_err(fep->netdev, "MDIO read timeout\n");
1862 		goto out;
1863 	}
1864 
1865 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1866 
1867 out:
1868 	pm_runtime_mark_last_busy(dev);
1869 	pm_runtime_put_autosuspend(dev);
1870 
1871 	return ret;
1872 }
1873 
1874 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1875 			   u16 value)
1876 {
1877 	struct fec_enet_private *fep = bus->priv;
1878 	struct device *dev = &fep->pdev->dev;
1879 	int ret, frame_start, frame_addr;
1880 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1881 
1882 	ret = pm_runtime_resume_and_get(dev);
1883 	if (ret < 0)
1884 		return ret;
1885 
1886 	if (is_c45) {
1887 		frame_start = FEC_MMFR_ST_C45;
1888 
1889 		/* write address */
1890 		frame_addr = (regnum >> 16);
1891 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1892 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1893 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1894 		       fep->hwp + FEC_MII_DATA);
1895 
1896 		/* wait for end of transfer */
1897 		ret = fec_enet_mdio_wait(fep);
1898 		if (ret) {
1899 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1900 			goto out;
1901 		}
1902 	} else {
1903 		/* C22 write */
1904 		frame_start = FEC_MMFR_ST;
1905 		frame_addr = regnum;
1906 	}
1907 
1908 	/* start a write op */
1909 	writel(frame_start | FEC_MMFR_OP_WRITE |
1910 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1911 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1912 		fep->hwp + FEC_MII_DATA);
1913 
1914 	/* wait for end of transfer */
1915 	ret = fec_enet_mdio_wait(fep);
1916 	if (ret)
1917 		netdev_err(fep->netdev, "MDIO write timeout\n");
1918 
1919 out:
1920 	pm_runtime_mark_last_busy(dev);
1921 	pm_runtime_put_autosuspend(dev);
1922 
1923 	return ret;
1924 }
1925 
1926 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1927 {
1928 	struct fec_enet_private *fep = netdev_priv(ndev);
1929 	struct phy_device *phy_dev = ndev->phydev;
1930 
1931 	if (phy_dev) {
1932 		phy_reset_after_clk_enable(phy_dev);
1933 	} else if (fep->phy_node) {
1934 		/*
1935 		 * If the PHY still is not bound to the MAC, but there is
1936 		 * OF PHY node and a matching PHY device instance already,
1937 		 * use the OF PHY node to obtain the PHY device instance,
1938 		 * and then use that PHY device instance when triggering
1939 		 * the PHY reset.
1940 		 */
1941 		phy_dev = of_phy_find_device(fep->phy_node);
1942 		phy_reset_after_clk_enable(phy_dev);
1943 		put_device(&phy_dev->mdio.dev);
1944 	}
1945 }
1946 
1947 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1948 {
1949 	struct fec_enet_private *fep = netdev_priv(ndev);
1950 	int ret;
1951 
1952 	if (enable) {
1953 		ret = clk_prepare_enable(fep->clk_enet_out);
1954 		if (ret)
1955 			return ret;
1956 
1957 		if (fep->clk_ptp) {
1958 			mutex_lock(&fep->ptp_clk_mutex);
1959 			ret = clk_prepare_enable(fep->clk_ptp);
1960 			if (ret) {
1961 				mutex_unlock(&fep->ptp_clk_mutex);
1962 				goto failed_clk_ptp;
1963 			} else {
1964 				fep->ptp_clk_on = true;
1965 			}
1966 			mutex_unlock(&fep->ptp_clk_mutex);
1967 		}
1968 
1969 		ret = clk_prepare_enable(fep->clk_ref);
1970 		if (ret)
1971 			goto failed_clk_ref;
1972 
1973 		fec_enet_phy_reset_after_clk_enable(ndev);
1974 	} else {
1975 		clk_disable_unprepare(fep->clk_enet_out);
1976 		if (fep->clk_ptp) {
1977 			mutex_lock(&fep->ptp_clk_mutex);
1978 			clk_disable_unprepare(fep->clk_ptp);
1979 			fep->ptp_clk_on = false;
1980 			mutex_unlock(&fep->ptp_clk_mutex);
1981 		}
1982 		clk_disable_unprepare(fep->clk_ref);
1983 	}
1984 
1985 	return 0;
1986 
1987 failed_clk_ref:
1988 	if (fep->clk_ptp) {
1989 		mutex_lock(&fep->ptp_clk_mutex);
1990 		clk_disable_unprepare(fep->clk_ptp);
1991 		fep->ptp_clk_on = false;
1992 		mutex_unlock(&fep->ptp_clk_mutex);
1993 	}
1994 failed_clk_ptp:
1995 	clk_disable_unprepare(fep->clk_enet_out);
1996 
1997 	return ret;
1998 }
1999 
2000 static int fec_enet_mii_probe(struct net_device *ndev)
2001 {
2002 	struct fec_enet_private *fep = netdev_priv(ndev);
2003 	struct phy_device *phy_dev = NULL;
2004 	char mdio_bus_id[MII_BUS_ID_SIZE];
2005 	char phy_name[MII_BUS_ID_SIZE + 3];
2006 	int phy_id;
2007 	int dev_id = fep->dev_id;
2008 
2009 	if (fep->phy_node) {
2010 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2011 					 &fec_enet_adjust_link, 0,
2012 					 fep->phy_interface);
2013 		if (!phy_dev) {
2014 			netdev_err(ndev, "Unable to connect to phy\n");
2015 			return -ENODEV;
2016 		}
2017 	} else {
2018 		/* check for attached phy */
2019 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2020 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2021 				continue;
2022 			if (dev_id--)
2023 				continue;
2024 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2025 			break;
2026 		}
2027 
2028 		if (phy_id >= PHY_MAX_ADDR) {
2029 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2030 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2031 			phy_id = 0;
2032 		}
2033 
2034 		snprintf(phy_name, sizeof(phy_name),
2035 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2036 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2037 				      fep->phy_interface);
2038 	}
2039 
2040 	if (IS_ERR(phy_dev)) {
2041 		netdev_err(ndev, "could not attach to PHY\n");
2042 		return PTR_ERR(phy_dev);
2043 	}
2044 
2045 	/* mask with MAC supported features */
2046 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2047 		phy_set_max_speed(phy_dev, 1000);
2048 		phy_remove_link_mode(phy_dev,
2049 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2050 #if !defined(CONFIG_M5272)
2051 		phy_support_sym_pause(phy_dev);
2052 #endif
2053 	}
2054 	else
2055 		phy_set_max_speed(phy_dev, 100);
2056 
2057 	fep->link = 0;
2058 	fep->full_duplex = 0;
2059 
2060 	phy_dev->mac_managed_pm = 1;
2061 
2062 	phy_attached_info(phy_dev);
2063 
2064 	return 0;
2065 }
2066 
2067 static int fec_enet_mii_init(struct platform_device *pdev)
2068 {
2069 	static struct mii_bus *fec0_mii_bus;
2070 	struct net_device *ndev = platform_get_drvdata(pdev);
2071 	struct fec_enet_private *fep = netdev_priv(ndev);
2072 	bool suppress_preamble = false;
2073 	struct device_node *node;
2074 	int err = -ENXIO;
2075 	u32 mii_speed, holdtime;
2076 	u32 bus_freq;
2077 
2078 	/*
2079 	 * The i.MX28 dual fec interfaces are not equal.
2080 	 * Here are the differences:
2081 	 *
2082 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2083 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2084 	 *  - external phys can only be configured by fec0
2085 	 *
2086 	 * That is to say fec1 can not work independently. It only works
2087 	 * when fec0 is working. The reason behind this design is that the
2088 	 * second interface is added primarily for Switch mode.
2089 	 *
2090 	 * Because of the last point above, both phys are attached on fec0
2091 	 * mdio interface in board design, and need to be configured by
2092 	 * fec0 mii_bus.
2093 	 */
2094 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2095 		/* fec1 uses fec0 mii_bus */
2096 		if (mii_cnt && fec0_mii_bus) {
2097 			fep->mii_bus = fec0_mii_bus;
2098 			mii_cnt++;
2099 			return 0;
2100 		}
2101 		return -ENOENT;
2102 	}
2103 
2104 	bus_freq = 2500000; /* 2.5MHz by default */
2105 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2106 	if (node) {
2107 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2108 		suppress_preamble = of_property_read_bool(node,
2109 							  "suppress-preamble");
2110 	}
2111 
2112 	/*
2113 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2114 	 *
2115 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2116 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2117 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2118 	 * document.
2119 	 */
2120 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2121 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2122 		mii_speed--;
2123 	if (mii_speed > 63) {
2124 		dev_err(&pdev->dev,
2125 			"fec clock (%lu) too fast to get right mii speed\n",
2126 			clk_get_rate(fep->clk_ipg));
2127 		err = -EINVAL;
2128 		goto err_out;
2129 	}
2130 
2131 	/*
2132 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2133 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2134 	 * versions are RAZ there, so just ignore the difference and write the
2135 	 * register always.
2136 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2137 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2138 	 * output.
2139 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2140 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2141 	 * holdtime cannot result in a value greater than 3.
2142 	 */
2143 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2144 
2145 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2146 
2147 	if (suppress_preamble)
2148 		fep->phy_speed |= BIT(7);
2149 
2150 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2151 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2152 		 * MII event generation condition:
2153 		 * - writing MSCR:
2154 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2155 		 *	  mscr_reg_data_in[7:0] != 0
2156 		 * - writing MMFR:
2157 		 *	- mscr[7:0]_not_zero
2158 		 */
2159 		writel(0, fep->hwp + FEC_MII_DATA);
2160 	}
2161 
2162 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2163 
2164 	/* Clear any pending transaction complete indication */
2165 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2166 
2167 	fep->mii_bus = mdiobus_alloc();
2168 	if (fep->mii_bus == NULL) {
2169 		err = -ENOMEM;
2170 		goto err_out;
2171 	}
2172 
2173 	fep->mii_bus->name = "fec_enet_mii_bus";
2174 	fep->mii_bus->read = fec_enet_mdio_read;
2175 	fep->mii_bus->write = fec_enet_mdio_write;
2176 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2177 		pdev->name, fep->dev_id + 1);
2178 	fep->mii_bus->priv = fep;
2179 	fep->mii_bus->parent = &pdev->dev;
2180 
2181 	err = of_mdiobus_register(fep->mii_bus, node);
2182 	if (err)
2183 		goto err_out_free_mdiobus;
2184 	of_node_put(node);
2185 
2186 	mii_cnt++;
2187 
2188 	/* save fec0 mii_bus */
2189 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2190 		fec0_mii_bus = fep->mii_bus;
2191 
2192 	return 0;
2193 
2194 err_out_free_mdiobus:
2195 	mdiobus_free(fep->mii_bus);
2196 err_out:
2197 	of_node_put(node);
2198 	return err;
2199 }
2200 
2201 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2202 {
2203 	if (--mii_cnt == 0) {
2204 		mdiobus_unregister(fep->mii_bus);
2205 		mdiobus_free(fep->mii_bus);
2206 	}
2207 }
2208 
2209 static void fec_enet_get_drvinfo(struct net_device *ndev,
2210 				 struct ethtool_drvinfo *info)
2211 {
2212 	struct fec_enet_private *fep = netdev_priv(ndev);
2213 
2214 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2215 		sizeof(info->driver));
2216 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2217 }
2218 
2219 static int fec_enet_get_regs_len(struct net_device *ndev)
2220 {
2221 	struct fec_enet_private *fep = netdev_priv(ndev);
2222 	struct resource *r;
2223 	int s = 0;
2224 
2225 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2226 	if (r)
2227 		s = resource_size(r);
2228 
2229 	return s;
2230 }
2231 
2232 /* List of registers that can be safety be read to dump them with ethtool */
2233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2234 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2235 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2236 static __u32 fec_enet_register_version = 2;
2237 static u32 fec_enet_register_offset[] = {
2238 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2239 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2240 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2241 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2242 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2243 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2244 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2245 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2246 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2247 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2248 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2249 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2250 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2251 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2252 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2253 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2254 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2255 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2256 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2257 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2258 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2259 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2260 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2261 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2262 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2263 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2264 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2265 };
2266 #else
2267 static __u32 fec_enet_register_version = 1;
2268 static u32 fec_enet_register_offset[] = {
2269 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2270 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2271 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2272 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2273 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2274 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2275 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2276 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2277 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2278 };
2279 #endif
2280 
2281 static void fec_enet_get_regs(struct net_device *ndev,
2282 			      struct ethtool_regs *regs, void *regbuf)
2283 {
2284 	struct fec_enet_private *fep = netdev_priv(ndev);
2285 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2286 	struct device *dev = &fep->pdev->dev;
2287 	u32 *buf = (u32 *)regbuf;
2288 	u32 i, off;
2289 	int ret;
2290 
2291 	ret = pm_runtime_resume_and_get(dev);
2292 	if (ret < 0)
2293 		return;
2294 
2295 	regs->version = fec_enet_register_version;
2296 
2297 	memset(buf, 0, regs->len);
2298 
2299 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2300 		off = fec_enet_register_offset[i];
2301 
2302 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2303 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2304 			continue;
2305 
2306 		off >>= 2;
2307 		buf[off] = readl(&theregs[off]);
2308 	}
2309 
2310 	pm_runtime_mark_last_busy(dev);
2311 	pm_runtime_put_autosuspend(dev);
2312 }
2313 
2314 static int fec_enet_get_ts_info(struct net_device *ndev,
2315 				struct ethtool_ts_info *info)
2316 {
2317 	struct fec_enet_private *fep = netdev_priv(ndev);
2318 
2319 	if (fep->bufdesc_ex) {
2320 
2321 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2322 					SOF_TIMESTAMPING_RX_SOFTWARE |
2323 					SOF_TIMESTAMPING_SOFTWARE |
2324 					SOF_TIMESTAMPING_TX_HARDWARE |
2325 					SOF_TIMESTAMPING_RX_HARDWARE |
2326 					SOF_TIMESTAMPING_RAW_HARDWARE;
2327 		if (fep->ptp_clock)
2328 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2329 		else
2330 			info->phc_index = -1;
2331 
2332 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2333 				 (1 << HWTSTAMP_TX_ON);
2334 
2335 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2336 				   (1 << HWTSTAMP_FILTER_ALL);
2337 		return 0;
2338 	} else {
2339 		return ethtool_op_get_ts_info(ndev, info);
2340 	}
2341 }
2342 
2343 #if !defined(CONFIG_M5272)
2344 
2345 static void fec_enet_get_pauseparam(struct net_device *ndev,
2346 				    struct ethtool_pauseparam *pause)
2347 {
2348 	struct fec_enet_private *fep = netdev_priv(ndev);
2349 
2350 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2351 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2352 	pause->rx_pause = pause->tx_pause;
2353 }
2354 
2355 static int fec_enet_set_pauseparam(struct net_device *ndev,
2356 				   struct ethtool_pauseparam *pause)
2357 {
2358 	struct fec_enet_private *fep = netdev_priv(ndev);
2359 
2360 	if (!ndev->phydev)
2361 		return -ENODEV;
2362 
2363 	if (pause->tx_pause != pause->rx_pause) {
2364 		netdev_info(ndev,
2365 			"hardware only support enable/disable both tx and rx");
2366 		return -EINVAL;
2367 	}
2368 
2369 	fep->pause_flag = 0;
2370 
2371 	/* tx pause must be same as rx pause */
2372 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2373 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2374 
2375 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2376 			  pause->autoneg);
2377 
2378 	if (pause->autoneg) {
2379 		if (netif_running(ndev))
2380 			fec_stop(ndev);
2381 		phy_start_aneg(ndev->phydev);
2382 	}
2383 	if (netif_running(ndev)) {
2384 		napi_disable(&fep->napi);
2385 		netif_tx_lock_bh(ndev);
2386 		fec_restart(ndev);
2387 		netif_tx_wake_all_queues(ndev);
2388 		netif_tx_unlock_bh(ndev);
2389 		napi_enable(&fep->napi);
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static const struct fec_stat {
2396 	char name[ETH_GSTRING_LEN];
2397 	u16 offset;
2398 } fec_stats[] = {
2399 	/* RMON TX */
2400 	{ "tx_dropped", RMON_T_DROP },
2401 	{ "tx_packets", RMON_T_PACKETS },
2402 	{ "tx_broadcast", RMON_T_BC_PKT },
2403 	{ "tx_multicast", RMON_T_MC_PKT },
2404 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2405 	{ "tx_undersize", RMON_T_UNDERSIZE },
2406 	{ "tx_oversize", RMON_T_OVERSIZE },
2407 	{ "tx_fragment", RMON_T_FRAG },
2408 	{ "tx_jabber", RMON_T_JAB },
2409 	{ "tx_collision", RMON_T_COL },
2410 	{ "tx_64byte", RMON_T_P64 },
2411 	{ "tx_65to127byte", RMON_T_P65TO127 },
2412 	{ "tx_128to255byte", RMON_T_P128TO255 },
2413 	{ "tx_256to511byte", RMON_T_P256TO511 },
2414 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2415 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2416 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2417 	{ "tx_octets", RMON_T_OCTETS },
2418 
2419 	/* IEEE TX */
2420 	{ "IEEE_tx_drop", IEEE_T_DROP },
2421 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2422 	{ "IEEE_tx_1col", IEEE_T_1COL },
2423 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2424 	{ "IEEE_tx_def", IEEE_T_DEF },
2425 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2426 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2427 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2428 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2429 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2430 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2431 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2432 
2433 	/* RMON RX */
2434 	{ "rx_packets", RMON_R_PACKETS },
2435 	{ "rx_broadcast", RMON_R_BC_PKT },
2436 	{ "rx_multicast", RMON_R_MC_PKT },
2437 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2438 	{ "rx_undersize", RMON_R_UNDERSIZE },
2439 	{ "rx_oversize", RMON_R_OVERSIZE },
2440 	{ "rx_fragment", RMON_R_FRAG },
2441 	{ "rx_jabber", RMON_R_JAB },
2442 	{ "rx_64byte", RMON_R_P64 },
2443 	{ "rx_65to127byte", RMON_R_P65TO127 },
2444 	{ "rx_128to255byte", RMON_R_P128TO255 },
2445 	{ "rx_256to511byte", RMON_R_P256TO511 },
2446 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2447 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2448 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2449 	{ "rx_octets", RMON_R_OCTETS },
2450 
2451 	/* IEEE RX */
2452 	{ "IEEE_rx_drop", IEEE_R_DROP },
2453 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2454 	{ "IEEE_rx_crc", IEEE_R_CRC },
2455 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2456 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2457 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2458 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2459 };
2460 
2461 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2462 
2463 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2464 {
2465 	struct fec_enet_private *fep = netdev_priv(dev);
2466 	int i;
2467 
2468 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2469 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2470 }
2471 
2472 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2473 				       struct ethtool_stats *stats, u64 *data)
2474 {
2475 	struct fec_enet_private *fep = netdev_priv(dev);
2476 
2477 	if (netif_running(dev))
2478 		fec_enet_update_ethtool_stats(dev);
2479 
2480 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2481 }
2482 
2483 static void fec_enet_get_strings(struct net_device *netdev,
2484 	u32 stringset, u8 *data)
2485 {
2486 	int i;
2487 	switch (stringset) {
2488 	case ETH_SS_STATS:
2489 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2490 			memcpy(data + i * ETH_GSTRING_LEN,
2491 				fec_stats[i].name, ETH_GSTRING_LEN);
2492 		break;
2493 	case ETH_SS_TEST:
2494 		net_selftest_get_strings(data);
2495 		break;
2496 	}
2497 }
2498 
2499 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2500 {
2501 	switch (sset) {
2502 	case ETH_SS_STATS:
2503 		return ARRAY_SIZE(fec_stats);
2504 	case ETH_SS_TEST:
2505 		return net_selftest_get_count();
2506 	default:
2507 		return -EOPNOTSUPP;
2508 	}
2509 }
2510 
2511 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2512 {
2513 	struct fec_enet_private *fep = netdev_priv(dev);
2514 	int i;
2515 
2516 	/* Disable MIB statistics counters */
2517 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2518 
2519 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2520 		writel(0, fep->hwp + fec_stats[i].offset);
2521 
2522 	/* Don't disable MIB statistics counters */
2523 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2524 }
2525 
2526 #else	/* !defined(CONFIG_M5272) */
2527 #define FEC_STATS_SIZE	0
2528 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2529 {
2530 }
2531 
2532 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2533 {
2534 }
2535 #endif /* !defined(CONFIG_M5272) */
2536 
2537 /* ITR clock source is enet system clock (clk_ahb).
2538  * TCTT unit is cycle_ns * 64 cycle
2539  * So, the ICTT value = X us / (cycle_ns * 64)
2540  */
2541 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2542 {
2543 	struct fec_enet_private *fep = netdev_priv(ndev);
2544 
2545 	return us * (fep->itr_clk_rate / 64000) / 1000;
2546 }
2547 
2548 /* Set threshold for interrupt coalescing */
2549 static void fec_enet_itr_coal_set(struct net_device *ndev)
2550 {
2551 	struct fec_enet_private *fep = netdev_priv(ndev);
2552 	int rx_itr, tx_itr;
2553 
2554 	/* Must be greater than zero to avoid unpredictable behavior */
2555 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2556 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2557 		return;
2558 
2559 	/* Select enet system clock as Interrupt Coalescing
2560 	 * timer Clock Source
2561 	 */
2562 	rx_itr = FEC_ITR_CLK_SEL;
2563 	tx_itr = FEC_ITR_CLK_SEL;
2564 
2565 	/* set ICFT and ICTT */
2566 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2567 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2568 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2569 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2570 
2571 	rx_itr |= FEC_ITR_EN;
2572 	tx_itr |= FEC_ITR_EN;
2573 
2574 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2575 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2576 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2577 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2578 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2579 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2580 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2581 	}
2582 }
2583 
2584 static int
2585 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2586 {
2587 	struct fec_enet_private *fep = netdev_priv(ndev);
2588 
2589 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2590 		return -EOPNOTSUPP;
2591 
2592 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2593 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2594 
2595 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2596 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2597 
2598 	return 0;
2599 }
2600 
2601 static int
2602 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2603 {
2604 	struct fec_enet_private *fep = netdev_priv(ndev);
2605 	struct device *dev = &fep->pdev->dev;
2606 	unsigned int cycle;
2607 
2608 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2609 		return -EOPNOTSUPP;
2610 
2611 	if (ec->rx_max_coalesced_frames > 255) {
2612 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2613 		return -EINVAL;
2614 	}
2615 
2616 	if (ec->tx_max_coalesced_frames > 255) {
2617 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2618 		return -EINVAL;
2619 	}
2620 
2621 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2622 	if (cycle > 0xFFFF) {
2623 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2624 		return -EINVAL;
2625 	}
2626 
2627 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2628 	if (cycle > 0xFFFF) {
2629 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2630 		return -EINVAL;
2631 	}
2632 
2633 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2634 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2635 
2636 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2637 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2638 
2639 	fec_enet_itr_coal_set(ndev);
2640 
2641 	return 0;
2642 }
2643 
2644 static void fec_enet_itr_coal_init(struct net_device *ndev)
2645 {
2646 	struct ethtool_coalesce ec;
2647 
2648 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2649 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2650 
2651 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2652 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2653 
2654 	fec_enet_set_coalesce(ndev, &ec);
2655 }
2656 
2657 static int fec_enet_get_tunable(struct net_device *netdev,
2658 				const struct ethtool_tunable *tuna,
2659 				void *data)
2660 {
2661 	struct fec_enet_private *fep = netdev_priv(netdev);
2662 	int ret = 0;
2663 
2664 	switch (tuna->id) {
2665 	case ETHTOOL_RX_COPYBREAK:
2666 		*(u32 *)data = fep->rx_copybreak;
2667 		break;
2668 	default:
2669 		ret = -EINVAL;
2670 		break;
2671 	}
2672 
2673 	return ret;
2674 }
2675 
2676 static int fec_enet_set_tunable(struct net_device *netdev,
2677 				const struct ethtool_tunable *tuna,
2678 				const void *data)
2679 {
2680 	struct fec_enet_private *fep = netdev_priv(netdev);
2681 	int ret = 0;
2682 
2683 	switch (tuna->id) {
2684 	case ETHTOOL_RX_COPYBREAK:
2685 		fep->rx_copybreak = *(u32 *)data;
2686 		break;
2687 	default:
2688 		ret = -EINVAL;
2689 		break;
2690 	}
2691 
2692 	return ret;
2693 }
2694 
2695 static void
2696 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2697 {
2698 	struct fec_enet_private *fep = netdev_priv(ndev);
2699 
2700 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2701 		wol->supported = WAKE_MAGIC;
2702 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2703 	} else {
2704 		wol->supported = wol->wolopts = 0;
2705 	}
2706 }
2707 
2708 static int
2709 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2710 {
2711 	struct fec_enet_private *fep = netdev_priv(ndev);
2712 
2713 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2714 		return -EINVAL;
2715 
2716 	if (wol->wolopts & ~WAKE_MAGIC)
2717 		return -EINVAL;
2718 
2719 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2720 	if (device_may_wakeup(&ndev->dev)) {
2721 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2722 		if (fep->irq[0] > 0)
2723 			enable_irq_wake(fep->irq[0]);
2724 	} else {
2725 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2726 		if (fep->irq[0] > 0)
2727 			disable_irq_wake(fep->irq[0]);
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static const struct ethtool_ops fec_enet_ethtool_ops = {
2734 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2735 				     ETHTOOL_COALESCE_MAX_FRAMES,
2736 	.get_drvinfo		= fec_enet_get_drvinfo,
2737 	.get_regs_len		= fec_enet_get_regs_len,
2738 	.get_regs		= fec_enet_get_regs,
2739 	.nway_reset		= phy_ethtool_nway_reset,
2740 	.get_link		= ethtool_op_get_link,
2741 	.get_coalesce		= fec_enet_get_coalesce,
2742 	.set_coalesce		= fec_enet_set_coalesce,
2743 #ifndef CONFIG_M5272
2744 	.get_pauseparam		= fec_enet_get_pauseparam,
2745 	.set_pauseparam		= fec_enet_set_pauseparam,
2746 	.get_strings		= fec_enet_get_strings,
2747 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2748 	.get_sset_count		= fec_enet_get_sset_count,
2749 #endif
2750 	.get_ts_info		= fec_enet_get_ts_info,
2751 	.get_tunable		= fec_enet_get_tunable,
2752 	.set_tunable		= fec_enet_set_tunable,
2753 	.get_wol		= fec_enet_get_wol,
2754 	.set_wol		= fec_enet_set_wol,
2755 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2756 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2757 	.self_test		= net_selftest,
2758 };
2759 
2760 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2761 {
2762 	struct fec_enet_private *fep = netdev_priv(ndev);
2763 	struct phy_device *phydev = ndev->phydev;
2764 
2765 	if (!netif_running(ndev))
2766 		return -EINVAL;
2767 
2768 	if (!phydev)
2769 		return -ENODEV;
2770 
2771 	if (fep->bufdesc_ex) {
2772 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2773 
2774 		if (cmd == SIOCSHWTSTAMP) {
2775 			if (use_fec_hwts)
2776 				return fec_ptp_set(ndev, rq);
2777 			fec_ptp_disable_hwts(ndev);
2778 		} else if (cmd == SIOCGHWTSTAMP) {
2779 			if (use_fec_hwts)
2780 				return fec_ptp_get(ndev, rq);
2781 		}
2782 	}
2783 
2784 	return phy_mii_ioctl(phydev, rq, cmd);
2785 }
2786 
2787 static void fec_enet_free_buffers(struct net_device *ndev)
2788 {
2789 	struct fec_enet_private *fep = netdev_priv(ndev);
2790 	unsigned int i;
2791 	struct sk_buff *skb;
2792 	struct bufdesc	*bdp;
2793 	struct fec_enet_priv_tx_q *txq;
2794 	struct fec_enet_priv_rx_q *rxq;
2795 	unsigned int q;
2796 
2797 	for (q = 0; q < fep->num_rx_queues; q++) {
2798 		rxq = fep->rx_queue[q];
2799 		bdp = rxq->bd.base;
2800 		for (i = 0; i < rxq->bd.ring_size; i++) {
2801 			skb = rxq->rx_skbuff[i];
2802 			rxq->rx_skbuff[i] = NULL;
2803 			if (skb) {
2804 				dma_unmap_single(&fep->pdev->dev,
2805 						 fec32_to_cpu(bdp->cbd_bufaddr),
2806 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2807 						 DMA_FROM_DEVICE);
2808 				dev_kfree_skb(skb);
2809 			}
2810 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2811 		}
2812 	}
2813 
2814 	for (q = 0; q < fep->num_tx_queues; q++) {
2815 		txq = fep->tx_queue[q];
2816 		for (i = 0; i < txq->bd.ring_size; i++) {
2817 			kfree(txq->tx_bounce[i]);
2818 			txq->tx_bounce[i] = NULL;
2819 			skb = txq->tx_skbuff[i];
2820 			txq->tx_skbuff[i] = NULL;
2821 			dev_kfree_skb(skb);
2822 		}
2823 	}
2824 }
2825 
2826 static void fec_enet_free_queue(struct net_device *ndev)
2827 {
2828 	struct fec_enet_private *fep = netdev_priv(ndev);
2829 	int i;
2830 	struct fec_enet_priv_tx_q *txq;
2831 
2832 	for (i = 0; i < fep->num_tx_queues; i++)
2833 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2834 			txq = fep->tx_queue[i];
2835 			dma_free_coherent(&fep->pdev->dev,
2836 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2837 					  txq->tso_hdrs,
2838 					  txq->tso_hdrs_dma);
2839 		}
2840 
2841 	for (i = 0; i < fep->num_rx_queues; i++)
2842 		kfree(fep->rx_queue[i]);
2843 	for (i = 0; i < fep->num_tx_queues; i++)
2844 		kfree(fep->tx_queue[i]);
2845 }
2846 
2847 static int fec_enet_alloc_queue(struct net_device *ndev)
2848 {
2849 	struct fec_enet_private *fep = netdev_priv(ndev);
2850 	int i;
2851 	int ret = 0;
2852 	struct fec_enet_priv_tx_q *txq;
2853 
2854 	for (i = 0; i < fep->num_tx_queues; i++) {
2855 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2856 		if (!txq) {
2857 			ret = -ENOMEM;
2858 			goto alloc_failed;
2859 		}
2860 
2861 		fep->tx_queue[i] = txq;
2862 		txq->bd.ring_size = TX_RING_SIZE;
2863 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2864 
2865 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2866 		txq->tx_wake_threshold =
2867 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2868 
2869 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2870 					txq->bd.ring_size * TSO_HEADER_SIZE,
2871 					&txq->tso_hdrs_dma,
2872 					GFP_KERNEL);
2873 		if (!txq->tso_hdrs) {
2874 			ret = -ENOMEM;
2875 			goto alloc_failed;
2876 		}
2877 	}
2878 
2879 	for (i = 0; i < fep->num_rx_queues; i++) {
2880 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2881 					   GFP_KERNEL);
2882 		if (!fep->rx_queue[i]) {
2883 			ret = -ENOMEM;
2884 			goto alloc_failed;
2885 		}
2886 
2887 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2888 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2889 	}
2890 	return ret;
2891 
2892 alloc_failed:
2893 	fec_enet_free_queue(ndev);
2894 	return ret;
2895 }
2896 
2897 static int
2898 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2899 {
2900 	struct fec_enet_private *fep = netdev_priv(ndev);
2901 	unsigned int i;
2902 	struct sk_buff *skb;
2903 	struct bufdesc	*bdp;
2904 	struct fec_enet_priv_rx_q *rxq;
2905 
2906 	rxq = fep->rx_queue[queue];
2907 	bdp = rxq->bd.base;
2908 	for (i = 0; i < rxq->bd.ring_size; i++) {
2909 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2910 		if (!skb)
2911 			goto err_alloc;
2912 
2913 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2914 			dev_kfree_skb(skb);
2915 			goto err_alloc;
2916 		}
2917 
2918 		rxq->rx_skbuff[i] = skb;
2919 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2920 
2921 		if (fep->bufdesc_ex) {
2922 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2923 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2924 		}
2925 
2926 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2927 	}
2928 
2929 	/* Set the last buffer to wrap. */
2930 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2931 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2932 	return 0;
2933 
2934  err_alloc:
2935 	fec_enet_free_buffers(ndev);
2936 	return -ENOMEM;
2937 }
2938 
2939 static int
2940 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2941 {
2942 	struct fec_enet_private *fep = netdev_priv(ndev);
2943 	unsigned int i;
2944 	struct bufdesc  *bdp;
2945 	struct fec_enet_priv_tx_q *txq;
2946 
2947 	txq = fep->tx_queue[queue];
2948 	bdp = txq->bd.base;
2949 	for (i = 0; i < txq->bd.ring_size; i++) {
2950 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2951 		if (!txq->tx_bounce[i])
2952 			goto err_alloc;
2953 
2954 		bdp->cbd_sc = cpu_to_fec16(0);
2955 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2956 
2957 		if (fep->bufdesc_ex) {
2958 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2959 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2960 		}
2961 
2962 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2963 	}
2964 
2965 	/* Set the last buffer to wrap. */
2966 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2967 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2968 
2969 	return 0;
2970 
2971  err_alloc:
2972 	fec_enet_free_buffers(ndev);
2973 	return -ENOMEM;
2974 }
2975 
2976 static int fec_enet_alloc_buffers(struct net_device *ndev)
2977 {
2978 	struct fec_enet_private *fep = netdev_priv(ndev);
2979 	unsigned int i;
2980 
2981 	for (i = 0; i < fep->num_rx_queues; i++)
2982 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2983 			return -ENOMEM;
2984 
2985 	for (i = 0; i < fep->num_tx_queues; i++)
2986 		if (fec_enet_alloc_txq_buffers(ndev, i))
2987 			return -ENOMEM;
2988 	return 0;
2989 }
2990 
2991 static int
2992 fec_enet_open(struct net_device *ndev)
2993 {
2994 	struct fec_enet_private *fep = netdev_priv(ndev);
2995 	int ret;
2996 	bool reset_again;
2997 
2998 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
2999 	if (ret < 0)
3000 		return ret;
3001 
3002 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3003 	ret = fec_enet_clk_enable(ndev, true);
3004 	if (ret)
3005 		goto clk_enable;
3006 
3007 	/* During the first fec_enet_open call the PHY isn't probed at this
3008 	 * point. Therefore the phy_reset_after_clk_enable() call within
3009 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3010 	 * sure the PHY is working correctly we check if we need to reset again
3011 	 * later when the PHY is probed
3012 	 */
3013 	if (ndev->phydev && ndev->phydev->drv)
3014 		reset_again = false;
3015 	else
3016 		reset_again = true;
3017 
3018 	/* I should reset the ring buffers here, but I don't yet know
3019 	 * a simple way to do that.
3020 	 */
3021 
3022 	ret = fec_enet_alloc_buffers(ndev);
3023 	if (ret)
3024 		goto err_enet_alloc;
3025 
3026 	/* Init MAC prior to mii bus probe */
3027 	fec_restart(ndev);
3028 
3029 	/* Call phy_reset_after_clk_enable() again if it failed during
3030 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3031 	 */
3032 	if (reset_again)
3033 		fec_enet_phy_reset_after_clk_enable(ndev);
3034 
3035 	/* Probe and connect to PHY when open the interface */
3036 	ret = fec_enet_mii_probe(ndev);
3037 	if (ret)
3038 		goto err_enet_mii_probe;
3039 
3040 	if (fep->quirks & FEC_QUIRK_ERR006687)
3041 		imx6q_cpuidle_fec_irqs_used();
3042 
3043 	napi_enable(&fep->napi);
3044 	phy_start(ndev->phydev);
3045 	netif_tx_start_all_queues(ndev);
3046 
3047 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3048 				 FEC_WOL_FLAG_ENABLE);
3049 
3050 	return 0;
3051 
3052 err_enet_mii_probe:
3053 	fec_enet_free_buffers(ndev);
3054 err_enet_alloc:
3055 	fec_enet_clk_enable(ndev, false);
3056 clk_enable:
3057 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3058 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3059 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3060 	return ret;
3061 }
3062 
3063 static int
3064 fec_enet_close(struct net_device *ndev)
3065 {
3066 	struct fec_enet_private *fep = netdev_priv(ndev);
3067 
3068 	phy_stop(ndev->phydev);
3069 
3070 	if (netif_device_present(ndev)) {
3071 		napi_disable(&fep->napi);
3072 		netif_tx_disable(ndev);
3073 		fec_stop(ndev);
3074 	}
3075 
3076 	phy_disconnect(ndev->phydev);
3077 
3078 	if (fep->quirks & FEC_QUIRK_ERR006687)
3079 		imx6q_cpuidle_fec_irqs_unused();
3080 
3081 	fec_enet_update_ethtool_stats(ndev);
3082 
3083 	fec_enet_clk_enable(ndev, false);
3084 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3085 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3086 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3087 
3088 	fec_enet_free_buffers(ndev);
3089 
3090 	return 0;
3091 }
3092 
3093 /* Set or clear the multicast filter for this adaptor.
3094  * Skeleton taken from sunlance driver.
3095  * The CPM Ethernet implementation allows Multicast as well as individual
3096  * MAC address filtering.  Some of the drivers check to make sure it is
3097  * a group multicast address, and discard those that are not.  I guess I
3098  * will do the same for now, but just remove the test if you want
3099  * individual filtering as well (do the upper net layers want or support
3100  * this kind of feature?).
3101  */
3102 
3103 #define FEC_HASH_BITS	6		/* #bits in hash */
3104 
3105 static void set_multicast_list(struct net_device *ndev)
3106 {
3107 	struct fec_enet_private *fep = netdev_priv(ndev);
3108 	struct netdev_hw_addr *ha;
3109 	unsigned int crc, tmp;
3110 	unsigned char hash;
3111 	unsigned int hash_high = 0, hash_low = 0;
3112 
3113 	if (ndev->flags & IFF_PROMISC) {
3114 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3115 		tmp |= 0x8;
3116 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3117 		return;
3118 	}
3119 
3120 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3121 	tmp &= ~0x8;
3122 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3123 
3124 	if (ndev->flags & IFF_ALLMULTI) {
3125 		/* Catch all multicast addresses, so set the
3126 		 * filter to all 1's
3127 		 */
3128 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3129 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3130 
3131 		return;
3132 	}
3133 
3134 	/* Add the addresses in hash register */
3135 	netdev_for_each_mc_addr(ha, ndev) {
3136 		/* calculate crc32 value of mac address */
3137 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3138 
3139 		/* only upper 6 bits (FEC_HASH_BITS) are used
3140 		 * which point to specific bit in the hash registers
3141 		 */
3142 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3143 
3144 		if (hash > 31)
3145 			hash_high |= 1 << (hash - 32);
3146 		else
3147 			hash_low |= 1 << hash;
3148 	}
3149 
3150 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3151 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3152 }
3153 
3154 /* Set a MAC change in hardware. */
3155 static int
3156 fec_set_mac_address(struct net_device *ndev, void *p)
3157 {
3158 	struct fec_enet_private *fep = netdev_priv(ndev);
3159 	struct sockaddr *addr = p;
3160 
3161 	if (addr) {
3162 		if (!is_valid_ether_addr(addr->sa_data))
3163 			return -EADDRNOTAVAIL;
3164 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3165 	}
3166 
3167 	/* Add netif status check here to avoid system hang in below case:
3168 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3169 	 * After ethx down, fec all clocks are gated off and then register
3170 	 * access causes system hang.
3171 	 */
3172 	if (!netif_running(ndev))
3173 		return 0;
3174 
3175 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3176 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3177 		fep->hwp + FEC_ADDR_LOW);
3178 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3179 		fep->hwp + FEC_ADDR_HIGH);
3180 	return 0;
3181 }
3182 
3183 #ifdef CONFIG_NET_POLL_CONTROLLER
3184 /**
3185  * fec_poll_controller - FEC Poll controller function
3186  * @dev: The FEC network adapter
3187  *
3188  * Polled functionality used by netconsole and others in non interrupt mode
3189  *
3190  */
3191 static void fec_poll_controller(struct net_device *dev)
3192 {
3193 	int i;
3194 	struct fec_enet_private *fep = netdev_priv(dev);
3195 
3196 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3197 		if (fep->irq[i] > 0) {
3198 			disable_irq(fep->irq[i]);
3199 			fec_enet_interrupt(fep->irq[i], dev);
3200 			enable_irq(fep->irq[i]);
3201 		}
3202 	}
3203 }
3204 #endif
3205 
3206 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3207 	netdev_features_t features)
3208 {
3209 	struct fec_enet_private *fep = netdev_priv(netdev);
3210 	netdev_features_t changed = features ^ netdev->features;
3211 
3212 	netdev->features = features;
3213 
3214 	/* Receive checksum has been changed */
3215 	if (changed & NETIF_F_RXCSUM) {
3216 		if (features & NETIF_F_RXCSUM)
3217 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3218 		else
3219 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3220 	}
3221 }
3222 
3223 static int fec_set_features(struct net_device *netdev,
3224 	netdev_features_t features)
3225 {
3226 	struct fec_enet_private *fep = netdev_priv(netdev);
3227 	netdev_features_t changed = features ^ netdev->features;
3228 
3229 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3230 		napi_disable(&fep->napi);
3231 		netif_tx_lock_bh(netdev);
3232 		fec_stop(netdev);
3233 		fec_enet_set_netdev_features(netdev, features);
3234 		fec_restart(netdev);
3235 		netif_tx_wake_all_queues(netdev);
3236 		netif_tx_unlock_bh(netdev);
3237 		napi_enable(&fep->napi);
3238 	} else {
3239 		fec_enet_set_netdev_features(netdev, features);
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3246 {
3247 	struct vlan_ethhdr *vhdr;
3248 	unsigned short vlan_TCI = 0;
3249 
3250 	if (skb->protocol == htons(ETH_P_ALL)) {
3251 		vhdr = (struct vlan_ethhdr *)(skb->data);
3252 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3253 	}
3254 
3255 	return vlan_TCI;
3256 }
3257 
3258 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3259 				 struct net_device *sb_dev)
3260 {
3261 	struct fec_enet_private *fep = netdev_priv(ndev);
3262 	u16 vlan_tag;
3263 
3264 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3265 		return netdev_pick_tx(ndev, skb, NULL);
3266 
3267 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3268 	if (!vlan_tag)
3269 		return vlan_tag;
3270 
3271 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3272 }
3273 
3274 static const struct net_device_ops fec_netdev_ops = {
3275 	.ndo_open		= fec_enet_open,
3276 	.ndo_stop		= fec_enet_close,
3277 	.ndo_start_xmit		= fec_enet_start_xmit,
3278 	.ndo_select_queue       = fec_enet_select_queue,
3279 	.ndo_set_rx_mode	= set_multicast_list,
3280 	.ndo_validate_addr	= eth_validate_addr,
3281 	.ndo_tx_timeout		= fec_timeout,
3282 	.ndo_set_mac_address	= fec_set_mac_address,
3283 	.ndo_do_ioctl		= fec_enet_ioctl,
3284 #ifdef CONFIG_NET_POLL_CONTROLLER
3285 	.ndo_poll_controller	= fec_poll_controller,
3286 #endif
3287 	.ndo_set_features	= fec_set_features,
3288 };
3289 
3290 static const unsigned short offset_des_active_rxq[] = {
3291 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3292 };
3293 
3294 static const unsigned short offset_des_active_txq[] = {
3295 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3296 };
3297 
3298  /*
3299   * XXX:  We need to clean up on failure exits here.
3300   *
3301   */
3302 static int fec_enet_init(struct net_device *ndev)
3303 {
3304 	struct fec_enet_private *fep = netdev_priv(ndev);
3305 	struct bufdesc *cbd_base;
3306 	dma_addr_t bd_dma;
3307 	int bd_size;
3308 	unsigned int i;
3309 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3310 			sizeof(struct bufdesc);
3311 	unsigned dsize_log2 = __fls(dsize);
3312 	int ret;
3313 
3314 	WARN_ON(dsize != (1 << dsize_log2));
3315 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3316 	fep->rx_align = 0xf;
3317 	fep->tx_align = 0xf;
3318 #else
3319 	fep->rx_align = 0x3;
3320 	fep->tx_align = 0x3;
3321 #endif
3322 
3323 	/* Check mask of the streaming and coherent API */
3324 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3325 	if (ret < 0) {
3326 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3327 		return ret;
3328 	}
3329 
3330 	ret = fec_enet_alloc_queue(ndev);
3331 	if (ret)
3332 		return ret;
3333 
3334 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3335 
3336 	/* Allocate memory for buffer descriptors. */
3337 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3338 				       GFP_KERNEL);
3339 	if (!cbd_base) {
3340 		ret = -ENOMEM;
3341 		goto free_queue_mem;
3342 	}
3343 
3344 	/* Get the Ethernet address */
3345 	ret = fec_get_mac(ndev);
3346 	if (ret)
3347 		goto free_queue_mem;
3348 
3349 	/* make sure MAC we just acquired is programmed into the hw */
3350 	fec_set_mac_address(ndev, NULL);
3351 
3352 	/* Set receive and transmit descriptor base. */
3353 	for (i = 0; i < fep->num_rx_queues; i++) {
3354 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3355 		unsigned size = dsize * rxq->bd.ring_size;
3356 
3357 		rxq->bd.qid = i;
3358 		rxq->bd.base = cbd_base;
3359 		rxq->bd.cur = cbd_base;
3360 		rxq->bd.dma = bd_dma;
3361 		rxq->bd.dsize = dsize;
3362 		rxq->bd.dsize_log2 = dsize_log2;
3363 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3364 		bd_dma += size;
3365 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3366 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3367 	}
3368 
3369 	for (i = 0; i < fep->num_tx_queues; i++) {
3370 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3371 		unsigned size = dsize * txq->bd.ring_size;
3372 
3373 		txq->bd.qid = i;
3374 		txq->bd.base = cbd_base;
3375 		txq->bd.cur = cbd_base;
3376 		txq->bd.dma = bd_dma;
3377 		txq->bd.dsize = dsize;
3378 		txq->bd.dsize_log2 = dsize_log2;
3379 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3380 		bd_dma += size;
3381 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3382 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3383 	}
3384 
3385 
3386 	/* The FEC Ethernet specific entries in the device structure */
3387 	ndev->watchdog_timeo = TX_TIMEOUT;
3388 	ndev->netdev_ops = &fec_netdev_ops;
3389 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3390 
3391 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3392 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3393 
3394 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3395 		/* enable hw VLAN support */
3396 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3397 
3398 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3399 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3400 
3401 		/* enable hw accelerator */
3402 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3403 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3404 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3405 	}
3406 
3407 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3408 		fep->tx_align = 0;
3409 		fep->rx_align = 0x3f;
3410 	}
3411 
3412 	ndev->hw_features = ndev->features;
3413 
3414 	fec_restart(ndev);
3415 
3416 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3417 		fec_enet_clear_ethtool_stats(ndev);
3418 	else
3419 		fec_enet_update_ethtool_stats(ndev);
3420 
3421 	return 0;
3422 
3423 free_queue_mem:
3424 	fec_enet_free_queue(ndev);
3425 	return ret;
3426 }
3427 
3428 #ifdef CONFIG_OF
3429 static int fec_reset_phy(struct platform_device *pdev)
3430 {
3431 	int err, phy_reset;
3432 	bool active_high = false;
3433 	int msec = 1, phy_post_delay = 0;
3434 	struct device_node *np = pdev->dev.of_node;
3435 
3436 	if (!np)
3437 		return 0;
3438 
3439 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3440 	/* A sane reset duration should not be longer than 1s */
3441 	if (!err && msec > 1000)
3442 		msec = 1;
3443 
3444 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3445 	if (phy_reset == -EPROBE_DEFER)
3446 		return phy_reset;
3447 	else if (!gpio_is_valid(phy_reset))
3448 		return 0;
3449 
3450 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3451 	/* valid reset duration should be less than 1s */
3452 	if (!err && phy_post_delay > 1000)
3453 		return -EINVAL;
3454 
3455 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3456 
3457 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3458 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3459 			"phy-reset");
3460 	if (err) {
3461 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3462 		return err;
3463 	}
3464 
3465 	if (msec > 20)
3466 		msleep(msec);
3467 	else
3468 		usleep_range(msec * 1000, msec * 1000 + 1000);
3469 
3470 	gpio_set_value_cansleep(phy_reset, !active_high);
3471 
3472 	if (!phy_post_delay)
3473 		return 0;
3474 
3475 	if (phy_post_delay > 20)
3476 		msleep(phy_post_delay);
3477 	else
3478 		usleep_range(phy_post_delay * 1000,
3479 			     phy_post_delay * 1000 + 1000);
3480 
3481 	return 0;
3482 }
3483 #else /* CONFIG_OF */
3484 static int fec_reset_phy(struct platform_device *pdev)
3485 {
3486 	/*
3487 	 * In case of platform probe, the reset has been done
3488 	 * by machine code.
3489 	 */
3490 	return 0;
3491 }
3492 #endif /* CONFIG_OF */
3493 
3494 static void
3495 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3496 {
3497 	struct device_node *np = pdev->dev.of_node;
3498 
3499 	*num_tx = *num_rx = 1;
3500 
3501 	if (!np || !of_device_is_available(np))
3502 		return;
3503 
3504 	/* parse the num of tx and rx queues */
3505 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3506 
3507 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3508 
3509 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3510 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3511 			 *num_tx);
3512 		*num_tx = 1;
3513 		return;
3514 	}
3515 
3516 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3517 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3518 			 *num_rx);
3519 		*num_rx = 1;
3520 		return;
3521 	}
3522 
3523 }
3524 
3525 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3526 {
3527 	int irq_cnt = platform_irq_count(pdev);
3528 
3529 	if (irq_cnt > FEC_IRQ_NUM)
3530 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3531 	else if (irq_cnt == 2)
3532 		irq_cnt = 1;	/* last for pps */
3533 	else if (irq_cnt <= 0)
3534 		irq_cnt = 1;	/* At least 1 irq is needed */
3535 	return irq_cnt;
3536 }
3537 
3538 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3539 				   struct device_node *np)
3540 {
3541 	struct device_node *gpr_np;
3542 	u32 out_val[3];
3543 	int ret = 0;
3544 
3545 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3546 	if (!gpr_np)
3547 		return 0;
3548 
3549 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3550 					 ARRAY_SIZE(out_val));
3551 	if (ret) {
3552 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3553 		return ret;
3554 	}
3555 
3556 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3557 	if (IS_ERR(fep->stop_gpr.gpr)) {
3558 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3559 		ret = PTR_ERR(fep->stop_gpr.gpr);
3560 		fep->stop_gpr.gpr = NULL;
3561 		goto out;
3562 	}
3563 
3564 	fep->stop_gpr.reg = out_val[1];
3565 	fep->stop_gpr.bit = out_val[2];
3566 
3567 out:
3568 	of_node_put(gpr_np);
3569 
3570 	return ret;
3571 }
3572 
3573 static int
3574 fec_probe(struct platform_device *pdev)
3575 {
3576 	struct fec_enet_private *fep;
3577 	struct fec_platform_data *pdata;
3578 	phy_interface_t interface;
3579 	struct net_device *ndev;
3580 	int i, irq, ret = 0;
3581 	const struct of_device_id *of_id;
3582 	static int dev_id;
3583 	struct device_node *np = pdev->dev.of_node, *phy_node;
3584 	int num_tx_qs;
3585 	int num_rx_qs;
3586 	char irq_name[8];
3587 	int irq_cnt;
3588 	struct fec_devinfo *dev_info;
3589 
3590 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3591 
3592 	/* Init network device */
3593 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3594 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3595 	if (!ndev)
3596 		return -ENOMEM;
3597 
3598 	SET_NETDEV_DEV(ndev, &pdev->dev);
3599 
3600 	/* setup board info structure */
3601 	fep = netdev_priv(ndev);
3602 
3603 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3604 	if (of_id)
3605 		pdev->id_entry = of_id->data;
3606 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3607 	if (dev_info)
3608 		fep->quirks = dev_info->quirks;
3609 
3610 	fep->netdev = ndev;
3611 	fep->num_rx_queues = num_rx_qs;
3612 	fep->num_tx_queues = num_tx_qs;
3613 
3614 #if !defined(CONFIG_M5272)
3615 	/* default enable pause frame auto negotiation */
3616 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3617 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3618 #endif
3619 
3620 	/* Select default pin state */
3621 	pinctrl_pm_select_default_state(&pdev->dev);
3622 
3623 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3624 	if (IS_ERR(fep->hwp)) {
3625 		ret = PTR_ERR(fep->hwp);
3626 		goto failed_ioremap;
3627 	}
3628 
3629 	fep->pdev = pdev;
3630 	fep->dev_id = dev_id++;
3631 
3632 	platform_set_drvdata(pdev, ndev);
3633 
3634 	if ((of_machine_is_compatible("fsl,imx6q") ||
3635 	     of_machine_is_compatible("fsl,imx6dl")) &&
3636 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3637 		fep->quirks |= FEC_QUIRK_ERR006687;
3638 
3639 	if (of_get_property(np, "fsl,magic-packet", NULL))
3640 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3641 
3642 	ret = fec_enet_init_stop_mode(fep, np);
3643 	if (ret)
3644 		goto failed_stop_mode;
3645 
3646 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3647 	if (!phy_node && of_phy_is_fixed_link(np)) {
3648 		ret = of_phy_register_fixed_link(np);
3649 		if (ret < 0) {
3650 			dev_err(&pdev->dev,
3651 				"broken fixed-link specification\n");
3652 			goto failed_phy;
3653 		}
3654 		phy_node = of_node_get(np);
3655 	}
3656 	fep->phy_node = phy_node;
3657 
3658 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3659 	if (ret) {
3660 		pdata = dev_get_platdata(&pdev->dev);
3661 		if (pdata)
3662 			fep->phy_interface = pdata->phy;
3663 		else
3664 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3665 	} else {
3666 		fep->phy_interface = interface;
3667 	}
3668 
3669 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3670 	if (IS_ERR(fep->clk_ipg)) {
3671 		ret = PTR_ERR(fep->clk_ipg);
3672 		goto failed_clk;
3673 	}
3674 
3675 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3676 	if (IS_ERR(fep->clk_ahb)) {
3677 		ret = PTR_ERR(fep->clk_ahb);
3678 		goto failed_clk;
3679 	}
3680 
3681 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3682 
3683 	/* enet_out is optional, depends on board */
3684 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3685 	if (IS_ERR(fep->clk_enet_out))
3686 		fep->clk_enet_out = NULL;
3687 
3688 	fep->ptp_clk_on = false;
3689 	mutex_init(&fep->ptp_clk_mutex);
3690 
3691 	/* clk_ref is optional, depends on board */
3692 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3693 	if (IS_ERR(fep->clk_ref))
3694 		fep->clk_ref = NULL;
3695 
3696 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3697 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3698 	if (IS_ERR(fep->clk_ptp)) {
3699 		fep->clk_ptp = NULL;
3700 		fep->bufdesc_ex = false;
3701 	}
3702 
3703 	ret = fec_enet_clk_enable(ndev, true);
3704 	if (ret)
3705 		goto failed_clk;
3706 
3707 	ret = clk_prepare_enable(fep->clk_ipg);
3708 	if (ret)
3709 		goto failed_clk_ipg;
3710 	ret = clk_prepare_enable(fep->clk_ahb);
3711 	if (ret)
3712 		goto failed_clk_ahb;
3713 
3714 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3715 	if (!IS_ERR(fep->reg_phy)) {
3716 		ret = regulator_enable(fep->reg_phy);
3717 		if (ret) {
3718 			dev_err(&pdev->dev,
3719 				"Failed to enable phy regulator: %d\n", ret);
3720 			goto failed_regulator;
3721 		}
3722 	} else {
3723 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3724 			ret = -EPROBE_DEFER;
3725 			goto failed_regulator;
3726 		}
3727 		fep->reg_phy = NULL;
3728 	}
3729 
3730 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3731 	pm_runtime_use_autosuspend(&pdev->dev);
3732 	pm_runtime_get_noresume(&pdev->dev);
3733 	pm_runtime_set_active(&pdev->dev);
3734 	pm_runtime_enable(&pdev->dev);
3735 
3736 	ret = fec_reset_phy(pdev);
3737 	if (ret)
3738 		goto failed_reset;
3739 
3740 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3741 	if (fep->bufdesc_ex)
3742 		fec_ptp_init(pdev, irq_cnt);
3743 
3744 	ret = fec_enet_init(ndev);
3745 	if (ret)
3746 		goto failed_init;
3747 
3748 	for (i = 0; i < irq_cnt; i++) {
3749 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3750 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3751 		if (irq < 0)
3752 			irq = platform_get_irq(pdev, i);
3753 		if (irq < 0) {
3754 			ret = irq;
3755 			goto failed_irq;
3756 		}
3757 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3758 				       0, pdev->name, ndev);
3759 		if (ret)
3760 			goto failed_irq;
3761 
3762 		fep->irq[i] = irq;
3763 	}
3764 
3765 	ret = fec_enet_mii_init(pdev);
3766 	if (ret)
3767 		goto failed_mii_init;
3768 
3769 	/* Carrier starts down, phylib will bring it up */
3770 	netif_carrier_off(ndev);
3771 	fec_enet_clk_enable(ndev, false);
3772 	pinctrl_pm_select_sleep_state(&pdev->dev);
3773 
3774 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3775 
3776 	ret = register_netdev(ndev);
3777 	if (ret)
3778 		goto failed_register;
3779 
3780 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3781 			   FEC_WOL_HAS_MAGIC_PACKET);
3782 
3783 	if (fep->bufdesc_ex && fep->ptp_clock)
3784 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3785 
3786 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3787 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3788 
3789 	pm_runtime_mark_last_busy(&pdev->dev);
3790 	pm_runtime_put_autosuspend(&pdev->dev);
3791 
3792 	return 0;
3793 
3794 failed_register:
3795 	fec_enet_mii_remove(fep);
3796 failed_mii_init:
3797 failed_irq:
3798 failed_init:
3799 	fec_ptp_stop(pdev);
3800 failed_reset:
3801 	pm_runtime_put_noidle(&pdev->dev);
3802 	pm_runtime_disable(&pdev->dev);
3803 	if (fep->reg_phy)
3804 		regulator_disable(fep->reg_phy);
3805 failed_regulator:
3806 	clk_disable_unprepare(fep->clk_ahb);
3807 failed_clk_ahb:
3808 	clk_disable_unprepare(fep->clk_ipg);
3809 failed_clk_ipg:
3810 	fec_enet_clk_enable(ndev, false);
3811 failed_clk:
3812 	if (of_phy_is_fixed_link(np))
3813 		of_phy_deregister_fixed_link(np);
3814 	of_node_put(phy_node);
3815 failed_stop_mode:
3816 failed_phy:
3817 	dev_id--;
3818 failed_ioremap:
3819 	free_netdev(ndev);
3820 
3821 	return ret;
3822 }
3823 
3824 static int
3825 fec_drv_remove(struct platform_device *pdev)
3826 {
3827 	struct net_device *ndev = platform_get_drvdata(pdev);
3828 	struct fec_enet_private *fep = netdev_priv(ndev);
3829 	struct device_node *np = pdev->dev.of_node;
3830 	int ret;
3831 
3832 	ret = pm_runtime_resume_and_get(&pdev->dev);
3833 	if (ret < 0)
3834 		return ret;
3835 
3836 	cancel_work_sync(&fep->tx_timeout_work);
3837 	fec_ptp_stop(pdev);
3838 	unregister_netdev(ndev);
3839 	fec_enet_mii_remove(fep);
3840 	if (fep->reg_phy)
3841 		regulator_disable(fep->reg_phy);
3842 
3843 	if (of_phy_is_fixed_link(np))
3844 		of_phy_deregister_fixed_link(np);
3845 	of_node_put(fep->phy_node);
3846 
3847 	clk_disable_unprepare(fep->clk_ahb);
3848 	clk_disable_unprepare(fep->clk_ipg);
3849 	pm_runtime_put_noidle(&pdev->dev);
3850 	pm_runtime_disable(&pdev->dev);
3851 
3852 	free_netdev(ndev);
3853 	return 0;
3854 }
3855 
3856 static int __maybe_unused fec_suspend(struct device *dev)
3857 {
3858 	struct net_device *ndev = dev_get_drvdata(dev);
3859 	struct fec_enet_private *fep = netdev_priv(ndev);
3860 
3861 	rtnl_lock();
3862 	if (netif_running(ndev)) {
3863 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3864 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3865 		phy_stop(ndev->phydev);
3866 		napi_disable(&fep->napi);
3867 		netif_tx_lock_bh(ndev);
3868 		netif_device_detach(ndev);
3869 		netif_tx_unlock_bh(ndev);
3870 		fec_stop(ndev);
3871 		fec_enet_clk_enable(ndev, false);
3872 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3873 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3874 	}
3875 	rtnl_unlock();
3876 
3877 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3878 		regulator_disable(fep->reg_phy);
3879 
3880 	/* SOC supply clock to phy, when clock is disabled, phy link down
3881 	 * SOC control phy regulator, when regulator is disabled, phy link down
3882 	 */
3883 	if (fep->clk_enet_out || fep->reg_phy)
3884 		fep->link = 0;
3885 
3886 	return 0;
3887 }
3888 
3889 static int __maybe_unused fec_resume(struct device *dev)
3890 {
3891 	struct net_device *ndev = dev_get_drvdata(dev);
3892 	struct fec_enet_private *fep = netdev_priv(ndev);
3893 	int ret;
3894 	int val;
3895 
3896 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3897 		ret = regulator_enable(fep->reg_phy);
3898 		if (ret)
3899 			return ret;
3900 	}
3901 
3902 	rtnl_lock();
3903 	if (netif_running(ndev)) {
3904 		ret = fec_enet_clk_enable(ndev, true);
3905 		if (ret) {
3906 			rtnl_unlock();
3907 			goto failed_clk;
3908 		}
3909 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3910 			fec_enet_stop_mode(fep, false);
3911 
3912 			val = readl(fep->hwp + FEC_ECNTRL);
3913 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3914 			writel(val, fep->hwp + FEC_ECNTRL);
3915 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3916 		} else {
3917 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3918 		}
3919 		fec_restart(ndev);
3920 		netif_tx_lock_bh(ndev);
3921 		netif_device_attach(ndev);
3922 		netif_tx_unlock_bh(ndev);
3923 		napi_enable(&fep->napi);
3924 		phy_init_hw(ndev->phydev);
3925 		phy_start(ndev->phydev);
3926 	}
3927 	rtnl_unlock();
3928 
3929 	return 0;
3930 
3931 failed_clk:
3932 	if (fep->reg_phy)
3933 		regulator_disable(fep->reg_phy);
3934 	return ret;
3935 }
3936 
3937 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3938 {
3939 	struct net_device *ndev = dev_get_drvdata(dev);
3940 	struct fec_enet_private *fep = netdev_priv(ndev);
3941 
3942 	clk_disable_unprepare(fep->clk_ahb);
3943 	clk_disable_unprepare(fep->clk_ipg);
3944 
3945 	return 0;
3946 }
3947 
3948 static int __maybe_unused fec_runtime_resume(struct device *dev)
3949 {
3950 	struct net_device *ndev = dev_get_drvdata(dev);
3951 	struct fec_enet_private *fep = netdev_priv(ndev);
3952 	int ret;
3953 
3954 	ret = clk_prepare_enable(fep->clk_ahb);
3955 	if (ret)
3956 		return ret;
3957 	ret = clk_prepare_enable(fep->clk_ipg);
3958 	if (ret)
3959 		goto failed_clk_ipg;
3960 
3961 	return 0;
3962 
3963 failed_clk_ipg:
3964 	clk_disable_unprepare(fep->clk_ahb);
3965 	return ret;
3966 }
3967 
3968 static const struct dev_pm_ops fec_pm_ops = {
3969 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3970 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3971 };
3972 
3973 static struct platform_driver fec_driver = {
3974 	.driver	= {
3975 		.name	= DRIVER_NAME,
3976 		.pm	= &fec_pm_ops,
3977 		.of_match_table = fec_dt_ids,
3978 		.suppress_bind_attrs = true,
3979 	},
3980 	.id_table = fec_devtype,
3981 	.probe	= fec_probe,
3982 	.remove	= fec_drv_remove,
3983 };
3984 
3985 module_platform_driver(fec_driver);
3986 
3987 MODULE_ALIAS("platform:"DRIVER_NAME);
3988 MODULE_LICENSE("GPL");
3989