1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/gpio/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_set(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 108 FEC_QUIRK_HAS_MDIO_C45, 109 }; 110 111 static const struct fec_devinfo fec_imx28_info = { 112 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 113 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 114 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 115 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 116 }; 117 118 static const struct fec_devinfo fec_imx6q_info = { 119 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 120 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 121 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 122 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 123 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 124 }; 125 126 static const struct fec_devinfo fec_mvf600_info = { 127 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 128 FEC_QUIRK_HAS_MDIO_C45, 129 }; 130 131 static const struct fec_devinfo fec_imx6x_info = { 132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 133 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 134 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 135 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 136 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 137 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 138 FEC_QUIRK_HAS_MDIO_C45, 139 }; 140 141 static const struct fec_devinfo fec_imx6ul_info = { 142 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 143 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 144 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 145 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 146 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 147 FEC_QUIRK_HAS_MDIO_C45, 148 }; 149 150 static const struct fec_devinfo fec_imx8mq_info = { 151 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 152 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 153 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 154 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 155 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 156 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 157 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 158 FEC_QUIRK_HAS_MDIO_C45, 159 }; 160 161 static const struct fec_devinfo fec_imx8qm_info = { 162 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 163 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 164 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 165 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 166 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 167 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 168 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 169 }; 170 171 static const struct fec_devinfo fec_s32v234_info = { 172 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 173 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 174 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 175 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 176 FEC_QUIRK_HAS_MDIO_C45, 177 }; 178 179 static struct platform_device_id fec_devtype[] = { 180 { 181 /* keep it for coldfire */ 182 .name = DRIVER_NAME, 183 .driver_data = 0, 184 }, { 185 .name = "imx25-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx25_info, 187 }, { 188 .name = "imx27-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx27_info, 190 }, { 191 .name = "imx28-fec", 192 .driver_data = (kernel_ulong_t)&fec_imx28_info, 193 }, { 194 .name = "imx6q-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 196 }, { 197 .name = "mvf600-fec", 198 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 199 }, { 200 .name = "imx6sx-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 202 }, { 203 .name = "imx6ul-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 205 }, { 206 .name = "imx8mq-fec", 207 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 208 }, { 209 .name = "imx8qm-fec", 210 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 211 }, { 212 .name = "s32v234-fec", 213 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 214 }, { 215 /* sentinel */ 216 } 217 }; 218 MODULE_DEVICE_TABLE(platform, fec_devtype); 219 220 enum imx_fec_type { 221 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 222 IMX27_FEC, /* runs on i.mx27/35/51 */ 223 IMX28_FEC, 224 IMX6Q_FEC, 225 MVF600_FEC, 226 IMX6SX_FEC, 227 IMX6UL_FEC, 228 IMX8MQ_FEC, 229 IMX8QM_FEC, 230 S32V234_FEC, 231 }; 232 233 static const struct of_device_id fec_dt_ids[] = { 234 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 235 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 236 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 237 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 238 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 239 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 240 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 241 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 242 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 243 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 244 { /* sentinel */ } 245 }; 246 MODULE_DEVICE_TABLE(of, fec_dt_ids); 247 248 static unsigned char macaddr[ETH_ALEN]; 249 module_param_array(macaddr, byte, NULL, 0); 250 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 251 252 #if defined(CONFIG_M5272) 253 /* 254 * Some hardware gets it MAC address out of local flash memory. 255 * if this is non-zero then assume it is the address to get MAC from. 256 */ 257 #if defined(CONFIG_NETtel) 258 #define FEC_FLASHMAC 0xf0006006 259 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 260 #define FEC_FLASHMAC 0xf0006000 261 #elif defined(CONFIG_CANCam) 262 #define FEC_FLASHMAC 0xf0020000 263 #elif defined (CONFIG_M5272C3) 264 #define FEC_FLASHMAC (0xffe04000 + 4) 265 #elif defined(CONFIG_MOD5272) 266 #define FEC_FLASHMAC 0xffc0406b 267 #else 268 #define FEC_FLASHMAC 0 269 #endif 270 #endif /* CONFIG_M5272 */ 271 272 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 273 * 274 * 2048 byte skbufs are allocated. However, alignment requirements 275 * varies between FEC variants. Worst case is 64, so round down by 64. 276 */ 277 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 278 #define PKT_MINBUF_SIZE 64 279 280 /* FEC receive acceleration */ 281 #define FEC_RACC_IPDIS (1 << 1) 282 #define FEC_RACC_PRODIS (1 << 2) 283 #define FEC_RACC_SHIFT16 BIT(7) 284 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 285 286 /* MIB Control Register */ 287 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 288 289 /* 290 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 291 * size bits. Other FEC hardware does not, so we need to take that into 292 * account when setting it. 293 */ 294 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 295 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 296 defined(CONFIG_ARM64) 297 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 298 #else 299 #define OPT_FRAME_SIZE 0 300 #endif 301 302 /* FEC MII MMFR bits definition */ 303 #define FEC_MMFR_ST (1 << 30) 304 #define FEC_MMFR_ST_C45 (0) 305 #define FEC_MMFR_OP_READ (2 << 28) 306 #define FEC_MMFR_OP_READ_C45 (3 << 28) 307 #define FEC_MMFR_OP_WRITE (1 << 28) 308 #define FEC_MMFR_OP_ADDR_WRITE (0) 309 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 310 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 311 #define FEC_MMFR_TA (2 << 16) 312 #define FEC_MMFR_DATA(v) (v & 0xffff) 313 /* FEC ECR bits definition */ 314 #define FEC_ECR_MAGICEN (1 << 2) 315 #define FEC_ECR_SLEEP (1 << 3) 316 317 #define FEC_MII_TIMEOUT 30000 /* us */ 318 319 /* Transmitter timeout */ 320 #define TX_TIMEOUT (2 * HZ) 321 322 #define FEC_PAUSE_FLAG_AUTONEG 0x1 323 #define FEC_PAUSE_FLAG_ENABLE 0x2 324 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 325 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 326 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 327 328 #define COPYBREAK_DEFAULT 256 329 330 /* Max number of allowed TCP segments for software TSO */ 331 #define FEC_MAX_TSO_SEGS 100 332 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 333 334 #define IS_TSO_HEADER(txq, addr) \ 335 ((addr >= txq->tso_hdrs_dma) && \ 336 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 337 338 static int mii_cnt; 339 340 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 341 struct bufdesc_prop *bd) 342 { 343 return (bdp >= bd->last) ? bd->base 344 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 345 } 346 347 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 348 struct bufdesc_prop *bd) 349 { 350 return (bdp <= bd->base) ? bd->last 351 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 352 } 353 354 static int fec_enet_get_bd_index(struct bufdesc *bdp, 355 struct bufdesc_prop *bd) 356 { 357 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 358 } 359 360 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 361 { 362 int entries; 363 364 entries = (((const char *)txq->dirty_tx - 365 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 366 367 return entries >= 0 ? entries : entries + txq->bd.ring_size; 368 } 369 370 static void swap_buffer(void *bufaddr, int len) 371 { 372 int i; 373 unsigned int *buf = bufaddr; 374 375 for (i = 0; i < len; i += 4, buf++) 376 swab32s(buf); 377 } 378 379 static void fec_dump(struct net_device *ndev) 380 { 381 struct fec_enet_private *fep = netdev_priv(ndev); 382 struct bufdesc *bdp; 383 struct fec_enet_priv_tx_q *txq; 384 int index = 0; 385 386 netdev_info(ndev, "TX ring dump\n"); 387 pr_info("Nr SC addr len SKB\n"); 388 389 txq = fep->tx_queue[0]; 390 bdp = txq->bd.base; 391 392 do { 393 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 394 index, 395 bdp == txq->bd.cur ? 'S' : ' ', 396 bdp == txq->dirty_tx ? 'H' : ' ', 397 fec16_to_cpu(bdp->cbd_sc), 398 fec32_to_cpu(bdp->cbd_bufaddr), 399 fec16_to_cpu(bdp->cbd_datlen), 400 txq->tx_skbuff[index]); 401 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 402 index++; 403 } while (bdp != txq->bd.base); 404 } 405 406 static inline bool is_ipv4_pkt(struct sk_buff *skb) 407 { 408 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 409 } 410 411 static int 412 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 413 { 414 /* Only run for packets requiring a checksum. */ 415 if (skb->ip_summed != CHECKSUM_PARTIAL) 416 return 0; 417 418 if (unlikely(skb_cow_head(skb, 0))) 419 return -1; 420 421 if (is_ipv4_pkt(skb)) 422 ip_hdr(skb)->check = 0; 423 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 424 425 return 0; 426 } 427 428 static int 429 fec_enet_create_page_pool(struct fec_enet_private *fep, 430 struct fec_enet_priv_rx_q *rxq, int size) 431 { 432 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 433 struct page_pool_params pp_params = { 434 .order = 0, 435 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 436 .pool_size = size, 437 .nid = dev_to_node(&fep->pdev->dev), 438 .dev = &fep->pdev->dev, 439 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 440 .offset = FEC_ENET_XDP_HEADROOM, 441 .max_len = FEC_ENET_RX_FRSIZE, 442 }; 443 int err; 444 445 rxq->page_pool = page_pool_create(&pp_params); 446 if (IS_ERR(rxq->page_pool)) { 447 err = PTR_ERR(rxq->page_pool); 448 rxq->page_pool = NULL; 449 return err; 450 } 451 452 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 453 if (err < 0) 454 goto err_free_pp; 455 456 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 457 rxq->page_pool); 458 if (err) 459 goto err_unregister_rxq; 460 461 return 0; 462 463 err_unregister_rxq: 464 xdp_rxq_info_unreg(&rxq->xdp_rxq); 465 err_free_pp: 466 page_pool_destroy(rxq->page_pool); 467 rxq->page_pool = NULL; 468 return err; 469 } 470 471 static struct bufdesc * 472 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 473 struct sk_buff *skb, 474 struct net_device *ndev) 475 { 476 struct fec_enet_private *fep = netdev_priv(ndev); 477 struct bufdesc *bdp = txq->bd.cur; 478 struct bufdesc_ex *ebdp; 479 int nr_frags = skb_shinfo(skb)->nr_frags; 480 int frag, frag_len; 481 unsigned short status; 482 unsigned int estatus = 0; 483 skb_frag_t *this_frag; 484 unsigned int index; 485 void *bufaddr; 486 dma_addr_t addr; 487 int i; 488 489 for (frag = 0; frag < nr_frags; frag++) { 490 this_frag = &skb_shinfo(skb)->frags[frag]; 491 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 492 ebdp = (struct bufdesc_ex *)bdp; 493 494 status = fec16_to_cpu(bdp->cbd_sc); 495 status &= ~BD_ENET_TX_STATS; 496 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 497 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 498 499 /* Handle the last BD specially */ 500 if (frag == nr_frags - 1) { 501 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 502 if (fep->bufdesc_ex) { 503 estatus |= BD_ENET_TX_INT; 504 if (unlikely(skb_shinfo(skb)->tx_flags & 505 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 506 estatus |= BD_ENET_TX_TS; 507 } 508 } 509 510 if (fep->bufdesc_ex) { 511 if (fep->quirks & FEC_QUIRK_HAS_AVB) 512 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 513 if (skb->ip_summed == CHECKSUM_PARTIAL) 514 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 515 516 ebdp->cbd_bdu = 0; 517 ebdp->cbd_esc = cpu_to_fec32(estatus); 518 } 519 520 bufaddr = skb_frag_address(this_frag); 521 522 index = fec_enet_get_bd_index(bdp, &txq->bd); 523 if (((unsigned long) bufaddr) & fep->tx_align || 524 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 525 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 526 bufaddr = txq->tx_bounce[index]; 527 528 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 529 swap_buffer(bufaddr, frag_len); 530 } 531 532 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 533 DMA_TO_DEVICE); 534 if (dma_mapping_error(&fep->pdev->dev, addr)) { 535 if (net_ratelimit()) 536 netdev_err(ndev, "Tx DMA memory map failed\n"); 537 goto dma_mapping_error; 538 } 539 540 bdp->cbd_bufaddr = cpu_to_fec32(addr); 541 bdp->cbd_datlen = cpu_to_fec16(frag_len); 542 /* Make sure the updates to rest of the descriptor are 543 * performed before transferring ownership. 544 */ 545 wmb(); 546 bdp->cbd_sc = cpu_to_fec16(status); 547 } 548 549 return bdp; 550 dma_mapping_error: 551 bdp = txq->bd.cur; 552 for (i = 0; i < frag; i++) { 553 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 554 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 555 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 556 } 557 return ERR_PTR(-ENOMEM); 558 } 559 560 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 561 struct sk_buff *skb, struct net_device *ndev) 562 { 563 struct fec_enet_private *fep = netdev_priv(ndev); 564 int nr_frags = skb_shinfo(skb)->nr_frags; 565 struct bufdesc *bdp, *last_bdp; 566 void *bufaddr; 567 dma_addr_t addr; 568 unsigned short status; 569 unsigned short buflen; 570 unsigned int estatus = 0; 571 unsigned int index; 572 int entries_free; 573 574 entries_free = fec_enet_get_free_txdesc_num(txq); 575 if (entries_free < MAX_SKB_FRAGS + 1) { 576 dev_kfree_skb_any(skb); 577 if (net_ratelimit()) 578 netdev_err(ndev, "NOT enough BD for SG!\n"); 579 return NETDEV_TX_OK; 580 } 581 582 /* Protocol checksum off-load for TCP and UDP. */ 583 if (fec_enet_clear_csum(skb, ndev)) { 584 dev_kfree_skb_any(skb); 585 return NETDEV_TX_OK; 586 } 587 588 /* Fill in a Tx ring entry */ 589 bdp = txq->bd.cur; 590 last_bdp = bdp; 591 status = fec16_to_cpu(bdp->cbd_sc); 592 status &= ~BD_ENET_TX_STATS; 593 594 /* Set buffer length and buffer pointer */ 595 bufaddr = skb->data; 596 buflen = skb_headlen(skb); 597 598 index = fec_enet_get_bd_index(bdp, &txq->bd); 599 if (((unsigned long) bufaddr) & fep->tx_align || 600 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 601 memcpy(txq->tx_bounce[index], skb->data, buflen); 602 bufaddr = txq->tx_bounce[index]; 603 604 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 605 swap_buffer(bufaddr, buflen); 606 } 607 608 /* Push the data cache so the CPM does not get stale memory data. */ 609 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 610 if (dma_mapping_error(&fep->pdev->dev, addr)) { 611 dev_kfree_skb_any(skb); 612 if (net_ratelimit()) 613 netdev_err(ndev, "Tx DMA memory map failed\n"); 614 return NETDEV_TX_OK; 615 } 616 617 if (nr_frags) { 618 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 619 if (IS_ERR(last_bdp)) { 620 dma_unmap_single(&fep->pdev->dev, addr, 621 buflen, DMA_TO_DEVICE); 622 dev_kfree_skb_any(skb); 623 return NETDEV_TX_OK; 624 } 625 } else { 626 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 627 if (fep->bufdesc_ex) { 628 estatus = BD_ENET_TX_INT; 629 if (unlikely(skb_shinfo(skb)->tx_flags & 630 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 631 estatus |= BD_ENET_TX_TS; 632 } 633 } 634 bdp->cbd_bufaddr = cpu_to_fec32(addr); 635 bdp->cbd_datlen = cpu_to_fec16(buflen); 636 637 if (fep->bufdesc_ex) { 638 639 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 640 641 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 642 fep->hwts_tx_en)) 643 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 644 645 if (fep->quirks & FEC_QUIRK_HAS_AVB) 646 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 647 648 if (skb->ip_summed == CHECKSUM_PARTIAL) 649 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 650 651 ebdp->cbd_bdu = 0; 652 ebdp->cbd_esc = cpu_to_fec32(estatus); 653 } 654 655 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 656 /* Save skb pointer */ 657 txq->tx_skbuff[index] = skb; 658 659 /* Make sure the updates to rest of the descriptor are performed before 660 * transferring ownership. 661 */ 662 wmb(); 663 664 /* Send it on its way. Tell FEC it's ready, interrupt when done, 665 * it's the last BD of the frame, and to put the CRC on the end. 666 */ 667 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 668 bdp->cbd_sc = cpu_to_fec16(status); 669 670 /* If this was the last BD in the ring, start at the beginning again. */ 671 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 672 673 skb_tx_timestamp(skb); 674 675 /* Make sure the update to bdp and tx_skbuff are performed before 676 * txq->bd.cur. 677 */ 678 wmb(); 679 txq->bd.cur = bdp; 680 681 /* Trigger transmission start */ 682 writel(0, txq->bd.reg_desc_active); 683 684 return 0; 685 } 686 687 static int 688 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 689 struct net_device *ndev, 690 struct bufdesc *bdp, int index, char *data, 691 int size, bool last_tcp, bool is_last) 692 { 693 struct fec_enet_private *fep = netdev_priv(ndev); 694 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 695 unsigned short status; 696 unsigned int estatus = 0; 697 dma_addr_t addr; 698 699 status = fec16_to_cpu(bdp->cbd_sc); 700 status &= ~BD_ENET_TX_STATS; 701 702 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 703 704 if (((unsigned long) data) & fep->tx_align || 705 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 706 memcpy(txq->tx_bounce[index], data, size); 707 data = txq->tx_bounce[index]; 708 709 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 710 swap_buffer(data, size); 711 } 712 713 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 714 if (dma_mapping_error(&fep->pdev->dev, addr)) { 715 dev_kfree_skb_any(skb); 716 if (net_ratelimit()) 717 netdev_err(ndev, "Tx DMA memory map failed\n"); 718 return NETDEV_TX_OK; 719 } 720 721 bdp->cbd_datlen = cpu_to_fec16(size); 722 bdp->cbd_bufaddr = cpu_to_fec32(addr); 723 724 if (fep->bufdesc_ex) { 725 if (fep->quirks & FEC_QUIRK_HAS_AVB) 726 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 727 if (skb->ip_summed == CHECKSUM_PARTIAL) 728 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 729 ebdp->cbd_bdu = 0; 730 ebdp->cbd_esc = cpu_to_fec32(estatus); 731 } 732 733 /* Handle the last BD specially */ 734 if (last_tcp) 735 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 736 if (is_last) { 737 status |= BD_ENET_TX_INTR; 738 if (fep->bufdesc_ex) 739 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 740 } 741 742 bdp->cbd_sc = cpu_to_fec16(status); 743 744 return 0; 745 } 746 747 static int 748 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 749 struct sk_buff *skb, struct net_device *ndev, 750 struct bufdesc *bdp, int index) 751 { 752 struct fec_enet_private *fep = netdev_priv(ndev); 753 int hdr_len = skb_tcp_all_headers(skb); 754 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 755 void *bufaddr; 756 unsigned long dmabuf; 757 unsigned short status; 758 unsigned int estatus = 0; 759 760 status = fec16_to_cpu(bdp->cbd_sc); 761 status &= ~BD_ENET_TX_STATS; 762 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 763 764 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 765 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 766 if (((unsigned long)bufaddr) & fep->tx_align || 767 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 768 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 769 bufaddr = txq->tx_bounce[index]; 770 771 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 772 swap_buffer(bufaddr, hdr_len); 773 774 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 775 hdr_len, DMA_TO_DEVICE); 776 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 777 dev_kfree_skb_any(skb); 778 if (net_ratelimit()) 779 netdev_err(ndev, "Tx DMA memory map failed\n"); 780 return NETDEV_TX_OK; 781 } 782 } 783 784 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 785 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 786 787 if (fep->bufdesc_ex) { 788 if (fep->quirks & FEC_QUIRK_HAS_AVB) 789 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 790 if (skb->ip_summed == CHECKSUM_PARTIAL) 791 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 792 ebdp->cbd_bdu = 0; 793 ebdp->cbd_esc = cpu_to_fec32(estatus); 794 } 795 796 bdp->cbd_sc = cpu_to_fec16(status); 797 798 return 0; 799 } 800 801 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 802 struct sk_buff *skb, 803 struct net_device *ndev) 804 { 805 struct fec_enet_private *fep = netdev_priv(ndev); 806 int hdr_len, total_len, data_left; 807 struct bufdesc *bdp = txq->bd.cur; 808 struct tso_t tso; 809 unsigned int index = 0; 810 int ret; 811 812 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 813 dev_kfree_skb_any(skb); 814 if (net_ratelimit()) 815 netdev_err(ndev, "NOT enough BD for TSO!\n"); 816 return NETDEV_TX_OK; 817 } 818 819 /* Protocol checksum off-load for TCP and UDP. */ 820 if (fec_enet_clear_csum(skb, ndev)) { 821 dev_kfree_skb_any(skb); 822 return NETDEV_TX_OK; 823 } 824 825 /* Initialize the TSO handler, and prepare the first payload */ 826 hdr_len = tso_start(skb, &tso); 827 828 total_len = skb->len - hdr_len; 829 while (total_len > 0) { 830 char *hdr; 831 832 index = fec_enet_get_bd_index(bdp, &txq->bd); 833 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 834 total_len -= data_left; 835 836 /* prepare packet headers: MAC + IP + TCP */ 837 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 838 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 839 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 840 if (ret) 841 goto err_release; 842 843 while (data_left > 0) { 844 int size; 845 846 size = min_t(int, tso.size, data_left); 847 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 848 index = fec_enet_get_bd_index(bdp, &txq->bd); 849 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 850 bdp, index, 851 tso.data, size, 852 size == data_left, 853 total_len == 0); 854 if (ret) 855 goto err_release; 856 857 data_left -= size; 858 tso_build_data(skb, &tso, size); 859 } 860 861 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 862 } 863 864 /* Save skb pointer */ 865 txq->tx_skbuff[index] = skb; 866 867 skb_tx_timestamp(skb); 868 txq->bd.cur = bdp; 869 870 /* Trigger transmission start */ 871 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 872 !readl(txq->bd.reg_desc_active) || 873 !readl(txq->bd.reg_desc_active) || 874 !readl(txq->bd.reg_desc_active) || 875 !readl(txq->bd.reg_desc_active)) 876 writel(0, txq->bd.reg_desc_active); 877 878 return 0; 879 880 err_release: 881 /* TODO: Release all used data descriptors for TSO */ 882 return ret; 883 } 884 885 static netdev_tx_t 886 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 887 { 888 struct fec_enet_private *fep = netdev_priv(ndev); 889 int entries_free; 890 unsigned short queue; 891 struct fec_enet_priv_tx_q *txq; 892 struct netdev_queue *nq; 893 int ret; 894 895 queue = skb_get_queue_mapping(skb); 896 txq = fep->tx_queue[queue]; 897 nq = netdev_get_tx_queue(ndev, queue); 898 899 if (skb_is_gso(skb)) 900 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 901 else 902 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 903 if (ret) 904 return ret; 905 906 entries_free = fec_enet_get_free_txdesc_num(txq); 907 if (entries_free <= txq->tx_stop_threshold) 908 netif_tx_stop_queue(nq); 909 910 return NETDEV_TX_OK; 911 } 912 913 /* Init RX & TX buffer descriptors 914 */ 915 static void fec_enet_bd_init(struct net_device *dev) 916 { 917 struct fec_enet_private *fep = netdev_priv(dev); 918 struct fec_enet_priv_tx_q *txq; 919 struct fec_enet_priv_rx_q *rxq; 920 struct bufdesc *bdp; 921 unsigned int i; 922 unsigned int q; 923 924 for (q = 0; q < fep->num_rx_queues; q++) { 925 /* Initialize the receive buffer descriptors. */ 926 rxq = fep->rx_queue[q]; 927 bdp = rxq->bd.base; 928 929 for (i = 0; i < rxq->bd.ring_size; i++) { 930 931 /* Initialize the BD for every fragment in the page. */ 932 if (bdp->cbd_bufaddr) 933 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 934 else 935 bdp->cbd_sc = cpu_to_fec16(0); 936 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 937 } 938 939 /* Set the last buffer to wrap */ 940 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 941 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 942 943 rxq->bd.cur = rxq->bd.base; 944 } 945 946 for (q = 0; q < fep->num_tx_queues; q++) { 947 /* ...and the same for transmit */ 948 txq = fep->tx_queue[q]; 949 bdp = txq->bd.base; 950 txq->bd.cur = bdp; 951 952 for (i = 0; i < txq->bd.ring_size; i++) { 953 /* Initialize the BD for every fragment in the page. */ 954 bdp->cbd_sc = cpu_to_fec16(0); 955 if (bdp->cbd_bufaddr && 956 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 957 dma_unmap_single(&fep->pdev->dev, 958 fec32_to_cpu(bdp->cbd_bufaddr), 959 fec16_to_cpu(bdp->cbd_datlen), 960 DMA_TO_DEVICE); 961 if (txq->tx_skbuff[i]) { 962 dev_kfree_skb_any(txq->tx_skbuff[i]); 963 txq->tx_skbuff[i] = NULL; 964 } 965 bdp->cbd_bufaddr = cpu_to_fec32(0); 966 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 967 } 968 969 /* Set the last buffer to wrap */ 970 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 971 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 972 txq->dirty_tx = bdp; 973 } 974 } 975 976 static void fec_enet_active_rxring(struct net_device *ndev) 977 { 978 struct fec_enet_private *fep = netdev_priv(ndev); 979 int i; 980 981 for (i = 0; i < fep->num_rx_queues; i++) 982 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 983 } 984 985 static void fec_enet_enable_ring(struct net_device *ndev) 986 { 987 struct fec_enet_private *fep = netdev_priv(ndev); 988 struct fec_enet_priv_tx_q *txq; 989 struct fec_enet_priv_rx_q *rxq; 990 int i; 991 992 for (i = 0; i < fep->num_rx_queues; i++) { 993 rxq = fep->rx_queue[i]; 994 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 995 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 996 997 /* enable DMA1/2 */ 998 if (i) 999 writel(RCMR_MATCHEN | RCMR_CMP(i), 1000 fep->hwp + FEC_RCMR(i)); 1001 } 1002 1003 for (i = 0; i < fep->num_tx_queues; i++) { 1004 txq = fep->tx_queue[i]; 1005 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1006 1007 /* enable DMA1/2 */ 1008 if (i) 1009 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1010 fep->hwp + FEC_DMA_CFG(i)); 1011 } 1012 } 1013 1014 /* 1015 * This function is called to start or restart the FEC during a link 1016 * change, transmit timeout, or to reconfigure the FEC. The network 1017 * packet processing for this device must be stopped before this call. 1018 */ 1019 static void 1020 fec_restart(struct net_device *ndev) 1021 { 1022 struct fec_enet_private *fep = netdev_priv(ndev); 1023 u32 temp_mac[2]; 1024 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1025 u32 ecntl = 0x2; /* ETHEREN */ 1026 1027 /* Whack a reset. We should wait for this. 1028 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1029 * instead of reset MAC itself. 1030 */ 1031 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1032 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1033 writel(0, fep->hwp + FEC_ECNTRL); 1034 } else { 1035 writel(1, fep->hwp + FEC_ECNTRL); 1036 udelay(10); 1037 } 1038 1039 /* 1040 * enet-mac reset will reset mac address registers too, 1041 * so need to reconfigure it. 1042 */ 1043 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1044 writel((__force u32)cpu_to_be32(temp_mac[0]), 1045 fep->hwp + FEC_ADDR_LOW); 1046 writel((__force u32)cpu_to_be32(temp_mac[1]), 1047 fep->hwp + FEC_ADDR_HIGH); 1048 1049 /* Clear any outstanding interrupt, except MDIO. */ 1050 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1051 1052 fec_enet_bd_init(ndev); 1053 1054 fec_enet_enable_ring(ndev); 1055 1056 /* Enable MII mode */ 1057 if (fep->full_duplex == DUPLEX_FULL) { 1058 /* FD enable */ 1059 writel(0x04, fep->hwp + FEC_X_CNTRL); 1060 } else { 1061 /* No Rcv on Xmit */ 1062 rcntl |= 0x02; 1063 writel(0x0, fep->hwp + FEC_X_CNTRL); 1064 } 1065 1066 /* Set MII speed */ 1067 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1068 1069 #if !defined(CONFIG_M5272) 1070 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1071 u32 val = readl(fep->hwp + FEC_RACC); 1072 1073 /* align IP header */ 1074 val |= FEC_RACC_SHIFT16; 1075 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1076 /* set RX checksum */ 1077 val |= FEC_RACC_OPTIONS; 1078 else 1079 val &= ~FEC_RACC_OPTIONS; 1080 writel(val, fep->hwp + FEC_RACC); 1081 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1082 } 1083 #endif 1084 1085 /* 1086 * The phy interface and speed need to get configured 1087 * differently on enet-mac. 1088 */ 1089 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1090 /* Enable flow control and length check */ 1091 rcntl |= 0x40000000 | 0x00000020; 1092 1093 /* RGMII, RMII or MII */ 1094 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1095 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1096 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1097 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1098 rcntl |= (1 << 6); 1099 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1100 rcntl |= (1 << 8); 1101 else 1102 rcntl &= ~(1 << 8); 1103 1104 /* 1G, 100M or 10M */ 1105 if (ndev->phydev) { 1106 if (ndev->phydev->speed == SPEED_1000) 1107 ecntl |= (1 << 5); 1108 else if (ndev->phydev->speed == SPEED_100) 1109 rcntl &= ~(1 << 9); 1110 else 1111 rcntl |= (1 << 9); 1112 } 1113 } else { 1114 #ifdef FEC_MIIGSK_ENR 1115 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1116 u32 cfgr; 1117 /* disable the gasket and wait */ 1118 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1119 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1120 udelay(1); 1121 1122 /* 1123 * configure the gasket: 1124 * RMII, 50 MHz, no loopback, no echo 1125 * MII, 25 MHz, no loopback, no echo 1126 */ 1127 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1128 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1129 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1130 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1131 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1132 1133 /* re-enable the gasket */ 1134 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1135 } 1136 #endif 1137 } 1138 1139 #if !defined(CONFIG_M5272) 1140 /* enable pause frame*/ 1141 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1142 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1143 ndev->phydev && ndev->phydev->pause)) { 1144 rcntl |= FEC_ENET_FCE; 1145 1146 /* set FIFO threshold parameter to reduce overrun */ 1147 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1148 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1149 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1150 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1151 1152 /* OPD */ 1153 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1154 } else { 1155 rcntl &= ~FEC_ENET_FCE; 1156 } 1157 #endif /* !defined(CONFIG_M5272) */ 1158 1159 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1160 1161 /* Setup multicast filter. */ 1162 set_multicast_list(ndev); 1163 #ifndef CONFIG_M5272 1164 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1165 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1166 #endif 1167 1168 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1169 /* enable ENET endian swap */ 1170 ecntl |= (1 << 8); 1171 /* enable ENET store and forward mode */ 1172 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1173 } 1174 1175 if (fep->bufdesc_ex) 1176 ecntl |= (1 << 4); 1177 1178 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1179 fep->rgmii_txc_dly) 1180 ecntl |= FEC_ENET_TXC_DLY; 1181 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1182 fep->rgmii_rxc_dly) 1183 ecntl |= FEC_ENET_RXC_DLY; 1184 1185 #ifndef CONFIG_M5272 1186 /* Enable the MIB statistic event counters */ 1187 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1188 #endif 1189 1190 /* And last, enable the transmit and receive processing */ 1191 writel(ecntl, fep->hwp + FEC_ECNTRL); 1192 fec_enet_active_rxring(ndev); 1193 1194 if (fep->bufdesc_ex) 1195 fec_ptp_start_cyclecounter(ndev); 1196 1197 /* Enable interrupts we wish to service */ 1198 if (fep->link) 1199 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1200 else 1201 writel(0, fep->hwp + FEC_IMASK); 1202 1203 /* Init the interrupt coalescing */ 1204 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1205 fec_enet_itr_coal_set(ndev); 1206 } 1207 1208 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1209 { 1210 if (!(of_machine_is_compatible("fsl,imx8qm") || 1211 of_machine_is_compatible("fsl,imx8qxp") || 1212 of_machine_is_compatible("fsl,imx8dxl"))) 1213 return 0; 1214 1215 return imx_scu_get_handle(&fep->ipc_handle); 1216 } 1217 1218 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1219 { 1220 struct device_node *np = fep->pdev->dev.of_node; 1221 u32 rsrc_id, val; 1222 int idx; 1223 1224 if (!np || !fep->ipc_handle) 1225 return; 1226 1227 idx = of_alias_get_id(np, "ethernet"); 1228 if (idx < 0) 1229 idx = 0; 1230 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1231 1232 val = enabled ? 1 : 0; 1233 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1234 } 1235 1236 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1237 { 1238 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1239 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1240 1241 if (stop_gpr->gpr) { 1242 if (enabled) 1243 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1244 BIT(stop_gpr->bit), 1245 BIT(stop_gpr->bit)); 1246 else 1247 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1248 BIT(stop_gpr->bit), 0); 1249 } else if (pdata && pdata->sleep_mode_enable) { 1250 pdata->sleep_mode_enable(enabled); 1251 } else { 1252 fec_enet_ipg_stop_set(fep, enabled); 1253 } 1254 } 1255 1256 static void fec_irqs_disable(struct net_device *ndev) 1257 { 1258 struct fec_enet_private *fep = netdev_priv(ndev); 1259 1260 writel(0, fep->hwp + FEC_IMASK); 1261 } 1262 1263 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1264 { 1265 struct fec_enet_private *fep = netdev_priv(ndev); 1266 1267 writel(0, fep->hwp + FEC_IMASK); 1268 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1269 } 1270 1271 static void 1272 fec_stop(struct net_device *ndev) 1273 { 1274 struct fec_enet_private *fep = netdev_priv(ndev); 1275 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1276 u32 val; 1277 1278 /* We cannot expect a graceful transmit stop without link !!! */ 1279 if (fep->link) { 1280 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1281 udelay(10); 1282 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1283 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1284 } 1285 1286 /* Whack a reset. We should wait for this. 1287 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1288 * instead of reset MAC itself. 1289 */ 1290 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1291 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1292 writel(0, fep->hwp + FEC_ECNTRL); 1293 } else { 1294 writel(1, fep->hwp + FEC_ECNTRL); 1295 udelay(10); 1296 } 1297 } else { 1298 val = readl(fep->hwp + FEC_ECNTRL); 1299 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1300 writel(val, fep->hwp + FEC_ECNTRL); 1301 } 1302 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1303 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1304 1305 /* We have to keep ENET enabled to have MII interrupt stay working */ 1306 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1307 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1308 writel(2, fep->hwp + FEC_ECNTRL); 1309 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1310 } 1311 } 1312 1313 1314 static void 1315 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1316 { 1317 struct fec_enet_private *fep = netdev_priv(ndev); 1318 1319 fec_dump(ndev); 1320 1321 ndev->stats.tx_errors++; 1322 1323 schedule_work(&fep->tx_timeout_work); 1324 } 1325 1326 static void fec_enet_timeout_work(struct work_struct *work) 1327 { 1328 struct fec_enet_private *fep = 1329 container_of(work, struct fec_enet_private, tx_timeout_work); 1330 struct net_device *ndev = fep->netdev; 1331 1332 rtnl_lock(); 1333 if (netif_device_present(ndev) || netif_running(ndev)) { 1334 napi_disable(&fep->napi); 1335 netif_tx_lock_bh(ndev); 1336 fec_restart(ndev); 1337 netif_tx_wake_all_queues(ndev); 1338 netif_tx_unlock_bh(ndev); 1339 napi_enable(&fep->napi); 1340 } 1341 rtnl_unlock(); 1342 } 1343 1344 static void 1345 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1346 struct skb_shared_hwtstamps *hwtstamps) 1347 { 1348 unsigned long flags; 1349 u64 ns; 1350 1351 spin_lock_irqsave(&fep->tmreg_lock, flags); 1352 ns = timecounter_cyc2time(&fep->tc, ts); 1353 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1354 1355 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1356 hwtstamps->hwtstamp = ns_to_ktime(ns); 1357 } 1358 1359 static void 1360 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1361 { 1362 struct fec_enet_private *fep; 1363 struct bufdesc *bdp; 1364 unsigned short status; 1365 struct sk_buff *skb; 1366 struct fec_enet_priv_tx_q *txq; 1367 struct netdev_queue *nq; 1368 int index = 0; 1369 int entries_free; 1370 1371 fep = netdev_priv(ndev); 1372 1373 txq = fep->tx_queue[queue_id]; 1374 /* get next bdp of dirty_tx */ 1375 nq = netdev_get_tx_queue(ndev, queue_id); 1376 bdp = txq->dirty_tx; 1377 1378 /* get next bdp of dirty_tx */ 1379 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1380 1381 while (bdp != READ_ONCE(txq->bd.cur)) { 1382 /* Order the load of bd.cur and cbd_sc */ 1383 rmb(); 1384 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1385 if (status & BD_ENET_TX_READY) 1386 break; 1387 1388 index = fec_enet_get_bd_index(bdp, &txq->bd); 1389 1390 skb = txq->tx_skbuff[index]; 1391 txq->tx_skbuff[index] = NULL; 1392 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1393 dma_unmap_single(&fep->pdev->dev, 1394 fec32_to_cpu(bdp->cbd_bufaddr), 1395 fec16_to_cpu(bdp->cbd_datlen), 1396 DMA_TO_DEVICE); 1397 bdp->cbd_bufaddr = cpu_to_fec32(0); 1398 if (!skb) 1399 goto skb_done; 1400 1401 /* Check for errors. */ 1402 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1403 BD_ENET_TX_RL | BD_ENET_TX_UN | 1404 BD_ENET_TX_CSL)) { 1405 ndev->stats.tx_errors++; 1406 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1407 ndev->stats.tx_heartbeat_errors++; 1408 if (status & BD_ENET_TX_LC) /* Late collision */ 1409 ndev->stats.tx_window_errors++; 1410 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1411 ndev->stats.tx_aborted_errors++; 1412 if (status & BD_ENET_TX_UN) /* Underrun */ 1413 ndev->stats.tx_fifo_errors++; 1414 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1415 ndev->stats.tx_carrier_errors++; 1416 } else { 1417 ndev->stats.tx_packets++; 1418 ndev->stats.tx_bytes += skb->len; 1419 } 1420 1421 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1422 * are to time stamp the packet, so we still need to check time 1423 * stamping enabled flag. 1424 */ 1425 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1426 fep->hwts_tx_en) && 1427 fep->bufdesc_ex) { 1428 struct skb_shared_hwtstamps shhwtstamps; 1429 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1430 1431 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1432 skb_tstamp_tx(skb, &shhwtstamps); 1433 } 1434 1435 /* Deferred means some collisions occurred during transmit, 1436 * but we eventually sent the packet OK. 1437 */ 1438 if (status & BD_ENET_TX_DEF) 1439 ndev->stats.collisions++; 1440 1441 /* Free the sk buffer associated with this last transmit */ 1442 dev_kfree_skb_any(skb); 1443 skb_done: 1444 /* Make sure the update to bdp and tx_skbuff are performed 1445 * before dirty_tx 1446 */ 1447 wmb(); 1448 txq->dirty_tx = bdp; 1449 1450 /* Update pointer to next buffer descriptor to be transmitted */ 1451 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1452 1453 /* Since we have freed up a buffer, the ring is no longer full 1454 */ 1455 if (netif_tx_queue_stopped(nq)) { 1456 entries_free = fec_enet_get_free_txdesc_num(txq); 1457 if (entries_free >= txq->tx_wake_threshold) 1458 netif_tx_wake_queue(nq); 1459 } 1460 } 1461 1462 /* ERR006358: Keep the transmitter going */ 1463 if (bdp != txq->bd.cur && 1464 readl(txq->bd.reg_desc_active) == 0) 1465 writel(0, txq->bd.reg_desc_active); 1466 } 1467 1468 static void fec_enet_tx(struct net_device *ndev) 1469 { 1470 struct fec_enet_private *fep = netdev_priv(ndev); 1471 int i; 1472 1473 /* Make sure that AVB queues are processed first. */ 1474 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1475 fec_enet_tx_queue(ndev, i); 1476 } 1477 1478 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1479 struct bufdesc *bdp, int index) 1480 { 1481 struct page *new_page; 1482 dma_addr_t phys_addr; 1483 1484 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1485 WARN_ON(!new_page); 1486 rxq->rx_skb_info[index].page = new_page; 1487 1488 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1489 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1490 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1491 } 1492 1493 static u32 1494 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1495 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1496 { 1497 unsigned int sync, len = xdp->data_end - xdp->data; 1498 u32 ret = FEC_ENET_XDP_PASS; 1499 struct page *page; 1500 int err; 1501 u32 act; 1502 1503 act = bpf_prog_run_xdp(prog, xdp); 1504 1505 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1506 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1507 sync = max(sync, len); 1508 1509 switch (act) { 1510 case XDP_PASS: 1511 rxq->stats[RX_XDP_PASS]++; 1512 ret = FEC_ENET_XDP_PASS; 1513 break; 1514 1515 case XDP_REDIRECT: 1516 rxq->stats[RX_XDP_REDIRECT]++; 1517 err = xdp_do_redirect(fep->netdev, xdp, prog); 1518 if (!err) { 1519 ret = FEC_ENET_XDP_REDIR; 1520 } else { 1521 ret = FEC_ENET_XDP_CONSUMED; 1522 page = virt_to_head_page(xdp->data); 1523 page_pool_put_page(rxq->page_pool, page, sync, true); 1524 } 1525 break; 1526 1527 default: 1528 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1529 fallthrough; 1530 1531 case XDP_TX: 1532 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1533 fallthrough; 1534 1535 case XDP_ABORTED: 1536 fallthrough; /* handle aborts by dropping packet */ 1537 1538 case XDP_DROP: 1539 rxq->stats[RX_XDP_DROP]++; 1540 ret = FEC_ENET_XDP_CONSUMED; 1541 page = virt_to_head_page(xdp->data); 1542 page_pool_put_page(rxq->page_pool, page, sync, true); 1543 break; 1544 } 1545 1546 return ret; 1547 } 1548 1549 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1550 * When we update through the ring, if the next incoming buffer has 1551 * not been given to the system, we just set the empty indicator, 1552 * effectively tossing the packet. 1553 */ 1554 static int 1555 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1556 { 1557 struct fec_enet_private *fep = netdev_priv(ndev); 1558 struct fec_enet_priv_rx_q *rxq; 1559 struct bufdesc *bdp; 1560 unsigned short status; 1561 struct sk_buff *skb; 1562 ushort pkt_len; 1563 __u8 *data; 1564 int pkt_received = 0; 1565 struct bufdesc_ex *ebdp = NULL; 1566 bool vlan_packet_rcvd = false; 1567 u16 vlan_tag; 1568 int index = 0; 1569 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1570 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1571 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1572 u32 data_start = FEC_ENET_XDP_HEADROOM; 1573 struct xdp_buff xdp; 1574 struct page *page; 1575 u32 sub_len = 4; 1576 1577 #if !defined(CONFIG_M5272) 1578 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1579 * FEC_RACC_SHIFT16 is set by default in the probe function. 1580 */ 1581 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1582 data_start += 2; 1583 sub_len += 2; 1584 } 1585 #endif 1586 1587 #ifdef CONFIG_M532x 1588 flush_cache_all(); 1589 #endif 1590 rxq = fep->rx_queue[queue_id]; 1591 1592 /* First, grab all of the stats for the incoming packet. 1593 * These get messed up if we get called due to a busy condition. 1594 */ 1595 bdp = rxq->bd.cur; 1596 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1597 1598 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1599 1600 if (pkt_received >= budget) 1601 break; 1602 pkt_received++; 1603 1604 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1605 1606 /* Check for errors. */ 1607 status ^= BD_ENET_RX_LAST; 1608 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1609 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1610 BD_ENET_RX_CL)) { 1611 ndev->stats.rx_errors++; 1612 if (status & BD_ENET_RX_OV) { 1613 /* FIFO overrun */ 1614 ndev->stats.rx_fifo_errors++; 1615 goto rx_processing_done; 1616 } 1617 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1618 | BD_ENET_RX_LAST)) { 1619 /* Frame too long or too short. */ 1620 ndev->stats.rx_length_errors++; 1621 if (status & BD_ENET_RX_LAST) 1622 netdev_err(ndev, "rcv is not +last\n"); 1623 } 1624 if (status & BD_ENET_RX_CR) /* CRC Error */ 1625 ndev->stats.rx_crc_errors++; 1626 /* Report late collisions as a frame error. */ 1627 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1628 ndev->stats.rx_frame_errors++; 1629 goto rx_processing_done; 1630 } 1631 1632 /* Process the incoming frame. */ 1633 ndev->stats.rx_packets++; 1634 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1635 ndev->stats.rx_bytes += pkt_len; 1636 1637 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1638 page = rxq->rx_skb_info[index].page; 1639 dma_sync_single_for_cpu(&fep->pdev->dev, 1640 fec32_to_cpu(bdp->cbd_bufaddr), 1641 pkt_len, 1642 DMA_FROM_DEVICE); 1643 prefetch(page_address(page)); 1644 fec_enet_update_cbd(rxq, bdp, index); 1645 1646 if (xdp_prog) { 1647 xdp_buff_clear_frags_flag(&xdp); 1648 /* subtract 16bit shift and FCS */ 1649 xdp_prepare_buff(&xdp, page_address(page), 1650 data_start, pkt_len - sub_len, false); 1651 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1652 xdp_result |= ret; 1653 if (ret != FEC_ENET_XDP_PASS) 1654 goto rx_processing_done; 1655 } 1656 1657 /* The packet length includes FCS, but we don't want to 1658 * include that when passing upstream as it messes up 1659 * bridging applications. 1660 */ 1661 skb = build_skb(page_address(page), PAGE_SIZE); 1662 if (unlikely(!skb)) { 1663 page_pool_recycle_direct(rxq->page_pool, page); 1664 ndev->stats.rx_dropped++; 1665 1666 netdev_err_once(ndev, "build_skb failed!\n"); 1667 goto rx_processing_done; 1668 } 1669 1670 skb_reserve(skb, data_start); 1671 skb_put(skb, pkt_len - sub_len); 1672 skb_mark_for_recycle(skb); 1673 1674 if (unlikely(need_swap)) { 1675 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1676 swap_buffer(data, pkt_len); 1677 } 1678 data = skb->data; 1679 1680 /* Extract the enhanced buffer descriptor */ 1681 ebdp = NULL; 1682 if (fep->bufdesc_ex) 1683 ebdp = (struct bufdesc_ex *)bdp; 1684 1685 /* If this is a VLAN packet remove the VLAN Tag */ 1686 vlan_packet_rcvd = false; 1687 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1688 fep->bufdesc_ex && 1689 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1690 /* Push and remove the vlan tag */ 1691 struct vlan_hdr *vlan_header = 1692 (struct vlan_hdr *) (data + ETH_HLEN); 1693 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1694 1695 vlan_packet_rcvd = true; 1696 1697 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1698 skb_pull(skb, VLAN_HLEN); 1699 } 1700 1701 skb->protocol = eth_type_trans(skb, ndev); 1702 1703 /* Get receive timestamp from the skb */ 1704 if (fep->hwts_rx_en && fep->bufdesc_ex) 1705 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1706 skb_hwtstamps(skb)); 1707 1708 if (fep->bufdesc_ex && 1709 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1710 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1711 /* don't check it */ 1712 skb->ip_summed = CHECKSUM_UNNECESSARY; 1713 } else { 1714 skb_checksum_none_assert(skb); 1715 } 1716 } 1717 1718 /* Handle received VLAN packets */ 1719 if (vlan_packet_rcvd) 1720 __vlan_hwaccel_put_tag(skb, 1721 htons(ETH_P_8021Q), 1722 vlan_tag); 1723 1724 skb_record_rx_queue(skb, queue_id); 1725 napi_gro_receive(&fep->napi, skb); 1726 1727 rx_processing_done: 1728 /* Clear the status flags for this buffer */ 1729 status &= ~BD_ENET_RX_STATS; 1730 1731 /* Mark the buffer empty */ 1732 status |= BD_ENET_RX_EMPTY; 1733 1734 if (fep->bufdesc_ex) { 1735 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1736 1737 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1738 ebdp->cbd_prot = 0; 1739 ebdp->cbd_bdu = 0; 1740 } 1741 /* Make sure the updates to rest of the descriptor are 1742 * performed before transferring ownership. 1743 */ 1744 wmb(); 1745 bdp->cbd_sc = cpu_to_fec16(status); 1746 1747 /* Update BD pointer to next entry */ 1748 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1749 1750 /* Doing this here will keep the FEC running while we process 1751 * incoming frames. On a heavily loaded network, we should be 1752 * able to keep up at the expense of system resources. 1753 */ 1754 writel(0, rxq->bd.reg_desc_active); 1755 } 1756 rxq->bd.cur = bdp; 1757 1758 if (xdp_result & FEC_ENET_XDP_REDIR) 1759 xdp_do_flush_map(); 1760 1761 return pkt_received; 1762 } 1763 1764 static int fec_enet_rx(struct net_device *ndev, int budget) 1765 { 1766 struct fec_enet_private *fep = netdev_priv(ndev); 1767 int i, done = 0; 1768 1769 /* Make sure that AVB queues are processed first. */ 1770 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1771 done += fec_enet_rx_queue(ndev, budget - done, i); 1772 1773 return done; 1774 } 1775 1776 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1777 { 1778 uint int_events; 1779 1780 int_events = readl(fep->hwp + FEC_IEVENT); 1781 1782 /* Don't clear MDIO events, we poll for those */ 1783 int_events &= ~FEC_ENET_MII; 1784 1785 writel(int_events, fep->hwp + FEC_IEVENT); 1786 1787 return int_events != 0; 1788 } 1789 1790 static irqreturn_t 1791 fec_enet_interrupt(int irq, void *dev_id) 1792 { 1793 struct net_device *ndev = dev_id; 1794 struct fec_enet_private *fep = netdev_priv(ndev); 1795 irqreturn_t ret = IRQ_NONE; 1796 1797 if (fec_enet_collect_events(fep) && fep->link) { 1798 ret = IRQ_HANDLED; 1799 1800 if (napi_schedule_prep(&fep->napi)) { 1801 /* Disable interrupts */ 1802 writel(0, fep->hwp + FEC_IMASK); 1803 __napi_schedule(&fep->napi); 1804 } 1805 } 1806 1807 return ret; 1808 } 1809 1810 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1811 { 1812 struct net_device *ndev = napi->dev; 1813 struct fec_enet_private *fep = netdev_priv(ndev); 1814 int done = 0; 1815 1816 do { 1817 done += fec_enet_rx(ndev, budget - done); 1818 fec_enet_tx(ndev); 1819 } while ((done < budget) && fec_enet_collect_events(fep)); 1820 1821 if (done < budget) { 1822 napi_complete_done(napi, done); 1823 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1824 } 1825 1826 return done; 1827 } 1828 1829 /* ------------------------------------------------------------------------- */ 1830 static int fec_get_mac(struct net_device *ndev) 1831 { 1832 struct fec_enet_private *fep = netdev_priv(ndev); 1833 unsigned char *iap, tmpaddr[ETH_ALEN]; 1834 int ret; 1835 1836 /* 1837 * try to get mac address in following order: 1838 * 1839 * 1) module parameter via kernel command line in form 1840 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1841 */ 1842 iap = macaddr; 1843 1844 /* 1845 * 2) from device tree data 1846 */ 1847 if (!is_valid_ether_addr(iap)) { 1848 struct device_node *np = fep->pdev->dev.of_node; 1849 if (np) { 1850 ret = of_get_mac_address(np, tmpaddr); 1851 if (!ret) 1852 iap = tmpaddr; 1853 else if (ret == -EPROBE_DEFER) 1854 return ret; 1855 } 1856 } 1857 1858 /* 1859 * 3) from flash or fuse (via platform data) 1860 */ 1861 if (!is_valid_ether_addr(iap)) { 1862 #ifdef CONFIG_M5272 1863 if (FEC_FLASHMAC) 1864 iap = (unsigned char *)FEC_FLASHMAC; 1865 #else 1866 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1867 1868 if (pdata) 1869 iap = (unsigned char *)&pdata->mac; 1870 #endif 1871 } 1872 1873 /* 1874 * 4) FEC mac registers set by bootloader 1875 */ 1876 if (!is_valid_ether_addr(iap)) { 1877 *((__be32 *) &tmpaddr[0]) = 1878 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1879 *((__be16 *) &tmpaddr[4]) = 1880 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1881 iap = &tmpaddr[0]; 1882 } 1883 1884 /* 1885 * 5) random mac address 1886 */ 1887 if (!is_valid_ether_addr(iap)) { 1888 /* Report it and use a random ethernet address instead */ 1889 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1890 eth_hw_addr_random(ndev); 1891 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1892 ndev->dev_addr); 1893 return 0; 1894 } 1895 1896 /* Adjust MAC if using macaddr */ 1897 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1898 1899 return 0; 1900 } 1901 1902 /* ------------------------------------------------------------------------- */ 1903 1904 /* 1905 * Phy section 1906 */ 1907 static void fec_enet_adjust_link(struct net_device *ndev) 1908 { 1909 struct fec_enet_private *fep = netdev_priv(ndev); 1910 struct phy_device *phy_dev = ndev->phydev; 1911 int status_change = 0; 1912 1913 /* 1914 * If the netdev is down, or is going down, we're not interested 1915 * in link state events, so just mark our idea of the link as down 1916 * and ignore the event. 1917 */ 1918 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1919 fep->link = 0; 1920 } else if (phy_dev->link) { 1921 if (!fep->link) { 1922 fep->link = phy_dev->link; 1923 status_change = 1; 1924 } 1925 1926 if (fep->full_duplex != phy_dev->duplex) { 1927 fep->full_duplex = phy_dev->duplex; 1928 status_change = 1; 1929 } 1930 1931 if (phy_dev->speed != fep->speed) { 1932 fep->speed = phy_dev->speed; 1933 status_change = 1; 1934 } 1935 1936 /* if any of the above changed restart the FEC */ 1937 if (status_change) { 1938 napi_disable(&fep->napi); 1939 netif_tx_lock_bh(ndev); 1940 fec_restart(ndev); 1941 netif_tx_wake_all_queues(ndev); 1942 netif_tx_unlock_bh(ndev); 1943 napi_enable(&fep->napi); 1944 } 1945 } else { 1946 if (fep->link) { 1947 napi_disable(&fep->napi); 1948 netif_tx_lock_bh(ndev); 1949 fec_stop(ndev); 1950 netif_tx_unlock_bh(ndev); 1951 napi_enable(&fep->napi); 1952 fep->link = phy_dev->link; 1953 status_change = 1; 1954 } 1955 } 1956 1957 if (status_change) 1958 phy_print_status(phy_dev); 1959 } 1960 1961 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1962 { 1963 uint ievent; 1964 int ret; 1965 1966 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1967 ievent & FEC_ENET_MII, 2, 30000); 1968 1969 if (!ret) 1970 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1971 1972 return ret; 1973 } 1974 1975 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 1976 { 1977 struct fec_enet_private *fep = bus->priv; 1978 struct device *dev = &fep->pdev->dev; 1979 int ret = 0, frame_start, frame_addr, frame_op; 1980 1981 ret = pm_runtime_resume_and_get(dev); 1982 if (ret < 0) 1983 return ret; 1984 1985 /* C22 read */ 1986 frame_op = FEC_MMFR_OP_READ; 1987 frame_start = FEC_MMFR_ST; 1988 frame_addr = regnum; 1989 1990 /* start a read op */ 1991 writel(frame_start | frame_op | 1992 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1993 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1994 1995 /* wait for end of transfer */ 1996 ret = fec_enet_mdio_wait(fep); 1997 if (ret) { 1998 netdev_err(fep->netdev, "MDIO read timeout\n"); 1999 goto out; 2000 } 2001 2002 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2003 2004 out: 2005 pm_runtime_mark_last_busy(dev); 2006 pm_runtime_put_autosuspend(dev); 2007 2008 return ret; 2009 } 2010 2011 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2012 int devad, int regnum) 2013 { 2014 struct fec_enet_private *fep = bus->priv; 2015 struct device *dev = &fep->pdev->dev; 2016 int ret = 0, frame_start, frame_op; 2017 2018 ret = pm_runtime_resume_and_get(dev); 2019 if (ret < 0) 2020 return ret; 2021 2022 frame_start = FEC_MMFR_ST_C45; 2023 2024 /* write address */ 2025 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2026 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2027 FEC_MMFR_TA | (regnum & 0xFFFF), 2028 fep->hwp + FEC_MII_DATA); 2029 2030 /* wait for end of transfer */ 2031 ret = fec_enet_mdio_wait(fep); 2032 if (ret) { 2033 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2034 goto out; 2035 } 2036 2037 frame_op = FEC_MMFR_OP_READ_C45; 2038 2039 /* start a read op */ 2040 writel(frame_start | frame_op | 2041 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2042 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2043 2044 /* wait for end of transfer */ 2045 ret = fec_enet_mdio_wait(fep); 2046 if (ret) { 2047 netdev_err(fep->netdev, "MDIO read timeout\n"); 2048 goto out; 2049 } 2050 2051 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2052 2053 out: 2054 pm_runtime_mark_last_busy(dev); 2055 pm_runtime_put_autosuspend(dev); 2056 2057 return ret; 2058 } 2059 2060 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2061 u16 value) 2062 { 2063 struct fec_enet_private *fep = bus->priv; 2064 struct device *dev = &fep->pdev->dev; 2065 int ret, frame_start, frame_addr; 2066 2067 ret = pm_runtime_resume_and_get(dev); 2068 if (ret < 0) 2069 return ret; 2070 2071 /* C22 write */ 2072 frame_start = FEC_MMFR_ST; 2073 frame_addr = regnum; 2074 2075 /* start a write op */ 2076 writel(frame_start | FEC_MMFR_OP_WRITE | 2077 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2078 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2079 fep->hwp + FEC_MII_DATA); 2080 2081 /* wait for end of transfer */ 2082 ret = fec_enet_mdio_wait(fep); 2083 if (ret) 2084 netdev_err(fep->netdev, "MDIO write timeout\n"); 2085 2086 pm_runtime_mark_last_busy(dev); 2087 pm_runtime_put_autosuspend(dev); 2088 2089 return ret; 2090 } 2091 2092 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2093 int devad, int regnum, u16 value) 2094 { 2095 struct fec_enet_private *fep = bus->priv; 2096 struct device *dev = &fep->pdev->dev; 2097 int ret, frame_start; 2098 2099 ret = pm_runtime_resume_and_get(dev); 2100 if (ret < 0) 2101 return ret; 2102 2103 frame_start = FEC_MMFR_ST_C45; 2104 2105 /* write address */ 2106 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2107 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2108 FEC_MMFR_TA | (regnum & 0xFFFF), 2109 fep->hwp + FEC_MII_DATA); 2110 2111 /* wait for end of transfer */ 2112 ret = fec_enet_mdio_wait(fep); 2113 if (ret) { 2114 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2115 goto out; 2116 } 2117 2118 /* start a write op */ 2119 writel(frame_start | FEC_MMFR_OP_WRITE | 2120 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2121 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2122 fep->hwp + FEC_MII_DATA); 2123 2124 /* wait for end of transfer */ 2125 ret = fec_enet_mdio_wait(fep); 2126 if (ret) 2127 netdev_err(fep->netdev, "MDIO write timeout\n"); 2128 2129 out: 2130 pm_runtime_mark_last_busy(dev); 2131 pm_runtime_put_autosuspend(dev); 2132 2133 return ret; 2134 } 2135 2136 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2137 { 2138 struct fec_enet_private *fep = netdev_priv(ndev); 2139 struct phy_device *phy_dev = ndev->phydev; 2140 2141 if (phy_dev) { 2142 phy_reset_after_clk_enable(phy_dev); 2143 } else if (fep->phy_node) { 2144 /* 2145 * If the PHY still is not bound to the MAC, but there is 2146 * OF PHY node and a matching PHY device instance already, 2147 * use the OF PHY node to obtain the PHY device instance, 2148 * and then use that PHY device instance when triggering 2149 * the PHY reset. 2150 */ 2151 phy_dev = of_phy_find_device(fep->phy_node); 2152 phy_reset_after_clk_enable(phy_dev); 2153 put_device(&phy_dev->mdio.dev); 2154 } 2155 } 2156 2157 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2158 { 2159 struct fec_enet_private *fep = netdev_priv(ndev); 2160 int ret; 2161 2162 if (enable) { 2163 ret = clk_prepare_enable(fep->clk_enet_out); 2164 if (ret) 2165 return ret; 2166 2167 if (fep->clk_ptp) { 2168 mutex_lock(&fep->ptp_clk_mutex); 2169 ret = clk_prepare_enable(fep->clk_ptp); 2170 if (ret) { 2171 mutex_unlock(&fep->ptp_clk_mutex); 2172 goto failed_clk_ptp; 2173 } else { 2174 fep->ptp_clk_on = true; 2175 } 2176 mutex_unlock(&fep->ptp_clk_mutex); 2177 } 2178 2179 ret = clk_prepare_enable(fep->clk_ref); 2180 if (ret) 2181 goto failed_clk_ref; 2182 2183 ret = clk_prepare_enable(fep->clk_2x_txclk); 2184 if (ret) 2185 goto failed_clk_2x_txclk; 2186 2187 fec_enet_phy_reset_after_clk_enable(ndev); 2188 } else { 2189 clk_disable_unprepare(fep->clk_enet_out); 2190 if (fep->clk_ptp) { 2191 mutex_lock(&fep->ptp_clk_mutex); 2192 clk_disable_unprepare(fep->clk_ptp); 2193 fep->ptp_clk_on = false; 2194 mutex_unlock(&fep->ptp_clk_mutex); 2195 } 2196 clk_disable_unprepare(fep->clk_ref); 2197 clk_disable_unprepare(fep->clk_2x_txclk); 2198 } 2199 2200 return 0; 2201 2202 failed_clk_2x_txclk: 2203 if (fep->clk_ref) 2204 clk_disable_unprepare(fep->clk_ref); 2205 failed_clk_ref: 2206 if (fep->clk_ptp) { 2207 mutex_lock(&fep->ptp_clk_mutex); 2208 clk_disable_unprepare(fep->clk_ptp); 2209 fep->ptp_clk_on = false; 2210 mutex_unlock(&fep->ptp_clk_mutex); 2211 } 2212 failed_clk_ptp: 2213 clk_disable_unprepare(fep->clk_enet_out); 2214 2215 return ret; 2216 } 2217 2218 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2219 struct device_node *np) 2220 { 2221 u32 rgmii_tx_delay, rgmii_rx_delay; 2222 2223 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2224 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2225 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2226 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2227 return -EINVAL; 2228 } else if (rgmii_tx_delay == 2000) { 2229 fep->rgmii_txc_dly = true; 2230 } 2231 } 2232 2233 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2234 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2235 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2236 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2237 return -EINVAL; 2238 } else if (rgmii_rx_delay == 2000) { 2239 fep->rgmii_rxc_dly = true; 2240 } 2241 } 2242 2243 return 0; 2244 } 2245 2246 static int fec_enet_mii_probe(struct net_device *ndev) 2247 { 2248 struct fec_enet_private *fep = netdev_priv(ndev); 2249 struct phy_device *phy_dev = NULL; 2250 char mdio_bus_id[MII_BUS_ID_SIZE]; 2251 char phy_name[MII_BUS_ID_SIZE + 3]; 2252 int phy_id; 2253 int dev_id = fep->dev_id; 2254 2255 if (fep->phy_node) { 2256 phy_dev = of_phy_connect(ndev, fep->phy_node, 2257 &fec_enet_adjust_link, 0, 2258 fep->phy_interface); 2259 if (!phy_dev) { 2260 netdev_err(ndev, "Unable to connect to phy\n"); 2261 return -ENODEV; 2262 } 2263 } else { 2264 /* check for attached phy */ 2265 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2266 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2267 continue; 2268 if (dev_id--) 2269 continue; 2270 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2271 break; 2272 } 2273 2274 if (phy_id >= PHY_MAX_ADDR) { 2275 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2276 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2277 phy_id = 0; 2278 } 2279 2280 snprintf(phy_name, sizeof(phy_name), 2281 PHY_ID_FMT, mdio_bus_id, phy_id); 2282 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2283 fep->phy_interface); 2284 } 2285 2286 if (IS_ERR(phy_dev)) { 2287 netdev_err(ndev, "could not attach to PHY\n"); 2288 return PTR_ERR(phy_dev); 2289 } 2290 2291 /* mask with MAC supported features */ 2292 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2293 phy_set_max_speed(phy_dev, 1000); 2294 phy_remove_link_mode(phy_dev, 2295 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2296 #if !defined(CONFIG_M5272) 2297 phy_support_sym_pause(phy_dev); 2298 #endif 2299 } 2300 else 2301 phy_set_max_speed(phy_dev, 100); 2302 2303 fep->link = 0; 2304 fep->full_duplex = 0; 2305 2306 phy_dev->mac_managed_pm = true; 2307 2308 phy_attached_info(phy_dev); 2309 2310 return 0; 2311 } 2312 2313 static int fec_enet_mii_init(struct platform_device *pdev) 2314 { 2315 static struct mii_bus *fec0_mii_bus; 2316 struct net_device *ndev = platform_get_drvdata(pdev); 2317 struct fec_enet_private *fep = netdev_priv(ndev); 2318 bool suppress_preamble = false; 2319 struct device_node *node; 2320 int err = -ENXIO; 2321 u32 mii_speed, holdtime; 2322 u32 bus_freq; 2323 2324 /* 2325 * The i.MX28 dual fec interfaces are not equal. 2326 * Here are the differences: 2327 * 2328 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2329 * - fec0 acts as the 1588 time master while fec1 is slave 2330 * - external phys can only be configured by fec0 2331 * 2332 * That is to say fec1 can not work independently. It only works 2333 * when fec0 is working. The reason behind this design is that the 2334 * second interface is added primarily for Switch mode. 2335 * 2336 * Because of the last point above, both phys are attached on fec0 2337 * mdio interface in board design, and need to be configured by 2338 * fec0 mii_bus. 2339 */ 2340 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2341 /* fec1 uses fec0 mii_bus */ 2342 if (mii_cnt && fec0_mii_bus) { 2343 fep->mii_bus = fec0_mii_bus; 2344 mii_cnt++; 2345 return 0; 2346 } 2347 return -ENOENT; 2348 } 2349 2350 bus_freq = 2500000; /* 2.5MHz by default */ 2351 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2352 if (node) { 2353 of_property_read_u32(node, "clock-frequency", &bus_freq); 2354 suppress_preamble = of_property_read_bool(node, 2355 "suppress-preamble"); 2356 } 2357 2358 /* 2359 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2360 * 2361 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2362 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2363 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2364 * document. 2365 */ 2366 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2367 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2368 mii_speed--; 2369 if (mii_speed > 63) { 2370 dev_err(&pdev->dev, 2371 "fec clock (%lu) too fast to get right mii speed\n", 2372 clk_get_rate(fep->clk_ipg)); 2373 err = -EINVAL; 2374 goto err_out; 2375 } 2376 2377 /* 2378 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2379 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2380 * versions are RAZ there, so just ignore the difference and write the 2381 * register always. 2382 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2383 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2384 * output. 2385 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2386 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2387 * holdtime cannot result in a value greater than 3. 2388 */ 2389 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2390 2391 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2392 2393 if (suppress_preamble) 2394 fep->phy_speed |= BIT(7); 2395 2396 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2397 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2398 * MII event generation condition: 2399 * - writing MSCR: 2400 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2401 * mscr_reg_data_in[7:0] != 0 2402 * - writing MMFR: 2403 * - mscr[7:0]_not_zero 2404 */ 2405 writel(0, fep->hwp + FEC_MII_DATA); 2406 } 2407 2408 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2409 2410 /* Clear any pending transaction complete indication */ 2411 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2412 2413 fep->mii_bus = mdiobus_alloc(); 2414 if (fep->mii_bus == NULL) { 2415 err = -ENOMEM; 2416 goto err_out; 2417 } 2418 2419 fep->mii_bus->name = "fec_enet_mii_bus"; 2420 fep->mii_bus->read = fec_enet_mdio_read_c22; 2421 fep->mii_bus->write = fec_enet_mdio_write_c22; 2422 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2423 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2424 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2425 } 2426 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2427 pdev->name, fep->dev_id + 1); 2428 fep->mii_bus->priv = fep; 2429 fep->mii_bus->parent = &pdev->dev; 2430 2431 err = of_mdiobus_register(fep->mii_bus, node); 2432 if (err) 2433 goto err_out_free_mdiobus; 2434 of_node_put(node); 2435 2436 mii_cnt++; 2437 2438 /* save fec0 mii_bus */ 2439 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2440 fec0_mii_bus = fep->mii_bus; 2441 2442 return 0; 2443 2444 err_out_free_mdiobus: 2445 mdiobus_free(fep->mii_bus); 2446 err_out: 2447 of_node_put(node); 2448 return err; 2449 } 2450 2451 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2452 { 2453 if (--mii_cnt == 0) { 2454 mdiobus_unregister(fep->mii_bus); 2455 mdiobus_free(fep->mii_bus); 2456 } 2457 } 2458 2459 static void fec_enet_get_drvinfo(struct net_device *ndev, 2460 struct ethtool_drvinfo *info) 2461 { 2462 struct fec_enet_private *fep = netdev_priv(ndev); 2463 2464 strscpy(info->driver, fep->pdev->dev.driver->name, 2465 sizeof(info->driver)); 2466 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2467 } 2468 2469 static int fec_enet_get_regs_len(struct net_device *ndev) 2470 { 2471 struct fec_enet_private *fep = netdev_priv(ndev); 2472 struct resource *r; 2473 int s = 0; 2474 2475 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2476 if (r) 2477 s = resource_size(r); 2478 2479 return s; 2480 } 2481 2482 /* List of registers that can be safety be read to dump them with ethtool */ 2483 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2484 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2485 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2486 static __u32 fec_enet_register_version = 2; 2487 static u32 fec_enet_register_offset[] = { 2488 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2489 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2490 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2491 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2492 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2493 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2494 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2495 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2496 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2497 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2498 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2499 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2500 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2501 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2502 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2503 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2504 RMON_T_P_GTE2048, RMON_T_OCTETS, 2505 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2506 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2507 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2508 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2509 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2510 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2511 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2512 RMON_R_P_GTE2048, RMON_R_OCTETS, 2513 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2514 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2515 }; 2516 /* for i.MX6ul */ 2517 static u32 fec_enet_register_offset_6ul[] = { 2518 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2519 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2520 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2521 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2522 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2523 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2524 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2525 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2526 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2527 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2528 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2529 RMON_T_P_GTE2048, RMON_T_OCTETS, 2530 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2531 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2532 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2533 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2534 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2535 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2536 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2537 RMON_R_P_GTE2048, RMON_R_OCTETS, 2538 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2539 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2540 }; 2541 #else 2542 static __u32 fec_enet_register_version = 1; 2543 static u32 fec_enet_register_offset[] = { 2544 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2545 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2546 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2547 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2548 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2549 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2550 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2551 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2552 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2553 }; 2554 #endif 2555 2556 static void fec_enet_get_regs(struct net_device *ndev, 2557 struct ethtool_regs *regs, void *regbuf) 2558 { 2559 struct fec_enet_private *fep = netdev_priv(ndev); 2560 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2561 struct device *dev = &fep->pdev->dev; 2562 u32 *buf = (u32 *)regbuf; 2563 u32 i, off; 2564 int ret; 2565 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2566 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2567 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2568 u32 *reg_list; 2569 u32 reg_cnt; 2570 2571 if (!of_machine_is_compatible("fsl,imx6ul")) { 2572 reg_list = fec_enet_register_offset; 2573 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2574 } else { 2575 reg_list = fec_enet_register_offset_6ul; 2576 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2577 } 2578 #else 2579 /* coldfire */ 2580 static u32 *reg_list = fec_enet_register_offset; 2581 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2582 #endif 2583 ret = pm_runtime_resume_and_get(dev); 2584 if (ret < 0) 2585 return; 2586 2587 regs->version = fec_enet_register_version; 2588 2589 memset(buf, 0, regs->len); 2590 2591 for (i = 0; i < reg_cnt; i++) { 2592 off = reg_list[i]; 2593 2594 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2595 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2596 continue; 2597 2598 off >>= 2; 2599 buf[off] = readl(&theregs[off]); 2600 } 2601 2602 pm_runtime_mark_last_busy(dev); 2603 pm_runtime_put_autosuspend(dev); 2604 } 2605 2606 static int fec_enet_get_ts_info(struct net_device *ndev, 2607 struct ethtool_ts_info *info) 2608 { 2609 struct fec_enet_private *fep = netdev_priv(ndev); 2610 2611 if (fep->bufdesc_ex) { 2612 2613 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2614 SOF_TIMESTAMPING_RX_SOFTWARE | 2615 SOF_TIMESTAMPING_SOFTWARE | 2616 SOF_TIMESTAMPING_TX_HARDWARE | 2617 SOF_TIMESTAMPING_RX_HARDWARE | 2618 SOF_TIMESTAMPING_RAW_HARDWARE; 2619 if (fep->ptp_clock) 2620 info->phc_index = ptp_clock_index(fep->ptp_clock); 2621 else 2622 info->phc_index = -1; 2623 2624 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2625 (1 << HWTSTAMP_TX_ON); 2626 2627 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2628 (1 << HWTSTAMP_FILTER_ALL); 2629 return 0; 2630 } else { 2631 return ethtool_op_get_ts_info(ndev, info); 2632 } 2633 } 2634 2635 #if !defined(CONFIG_M5272) 2636 2637 static void fec_enet_get_pauseparam(struct net_device *ndev, 2638 struct ethtool_pauseparam *pause) 2639 { 2640 struct fec_enet_private *fep = netdev_priv(ndev); 2641 2642 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2643 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2644 pause->rx_pause = pause->tx_pause; 2645 } 2646 2647 static int fec_enet_set_pauseparam(struct net_device *ndev, 2648 struct ethtool_pauseparam *pause) 2649 { 2650 struct fec_enet_private *fep = netdev_priv(ndev); 2651 2652 if (!ndev->phydev) 2653 return -ENODEV; 2654 2655 if (pause->tx_pause != pause->rx_pause) { 2656 netdev_info(ndev, 2657 "hardware only support enable/disable both tx and rx"); 2658 return -EINVAL; 2659 } 2660 2661 fep->pause_flag = 0; 2662 2663 /* tx pause must be same as rx pause */ 2664 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2665 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2666 2667 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2668 pause->autoneg); 2669 2670 if (pause->autoneg) { 2671 if (netif_running(ndev)) 2672 fec_stop(ndev); 2673 phy_start_aneg(ndev->phydev); 2674 } 2675 if (netif_running(ndev)) { 2676 napi_disable(&fep->napi); 2677 netif_tx_lock_bh(ndev); 2678 fec_restart(ndev); 2679 netif_tx_wake_all_queues(ndev); 2680 netif_tx_unlock_bh(ndev); 2681 napi_enable(&fep->napi); 2682 } 2683 2684 return 0; 2685 } 2686 2687 static const struct fec_stat { 2688 char name[ETH_GSTRING_LEN]; 2689 u16 offset; 2690 } fec_stats[] = { 2691 /* RMON TX */ 2692 { "tx_dropped", RMON_T_DROP }, 2693 { "tx_packets", RMON_T_PACKETS }, 2694 { "tx_broadcast", RMON_T_BC_PKT }, 2695 { "tx_multicast", RMON_T_MC_PKT }, 2696 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2697 { "tx_undersize", RMON_T_UNDERSIZE }, 2698 { "tx_oversize", RMON_T_OVERSIZE }, 2699 { "tx_fragment", RMON_T_FRAG }, 2700 { "tx_jabber", RMON_T_JAB }, 2701 { "tx_collision", RMON_T_COL }, 2702 { "tx_64byte", RMON_T_P64 }, 2703 { "tx_65to127byte", RMON_T_P65TO127 }, 2704 { "tx_128to255byte", RMON_T_P128TO255 }, 2705 { "tx_256to511byte", RMON_T_P256TO511 }, 2706 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2707 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2708 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2709 { "tx_octets", RMON_T_OCTETS }, 2710 2711 /* IEEE TX */ 2712 { "IEEE_tx_drop", IEEE_T_DROP }, 2713 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2714 { "IEEE_tx_1col", IEEE_T_1COL }, 2715 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2716 { "IEEE_tx_def", IEEE_T_DEF }, 2717 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2718 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2719 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2720 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2721 { "IEEE_tx_sqe", IEEE_T_SQE }, 2722 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2723 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2724 2725 /* RMON RX */ 2726 { "rx_packets", RMON_R_PACKETS }, 2727 { "rx_broadcast", RMON_R_BC_PKT }, 2728 { "rx_multicast", RMON_R_MC_PKT }, 2729 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2730 { "rx_undersize", RMON_R_UNDERSIZE }, 2731 { "rx_oversize", RMON_R_OVERSIZE }, 2732 { "rx_fragment", RMON_R_FRAG }, 2733 { "rx_jabber", RMON_R_JAB }, 2734 { "rx_64byte", RMON_R_P64 }, 2735 { "rx_65to127byte", RMON_R_P65TO127 }, 2736 { "rx_128to255byte", RMON_R_P128TO255 }, 2737 { "rx_256to511byte", RMON_R_P256TO511 }, 2738 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2739 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2740 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2741 { "rx_octets", RMON_R_OCTETS }, 2742 2743 /* IEEE RX */ 2744 { "IEEE_rx_drop", IEEE_R_DROP }, 2745 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2746 { "IEEE_rx_crc", IEEE_R_CRC }, 2747 { "IEEE_rx_align", IEEE_R_ALIGN }, 2748 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2749 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2750 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2751 }; 2752 2753 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2754 2755 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2756 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2757 "rx_xdp_pass", /* RX_XDP_PASS, */ 2758 "rx_xdp_drop", /* RX_XDP_DROP, */ 2759 "rx_xdp_tx", /* RX_XDP_TX, */ 2760 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2761 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2762 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2763 }; 2764 2765 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2766 { 2767 struct fec_enet_private *fep = netdev_priv(dev); 2768 int i; 2769 2770 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2771 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2772 } 2773 2774 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2775 { 2776 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2777 struct fec_enet_priv_rx_q *rxq; 2778 int i, j; 2779 2780 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2781 rxq = fep->rx_queue[i]; 2782 2783 for (j = 0; j < XDP_STATS_TOTAL; j++) 2784 xdp_stats[j] += rxq->stats[j]; 2785 } 2786 2787 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2788 } 2789 2790 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2791 { 2792 #ifdef CONFIG_PAGE_POOL_STATS 2793 struct page_pool_stats stats = {}; 2794 struct fec_enet_priv_rx_q *rxq; 2795 int i; 2796 2797 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2798 rxq = fep->rx_queue[i]; 2799 2800 if (!rxq->page_pool) 2801 continue; 2802 2803 page_pool_get_stats(rxq->page_pool, &stats); 2804 } 2805 2806 page_pool_ethtool_stats_get(data, &stats); 2807 #endif 2808 } 2809 2810 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2811 struct ethtool_stats *stats, u64 *data) 2812 { 2813 struct fec_enet_private *fep = netdev_priv(dev); 2814 2815 if (netif_running(dev)) 2816 fec_enet_update_ethtool_stats(dev); 2817 2818 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2819 data += FEC_STATS_SIZE / sizeof(u64); 2820 2821 fec_enet_get_xdp_stats(fep, data); 2822 data += XDP_STATS_TOTAL; 2823 2824 fec_enet_page_pool_stats(fep, data); 2825 } 2826 2827 static void fec_enet_get_strings(struct net_device *netdev, 2828 u32 stringset, u8 *data) 2829 { 2830 int i; 2831 switch (stringset) { 2832 case ETH_SS_STATS: 2833 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2834 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2835 data += ETH_GSTRING_LEN; 2836 } 2837 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2838 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2839 data += ETH_GSTRING_LEN; 2840 } 2841 page_pool_ethtool_stats_get_strings(data); 2842 2843 break; 2844 case ETH_SS_TEST: 2845 net_selftest_get_strings(data); 2846 break; 2847 } 2848 } 2849 2850 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2851 { 2852 int count; 2853 2854 switch (sset) { 2855 case ETH_SS_STATS: 2856 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2857 count += page_pool_ethtool_stats_get_count(); 2858 return count; 2859 2860 case ETH_SS_TEST: 2861 return net_selftest_get_count(); 2862 default: 2863 return -EOPNOTSUPP; 2864 } 2865 } 2866 2867 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2868 { 2869 struct fec_enet_private *fep = netdev_priv(dev); 2870 struct fec_enet_priv_rx_q *rxq; 2871 int i, j; 2872 2873 /* Disable MIB statistics counters */ 2874 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2875 2876 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2877 writel(0, fep->hwp + fec_stats[i].offset); 2878 2879 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2880 rxq = fep->rx_queue[i]; 2881 for (j = 0; j < XDP_STATS_TOTAL; j++) 2882 rxq->stats[j] = 0; 2883 } 2884 2885 /* Don't disable MIB statistics counters */ 2886 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2887 } 2888 2889 #else /* !defined(CONFIG_M5272) */ 2890 #define FEC_STATS_SIZE 0 2891 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2892 { 2893 } 2894 2895 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2896 { 2897 } 2898 #endif /* !defined(CONFIG_M5272) */ 2899 2900 /* ITR clock source is enet system clock (clk_ahb). 2901 * TCTT unit is cycle_ns * 64 cycle 2902 * So, the ICTT value = X us / (cycle_ns * 64) 2903 */ 2904 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2905 { 2906 struct fec_enet_private *fep = netdev_priv(ndev); 2907 2908 return us * (fep->itr_clk_rate / 64000) / 1000; 2909 } 2910 2911 /* Set threshold for interrupt coalescing */ 2912 static void fec_enet_itr_coal_set(struct net_device *ndev) 2913 { 2914 struct fec_enet_private *fep = netdev_priv(ndev); 2915 int rx_itr, tx_itr; 2916 2917 /* Must be greater than zero to avoid unpredictable behavior */ 2918 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2919 !fep->tx_time_itr || !fep->tx_pkts_itr) 2920 return; 2921 2922 /* Select enet system clock as Interrupt Coalescing 2923 * timer Clock Source 2924 */ 2925 rx_itr = FEC_ITR_CLK_SEL; 2926 tx_itr = FEC_ITR_CLK_SEL; 2927 2928 /* set ICFT and ICTT */ 2929 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2930 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2931 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2932 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2933 2934 rx_itr |= FEC_ITR_EN; 2935 tx_itr |= FEC_ITR_EN; 2936 2937 writel(tx_itr, fep->hwp + FEC_TXIC0); 2938 writel(rx_itr, fep->hwp + FEC_RXIC0); 2939 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2940 writel(tx_itr, fep->hwp + FEC_TXIC1); 2941 writel(rx_itr, fep->hwp + FEC_RXIC1); 2942 writel(tx_itr, fep->hwp + FEC_TXIC2); 2943 writel(rx_itr, fep->hwp + FEC_RXIC2); 2944 } 2945 } 2946 2947 static int fec_enet_get_coalesce(struct net_device *ndev, 2948 struct ethtool_coalesce *ec, 2949 struct kernel_ethtool_coalesce *kernel_coal, 2950 struct netlink_ext_ack *extack) 2951 { 2952 struct fec_enet_private *fep = netdev_priv(ndev); 2953 2954 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2955 return -EOPNOTSUPP; 2956 2957 ec->rx_coalesce_usecs = fep->rx_time_itr; 2958 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2959 2960 ec->tx_coalesce_usecs = fep->tx_time_itr; 2961 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2962 2963 return 0; 2964 } 2965 2966 static int fec_enet_set_coalesce(struct net_device *ndev, 2967 struct ethtool_coalesce *ec, 2968 struct kernel_ethtool_coalesce *kernel_coal, 2969 struct netlink_ext_ack *extack) 2970 { 2971 struct fec_enet_private *fep = netdev_priv(ndev); 2972 struct device *dev = &fep->pdev->dev; 2973 unsigned int cycle; 2974 2975 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2976 return -EOPNOTSUPP; 2977 2978 if (ec->rx_max_coalesced_frames > 255) { 2979 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2980 return -EINVAL; 2981 } 2982 2983 if (ec->tx_max_coalesced_frames > 255) { 2984 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2985 return -EINVAL; 2986 } 2987 2988 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2989 if (cycle > 0xFFFF) { 2990 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2991 return -EINVAL; 2992 } 2993 2994 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2995 if (cycle > 0xFFFF) { 2996 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2997 return -EINVAL; 2998 } 2999 3000 fep->rx_time_itr = ec->rx_coalesce_usecs; 3001 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3002 3003 fep->tx_time_itr = ec->tx_coalesce_usecs; 3004 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3005 3006 fec_enet_itr_coal_set(ndev); 3007 3008 return 0; 3009 } 3010 3011 static int fec_enet_get_tunable(struct net_device *netdev, 3012 const struct ethtool_tunable *tuna, 3013 void *data) 3014 { 3015 struct fec_enet_private *fep = netdev_priv(netdev); 3016 int ret = 0; 3017 3018 switch (tuna->id) { 3019 case ETHTOOL_RX_COPYBREAK: 3020 *(u32 *)data = fep->rx_copybreak; 3021 break; 3022 default: 3023 ret = -EINVAL; 3024 break; 3025 } 3026 3027 return ret; 3028 } 3029 3030 static int fec_enet_set_tunable(struct net_device *netdev, 3031 const struct ethtool_tunable *tuna, 3032 const void *data) 3033 { 3034 struct fec_enet_private *fep = netdev_priv(netdev); 3035 int ret = 0; 3036 3037 switch (tuna->id) { 3038 case ETHTOOL_RX_COPYBREAK: 3039 fep->rx_copybreak = *(u32 *)data; 3040 break; 3041 default: 3042 ret = -EINVAL; 3043 break; 3044 } 3045 3046 return ret; 3047 } 3048 3049 /* LPI Sleep Ts count base on tx clk (clk_ref). 3050 * The lpi sleep cnt value = X us / (cycle_ns). 3051 */ 3052 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3053 { 3054 struct fec_enet_private *fep = netdev_priv(ndev); 3055 3056 return us * (fep->clk_ref_rate / 1000) / 1000; 3057 } 3058 3059 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3060 { 3061 struct fec_enet_private *fep = netdev_priv(ndev); 3062 struct ethtool_eee *p = &fep->eee; 3063 unsigned int sleep_cycle, wake_cycle; 3064 int ret = 0; 3065 3066 if (enable) { 3067 ret = phy_init_eee(ndev->phydev, false); 3068 if (ret) 3069 return ret; 3070 3071 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3072 wake_cycle = sleep_cycle; 3073 } else { 3074 sleep_cycle = 0; 3075 wake_cycle = 0; 3076 } 3077 3078 p->tx_lpi_enabled = enable; 3079 p->eee_enabled = enable; 3080 p->eee_active = enable; 3081 3082 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3083 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3084 3085 return 0; 3086 } 3087 3088 static int 3089 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3090 { 3091 struct fec_enet_private *fep = netdev_priv(ndev); 3092 struct ethtool_eee *p = &fep->eee; 3093 3094 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3095 return -EOPNOTSUPP; 3096 3097 if (!netif_running(ndev)) 3098 return -ENETDOWN; 3099 3100 edata->eee_enabled = p->eee_enabled; 3101 edata->eee_active = p->eee_active; 3102 edata->tx_lpi_timer = p->tx_lpi_timer; 3103 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3104 3105 return phy_ethtool_get_eee(ndev->phydev, edata); 3106 } 3107 3108 static int 3109 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3110 { 3111 struct fec_enet_private *fep = netdev_priv(ndev); 3112 struct ethtool_eee *p = &fep->eee; 3113 int ret = 0; 3114 3115 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3116 return -EOPNOTSUPP; 3117 3118 if (!netif_running(ndev)) 3119 return -ENETDOWN; 3120 3121 p->tx_lpi_timer = edata->tx_lpi_timer; 3122 3123 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3124 !edata->tx_lpi_timer) 3125 ret = fec_enet_eee_mode_set(ndev, false); 3126 else 3127 ret = fec_enet_eee_mode_set(ndev, true); 3128 3129 if (ret) 3130 return ret; 3131 3132 return phy_ethtool_set_eee(ndev->phydev, edata); 3133 } 3134 3135 static void 3136 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3137 { 3138 struct fec_enet_private *fep = netdev_priv(ndev); 3139 3140 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3141 wol->supported = WAKE_MAGIC; 3142 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3143 } else { 3144 wol->supported = wol->wolopts = 0; 3145 } 3146 } 3147 3148 static int 3149 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3150 { 3151 struct fec_enet_private *fep = netdev_priv(ndev); 3152 3153 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3154 return -EINVAL; 3155 3156 if (wol->wolopts & ~WAKE_MAGIC) 3157 return -EINVAL; 3158 3159 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3160 if (device_may_wakeup(&ndev->dev)) 3161 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3162 else 3163 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3164 3165 return 0; 3166 } 3167 3168 static const struct ethtool_ops fec_enet_ethtool_ops = { 3169 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3170 ETHTOOL_COALESCE_MAX_FRAMES, 3171 .get_drvinfo = fec_enet_get_drvinfo, 3172 .get_regs_len = fec_enet_get_regs_len, 3173 .get_regs = fec_enet_get_regs, 3174 .nway_reset = phy_ethtool_nway_reset, 3175 .get_link = ethtool_op_get_link, 3176 .get_coalesce = fec_enet_get_coalesce, 3177 .set_coalesce = fec_enet_set_coalesce, 3178 #ifndef CONFIG_M5272 3179 .get_pauseparam = fec_enet_get_pauseparam, 3180 .set_pauseparam = fec_enet_set_pauseparam, 3181 .get_strings = fec_enet_get_strings, 3182 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3183 .get_sset_count = fec_enet_get_sset_count, 3184 #endif 3185 .get_ts_info = fec_enet_get_ts_info, 3186 .get_tunable = fec_enet_get_tunable, 3187 .set_tunable = fec_enet_set_tunable, 3188 .get_wol = fec_enet_get_wol, 3189 .set_wol = fec_enet_set_wol, 3190 .get_eee = fec_enet_get_eee, 3191 .set_eee = fec_enet_set_eee, 3192 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3193 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3194 .self_test = net_selftest, 3195 }; 3196 3197 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3198 { 3199 struct fec_enet_private *fep = netdev_priv(ndev); 3200 struct phy_device *phydev = ndev->phydev; 3201 3202 if (!netif_running(ndev)) 3203 return -EINVAL; 3204 3205 if (!phydev) 3206 return -ENODEV; 3207 3208 if (fep->bufdesc_ex) { 3209 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3210 3211 if (cmd == SIOCSHWTSTAMP) { 3212 if (use_fec_hwts) 3213 return fec_ptp_set(ndev, rq); 3214 fec_ptp_disable_hwts(ndev); 3215 } else if (cmd == SIOCGHWTSTAMP) { 3216 if (use_fec_hwts) 3217 return fec_ptp_get(ndev, rq); 3218 } 3219 } 3220 3221 return phy_mii_ioctl(phydev, rq, cmd); 3222 } 3223 3224 static void fec_enet_free_buffers(struct net_device *ndev) 3225 { 3226 struct fec_enet_private *fep = netdev_priv(ndev); 3227 unsigned int i; 3228 struct sk_buff *skb; 3229 struct fec_enet_priv_tx_q *txq; 3230 struct fec_enet_priv_rx_q *rxq; 3231 unsigned int q; 3232 3233 for (q = 0; q < fep->num_rx_queues; q++) { 3234 rxq = fep->rx_queue[q]; 3235 for (i = 0; i < rxq->bd.ring_size; i++) 3236 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3237 3238 for (i = 0; i < XDP_STATS_TOTAL; i++) 3239 rxq->stats[i] = 0; 3240 3241 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3242 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3243 page_pool_destroy(rxq->page_pool); 3244 rxq->page_pool = NULL; 3245 } 3246 3247 for (q = 0; q < fep->num_tx_queues; q++) { 3248 txq = fep->tx_queue[q]; 3249 for (i = 0; i < txq->bd.ring_size; i++) { 3250 kfree(txq->tx_bounce[i]); 3251 txq->tx_bounce[i] = NULL; 3252 skb = txq->tx_skbuff[i]; 3253 txq->tx_skbuff[i] = NULL; 3254 dev_kfree_skb(skb); 3255 } 3256 } 3257 } 3258 3259 static void fec_enet_free_queue(struct net_device *ndev) 3260 { 3261 struct fec_enet_private *fep = netdev_priv(ndev); 3262 int i; 3263 struct fec_enet_priv_tx_q *txq; 3264 3265 for (i = 0; i < fep->num_tx_queues; i++) 3266 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3267 txq = fep->tx_queue[i]; 3268 dma_free_coherent(&fep->pdev->dev, 3269 txq->bd.ring_size * TSO_HEADER_SIZE, 3270 txq->tso_hdrs, 3271 txq->tso_hdrs_dma); 3272 } 3273 3274 for (i = 0; i < fep->num_rx_queues; i++) 3275 kfree(fep->rx_queue[i]); 3276 for (i = 0; i < fep->num_tx_queues; i++) 3277 kfree(fep->tx_queue[i]); 3278 } 3279 3280 static int fec_enet_alloc_queue(struct net_device *ndev) 3281 { 3282 struct fec_enet_private *fep = netdev_priv(ndev); 3283 int i; 3284 int ret = 0; 3285 struct fec_enet_priv_tx_q *txq; 3286 3287 for (i = 0; i < fep->num_tx_queues; i++) { 3288 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3289 if (!txq) { 3290 ret = -ENOMEM; 3291 goto alloc_failed; 3292 } 3293 3294 fep->tx_queue[i] = txq; 3295 txq->bd.ring_size = TX_RING_SIZE; 3296 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3297 3298 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3299 txq->tx_wake_threshold = 3300 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3301 3302 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3303 txq->bd.ring_size * TSO_HEADER_SIZE, 3304 &txq->tso_hdrs_dma, 3305 GFP_KERNEL); 3306 if (!txq->tso_hdrs) { 3307 ret = -ENOMEM; 3308 goto alloc_failed; 3309 } 3310 } 3311 3312 for (i = 0; i < fep->num_rx_queues; i++) { 3313 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3314 GFP_KERNEL); 3315 if (!fep->rx_queue[i]) { 3316 ret = -ENOMEM; 3317 goto alloc_failed; 3318 } 3319 3320 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3321 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3322 } 3323 return ret; 3324 3325 alloc_failed: 3326 fec_enet_free_queue(ndev); 3327 return ret; 3328 } 3329 3330 static int 3331 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3332 { 3333 struct fec_enet_private *fep = netdev_priv(ndev); 3334 struct fec_enet_priv_rx_q *rxq; 3335 dma_addr_t phys_addr; 3336 struct bufdesc *bdp; 3337 struct page *page; 3338 int i, err; 3339 3340 rxq = fep->rx_queue[queue]; 3341 bdp = rxq->bd.base; 3342 3343 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3344 if (err < 0) { 3345 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3346 return err; 3347 } 3348 3349 for (i = 0; i < rxq->bd.ring_size; i++) { 3350 page = page_pool_dev_alloc_pages(rxq->page_pool); 3351 if (!page) 3352 goto err_alloc; 3353 3354 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3355 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3356 3357 rxq->rx_skb_info[i].page = page; 3358 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3359 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3360 3361 if (fep->bufdesc_ex) { 3362 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3363 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3364 } 3365 3366 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3367 } 3368 3369 /* Set the last buffer to wrap. */ 3370 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3371 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3372 return 0; 3373 3374 err_alloc: 3375 fec_enet_free_buffers(ndev); 3376 return -ENOMEM; 3377 } 3378 3379 static int 3380 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3381 { 3382 struct fec_enet_private *fep = netdev_priv(ndev); 3383 unsigned int i; 3384 struct bufdesc *bdp; 3385 struct fec_enet_priv_tx_q *txq; 3386 3387 txq = fep->tx_queue[queue]; 3388 bdp = txq->bd.base; 3389 for (i = 0; i < txq->bd.ring_size; i++) { 3390 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3391 if (!txq->tx_bounce[i]) 3392 goto err_alloc; 3393 3394 bdp->cbd_sc = cpu_to_fec16(0); 3395 bdp->cbd_bufaddr = cpu_to_fec32(0); 3396 3397 if (fep->bufdesc_ex) { 3398 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3399 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3400 } 3401 3402 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3403 } 3404 3405 /* Set the last buffer to wrap. */ 3406 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3407 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3408 3409 return 0; 3410 3411 err_alloc: 3412 fec_enet_free_buffers(ndev); 3413 return -ENOMEM; 3414 } 3415 3416 static int fec_enet_alloc_buffers(struct net_device *ndev) 3417 { 3418 struct fec_enet_private *fep = netdev_priv(ndev); 3419 unsigned int i; 3420 3421 for (i = 0; i < fep->num_rx_queues; i++) 3422 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3423 return -ENOMEM; 3424 3425 for (i = 0; i < fep->num_tx_queues; i++) 3426 if (fec_enet_alloc_txq_buffers(ndev, i)) 3427 return -ENOMEM; 3428 return 0; 3429 } 3430 3431 static int 3432 fec_enet_open(struct net_device *ndev) 3433 { 3434 struct fec_enet_private *fep = netdev_priv(ndev); 3435 int ret; 3436 bool reset_again; 3437 3438 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3439 if (ret < 0) 3440 return ret; 3441 3442 pinctrl_pm_select_default_state(&fep->pdev->dev); 3443 ret = fec_enet_clk_enable(ndev, true); 3444 if (ret) 3445 goto clk_enable; 3446 3447 /* During the first fec_enet_open call the PHY isn't probed at this 3448 * point. Therefore the phy_reset_after_clk_enable() call within 3449 * fec_enet_clk_enable() fails. As we need this reset in order to be 3450 * sure the PHY is working correctly we check if we need to reset again 3451 * later when the PHY is probed 3452 */ 3453 if (ndev->phydev && ndev->phydev->drv) 3454 reset_again = false; 3455 else 3456 reset_again = true; 3457 3458 /* I should reset the ring buffers here, but I don't yet know 3459 * a simple way to do that. 3460 */ 3461 3462 ret = fec_enet_alloc_buffers(ndev); 3463 if (ret) 3464 goto err_enet_alloc; 3465 3466 /* Init MAC prior to mii bus probe */ 3467 fec_restart(ndev); 3468 3469 /* Call phy_reset_after_clk_enable() again if it failed during 3470 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3471 */ 3472 if (reset_again) 3473 fec_enet_phy_reset_after_clk_enable(ndev); 3474 3475 /* Probe and connect to PHY when open the interface */ 3476 ret = fec_enet_mii_probe(ndev); 3477 if (ret) 3478 goto err_enet_mii_probe; 3479 3480 if (fep->quirks & FEC_QUIRK_ERR006687) 3481 imx6q_cpuidle_fec_irqs_used(); 3482 3483 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3484 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3485 3486 napi_enable(&fep->napi); 3487 phy_start(ndev->phydev); 3488 netif_tx_start_all_queues(ndev); 3489 3490 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3491 FEC_WOL_FLAG_ENABLE); 3492 3493 return 0; 3494 3495 err_enet_mii_probe: 3496 fec_enet_free_buffers(ndev); 3497 err_enet_alloc: 3498 fec_enet_clk_enable(ndev, false); 3499 clk_enable: 3500 pm_runtime_mark_last_busy(&fep->pdev->dev); 3501 pm_runtime_put_autosuspend(&fep->pdev->dev); 3502 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3503 return ret; 3504 } 3505 3506 static int 3507 fec_enet_close(struct net_device *ndev) 3508 { 3509 struct fec_enet_private *fep = netdev_priv(ndev); 3510 3511 phy_stop(ndev->phydev); 3512 3513 if (netif_device_present(ndev)) { 3514 napi_disable(&fep->napi); 3515 netif_tx_disable(ndev); 3516 fec_stop(ndev); 3517 } 3518 3519 phy_disconnect(ndev->phydev); 3520 3521 if (fep->quirks & FEC_QUIRK_ERR006687) 3522 imx6q_cpuidle_fec_irqs_unused(); 3523 3524 fec_enet_update_ethtool_stats(ndev); 3525 3526 fec_enet_clk_enable(ndev, false); 3527 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3528 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3529 3530 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3531 pm_runtime_mark_last_busy(&fep->pdev->dev); 3532 pm_runtime_put_autosuspend(&fep->pdev->dev); 3533 3534 fec_enet_free_buffers(ndev); 3535 3536 return 0; 3537 } 3538 3539 /* Set or clear the multicast filter for this adaptor. 3540 * Skeleton taken from sunlance driver. 3541 * The CPM Ethernet implementation allows Multicast as well as individual 3542 * MAC address filtering. Some of the drivers check to make sure it is 3543 * a group multicast address, and discard those that are not. I guess I 3544 * will do the same for now, but just remove the test if you want 3545 * individual filtering as well (do the upper net layers want or support 3546 * this kind of feature?). 3547 */ 3548 3549 #define FEC_HASH_BITS 6 /* #bits in hash */ 3550 3551 static void set_multicast_list(struct net_device *ndev) 3552 { 3553 struct fec_enet_private *fep = netdev_priv(ndev); 3554 struct netdev_hw_addr *ha; 3555 unsigned int crc, tmp; 3556 unsigned char hash; 3557 unsigned int hash_high = 0, hash_low = 0; 3558 3559 if (ndev->flags & IFF_PROMISC) { 3560 tmp = readl(fep->hwp + FEC_R_CNTRL); 3561 tmp |= 0x8; 3562 writel(tmp, fep->hwp + FEC_R_CNTRL); 3563 return; 3564 } 3565 3566 tmp = readl(fep->hwp + FEC_R_CNTRL); 3567 tmp &= ~0x8; 3568 writel(tmp, fep->hwp + FEC_R_CNTRL); 3569 3570 if (ndev->flags & IFF_ALLMULTI) { 3571 /* Catch all multicast addresses, so set the 3572 * filter to all 1's 3573 */ 3574 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3575 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3576 3577 return; 3578 } 3579 3580 /* Add the addresses in hash register */ 3581 netdev_for_each_mc_addr(ha, ndev) { 3582 /* calculate crc32 value of mac address */ 3583 crc = ether_crc_le(ndev->addr_len, ha->addr); 3584 3585 /* only upper 6 bits (FEC_HASH_BITS) are used 3586 * which point to specific bit in the hash registers 3587 */ 3588 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3589 3590 if (hash > 31) 3591 hash_high |= 1 << (hash - 32); 3592 else 3593 hash_low |= 1 << hash; 3594 } 3595 3596 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3597 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3598 } 3599 3600 /* Set a MAC change in hardware. */ 3601 static int 3602 fec_set_mac_address(struct net_device *ndev, void *p) 3603 { 3604 struct fec_enet_private *fep = netdev_priv(ndev); 3605 struct sockaddr *addr = p; 3606 3607 if (addr) { 3608 if (!is_valid_ether_addr(addr->sa_data)) 3609 return -EADDRNOTAVAIL; 3610 eth_hw_addr_set(ndev, addr->sa_data); 3611 } 3612 3613 /* Add netif status check here to avoid system hang in below case: 3614 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3615 * After ethx down, fec all clocks are gated off and then register 3616 * access causes system hang. 3617 */ 3618 if (!netif_running(ndev)) 3619 return 0; 3620 3621 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3622 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3623 fep->hwp + FEC_ADDR_LOW); 3624 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3625 fep->hwp + FEC_ADDR_HIGH); 3626 return 0; 3627 } 3628 3629 #ifdef CONFIG_NET_POLL_CONTROLLER 3630 /** 3631 * fec_poll_controller - FEC Poll controller function 3632 * @dev: The FEC network adapter 3633 * 3634 * Polled functionality used by netconsole and others in non interrupt mode 3635 * 3636 */ 3637 static void fec_poll_controller(struct net_device *dev) 3638 { 3639 int i; 3640 struct fec_enet_private *fep = netdev_priv(dev); 3641 3642 for (i = 0; i < FEC_IRQ_NUM; i++) { 3643 if (fep->irq[i] > 0) { 3644 disable_irq(fep->irq[i]); 3645 fec_enet_interrupt(fep->irq[i], dev); 3646 enable_irq(fep->irq[i]); 3647 } 3648 } 3649 } 3650 #endif 3651 3652 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3653 netdev_features_t features) 3654 { 3655 struct fec_enet_private *fep = netdev_priv(netdev); 3656 netdev_features_t changed = features ^ netdev->features; 3657 3658 netdev->features = features; 3659 3660 /* Receive checksum has been changed */ 3661 if (changed & NETIF_F_RXCSUM) { 3662 if (features & NETIF_F_RXCSUM) 3663 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3664 else 3665 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3666 } 3667 } 3668 3669 static int fec_set_features(struct net_device *netdev, 3670 netdev_features_t features) 3671 { 3672 struct fec_enet_private *fep = netdev_priv(netdev); 3673 netdev_features_t changed = features ^ netdev->features; 3674 3675 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3676 napi_disable(&fep->napi); 3677 netif_tx_lock_bh(netdev); 3678 fec_stop(netdev); 3679 fec_enet_set_netdev_features(netdev, features); 3680 fec_restart(netdev); 3681 netif_tx_wake_all_queues(netdev); 3682 netif_tx_unlock_bh(netdev); 3683 napi_enable(&fep->napi); 3684 } else { 3685 fec_enet_set_netdev_features(netdev, features); 3686 } 3687 3688 return 0; 3689 } 3690 3691 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3692 { 3693 struct vlan_ethhdr *vhdr; 3694 unsigned short vlan_TCI = 0; 3695 3696 if (skb->protocol == htons(ETH_P_ALL)) { 3697 vhdr = (struct vlan_ethhdr *)(skb->data); 3698 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3699 } 3700 3701 return vlan_TCI; 3702 } 3703 3704 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3705 struct net_device *sb_dev) 3706 { 3707 struct fec_enet_private *fep = netdev_priv(ndev); 3708 u16 vlan_tag; 3709 3710 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3711 return netdev_pick_tx(ndev, skb, NULL); 3712 3713 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3714 if (!vlan_tag) 3715 return vlan_tag; 3716 3717 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3718 } 3719 3720 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3721 { 3722 struct fec_enet_private *fep = netdev_priv(dev); 3723 bool is_run = netif_running(dev); 3724 struct bpf_prog *old_prog; 3725 3726 switch (bpf->command) { 3727 case XDP_SETUP_PROG: 3728 /* No need to support the SoCs that require to 3729 * do the frame swap because the performance wouldn't be 3730 * better than the skb mode. 3731 */ 3732 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3733 return -EOPNOTSUPP; 3734 3735 if (is_run) { 3736 napi_disable(&fep->napi); 3737 netif_tx_disable(dev); 3738 } 3739 3740 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3741 fec_restart(dev); 3742 3743 if (is_run) { 3744 napi_enable(&fep->napi); 3745 netif_tx_start_all_queues(dev); 3746 } 3747 3748 if (old_prog) 3749 bpf_prog_put(old_prog); 3750 3751 return 0; 3752 3753 case XDP_SETUP_XSK_POOL: 3754 return -EOPNOTSUPP; 3755 3756 default: 3757 return -EOPNOTSUPP; 3758 } 3759 } 3760 3761 static int 3762 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3763 { 3764 if (unlikely(index < 0)) 3765 return 0; 3766 3767 return (index % fep->num_tx_queues); 3768 } 3769 3770 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3771 struct fec_enet_priv_tx_q *txq, 3772 struct xdp_frame *frame) 3773 { 3774 unsigned int index, status, estatus; 3775 struct bufdesc *bdp; 3776 dma_addr_t dma_addr; 3777 int entries_free; 3778 3779 entries_free = fec_enet_get_free_txdesc_num(txq); 3780 if (entries_free < MAX_SKB_FRAGS + 1) { 3781 netdev_err(fep->netdev, "NOT enough BD for SG!\n"); 3782 return -EBUSY; 3783 } 3784 3785 /* Fill in a Tx ring entry */ 3786 bdp = txq->bd.cur; 3787 status = fec16_to_cpu(bdp->cbd_sc); 3788 status &= ~BD_ENET_TX_STATS; 3789 3790 index = fec_enet_get_bd_index(bdp, &txq->bd); 3791 3792 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3793 frame->len, DMA_TO_DEVICE); 3794 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3795 return -ENOMEM; 3796 3797 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3798 if (fep->bufdesc_ex) 3799 estatus = BD_ENET_TX_INT; 3800 3801 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3802 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3803 3804 if (fep->bufdesc_ex) { 3805 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3806 3807 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3808 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3809 3810 ebdp->cbd_bdu = 0; 3811 ebdp->cbd_esc = cpu_to_fec32(estatus); 3812 } 3813 3814 txq->tx_skbuff[index] = NULL; 3815 3816 /* Make sure the updates to rest of the descriptor are performed before 3817 * transferring ownership. 3818 */ 3819 dma_wmb(); 3820 3821 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3822 * it's the last BD of the frame, and to put the CRC on the end. 3823 */ 3824 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3825 bdp->cbd_sc = cpu_to_fec16(status); 3826 3827 /* If this was the last BD in the ring, start at the beginning again. */ 3828 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3829 3830 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3831 dma_wmb(); 3832 3833 txq->bd.cur = bdp; 3834 3835 /* Trigger transmission start */ 3836 writel(0, txq->bd.reg_desc_active); 3837 3838 return 0; 3839 } 3840 3841 static int fec_enet_xdp_xmit(struct net_device *dev, 3842 int num_frames, 3843 struct xdp_frame **frames, 3844 u32 flags) 3845 { 3846 struct fec_enet_private *fep = netdev_priv(dev); 3847 struct fec_enet_priv_tx_q *txq; 3848 int cpu = smp_processor_id(); 3849 unsigned int sent_frames = 0; 3850 struct netdev_queue *nq; 3851 unsigned int queue; 3852 int i; 3853 3854 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3855 txq = fep->tx_queue[queue]; 3856 nq = netdev_get_tx_queue(fep->netdev, queue); 3857 3858 __netif_tx_lock(nq, cpu); 3859 3860 for (i = 0; i < num_frames; i++) { 3861 if (fec_enet_txq_xmit_frame(fep, txq, frames[i]) < 0) 3862 break; 3863 sent_frames++; 3864 } 3865 3866 __netif_tx_unlock(nq); 3867 3868 return sent_frames; 3869 } 3870 3871 static const struct net_device_ops fec_netdev_ops = { 3872 .ndo_open = fec_enet_open, 3873 .ndo_stop = fec_enet_close, 3874 .ndo_start_xmit = fec_enet_start_xmit, 3875 .ndo_select_queue = fec_enet_select_queue, 3876 .ndo_set_rx_mode = set_multicast_list, 3877 .ndo_validate_addr = eth_validate_addr, 3878 .ndo_tx_timeout = fec_timeout, 3879 .ndo_set_mac_address = fec_set_mac_address, 3880 .ndo_eth_ioctl = fec_enet_ioctl, 3881 #ifdef CONFIG_NET_POLL_CONTROLLER 3882 .ndo_poll_controller = fec_poll_controller, 3883 #endif 3884 .ndo_set_features = fec_set_features, 3885 .ndo_bpf = fec_enet_bpf, 3886 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3887 }; 3888 3889 static const unsigned short offset_des_active_rxq[] = { 3890 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3891 }; 3892 3893 static const unsigned short offset_des_active_txq[] = { 3894 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3895 }; 3896 3897 /* 3898 * XXX: We need to clean up on failure exits here. 3899 * 3900 */ 3901 static int fec_enet_init(struct net_device *ndev) 3902 { 3903 struct fec_enet_private *fep = netdev_priv(ndev); 3904 struct bufdesc *cbd_base; 3905 dma_addr_t bd_dma; 3906 int bd_size; 3907 unsigned int i; 3908 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3909 sizeof(struct bufdesc); 3910 unsigned dsize_log2 = __fls(dsize); 3911 int ret; 3912 3913 WARN_ON(dsize != (1 << dsize_log2)); 3914 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3915 fep->rx_align = 0xf; 3916 fep->tx_align = 0xf; 3917 #else 3918 fep->rx_align = 0x3; 3919 fep->tx_align = 0x3; 3920 #endif 3921 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3922 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3923 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 3924 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 3925 3926 /* Check mask of the streaming and coherent API */ 3927 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3928 if (ret < 0) { 3929 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3930 return ret; 3931 } 3932 3933 ret = fec_enet_alloc_queue(ndev); 3934 if (ret) 3935 return ret; 3936 3937 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3938 3939 /* Allocate memory for buffer descriptors. */ 3940 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3941 GFP_KERNEL); 3942 if (!cbd_base) { 3943 ret = -ENOMEM; 3944 goto free_queue_mem; 3945 } 3946 3947 /* Get the Ethernet address */ 3948 ret = fec_get_mac(ndev); 3949 if (ret) 3950 goto free_queue_mem; 3951 3952 /* make sure MAC we just acquired is programmed into the hw */ 3953 fec_set_mac_address(ndev, NULL); 3954 3955 /* Set receive and transmit descriptor base. */ 3956 for (i = 0; i < fep->num_rx_queues; i++) { 3957 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3958 unsigned size = dsize * rxq->bd.ring_size; 3959 3960 rxq->bd.qid = i; 3961 rxq->bd.base = cbd_base; 3962 rxq->bd.cur = cbd_base; 3963 rxq->bd.dma = bd_dma; 3964 rxq->bd.dsize = dsize; 3965 rxq->bd.dsize_log2 = dsize_log2; 3966 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3967 bd_dma += size; 3968 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3969 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3970 } 3971 3972 for (i = 0; i < fep->num_tx_queues; i++) { 3973 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3974 unsigned size = dsize * txq->bd.ring_size; 3975 3976 txq->bd.qid = i; 3977 txq->bd.base = cbd_base; 3978 txq->bd.cur = cbd_base; 3979 txq->bd.dma = bd_dma; 3980 txq->bd.dsize = dsize; 3981 txq->bd.dsize_log2 = dsize_log2; 3982 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3983 bd_dma += size; 3984 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3985 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3986 } 3987 3988 3989 /* The FEC Ethernet specific entries in the device structure */ 3990 ndev->watchdog_timeo = TX_TIMEOUT; 3991 ndev->netdev_ops = &fec_netdev_ops; 3992 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3993 3994 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3995 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 3996 3997 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3998 /* enable hw VLAN support */ 3999 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4000 4001 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4002 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4003 4004 /* enable hw accelerator */ 4005 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4006 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4007 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4008 } 4009 4010 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4011 fep->tx_align = 0; 4012 fep->rx_align = 0x3f; 4013 } 4014 4015 ndev->hw_features = ndev->features; 4016 4017 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4018 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4019 NETDEV_XDP_ACT_REDIRECT | 4020 NETDEV_XDP_ACT_NDO_XMIT; 4021 4022 fec_restart(ndev); 4023 4024 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4025 fec_enet_clear_ethtool_stats(ndev); 4026 else 4027 fec_enet_update_ethtool_stats(ndev); 4028 4029 return 0; 4030 4031 free_queue_mem: 4032 fec_enet_free_queue(ndev); 4033 return ret; 4034 } 4035 4036 #ifdef CONFIG_OF 4037 static int fec_reset_phy(struct platform_device *pdev) 4038 { 4039 struct gpio_desc *phy_reset; 4040 int msec = 1, phy_post_delay = 0; 4041 struct device_node *np = pdev->dev.of_node; 4042 int err; 4043 4044 if (!np) 4045 return 0; 4046 4047 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4048 /* A sane reset duration should not be longer than 1s */ 4049 if (!err && msec > 1000) 4050 msec = 1; 4051 4052 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4053 /* valid reset duration should be less than 1s */ 4054 if (!err && phy_post_delay > 1000) 4055 return -EINVAL; 4056 4057 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4058 GPIOD_OUT_HIGH); 4059 if (IS_ERR(phy_reset)) 4060 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4061 "failed to get phy-reset-gpios\n"); 4062 4063 if (!phy_reset) 4064 return 0; 4065 4066 if (msec > 20) 4067 msleep(msec); 4068 else 4069 usleep_range(msec * 1000, msec * 1000 + 1000); 4070 4071 gpiod_set_value_cansleep(phy_reset, 0); 4072 4073 if (!phy_post_delay) 4074 return 0; 4075 4076 if (phy_post_delay > 20) 4077 msleep(phy_post_delay); 4078 else 4079 usleep_range(phy_post_delay * 1000, 4080 phy_post_delay * 1000 + 1000); 4081 4082 return 0; 4083 } 4084 #else /* CONFIG_OF */ 4085 static int fec_reset_phy(struct platform_device *pdev) 4086 { 4087 /* 4088 * In case of platform probe, the reset has been done 4089 * by machine code. 4090 */ 4091 return 0; 4092 } 4093 #endif /* CONFIG_OF */ 4094 4095 static void 4096 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4097 { 4098 struct device_node *np = pdev->dev.of_node; 4099 4100 *num_tx = *num_rx = 1; 4101 4102 if (!np || !of_device_is_available(np)) 4103 return; 4104 4105 /* parse the num of tx and rx queues */ 4106 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4107 4108 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4109 4110 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4111 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4112 *num_tx); 4113 *num_tx = 1; 4114 return; 4115 } 4116 4117 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4118 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4119 *num_rx); 4120 *num_rx = 1; 4121 return; 4122 } 4123 4124 } 4125 4126 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4127 { 4128 int irq_cnt = platform_irq_count(pdev); 4129 4130 if (irq_cnt > FEC_IRQ_NUM) 4131 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4132 else if (irq_cnt == 2) 4133 irq_cnt = 1; /* last for pps */ 4134 else if (irq_cnt <= 0) 4135 irq_cnt = 1; /* At least 1 irq is needed */ 4136 return irq_cnt; 4137 } 4138 4139 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4140 { 4141 struct net_device *ndev = platform_get_drvdata(pdev); 4142 struct fec_enet_private *fep = netdev_priv(ndev); 4143 4144 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4145 fep->wake_irq = fep->irq[2]; 4146 else 4147 fep->wake_irq = fep->irq[0]; 4148 } 4149 4150 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4151 struct device_node *np) 4152 { 4153 struct device_node *gpr_np; 4154 u32 out_val[3]; 4155 int ret = 0; 4156 4157 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4158 if (!gpr_np) 4159 return 0; 4160 4161 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4162 ARRAY_SIZE(out_val)); 4163 if (ret) { 4164 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4165 goto out; 4166 } 4167 4168 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4169 if (IS_ERR(fep->stop_gpr.gpr)) { 4170 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4171 ret = PTR_ERR(fep->stop_gpr.gpr); 4172 fep->stop_gpr.gpr = NULL; 4173 goto out; 4174 } 4175 4176 fep->stop_gpr.reg = out_val[1]; 4177 fep->stop_gpr.bit = out_val[2]; 4178 4179 out: 4180 of_node_put(gpr_np); 4181 4182 return ret; 4183 } 4184 4185 static int 4186 fec_probe(struct platform_device *pdev) 4187 { 4188 struct fec_enet_private *fep; 4189 struct fec_platform_data *pdata; 4190 phy_interface_t interface; 4191 struct net_device *ndev; 4192 int i, irq, ret = 0; 4193 const struct of_device_id *of_id; 4194 static int dev_id; 4195 struct device_node *np = pdev->dev.of_node, *phy_node; 4196 int num_tx_qs; 4197 int num_rx_qs; 4198 char irq_name[8]; 4199 int irq_cnt; 4200 struct fec_devinfo *dev_info; 4201 4202 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4203 4204 /* Init network device */ 4205 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4206 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4207 if (!ndev) 4208 return -ENOMEM; 4209 4210 SET_NETDEV_DEV(ndev, &pdev->dev); 4211 4212 /* setup board info structure */ 4213 fep = netdev_priv(ndev); 4214 4215 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4216 if (of_id) 4217 pdev->id_entry = of_id->data; 4218 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4219 if (dev_info) 4220 fep->quirks = dev_info->quirks; 4221 4222 fep->netdev = ndev; 4223 fep->num_rx_queues = num_rx_qs; 4224 fep->num_tx_queues = num_tx_qs; 4225 4226 #if !defined(CONFIG_M5272) 4227 /* default enable pause frame auto negotiation */ 4228 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4229 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4230 #endif 4231 4232 /* Select default pin state */ 4233 pinctrl_pm_select_default_state(&pdev->dev); 4234 4235 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4236 if (IS_ERR(fep->hwp)) { 4237 ret = PTR_ERR(fep->hwp); 4238 goto failed_ioremap; 4239 } 4240 4241 fep->pdev = pdev; 4242 fep->dev_id = dev_id++; 4243 4244 platform_set_drvdata(pdev, ndev); 4245 4246 if ((of_machine_is_compatible("fsl,imx6q") || 4247 of_machine_is_compatible("fsl,imx6dl")) && 4248 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4249 fep->quirks |= FEC_QUIRK_ERR006687; 4250 4251 ret = fec_enet_ipc_handle_init(fep); 4252 if (ret) 4253 goto failed_ipc_init; 4254 4255 if (of_property_read_bool(np, "fsl,magic-packet")) 4256 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4257 4258 ret = fec_enet_init_stop_mode(fep, np); 4259 if (ret) 4260 goto failed_stop_mode; 4261 4262 phy_node = of_parse_phandle(np, "phy-handle", 0); 4263 if (!phy_node && of_phy_is_fixed_link(np)) { 4264 ret = of_phy_register_fixed_link(np); 4265 if (ret < 0) { 4266 dev_err(&pdev->dev, 4267 "broken fixed-link specification\n"); 4268 goto failed_phy; 4269 } 4270 phy_node = of_node_get(np); 4271 } 4272 fep->phy_node = phy_node; 4273 4274 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4275 if (ret) { 4276 pdata = dev_get_platdata(&pdev->dev); 4277 if (pdata) 4278 fep->phy_interface = pdata->phy; 4279 else 4280 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4281 } else { 4282 fep->phy_interface = interface; 4283 } 4284 4285 ret = fec_enet_parse_rgmii_delay(fep, np); 4286 if (ret) 4287 goto failed_rgmii_delay; 4288 4289 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4290 if (IS_ERR(fep->clk_ipg)) { 4291 ret = PTR_ERR(fep->clk_ipg); 4292 goto failed_clk; 4293 } 4294 4295 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4296 if (IS_ERR(fep->clk_ahb)) { 4297 ret = PTR_ERR(fep->clk_ahb); 4298 goto failed_clk; 4299 } 4300 4301 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4302 4303 /* enet_out is optional, depends on board */ 4304 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4305 if (IS_ERR(fep->clk_enet_out)) { 4306 ret = PTR_ERR(fep->clk_enet_out); 4307 goto failed_clk; 4308 } 4309 4310 fep->ptp_clk_on = false; 4311 mutex_init(&fep->ptp_clk_mutex); 4312 4313 /* clk_ref is optional, depends on board */ 4314 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4315 if (IS_ERR(fep->clk_ref)) { 4316 ret = PTR_ERR(fep->clk_ref); 4317 goto failed_clk; 4318 } 4319 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4320 4321 /* clk_2x_txclk is optional, depends on board */ 4322 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4323 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4324 if (IS_ERR(fep->clk_2x_txclk)) 4325 fep->clk_2x_txclk = NULL; 4326 } 4327 4328 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4329 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4330 if (IS_ERR(fep->clk_ptp)) { 4331 fep->clk_ptp = NULL; 4332 fep->bufdesc_ex = false; 4333 } 4334 4335 ret = fec_enet_clk_enable(ndev, true); 4336 if (ret) 4337 goto failed_clk; 4338 4339 ret = clk_prepare_enable(fep->clk_ipg); 4340 if (ret) 4341 goto failed_clk_ipg; 4342 ret = clk_prepare_enable(fep->clk_ahb); 4343 if (ret) 4344 goto failed_clk_ahb; 4345 4346 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4347 if (!IS_ERR(fep->reg_phy)) { 4348 ret = regulator_enable(fep->reg_phy); 4349 if (ret) { 4350 dev_err(&pdev->dev, 4351 "Failed to enable phy regulator: %d\n", ret); 4352 goto failed_regulator; 4353 } 4354 } else { 4355 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4356 ret = -EPROBE_DEFER; 4357 goto failed_regulator; 4358 } 4359 fep->reg_phy = NULL; 4360 } 4361 4362 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4363 pm_runtime_use_autosuspend(&pdev->dev); 4364 pm_runtime_get_noresume(&pdev->dev); 4365 pm_runtime_set_active(&pdev->dev); 4366 pm_runtime_enable(&pdev->dev); 4367 4368 ret = fec_reset_phy(pdev); 4369 if (ret) 4370 goto failed_reset; 4371 4372 irq_cnt = fec_enet_get_irq_cnt(pdev); 4373 if (fep->bufdesc_ex) 4374 fec_ptp_init(pdev, irq_cnt); 4375 4376 ret = fec_enet_init(ndev); 4377 if (ret) 4378 goto failed_init; 4379 4380 for (i = 0; i < irq_cnt; i++) { 4381 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4382 irq = platform_get_irq_byname_optional(pdev, irq_name); 4383 if (irq < 0) 4384 irq = platform_get_irq(pdev, i); 4385 if (irq < 0) { 4386 ret = irq; 4387 goto failed_irq; 4388 } 4389 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4390 0, pdev->name, ndev); 4391 if (ret) 4392 goto failed_irq; 4393 4394 fep->irq[i] = irq; 4395 } 4396 4397 /* Decide which interrupt line is wakeup capable */ 4398 fec_enet_get_wakeup_irq(pdev); 4399 4400 ret = fec_enet_mii_init(pdev); 4401 if (ret) 4402 goto failed_mii_init; 4403 4404 /* Carrier starts down, phylib will bring it up */ 4405 netif_carrier_off(ndev); 4406 fec_enet_clk_enable(ndev, false); 4407 pinctrl_pm_select_sleep_state(&pdev->dev); 4408 4409 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4410 4411 ret = register_netdev(ndev); 4412 if (ret) 4413 goto failed_register; 4414 4415 device_init_wakeup(&ndev->dev, fep->wol_flag & 4416 FEC_WOL_HAS_MAGIC_PACKET); 4417 4418 if (fep->bufdesc_ex && fep->ptp_clock) 4419 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4420 4421 fep->rx_copybreak = COPYBREAK_DEFAULT; 4422 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4423 4424 pm_runtime_mark_last_busy(&pdev->dev); 4425 pm_runtime_put_autosuspend(&pdev->dev); 4426 4427 return 0; 4428 4429 failed_register: 4430 fec_enet_mii_remove(fep); 4431 failed_mii_init: 4432 failed_irq: 4433 failed_init: 4434 fec_ptp_stop(pdev); 4435 failed_reset: 4436 pm_runtime_put_noidle(&pdev->dev); 4437 pm_runtime_disable(&pdev->dev); 4438 if (fep->reg_phy) 4439 regulator_disable(fep->reg_phy); 4440 failed_regulator: 4441 clk_disable_unprepare(fep->clk_ahb); 4442 failed_clk_ahb: 4443 clk_disable_unprepare(fep->clk_ipg); 4444 failed_clk_ipg: 4445 fec_enet_clk_enable(ndev, false); 4446 failed_clk: 4447 failed_rgmii_delay: 4448 if (of_phy_is_fixed_link(np)) 4449 of_phy_deregister_fixed_link(np); 4450 of_node_put(phy_node); 4451 failed_stop_mode: 4452 failed_ipc_init: 4453 failed_phy: 4454 dev_id--; 4455 failed_ioremap: 4456 free_netdev(ndev); 4457 4458 return ret; 4459 } 4460 4461 static int 4462 fec_drv_remove(struct platform_device *pdev) 4463 { 4464 struct net_device *ndev = platform_get_drvdata(pdev); 4465 struct fec_enet_private *fep = netdev_priv(ndev); 4466 struct device_node *np = pdev->dev.of_node; 4467 int ret; 4468 4469 ret = pm_runtime_get_sync(&pdev->dev); 4470 if (ret < 0) 4471 dev_err(&pdev->dev, 4472 "Failed to resume device in remove callback (%pe)\n", 4473 ERR_PTR(ret)); 4474 4475 cancel_work_sync(&fep->tx_timeout_work); 4476 fec_ptp_stop(pdev); 4477 unregister_netdev(ndev); 4478 fec_enet_mii_remove(fep); 4479 if (fep->reg_phy) 4480 regulator_disable(fep->reg_phy); 4481 4482 if (of_phy_is_fixed_link(np)) 4483 of_phy_deregister_fixed_link(np); 4484 of_node_put(fep->phy_node); 4485 4486 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4487 * disabling them again. 4488 */ 4489 if (ret >= 0) { 4490 clk_disable_unprepare(fep->clk_ahb); 4491 clk_disable_unprepare(fep->clk_ipg); 4492 } 4493 pm_runtime_put_noidle(&pdev->dev); 4494 pm_runtime_disable(&pdev->dev); 4495 4496 free_netdev(ndev); 4497 return 0; 4498 } 4499 4500 static int __maybe_unused fec_suspend(struct device *dev) 4501 { 4502 struct net_device *ndev = dev_get_drvdata(dev); 4503 struct fec_enet_private *fep = netdev_priv(ndev); 4504 int ret; 4505 4506 rtnl_lock(); 4507 if (netif_running(ndev)) { 4508 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4509 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4510 phy_stop(ndev->phydev); 4511 napi_disable(&fep->napi); 4512 netif_tx_lock_bh(ndev); 4513 netif_device_detach(ndev); 4514 netif_tx_unlock_bh(ndev); 4515 fec_stop(ndev); 4516 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4517 fec_irqs_disable(ndev); 4518 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4519 } else { 4520 fec_irqs_disable_except_wakeup(ndev); 4521 if (fep->wake_irq > 0) { 4522 disable_irq(fep->wake_irq); 4523 enable_irq_wake(fep->wake_irq); 4524 } 4525 fec_enet_stop_mode(fep, true); 4526 } 4527 /* It's safe to disable clocks since interrupts are masked */ 4528 fec_enet_clk_enable(ndev, false); 4529 4530 fep->rpm_active = !pm_runtime_status_suspended(dev); 4531 if (fep->rpm_active) { 4532 ret = pm_runtime_force_suspend(dev); 4533 if (ret < 0) { 4534 rtnl_unlock(); 4535 return ret; 4536 } 4537 } 4538 } 4539 rtnl_unlock(); 4540 4541 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4542 regulator_disable(fep->reg_phy); 4543 4544 /* SOC supply clock to phy, when clock is disabled, phy link down 4545 * SOC control phy regulator, when regulator is disabled, phy link down 4546 */ 4547 if (fep->clk_enet_out || fep->reg_phy) 4548 fep->link = 0; 4549 4550 return 0; 4551 } 4552 4553 static int __maybe_unused fec_resume(struct device *dev) 4554 { 4555 struct net_device *ndev = dev_get_drvdata(dev); 4556 struct fec_enet_private *fep = netdev_priv(ndev); 4557 int ret; 4558 int val; 4559 4560 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4561 ret = regulator_enable(fep->reg_phy); 4562 if (ret) 4563 return ret; 4564 } 4565 4566 rtnl_lock(); 4567 if (netif_running(ndev)) { 4568 if (fep->rpm_active) 4569 pm_runtime_force_resume(dev); 4570 4571 ret = fec_enet_clk_enable(ndev, true); 4572 if (ret) { 4573 rtnl_unlock(); 4574 goto failed_clk; 4575 } 4576 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4577 fec_enet_stop_mode(fep, false); 4578 if (fep->wake_irq) { 4579 disable_irq_wake(fep->wake_irq); 4580 enable_irq(fep->wake_irq); 4581 } 4582 4583 val = readl(fep->hwp + FEC_ECNTRL); 4584 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4585 writel(val, fep->hwp + FEC_ECNTRL); 4586 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4587 } else { 4588 pinctrl_pm_select_default_state(&fep->pdev->dev); 4589 } 4590 fec_restart(ndev); 4591 netif_tx_lock_bh(ndev); 4592 netif_device_attach(ndev); 4593 netif_tx_unlock_bh(ndev); 4594 napi_enable(&fep->napi); 4595 phy_init_hw(ndev->phydev); 4596 phy_start(ndev->phydev); 4597 } 4598 rtnl_unlock(); 4599 4600 return 0; 4601 4602 failed_clk: 4603 if (fep->reg_phy) 4604 regulator_disable(fep->reg_phy); 4605 return ret; 4606 } 4607 4608 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4609 { 4610 struct net_device *ndev = dev_get_drvdata(dev); 4611 struct fec_enet_private *fep = netdev_priv(ndev); 4612 4613 clk_disable_unprepare(fep->clk_ahb); 4614 clk_disable_unprepare(fep->clk_ipg); 4615 4616 return 0; 4617 } 4618 4619 static int __maybe_unused fec_runtime_resume(struct device *dev) 4620 { 4621 struct net_device *ndev = dev_get_drvdata(dev); 4622 struct fec_enet_private *fep = netdev_priv(ndev); 4623 int ret; 4624 4625 ret = clk_prepare_enable(fep->clk_ahb); 4626 if (ret) 4627 return ret; 4628 ret = clk_prepare_enable(fep->clk_ipg); 4629 if (ret) 4630 goto failed_clk_ipg; 4631 4632 return 0; 4633 4634 failed_clk_ipg: 4635 clk_disable_unprepare(fep->clk_ahb); 4636 return ret; 4637 } 4638 4639 static const struct dev_pm_ops fec_pm_ops = { 4640 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4641 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4642 }; 4643 4644 static struct platform_driver fec_driver = { 4645 .driver = { 4646 .name = DRIVER_NAME, 4647 .pm = &fec_pm_ops, 4648 .of_match_table = fec_dt_ids, 4649 .suppress_bind_attrs = true, 4650 }, 4651 .id_table = fec_devtype, 4652 .probe = fec_probe, 4653 .remove = fec_drv_remove, 4654 }; 4655 4656 module_platform_driver(fec_driver); 4657 4658 MODULE_LICENSE("GPL"); 4659