1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE	(1 << 5)
90 #define FEC_ENET_RSEM_V	0x84
91 #define FEC_ENET_RSFL_V	16
92 #define FEC_ENET_RAEM_V	0x8
93 #define FEC_ENET_RAFL_V	0x8
94 #define FEC_ENET_OPD_V	0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
96 
97 #define FEC_ENET_XDP_PASS          0
98 #define FEC_ENET_XDP_CONSUMED      BIT(0)
99 #define FEC_ENET_XDP_TX            BIT(1)
100 #define FEC_ENET_XDP_REDIR         BIT(2)
101 
102 struct fec_devinfo {
103 	u32 quirks;
104 };
105 
106 static const struct fec_devinfo fec_imx25_info = {
107 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx27_info = {
112 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 		  FEC_QUIRK_HAS_MDIO_C45,
114 };
115 
116 static const struct fec_devinfo fec_imx28_info = {
117 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122 
123 static const struct fec_devinfo fec_imx6q_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_mvf600_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_MDIO_C45,
134 };
135 
136 static const struct fec_devinfo fec_imx6x_info = {
137 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 		  FEC_QUIRK_HAS_MDIO_C45,
144 };
145 
146 static const struct fec_devinfo fec_imx6ul_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 		  FEC_QUIRK_HAS_MDIO_C45,
153 };
154 
155 static const struct fec_devinfo fec_imx8mq_info = {
156 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 		  FEC_QUIRK_HAS_MDIO_C45,
164 };
165 
166 static const struct fec_devinfo fec_imx8qm_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175 
176 static const struct fec_devinfo fec_s32v234_info = {
177 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 		  FEC_QUIRK_HAS_MDIO_C45,
182 };
183 
184 static struct platform_device_id fec_devtype[] = {
185 	{
186 		/* keep it for coldfire */
187 		.name = DRIVER_NAME,
188 		.driver_data = 0,
189 	}, {
190 		.name = "imx25-fec",
191 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
192 	}, {
193 		.name = "imx27-fec",
194 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
195 	}, {
196 		.name = "imx28-fec",
197 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
198 	}, {
199 		.name = "imx6q-fec",
200 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 	}, {
202 		.name = "mvf600-fec",
203 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 	}, {
205 		.name = "imx6sx-fec",
206 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 	}, {
208 		.name = "imx6ul-fec",
209 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 	}, {
211 		.name = "imx8mq-fec",
212 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 	}, {
214 		.name = "imx8qm-fec",
215 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 	}, {
217 		.name = "s32v234-fec",
218 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 	}, {
220 		/* sentinel */
221 	}
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224 
225 enum imx_fec_type {
226 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
227 	IMX27_FEC,	/* runs on i.mx27/35/51 */
228 	IMX28_FEC,
229 	IMX6Q_FEC,
230 	MVF600_FEC,
231 	IMX6SX_FEC,
232 	IMX6UL_FEC,
233 	IMX8MQ_FEC,
234 	IMX8QM_FEC,
235 	S32V234_FEC,
236 };
237 
238 static const struct of_device_id fec_dt_ids[] = {
239 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 	{ /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252 
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256 
257 #if defined(CONFIG_M5272)
258 /*
259  * Some hardware gets it MAC address out of local flash memory.
260  * if this is non-zero then assume it is the address to get MAC from.
261  */
262 #if defined(CONFIG_NETtel)
263 #define	FEC_FLASHMAC	0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define	FEC_FLASHMAC	0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define	FEC_FLASHMAC	0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define	FEC_FLASHMAC	(0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC	0xffc0406b
272 #else
273 #define	FEC_FLASHMAC	0
274 #endif
275 #endif /* CONFIG_M5272 */
276 
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278  *
279  * 2048 byte skbufs are allocated. However, alignment requirements
280  * varies between FEC variants. Worst case is 64, so round down by 64.
281  */
282 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE		64
284 
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS		BIT(1)
287 #define FEC_RACC_PRODIS		BIT(2)
288 #define FEC_RACC_SHIFT16	BIT(7)
289 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290 
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
293 
294 /*
295  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296  * size bits. Other FEC hardware does not, so we need to take that into
297  * account when setting it.
298  */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301     defined(CONFIG_ARM64)
302 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
303 #else
304 #define	OPT_FRAME_SIZE	0
305 #endif
306 
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST		(1 << 30)
309 #define FEC_MMFR_ST_C45		(0)
310 #define FEC_MMFR_OP_READ	(2 << 28)
311 #define FEC_MMFR_OP_READ_C45	(3 << 28)
312 #define FEC_MMFR_OP_WRITE	(1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE	(0)
314 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
316 #define FEC_MMFR_TA		(2 << 16)
317 #define FEC_MMFR_DATA(v)	(v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_RESET           BIT(0)
320 #define FEC_ECR_ETHEREN         BIT(1)
321 #define FEC_ECR_MAGICEN         BIT(2)
322 #define FEC_ECR_SLEEP           BIT(3)
323 #define FEC_ECR_EN1588          BIT(4)
324 #define FEC_ECR_BYTESWP         BIT(8)
325 /* FEC RCR bits definition */
326 #define FEC_RCR_LOOP            BIT(0)
327 #define FEC_RCR_HALFDPX         BIT(1)
328 #define FEC_RCR_MII             BIT(2)
329 #define FEC_RCR_PROMISC         BIT(3)
330 #define FEC_RCR_BC_REJ          BIT(4)
331 #define FEC_RCR_FLOWCTL         BIT(5)
332 #define FEC_RCR_RMII            BIT(8)
333 #define FEC_RCR_10BASET         BIT(9)
334 /* TX WMARK bits */
335 #define FEC_TXWMRK_STRFWD       BIT(8)
336 
337 #define FEC_MII_TIMEOUT		30000 /* us */
338 
339 /* Transmitter timeout */
340 #define TX_TIMEOUT (2 * HZ)
341 
342 #define FEC_PAUSE_FLAG_AUTONEG	0x1
343 #define FEC_PAUSE_FLAG_ENABLE	0x2
344 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
345 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
346 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
347 
348 /* Max number of allowed TCP segments for software TSO */
349 #define FEC_MAX_TSO_SEGS	100
350 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
351 
352 #define IS_TSO_HEADER(txq, addr) \
353 	((addr >= txq->tso_hdrs_dma) && \
354 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
355 
356 static int mii_cnt;
357 
358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
359 					     struct bufdesc_prop *bd)
360 {
361 	return (bdp >= bd->last) ? bd->base
362 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
363 }
364 
365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
366 					     struct bufdesc_prop *bd)
367 {
368 	return (bdp <= bd->base) ? bd->last
369 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
370 }
371 
372 static int fec_enet_get_bd_index(struct bufdesc *bdp,
373 				 struct bufdesc_prop *bd)
374 {
375 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
376 }
377 
378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
379 {
380 	int entries;
381 
382 	entries = (((const char *)txq->dirty_tx -
383 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
384 
385 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
386 }
387 
388 static void swap_buffer(void *bufaddr, int len)
389 {
390 	int i;
391 	unsigned int *buf = bufaddr;
392 
393 	for (i = 0; i < len; i += 4, buf++)
394 		swab32s(buf);
395 }
396 
397 static void fec_dump(struct net_device *ndev)
398 {
399 	struct fec_enet_private *fep = netdev_priv(ndev);
400 	struct bufdesc *bdp;
401 	struct fec_enet_priv_tx_q *txq;
402 	int index = 0;
403 
404 	netdev_info(ndev, "TX ring dump\n");
405 	pr_info("Nr     SC     addr       len  SKB\n");
406 
407 	txq = fep->tx_queue[0];
408 	bdp = txq->bd.base;
409 
410 	do {
411 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
412 			index,
413 			bdp == txq->bd.cur ? 'S' : ' ',
414 			bdp == txq->dirty_tx ? 'H' : ' ',
415 			fec16_to_cpu(bdp->cbd_sc),
416 			fec32_to_cpu(bdp->cbd_bufaddr),
417 			fec16_to_cpu(bdp->cbd_datlen),
418 			txq->tx_buf[index].buf_p);
419 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 		index++;
421 	} while (bdp != txq->bd.base);
422 }
423 
424 static inline bool is_ipv4_pkt(struct sk_buff *skb)
425 {
426 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
427 }
428 
429 static int
430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
431 {
432 	/* Only run for packets requiring a checksum. */
433 	if (skb->ip_summed != CHECKSUM_PARTIAL)
434 		return 0;
435 
436 	if (unlikely(skb_cow_head(skb, 0)))
437 		return -1;
438 
439 	if (is_ipv4_pkt(skb))
440 		ip_hdr(skb)->check = 0;
441 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
442 
443 	return 0;
444 }
445 
446 static int
447 fec_enet_create_page_pool(struct fec_enet_private *fep,
448 			  struct fec_enet_priv_rx_q *rxq, int size)
449 {
450 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
451 	struct page_pool_params pp_params = {
452 		.order = 0,
453 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
454 		.pool_size = size,
455 		.nid = dev_to_node(&fep->pdev->dev),
456 		.dev = &fep->pdev->dev,
457 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
458 		.offset = FEC_ENET_XDP_HEADROOM,
459 		.max_len = FEC_ENET_RX_FRSIZE,
460 	};
461 	int err;
462 
463 	rxq->page_pool = page_pool_create(&pp_params);
464 	if (IS_ERR(rxq->page_pool)) {
465 		err = PTR_ERR(rxq->page_pool);
466 		rxq->page_pool = NULL;
467 		return err;
468 	}
469 
470 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
471 	if (err < 0)
472 		goto err_free_pp;
473 
474 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
475 					 rxq->page_pool);
476 	if (err)
477 		goto err_unregister_rxq;
478 
479 	return 0;
480 
481 err_unregister_rxq:
482 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
483 err_free_pp:
484 	page_pool_destroy(rxq->page_pool);
485 	rxq->page_pool = NULL;
486 	return err;
487 }
488 
489 static struct bufdesc *
490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
491 			     struct sk_buff *skb,
492 			     struct net_device *ndev)
493 {
494 	struct fec_enet_private *fep = netdev_priv(ndev);
495 	struct bufdesc *bdp = txq->bd.cur;
496 	struct bufdesc_ex *ebdp;
497 	int nr_frags = skb_shinfo(skb)->nr_frags;
498 	int frag, frag_len;
499 	unsigned short status;
500 	unsigned int estatus = 0;
501 	skb_frag_t *this_frag;
502 	unsigned int index;
503 	void *bufaddr;
504 	dma_addr_t addr;
505 	int i;
506 
507 	for (frag = 0; frag < nr_frags; frag++) {
508 		this_frag = &skb_shinfo(skb)->frags[frag];
509 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
510 		ebdp = (struct bufdesc_ex *)bdp;
511 
512 		status = fec16_to_cpu(bdp->cbd_sc);
513 		status &= ~BD_ENET_TX_STATS;
514 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
515 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
516 
517 		/* Handle the last BD specially */
518 		if (frag == nr_frags - 1) {
519 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
520 			if (fep->bufdesc_ex) {
521 				estatus |= BD_ENET_TX_INT;
522 				if (unlikely(skb_shinfo(skb)->tx_flags &
523 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
524 					estatus |= BD_ENET_TX_TS;
525 			}
526 		}
527 
528 		if (fep->bufdesc_ex) {
529 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
530 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
531 			if (skb->ip_summed == CHECKSUM_PARTIAL)
532 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
533 
534 			ebdp->cbd_bdu = 0;
535 			ebdp->cbd_esc = cpu_to_fec32(estatus);
536 		}
537 
538 		bufaddr = skb_frag_address(this_frag);
539 
540 		index = fec_enet_get_bd_index(bdp, &txq->bd);
541 		if (((unsigned long) bufaddr) & fep->tx_align ||
542 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
544 			bufaddr = txq->tx_bounce[index];
545 
546 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 				swap_buffer(bufaddr, frag_len);
548 		}
549 
550 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
551 				      DMA_TO_DEVICE);
552 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 			if (net_ratelimit())
554 				netdev_err(ndev, "Tx DMA memory map failed\n");
555 			goto dma_mapping_error;
556 		}
557 
558 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
559 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
560 		/* Make sure the updates to rest of the descriptor are
561 		 * performed before transferring ownership.
562 		 */
563 		wmb();
564 		bdp->cbd_sc = cpu_to_fec16(status);
565 	}
566 
567 	return bdp;
568 dma_mapping_error:
569 	bdp = txq->bd.cur;
570 	for (i = 0; i < frag; i++) {
571 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
572 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
573 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
574 	}
575 	return ERR_PTR(-ENOMEM);
576 }
577 
578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
579 				   struct sk_buff *skb, struct net_device *ndev)
580 {
581 	struct fec_enet_private *fep = netdev_priv(ndev);
582 	int nr_frags = skb_shinfo(skb)->nr_frags;
583 	struct bufdesc *bdp, *last_bdp;
584 	void *bufaddr;
585 	dma_addr_t addr;
586 	unsigned short status;
587 	unsigned short buflen;
588 	unsigned int estatus = 0;
589 	unsigned int index;
590 	int entries_free;
591 
592 	entries_free = fec_enet_get_free_txdesc_num(txq);
593 	if (entries_free < MAX_SKB_FRAGS + 1) {
594 		dev_kfree_skb_any(skb);
595 		if (net_ratelimit())
596 			netdev_err(ndev, "NOT enough BD for SG!\n");
597 		return NETDEV_TX_OK;
598 	}
599 
600 	/* Protocol checksum off-load for TCP and UDP. */
601 	if (fec_enet_clear_csum(skb, ndev)) {
602 		dev_kfree_skb_any(skb);
603 		return NETDEV_TX_OK;
604 	}
605 
606 	/* Fill in a Tx ring entry */
607 	bdp = txq->bd.cur;
608 	last_bdp = bdp;
609 	status = fec16_to_cpu(bdp->cbd_sc);
610 	status &= ~BD_ENET_TX_STATS;
611 
612 	/* Set buffer length and buffer pointer */
613 	bufaddr = skb->data;
614 	buflen = skb_headlen(skb);
615 
616 	index = fec_enet_get_bd_index(bdp, &txq->bd);
617 	if (((unsigned long) bufaddr) & fep->tx_align ||
618 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 		memcpy(txq->tx_bounce[index], skb->data, buflen);
620 		bufaddr = txq->tx_bounce[index];
621 
622 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 			swap_buffer(bufaddr, buflen);
624 	}
625 
626 	/* Push the data cache so the CPM does not get stale memory data. */
627 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
628 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
629 		dev_kfree_skb_any(skb);
630 		if (net_ratelimit())
631 			netdev_err(ndev, "Tx DMA memory map failed\n");
632 		return NETDEV_TX_OK;
633 	}
634 
635 	if (nr_frags) {
636 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
637 		if (IS_ERR(last_bdp)) {
638 			dma_unmap_single(&fep->pdev->dev, addr,
639 					 buflen, DMA_TO_DEVICE);
640 			dev_kfree_skb_any(skb);
641 			return NETDEV_TX_OK;
642 		}
643 	} else {
644 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
645 		if (fep->bufdesc_ex) {
646 			estatus = BD_ENET_TX_INT;
647 			if (unlikely(skb_shinfo(skb)->tx_flags &
648 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
649 				estatus |= BD_ENET_TX_TS;
650 		}
651 	}
652 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
653 	bdp->cbd_datlen = cpu_to_fec16(buflen);
654 
655 	if (fep->bufdesc_ex) {
656 
657 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
658 
659 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
660 			fep->hwts_tx_en))
661 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
662 
663 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
664 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
665 
666 		if (skb->ip_summed == CHECKSUM_PARTIAL)
667 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
668 
669 		ebdp->cbd_bdu = 0;
670 		ebdp->cbd_esc = cpu_to_fec32(estatus);
671 	}
672 
673 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
674 	/* Save skb pointer */
675 	txq->tx_buf[index].buf_p = skb;
676 
677 	/* Make sure the updates to rest of the descriptor are performed before
678 	 * transferring ownership.
679 	 */
680 	wmb();
681 
682 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
683 	 * it's the last BD of the frame, and to put the CRC on the end.
684 	 */
685 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
686 	bdp->cbd_sc = cpu_to_fec16(status);
687 
688 	/* If this was the last BD in the ring, start at the beginning again. */
689 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
690 
691 	skb_tx_timestamp(skb);
692 
693 	/* Make sure the update to bdp is performed before txq->bd.cur. */
694 	wmb();
695 	txq->bd.cur = bdp;
696 
697 	/* Trigger transmission start */
698 	writel(0, txq->bd.reg_desc_active);
699 
700 	return 0;
701 }
702 
703 static int
704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
705 			  struct net_device *ndev,
706 			  struct bufdesc *bdp, int index, char *data,
707 			  int size, bool last_tcp, bool is_last)
708 {
709 	struct fec_enet_private *fep = netdev_priv(ndev);
710 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
711 	unsigned short status;
712 	unsigned int estatus = 0;
713 	dma_addr_t addr;
714 
715 	status = fec16_to_cpu(bdp->cbd_sc);
716 	status &= ~BD_ENET_TX_STATS;
717 
718 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
719 
720 	if (((unsigned long) data) & fep->tx_align ||
721 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 		memcpy(txq->tx_bounce[index], data, size);
723 		data = txq->tx_bounce[index];
724 
725 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 			swap_buffer(data, size);
727 	}
728 
729 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
730 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
731 		dev_kfree_skb_any(skb);
732 		if (net_ratelimit())
733 			netdev_err(ndev, "Tx DMA memory map failed\n");
734 		return NETDEV_TX_OK;
735 	}
736 
737 	bdp->cbd_datlen = cpu_to_fec16(size);
738 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
739 
740 	if (fep->bufdesc_ex) {
741 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
742 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
743 		if (skb->ip_summed == CHECKSUM_PARTIAL)
744 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
745 		ebdp->cbd_bdu = 0;
746 		ebdp->cbd_esc = cpu_to_fec32(estatus);
747 	}
748 
749 	/* Handle the last BD specially */
750 	if (last_tcp)
751 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
752 	if (is_last) {
753 		status |= BD_ENET_TX_INTR;
754 		if (fep->bufdesc_ex)
755 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
756 	}
757 
758 	bdp->cbd_sc = cpu_to_fec16(status);
759 
760 	return 0;
761 }
762 
763 static int
764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
765 			 struct sk_buff *skb, struct net_device *ndev,
766 			 struct bufdesc *bdp, int index)
767 {
768 	struct fec_enet_private *fep = netdev_priv(ndev);
769 	int hdr_len = skb_tcp_all_headers(skb);
770 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
771 	void *bufaddr;
772 	unsigned long dmabuf;
773 	unsigned short status;
774 	unsigned int estatus = 0;
775 
776 	status = fec16_to_cpu(bdp->cbd_sc);
777 	status &= ~BD_ENET_TX_STATS;
778 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
779 
780 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
781 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
782 	if (((unsigned long)bufaddr) & fep->tx_align ||
783 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
784 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
785 		bufaddr = txq->tx_bounce[index];
786 
787 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
788 			swap_buffer(bufaddr, hdr_len);
789 
790 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
791 					hdr_len, DMA_TO_DEVICE);
792 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
793 			dev_kfree_skb_any(skb);
794 			if (net_ratelimit())
795 				netdev_err(ndev, "Tx DMA memory map failed\n");
796 			return NETDEV_TX_OK;
797 		}
798 	}
799 
800 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
801 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
802 
803 	if (fep->bufdesc_ex) {
804 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
805 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
806 		if (skb->ip_summed == CHECKSUM_PARTIAL)
807 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
808 		ebdp->cbd_bdu = 0;
809 		ebdp->cbd_esc = cpu_to_fec32(estatus);
810 	}
811 
812 	bdp->cbd_sc = cpu_to_fec16(status);
813 
814 	return 0;
815 }
816 
817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
818 				   struct sk_buff *skb,
819 				   struct net_device *ndev)
820 {
821 	struct fec_enet_private *fep = netdev_priv(ndev);
822 	int hdr_len, total_len, data_left;
823 	struct bufdesc *bdp = txq->bd.cur;
824 	struct tso_t tso;
825 	unsigned int index = 0;
826 	int ret;
827 
828 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
829 		dev_kfree_skb_any(skb);
830 		if (net_ratelimit())
831 			netdev_err(ndev, "NOT enough BD for TSO!\n");
832 		return NETDEV_TX_OK;
833 	}
834 
835 	/* Protocol checksum off-load for TCP and UDP. */
836 	if (fec_enet_clear_csum(skb, ndev)) {
837 		dev_kfree_skb_any(skb);
838 		return NETDEV_TX_OK;
839 	}
840 
841 	/* Initialize the TSO handler, and prepare the first payload */
842 	hdr_len = tso_start(skb, &tso);
843 
844 	total_len = skb->len - hdr_len;
845 	while (total_len > 0) {
846 		char *hdr;
847 
848 		index = fec_enet_get_bd_index(bdp, &txq->bd);
849 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
850 		total_len -= data_left;
851 
852 		/* prepare packet headers: MAC + IP + TCP */
853 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
854 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
855 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
856 		if (ret)
857 			goto err_release;
858 
859 		while (data_left > 0) {
860 			int size;
861 
862 			size = min_t(int, tso.size, data_left);
863 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
864 			index = fec_enet_get_bd_index(bdp, &txq->bd);
865 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
866 							bdp, index,
867 							tso.data, size,
868 							size == data_left,
869 							total_len == 0);
870 			if (ret)
871 				goto err_release;
872 
873 			data_left -= size;
874 			tso_build_data(skb, &tso, size);
875 		}
876 
877 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
878 	}
879 
880 	/* Save skb pointer */
881 	txq->tx_buf[index].buf_p = skb;
882 
883 	skb_tx_timestamp(skb);
884 	txq->bd.cur = bdp;
885 
886 	/* Trigger transmission start */
887 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
888 	    !readl(txq->bd.reg_desc_active) ||
889 	    !readl(txq->bd.reg_desc_active) ||
890 	    !readl(txq->bd.reg_desc_active) ||
891 	    !readl(txq->bd.reg_desc_active))
892 		writel(0, txq->bd.reg_desc_active);
893 
894 	return 0;
895 
896 err_release:
897 	/* TODO: Release all used data descriptors for TSO */
898 	return ret;
899 }
900 
901 static netdev_tx_t
902 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
903 {
904 	struct fec_enet_private *fep = netdev_priv(ndev);
905 	int entries_free;
906 	unsigned short queue;
907 	struct fec_enet_priv_tx_q *txq;
908 	struct netdev_queue *nq;
909 	int ret;
910 
911 	queue = skb_get_queue_mapping(skb);
912 	txq = fep->tx_queue[queue];
913 	nq = netdev_get_tx_queue(ndev, queue);
914 
915 	if (skb_is_gso(skb))
916 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
917 	else
918 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
919 	if (ret)
920 		return ret;
921 
922 	entries_free = fec_enet_get_free_txdesc_num(txq);
923 	if (entries_free <= txq->tx_stop_threshold)
924 		netif_tx_stop_queue(nq);
925 
926 	return NETDEV_TX_OK;
927 }
928 
929 /* Init RX & TX buffer descriptors
930  */
931 static void fec_enet_bd_init(struct net_device *dev)
932 {
933 	struct fec_enet_private *fep = netdev_priv(dev);
934 	struct fec_enet_priv_tx_q *txq;
935 	struct fec_enet_priv_rx_q *rxq;
936 	struct bufdesc *bdp;
937 	unsigned int i;
938 	unsigned int q;
939 
940 	for (q = 0; q < fep->num_rx_queues; q++) {
941 		/* Initialize the receive buffer descriptors. */
942 		rxq = fep->rx_queue[q];
943 		bdp = rxq->bd.base;
944 
945 		for (i = 0; i < rxq->bd.ring_size; i++) {
946 
947 			/* Initialize the BD for every fragment in the page. */
948 			if (bdp->cbd_bufaddr)
949 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
950 			else
951 				bdp->cbd_sc = cpu_to_fec16(0);
952 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
953 		}
954 
955 		/* Set the last buffer to wrap */
956 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
957 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
958 
959 		rxq->bd.cur = rxq->bd.base;
960 	}
961 
962 	for (q = 0; q < fep->num_tx_queues; q++) {
963 		/* ...and the same for transmit */
964 		txq = fep->tx_queue[q];
965 		bdp = txq->bd.base;
966 		txq->bd.cur = bdp;
967 
968 		for (i = 0; i < txq->bd.ring_size; i++) {
969 			/* Initialize the BD for every fragment in the page. */
970 			bdp->cbd_sc = cpu_to_fec16(0);
971 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
972 				if (bdp->cbd_bufaddr &&
973 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
974 					dma_unmap_single(&fep->pdev->dev,
975 							 fec32_to_cpu(bdp->cbd_bufaddr),
976 							 fec16_to_cpu(bdp->cbd_datlen),
977 							 DMA_TO_DEVICE);
978 				if (txq->tx_buf[i].buf_p)
979 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
980 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
981 				if (bdp->cbd_bufaddr)
982 					dma_unmap_single(&fep->pdev->dev,
983 							 fec32_to_cpu(bdp->cbd_bufaddr),
984 							 fec16_to_cpu(bdp->cbd_datlen),
985 							 DMA_TO_DEVICE);
986 
987 				if (txq->tx_buf[i].buf_p)
988 					xdp_return_frame(txq->tx_buf[i].buf_p);
989 			} else {
990 				struct page *page = txq->tx_buf[i].buf_p;
991 
992 				if (page)
993 					page_pool_put_page(page->pp, page, 0, false);
994 			}
995 
996 			txq->tx_buf[i].buf_p = NULL;
997 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
998 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
999 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1000 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1001 		}
1002 
1003 		/* Set the last buffer to wrap */
1004 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1005 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006 		txq->dirty_tx = bdp;
1007 	}
1008 }
1009 
1010 static void fec_enet_active_rxring(struct net_device *ndev)
1011 {
1012 	struct fec_enet_private *fep = netdev_priv(ndev);
1013 	int i;
1014 
1015 	for (i = 0; i < fep->num_rx_queues; i++)
1016 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1017 }
1018 
1019 static void fec_enet_enable_ring(struct net_device *ndev)
1020 {
1021 	struct fec_enet_private *fep = netdev_priv(ndev);
1022 	struct fec_enet_priv_tx_q *txq;
1023 	struct fec_enet_priv_rx_q *rxq;
1024 	int i;
1025 
1026 	for (i = 0; i < fep->num_rx_queues; i++) {
1027 		rxq = fep->rx_queue[i];
1028 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1029 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1030 
1031 		/* enable DMA1/2 */
1032 		if (i)
1033 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1034 			       fep->hwp + FEC_RCMR(i));
1035 	}
1036 
1037 	for (i = 0; i < fep->num_tx_queues; i++) {
1038 		txq = fep->tx_queue[i];
1039 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1040 
1041 		/* enable DMA1/2 */
1042 		if (i)
1043 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1044 			       fep->hwp + FEC_DMA_CFG(i));
1045 	}
1046 }
1047 
1048 /*
1049  * This function is called to start or restart the FEC during a link
1050  * change, transmit timeout, or to reconfigure the FEC.  The network
1051  * packet processing for this device must be stopped before this call.
1052  */
1053 static void
1054 fec_restart(struct net_device *ndev)
1055 {
1056 	struct fec_enet_private *fep = netdev_priv(ndev);
1057 	u32 temp_mac[2];
1058 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1059 	u32 ecntl = FEC_ECR_ETHEREN;
1060 
1061 	fec_ptp_save_state(fep);
1062 
1063 	/* Whack a reset.  We should wait for this.
1064 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1065 	 * instead of reset MAC itself.
1066 	 */
1067 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1068 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1069 		writel(0, fep->hwp + FEC_ECNTRL);
1070 	} else {
1071 		writel(1, fep->hwp + FEC_ECNTRL);
1072 		udelay(10);
1073 	}
1074 
1075 	/*
1076 	 * enet-mac reset will reset mac address registers too,
1077 	 * so need to reconfigure it.
1078 	 */
1079 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1080 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1081 	       fep->hwp + FEC_ADDR_LOW);
1082 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1083 	       fep->hwp + FEC_ADDR_HIGH);
1084 
1085 	/* Clear any outstanding interrupt, except MDIO. */
1086 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1087 
1088 	fec_enet_bd_init(ndev);
1089 
1090 	fec_enet_enable_ring(ndev);
1091 
1092 	/* Enable MII mode */
1093 	if (fep->full_duplex == DUPLEX_FULL) {
1094 		/* FD enable */
1095 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1096 	} else {
1097 		/* No Rcv on Xmit */
1098 		rcntl |= 0x02;
1099 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1100 	}
1101 
1102 	/* Set MII speed */
1103 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1104 
1105 #if !defined(CONFIG_M5272)
1106 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1107 		u32 val = readl(fep->hwp + FEC_RACC);
1108 
1109 		/* align IP header */
1110 		val |= FEC_RACC_SHIFT16;
1111 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1112 			/* set RX checksum */
1113 			val |= FEC_RACC_OPTIONS;
1114 		else
1115 			val &= ~FEC_RACC_OPTIONS;
1116 		writel(val, fep->hwp + FEC_RACC);
1117 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1118 	}
1119 #endif
1120 
1121 	/*
1122 	 * The phy interface and speed need to get configured
1123 	 * differently on enet-mac.
1124 	 */
1125 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1126 		/* Enable flow control and length check */
1127 		rcntl |= 0x40000000 | 0x00000020;
1128 
1129 		/* RGMII, RMII or MII */
1130 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1131 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1132 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1133 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1134 			rcntl |= (1 << 6);
1135 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1136 			rcntl |= FEC_RCR_RMII;
1137 		else
1138 			rcntl &= ~FEC_RCR_RMII;
1139 
1140 		/* 1G, 100M or 10M */
1141 		if (ndev->phydev) {
1142 			if (ndev->phydev->speed == SPEED_1000)
1143 				ecntl |= (1 << 5);
1144 			else if (ndev->phydev->speed == SPEED_100)
1145 				rcntl &= ~FEC_RCR_10BASET;
1146 			else
1147 				rcntl |= FEC_RCR_10BASET;
1148 		}
1149 	} else {
1150 #ifdef FEC_MIIGSK_ENR
1151 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1152 			u32 cfgr;
1153 			/* disable the gasket and wait */
1154 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1155 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1156 				udelay(1);
1157 
1158 			/*
1159 			 * configure the gasket:
1160 			 *   RMII, 50 MHz, no loopback, no echo
1161 			 *   MII, 25 MHz, no loopback, no echo
1162 			 */
1163 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1164 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1165 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1166 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1167 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1168 
1169 			/* re-enable the gasket */
1170 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1171 		}
1172 #endif
1173 	}
1174 
1175 #if !defined(CONFIG_M5272)
1176 	/* enable pause frame*/
1177 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1178 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1179 	     ndev->phydev && ndev->phydev->pause)) {
1180 		rcntl |= FEC_ENET_FCE;
1181 
1182 		/* set FIFO threshold parameter to reduce overrun */
1183 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1184 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1185 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1186 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1187 
1188 		/* OPD */
1189 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1190 	} else {
1191 		rcntl &= ~FEC_ENET_FCE;
1192 	}
1193 #endif /* !defined(CONFIG_M5272) */
1194 
1195 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1196 
1197 	/* Setup multicast filter. */
1198 	set_multicast_list(ndev);
1199 #ifndef CONFIG_M5272
1200 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1201 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1202 #endif
1203 
1204 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1205 		/* enable ENET endian swap */
1206 		ecntl |= FEC_ECR_BYTESWP;
1207 		/* enable ENET store and forward mode */
1208 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1209 	}
1210 
1211 	if (fep->bufdesc_ex)
1212 		ecntl |= FEC_ECR_EN1588;
1213 
1214 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1215 	    fep->rgmii_txc_dly)
1216 		ecntl |= FEC_ENET_TXC_DLY;
1217 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1218 	    fep->rgmii_rxc_dly)
1219 		ecntl |= FEC_ENET_RXC_DLY;
1220 
1221 #ifndef CONFIG_M5272
1222 	/* Enable the MIB statistic event counters */
1223 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1224 #endif
1225 
1226 	/* And last, enable the transmit and receive processing */
1227 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1228 	fec_enet_active_rxring(ndev);
1229 
1230 	if (fep->bufdesc_ex) {
1231 		fec_ptp_start_cyclecounter(ndev);
1232 		fec_ptp_restore_state(fep);
1233 	}
1234 
1235 	/* Enable interrupts we wish to service */
1236 	if (fep->link)
1237 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1238 	else
1239 		writel(0, fep->hwp + FEC_IMASK);
1240 
1241 	/* Init the interrupt coalescing */
1242 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1243 		fec_enet_itr_coal_set(ndev);
1244 }
1245 
1246 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1247 {
1248 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1249 	      of_machine_is_compatible("fsl,imx8qxp") ||
1250 	      of_machine_is_compatible("fsl,imx8dxl")))
1251 		return 0;
1252 
1253 	return imx_scu_get_handle(&fep->ipc_handle);
1254 }
1255 
1256 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1257 {
1258 	struct device_node *np = fep->pdev->dev.of_node;
1259 	u32 rsrc_id, val;
1260 	int idx;
1261 
1262 	if (!np || !fep->ipc_handle)
1263 		return;
1264 
1265 	idx = of_alias_get_id(np, "ethernet");
1266 	if (idx < 0)
1267 		idx = 0;
1268 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1269 
1270 	val = enabled ? 1 : 0;
1271 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1272 }
1273 
1274 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1275 {
1276 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1277 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1278 
1279 	if (stop_gpr->gpr) {
1280 		if (enabled)
1281 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1282 					   BIT(stop_gpr->bit),
1283 					   BIT(stop_gpr->bit));
1284 		else
1285 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1286 					   BIT(stop_gpr->bit), 0);
1287 	} else if (pdata && pdata->sleep_mode_enable) {
1288 		pdata->sleep_mode_enable(enabled);
1289 	} else {
1290 		fec_enet_ipg_stop_set(fep, enabled);
1291 	}
1292 }
1293 
1294 static void fec_irqs_disable(struct net_device *ndev)
1295 {
1296 	struct fec_enet_private *fep = netdev_priv(ndev);
1297 
1298 	writel(0, fep->hwp + FEC_IMASK);
1299 }
1300 
1301 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1302 {
1303 	struct fec_enet_private *fep = netdev_priv(ndev);
1304 
1305 	writel(0, fep->hwp + FEC_IMASK);
1306 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1307 }
1308 
1309 static void
1310 fec_stop(struct net_device *ndev)
1311 {
1312 	struct fec_enet_private *fep = netdev_priv(ndev);
1313 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1314 	u32 val;
1315 
1316 	/* We cannot expect a graceful transmit stop without link !!! */
1317 	if (fep->link) {
1318 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1319 		udelay(10);
1320 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1321 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1322 	}
1323 
1324 	fec_ptp_save_state(fep);
1325 
1326 	/* Whack a reset.  We should wait for this.
1327 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1328 	 * instead of reset MAC itself.
1329 	 */
1330 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1331 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1332 			writel(0, fep->hwp + FEC_ECNTRL);
1333 		} else {
1334 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1335 			udelay(10);
1336 		}
1337 	} else {
1338 		val = readl(fep->hwp + FEC_ECNTRL);
1339 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1340 		writel(val, fep->hwp + FEC_ECNTRL);
1341 	}
1342 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1343 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1344 
1345 	/* We have to keep ENET enabled to have MII interrupt stay working */
1346 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1347 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1348 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1349 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1350 	}
1351 
1352 	if (fep->bufdesc_ex) {
1353 		val = readl(fep->hwp + FEC_ECNTRL);
1354 		val |= FEC_ECR_EN1588;
1355 		writel(val, fep->hwp + FEC_ECNTRL);
1356 
1357 		fec_ptp_start_cyclecounter(ndev);
1358 		fec_ptp_restore_state(fep);
1359 	}
1360 }
1361 
1362 static void
1363 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1364 {
1365 	struct fec_enet_private *fep = netdev_priv(ndev);
1366 
1367 	fec_dump(ndev);
1368 
1369 	ndev->stats.tx_errors++;
1370 
1371 	schedule_work(&fep->tx_timeout_work);
1372 }
1373 
1374 static void fec_enet_timeout_work(struct work_struct *work)
1375 {
1376 	struct fec_enet_private *fep =
1377 		container_of(work, struct fec_enet_private, tx_timeout_work);
1378 	struct net_device *ndev = fep->netdev;
1379 
1380 	rtnl_lock();
1381 	if (netif_device_present(ndev) || netif_running(ndev)) {
1382 		napi_disable(&fep->napi);
1383 		netif_tx_lock_bh(ndev);
1384 		fec_restart(ndev);
1385 		netif_tx_wake_all_queues(ndev);
1386 		netif_tx_unlock_bh(ndev);
1387 		napi_enable(&fep->napi);
1388 	}
1389 	rtnl_unlock();
1390 }
1391 
1392 static void
1393 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1394 	struct skb_shared_hwtstamps *hwtstamps)
1395 {
1396 	unsigned long flags;
1397 	u64 ns;
1398 
1399 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1400 	ns = timecounter_cyc2time(&fep->tc, ts);
1401 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1402 
1403 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1404 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1405 }
1406 
1407 static void
1408 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1409 {
1410 	struct	fec_enet_private *fep;
1411 	struct xdp_frame *xdpf;
1412 	struct bufdesc *bdp;
1413 	unsigned short status;
1414 	struct	sk_buff	*skb;
1415 	struct fec_enet_priv_tx_q *txq;
1416 	struct netdev_queue *nq;
1417 	int	index = 0;
1418 	int	entries_free;
1419 	struct page *page;
1420 	int frame_len;
1421 
1422 	fep = netdev_priv(ndev);
1423 
1424 	txq = fep->tx_queue[queue_id];
1425 	/* get next bdp of dirty_tx */
1426 	nq = netdev_get_tx_queue(ndev, queue_id);
1427 	bdp = txq->dirty_tx;
1428 
1429 	/* get next bdp of dirty_tx */
1430 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1431 
1432 	while (bdp != READ_ONCE(txq->bd.cur)) {
1433 		/* Order the load of bd.cur and cbd_sc */
1434 		rmb();
1435 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1436 		if (status & BD_ENET_TX_READY)
1437 			break;
1438 
1439 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1440 
1441 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1442 			skb = txq->tx_buf[index].buf_p;
1443 			if (bdp->cbd_bufaddr &&
1444 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1445 				dma_unmap_single(&fep->pdev->dev,
1446 						 fec32_to_cpu(bdp->cbd_bufaddr),
1447 						 fec16_to_cpu(bdp->cbd_datlen),
1448 						 DMA_TO_DEVICE);
1449 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1450 			if (!skb)
1451 				goto tx_buf_done;
1452 		} else {
1453 			/* Tx processing cannot call any XDP (or page pool) APIs if
1454 			 * the "budget" is 0. Because NAPI is called with budget of
1455 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1456 			 * however, we can't use the page pool from IRQ context.
1457 			 */
1458 			if (unlikely(!budget))
1459 				break;
1460 
1461 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1462 				xdpf = txq->tx_buf[index].buf_p;
1463 				if (bdp->cbd_bufaddr)
1464 					dma_unmap_single(&fep->pdev->dev,
1465 							 fec32_to_cpu(bdp->cbd_bufaddr),
1466 							 fec16_to_cpu(bdp->cbd_datlen),
1467 							 DMA_TO_DEVICE);
1468 			} else {
1469 				page = txq->tx_buf[index].buf_p;
1470 			}
1471 
1472 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1473 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1474 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1475 				goto tx_buf_done;
1476 			}
1477 
1478 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1479 		}
1480 
1481 		/* Check for errors. */
1482 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1483 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1484 				   BD_ENET_TX_CSL)) {
1485 			ndev->stats.tx_errors++;
1486 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1487 				ndev->stats.tx_heartbeat_errors++;
1488 			if (status & BD_ENET_TX_LC)  /* Late collision */
1489 				ndev->stats.tx_window_errors++;
1490 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1491 				ndev->stats.tx_aborted_errors++;
1492 			if (status & BD_ENET_TX_UN)  /* Underrun */
1493 				ndev->stats.tx_fifo_errors++;
1494 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1495 				ndev->stats.tx_carrier_errors++;
1496 		} else {
1497 			ndev->stats.tx_packets++;
1498 
1499 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1500 				ndev->stats.tx_bytes += skb->len;
1501 			else
1502 				ndev->stats.tx_bytes += frame_len;
1503 		}
1504 
1505 		/* Deferred means some collisions occurred during transmit,
1506 		 * but we eventually sent the packet OK.
1507 		 */
1508 		if (status & BD_ENET_TX_DEF)
1509 			ndev->stats.collisions++;
1510 
1511 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1512 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1513 			 * are to time stamp the packet, so we still need to check time
1514 			 * stamping enabled flag.
1515 			 */
1516 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1517 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1518 				struct skb_shared_hwtstamps shhwtstamps;
1519 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1520 
1521 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1522 				skb_tstamp_tx(skb, &shhwtstamps);
1523 			}
1524 
1525 			/* Free the sk buffer associated with this last transmit */
1526 			napi_consume_skb(skb, budget);
1527 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1528 			xdp_return_frame_rx_napi(xdpf);
1529 		} else { /* recycle pages of XDP_TX frames */
1530 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1531 			page_pool_put_page(page->pp, page, 0, true);
1532 		}
1533 
1534 		txq->tx_buf[index].buf_p = NULL;
1535 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1536 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1537 
1538 tx_buf_done:
1539 		/* Make sure the update to bdp and tx_buf are performed
1540 		 * before dirty_tx
1541 		 */
1542 		wmb();
1543 		txq->dirty_tx = bdp;
1544 
1545 		/* Update pointer to next buffer descriptor to be transmitted */
1546 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1547 
1548 		/* Since we have freed up a buffer, the ring is no longer full
1549 		 */
1550 		if (netif_tx_queue_stopped(nq)) {
1551 			entries_free = fec_enet_get_free_txdesc_num(txq);
1552 			if (entries_free >= txq->tx_wake_threshold)
1553 				netif_tx_wake_queue(nq);
1554 		}
1555 	}
1556 
1557 	/* ERR006358: Keep the transmitter going */
1558 	if (bdp != txq->bd.cur &&
1559 	    readl(txq->bd.reg_desc_active) == 0)
1560 		writel(0, txq->bd.reg_desc_active);
1561 }
1562 
1563 static void fec_enet_tx(struct net_device *ndev, int budget)
1564 {
1565 	struct fec_enet_private *fep = netdev_priv(ndev);
1566 	int i;
1567 
1568 	/* Make sure that AVB queues are processed first. */
1569 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1570 		fec_enet_tx_queue(ndev, i, budget);
1571 }
1572 
1573 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1574 				struct bufdesc *bdp, int index)
1575 {
1576 	struct page *new_page;
1577 	dma_addr_t phys_addr;
1578 
1579 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1580 	WARN_ON(!new_page);
1581 	rxq->rx_skb_info[index].page = new_page;
1582 
1583 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1584 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1585 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1586 }
1587 
1588 static u32
1589 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1590 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1591 {
1592 	unsigned int sync, len = xdp->data_end - xdp->data;
1593 	u32 ret = FEC_ENET_XDP_PASS;
1594 	struct page *page;
1595 	int err;
1596 	u32 act;
1597 
1598 	act = bpf_prog_run_xdp(prog, xdp);
1599 
1600 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1601 	 * max len CPU touch
1602 	 */
1603 	sync = xdp->data_end - xdp->data;
1604 	sync = max(sync, len);
1605 
1606 	switch (act) {
1607 	case XDP_PASS:
1608 		rxq->stats[RX_XDP_PASS]++;
1609 		ret = FEC_ENET_XDP_PASS;
1610 		break;
1611 
1612 	case XDP_REDIRECT:
1613 		rxq->stats[RX_XDP_REDIRECT]++;
1614 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1615 		if (unlikely(err))
1616 			goto xdp_err;
1617 
1618 		ret = FEC_ENET_XDP_REDIR;
1619 		break;
1620 
1621 	case XDP_TX:
1622 		rxq->stats[RX_XDP_TX]++;
1623 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1624 		if (unlikely(err)) {
1625 			rxq->stats[RX_XDP_TX_ERRORS]++;
1626 			goto xdp_err;
1627 		}
1628 
1629 		ret = FEC_ENET_XDP_TX;
1630 		break;
1631 
1632 	default:
1633 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1634 		fallthrough;
1635 
1636 	case XDP_ABORTED:
1637 		fallthrough;    /* handle aborts by dropping packet */
1638 
1639 	case XDP_DROP:
1640 		rxq->stats[RX_XDP_DROP]++;
1641 xdp_err:
1642 		ret = FEC_ENET_XDP_CONSUMED;
1643 		page = virt_to_head_page(xdp->data);
1644 		page_pool_put_page(rxq->page_pool, page, sync, true);
1645 		if (act != XDP_DROP)
1646 			trace_xdp_exception(fep->netdev, prog, act);
1647 		break;
1648 	}
1649 
1650 	return ret;
1651 }
1652 
1653 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1654  * When we update through the ring, if the next incoming buffer has
1655  * not been given to the system, we just set the empty indicator,
1656  * effectively tossing the packet.
1657  */
1658 static int
1659 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1660 {
1661 	struct fec_enet_private *fep = netdev_priv(ndev);
1662 	struct fec_enet_priv_rx_q *rxq;
1663 	struct bufdesc *bdp;
1664 	unsigned short status;
1665 	struct  sk_buff *skb;
1666 	ushort	pkt_len;
1667 	__u8 *data;
1668 	int	pkt_received = 0;
1669 	struct	bufdesc_ex *ebdp = NULL;
1670 	bool	vlan_packet_rcvd = false;
1671 	u16	vlan_tag;
1672 	int	index = 0;
1673 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1674 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1675 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1676 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1677 	int cpu = smp_processor_id();
1678 	struct xdp_buff xdp;
1679 	struct page *page;
1680 	u32 sub_len = 4;
1681 
1682 #if !defined(CONFIG_M5272)
1683 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1684 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1685 	 */
1686 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1687 		data_start += 2;
1688 		sub_len += 2;
1689 	}
1690 #endif
1691 
1692 #ifdef CONFIG_M532x
1693 	flush_cache_all();
1694 #endif
1695 	rxq = fep->rx_queue[queue_id];
1696 
1697 	/* First, grab all of the stats for the incoming packet.
1698 	 * These get messed up if we get called due to a busy condition.
1699 	 */
1700 	bdp = rxq->bd.cur;
1701 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1702 
1703 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1704 
1705 		if (pkt_received >= budget)
1706 			break;
1707 		pkt_received++;
1708 
1709 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1710 
1711 		/* Check for errors. */
1712 		status ^= BD_ENET_RX_LAST;
1713 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1714 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1715 			   BD_ENET_RX_CL)) {
1716 			ndev->stats.rx_errors++;
1717 			if (status & BD_ENET_RX_OV) {
1718 				/* FIFO overrun */
1719 				ndev->stats.rx_fifo_errors++;
1720 				goto rx_processing_done;
1721 			}
1722 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1723 						| BD_ENET_RX_LAST)) {
1724 				/* Frame too long or too short. */
1725 				ndev->stats.rx_length_errors++;
1726 				if (status & BD_ENET_RX_LAST)
1727 					netdev_err(ndev, "rcv is not +last\n");
1728 			}
1729 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1730 				ndev->stats.rx_crc_errors++;
1731 			/* Report late collisions as a frame error. */
1732 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1733 				ndev->stats.rx_frame_errors++;
1734 			goto rx_processing_done;
1735 		}
1736 
1737 		/* Process the incoming frame. */
1738 		ndev->stats.rx_packets++;
1739 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1740 		ndev->stats.rx_bytes += pkt_len;
1741 
1742 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1743 		page = rxq->rx_skb_info[index].page;
1744 		dma_sync_single_for_cpu(&fep->pdev->dev,
1745 					fec32_to_cpu(bdp->cbd_bufaddr),
1746 					pkt_len,
1747 					DMA_FROM_DEVICE);
1748 		prefetch(page_address(page));
1749 		fec_enet_update_cbd(rxq, bdp, index);
1750 
1751 		if (xdp_prog) {
1752 			xdp_buff_clear_frags_flag(&xdp);
1753 			/* subtract 16bit shift and FCS */
1754 			xdp_prepare_buff(&xdp, page_address(page),
1755 					 data_start, pkt_len - sub_len, false);
1756 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1757 			xdp_result |= ret;
1758 			if (ret != FEC_ENET_XDP_PASS)
1759 				goto rx_processing_done;
1760 		}
1761 
1762 		/* The packet length includes FCS, but we don't want to
1763 		 * include that when passing upstream as it messes up
1764 		 * bridging applications.
1765 		 */
1766 		skb = build_skb(page_address(page), PAGE_SIZE);
1767 		if (unlikely(!skb)) {
1768 			page_pool_recycle_direct(rxq->page_pool, page);
1769 			ndev->stats.rx_dropped++;
1770 
1771 			netdev_err_once(ndev, "build_skb failed!\n");
1772 			goto rx_processing_done;
1773 		}
1774 
1775 		skb_reserve(skb, data_start);
1776 		skb_put(skb, pkt_len - sub_len);
1777 		skb_mark_for_recycle(skb);
1778 
1779 		if (unlikely(need_swap)) {
1780 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1781 			swap_buffer(data, pkt_len);
1782 		}
1783 		data = skb->data;
1784 
1785 		/* Extract the enhanced buffer descriptor */
1786 		ebdp = NULL;
1787 		if (fep->bufdesc_ex)
1788 			ebdp = (struct bufdesc_ex *)bdp;
1789 
1790 		/* If this is a VLAN packet remove the VLAN Tag */
1791 		vlan_packet_rcvd = false;
1792 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1793 		    fep->bufdesc_ex &&
1794 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1795 			/* Push and remove the vlan tag */
1796 			struct vlan_hdr *vlan_header =
1797 					(struct vlan_hdr *) (data + ETH_HLEN);
1798 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1799 
1800 			vlan_packet_rcvd = true;
1801 
1802 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1803 			skb_pull(skb, VLAN_HLEN);
1804 		}
1805 
1806 		skb->protocol = eth_type_trans(skb, ndev);
1807 
1808 		/* Get receive timestamp from the skb */
1809 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1810 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1811 					  skb_hwtstamps(skb));
1812 
1813 		if (fep->bufdesc_ex &&
1814 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1815 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1816 				/* don't check it */
1817 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1818 			} else {
1819 				skb_checksum_none_assert(skb);
1820 			}
1821 		}
1822 
1823 		/* Handle received VLAN packets */
1824 		if (vlan_packet_rcvd)
1825 			__vlan_hwaccel_put_tag(skb,
1826 					       htons(ETH_P_8021Q),
1827 					       vlan_tag);
1828 
1829 		skb_record_rx_queue(skb, queue_id);
1830 		napi_gro_receive(&fep->napi, skb);
1831 
1832 rx_processing_done:
1833 		/* Clear the status flags for this buffer */
1834 		status &= ~BD_ENET_RX_STATS;
1835 
1836 		/* Mark the buffer empty */
1837 		status |= BD_ENET_RX_EMPTY;
1838 
1839 		if (fep->bufdesc_ex) {
1840 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1841 
1842 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1843 			ebdp->cbd_prot = 0;
1844 			ebdp->cbd_bdu = 0;
1845 		}
1846 		/* Make sure the updates to rest of the descriptor are
1847 		 * performed before transferring ownership.
1848 		 */
1849 		wmb();
1850 		bdp->cbd_sc = cpu_to_fec16(status);
1851 
1852 		/* Update BD pointer to next entry */
1853 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1854 
1855 		/* Doing this here will keep the FEC running while we process
1856 		 * incoming frames.  On a heavily loaded network, we should be
1857 		 * able to keep up at the expense of system resources.
1858 		 */
1859 		writel(0, rxq->bd.reg_desc_active);
1860 	}
1861 	rxq->bd.cur = bdp;
1862 
1863 	if (xdp_result & FEC_ENET_XDP_REDIR)
1864 		xdp_do_flush_map();
1865 
1866 	return pkt_received;
1867 }
1868 
1869 static int fec_enet_rx(struct net_device *ndev, int budget)
1870 {
1871 	struct fec_enet_private *fep = netdev_priv(ndev);
1872 	int i, done = 0;
1873 
1874 	/* Make sure that AVB queues are processed first. */
1875 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1876 		done += fec_enet_rx_queue(ndev, budget - done, i);
1877 
1878 	return done;
1879 }
1880 
1881 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1882 {
1883 	uint int_events;
1884 
1885 	int_events = readl(fep->hwp + FEC_IEVENT);
1886 
1887 	/* Don't clear MDIO events, we poll for those */
1888 	int_events &= ~FEC_ENET_MII;
1889 
1890 	writel(int_events, fep->hwp + FEC_IEVENT);
1891 
1892 	return int_events != 0;
1893 }
1894 
1895 static irqreturn_t
1896 fec_enet_interrupt(int irq, void *dev_id)
1897 {
1898 	struct net_device *ndev = dev_id;
1899 	struct fec_enet_private *fep = netdev_priv(ndev);
1900 	irqreturn_t ret = IRQ_NONE;
1901 
1902 	if (fec_enet_collect_events(fep) && fep->link) {
1903 		ret = IRQ_HANDLED;
1904 
1905 		if (napi_schedule_prep(&fep->napi)) {
1906 			/* Disable interrupts */
1907 			writel(0, fep->hwp + FEC_IMASK);
1908 			__napi_schedule(&fep->napi);
1909 		}
1910 	}
1911 
1912 	return ret;
1913 }
1914 
1915 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1916 {
1917 	struct net_device *ndev = napi->dev;
1918 	struct fec_enet_private *fep = netdev_priv(ndev);
1919 	int done = 0;
1920 
1921 	do {
1922 		done += fec_enet_rx(ndev, budget - done);
1923 		fec_enet_tx(ndev, budget);
1924 	} while ((done < budget) && fec_enet_collect_events(fep));
1925 
1926 	if (done < budget) {
1927 		napi_complete_done(napi, done);
1928 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1929 	}
1930 
1931 	return done;
1932 }
1933 
1934 /* ------------------------------------------------------------------------- */
1935 static int fec_get_mac(struct net_device *ndev)
1936 {
1937 	struct fec_enet_private *fep = netdev_priv(ndev);
1938 	unsigned char *iap, tmpaddr[ETH_ALEN];
1939 	int ret;
1940 
1941 	/*
1942 	 * try to get mac address in following order:
1943 	 *
1944 	 * 1) module parameter via kernel command line in form
1945 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1946 	 */
1947 	iap = macaddr;
1948 
1949 	/*
1950 	 * 2) from device tree data
1951 	 */
1952 	if (!is_valid_ether_addr(iap)) {
1953 		struct device_node *np = fep->pdev->dev.of_node;
1954 		if (np) {
1955 			ret = of_get_mac_address(np, tmpaddr);
1956 			if (!ret)
1957 				iap = tmpaddr;
1958 			else if (ret == -EPROBE_DEFER)
1959 				return ret;
1960 		}
1961 	}
1962 
1963 	/*
1964 	 * 3) from flash or fuse (via platform data)
1965 	 */
1966 	if (!is_valid_ether_addr(iap)) {
1967 #ifdef CONFIG_M5272
1968 		if (FEC_FLASHMAC)
1969 			iap = (unsigned char *)FEC_FLASHMAC;
1970 #else
1971 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1972 
1973 		if (pdata)
1974 			iap = (unsigned char *)&pdata->mac;
1975 #endif
1976 	}
1977 
1978 	/*
1979 	 * 4) FEC mac registers set by bootloader
1980 	 */
1981 	if (!is_valid_ether_addr(iap)) {
1982 		*((__be32 *) &tmpaddr[0]) =
1983 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1984 		*((__be16 *) &tmpaddr[4]) =
1985 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1986 		iap = &tmpaddr[0];
1987 	}
1988 
1989 	/*
1990 	 * 5) random mac address
1991 	 */
1992 	if (!is_valid_ether_addr(iap)) {
1993 		/* Report it and use a random ethernet address instead */
1994 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1995 		eth_hw_addr_random(ndev);
1996 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1997 			 ndev->dev_addr);
1998 		return 0;
1999 	}
2000 
2001 	/* Adjust MAC if using macaddr */
2002 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2003 
2004 	return 0;
2005 }
2006 
2007 /* ------------------------------------------------------------------------- */
2008 
2009 /*
2010  * Phy section
2011  */
2012 static void fec_enet_adjust_link(struct net_device *ndev)
2013 {
2014 	struct fec_enet_private *fep = netdev_priv(ndev);
2015 	struct phy_device *phy_dev = ndev->phydev;
2016 	int status_change = 0;
2017 
2018 	/*
2019 	 * If the netdev is down, or is going down, we're not interested
2020 	 * in link state events, so just mark our idea of the link as down
2021 	 * and ignore the event.
2022 	 */
2023 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2024 		fep->link = 0;
2025 	} else if (phy_dev->link) {
2026 		if (!fep->link) {
2027 			fep->link = phy_dev->link;
2028 			status_change = 1;
2029 		}
2030 
2031 		if (fep->full_duplex != phy_dev->duplex) {
2032 			fep->full_duplex = phy_dev->duplex;
2033 			status_change = 1;
2034 		}
2035 
2036 		if (phy_dev->speed != fep->speed) {
2037 			fep->speed = phy_dev->speed;
2038 			status_change = 1;
2039 		}
2040 
2041 		/* if any of the above changed restart the FEC */
2042 		if (status_change) {
2043 			netif_stop_queue(ndev);
2044 			napi_disable(&fep->napi);
2045 			netif_tx_lock_bh(ndev);
2046 			fec_restart(ndev);
2047 			netif_tx_wake_all_queues(ndev);
2048 			netif_tx_unlock_bh(ndev);
2049 			napi_enable(&fep->napi);
2050 		}
2051 	} else {
2052 		if (fep->link) {
2053 			netif_stop_queue(ndev);
2054 			napi_disable(&fep->napi);
2055 			netif_tx_lock_bh(ndev);
2056 			fec_stop(ndev);
2057 			netif_tx_unlock_bh(ndev);
2058 			napi_enable(&fep->napi);
2059 			fep->link = phy_dev->link;
2060 			status_change = 1;
2061 		}
2062 	}
2063 
2064 	if (status_change)
2065 		phy_print_status(phy_dev);
2066 }
2067 
2068 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2069 {
2070 	uint ievent;
2071 	int ret;
2072 
2073 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2074 					ievent & FEC_ENET_MII, 2, 30000);
2075 
2076 	if (!ret)
2077 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2078 
2079 	return ret;
2080 }
2081 
2082 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2083 {
2084 	struct fec_enet_private *fep = bus->priv;
2085 	struct device *dev = &fep->pdev->dev;
2086 	int ret = 0, frame_start, frame_addr, frame_op;
2087 
2088 	ret = pm_runtime_resume_and_get(dev);
2089 	if (ret < 0)
2090 		return ret;
2091 
2092 	/* C22 read */
2093 	frame_op = FEC_MMFR_OP_READ;
2094 	frame_start = FEC_MMFR_ST;
2095 	frame_addr = regnum;
2096 
2097 	/* start a read op */
2098 	writel(frame_start | frame_op |
2099 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2100 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2101 
2102 	/* wait for end of transfer */
2103 	ret = fec_enet_mdio_wait(fep);
2104 	if (ret) {
2105 		netdev_err(fep->netdev, "MDIO read timeout\n");
2106 		goto out;
2107 	}
2108 
2109 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2110 
2111 out:
2112 	pm_runtime_mark_last_busy(dev);
2113 	pm_runtime_put_autosuspend(dev);
2114 
2115 	return ret;
2116 }
2117 
2118 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2119 				  int devad, int regnum)
2120 {
2121 	struct fec_enet_private *fep = bus->priv;
2122 	struct device *dev = &fep->pdev->dev;
2123 	int ret = 0, frame_start, frame_op;
2124 
2125 	ret = pm_runtime_resume_and_get(dev);
2126 	if (ret < 0)
2127 		return ret;
2128 
2129 	frame_start = FEC_MMFR_ST_C45;
2130 
2131 	/* write address */
2132 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2133 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2134 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2135 	       fep->hwp + FEC_MII_DATA);
2136 
2137 	/* wait for end of transfer */
2138 	ret = fec_enet_mdio_wait(fep);
2139 	if (ret) {
2140 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2141 		goto out;
2142 	}
2143 
2144 	frame_op = FEC_MMFR_OP_READ_C45;
2145 
2146 	/* start a read op */
2147 	writel(frame_start | frame_op |
2148 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2149 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2150 
2151 	/* wait for end of transfer */
2152 	ret = fec_enet_mdio_wait(fep);
2153 	if (ret) {
2154 		netdev_err(fep->netdev, "MDIO read timeout\n");
2155 		goto out;
2156 	}
2157 
2158 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2159 
2160 out:
2161 	pm_runtime_mark_last_busy(dev);
2162 	pm_runtime_put_autosuspend(dev);
2163 
2164 	return ret;
2165 }
2166 
2167 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2168 				   u16 value)
2169 {
2170 	struct fec_enet_private *fep = bus->priv;
2171 	struct device *dev = &fep->pdev->dev;
2172 	int ret, frame_start, frame_addr;
2173 
2174 	ret = pm_runtime_resume_and_get(dev);
2175 	if (ret < 0)
2176 		return ret;
2177 
2178 	/* C22 write */
2179 	frame_start = FEC_MMFR_ST;
2180 	frame_addr = regnum;
2181 
2182 	/* start a write op */
2183 	writel(frame_start | FEC_MMFR_OP_WRITE |
2184 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2185 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2186 	       fep->hwp + FEC_MII_DATA);
2187 
2188 	/* wait for end of transfer */
2189 	ret = fec_enet_mdio_wait(fep);
2190 	if (ret)
2191 		netdev_err(fep->netdev, "MDIO write timeout\n");
2192 
2193 	pm_runtime_mark_last_busy(dev);
2194 	pm_runtime_put_autosuspend(dev);
2195 
2196 	return ret;
2197 }
2198 
2199 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2200 				   int devad, int regnum, u16 value)
2201 {
2202 	struct fec_enet_private *fep = bus->priv;
2203 	struct device *dev = &fep->pdev->dev;
2204 	int ret, frame_start;
2205 
2206 	ret = pm_runtime_resume_and_get(dev);
2207 	if (ret < 0)
2208 		return ret;
2209 
2210 	frame_start = FEC_MMFR_ST_C45;
2211 
2212 	/* write address */
2213 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2214 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2215 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2216 	       fep->hwp + FEC_MII_DATA);
2217 
2218 	/* wait for end of transfer */
2219 	ret = fec_enet_mdio_wait(fep);
2220 	if (ret) {
2221 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2222 		goto out;
2223 	}
2224 
2225 	/* start a write op */
2226 	writel(frame_start | FEC_MMFR_OP_WRITE |
2227 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2228 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2229 	       fep->hwp + FEC_MII_DATA);
2230 
2231 	/* wait for end of transfer */
2232 	ret = fec_enet_mdio_wait(fep);
2233 	if (ret)
2234 		netdev_err(fep->netdev, "MDIO write timeout\n");
2235 
2236 out:
2237 	pm_runtime_mark_last_busy(dev);
2238 	pm_runtime_put_autosuspend(dev);
2239 
2240 	return ret;
2241 }
2242 
2243 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2244 {
2245 	struct fec_enet_private *fep = netdev_priv(ndev);
2246 	struct phy_device *phy_dev = ndev->phydev;
2247 
2248 	if (phy_dev) {
2249 		phy_reset_after_clk_enable(phy_dev);
2250 	} else if (fep->phy_node) {
2251 		/*
2252 		 * If the PHY still is not bound to the MAC, but there is
2253 		 * OF PHY node and a matching PHY device instance already,
2254 		 * use the OF PHY node to obtain the PHY device instance,
2255 		 * and then use that PHY device instance when triggering
2256 		 * the PHY reset.
2257 		 */
2258 		phy_dev = of_phy_find_device(fep->phy_node);
2259 		phy_reset_after_clk_enable(phy_dev);
2260 		put_device(&phy_dev->mdio.dev);
2261 	}
2262 }
2263 
2264 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2265 {
2266 	struct fec_enet_private *fep = netdev_priv(ndev);
2267 	int ret;
2268 
2269 	if (enable) {
2270 		ret = clk_prepare_enable(fep->clk_enet_out);
2271 		if (ret)
2272 			return ret;
2273 
2274 		if (fep->clk_ptp) {
2275 			mutex_lock(&fep->ptp_clk_mutex);
2276 			ret = clk_prepare_enable(fep->clk_ptp);
2277 			if (ret) {
2278 				mutex_unlock(&fep->ptp_clk_mutex);
2279 				goto failed_clk_ptp;
2280 			} else {
2281 				fep->ptp_clk_on = true;
2282 			}
2283 			mutex_unlock(&fep->ptp_clk_mutex);
2284 		}
2285 
2286 		ret = clk_prepare_enable(fep->clk_ref);
2287 		if (ret)
2288 			goto failed_clk_ref;
2289 
2290 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2291 		if (ret)
2292 			goto failed_clk_2x_txclk;
2293 
2294 		fec_enet_phy_reset_after_clk_enable(ndev);
2295 	} else {
2296 		clk_disable_unprepare(fep->clk_enet_out);
2297 		if (fep->clk_ptp) {
2298 			mutex_lock(&fep->ptp_clk_mutex);
2299 			clk_disable_unprepare(fep->clk_ptp);
2300 			fep->ptp_clk_on = false;
2301 			mutex_unlock(&fep->ptp_clk_mutex);
2302 		}
2303 		clk_disable_unprepare(fep->clk_ref);
2304 		clk_disable_unprepare(fep->clk_2x_txclk);
2305 	}
2306 
2307 	return 0;
2308 
2309 failed_clk_2x_txclk:
2310 	if (fep->clk_ref)
2311 		clk_disable_unprepare(fep->clk_ref);
2312 failed_clk_ref:
2313 	if (fep->clk_ptp) {
2314 		mutex_lock(&fep->ptp_clk_mutex);
2315 		clk_disable_unprepare(fep->clk_ptp);
2316 		fep->ptp_clk_on = false;
2317 		mutex_unlock(&fep->ptp_clk_mutex);
2318 	}
2319 failed_clk_ptp:
2320 	clk_disable_unprepare(fep->clk_enet_out);
2321 
2322 	return ret;
2323 }
2324 
2325 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2326 				      struct device_node *np)
2327 {
2328 	u32 rgmii_tx_delay, rgmii_rx_delay;
2329 
2330 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2331 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2332 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2333 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2334 			return -EINVAL;
2335 		} else if (rgmii_tx_delay == 2000) {
2336 			fep->rgmii_txc_dly = true;
2337 		}
2338 	}
2339 
2340 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2341 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2342 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2343 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2344 			return -EINVAL;
2345 		} else if (rgmii_rx_delay == 2000) {
2346 			fep->rgmii_rxc_dly = true;
2347 		}
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 static int fec_enet_mii_probe(struct net_device *ndev)
2354 {
2355 	struct fec_enet_private *fep = netdev_priv(ndev);
2356 	struct phy_device *phy_dev = NULL;
2357 	char mdio_bus_id[MII_BUS_ID_SIZE];
2358 	char phy_name[MII_BUS_ID_SIZE + 3];
2359 	int phy_id;
2360 	int dev_id = fep->dev_id;
2361 
2362 	if (fep->phy_node) {
2363 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2364 					 &fec_enet_adjust_link, 0,
2365 					 fep->phy_interface);
2366 		if (!phy_dev) {
2367 			netdev_err(ndev, "Unable to connect to phy\n");
2368 			return -ENODEV;
2369 		}
2370 	} else {
2371 		/* check for attached phy */
2372 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2373 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2374 				continue;
2375 			if (dev_id--)
2376 				continue;
2377 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2378 			break;
2379 		}
2380 
2381 		if (phy_id >= PHY_MAX_ADDR) {
2382 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2383 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2384 			phy_id = 0;
2385 		}
2386 
2387 		snprintf(phy_name, sizeof(phy_name),
2388 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2389 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2390 				      fep->phy_interface);
2391 	}
2392 
2393 	if (IS_ERR(phy_dev)) {
2394 		netdev_err(ndev, "could not attach to PHY\n");
2395 		return PTR_ERR(phy_dev);
2396 	}
2397 
2398 	/* mask with MAC supported features */
2399 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2400 		phy_set_max_speed(phy_dev, 1000);
2401 		phy_remove_link_mode(phy_dev,
2402 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2403 #if !defined(CONFIG_M5272)
2404 		phy_support_sym_pause(phy_dev);
2405 #endif
2406 	}
2407 	else
2408 		phy_set_max_speed(phy_dev, 100);
2409 
2410 	fep->link = 0;
2411 	fep->full_duplex = 0;
2412 
2413 	phy_attached_info(phy_dev);
2414 
2415 	return 0;
2416 }
2417 
2418 static int fec_enet_mii_init(struct platform_device *pdev)
2419 {
2420 	static struct mii_bus *fec0_mii_bus;
2421 	struct net_device *ndev = platform_get_drvdata(pdev);
2422 	struct fec_enet_private *fep = netdev_priv(ndev);
2423 	bool suppress_preamble = false;
2424 	struct phy_device *phydev;
2425 	struct device_node *node;
2426 	int err = -ENXIO;
2427 	u32 mii_speed, holdtime;
2428 	u32 bus_freq;
2429 	int addr;
2430 
2431 	/*
2432 	 * The i.MX28 dual fec interfaces are not equal.
2433 	 * Here are the differences:
2434 	 *
2435 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2436 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2437 	 *  - external phys can only be configured by fec0
2438 	 *
2439 	 * That is to say fec1 can not work independently. It only works
2440 	 * when fec0 is working. The reason behind this design is that the
2441 	 * second interface is added primarily for Switch mode.
2442 	 *
2443 	 * Because of the last point above, both phys are attached on fec0
2444 	 * mdio interface in board design, and need to be configured by
2445 	 * fec0 mii_bus.
2446 	 */
2447 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2448 		/* fec1 uses fec0 mii_bus */
2449 		if (mii_cnt && fec0_mii_bus) {
2450 			fep->mii_bus = fec0_mii_bus;
2451 			mii_cnt++;
2452 			return 0;
2453 		}
2454 		return -ENOENT;
2455 	}
2456 
2457 	bus_freq = 2500000; /* 2.5MHz by default */
2458 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2459 	if (node) {
2460 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2461 		suppress_preamble = of_property_read_bool(node,
2462 							  "suppress-preamble");
2463 	}
2464 
2465 	/*
2466 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2467 	 *
2468 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2469 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2470 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2471 	 * document.
2472 	 */
2473 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2474 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2475 		mii_speed--;
2476 	if (mii_speed > 63) {
2477 		dev_err(&pdev->dev,
2478 			"fec clock (%lu) too fast to get right mii speed\n",
2479 			clk_get_rate(fep->clk_ipg));
2480 		err = -EINVAL;
2481 		goto err_out;
2482 	}
2483 
2484 	/*
2485 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2486 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2487 	 * versions are RAZ there, so just ignore the difference and write the
2488 	 * register always.
2489 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2490 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2491 	 * output.
2492 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2493 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2494 	 * holdtime cannot result in a value greater than 3.
2495 	 */
2496 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2497 
2498 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2499 
2500 	if (suppress_preamble)
2501 		fep->phy_speed |= BIT(7);
2502 
2503 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2504 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2505 		 * MII event generation condition:
2506 		 * - writing MSCR:
2507 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2508 		 *	  mscr_reg_data_in[7:0] != 0
2509 		 * - writing MMFR:
2510 		 *	- mscr[7:0]_not_zero
2511 		 */
2512 		writel(0, fep->hwp + FEC_MII_DATA);
2513 	}
2514 
2515 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2516 
2517 	/* Clear any pending transaction complete indication */
2518 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2519 
2520 	fep->mii_bus = mdiobus_alloc();
2521 	if (fep->mii_bus == NULL) {
2522 		err = -ENOMEM;
2523 		goto err_out;
2524 	}
2525 
2526 	fep->mii_bus->name = "fec_enet_mii_bus";
2527 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2528 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2529 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2530 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2531 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2532 	}
2533 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2534 		pdev->name, fep->dev_id + 1);
2535 	fep->mii_bus->priv = fep;
2536 	fep->mii_bus->parent = &pdev->dev;
2537 
2538 	err = of_mdiobus_register(fep->mii_bus, node);
2539 	if (err)
2540 		goto err_out_free_mdiobus;
2541 	of_node_put(node);
2542 
2543 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2544 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2545 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2546 		if (phydev)
2547 			phydev->mac_managed_pm = true;
2548 	}
2549 
2550 	mii_cnt++;
2551 
2552 	/* save fec0 mii_bus */
2553 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2554 		fec0_mii_bus = fep->mii_bus;
2555 
2556 	return 0;
2557 
2558 err_out_free_mdiobus:
2559 	mdiobus_free(fep->mii_bus);
2560 err_out:
2561 	of_node_put(node);
2562 	return err;
2563 }
2564 
2565 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2566 {
2567 	if (--mii_cnt == 0) {
2568 		mdiobus_unregister(fep->mii_bus);
2569 		mdiobus_free(fep->mii_bus);
2570 	}
2571 }
2572 
2573 static void fec_enet_get_drvinfo(struct net_device *ndev,
2574 				 struct ethtool_drvinfo *info)
2575 {
2576 	struct fec_enet_private *fep = netdev_priv(ndev);
2577 
2578 	strscpy(info->driver, fep->pdev->dev.driver->name,
2579 		sizeof(info->driver));
2580 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2581 }
2582 
2583 static int fec_enet_get_regs_len(struct net_device *ndev)
2584 {
2585 	struct fec_enet_private *fep = netdev_priv(ndev);
2586 	struct resource *r;
2587 	int s = 0;
2588 
2589 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2590 	if (r)
2591 		s = resource_size(r);
2592 
2593 	return s;
2594 }
2595 
2596 /* List of registers that can be safety be read to dump them with ethtool */
2597 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2598 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2599 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2600 static __u32 fec_enet_register_version = 2;
2601 static u32 fec_enet_register_offset[] = {
2602 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2603 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2604 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2605 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2606 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2607 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2608 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2609 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2610 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2611 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2612 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2613 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2614 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2615 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2616 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2617 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2618 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2619 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2620 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2621 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2622 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2623 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2624 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2625 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2626 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2627 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2628 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2629 };
2630 /* for i.MX6ul */
2631 static u32 fec_enet_register_offset_6ul[] = {
2632 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2633 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2634 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2635 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2636 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2637 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2638 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2639 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2640 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2641 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2642 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2643 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2644 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2645 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2646 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2647 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2648 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2649 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2650 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2651 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2652 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2653 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2654 };
2655 #else
2656 static __u32 fec_enet_register_version = 1;
2657 static u32 fec_enet_register_offset[] = {
2658 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2659 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2660 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2661 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2662 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2663 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2664 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2665 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2666 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2667 };
2668 #endif
2669 
2670 static void fec_enet_get_regs(struct net_device *ndev,
2671 			      struct ethtool_regs *regs, void *regbuf)
2672 {
2673 	struct fec_enet_private *fep = netdev_priv(ndev);
2674 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2675 	struct device *dev = &fep->pdev->dev;
2676 	u32 *buf = (u32 *)regbuf;
2677 	u32 i, off;
2678 	int ret;
2679 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2680 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2681 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2682 	u32 *reg_list;
2683 	u32 reg_cnt;
2684 
2685 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2686 		reg_list = fec_enet_register_offset;
2687 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2688 	} else {
2689 		reg_list = fec_enet_register_offset_6ul;
2690 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2691 	}
2692 #else
2693 	/* coldfire */
2694 	static u32 *reg_list = fec_enet_register_offset;
2695 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2696 #endif
2697 	ret = pm_runtime_resume_and_get(dev);
2698 	if (ret < 0)
2699 		return;
2700 
2701 	regs->version = fec_enet_register_version;
2702 
2703 	memset(buf, 0, regs->len);
2704 
2705 	for (i = 0; i < reg_cnt; i++) {
2706 		off = reg_list[i];
2707 
2708 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2709 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2710 			continue;
2711 
2712 		off >>= 2;
2713 		buf[off] = readl(&theregs[off]);
2714 	}
2715 
2716 	pm_runtime_mark_last_busy(dev);
2717 	pm_runtime_put_autosuspend(dev);
2718 }
2719 
2720 static int fec_enet_get_ts_info(struct net_device *ndev,
2721 				struct ethtool_ts_info *info)
2722 {
2723 	struct fec_enet_private *fep = netdev_priv(ndev);
2724 
2725 	if (fep->bufdesc_ex) {
2726 
2727 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2728 					SOF_TIMESTAMPING_RX_SOFTWARE |
2729 					SOF_TIMESTAMPING_SOFTWARE |
2730 					SOF_TIMESTAMPING_TX_HARDWARE |
2731 					SOF_TIMESTAMPING_RX_HARDWARE |
2732 					SOF_TIMESTAMPING_RAW_HARDWARE;
2733 		if (fep->ptp_clock)
2734 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2735 		else
2736 			info->phc_index = -1;
2737 
2738 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2739 				 (1 << HWTSTAMP_TX_ON);
2740 
2741 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2742 				   (1 << HWTSTAMP_FILTER_ALL);
2743 		return 0;
2744 	} else {
2745 		return ethtool_op_get_ts_info(ndev, info);
2746 	}
2747 }
2748 
2749 #if !defined(CONFIG_M5272)
2750 
2751 static void fec_enet_get_pauseparam(struct net_device *ndev,
2752 				    struct ethtool_pauseparam *pause)
2753 {
2754 	struct fec_enet_private *fep = netdev_priv(ndev);
2755 
2756 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2757 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2758 	pause->rx_pause = pause->tx_pause;
2759 }
2760 
2761 static int fec_enet_set_pauseparam(struct net_device *ndev,
2762 				   struct ethtool_pauseparam *pause)
2763 {
2764 	struct fec_enet_private *fep = netdev_priv(ndev);
2765 
2766 	if (!ndev->phydev)
2767 		return -ENODEV;
2768 
2769 	if (pause->tx_pause != pause->rx_pause) {
2770 		netdev_info(ndev,
2771 			"hardware only support enable/disable both tx and rx");
2772 		return -EINVAL;
2773 	}
2774 
2775 	fep->pause_flag = 0;
2776 
2777 	/* tx pause must be same as rx pause */
2778 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2779 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2780 
2781 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2782 			  pause->autoneg);
2783 
2784 	if (pause->autoneg) {
2785 		if (netif_running(ndev))
2786 			fec_stop(ndev);
2787 		phy_start_aneg(ndev->phydev);
2788 	}
2789 	if (netif_running(ndev)) {
2790 		napi_disable(&fep->napi);
2791 		netif_tx_lock_bh(ndev);
2792 		fec_restart(ndev);
2793 		netif_tx_wake_all_queues(ndev);
2794 		netif_tx_unlock_bh(ndev);
2795 		napi_enable(&fep->napi);
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static const struct fec_stat {
2802 	char name[ETH_GSTRING_LEN];
2803 	u16 offset;
2804 } fec_stats[] = {
2805 	/* RMON TX */
2806 	{ "tx_dropped", RMON_T_DROP },
2807 	{ "tx_packets", RMON_T_PACKETS },
2808 	{ "tx_broadcast", RMON_T_BC_PKT },
2809 	{ "tx_multicast", RMON_T_MC_PKT },
2810 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2811 	{ "tx_undersize", RMON_T_UNDERSIZE },
2812 	{ "tx_oversize", RMON_T_OVERSIZE },
2813 	{ "tx_fragment", RMON_T_FRAG },
2814 	{ "tx_jabber", RMON_T_JAB },
2815 	{ "tx_collision", RMON_T_COL },
2816 	{ "tx_64byte", RMON_T_P64 },
2817 	{ "tx_65to127byte", RMON_T_P65TO127 },
2818 	{ "tx_128to255byte", RMON_T_P128TO255 },
2819 	{ "tx_256to511byte", RMON_T_P256TO511 },
2820 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2821 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2822 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2823 	{ "tx_octets", RMON_T_OCTETS },
2824 
2825 	/* IEEE TX */
2826 	{ "IEEE_tx_drop", IEEE_T_DROP },
2827 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2828 	{ "IEEE_tx_1col", IEEE_T_1COL },
2829 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2830 	{ "IEEE_tx_def", IEEE_T_DEF },
2831 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2832 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2833 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2834 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2835 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2836 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2837 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2838 
2839 	/* RMON RX */
2840 	{ "rx_packets", RMON_R_PACKETS },
2841 	{ "rx_broadcast", RMON_R_BC_PKT },
2842 	{ "rx_multicast", RMON_R_MC_PKT },
2843 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2844 	{ "rx_undersize", RMON_R_UNDERSIZE },
2845 	{ "rx_oversize", RMON_R_OVERSIZE },
2846 	{ "rx_fragment", RMON_R_FRAG },
2847 	{ "rx_jabber", RMON_R_JAB },
2848 	{ "rx_64byte", RMON_R_P64 },
2849 	{ "rx_65to127byte", RMON_R_P65TO127 },
2850 	{ "rx_128to255byte", RMON_R_P128TO255 },
2851 	{ "rx_256to511byte", RMON_R_P256TO511 },
2852 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2853 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2854 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2855 	{ "rx_octets", RMON_R_OCTETS },
2856 
2857 	/* IEEE RX */
2858 	{ "IEEE_rx_drop", IEEE_R_DROP },
2859 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2860 	{ "IEEE_rx_crc", IEEE_R_CRC },
2861 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2862 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2863 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2864 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2865 };
2866 
2867 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2868 
2869 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2870 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2871 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2872 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2873 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2874 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2875 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2876 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2877 };
2878 
2879 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2880 {
2881 	struct fec_enet_private *fep = netdev_priv(dev);
2882 	int i;
2883 
2884 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2885 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2886 }
2887 
2888 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2889 {
2890 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2891 	struct fec_enet_priv_rx_q *rxq;
2892 	int i, j;
2893 
2894 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2895 		rxq = fep->rx_queue[i];
2896 
2897 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2898 			xdp_stats[j] += rxq->stats[j];
2899 	}
2900 
2901 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2902 }
2903 
2904 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2905 {
2906 #ifdef CONFIG_PAGE_POOL_STATS
2907 	struct page_pool_stats stats = {};
2908 	struct fec_enet_priv_rx_q *rxq;
2909 	int i;
2910 
2911 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2912 		rxq = fep->rx_queue[i];
2913 
2914 		if (!rxq->page_pool)
2915 			continue;
2916 
2917 		page_pool_get_stats(rxq->page_pool, &stats);
2918 	}
2919 
2920 	page_pool_ethtool_stats_get(data, &stats);
2921 #endif
2922 }
2923 
2924 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2925 				       struct ethtool_stats *stats, u64 *data)
2926 {
2927 	struct fec_enet_private *fep = netdev_priv(dev);
2928 
2929 	if (netif_running(dev))
2930 		fec_enet_update_ethtool_stats(dev);
2931 
2932 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2933 	data += FEC_STATS_SIZE / sizeof(u64);
2934 
2935 	fec_enet_get_xdp_stats(fep, data);
2936 	data += XDP_STATS_TOTAL;
2937 
2938 	fec_enet_page_pool_stats(fep, data);
2939 }
2940 
2941 static void fec_enet_get_strings(struct net_device *netdev,
2942 	u32 stringset, u8 *data)
2943 {
2944 	int i;
2945 	switch (stringset) {
2946 	case ETH_SS_STATS:
2947 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2948 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2949 			data += ETH_GSTRING_LEN;
2950 		}
2951 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2952 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2953 			data += ETH_GSTRING_LEN;
2954 		}
2955 		page_pool_ethtool_stats_get_strings(data);
2956 
2957 		break;
2958 	case ETH_SS_TEST:
2959 		net_selftest_get_strings(data);
2960 		break;
2961 	}
2962 }
2963 
2964 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2965 {
2966 	int count;
2967 
2968 	switch (sset) {
2969 	case ETH_SS_STATS:
2970 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2971 		count += page_pool_ethtool_stats_get_count();
2972 		return count;
2973 
2974 	case ETH_SS_TEST:
2975 		return net_selftest_get_count();
2976 	default:
2977 		return -EOPNOTSUPP;
2978 	}
2979 }
2980 
2981 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2982 {
2983 	struct fec_enet_private *fep = netdev_priv(dev);
2984 	struct fec_enet_priv_rx_q *rxq;
2985 	int i, j;
2986 
2987 	/* Disable MIB statistics counters */
2988 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2989 
2990 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2991 		writel(0, fep->hwp + fec_stats[i].offset);
2992 
2993 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2994 		rxq = fep->rx_queue[i];
2995 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2996 			rxq->stats[j] = 0;
2997 	}
2998 
2999 	/* Don't disable MIB statistics counters */
3000 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3001 }
3002 
3003 #else	/* !defined(CONFIG_M5272) */
3004 #define FEC_STATS_SIZE	0
3005 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3006 {
3007 }
3008 
3009 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3010 {
3011 }
3012 #endif /* !defined(CONFIG_M5272) */
3013 
3014 /* ITR clock source is enet system clock (clk_ahb).
3015  * TCTT unit is cycle_ns * 64 cycle
3016  * So, the ICTT value = X us / (cycle_ns * 64)
3017  */
3018 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3019 {
3020 	struct fec_enet_private *fep = netdev_priv(ndev);
3021 
3022 	return us * (fep->itr_clk_rate / 64000) / 1000;
3023 }
3024 
3025 /* Set threshold for interrupt coalescing */
3026 static void fec_enet_itr_coal_set(struct net_device *ndev)
3027 {
3028 	struct fec_enet_private *fep = netdev_priv(ndev);
3029 	int rx_itr, tx_itr;
3030 
3031 	/* Must be greater than zero to avoid unpredictable behavior */
3032 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3033 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3034 		return;
3035 
3036 	/* Select enet system clock as Interrupt Coalescing
3037 	 * timer Clock Source
3038 	 */
3039 	rx_itr = FEC_ITR_CLK_SEL;
3040 	tx_itr = FEC_ITR_CLK_SEL;
3041 
3042 	/* set ICFT and ICTT */
3043 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3044 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3045 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3046 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3047 
3048 	rx_itr |= FEC_ITR_EN;
3049 	tx_itr |= FEC_ITR_EN;
3050 
3051 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3052 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3053 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3054 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3055 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3056 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3057 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3058 	}
3059 }
3060 
3061 static int fec_enet_get_coalesce(struct net_device *ndev,
3062 				 struct ethtool_coalesce *ec,
3063 				 struct kernel_ethtool_coalesce *kernel_coal,
3064 				 struct netlink_ext_ack *extack)
3065 {
3066 	struct fec_enet_private *fep = netdev_priv(ndev);
3067 
3068 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3069 		return -EOPNOTSUPP;
3070 
3071 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3072 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3073 
3074 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3075 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3076 
3077 	return 0;
3078 }
3079 
3080 static int fec_enet_set_coalesce(struct net_device *ndev,
3081 				 struct ethtool_coalesce *ec,
3082 				 struct kernel_ethtool_coalesce *kernel_coal,
3083 				 struct netlink_ext_ack *extack)
3084 {
3085 	struct fec_enet_private *fep = netdev_priv(ndev);
3086 	struct device *dev = &fep->pdev->dev;
3087 	unsigned int cycle;
3088 
3089 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3090 		return -EOPNOTSUPP;
3091 
3092 	if (ec->rx_max_coalesced_frames > 255) {
3093 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3094 		return -EINVAL;
3095 	}
3096 
3097 	if (ec->tx_max_coalesced_frames > 255) {
3098 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3099 		return -EINVAL;
3100 	}
3101 
3102 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3103 	if (cycle > 0xFFFF) {
3104 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3105 		return -EINVAL;
3106 	}
3107 
3108 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3109 	if (cycle > 0xFFFF) {
3110 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3111 		return -EINVAL;
3112 	}
3113 
3114 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3115 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3116 
3117 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3118 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3119 
3120 	fec_enet_itr_coal_set(ndev);
3121 
3122 	return 0;
3123 }
3124 
3125 /* LPI Sleep Ts count base on tx clk (clk_ref).
3126  * The lpi sleep cnt value = X us / (cycle_ns).
3127  */
3128 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3129 {
3130 	struct fec_enet_private *fep = netdev_priv(ndev);
3131 
3132 	return us * (fep->clk_ref_rate / 1000) / 1000;
3133 }
3134 
3135 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3136 {
3137 	struct fec_enet_private *fep = netdev_priv(ndev);
3138 	struct ethtool_eee *p = &fep->eee;
3139 	unsigned int sleep_cycle, wake_cycle;
3140 	int ret = 0;
3141 
3142 	if (enable) {
3143 		ret = phy_init_eee(ndev->phydev, false);
3144 		if (ret)
3145 			return ret;
3146 
3147 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3148 		wake_cycle = sleep_cycle;
3149 	} else {
3150 		sleep_cycle = 0;
3151 		wake_cycle = 0;
3152 	}
3153 
3154 	p->tx_lpi_enabled = enable;
3155 	p->eee_enabled = enable;
3156 	p->eee_active = enable;
3157 
3158 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3159 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3160 
3161 	return 0;
3162 }
3163 
3164 static int
3165 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3166 {
3167 	struct fec_enet_private *fep = netdev_priv(ndev);
3168 	struct ethtool_eee *p = &fep->eee;
3169 
3170 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3171 		return -EOPNOTSUPP;
3172 
3173 	if (!netif_running(ndev))
3174 		return -ENETDOWN;
3175 
3176 	edata->eee_enabled = p->eee_enabled;
3177 	edata->eee_active = p->eee_active;
3178 	edata->tx_lpi_timer = p->tx_lpi_timer;
3179 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3180 
3181 	return phy_ethtool_get_eee(ndev->phydev, edata);
3182 }
3183 
3184 static int
3185 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3186 {
3187 	struct fec_enet_private *fep = netdev_priv(ndev);
3188 	struct ethtool_eee *p = &fep->eee;
3189 	int ret = 0;
3190 
3191 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3192 		return -EOPNOTSUPP;
3193 
3194 	if (!netif_running(ndev))
3195 		return -ENETDOWN;
3196 
3197 	p->tx_lpi_timer = edata->tx_lpi_timer;
3198 
3199 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3200 	    !edata->tx_lpi_timer)
3201 		ret = fec_enet_eee_mode_set(ndev, false);
3202 	else
3203 		ret = fec_enet_eee_mode_set(ndev, true);
3204 
3205 	if (ret)
3206 		return ret;
3207 
3208 	return phy_ethtool_set_eee(ndev->phydev, edata);
3209 }
3210 
3211 static void
3212 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3213 {
3214 	struct fec_enet_private *fep = netdev_priv(ndev);
3215 
3216 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3217 		wol->supported = WAKE_MAGIC;
3218 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3219 	} else {
3220 		wol->supported = wol->wolopts = 0;
3221 	}
3222 }
3223 
3224 static int
3225 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3226 {
3227 	struct fec_enet_private *fep = netdev_priv(ndev);
3228 
3229 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3230 		return -EINVAL;
3231 
3232 	if (wol->wolopts & ~WAKE_MAGIC)
3233 		return -EINVAL;
3234 
3235 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3236 	if (device_may_wakeup(&ndev->dev))
3237 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3238 	else
3239 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3240 
3241 	return 0;
3242 }
3243 
3244 static const struct ethtool_ops fec_enet_ethtool_ops = {
3245 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3246 				     ETHTOOL_COALESCE_MAX_FRAMES,
3247 	.get_drvinfo		= fec_enet_get_drvinfo,
3248 	.get_regs_len		= fec_enet_get_regs_len,
3249 	.get_regs		= fec_enet_get_regs,
3250 	.nway_reset		= phy_ethtool_nway_reset,
3251 	.get_link		= ethtool_op_get_link,
3252 	.get_coalesce		= fec_enet_get_coalesce,
3253 	.set_coalesce		= fec_enet_set_coalesce,
3254 #ifndef CONFIG_M5272
3255 	.get_pauseparam		= fec_enet_get_pauseparam,
3256 	.set_pauseparam		= fec_enet_set_pauseparam,
3257 	.get_strings		= fec_enet_get_strings,
3258 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3259 	.get_sset_count		= fec_enet_get_sset_count,
3260 #endif
3261 	.get_ts_info		= fec_enet_get_ts_info,
3262 	.get_wol		= fec_enet_get_wol,
3263 	.set_wol		= fec_enet_set_wol,
3264 	.get_eee		= fec_enet_get_eee,
3265 	.set_eee		= fec_enet_set_eee,
3266 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3267 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3268 	.self_test		= net_selftest,
3269 };
3270 
3271 static void fec_enet_free_buffers(struct net_device *ndev)
3272 {
3273 	struct fec_enet_private *fep = netdev_priv(ndev);
3274 	unsigned int i;
3275 	struct fec_enet_priv_tx_q *txq;
3276 	struct fec_enet_priv_rx_q *rxq;
3277 	unsigned int q;
3278 
3279 	for (q = 0; q < fep->num_rx_queues; q++) {
3280 		rxq = fep->rx_queue[q];
3281 		for (i = 0; i < rxq->bd.ring_size; i++)
3282 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3283 
3284 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3285 			rxq->stats[i] = 0;
3286 
3287 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3288 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3289 		page_pool_destroy(rxq->page_pool);
3290 		rxq->page_pool = NULL;
3291 	}
3292 
3293 	for (q = 0; q < fep->num_tx_queues; q++) {
3294 		txq = fep->tx_queue[q];
3295 		for (i = 0; i < txq->bd.ring_size; i++) {
3296 			kfree(txq->tx_bounce[i]);
3297 			txq->tx_bounce[i] = NULL;
3298 
3299 			if (!txq->tx_buf[i].buf_p) {
3300 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3301 				continue;
3302 			}
3303 
3304 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3305 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3306 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3307 				xdp_return_frame(txq->tx_buf[i].buf_p);
3308 			} else {
3309 				struct page *page = txq->tx_buf[i].buf_p;
3310 
3311 				page_pool_put_page(page->pp, page, 0, false);
3312 			}
3313 
3314 			txq->tx_buf[i].buf_p = NULL;
3315 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3316 		}
3317 	}
3318 }
3319 
3320 static void fec_enet_free_queue(struct net_device *ndev)
3321 {
3322 	struct fec_enet_private *fep = netdev_priv(ndev);
3323 	int i;
3324 	struct fec_enet_priv_tx_q *txq;
3325 
3326 	for (i = 0; i < fep->num_tx_queues; i++)
3327 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3328 			txq = fep->tx_queue[i];
3329 			dma_free_coherent(&fep->pdev->dev,
3330 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3331 					  txq->tso_hdrs,
3332 					  txq->tso_hdrs_dma);
3333 		}
3334 
3335 	for (i = 0; i < fep->num_rx_queues; i++)
3336 		kfree(fep->rx_queue[i]);
3337 	for (i = 0; i < fep->num_tx_queues; i++)
3338 		kfree(fep->tx_queue[i]);
3339 }
3340 
3341 static int fec_enet_alloc_queue(struct net_device *ndev)
3342 {
3343 	struct fec_enet_private *fep = netdev_priv(ndev);
3344 	int i;
3345 	int ret = 0;
3346 	struct fec_enet_priv_tx_q *txq;
3347 
3348 	for (i = 0; i < fep->num_tx_queues; i++) {
3349 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3350 		if (!txq) {
3351 			ret = -ENOMEM;
3352 			goto alloc_failed;
3353 		}
3354 
3355 		fep->tx_queue[i] = txq;
3356 		txq->bd.ring_size = TX_RING_SIZE;
3357 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3358 
3359 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3360 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3361 
3362 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3363 					txq->bd.ring_size * TSO_HEADER_SIZE,
3364 					&txq->tso_hdrs_dma,
3365 					GFP_KERNEL);
3366 		if (!txq->tso_hdrs) {
3367 			ret = -ENOMEM;
3368 			goto alloc_failed;
3369 		}
3370 	}
3371 
3372 	for (i = 0; i < fep->num_rx_queues; i++) {
3373 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3374 					   GFP_KERNEL);
3375 		if (!fep->rx_queue[i]) {
3376 			ret = -ENOMEM;
3377 			goto alloc_failed;
3378 		}
3379 
3380 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3381 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3382 	}
3383 	return ret;
3384 
3385 alloc_failed:
3386 	fec_enet_free_queue(ndev);
3387 	return ret;
3388 }
3389 
3390 static int
3391 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3392 {
3393 	struct fec_enet_private *fep = netdev_priv(ndev);
3394 	struct fec_enet_priv_rx_q *rxq;
3395 	dma_addr_t phys_addr;
3396 	struct bufdesc	*bdp;
3397 	struct page *page;
3398 	int i, err;
3399 
3400 	rxq = fep->rx_queue[queue];
3401 	bdp = rxq->bd.base;
3402 
3403 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3404 	if (err < 0) {
3405 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3406 		return err;
3407 	}
3408 
3409 	for (i = 0; i < rxq->bd.ring_size; i++) {
3410 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3411 		if (!page)
3412 			goto err_alloc;
3413 
3414 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3415 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3416 
3417 		rxq->rx_skb_info[i].page = page;
3418 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3419 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3420 
3421 		if (fep->bufdesc_ex) {
3422 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3423 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3424 		}
3425 
3426 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3427 	}
3428 
3429 	/* Set the last buffer to wrap. */
3430 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3431 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3432 	return 0;
3433 
3434  err_alloc:
3435 	fec_enet_free_buffers(ndev);
3436 	return -ENOMEM;
3437 }
3438 
3439 static int
3440 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3441 {
3442 	struct fec_enet_private *fep = netdev_priv(ndev);
3443 	unsigned int i;
3444 	struct bufdesc  *bdp;
3445 	struct fec_enet_priv_tx_q *txq;
3446 
3447 	txq = fep->tx_queue[queue];
3448 	bdp = txq->bd.base;
3449 	for (i = 0; i < txq->bd.ring_size; i++) {
3450 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3451 		if (!txq->tx_bounce[i])
3452 			goto err_alloc;
3453 
3454 		bdp->cbd_sc = cpu_to_fec16(0);
3455 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3456 
3457 		if (fep->bufdesc_ex) {
3458 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3459 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3460 		}
3461 
3462 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3463 	}
3464 
3465 	/* Set the last buffer to wrap. */
3466 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3467 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3468 
3469 	return 0;
3470 
3471  err_alloc:
3472 	fec_enet_free_buffers(ndev);
3473 	return -ENOMEM;
3474 }
3475 
3476 static int fec_enet_alloc_buffers(struct net_device *ndev)
3477 {
3478 	struct fec_enet_private *fep = netdev_priv(ndev);
3479 	unsigned int i;
3480 
3481 	for (i = 0; i < fep->num_rx_queues; i++)
3482 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3483 			return -ENOMEM;
3484 
3485 	for (i = 0; i < fep->num_tx_queues; i++)
3486 		if (fec_enet_alloc_txq_buffers(ndev, i))
3487 			return -ENOMEM;
3488 	return 0;
3489 }
3490 
3491 static int
3492 fec_enet_open(struct net_device *ndev)
3493 {
3494 	struct fec_enet_private *fep = netdev_priv(ndev);
3495 	int ret;
3496 	bool reset_again;
3497 
3498 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3499 	if (ret < 0)
3500 		return ret;
3501 
3502 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3503 	ret = fec_enet_clk_enable(ndev, true);
3504 	if (ret)
3505 		goto clk_enable;
3506 
3507 	/* During the first fec_enet_open call the PHY isn't probed at this
3508 	 * point. Therefore the phy_reset_after_clk_enable() call within
3509 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3510 	 * sure the PHY is working correctly we check if we need to reset again
3511 	 * later when the PHY is probed
3512 	 */
3513 	if (ndev->phydev && ndev->phydev->drv)
3514 		reset_again = false;
3515 	else
3516 		reset_again = true;
3517 
3518 	/* I should reset the ring buffers here, but I don't yet know
3519 	 * a simple way to do that.
3520 	 */
3521 
3522 	ret = fec_enet_alloc_buffers(ndev);
3523 	if (ret)
3524 		goto err_enet_alloc;
3525 
3526 	/* Init MAC prior to mii bus probe */
3527 	fec_restart(ndev);
3528 
3529 	/* Call phy_reset_after_clk_enable() again if it failed during
3530 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3531 	 */
3532 	if (reset_again)
3533 		fec_enet_phy_reset_after_clk_enable(ndev);
3534 
3535 	/* Probe and connect to PHY when open the interface */
3536 	ret = fec_enet_mii_probe(ndev);
3537 	if (ret)
3538 		goto err_enet_mii_probe;
3539 
3540 	if (fep->quirks & FEC_QUIRK_ERR006687)
3541 		imx6q_cpuidle_fec_irqs_used();
3542 
3543 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3544 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3545 
3546 	napi_enable(&fep->napi);
3547 	phy_start(ndev->phydev);
3548 	netif_tx_start_all_queues(ndev);
3549 
3550 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3551 				 FEC_WOL_FLAG_ENABLE);
3552 
3553 	return 0;
3554 
3555 err_enet_mii_probe:
3556 	fec_enet_free_buffers(ndev);
3557 err_enet_alloc:
3558 	fec_enet_clk_enable(ndev, false);
3559 clk_enable:
3560 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3561 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3562 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3563 	return ret;
3564 }
3565 
3566 static int
3567 fec_enet_close(struct net_device *ndev)
3568 {
3569 	struct fec_enet_private *fep = netdev_priv(ndev);
3570 
3571 	phy_stop(ndev->phydev);
3572 
3573 	if (netif_device_present(ndev)) {
3574 		napi_disable(&fep->napi);
3575 		netif_tx_disable(ndev);
3576 		fec_stop(ndev);
3577 	}
3578 
3579 	phy_disconnect(ndev->phydev);
3580 
3581 	if (fep->quirks & FEC_QUIRK_ERR006687)
3582 		imx6q_cpuidle_fec_irqs_unused();
3583 
3584 	fec_enet_update_ethtool_stats(ndev);
3585 
3586 	fec_enet_clk_enable(ndev, false);
3587 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3588 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3589 
3590 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3591 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3592 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3593 
3594 	fec_enet_free_buffers(ndev);
3595 
3596 	return 0;
3597 }
3598 
3599 /* Set or clear the multicast filter for this adaptor.
3600  * Skeleton taken from sunlance driver.
3601  * The CPM Ethernet implementation allows Multicast as well as individual
3602  * MAC address filtering.  Some of the drivers check to make sure it is
3603  * a group multicast address, and discard those that are not.  I guess I
3604  * will do the same for now, but just remove the test if you want
3605  * individual filtering as well (do the upper net layers want or support
3606  * this kind of feature?).
3607  */
3608 
3609 #define FEC_HASH_BITS	6		/* #bits in hash */
3610 
3611 static void set_multicast_list(struct net_device *ndev)
3612 {
3613 	struct fec_enet_private *fep = netdev_priv(ndev);
3614 	struct netdev_hw_addr *ha;
3615 	unsigned int crc, tmp;
3616 	unsigned char hash;
3617 	unsigned int hash_high = 0, hash_low = 0;
3618 
3619 	if (ndev->flags & IFF_PROMISC) {
3620 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3621 		tmp |= 0x8;
3622 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3623 		return;
3624 	}
3625 
3626 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3627 	tmp &= ~0x8;
3628 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3629 
3630 	if (ndev->flags & IFF_ALLMULTI) {
3631 		/* Catch all multicast addresses, so set the
3632 		 * filter to all 1's
3633 		 */
3634 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3635 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3636 
3637 		return;
3638 	}
3639 
3640 	/* Add the addresses in hash register */
3641 	netdev_for_each_mc_addr(ha, ndev) {
3642 		/* calculate crc32 value of mac address */
3643 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3644 
3645 		/* only upper 6 bits (FEC_HASH_BITS) are used
3646 		 * which point to specific bit in the hash registers
3647 		 */
3648 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3649 
3650 		if (hash > 31)
3651 			hash_high |= 1 << (hash - 32);
3652 		else
3653 			hash_low |= 1 << hash;
3654 	}
3655 
3656 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3657 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3658 }
3659 
3660 /* Set a MAC change in hardware. */
3661 static int
3662 fec_set_mac_address(struct net_device *ndev, void *p)
3663 {
3664 	struct fec_enet_private *fep = netdev_priv(ndev);
3665 	struct sockaddr *addr = p;
3666 
3667 	if (addr) {
3668 		if (!is_valid_ether_addr(addr->sa_data))
3669 			return -EADDRNOTAVAIL;
3670 		eth_hw_addr_set(ndev, addr->sa_data);
3671 	}
3672 
3673 	/* Add netif status check here to avoid system hang in below case:
3674 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3675 	 * After ethx down, fec all clocks are gated off and then register
3676 	 * access causes system hang.
3677 	 */
3678 	if (!netif_running(ndev))
3679 		return 0;
3680 
3681 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3682 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3683 		fep->hwp + FEC_ADDR_LOW);
3684 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3685 		fep->hwp + FEC_ADDR_HIGH);
3686 	return 0;
3687 }
3688 
3689 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3690 	netdev_features_t features)
3691 {
3692 	struct fec_enet_private *fep = netdev_priv(netdev);
3693 	netdev_features_t changed = features ^ netdev->features;
3694 
3695 	netdev->features = features;
3696 
3697 	/* Receive checksum has been changed */
3698 	if (changed & NETIF_F_RXCSUM) {
3699 		if (features & NETIF_F_RXCSUM)
3700 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3701 		else
3702 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3703 	}
3704 }
3705 
3706 static int fec_set_features(struct net_device *netdev,
3707 	netdev_features_t features)
3708 {
3709 	struct fec_enet_private *fep = netdev_priv(netdev);
3710 	netdev_features_t changed = features ^ netdev->features;
3711 
3712 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3713 		napi_disable(&fep->napi);
3714 		netif_tx_lock_bh(netdev);
3715 		fec_stop(netdev);
3716 		fec_enet_set_netdev_features(netdev, features);
3717 		fec_restart(netdev);
3718 		netif_tx_wake_all_queues(netdev);
3719 		netif_tx_unlock_bh(netdev);
3720 		napi_enable(&fep->napi);
3721 	} else {
3722 		fec_enet_set_netdev_features(netdev, features);
3723 	}
3724 
3725 	return 0;
3726 }
3727 
3728 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3729 				 struct net_device *sb_dev)
3730 {
3731 	struct fec_enet_private *fep = netdev_priv(ndev);
3732 	u16 vlan_tag = 0;
3733 
3734 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3735 		return netdev_pick_tx(ndev, skb, NULL);
3736 
3737 	/* VLAN is present in the payload.*/
3738 	if (eth_type_vlan(skb->protocol)) {
3739 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3740 
3741 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3742 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3743 	} else if (skb_vlan_tag_present(skb)) {
3744 		vlan_tag = skb->vlan_tci;
3745 	} else {
3746 		return vlan_tag;
3747 	}
3748 
3749 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3750 }
3751 
3752 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3753 {
3754 	struct fec_enet_private *fep = netdev_priv(dev);
3755 	bool is_run = netif_running(dev);
3756 	struct bpf_prog *old_prog;
3757 
3758 	switch (bpf->command) {
3759 	case XDP_SETUP_PROG:
3760 		/* No need to support the SoCs that require to
3761 		 * do the frame swap because the performance wouldn't be
3762 		 * better than the skb mode.
3763 		 */
3764 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3765 			return -EOPNOTSUPP;
3766 
3767 		if (!bpf->prog)
3768 			xdp_features_clear_redirect_target(dev);
3769 
3770 		if (is_run) {
3771 			napi_disable(&fep->napi);
3772 			netif_tx_disable(dev);
3773 		}
3774 
3775 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3776 		if (old_prog)
3777 			bpf_prog_put(old_prog);
3778 
3779 		fec_restart(dev);
3780 
3781 		if (is_run) {
3782 			napi_enable(&fep->napi);
3783 			netif_tx_start_all_queues(dev);
3784 		}
3785 
3786 		if (bpf->prog)
3787 			xdp_features_set_redirect_target(dev, false);
3788 
3789 		return 0;
3790 
3791 	case XDP_SETUP_XSK_POOL:
3792 		return -EOPNOTSUPP;
3793 
3794 	default:
3795 		return -EOPNOTSUPP;
3796 	}
3797 }
3798 
3799 static int
3800 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3801 {
3802 	if (unlikely(index < 0))
3803 		return 0;
3804 
3805 	return (index % fep->num_tx_queues);
3806 }
3807 
3808 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3809 				   struct fec_enet_priv_tx_q *txq,
3810 				   void *frame, u32 dma_sync_len,
3811 				   bool ndo_xmit)
3812 {
3813 	unsigned int index, status, estatus;
3814 	struct bufdesc *bdp;
3815 	dma_addr_t dma_addr;
3816 	int entries_free;
3817 	u16 frame_len;
3818 
3819 	entries_free = fec_enet_get_free_txdesc_num(txq);
3820 	if (entries_free < MAX_SKB_FRAGS + 1) {
3821 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3822 		return -EBUSY;
3823 	}
3824 
3825 	/* Fill in a Tx ring entry */
3826 	bdp = txq->bd.cur;
3827 	status = fec16_to_cpu(bdp->cbd_sc);
3828 	status &= ~BD_ENET_TX_STATS;
3829 
3830 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3831 
3832 	if (ndo_xmit) {
3833 		struct xdp_frame *xdpf = frame;
3834 
3835 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3836 					  xdpf->len, DMA_TO_DEVICE);
3837 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3838 			return -ENOMEM;
3839 
3840 		frame_len = xdpf->len;
3841 		txq->tx_buf[index].buf_p = xdpf;
3842 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3843 	} else {
3844 		struct xdp_buff *xdpb = frame;
3845 		struct page *page;
3846 
3847 		page = virt_to_page(xdpb->data);
3848 		dma_addr = page_pool_get_dma_addr(page) +
3849 			   (xdpb->data - xdpb->data_hard_start);
3850 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3851 					   dma_sync_len, DMA_BIDIRECTIONAL);
3852 		frame_len = xdpb->data_end - xdpb->data;
3853 		txq->tx_buf[index].buf_p = page;
3854 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3855 	}
3856 
3857 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3858 	if (fep->bufdesc_ex)
3859 		estatus = BD_ENET_TX_INT;
3860 
3861 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3862 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3863 
3864 	if (fep->bufdesc_ex) {
3865 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3866 
3867 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3868 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3869 
3870 		ebdp->cbd_bdu = 0;
3871 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3872 	}
3873 
3874 	/* Make sure the updates to rest of the descriptor are performed before
3875 	 * transferring ownership.
3876 	 */
3877 	dma_wmb();
3878 
3879 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3880 	 * it's the last BD of the frame, and to put the CRC on the end.
3881 	 */
3882 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3883 	bdp->cbd_sc = cpu_to_fec16(status);
3884 
3885 	/* If this was the last BD in the ring, start at the beginning again. */
3886 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3887 
3888 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3889 	dma_wmb();
3890 
3891 	txq->bd.cur = bdp;
3892 
3893 	/* Trigger transmission start */
3894 	writel(0, txq->bd.reg_desc_active);
3895 
3896 	return 0;
3897 }
3898 
3899 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3900 				int cpu, struct xdp_buff *xdp,
3901 				u32 dma_sync_len)
3902 {
3903 	struct fec_enet_priv_tx_q *txq;
3904 	struct netdev_queue *nq;
3905 	int queue, ret;
3906 
3907 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3908 	txq = fep->tx_queue[queue];
3909 	nq = netdev_get_tx_queue(fep->netdev, queue);
3910 
3911 	__netif_tx_lock(nq, cpu);
3912 
3913 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3914 	txq_trans_cond_update(nq);
3915 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3916 
3917 	__netif_tx_unlock(nq);
3918 
3919 	return ret;
3920 }
3921 
3922 static int fec_enet_xdp_xmit(struct net_device *dev,
3923 			     int num_frames,
3924 			     struct xdp_frame **frames,
3925 			     u32 flags)
3926 {
3927 	struct fec_enet_private *fep = netdev_priv(dev);
3928 	struct fec_enet_priv_tx_q *txq;
3929 	int cpu = smp_processor_id();
3930 	unsigned int sent_frames = 0;
3931 	struct netdev_queue *nq;
3932 	unsigned int queue;
3933 	int i;
3934 
3935 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3936 	txq = fep->tx_queue[queue];
3937 	nq = netdev_get_tx_queue(fep->netdev, queue);
3938 
3939 	__netif_tx_lock(nq, cpu);
3940 
3941 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3942 	txq_trans_cond_update(nq);
3943 	for (i = 0; i < num_frames; i++) {
3944 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3945 			break;
3946 		sent_frames++;
3947 	}
3948 
3949 	__netif_tx_unlock(nq);
3950 
3951 	return sent_frames;
3952 }
3953 
3954 static int fec_hwtstamp_get(struct net_device *ndev,
3955 			    struct kernel_hwtstamp_config *config)
3956 {
3957 	struct fec_enet_private *fep = netdev_priv(ndev);
3958 
3959 	if (!netif_running(ndev))
3960 		return -EINVAL;
3961 
3962 	if (!fep->bufdesc_ex)
3963 		return -EOPNOTSUPP;
3964 
3965 	fec_ptp_get(ndev, config);
3966 
3967 	return 0;
3968 }
3969 
3970 static int fec_hwtstamp_set(struct net_device *ndev,
3971 			    struct kernel_hwtstamp_config *config,
3972 			    struct netlink_ext_ack *extack)
3973 {
3974 	struct fec_enet_private *fep = netdev_priv(ndev);
3975 
3976 	if (!netif_running(ndev))
3977 		return -EINVAL;
3978 
3979 	if (!fep->bufdesc_ex)
3980 		return -EOPNOTSUPP;
3981 
3982 	return fec_ptp_set(ndev, config, extack);
3983 }
3984 
3985 static const struct net_device_ops fec_netdev_ops = {
3986 	.ndo_open		= fec_enet_open,
3987 	.ndo_stop		= fec_enet_close,
3988 	.ndo_start_xmit		= fec_enet_start_xmit,
3989 	.ndo_select_queue       = fec_enet_select_queue,
3990 	.ndo_set_rx_mode	= set_multicast_list,
3991 	.ndo_validate_addr	= eth_validate_addr,
3992 	.ndo_tx_timeout		= fec_timeout,
3993 	.ndo_set_mac_address	= fec_set_mac_address,
3994 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3995 	.ndo_set_features	= fec_set_features,
3996 	.ndo_bpf		= fec_enet_bpf,
3997 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3998 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
3999 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4000 };
4001 
4002 static const unsigned short offset_des_active_rxq[] = {
4003 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4004 };
4005 
4006 static const unsigned short offset_des_active_txq[] = {
4007 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4008 };
4009 
4010  /*
4011   * XXX:  We need to clean up on failure exits here.
4012   *
4013   */
4014 static int fec_enet_init(struct net_device *ndev)
4015 {
4016 	struct fec_enet_private *fep = netdev_priv(ndev);
4017 	struct bufdesc *cbd_base;
4018 	dma_addr_t bd_dma;
4019 	int bd_size;
4020 	unsigned int i;
4021 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4022 			sizeof(struct bufdesc);
4023 	unsigned dsize_log2 = __fls(dsize);
4024 	int ret;
4025 
4026 	WARN_ON(dsize != (1 << dsize_log2));
4027 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4028 	fep->rx_align = 0xf;
4029 	fep->tx_align = 0xf;
4030 #else
4031 	fep->rx_align = 0x3;
4032 	fep->tx_align = 0x3;
4033 #endif
4034 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4035 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4036 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4037 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4038 
4039 	/* Check mask of the streaming and coherent API */
4040 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4041 	if (ret < 0) {
4042 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4043 		return ret;
4044 	}
4045 
4046 	ret = fec_enet_alloc_queue(ndev);
4047 	if (ret)
4048 		return ret;
4049 
4050 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4051 
4052 	/* Allocate memory for buffer descriptors. */
4053 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4054 				       GFP_KERNEL);
4055 	if (!cbd_base) {
4056 		ret = -ENOMEM;
4057 		goto free_queue_mem;
4058 	}
4059 
4060 	/* Get the Ethernet address */
4061 	ret = fec_get_mac(ndev);
4062 	if (ret)
4063 		goto free_queue_mem;
4064 
4065 	/* Set receive and transmit descriptor base. */
4066 	for (i = 0; i < fep->num_rx_queues; i++) {
4067 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4068 		unsigned size = dsize * rxq->bd.ring_size;
4069 
4070 		rxq->bd.qid = i;
4071 		rxq->bd.base = cbd_base;
4072 		rxq->bd.cur = cbd_base;
4073 		rxq->bd.dma = bd_dma;
4074 		rxq->bd.dsize = dsize;
4075 		rxq->bd.dsize_log2 = dsize_log2;
4076 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4077 		bd_dma += size;
4078 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4079 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4080 	}
4081 
4082 	for (i = 0; i < fep->num_tx_queues; i++) {
4083 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4084 		unsigned size = dsize * txq->bd.ring_size;
4085 
4086 		txq->bd.qid = i;
4087 		txq->bd.base = cbd_base;
4088 		txq->bd.cur = cbd_base;
4089 		txq->bd.dma = bd_dma;
4090 		txq->bd.dsize = dsize;
4091 		txq->bd.dsize_log2 = dsize_log2;
4092 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4093 		bd_dma += size;
4094 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4095 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4096 	}
4097 
4098 
4099 	/* The FEC Ethernet specific entries in the device structure */
4100 	ndev->watchdog_timeo = TX_TIMEOUT;
4101 	ndev->netdev_ops = &fec_netdev_ops;
4102 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4103 
4104 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4105 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4106 
4107 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4108 		/* enable hw VLAN support */
4109 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4110 
4111 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4112 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4113 
4114 		/* enable hw accelerator */
4115 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4116 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4117 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4118 	}
4119 
4120 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4121 		fep->tx_align = 0;
4122 		fep->rx_align = 0x3f;
4123 	}
4124 
4125 	ndev->hw_features = ndev->features;
4126 
4127 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4128 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4129 				     NETDEV_XDP_ACT_REDIRECT;
4130 
4131 	fec_restart(ndev);
4132 
4133 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4134 		fec_enet_clear_ethtool_stats(ndev);
4135 	else
4136 		fec_enet_update_ethtool_stats(ndev);
4137 
4138 	return 0;
4139 
4140 free_queue_mem:
4141 	fec_enet_free_queue(ndev);
4142 	return ret;
4143 }
4144 
4145 static void fec_enet_deinit(struct net_device *ndev)
4146 {
4147 	struct fec_enet_private *fep = netdev_priv(ndev);
4148 
4149 	netif_napi_del(&fep->napi);
4150 	fec_enet_free_queue(ndev);
4151 }
4152 
4153 #ifdef CONFIG_OF
4154 static int fec_reset_phy(struct platform_device *pdev)
4155 {
4156 	struct gpio_desc *phy_reset;
4157 	int msec = 1, phy_post_delay = 0;
4158 	struct device_node *np = pdev->dev.of_node;
4159 	int err;
4160 
4161 	if (!np)
4162 		return 0;
4163 
4164 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4165 	/* A sane reset duration should not be longer than 1s */
4166 	if (!err && msec > 1000)
4167 		msec = 1;
4168 
4169 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4170 	/* valid reset duration should be less than 1s */
4171 	if (!err && phy_post_delay > 1000)
4172 		return -EINVAL;
4173 
4174 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4175 					    GPIOD_OUT_HIGH);
4176 	if (IS_ERR(phy_reset))
4177 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4178 				     "failed to get phy-reset-gpios\n");
4179 
4180 	if (!phy_reset)
4181 		return 0;
4182 
4183 	if (msec > 20)
4184 		msleep(msec);
4185 	else
4186 		usleep_range(msec * 1000, msec * 1000 + 1000);
4187 
4188 	gpiod_set_value_cansleep(phy_reset, 0);
4189 
4190 	if (!phy_post_delay)
4191 		return 0;
4192 
4193 	if (phy_post_delay > 20)
4194 		msleep(phy_post_delay);
4195 	else
4196 		usleep_range(phy_post_delay * 1000,
4197 			     phy_post_delay * 1000 + 1000);
4198 
4199 	return 0;
4200 }
4201 #else /* CONFIG_OF */
4202 static int fec_reset_phy(struct platform_device *pdev)
4203 {
4204 	/*
4205 	 * In case of platform probe, the reset has been done
4206 	 * by machine code.
4207 	 */
4208 	return 0;
4209 }
4210 #endif /* CONFIG_OF */
4211 
4212 static void
4213 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4214 {
4215 	struct device_node *np = pdev->dev.of_node;
4216 
4217 	*num_tx = *num_rx = 1;
4218 
4219 	if (!np || !of_device_is_available(np))
4220 		return;
4221 
4222 	/* parse the num of tx and rx queues */
4223 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4224 
4225 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4226 
4227 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4228 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4229 			 *num_tx);
4230 		*num_tx = 1;
4231 		return;
4232 	}
4233 
4234 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4235 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4236 			 *num_rx);
4237 		*num_rx = 1;
4238 		return;
4239 	}
4240 
4241 }
4242 
4243 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4244 {
4245 	int irq_cnt = platform_irq_count(pdev);
4246 
4247 	if (irq_cnt > FEC_IRQ_NUM)
4248 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4249 	else if (irq_cnt == 2)
4250 		irq_cnt = 1;	/* last for pps */
4251 	else if (irq_cnt <= 0)
4252 		irq_cnt = 1;	/* At least 1 irq is needed */
4253 	return irq_cnt;
4254 }
4255 
4256 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4257 {
4258 	struct net_device *ndev = platform_get_drvdata(pdev);
4259 	struct fec_enet_private *fep = netdev_priv(ndev);
4260 
4261 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4262 		fep->wake_irq = fep->irq[2];
4263 	else
4264 		fep->wake_irq = fep->irq[0];
4265 }
4266 
4267 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4268 				   struct device_node *np)
4269 {
4270 	struct device_node *gpr_np;
4271 	u32 out_val[3];
4272 	int ret = 0;
4273 
4274 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4275 	if (!gpr_np)
4276 		return 0;
4277 
4278 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4279 					 ARRAY_SIZE(out_val));
4280 	if (ret) {
4281 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4282 		goto out;
4283 	}
4284 
4285 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4286 	if (IS_ERR(fep->stop_gpr.gpr)) {
4287 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4288 		ret = PTR_ERR(fep->stop_gpr.gpr);
4289 		fep->stop_gpr.gpr = NULL;
4290 		goto out;
4291 	}
4292 
4293 	fep->stop_gpr.reg = out_val[1];
4294 	fep->stop_gpr.bit = out_val[2];
4295 
4296 out:
4297 	of_node_put(gpr_np);
4298 
4299 	return ret;
4300 }
4301 
4302 static int
4303 fec_probe(struct platform_device *pdev)
4304 {
4305 	struct fec_enet_private *fep;
4306 	struct fec_platform_data *pdata;
4307 	phy_interface_t interface;
4308 	struct net_device *ndev;
4309 	int i, irq, ret = 0;
4310 	const struct of_device_id *of_id;
4311 	static int dev_id;
4312 	struct device_node *np = pdev->dev.of_node, *phy_node;
4313 	int num_tx_qs;
4314 	int num_rx_qs;
4315 	char irq_name[8];
4316 	int irq_cnt;
4317 	struct fec_devinfo *dev_info;
4318 
4319 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4320 
4321 	/* Init network device */
4322 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4323 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4324 	if (!ndev)
4325 		return -ENOMEM;
4326 
4327 	SET_NETDEV_DEV(ndev, &pdev->dev);
4328 
4329 	/* setup board info structure */
4330 	fep = netdev_priv(ndev);
4331 
4332 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4333 	if (of_id)
4334 		pdev->id_entry = of_id->data;
4335 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4336 	if (dev_info)
4337 		fep->quirks = dev_info->quirks;
4338 
4339 	fep->netdev = ndev;
4340 	fep->num_rx_queues = num_rx_qs;
4341 	fep->num_tx_queues = num_tx_qs;
4342 
4343 #if !defined(CONFIG_M5272)
4344 	/* default enable pause frame auto negotiation */
4345 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4346 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4347 #endif
4348 
4349 	/* Select default pin state */
4350 	pinctrl_pm_select_default_state(&pdev->dev);
4351 
4352 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4353 	if (IS_ERR(fep->hwp)) {
4354 		ret = PTR_ERR(fep->hwp);
4355 		goto failed_ioremap;
4356 	}
4357 
4358 	fep->pdev = pdev;
4359 	fep->dev_id = dev_id++;
4360 
4361 	platform_set_drvdata(pdev, ndev);
4362 
4363 	if ((of_machine_is_compatible("fsl,imx6q") ||
4364 	     of_machine_is_compatible("fsl,imx6dl")) &&
4365 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4366 		fep->quirks |= FEC_QUIRK_ERR006687;
4367 
4368 	ret = fec_enet_ipc_handle_init(fep);
4369 	if (ret)
4370 		goto failed_ipc_init;
4371 
4372 	if (of_property_read_bool(np, "fsl,magic-packet"))
4373 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4374 
4375 	ret = fec_enet_init_stop_mode(fep, np);
4376 	if (ret)
4377 		goto failed_stop_mode;
4378 
4379 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4380 	if (!phy_node && of_phy_is_fixed_link(np)) {
4381 		ret = of_phy_register_fixed_link(np);
4382 		if (ret < 0) {
4383 			dev_err(&pdev->dev,
4384 				"broken fixed-link specification\n");
4385 			goto failed_phy;
4386 		}
4387 		phy_node = of_node_get(np);
4388 	}
4389 	fep->phy_node = phy_node;
4390 
4391 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4392 	if (ret) {
4393 		pdata = dev_get_platdata(&pdev->dev);
4394 		if (pdata)
4395 			fep->phy_interface = pdata->phy;
4396 		else
4397 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4398 	} else {
4399 		fep->phy_interface = interface;
4400 	}
4401 
4402 	ret = fec_enet_parse_rgmii_delay(fep, np);
4403 	if (ret)
4404 		goto failed_rgmii_delay;
4405 
4406 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4407 	if (IS_ERR(fep->clk_ipg)) {
4408 		ret = PTR_ERR(fep->clk_ipg);
4409 		goto failed_clk;
4410 	}
4411 
4412 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4413 	if (IS_ERR(fep->clk_ahb)) {
4414 		ret = PTR_ERR(fep->clk_ahb);
4415 		goto failed_clk;
4416 	}
4417 
4418 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4419 
4420 	/* enet_out is optional, depends on board */
4421 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4422 	if (IS_ERR(fep->clk_enet_out)) {
4423 		ret = PTR_ERR(fep->clk_enet_out);
4424 		goto failed_clk;
4425 	}
4426 
4427 	fep->ptp_clk_on = false;
4428 	mutex_init(&fep->ptp_clk_mutex);
4429 
4430 	/* clk_ref is optional, depends on board */
4431 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4432 	if (IS_ERR(fep->clk_ref)) {
4433 		ret = PTR_ERR(fep->clk_ref);
4434 		goto failed_clk;
4435 	}
4436 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4437 
4438 	/* clk_2x_txclk is optional, depends on board */
4439 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4440 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4441 		if (IS_ERR(fep->clk_2x_txclk))
4442 			fep->clk_2x_txclk = NULL;
4443 	}
4444 
4445 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4446 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4447 	if (IS_ERR(fep->clk_ptp)) {
4448 		fep->clk_ptp = NULL;
4449 		fep->bufdesc_ex = false;
4450 	}
4451 
4452 	ret = fec_enet_clk_enable(ndev, true);
4453 	if (ret)
4454 		goto failed_clk;
4455 
4456 	ret = clk_prepare_enable(fep->clk_ipg);
4457 	if (ret)
4458 		goto failed_clk_ipg;
4459 	ret = clk_prepare_enable(fep->clk_ahb);
4460 	if (ret)
4461 		goto failed_clk_ahb;
4462 
4463 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4464 	if (!IS_ERR(fep->reg_phy)) {
4465 		ret = regulator_enable(fep->reg_phy);
4466 		if (ret) {
4467 			dev_err(&pdev->dev,
4468 				"Failed to enable phy regulator: %d\n", ret);
4469 			goto failed_regulator;
4470 		}
4471 	} else {
4472 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4473 			ret = -EPROBE_DEFER;
4474 			goto failed_regulator;
4475 		}
4476 		fep->reg_phy = NULL;
4477 	}
4478 
4479 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4480 	pm_runtime_use_autosuspend(&pdev->dev);
4481 	pm_runtime_get_noresume(&pdev->dev);
4482 	pm_runtime_set_active(&pdev->dev);
4483 	pm_runtime_enable(&pdev->dev);
4484 
4485 	ret = fec_reset_phy(pdev);
4486 	if (ret)
4487 		goto failed_reset;
4488 
4489 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4490 	if (fep->bufdesc_ex)
4491 		fec_ptp_init(pdev, irq_cnt);
4492 
4493 	ret = fec_enet_init(ndev);
4494 	if (ret)
4495 		goto failed_init;
4496 
4497 	for (i = 0; i < irq_cnt; i++) {
4498 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4499 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4500 		if (irq < 0)
4501 			irq = platform_get_irq(pdev, i);
4502 		if (irq < 0) {
4503 			ret = irq;
4504 			goto failed_irq;
4505 		}
4506 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4507 				       0, pdev->name, ndev);
4508 		if (ret)
4509 			goto failed_irq;
4510 
4511 		fep->irq[i] = irq;
4512 	}
4513 
4514 	/* Decide which interrupt line is wakeup capable */
4515 	fec_enet_get_wakeup_irq(pdev);
4516 
4517 	ret = fec_enet_mii_init(pdev);
4518 	if (ret)
4519 		goto failed_mii_init;
4520 
4521 	/* Carrier starts down, phylib will bring it up */
4522 	netif_carrier_off(ndev);
4523 	fec_enet_clk_enable(ndev, false);
4524 	pinctrl_pm_select_sleep_state(&pdev->dev);
4525 
4526 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4527 
4528 	ret = register_netdev(ndev);
4529 	if (ret)
4530 		goto failed_register;
4531 
4532 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4533 			   FEC_WOL_HAS_MAGIC_PACKET);
4534 
4535 	if (fep->bufdesc_ex && fep->ptp_clock)
4536 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4537 
4538 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4539 
4540 	pm_runtime_mark_last_busy(&pdev->dev);
4541 	pm_runtime_put_autosuspend(&pdev->dev);
4542 
4543 	return 0;
4544 
4545 failed_register:
4546 	fec_enet_mii_remove(fep);
4547 failed_mii_init:
4548 failed_irq:
4549 	fec_enet_deinit(ndev);
4550 failed_init:
4551 	fec_ptp_stop(pdev);
4552 failed_reset:
4553 	pm_runtime_put_noidle(&pdev->dev);
4554 	pm_runtime_disable(&pdev->dev);
4555 	if (fep->reg_phy)
4556 		regulator_disable(fep->reg_phy);
4557 failed_regulator:
4558 	clk_disable_unprepare(fep->clk_ahb);
4559 failed_clk_ahb:
4560 	clk_disable_unprepare(fep->clk_ipg);
4561 failed_clk_ipg:
4562 	fec_enet_clk_enable(ndev, false);
4563 failed_clk:
4564 failed_rgmii_delay:
4565 	if (of_phy_is_fixed_link(np))
4566 		of_phy_deregister_fixed_link(np);
4567 	of_node_put(phy_node);
4568 failed_stop_mode:
4569 failed_ipc_init:
4570 failed_phy:
4571 	dev_id--;
4572 failed_ioremap:
4573 	free_netdev(ndev);
4574 
4575 	return ret;
4576 }
4577 
4578 static void
4579 fec_drv_remove(struct platform_device *pdev)
4580 {
4581 	struct net_device *ndev = platform_get_drvdata(pdev);
4582 	struct fec_enet_private *fep = netdev_priv(ndev);
4583 	struct device_node *np = pdev->dev.of_node;
4584 	int ret;
4585 
4586 	ret = pm_runtime_get_sync(&pdev->dev);
4587 	if (ret < 0)
4588 		dev_err(&pdev->dev,
4589 			"Failed to resume device in remove callback (%pe)\n",
4590 			ERR_PTR(ret));
4591 
4592 	cancel_work_sync(&fep->tx_timeout_work);
4593 	fec_ptp_stop(pdev);
4594 	unregister_netdev(ndev);
4595 	fec_enet_mii_remove(fep);
4596 	if (fep->reg_phy)
4597 		regulator_disable(fep->reg_phy);
4598 
4599 	if (of_phy_is_fixed_link(np))
4600 		of_phy_deregister_fixed_link(np);
4601 	of_node_put(fep->phy_node);
4602 
4603 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4604 	 * disabling them again.
4605 	 */
4606 	if (ret >= 0) {
4607 		clk_disable_unprepare(fep->clk_ahb);
4608 		clk_disable_unprepare(fep->clk_ipg);
4609 	}
4610 	pm_runtime_put_noidle(&pdev->dev);
4611 	pm_runtime_disable(&pdev->dev);
4612 
4613 	fec_enet_deinit(ndev);
4614 	free_netdev(ndev);
4615 }
4616 
4617 static int __maybe_unused fec_suspend(struct device *dev)
4618 {
4619 	struct net_device *ndev = dev_get_drvdata(dev);
4620 	struct fec_enet_private *fep = netdev_priv(ndev);
4621 	int ret;
4622 
4623 	rtnl_lock();
4624 	if (netif_running(ndev)) {
4625 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4626 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4627 		phy_stop(ndev->phydev);
4628 		napi_disable(&fep->napi);
4629 		netif_tx_lock_bh(ndev);
4630 		netif_device_detach(ndev);
4631 		netif_tx_unlock_bh(ndev);
4632 		fec_stop(ndev);
4633 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4634 			fec_irqs_disable(ndev);
4635 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4636 		} else {
4637 			fec_irqs_disable_except_wakeup(ndev);
4638 			if (fep->wake_irq > 0) {
4639 				disable_irq(fep->wake_irq);
4640 				enable_irq_wake(fep->wake_irq);
4641 			}
4642 			fec_enet_stop_mode(fep, true);
4643 		}
4644 		/* It's safe to disable clocks since interrupts are masked */
4645 		fec_enet_clk_enable(ndev, false);
4646 
4647 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4648 		if (fep->rpm_active) {
4649 			ret = pm_runtime_force_suspend(dev);
4650 			if (ret < 0) {
4651 				rtnl_unlock();
4652 				return ret;
4653 			}
4654 		}
4655 	}
4656 	rtnl_unlock();
4657 
4658 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4659 		regulator_disable(fep->reg_phy);
4660 
4661 	/* SOC supply clock to phy, when clock is disabled, phy link down
4662 	 * SOC control phy regulator, when regulator is disabled, phy link down
4663 	 */
4664 	if (fep->clk_enet_out || fep->reg_phy)
4665 		fep->link = 0;
4666 
4667 	return 0;
4668 }
4669 
4670 static int __maybe_unused fec_resume(struct device *dev)
4671 {
4672 	struct net_device *ndev = dev_get_drvdata(dev);
4673 	struct fec_enet_private *fep = netdev_priv(ndev);
4674 	int ret;
4675 	int val;
4676 
4677 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4678 		ret = regulator_enable(fep->reg_phy);
4679 		if (ret)
4680 			return ret;
4681 	}
4682 
4683 	rtnl_lock();
4684 	if (netif_running(ndev)) {
4685 		if (fep->rpm_active)
4686 			pm_runtime_force_resume(dev);
4687 
4688 		ret = fec_enet_clk_enable(ndev, true);
4689 		if (ret) {
4690 			rtnl_unlock();
4691 			goto failed_clk;
4692 		}
4693 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4694 			fec_enet_stop_mode(fep, false);
4695 			if (fep->wake_irq) {
4696 				disable_irq_wake(fep->wake_irq);
4697 				enable_irq(fep->wake_irq);
4698 			}
4699 
4700 			val = readl(fep->hwp + FEC_ECNTRL);
4701 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4702 			writel(val, fep->hwp + FEC_ECNTRL);
4703 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4704 		} else {
4705 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4706 		}
4707 		fec_restart(ndev);
4708 		netif_tx_lock_bh(ndev);
4709 		netif_device_attach(ndev);
4710 		netif_tx_unlock_bh(ndev);
4711 		napi_enable(&fep->napi);
4712 		phy_init_hw(ndev->phydev);
4713 		phy_start(ndev->phydev);
4714 	}
4715 	rtnl_unlock();
4716 
4717 	return 0;
4718 
4719 failed_clk:
4720 	if (fep->reg_phy)
4721 		regulator_disable(fep->reg_phy);
4722 	return ret;
4723 }
4724 
4725 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4726 {
4727 	struct net_device *ndev = dev_get_drvdata(dev);
4728 	struct fec_enet_private *fep = netdev_priv(ndev);
4729 
4730 	clk_disable_unprepare(fep->clk_ahb);
4731 	clk_disable_unprepare(fep->clk_ipg);
4732 
4733 	return 0;
4734 }
4735 
4736 static int __maybe_unused fec_runtime_resume(struct device *dev)
4737 {
4738 	struct net_device *ndev = dev_get_drvdata(dev);
4739 	struct fec_enet_private *fep = netdev_priv(ndev);
4740 	int ret;
4741 
4742 	ret = clk_prepare_enable(fep->clk_ahb);
4743 	if (ret)
4744 		return ret;
4745 	ret = clk_prepare_enable(fep->clk_ipg);
4746 	if (ret)
4747 		goto failed_clk_ipg;
4748 
4749 	return 0;
4750 
4751 failed_clk_ipg:
4752 	clk_disable_unprepare(fep->clk_ahb);
4753 	return ret;
4754 }
4755 
4756 static const struct dev_pm_ops fec_pm_ops = {
4757 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4758 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4759 };
4760 
4761 static struct platform_driver fec_driver = {
4762 	.driver	= {
4763 		.name	= DRIVER_NAME,
4764 		.pm	= &fec_pm_ops,
4765 		.of_match_table = fec_dt_ids,
4766 		.suppress_bind_attrs = true,
4767 	},
4768 	.id_table = fec_devtype,
4769 	.probe	= fec_probe,
4770 	.remove_new = fec_drv_remove,
4771 };
4772 
4773 module_platform_driver(fec_driver);
4774 
4775 MODULE_LICENSE("GPL");
4776