1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <soc/imx/cpuidle.h> 66 67 #include <asm/cacheflush.h> 68 69 #include "fec.h" 70 71 static void set_multicast_list(struct net_device *ndev); 72 static void fec_enet_itr_coal_init(struct net_device *ndev); 73 74 #define DRIVER_NAME "fec" 75 76 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 static struct platform_device_id fec_devtype[] = { 88 { 89 /* keep it for coldfire */ 90 .name = DRIVER_NAME, 91 .driver_data = 0, 92 }, { 93 .name = "imx25-fec", 94 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 95 FEC_QUIRK_HAS_FRREG, 96 }, { 97 .name = "imx27-fec", 98 .driver_data = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 99 }, { 100 .name = "imx28-fec", 101 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG, 104 }, { 105 .name = "imx6q-fec", 106 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 107 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 108 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 109 FEC_QUIRK_HAS_RACC, 110 }, { 111 .name = "mvf600-fec", 112 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 113 }, { 114 .name = "imx6sx-fec", 115 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 116 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 117 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 118 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 119 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 120 }, { 121 .name = "imx6ul-fec", 122 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 125 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 126 FEC_QUIRK_HAS_COALESCE, 127 }, { 128 /* sentinel */ 129 } 130 }; 131 MODULE_DEVICE_TABLE(platform, fec_devtype); 132 133 enum imx_fec_type { 134 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 135 IMX27_FEC, /* runs on i.mx27/35/51 */ 136 IMX28_FEC, 137 IMX6Q_FEC, 138 MVF600_FEC, 139 IMX6SX_FEC, 140 IMX6UL_FEC, 141 }; 142 143 static const struct of_device_id fec_dt_ids[] = { 144 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 145 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 146 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 147 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 148 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 149 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 150 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 151 { /* sentinel */ } 152 }; 153 MODULE_DEVICE_TABLE(of, fec_dt_ids); 154 155 static unsigned char macaddr[ETH_ALEN]; 156 module_param_array(macaddr, byte, NULL, 0); 157 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 158 159 #if defined(CONFIG_M5272) 160 /* 161 * Some hardware gets it MAC address out of local flash memory. 162 * if this is non-zero then assume it is the address to get MAC from. 163 */ 164 #if defined(CONFIG_NETtel) 165 #define FEC_FLASHMAC 0xf0006006 166 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 167 #define FEC_FLASHMAC 0xf0006000 168 #elif defined(CONFIG_CANCam) 169 #define FEC_FLASHMAC 0xf0020000 170 #elif defined (CONFIG_M5272C3) 171 #define FEC_FLASHMAC (0xffe04000 + 4) 172 #elif defined(CONFIG_MOD5272) 173 #define FEC_FLASHMAC 0xffc0406b 174 #else 175 #define FEC_FLASHMAC 0 176 #endif 177 #endif /* CONFIG_M5272 */ 178 179 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 180 * 181 * 2048 byte skbufs are allocated. However, alignment requirements 182 * varies between FEC variants. Worst case is 64, so round down by 64. 183 */ 184 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 185 #define PKT_MINBUF_SIZE 64 186 187 /* FEC receive acceleration */ 188 #define FEC_RACC_IPDIS (1 << 1) 189 #define FEC_RACC_PRODIS (1 << 2) 190 #define FEC_RACC_SHIFT16 BIT(7) 191 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 192 193 /* MIB Control Register */ 194 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 195 196 /* 197 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 198 * size bits. Other FEC hardware does not, so we need to take that into 199 * account when setting it. 200 */ 201 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 202 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 203 defined(CONFIG_ARM64) 204 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 205 #else 206 #define OPT_FRAME_SIZE 0 207 #endif 208 209 /* FEC MII MMFR bits definition */ 210 #define FEC_MMFR_ST (1 << 30) 211 #define FEC_MMFR_OP_READ (2 << 28) 212 #define FEC_MMFR_OP_WRITE (1 << 28) 213 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 214 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 215 #define FEC_MMFR_TA (2 << 16) 216 #define FEC_MMFR_DATA(v) (v & 0xffff) 217 /* FEC ECR bits definition */ 218 #define FEC_ECR_MAGICEN (1 << 2) 219 #define FEC_ECR_SLEEP (1 << 3) 220 221 #define FEC_MII_TIMEOUT 30000 /* us */ 222 223 /* Transmitter timeout */ 224 #define TX_TIMEOUT (2 * HZ) 225 226 #define FEC_PAUSE_FLAG_AUTONEG 0x1 227 #define FEC_PAUSE_FLAG_ENABLE 0x2 228 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 229 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 230 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 231 232 #define COPYBREAK_DEFAULT 256 233 234 /* Max number of allowed TCP segments for software TSO */ 235 #define FEC_MAX_TSO_SEGS 100 236 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 237 238 #define IS_TSO_HEADER(txq, addr) \ 239 ((addr >= txq->tso_hdrs_dma) && \ 240 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 241 242 static int mii_cnt; 243 244 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 245 struct bufdesc_prop *bd) 246 { 247 return (bdp >= bd->last) ? bd->base 248 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 249 } 250 251 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 252 struct bufdesc_prop *bd) 253 { 254 return (bdp <= bd->base) ? bd->last 255 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 256 } 257 258 static int fec_enet_get_bd_index(struct bufdesc *bdp, 259 struct bufdesc_prop *bd) 260 { 261 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 262 } 263 264 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 265 { 266 int entries; 267 268 entries = (((const char *)txq->dirty_tx - 269 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 270 271 return entries >= 0 ? entries : entries + txq->bd.ring_size; 272 } 273 274 static void swap_buffer(void *bufaddr, int len) 275 { 276 int i; 277 unsigned int *buf = bufaddr; 278 279 for (i = 0; i < len; i += 4, buf++) 280 swab32s(buf); 281 } 282 283 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 284 { 285 int i; 286 unsigned int *src = src_buf; 287 unsigned int *dst = dst_buf; 288 289 for (i = 0; i < len; i += 4, src++, dst++) 290 *dst = swab32p(src); 291 } 292 293 static void fec_dump(struct net_device *ndev) 294 { 295 struct fec_enet_private *fep = netdev_priv(ndev); 296 struct bufdesc *bdp; 297 struct fec_enet_priv_tx_q *txq; 298 int index = 0; 299 300 netdev_info(ndev, "TX ring dump\n"); 301 pr_info("Nr SC addr len SKB\n"); 302 303 txq = fep->tx_queue[0]; 304 bdp = txq->bd.base; 305 306 do { 307 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 308 index, 309 bdp == txq->bd.cur ? 'S' : ' ', 310 bdp == txq->dirty_tx ? 'H' : ' ', 311 fec16_to_cpu(bdp->cbd_sc), 312 fec32_to_cpu(bdp->cbd_bufaddr), 313 fec16_to_cpu(bdp->cbd_datlen), 314 txq->tx_skbuff[index]); 315 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 316 index++; 317 } while (bdp != txq->bd.base); 318 } 319 320 static inline bool is_ipv4_pkt(struct sk_buff *skb) 321 { 322 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 323 } 324 325 static int 326 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 327 { 328 /* Only run for packets requiring a checksum. */ 329 if (skb->ip_summed != CHECKSUM_PARTIAL) 330 return 0; 331 332 if (unlikely(skb_cow_head(skb, 0))) 333 return -1; 334 335 if (is_ipv4_pkt(skb)) 336 ip_hdr(skb)->check = 0; 337 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 338 339 return 0; 340 } 341 342 static struct bufdesc * 343 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 344 struct sk_buff *skb, 345 struct net_device *ndev) 346 { 347 struct fec_enet_private *fep = netdev_priv(ndev); 348 struct bufdesc *bdp = txq->bd.cur; 349 struct bufdesc_ex *ebdp; 350 int nr_frags = skb_shinfo(skb)->nr_frags; 351 int frag, frag_len; 352 unsigned short status; 353 unsigned int estatus = 0; 354 skb_frag_t *this_frag; 355 unsigned int index; 356 void *bufaddr; 357 dma_addr_t addr; 358 int i; 359 360 for (frag = 0; frag < nr_frags; frag++) { 361 this_frag = &skb_shinfo(skb)->frags[frag]; 362 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 363 ebdp = (struct bufdesc_ex *)bdp; 364 365 status = fec16_to_cpu(bdp->cbd_sc); 366 status &= ~BD_ENET_TX_STATS; 367 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 368 frag_len = skb_shinfo(skb)->frags[frag].size; 369 370 /* Handle the last BD specially */ 371 if (frag == nr_frags - 1) { 372 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 373 if (fep->bufdesc_ex) { 374 estatus |= BD_ENET_TX_INT; 375 if (unlikely(skb_shinfo(skb)->tx_flags & 376 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 377 estatus |= BD_ENET_TX_TS; 378 } 379 } 380 381 if (fep->bufdesc_ex) { 382 if (fep->quirks & FEC_QUIRK_HAS_AVB) 383 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 384 if (skb->ip_summed == CHECKSUM_PARTIAL) 385 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 386 ebdp->cbd_bdu = 0; 387 ebdp->cbd_esc = cpu_to_fec32(estatus); 388 } 389 390 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset; 391 392 index = fec_enet_get_bd_index(bdp, &txq->bd); 393 if (((unsigned long) bufaddr) & fep->tx_align || 394 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 395 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 396 bufaddr = txq->tx_bounce[index]; 397 398 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 399 swap_buffer(bufaddr, frag_len); 400 } 401 402 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 403 DMA_TO_DEVICE); 404 if (dma_mapping_error(&fep->pdev->dev, addr)) { 405 if (net_ratelimit()) 406 netdev_err(ndev, "Tx DMA memory map failed\n"); 407 goto dma_mapping_error; 408 } 409 410 bdp->cbd_bufaddr = cpu_to_fec32(addr); 411 bdp->cbd_datlen = cpu_to_fec16(frag_len); 412 /* Make sure the updates to rest of the descriptor are 413 * performed before transferring ownership. 414 */ 415 wmb(); 416 bdp->cbd_sc = cpu_to_fec16(status); 417 } 418 419 return bdp; 420 dma_mapping_error: 421 bdp = txq->bd.cur; 422 for (i = 0; i < frag; i++) { 423 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 424 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 425 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 426 } 427 return ERR_PTR(-ENOMEM); 428 } 429 430 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 431 struct sk_buff *skb, struct net_device *ndev) 432 { 433 struct fec_enet_private *fep = netdev_priv(ndev); 434 int nr_frags = skb_shinfo(skb)->nr_frags; 435 struct bufdesc *bdp, *last_bdp; 436 void *bufaddr; 437 dma_addr_t addr; 438 unsigned short status; 439 unsigned short buflen; 440 unsigned int estatus = 0; 441 unsigned int index; 442 int entries_free; 443 444 entries_free = fec_enet_get_free_txdesc_num(txq); 445 if (entries_free < MAX_SKB_FRAGS + 1) { 446 dev_kfree_skb_any(skb); 447 if (net_ratelimit()) 448 netdev_err(ndev, "NOT enough BD for SG!\n"); 449 return NETDEV_TX_OK; 450 } 451 452 /* Protocol checksum off-load for TCP and UDP. */ 453 if (fec_enet_clear_csum(skb, ndev)) { 454 dev_kfree_skb_any(skb); 455 return NETDEV_TX_OK; 456 } 457 458 /* Fill in a Tx ring entry */ 459 bdp = txq->bd.cur; 460 last_bdp = bdp; 461 status = fec16_to_cpu(bdp->cbd_sc); 462 status &= ~BD_ENET_TX_STATS; 463 464 /* Set buffer length and buffer pointer */ 465 bufaddr = skb->data; 466 buflen = skb_headlen(skb); 467 468 index = fec_enet_get_bd_index(bdp, &txq->bd); 469 if (((unsigned long) bufaddr) & fep->tx_align || 470 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 471 memcpy(txq->tx_bounce[index], skb->data, buflen); 472 bufaddr = txq->tx_bounce[index]; 473 474 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 475 swap_buffer(bufaddr, buflen); 476 } 477 478 /* Push the data cache so the CPM does not get stale memory data. */ 479 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 480 if (dma_mapping_error(&fep->pdev->dev, addr)) { 481 dev_kfree_skb_any(skb); 482 if (net_ratelimit()) 483 netdev_err(ndev, "Tx DMA memory map failed\n"); 484 return NETDEV_TX_OK; 485 } 486 487 if (nr_frags) { 488 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 489 if (IS_ERR(last_bdp)) { 490 dma_unmap_single(&fep->pdev->dev, addr, 491 buflen, DMA_TO_DEVICE); 492 dev_kfree_skb_any(skb); 493 return NETDEV_TX_OK; 494 } 495 } else { 496 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 497 if (fep->bufdesc_ex) { 498 estatus = BD_ENET_TX_INT; 499 if (unlikely(skb_shinfo(skb)->tx_flags & 500 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 501 estatus |= BD_ENET_TX_TS; 502 } 503 } 504 bdp->cbd_bufaddr = cpu_to_fec32(addr); 505 bdp->cbd_datlen = cpu_to_fec16(buflen); 506 507 if (fep->bufdesc_ex) { 508 509 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 510 511 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 512 fep->hwts_tx_en)) 513 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 514 515 if (fep->quirks & FEC_QUIRK_HAS_AVB) 516 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 517 518 if (skb->ip_summed == CHECKSUM_PARTIAL) 519 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 520 521 ebdp->cbd_bdu = 0; 522 ebdp->cbd_esc = cpu_to_fec32(estatus); 523 } 524 525 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 526 /* Save skb pointer */ 527 txq->tx_skbuff[index] = skb; 528 529 /* Make sure the updates to rest of the descriptor are performed before 530 * transferring ownership. 531 */ 532 wmb(); 533 534 /* Send it on its way. Tell FEC it's ready, interrupt when done, 535 * it's the last BD of the frame, and to put the CRC on the end. 536 */ 537 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 538 bdp->cbd_sc = cpu_to_fec16(status); 539 540 /* If this was the last BD in the ring, start at the beginning again. */ 541 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 542 543 skb_tx_timestamp(skb); 544 545 /* Make sure the update to bdp and tx_skbuff are performed before 546 * txq->bd.cur. 547 */ 548 wmb(); 549 txq->bd.cur = bdp; 550 551 /* Trigger transmission start */ 552 writel(0, txq->bd.reg_desc_active); 553 554 return 0; 555 } 556 557 static int 558 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 559 struct net_device *ndev, 560 struct bufdesc *bdp, int index, char *data, 561 int size, bool last_tcp, bool is_last) 562 { 563 struct fec_enet_private *fep = netdev_priv(ndev); 564 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 565 unsigned short status; 566 unsigned int estatus = 0; 567 dma_addr_t addr; 568 569 status = fec16_to_cpu(bdp->cbd_sc); 570 status &= ~BD_ENET_TX_STATS; 571 572 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 573 574 if (((unsigned long) data) & fep->tx_align || 575 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 576 memcpy(txq->tx_bounce[index], data, size); 577 data = txq->tx_bounce[index]; 578 579 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 580 swap_buffer(data, size); 581 } 582 583 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 584 if (dma_mapping_error(&fep->pdev->dev, addr)) { 585 dev_kfree_skb_any(skb); 586 if (net_ratelimit()) 587 netdev_err(ndev, "Tx DMA memory map failed\n"); 588 return NETDEV_TX_BUSY; 589 } 590 591 bdp->cbd_datlen = cpu_to_fec16(size); 592 bdp->cbd_bufaddr = cpu_to_fec32(addr); 593 594 if (fep->bufdesc_ex) { 595 if (fep->quirks & FEC_QUIRK_HAS_AVB) 596 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 597 if (skb->ip_summed == CHECKSUM_PARTIAL) 598 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 599 ebdp->cbd_bdu = 0; 600 ebdp->cbd_esc = cpu_to_fec32(estatus); 601 } 602 603 /* Handle the last BD specially */ 604 if (last_tcp) 605 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 606 if (is_last) { 607 status |= BD_ENET_TX_INTR; 608 if (fep->bufdesc_ex) 609 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 610 } 611 612 bdp->cbd_sc = cpu_to_fec16(status); 613 614 return 0; 615 } 616 617 static int 618 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 619 struct sk_buff *skb, struct net_device *ndev, 620 struct bufdesc *bdp, int index) 621 { 622 struct fec_enet_private *fep = netdev_priv(ndev); 623 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 624 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 625 void *bufaddr; 626 unsigned long dmabuf; 627 unsigned short status; 628 unsigned int estatus = 0; 629 630 status = fec16_to_cpu(bdp->cbd_sc); 631 status &= ~BD_ENET_TX_STATS; 632 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 633 634 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 635 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 636 if (((unsigned long)bufaddr) & fep->tx_align || 637 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 638 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 639 bufaddr = txq->tx_bounce[index]; 640 641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 642 swap_buffer(bufaddr, hdr_len); 643 644 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 645 hdr_len, DMA_TO_DEVICE); 646 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 647 dev_kfree_skb_any(skb); 648 if (net_ratelimit()) 649 netdev_err(ndev, "Tx DMA memory map failed\n"); 650 return NETDEV_TX_BUSY; 651 } 652 } 653 654 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 655 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 656 657 if (fep->bufdesc_ex) { 658 if (fep->quirks & FEC_QUIRK_HAS_AVB) 659 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 660 if (skb->ip_summed == CHECKSUM_PARTIAL) 661 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 662 ebdp->cbd_bdu = 0; 663 ebdp->cbd_esc = cpu_to_fec32(estatus); 664 } 665 666 bdp->cbd_sc = cpu_to_fec16(status); 667 668 return 0; 669 } 670 671 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 672 struct sk_buff *skb, 673 struct net_device *ndev) 674 { 675 struct fec_enet_private *fep = netdev_priv(ndev); 676 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 677 int total_len, data_left; 678 struct bufdesc *bdp = txq->bd.cur; 679 struct tso_t tso; 680 unsigned int index = 0; 681 int ret; 682 683 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 684 dev_kfree_skb_any(skb); 685 if (net_ratelimit()) 686 netdev_err(ndev, "NOT enough BD for TSO!\n"); 687 return NETDEV_TX_OK; 688 } 689 690 /* Protocol checksum off-load for TCP and UDP. */ 691 if (fec_enet_clear_csum(skb, ndev)) { 692 dev_kfree_skb_any(skb); 693 return NETDEV_TX_OK; 694 } 695 696 /* Initialize the TSO handler, and prepare the first payload */ 697 tso_start(skb, &tso); 698 699 total_len = skb->len - hdr_len; 700 while (total_len > 0) { 701 char *hdr; 702 703 index = fec_enet_get_bd_index(bdp, &txq->bd); 704 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 705 total_len -= data_left; 706 707 /* prepare packet headers: MAC + IP + TCP */ 708 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 709 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 710 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 711 if (ret) 712 goto err_release; 713 714 while (data_left > 0) { 715 int size; 716 717 size = min_t(int, tso.size, data_left); 718 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 719 index = fec_enet_get_bd_index(bdp, &txq->bd); 720 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 721 bdp, index, 722 tso.data, size, 723 size == data_left, 724 total_len == 0); 725 if (ret) 726 goto err_release; 727 728 data_left -= size; 729 tso_build_data(skb, &tso, size); 730 } 731 732 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 733 } 734 735 /* Save skb pointer */ 736 txq->tx_skbuff[index] = skb; 737 738 skb_tx_timestamp(skb); 739 txq->bd.cur = bdp; 740 741 /* Trigger transmission start */ 742 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 743 !readl(txq->bd.reg_desc_active) || 744 !readl(txq->bd.reg_desc_active) || 745 !readl(txq->bd.reg_desc_active) || 746 !readl(txq->bd.reg_desc_active)) 747 writel(0, txq->bd.reg_desc_active); 748 749 return 0; 750 751 err_release: 752 /* TODO: Release all used data descriptors for TSO */ 753 return ret; 754 } 755 756 static netdev_tx_t 757 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 758 { 759 struct fec_enet_private *fep = netdev_priv(ndev); 760 int entries_free; 761 unsigned short queue; 762 struct fec_enet_priv_tx_q *txq; 763 struct netdev_queue *nq; 764 int ret; 765 766 queue = skb_get_queue_mapping(skb); 767 txq = fep->tx_queue[queue]; 768 nq = netdev_get_tx_queue(ndev, queue); 769 770 if (skb_is_gso(skb)) 771 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 772 else 773 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 774 if (ret) 775 return ret; 776 777 entries_free = fec_enet_get_free_txdesc_num(txq); 778 if (entries_free <= txq->tx_stop_threshold) 779 netif_tx_stop_queue(nq); 780 781 return NETDEV_TX_OK; 782 } 783 784 /* Init RX & TX buffer descriptors 785 */ 786 static void fec_enet_bd_init(struct net_device *dev) 787 { 788 struct fec_enet_private *fep = netdev_priv(dev); 789 struct fec_enet_priv_tx_q *txq; 790 struct fec_enet_priv_rx_q *rxq; 791 struct bufdesc *bdp; 792 unsigned int i; 793 unsigned int q; 794 795 for (q = 0; q < fep->num_rx_queues; q++) { 796 /* Initialize the receive buffer descriptors. */ 797 rxq = fep->rx_queue[q]; 798 bdp = rxq->bd.base; 799 800 for (i = 0; i < rxq->bd.ring_size; i++) { 801 802 /* Initialize the BD for every fragment in the page. */ 803 if (bdp->cbd_bufaddr) 804 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 805 else 806 bdp->cbd_sc = cpu_to_fec16(0); 807 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 808 } 809 810 /* Set the last buffer to wrap */ 811 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 812 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 813 814 rxq->bd.cur = rxq->bd.base; 815 } 816 817 for (q = 0; q < fep->num_tx_queues; q++) { 818 /* ...and the same for transmit */ 819 txq = fep->tx_queue[q]; 820 bdp = txq->bd.base; 821 txq->bd.cur = bdp; 822 823 for (i = 0; i < txq->bd.ring_size; i++) { 824 /* Initialize the BD for every fragment in the page. */ 825 bdp->cbd_sc = cpu_to_fec16(0); 826 if (bdp->cbd_bufaddr && 827 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 828 dma_unmap_single(&fep->pdev->dev, 829 fec32_to_cpu(bdp->cbd_bufaddr), 830 fec16_to_cpu(bdp->cbd_datlen), 831 DMA_TO_DEVICE); 832 if (txq->tx_skbuff[i]) { 833 dev_kfree_skb_any(txq->tx_skbuff[i]); 834 txq->tx_skbuff[i] = NULL; 835 } 836 bdp->cbd_bufaddr = cpu_to_fec32(0); 837 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 838 } 839 840 /* Set the last buffer to wrap */ 841 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 842 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 843 txq->dirty_tx = bdp; 844 } 845 } 846 847 static void fec_enet_active_rxring(struct net_device *ndev) 848 { 849 struct fec_enet_private *fep = netdev_priv(ndev); 850 int i; 851 852 for (i = 0; i < fep->num_rx_queues; i++) 853 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 854 } 855 856 static void fec_enet_enable_ring(struct net_device *ndev) 857 { 858 struct fec_enet_private *fep = netdev_priv(ndev); 859 struct fec_enet_priv_tx_q *txq; 860 struct fec_enet_priv_rx_q *rxq; 861 int i; 862 863 for (i = 0; i < fep->num_rx_queues; i++) { 864 rxq = fep->rx_queue[i]; 865 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 866 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 867 868 /* enable DMA1/2 */ 869 if (i) 870 writel(RCMR_MATCHEN | RCMR_CMP(i), 871 fep->hwp + FEC_RCMR(i)); 872 } 873 874 for (i = 0; i < fep->num_tx_queues; i++) { 875 txq = fep->tx_queue[i]; 876 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 877 878 /* enable DMA1/2 */ 879 if (i) 880 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 881 fep->hwp + FEC_DMA_CFG(i)); 882 } 883 } 884 885 static void fec_enet_reset_skb(struct net_device *ndev) 886 { 887 struct fec_enet_private *fep = netdev_priv(ndev); 888 struct fec_enet_priv_tx_q *txq; 889 int i, j; 890 891 for (i = 0; i < fep->num_tx_queues; i++) { 892 txq = fep->tx_queue[i]; 893 894 for (j = 0; j < txq->bd.ring_size; j++) { 895 if (txq->tx_skbuff[j]) { 896 dev_kfree_skb_any(txq->tx_skbuff[j]); 897 txq->tx_skbuff[j] = NULL; 898 } 899 } 900 } 901 } 902 903 /* 904 * This function is called to start or restart the FEC during a link 905 * change, transmit timeout, or to reconfigure the FEC. The network 906 * packet processing for this device must be stopped before this call. 907 */ 908 static void 909 fec_restart(struct net_device *ndev) 910 { 911 struct fec_enet_private *fep = netdev_priv(ndev); 912 u32 val; 913 u32 temp_mac[2]; 914 u32 rcntl = OPT_FRAME_SIZE | 0x04; 915 u32 ecntl = 0x2; /* ETHEREN */ 916 917 /* Whack a reset. We should wait for this. 918 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 919 * instead of reset MAC itself. 920 */ 921 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 922 writel(0, fep->hwp + FEC_ECNTRL); 923 } else { 924 writel(1, fep->hwp + FEC_ECNTRL); 925 udelay(10); 926 } 927 928 /* 929 * enet-mac reset will reset mac address registers too, 930 * so need to reconfigure it. 931 */ 932 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 933 writel((__force u32)cpu_to_be32(temp_mac[0]), 934 fep->hwp + FEC_ADDR_LOW); 935 writel((__force u32)cpu_to_be32(temp_mac[1]), 936 fep->hwp + FEC_ADDR_HIGH); 937 938 /* Clear any outstanding interrupt. */ 939 writel(0xffffffff, fep->hwp + FEC_IEVENT); 940 941 fec_enet_bd_init(ndev); 942 943 fec_enet_enable_ring(ndev); 944 945 /* Reset tx SKB buffers. */ 946 fec_enet_reset_skb(ndev); 947 948 /* Enable MII mode */ 949 if (fep->full_duplex == DUPLEX_FULL) { 950 /* FD enable */ 951 writel(0x04, fep->hwp + FEC_X_CNTRL); 952 } else { 953 /* No Rcv on Xmit */ 954 rcntl |= 0x02; 955 writel(0x0, fep->hwp + FEC_X_CNTRL); 956 } 957 958 /* Set MII speed */ 959 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 960 961 #if !defined(CONFIG_M5272) 962 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 963 val = readl(fep->hwp + FEC_RACC); 964 /* align IP header */ 965 val |= FEC_RACC_SHIFT16; 966 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 967 /* set RX checksum */ 968 val |= FEC_RACC_OPTIONS; 969 else 970 val &= ~FEC_RACC_OPTIONS; 971 writel(val, fep->hwp + FEC_RACC); 972 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 973 } 974 #endif 975 976 /* 977 * The phy interface and speed need to get configured 978 * differently on enet-mac. 979 */ 980 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 981 /* Enable flow control and length check */ 982 rcntl |= 0x40000000 | 0x00000020; 983 984 /* RGMII, RMII or MII */ 985 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 986 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 987 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 988 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 989 rcntl |= (1 << 6); 990 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 991 rcntl |= (1 << 8); 992 else 993 rcntl &= ~(1 << 8); 994 995 /* 1G, 100M or 10M */ 996 if (ndev->phydev) { 997 if (ndev->phydev->speed == SPEED_1000) 998 ecntl |= (1 << 5); 999 else if (ndev->phydev->speed == SPEED_100) 1000 rcntl &= ~(1 << 9); 1001 else 1002 rcntl |= (1 << 9); 1003 } 1004 } else { 1005 #ifdef FEC_MIIGSK_ENR 1006 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1007 u32 cfgr; 1008 /* disable the gasket and wait */ 1009 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1010 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1011 udelay(1); 1012 1013 /* 1014 * configure the gasket: 1015 * RMII, 50 MHz, no loopback, no echo 1016 * MII, 25 MHz, no loopback, no echo 1017 */ 1018 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1019 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1020 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1021 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1022 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1023 1024 /* re-enable the gasket */ 1025 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1026 } 1027 #endif 1028 } 1029 1030 #if !defined(CONFIG_M5272) 1031 /* enable pause frame*/ 1032 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1033 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1034 ndev->phydev && ndev->phydev->pause)) { 1035 rcntl |= FEC_ENET_FCE; 1036 1037 /* set FIFO threshold parameter to reduce overrun */ 1038 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1039 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1040 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1041 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1042 1043 /* OPD */ 1044 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1045 } else { 1046 rcntl &= ~FEC_ENET_FCE; 1047 } 1048 #endif /* !defined(CONFIG_M5272) */ 1049 1050 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1051 1052 /* Setup multicast filter. */ 1053 set_multicast_list(ndev); 1054 #ifndef CONFIG_M5272 1055 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1056 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1057 #endif 1058 1059 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1060 /* enable ENET endian swap */ 1061 ecntl |= (1 << 8); 1062 /* enable ENET store and forward mode */ 1063 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1064 } 1065 1066 if (fep->bufdesc_ex) 1067 ecntl |= (1 << 4); 1068 1069 #ifndef CONFIG_M5272 1070 /* Enable the MIB statistic event counters */ 1071 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1072 #endif 1073 1074 /* And last, enable the transmit and receive processing */ 1075 writel(ecntl, fep->hwp + FEC_ECNTRL); 1076 fec_enet_active_rxring(ndev); 1077 1078 if (fep->bufdesc_ex) 1079 fec_ptp_start_cyclecounter(ndev); 1080 1081 /* Enable interrupts we wish to service */ 1082 if (fep->link) 1083 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1084 else 1085 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); 1086 1087 /* Init the interrupt coalescing */ 1088 fec_enet_itr_coal_init(ndev); 1089 1090 } 1091 1092 static void 1093 fec_stop(struct net_device *ndev) 1094 { 1095 struct fec_enet_private *fep = netdev_priv(ndev); 1096 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1097 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1098 u32 val; 1099 1100 /* We cannot expect a graceful transmit stop without link !!! */ 1101 if (fep->link) { 1102 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1103 udelay(10); 1104 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1105 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1106 } 1107 1108 /* Whack a reset. We should wait for this. 1109 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1110 * instead of reset MAC itself. 1111 */ 1112 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1113 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1114 writel(0, fep->hwp + FEC_ECNTRL); 1115 } else { 1116 writel(1, fep->hwp + FEC_ECNTRL); 1117 udelay(10); 1118 } 1119 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1120 } else { 1121 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1122 val = readl(fep->hwp + FEC_ECNTRL); 1123 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1124 writel(val, fep->hwp + FEC_ECNTRL); 1125 1126 if (pdata && pdata->sleep_mode_enable) 1127 pdata->sleep_mode_enable(true); 1128 } 1129 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1130 1131 /* We have to keep ENET enabled to have MII interrupt stay working */ 1132 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1133 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1134 writel(2, fep->hwp + FEC_ECNTRL); 1135 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1136 } 1137 } 1138 1139 1140 static void 1141 fec_timeout(struct net_device *ndev) 1142 { 1143 struct fec_enet_private *fep = netdev_priv(ndev); 1144 1145 fec_dump(ndev); 1146 1147 ndev->stats.tx_errors++; 1148 1149 schedule_work(&fep->tx_timeout_work); 1150 } 1151 1152 static void fec_enet_timeout_work(struct work_struct *work) 1153 { 1154 struct fec_enet_private *fep = 1155 container_of(work, struct fec_enet_private, tx_timeout_work); 1156 struct net_device *ndev = fep->netdev; 1157 1158 rtnl_lock(); 1159 if (netif_device_present(ndev) || netif_running(ndev)) { 1160 napi_disable(&fep->napi); 1161 netif_tx_lock_bh(ndev); 1162 fec_restart(ndev); 1163 netif_tx_wake_all_queues(ndev); 1164 netif_tx_unlock_bh(ndev); 1165 napi_enable(&fep->napi); 1166 } 1167 rtnl_unlock(); 1168 } 1169 1170 static void 1171 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1172 struct skb_shared_hwtstamps *hwtstamps) 1173 { 1174 unsigned long flags; 1175 u64 ns; 1176 1177 spin_lock_irqsave(&fep->tmreg_lock, flags); 1178 ns = timecounter_cyc2time(&fep->tc, ts); 1179 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1180 1181 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1182 hwtstamps->hwtstamp = ns_to_ktime(ns); 1183 } 1184 1185 static void 1186 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1187 { 1188 struct fec_enet_private *fep; 1189 struct bufdesc *bdp; 1190 unsigned short status; 1191 struct sk_buff *skb; 1192 struct fec_enet_priv_tx_q *txq; 1193 struct netdev_queue *nq; 1194 int index = 0; 1195 int entries_free; 1196 1197 fep = netdev_priv(ndev); 1198 1199 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1200 1201 txq = fep->tx_queue[queue_id]; 1202 /* get next bdp of dirty_tx */ 1203 nq = netdev_get_tx_queue(ndev, queue_id); 1204 bdp = txq->dirty_tx; 1205 1206 /* get next bdp of dirty_tx */ 1207 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1208 1209 while (bdp != READ_ONCE(txq->bd.cur)) { 1210 /* Order the load of bd.cur and cbd_sc */ 1211 rmb(); 1212 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1213 if (status & BD_ENET_TX_READY) 1214 break; 1215 1216 index = fec_enet_get_bd_index(bdp, &txq->bd); 1217 1218 skb = txq->tx_skbuff[index]; 1219 txq->tx_skbuff[index] = NULL; 1220 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1221 dma_unmap_single(&fep->pdev->dev, 1222 fec32_to_cpu(bdp->cbd_bufaddr), 1223 fec16_to_cpu(bdp->cbd_datlen), 1224 DMA_TO_DEVICE); 1225 bdp->cbd_bufaddr = cpu_to_fec32(0); 1226 if (!skb) 1227 goto skb_done; 1228 1229 /* Check for errors. */ 1230 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1231 BD_ENET_TX_RL | BD_ENET_TX_UN | 1232 BD_ENET_TX_CSL)) { 1233 ndev->stats.tx_errors++; 1234 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1235 ndev->stats.tx_heartbeat_errors++; 1236 if (status & BD_ENET_TX_LC) /* Late collision */ 1237 ndev->stats.tx_window_errors++; 1238 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1239 ndev->stats.tx_aborted_errors++; 1240 if (status & BD_ENET_TX_UN) /* Underrun */ 1241 ndev->stats.tx_fifo_errors++; 1242 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1243 ndev->stats.tx_carrier_errors++; 1244 } else { 1245 ndev->stats.tx_packets++; 1246 ndev->stats.tx_bytes += skb->len; 1247 } 1248 1249 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && 1250 fep->bufdesc_ex) { 1251 struct skb_shared_hwtstamps shhwtstamps; 1252 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1253 1254 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1255 skb_tstamp_tx(skb, &shhwtstamps); 1256 } 1257 1258 /* Deferred means some collisions occurred during transmit, 1259 * but we eventually sent the packet OK. 1260 */ 1261 if (status & BD_ENET_TX_DEF) 1262 ndev->stats.collisions++; 1263 1264 /* Free the sk buffer associated with this last transmit */ 1265 dev_kfree_skb_any(skb); 1266 skb_done: 1267 /* Make sure the update to bdp and tx_skbuff are performed 1268 * before dirty_tx 1269 */ 1270 wmb(); 1271 txq->dirty_tx = bdp; 1272 1273 /* Update pointer to next buffer descriptor to be transmitted */ 1274 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1275 1276 /* Since we have freed up a buffer, the ring is no longer full 1277 */ 1278 if (netif_tx_queue_stopped(nq)) { 1279 entries_free = fec_enet_get_free_txdesc_num(txq); 1280 if (entries_free >= txq->tx_wake_threshold) 1281 netif_tx_wake_queue(nq); 1282 } 1283 } 1284 1285 /* ERR006358: Keep the transmitter going */ 1286 if (bdp != txq->bd.cur && 1287 readl(txq->bd.reg_desc_active) == 0) 1288 writel(0, txq->bd.reg_desc_active); 1289 } 1290 1291 static void 1292 fec_enet_tx(struct net_device *ndev) 1293 { 1294 struct fec_enet_private *fep = netdev_priv(ndev); 1295 u16 queue_id; 1296 /* First process class A queue, then Class B and Best Effort queue */ 1297 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { 1298 clear_bit(queue_id, &fep->work_tx); 1299 fec_enet_tx_queue(ndev, queue_id); 1300 } 1301 return; 1302 } 1303 1304 static int 1305 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1306 { 1307 struct fec_enet_private *fep = netdev_priv(ndev); 1308 int off; 1309 1310 off = ((unsigned long)skb->data) & fep->rx_align; 1311 if (off) 1312 skb_reserve(skb, fep->rx_align + 1 - off); 1313 1314 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1315 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1316 if (net_ratelimit()) 1317 netdev_err(ndev, "Rx DMA memory map failed\n"); 1318 return -ENOMEM; 1319 } 1320 1321 return 0; 1322 } 1323 1324 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1325 struct bufdesc *bdp, u32 length, bool swap) 1326 { 1327 struct fec_enet_private *fep = netdev_priv(ndev); 1328 struct sk_buff *new_skb; 1329 1330 if (length > fep->rx_copybreak) 1331 return false; 1332 1333 new_skb = netdev_alloc_skb(ndev, length); 1334 if (!new_skb) 1335 return false; 1336 1337 dma_sync_single_for_cpu(&fep->pdev->dev, 1338 fec32_to_cpu(bdp->cbd_bufaddr), 1339 FEC_ENET_RX_FRSIZE - fep->rx_align, 1340 DMA_FROM_DEVICE); 1341 if (!swap) 1342 memcpy(new_skb->data, (*skb)->data, length); 1343 else 1344 swap_buffer2(new_skb->data, (*skb)->data, length); 1345 *skb = new_skb; 1346 1347 return true; 1348 } 1349 1350 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1351 * When we update through the ring, if the next incoming buffer has 1352 * not been given to the system, we just set the empty indicator, 1353 * effectively tossing the packet. 1354 */ 1355 static int 1356 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1357 { 1358 struct fec_enet_private *fep = netdev_priv(ndev); 1359 struct fec_enet_priv_rx_q *rxq; 1360 struct bufdesc *bdp; 1361 unsigned short status; 1362 struct sk_buff *skb_new = NULL; 1363 struct sk_buff *skb; 1364 ushort pkt_len; 1365 __u8 *data; 1366 int pkt_received = 0; 1367 struct bufdesc_ex *ebdp = NULL; 1368 bool vlan_packet_rcvd = false; 1369 u16 vlan_tag; 1370 int index = 0; 1371 bool is_copybreak; 1372 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1373 1374 #ifdef CONFIG_M532x 1375 flush_cache_all(); 1376 #endif 1377 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1378 rxq = fep->rx_queue[queue_id]; 1379 1380 /* First, grab all of the stats for the incoming packet. 1381 * These get messed up if we get called due to a busy condition. 1382 */ 1383 bdp = rxq->bd.cur; 1384 1385 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1386 1387 if (pkt_received >= budget) 1388 break; 1389 pkt_received++; 1390 1391 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1392 1393 /* Check for errors. */ 1394 status ^= BD_ENET_RX_LAST; 1395 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1396 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1397 BD_ENET_RX_CL)) { 1398 ndev->stats.rx_errors++; 1399 if (status & BD_ENET_RX_OV) { 1400 /* FIFO overrun */ 1401 ndev->stats.rx_fifo_errors++; 1402 goto rx_processing_done; 1403 } 1404 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1405 | BD_ENET_RX_LAST)) { 1406 /* Frame too long or too short. */ 1407 ndev->stats.rx_length_errors++; 1408 if (status & BD_ENET_RX_LAST) 1409 netdev_err(ndev, "rcv is not +last\n"); 1410 } 1411 if (status & BD_ENET_RX_CR) /* CRC Error */ 1412 ndev->stats.rx_crc_errors++; 1413 /* Report late collisions as a frame error. */ 1414 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1415 ndev->stats.rx_frame_errors++; 1416 goto rx_processing_done; 1417 } 1418 1419 /* Process the incoming frame. */ 1420 ndev->stats.rx_packets++; 1421 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1422 ndev->stats.rx_bytes += pkt_len; 1423 1424 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1425 skb = rxq->rx_skbuff[index]; 1426 1427 /* The packet length includes FCS, but we don't want to 1428 * include that when passing upstream as it messes up 1429 * bridging applications. 1430 */ 1431 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1432 need_swap); 1433 if (!is_copybreak) { 1434 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1435 if (unlikely(!skb_new)) { 1436 ndev->stats.rx_dropped++; 1437 goto rx_processing_done; 1438 } 1439 dma_unmap_single(&fep->pdev->dev, 1440 fec32_to_cpu(bdp->cbd_bufaddr), 1441 FEC_ENET_RX_FRSIZE - fep->rx_align, 1442 DMA_FROM_DEVICE); 1443 } 1444 1445 prefetch(skb->data - NET_IP_ALIGN); 1446 skb_put(skb, pkt_len - 4); 1447 data = skb->data; 1448 1449 if (!is_copybreak && need_swap) 1450 swap_buffer(data, pkt_len); 1451 1452 #if !defined(CONFIG_M5272) 1453 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1454 data = skb_pull_inline(skb, 2); 1455 #endif 1456 1457 /* Extract the enhanced buffer descriptor */ 1458 ebdp = NULL; 1459 if (fep->bufdesc_ex) 1460 ebdp = (struct bufdesc_ex *)bdp; 1461 1462 /* If this is a VLAN packet remove the VLAN Tag */ 1463 vlan_packet_rcvd = false; 1464 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1465 fep->bufdesc_ex && 1466 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1467 /* Push and remove the vlan tag */ 1468 struct vlan_hdr *vlan_header = 1469 (struct vlan_hdr *) (data + ETH_HLEN); 1470 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1471 1472 vlan_packet_rcvd = true; 1473 1474 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1475 skb_pull(skb, VLAN_HLEN); 1476 } 1477 1478 skb->protocol = eth_type_trans(skb, ndev); 1479 1480 /* Get receive timestamp from the skb */ 1481 if (fep->hwts_rx_en && fep->bufdesc_ex) 1482 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1483 skb_hwtstamps(skb)); 1484 1485 if (fep->bufdesc_ex && 1486 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1487 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1488 /* don't check it */ 1489 skb->ip_summed = CHECKSUM_UNNECESSARY; 1490 } else { 1491 skb_checksum_none_assert(skb); 1492 } 1493 } 1494 1495 /* Handle received VLAN packets */ 1496 if (vlan_packet_rcvd) 1497 __vlan_hwaccel_put_tag(skb, 1498 htons(ETH_P_8021Q), 1499 vlan_tag); 1500 1501 napi_gro_receive(&fep->napi, skb); 1502 1503 if (is_copybreak) { 1504 dma_sync_single_for_device(&fep->pdev->dev, 1505 fec32_to_cpu(bdp->cbd_bufaddr), 1506 FEC_ENET_RX_FRSIZE - fep->rx_align, 1507 DMA_FROM_DEVICE); 1508 } else { 1509 rxq->rx_skbuff[index] = skb_new; 1510 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1511 } 1512 1513 rx_processing_done: 1514 /* Clear the status flags for this buffer */ 1515 status &= ~BD_ENET_RX_STATS; 1516 1517 /* Mark the buffer empty */ 1518 status |= BD_ENET_RX_EMPTY; 1519 1520 if (fep->bufdesc_ex) { 1521 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1522 1523 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1524 ebdp->cbd_prot = 0; 1525 ebdp->cbd_bdu = 0; 1526 } 1527 /* Make sure the updates to rest of the descriptor are 1528 * performed before transferring ownership. 1529 */ 1530 wmb(); 1531 bdp->cbd_sc = cpu_to_fec16(status); 1532 1533 /* Update BD pointer to next entry */ 1534 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1535 1536 /* Doing this here will keep the FEC running while we process 1537 * incoming frames. On a heavily loaded network, we should be 1538 * able to keep up at the expense of system resources. 1539 */ 1540 writel(0, rxq->bd.reg_desc_active); 1541 } 1542 rxq->bd.cur = bdp; 1543 return pkt_received; 1544 } 1545 1546 static int 1547 fec_enet_rx(struct net_device *ndev, int budget) 1548 { 1549 int pkt_received = 0; 1550 u16 queue_id; 1551 struct fec_enet_private *fep = netdev_priv(ndev); 1552 1553 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { 1554 int ret; 1555 1556 ret = fec_enet_rx_queue(ndev, 1557 budget - pkt_received, queue_id); 1558 1559 if (ret < budget - pkt_received) 1560 clear_bit(queue_id, &fep->work_rx); 1561 1562 pkt_received += ret; 1563 } 1564 return pkt_received; 1565 } 1566 1567 static bool 1568 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) 1569 { 1570 if (int_events == 0) 1571 return false; 1572 1573 if (int_events & FEC_ENET_RXF_0) 1574 fep->work_rx |= (1 << 2); 1575 if (int_events & FEC_ENET_RXF_1) 1576 fep->work_rx |= (1 << 0); 1577 if (int_events & FEC_ENET_RXF_2) 1578 fep->work_rx |= (1 << 1); 1579 1580 if (int_events & FEC_ENET_TXF_0) 1581 fep->work_tx |= (1 << 2); 1582 if (int_events & FEC_ENET_TXF_1) 1583 fep->work_tx |= (1 << 0); 1584 if (int_events & FEC_ENET_TXF_2) 1585 fep->work_tx |= (1 << 1); 1586 1587 return true; 1588 } 1589 1590 static irqreturn_t 1591 fec_enet_interrupt(int irq, void *dev_id) 1592 { 1593 struct net_device *ndev = dev_id; 1594 struct fec_enet_private *fep = netdev_priv(ndev); 1595 uint int_events; 1596 irqreturn_t ret = IRQ_NONE; 1597 1598 int_events = readl(fep->hwp + FEC_IEVENT); 1599 writel(int_events, fep->hwp + FEC_IEVENT); 1600 fec_enet_collect_events(fep, int_events); 1601 1602 if ((fep->work_tx || fep->work_rx) && fep->link) { 1603 ret = IRQ_HANDLED; 1604 1605 if (napi_schedule_prep(&fep->napi)) { 1606 /* Disable the NAPI interrupts */ 1607 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK); 1608 __napi_schedule(&fep->napi); 1609 } 1610 } 1611 1612 if (int_events & FEC_ENET_MII) { 1613 ret = IRQ_HANDLED; 1614 complete(&fep->mdio_done); 1615 } 1616 return ret; 1617 } 1618 1619 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1620 { 1621 struct net_device *ndev = napi->dev; 1622 struct fec_enet_private *fep = netdev_priv(ndev); 1623 int pkts; 1624 1625 pkts = fec_enet_rx(ndev, budget); 1626 1627 fec_enet_tx(ndev); 1628 1629 if (pkts < budget) { 1630 napi_complete_done(napi, pkts); 1631 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1632 } 1633 return pkts; 1634 } 1635 1636 /* ------------------------------------------------------------------------- */ 1637 static void fec_get_mac(struct net_device *ndev) 1638 { 1639 struct fec_enet_private *fep = netdev_priv(ndev); 1640 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1641 unsigned char *iap, tmpaddr[ETH_ALEN]; 1642 1643 /* 1644 * try to get mac address in following order: 1645 * 1646 * 1) module parameter via kernel command line in form 1647 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1648 */ 1649 iap = macaddr; 1650 1651 /* 1652 * 2) from device tree data 1653 */ 1654 if (!is_valid_ether_addr(iap)) { 1655 struct device_node *np = fep->pdev->dev.of_node; 1656 if (np) { 1657 const char *mac = of_get_mac_address(np); 1658 if (mac) 1659 iap = (unsigned char *) mac; 1660 } 1661 } 1662 1663 /* 1664 * 3) from flash or fuse (via platform data) 1665 */ 1666 if (!is_valid_ether_addr(iap)) { 1667 #ifdef CONFIG_M5272 1668 if (FEC_FLASHMAC) 1669 iap = (unsigned char *)FEC_FLASHMAC; 1670 #else 1671 if (pdata) 1672 iap = (unsigned char *)&pdata->mac; 1673 #endif 1674 } 1675 1676 /* 1677 * 4) FEC mac registers set by bootloader 1678 */ 1679 if (!is_valid_ether_addr(iap)) { 1680 *((__be32 *) &tmpaddr[0]) = 1681 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1682 *((__be16 *) &tmpaddr[4]) = 1683 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1684 iap = &tmpaddr[0]; 1685 } 1686 1687 /* 1688 * 5) random mac address 1689 */ 1690 if (!is_valid_ether_addr(iap)) { 1691 /* Report it and use a random ethernet address instead */ 1692 netdev_err(ndev, "Invalid MAC address: %pM\n", iap); 1693 eth_hw_addr_random(ndev); 1694 netdev_info(ndev, "Using random MAC address: %pM\n", 1695 ndev->dev_addr); 1696 return; 1697 } 1698 1699 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1700 1701 /* Adjust MAC if using macaddr */ 1702 if (iap == macaddr) 1703 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1704 } 1705 1706 /* ------------------------------------------------------------------------- */ 1707 1708 /* 1709 * Phy section 1710 */ 1711 static void fec_enet_adjust_link(struct net_device *ndev) 1712 { 1713 struct fec_enet_private *fep = netdev_priv(ndev); 1714 struct phy_device *phy_dev = ndev->phydev; 1715 int status_change = 0; 1716 1717 /* 1718 * If the netdev is down, or is going down, we're not interested 1719 * in link state events, so just mark our idea of the link as down 1720 * and ignore the event. 1721 */ 1722 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1723 fep->link = 0; 1724 } else if (phy_dev->link) { 1725 if (!fep->link) { 1726 fep->link = phy_dev->link; 1727 status_change = 1; 1728 } 1729 1730 if (fep->full_duplex != phy_dev->duplex) { 1731 fep->full_duplex = phy_dev->duplex; 1732 status_change = 1; 1733 } 1734 1735 if (phy_dev->speed != fep->speed) { 1736 fep->speed = phy_dev->speed; 1737 status_change = 1; 1738 } 1739 1740 /* if any of the above changed restart the FEC */ 1741 if (status_change) { 1742 napi_disable(&fep->napi); 1743 netif_tx_lock_bh(ndev); 1744 fec_restart(ndev); 1745 netif_tx_wake_all_queues(ndev); 1746 netif_tx_unlock_bh(ndev); 1747 napi_enable(&fep->napi); 1748 } 1749 } else { 1750 if (fep->link) { 1751 napi_disable(&fep->napi); 1752 netif_tx_lock_bh(ndev); 1753 fec_stop(ndev); 1754 netif_tx_unlock_bh(ndev); 1755 napi_enable(&fep->napi); 1756 fep->link = phy_dev->link; 1757 status_change = 1; 1758 } 1759 } 1760 1761 if (status_change) 1762 phy_print_status(phy_dev); 1763 } 1764 1765 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1766 { 1767 struct fec_enet_private *fep = bus->priv; 1768 struct device *dev = &fep->pdev->dev; 1769 unsigned long time_left; 1770 int ret = 0; 1771 1772 ret = pm_runtime_get_sync(dev); 1773 if (ret < 0) 1774 return ret; 1775 1776 reinit_completion(&fep->mdio_done); 1777 1778 /* start a read op */ 1779 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | 1780 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1781 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1782 1783 /* wait for end of transfer */ 1784 time_left = wait_for_completion_timeout(&fep->mdio_done, 1785 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1786 if (time_left == 0) { 1787 netdev_err(fep->netdev, "MDIO read timeout\n"); 1788 ret = -ETIMEDOUT; 1789 goto out; 1790 } 1791 1792 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1793 1794 out: 1795 pm_runtime_mark_last_busy(dev); 1796 pm_runtime_put_autosuspend(dev); 1797 1798 return ret; 1799 } 1800 1801 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1802 u16 value) 1803 { 1804 struct fec_enet_private *fep = bus->priv; 1805 struct device *dev = &fep->pdev->dev; 1806 unsigned long time_left; 1807 int ret; 1808 1809 ret = pm_runtime_get_sync(dev); 1810 if (ret < 0) 1811 return ret; 1812 else 1813 ret = 0; 1814 1815 reinit_completion(&fep->mdio_done); 1816 1817 /* start a write op */ 1818 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | 1819 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1820 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1821 fep->hwp + FEC_MII_DATA); 1822 1823 /* wait for end of transfer */ 1824 time_left = wait_for_completion_timeout(&fep->mdio_done, 1825 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1826 if (time_left == 0) { 1827 netdev_err(fep->netdev, "MDIO write timeout\n"); 1828 ret = -ETIMEDOUT; 1829 } 1830 1831 pm_runtime_mark_last_busy(dev); 1832 pm_runtime_put_autosuspend(dev); 1833 1834 return ret; 1835 } 1836 1837 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1838 { 1839 struct fec_enet_private *fep = netdev_priv(ndev); 1840 int ret; 1841 1842 if (enable) { 1843 ret = clk_prepare_enable(fep->clk_enet_out); 1844 if (ret) 1845 return ret; 1846 1847 if (fep->clk_ptp) { 1848 mutex_lock(&fep->ptp_clk_mutex); 1849 ret = clk_prepare_enable(fep->clk_ptp); 1850 if (ret) { 1851 mutex_unlock(&fep->ptp_clk_mutex); 1852 goto failed_clk_ptp; 1853 } else { 1854 fep->ptp_clk_on = true; 1855 } 1856 mutex_unlock(&fep->ptp_clk_mutex); 1857 } 1858 1859 ret = clk_prepare_enable(fep->clk_ref); 1860 if (ret) 1861 goto failed_clk_ref; 1862 1863 phy_reset_after_clk_enable(ndev->phydev); 1864 } else { 1865 clk_disable_unprepare(fep->clk_enet_out); 1866 if (fep->clk_ptp) { 1867 mutex_lock(&fep->ptp_clk_mutex); 1868 clk_disable_unprepare(fep->clk_ptp); 1869 fep->ptp_clk_on = false; 1870 mutex_unlock(&fep->ptp_clk_mutex); 1871 } 1872 clk_disable_unprepare(fep->clk_ref); 1873 } 1874 1875 return 0; 1876 1877 failed_clk_ref: 1878 if (fep->clk_ref) 1879 clk_disable_unprepare(fep->clk_ref); 1880 failed_clk_ptp: 1881 if (fep->clk_enet_out) 1882 clk_disable_unprepare(fep->clk_enet_out); 1883 1884 return ret; 1885 } 1886 1887 static int fec_enet_mii_probe(struct net_device *ndev) 1888 { 1889 struct fec_enet_private *fep = netdev_priv(ndev); 1890 struct phy_device *phy_dev = NULL; 1891 char mdio_bus_id[MII_BUS_ID_SIZE]; 1892 char phy_name[MII_BUS_ID_SIZE + 3]; 1893 int phy_id; 1894 int dev_id = fep->dev_id; 1895 1896 if (fep->phy_node) { 1897 phy_dev = of_phy_connect(ndev, fep->phy_node, 1898 &fec_enet_adjust_link, 0, 1899 fep->phy_interface); 1900 if (!phy_dev) { 1901 netdev_err(ndev, "Unable to connect to phy\n"); 1902 return -ENODEV; 1903 } 1904 } else { 1905 /* check for attached phy */ 1906 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 1907 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 1908 continue; 1909 if (dev_id--) 1910 continue; 1911 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 1912 break; 1913 } 1914 1915 if (phy_id >= PHY_MAX_ADDR) { 1916 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 1917 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 1918 phy_id = 0; 1919 } 1920 1921 snprintf(phy_name, sizeof(phy_name), 1922 PHY_ID_FMT, mdio_bus_id, phy_id); 1923 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 1924 fep->phy_interface); 1925 } 1926 1927 if (IS_ERR(phy_dev)) { 1928 netdev_err(ndev, "could not attach to PHY\n"); 1929 return PTR_ERR(phy_dev); 1930 } 1931 1932 /* mask with MAC supported features */ 1933 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 1934 phy_set_max_speed(phy_dev, 1000); 1935 phy_remove_link_mode(phy_dev, 1936 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1937 #if !defined(CONFIG_M5272) 1938 phy_support_sym_pause(phy_dev); 1939 #endif 1940 } 1941 else 1942 phy_set_max_speed(phy_dev, 100); 1943 1944 fep->link = 0; 1945 fep->full_duplex = 0; 1946 1947 phy_attached_info(phy_dev); 1948 1949 return 0; 1950 } 1951 1952 static int fec_enet_mii_init(struct platform_device *pdev) 1953 { 1954 static struct mii_bus *fec0_mii_bus; 1955 struct net_device *ndev = platform_get_drvdata(pdev); 1956 struct fec_enet_private *fep = netdev_priv(ndev); 1957 struct device_node *node; 1958 int err = -ENXIO; 1959 u32 mii_speed, holdtime; 1960 1961 /* 1962 * The i.MX28 dual fec interfaces are not equal. 1963 * Here are the differences: 1964 * 1965 * - fec0 supports MII & RMII modes while fec1 only supports RMII 1966 * - fec0 acts as the 1588 time master while fec1 is slave 1967 * - external phys can only be configured by fec0 1968 * 1969 * That is to say fec1 can not work independently. It only works 1970 * when fec0 is working. The reason behind this design is that the 1971 * second interface is added primarily for Switch mode. 1972 * 1973 * Because of the last point above, both phys are attached on fec0 1974 * mdio interface in board design, and need to be configured by 1975 * fec0 mii_bus. 1976 */ 1977 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 1978 /* fec1 uses fec0 mii_bus */ 1979 if (mii_cnt && fec0_mii_bus) { 1980 fep->mii_bus = fec0_mii_bus; 1981 mii_cnt++; 1982 return 0; 1983 } 1984 return -ENOENT; 1985 } 1986 1987 /* 1988 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) 1989 * 1990 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 1991 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 1992 * Reference Manual has an error on this, and gets fixed on i.MX6Q 1993 * document. 1994 */ 1995 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); 1996 if (fep->quirks & FEC_QUIRK_ENET_MAC) 1997 mii_speed--; 1998 if (mii_speed > 63) { 1999 dev_err(&pdev->dev, 2000 "fec clock (%lu) too fast to get right mii speed\n", 2001 clk_get_rate(fep->clk_ipg)); 2002 err = -EINVAL; 2003 goto err_out; 2004 } 2005 2006 /* 2007 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2008 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2009 * versions are RAZ there, so just ignore the difference and write the 2010 * register always. 2011 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2012 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2013 * output. 2014 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2015 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2016 * holdtime cannot result in a value greater than 3. 2017 */ 2018 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2019 2020 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2021 2022 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2023 2024 fep->mii_bus = mdiobus_alloc(); 2025 if (fep->mii_bus == NULL) { 2026 err = -ENOMEM; 2027 goto err_out; 2028 } 2029 2030 fep->mii_bus->name = "fec_enet_mii_bus"; 2031 fep->mii_bus->read = fec_enet_mdio_read; 2032 fep->mii_bus->write = fec_enet_mdio_write; 2033 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2034 pdev->name, fep->dev_id + 1); 2035 fep->mii_bus->priv = fep; 2036 fep->mii_bus->parent = &pdev->dev; 2037 2038 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2039 err = of_mdiobus_register(fep->mii_bus, node); 2040 of_node_put(node); 2041 if (err) 2042 goto err_out_free_mdiobus; 2043 2044 mii_cnt++; 2045 2046 /* save fec0 mii_bus */ 2047 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2048 fec0_mii_bus = fep->mii_bus; 2049 2050 return 0; 2051 2052 err_out_free_mdiobus: 2053 mdiobus_free(fep->mii_bus); 2054 err_out: 2055 return err; 2056 } 2057 2058 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2059 { 2060 if (--mii_cnt == 0) { 2061 mdiobus_unregister(fep->mii_bus); 2062 mdiobus_free(fep->mii_bus); 2063 } 2064 } 2065 2066 static void fec_enet_get_drvinfo(struct net_device *ndev, 2067 struct ethtool_drvinfo *info) 2068 { 2069 struct fec_enet_private *fep = netdev_priv(ndev); 2070 2071 strlcpy(info->driver, fep->pdev->dev.driver->name, 2072 sizeof(info->driver)); 2073 strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); 2074 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2075 } 2076 2077 static int fec_enet_get_regs_len(struct net_device *ndev) 2078 { 2079 struct fec_enet_private *fep = netdev_priv(ndev); 2080 struct resource *r; 2081 int s = 0; 2082 2083 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2084 if (r) 2085 s = resource_size(r); 2086 2087 return s; 2088 } 2089 2090 /* List of registers that can be safety be read to dump them with ethtool */ 2091 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2092 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2093 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2094 static __u32 fec_enet_register_version = 2; 2095 static u32 fec_enet_register_offset[] = { 2096 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2097 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2098 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2099 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2100 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2101 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2102 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2103 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2104 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2105 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2106 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2107 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2108 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2109 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2110 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2111 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2112 RMON_T_P_GTE2048, RMON_T_OCTETS, 2113 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2114 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2115 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2116 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2117 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2118 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2119 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2120 RMON_R_P_GTE2048, RMON_R_OCTETS, 2121 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2122 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2123 }; 2124 #else 2125 static __u32 fec_enet_register_version = 1; 2126 static u32 fec_enet_register_offset[] = { 2127 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2128 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2129 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2130 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2131 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2132 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2133 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2134 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2135 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2136 }; 2137 #endif 2138 2139 static void fec_enet_get_regs(struct net_device *ndev, 2140 struct ethtool_regs *regs, void *regbuf) 2141 { 2142 struct fec_enet_private *fep = netdev_priv(ndev); 2143 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2144 u32 *buf = (u32 *)regbuf; 2145 u32 i, off; 2146 2147 regs->version = fec_enet_register_version; 2148 2149 memset(buf, 0, regs->len); 2150 2151 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2152 off = fec_enet_register_offset[i]; 2153 2154 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2155 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2156 continue; 2157 2158 off >>= 2; 2159 buf[off] = readl(&theregs[off]); 2160 } 2161 } 2162 2163 static int fec_enet_get_ts_info(struct net_device *ndev, 2164 struct ethtool_ts_info *info) 2165 { 2166 struct fec_enet_private *fep = netdev_priv(ndev); 2167 2168 if (fep->bufdesc_ex) { 2169 2170 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2171 SOF_TIMESTAMPING_RX_SOFTWARE | 2172 SOF_TIMESTAMPING_SOFTWARE | 2173 SOF_TIMESTAMPING_TX_HARDWARE | 2174 SOF_TIMESTAMPING_RX_HARDWARE | 2175 SOF_TIMESTAMPING_RAW_HARDWARE; 2176 if (fep->ptp_clock) 2177 info->phc_index = ptp_clock_index(fep->ptp_clock); 2178 else 2179 info->phc_index = -1; 2180 2181 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2182 (1 << HWTSTAMP_TX_ON); 2183 2184 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2185 (1 << HWTSTAMP_FILTER_ALL); 2186 return 0; 2187 } else { 2188 return ethtool_op_get_ts_info(ndev, info); 2189 } 2190 } 2191 2192 #if !defined(CONFIG_M5272) 2193 2194 static void fec_enet_get_pauseparam(struct net_device *ndev, 2195 struct ethtool_pauseparam *pause) 2196 { 2197 struct fec_enet_private *fep = netdev_priv(ndev); 2198 2199 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2200 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2201 pause->rx_pause = pause->tx_pause; 2202 } 2203 2204 static int fec_enet_set_pauseparam(struct net_device *ndev, 2205 struct ethtool_pauseparam *pause) 2206 { 2207 struct fec_enet_private *fep = netdev_priv(ndev); 2208 2209 if (!ndev->phydev) 2210 return -ENODEV; 2211 2212 if (pause->tx_pause != pause->rx_pause) { 2213 netdev_info(ndev, 2214 "hardware only support enable/disable both tx and rx"); 2215 return -EINVAL; 2216 } 2217 2218 fep->pause_flag = 0; 2219 2220 /* tx pause must be same as rx pause */ 2221 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2222 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2223 2224 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2225 pause->autoneg); 2226 2227 if (pause->autoneg) { 2228 if (netif_running(ndev)) 2229 fec_stop(ndev); 2230 phy_start_aneg(ndev->phydev); 2231 } 2232 if (netif_running(ndev)) { 2233 napi_disable(&fep->napi); 2234 netif_tx_lock_bh(ndev); 2235 fec_restart(ndev); 2236 netif_tx_wake_all_queues(ndev); 2237 netif_tx_unlock_bh(ndev); 2238 napi_enable(&fep->napi); 2239 } 2240 2241 return 0; 2242 } 2243 2244 static const struct fec_stat { 2245 char name[ETH_GSTRING_LEN]; 2246 u16 offset; 2247 } fec_stats[] = { 2248 /* RMON TX */ 2249 { "tx_dropped", RMON_T_DROP }, 2250 { "tx_packets", RMON_T_PACKETS }, 2251 { "tx_broadcast", RMON_T_BC_PKT }, 2252 { "tx_multicast", RMON_T_MC_PKT }, 2253 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2254 { "tx_undersize", RMON_T_UNDERSIZE }, 2255 { "tx_oversize", RMON_T_OVERSIZE }, 2256 { "tx_fragment", RMON_T_FRAG }, 2257 { "tx_jabber", RMON_T_JAB }, 2258 { "tx_collision", RMON_T_COL }, 2259 { "tx_64byte", RMON_T_P64 }, 2260 { "tx_65to127byte", RMON_T_P65TO127 }, 2261 { "tx_128to255byte", RMON_T_P128TO255 }, 2262 { "tx_256to511byte", RMON_T_P256TO511 }, 2263 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2264 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2265 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2266 { "tx_octets", RMON_T_OCTETS }, 2267 2268 /* IEEE TX */ 2269 { "IEEE_tx_drop", IEEE_T_DROP }, 2270 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2271 { "IEEE_tx_1col", IEEE_T_1COL }, 2272 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2273 { "IEEE_tx_def", IEEE_T_DEF }, 2274 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2275 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2276 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2277 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2278 { "IEEE_tx_sqe", IEEE_T_SQE }, 2279 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2280 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2281 2282 /* RMON RX */ 2283 { "rx_packets", RMON_R_PACKETS }, 2284 { "rx_broadcast", RMON_R_BC_PKT }, 2285 { "rx_multicast", RMON_R_MC_PKT }, 2286 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2287 { "rx_undersize", RMON_R_UNDERSIZE }, 2288 { "rx_oversize", RMON_R_OVERSIZE }, 2289 { "rx_fragment", RMON_R_FRAG }, 2290 { "rx_jabber", RMON_R_JAB }, 2291 { "rx_64byte", RMON_R_P64 }, 2292 { "rx_65to127byte", RMON_R_P65TO127 }, 2293 { "rx_128to255byte", RMON_R_P128TO255 }, 2294 { "rx_256to511byte", RMON_R_P256TO511 }, 2295 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2296 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2297 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2298 { "rx_octets", RMON_R_OCTETS }, 2299 2300 /* IEEE RX */ 2301 { "IEEE_rx_drop", IEEE_R_DROP }, 2302 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2303 { "IEEE_rx_crc", IEEE_R_CRC }, 2304 { "IEEE_rx_align", IEEE_R_ALIGN }, 2305 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2306 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2307 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2308 }; 2309 2310 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2311 2312 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2313 { 2314 struct fec_enet_private *fep = netdev_priv(dev); 2315 int i; 2316 2317 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2318 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2319 } 2320 2321 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2322 struct ethtool_stats *stats, u64 *data) 2323 { 2324 struct fec_enet_private *fep = netdev_priv(dev); 2325 2326 if (netif_running(dev)) 2327 fec_enet_update_ethtool_stats(dev); 2328 2329 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2330 } 2331 2332 static void fec_enet_get_strings(struct net_device *netdev, 2333 u32 stringset, u8 *data) 2334 { 2335 int i; 2336 switch (stringset) { 2337 case ETH_SS_STATS: 2338 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2339 memcpy(data + i * ETH_GSTRING_LEN, 2340 fec_stats[i].name, ETH_GSTRING_LEN); 2341 break; 2342 } 2343 } 2344 2345 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2346 { 2347 switch (sset) { 2348 case ETH_SS_STATS: 2349 return ARRAY_SIZE(fec_stats); 2350 default: 2351 return -EOPNOTSUPP; 2352 } 2353 } 2354 2355 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2356 { 2357 struct fec_enet_private *fep = netdev_priv(dev); 2358 int i; 2359 2360 /* Disable MIB statistics counters */ 2361 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2362 2363 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2364 writel(0, fep->hwp + fec_stats[i].offset); 2365 2366 /* Don't disable MIB statistics counters */ 2367 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2368 } 2369 2370 #else /* !defined(CONFIG_M5272) */ 2371 #define FEC_STATS_SIZE 0 2372 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2373 { 2374 } 2375 2376 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2377 { 2378 } 2379 #endif /* !defined(CONFIG_M5272) */ 2380 2381 /* ITR clock source is enet system clock (clk_ahb). 2382 * TCTT unit is cycle_ns * 64 cycle 2383 * So, the ICTT value = X us / (cycle_ns * 64) 2384 */ 2385 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2386 { 2387 struct fec_enet_private *fep = netdev_priv(ndev); 2388 2389 return us * (fep->itr_clk_rate / 64000) / 1000; 2390 } 2391 2392 /* Set threshold for interrupt coalescing */ 2393 static void fec_enet_itr_coal_set(struct net_device *ndev) 2394 { 2395 struct fec_enet_private *fep = netdev_priv(ndev); 2396 int rx_itr, tx_itr; 2397 2398 /* Must be greater than zero to avoid unpredictable behavior */ 2399 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2400 !fep->tx_time_itr || !fep->tx_pkts_itr) 2401 return; 2402 2403 /* Select enet system clock as Interrupt Coalescing 2404 * timer Clock Source 2405 */ 2406 rx_itr = FEC_ITR_CLK_SEL; 2407 tx_itr = FEC_ITR_CLK_SEL; 2408 2409 /* set ICFT and ICTT */ 2410 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2411 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2412 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2413 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2414 2415 rx_itr |= FEC_ITR_EN; 2416 tx_itr |= FEC_ITR_EN; 2417 2418 writel(tx_itr, fep->hwp + FEC_TXIC0); 2419 writel(rx_itr, fep->hwp + FEC_RXIC0); 2420 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2421 writel(tx_itr, fep->hwp + FEC_TXIC1); 2422 writel(rx_itr, fep->hwp + FEC_RXIC1); 2423 writel(tx_itr, fep->hwp + FEC_TXIC2); 2424 writel(rx_itr, fep->hwp + FEC_RXIC2); 2425 } 2426 } 2427 2428 static int 2429 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2430 { 2431 struct fec_enet_private *fep = netdev_priv(ndev); 2432 2433 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2434 return -EOPNOTSUPP; 2435 2436 ec->rx_coalesce_usecs = fep->rx_time_itr; 2437 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2438 2439 ec->tx_coalesce_usecs = fep->tx_time_itr; 2440 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2441 2442 return 0; 2443 } 2444 2445 static int 2446 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2447 { 2448 struct fec_enet_private *fep = netdev_priv(ndev); 2449 unsigned int cycle; 2450 2451 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2452 return -EOPNOTSUPP; 2453 2454 if (ec->rx_max_coalesced_frames > 255) { 2455 pr_err("Rx coalesced frames exceed hardware limitation\n"); 2456 return -EINVAL; 2457 } 2458 2459 if (ec->tx_max_coalesced_frames > 255) { 2460 pr_err("Tx coalesced frame exceed hardware limitation\n"); 2461 return -EINVAL; 2462 } 2463 2464 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr); 2465 if (cycle > 0xFFFF) { 2466 pr_err("Rx coalesced usec exceed hardware limitation\n"); 2467 return -EINVAL; 2468 } 2469 2470 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr); 2471 if (cycle > 0xFFFF) { 2472 pr_err("Rx coalesced usec exceed hardware limitation\n"); 2473 return -EINVAL; 2474 } 2475 2476 fep->rx_time_itr = ec->rx_coalesce_usecs; 2477 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2478 2479 fep->tx_time_itr = ec->tx_coalesce_usecs; 2480 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2481 2482 fec_enet_itr_coal_set(ndev); 2483 2484 return 0; 2485 } 2486 2487 static void fec_enet_itr_coal_init(struct net_device *ndev) 2488 { 2489 struct ethtool_coalesce ec; 2490 2491 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2492 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2493 2494 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2495 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2496 2497 fec_enet_set_coalesce(ndev, &ec); 2498 } 2499 2500 static int fec_enet_get_tunable(struct net_device *netdev, 2501 const struct ethtool_tunable *tuna, 2502 void *data) 2503 { 2504 struct fec_enet_private *fep = netdev_priv(netdev); 2505 int ret = 0; 2506 2507 switch (tuna->id) { 2508 case ETHTOOL_RX_COPYBREAK: 2509 *(u32 *)data = fep->rx_copybreak; 2510 break; 2511 default: 2512 ret = -EINVAL; 2513 break; 2514 } 2515 2516 return ret; 2517 } 2518 2519 static int fec_enet_set_tunable(struct net_device *netdev, 2520 const struct ethtool_tunable *tuna, 2521 const void *data) 2522 { 2523 struct fec_enet_private *fep = netdev_priv(netdev); 2524 int ret = 0; 2525 2526 switch (tuna->id) { 2527 case ETHTOOL_RX_COPYBREAK: 2528 fep->rx_copybreak = *(u32 *)data; 2529 break; 2530 default: 2531 ret = -EINVAL; 2532 break; 2533 } 2534 2535 return ret; 2536 } 2537 2538 static void 2539 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2540 { 2541 struct fec_enet_private *fep = netdev_priv(ndev); 2542 2543 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2544 wol->supported = WAKE_MAGIC; 2545 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2546 } else { 2547 wol->supported = wol->wolopts = 0; 2548 } 2549 } 2550 2551 static int 2552 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2553 { 2554 struct fec_enet_private *fep = netdev_priv(ndev); 2555 2556 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2557 return -EINVAL; 2558 2559 if (wol->wolopts & ~WAKE_MAGIC) 2560 return -EINVAL; 2561 2562 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2563 if (device_may_wakeup(&ndev->dev)) { 2564 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2565 if (fep->irq[0] > 0) 2566 enable_irq_wake(fep->irq[0]); 2567 } else { 2568 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2569 if (fep->irq[0] > 0) 2570 disable_irq_wake(fep->irq[0]); 2571 } 2572 2573 return 0; 2574 } 2575 2576 static const struct ethtool_ops fec_enet_ethtool_ops = { 2577 .get_drvinfo = fec_enet_get_drvinfo, 2578 .get_regs_len = fec_enet_get_regs_len, 2579 .get_regs = fec_enet_get_regs, 2580 .nway_reset = phy_ethtool_nway_reset, 2581 .get_link = ethtool_op_get_link, 2582 .get_coalesce = fec_enet_get_coalesce, 2583 .set_coalesce = fec_enet_set_coalesce, 2584 #ifndef CONFIG_M5272 2585 .get_pauseparam = fec_enet_get_pauseparam, 2586 .set_pauseparam = fec_enet_set_pauseparam, 2587 .get_strings = fec_enet_get_strings, 2588 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2589 .get_sset_count = fec_enet_get_sset_count, 2590 #endif 2591 .get_ts_info = fec_enet_get_ts_info, 2592 .get_tunable = fec_enet_get_tunable, 2593 .set_tunable = fec_enet_set_tunable, 2594 .get_wol = fec_enet_get_wol, 2595 .set_wol = fec_enet_set_wol, 2596 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2597 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2598 }; 2599 2600 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2601 { 2602 struct fec_enet_private *fep = netdev_priv(ndev); 2603 struct phy_device *phydev = ndev->phydev; 2604 2605 if (!netif_running(ndev)) 2606 return -EINVAL; 2607 2608 if (!phydev) 2609 return -ENODEV; 2610 2611 if (fep->bufdesc_ex) { 2612 if (cmd == SIOCSHWTSTAMP) 2613 return fec_ptp_set(ndev, rq); 2614 if (cmd == SIOCGHWTSTAMP) 2615 return fec_ptp_get(ndev, rq); 2616 } 2617 2618 return phy_mii_ioctl(phydev, rq, cmd); 2619 } 2620 2621 static void fec_enet_free_buffers(struct net_device *ndev) 2622 { 2623 struct fec_enet_private *fep = netdev_priv(ndev); 2624 unsigned int i; 2625 struct sk_buff *skb; 2626 struct bufdesc *bdp; 2627 struct fec_enet_priv_tx_q *txq; 2628 struct fec_enet_priv_rx_q *rxq; 2629 unsigned int q; 2630 2631 for (q = 0; q < fep->num_rx_queues; q++) { 2632 rxq = fep->rx_queue[q]; 2633 bdp = rxq->bd.base; 2634 for (i = 0; i < rxq->bd.ring_size; i++) { 2635 skb = rxq->rx_skbuff[i]; 2636 rxq->rx_skbuff[i] = NULL; 2637 if (skb) { 2638 dma_unmap_single(&fep->pdev->dev, 2639 fec32_to_cpu(bdp->cbd_bufaddr), 2640 FEC_ENET_RX_FRSIZE - fep->rx_align, 2641 DMA_FROM_DEVICE); 2642 dev_kfree_skb(skb); 2643 } 2644 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2645 } 2646 } 2647 2648 for (q = 0; q < fep->num_tx_queues; q++) { 2649 txq = fep->tx_queue[q]; 2650 bdp = txq->bd.base; 2651 for (i = 0; i < txq->bd.ring_size; i++) { 2652 kfree(txq->tx_bounce[i]); 2653 txq->tx_bounce[i] = NULL; 2654 skb = txq->tx_skbuff[i]; 2655 txq->tx_skbuff[i] = NULL; 2656 dev_kfree_skb(skb); 2657 } 2658 } 2659 } 2660 2661 static void fec_enet_free_queue(struct net_device *ndev) 2662 { 2663 struct fec_enet_private *fep = netdev_priv(ndev); 2664 int i; 2665 struct fec_enet_priv_tx_q *txq; 2666 2667 for (i = 0; i < fep->num_tx_queues; i++) 2668 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2669 txq = fep->tx_queue[i]; 2670 dma_free_coherent(&fep->pdev->dev, 2671 txq->bd.ring_size * TSO_HEADER_SIZE, 2672 txq->tso_hdrs, 2673 txq->tso_hdrs_dma); 2674 } 2675 2676 for (i = 0; i < fep->num_rx_queues; i++) 2677 kfree(fep->rx_queue[i]); 2678 for (i = 0; i < fep->num_tx_queues; i++) 2679 kfree(fep->tx_queue[i]); 2680 } 2681 2682 static int fec_enet_alloc_queue(struct net_device *ndev) 2683 { 2684 struct fec_enet_private *fep = netdev_priv(ndev); 2685 int i; 2686 int ret = 0; 2687 struct fec_enet_priv_tx_q *txq; 2688 2689 for (i = 0; i < fep->num_tx_queues; i++) { 2690 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2691 if (!txq) { 2692 ret = -ENOMEM; 2693 goto alloc_failed; 2694 } 2695 2696 fep->tx_queue[i] = txq; 2697 txq->bd.ring_size = TX_RING_SIZE; 2698 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2699 2700 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2701 txq->tx_wake_threshold = 2702 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2703 2704 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2705 txq->bd.ring_size * TSO_HEADER_SIZE, 2706 &txq->tso_hdrs_dma, 2707 GFP_KERNEL); 2708 if (!txq->tso_hdrs) { 2709 ret = -ENOMEM; 2710 goto alloc_failed; 2711 } 2712 } 2713 2714 for (i = 0; i < fep->num_rx_queues; i++) { 2715 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2716 GFP_KERNEL); 2717 if (!fep->rx_queue[i]) { 2718 ret = -ENOMEM; 2719 goto alloc_failed; 2720 } 2721 2722 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2723 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2724 } 2725 return ret; 2726 2727 alloc_failed: 2728 fec_enet_free_queue(ndev); 2729 return ret; 2730 } 2731 2732 static int 2733 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2734 { 2735 struct fec_enet_private *fep = netdev_priv(ndev); 2736 unsigned int i; 2737 struct sk_buff *skb; 2738 struct bufdesc *bdp; 2739 struct fec_enet_priv_rx_q *rxq; 2740 2741 rxq = fep->rx_queue[queue]; 2742 bdp = rxq->bd.base; 2743 for (i = 0; i < rxq->bd.ring_size; i++) { 2744 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2745 if (!skb) 2746 goto err_alloc; 2747 2748 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2749 dev_kfree_skb(skb); 2750 goto err_alloc; 2751 } 2752 2753 rxq->rx_skbuff[i] = skb; 2754 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2755 2756 if (fep->bufdesc_ex) { 2757 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2758 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2759 } 2760 2761 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2762 } 2763 2764 /* Set the last buffer to wrap. */ 2765 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2766 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2767 return 0; 2768 2769 err_alloc: 2770 fec_enet_free_buffers(ndev); 2771 return -ENOMEM; 2772 } 2773 2774 static int 2775 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2776 { 2777 struct fec_enet_private *fep = netdev_priv(ndev); 2778 unsigned int i; 2779 struct bufdesc *bdp; 2780 struct fec_enet_priv_tx_q *txq; 2781 2782 txq = fep->tx_queue[queue]; 2783 bdp = txq->bd.base; 2784 for (i = 0; i < txq->bd.ring_size; i++) { 2785 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2786 if (!txq->tx_bounce[i]) 2787 goto err_alloc; 2788 2789 bdp->cbd_sc = cpu_to_fec16(0); 2790 bdp->cbd_bufaddr = cpu_to_fec32(0); 2791 2792 if (fep->bufdesc_ex) { 2793 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2794 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2795 } 2796 2797 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2798 } 2799 2800 /* Set the last buffer to wrap. */ 2801 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2802 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2803 2804 return 0; 2805 2806 err_alloc: 2807 fec_enet_free_buffers(ndev); 2808 return -ENOMEM; 2809 } 2810 2811 static int fec_enet_alloc_buffers(struct net_device *ndev) 2812 { 2813 struct fec_enet_private *fep = netdev_priv(ndev); 2814 unsigned int i; 2815 2816 for (i = 0; i < fep->num_rx_queues; i++) 2817 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2818 return -ENOMEM; 2819 2820 for (i = 0; i < fep->num_tx_queues; i++) 2821 if (fec_enet_alloc_txq_buffers(ndev, i)) 2822 return -ENOMEM; 2823 return 0; 2824 } 2825 2826 static int 2827 fec_enet_open(struct net_device *ndev) 2828 { 2829 struct fec_enet_private *fep = netdev_priv(ndev); 2830 int ret; 2831 bool reset_again; 2832 2833 ret = pm_runtime_get_sync(&fep->pdev->dev); 2834 if (ret < 0) 2835 return ret; 2836 2837 pinctrl_pm_select_default_state(&fep->pdev->dev); 2838 ret = fec_enet_clk_enable(ndev, true); 2839 if (ret) 2840 goto clk_enable; 2841 2842 /* During the first fec_enet_open call the PHY isn't probed at this 2843 * point. Therefore the phy_reset_after_clk_enable() call within 2844 * fec_enet_clk_enable() fails. As we need this reset in order to be 2845 * sure the PHY is working correctly we check if we need to reset again 2846 * later when the PHY is probed 2847 */ 2848 if (ndev->phydev && ndev->phydev->drv) 2849 reset_again = false; 2850 else 2851 reset_again = true; 2852 2853 /* I should reset the ring buffers here, but I don't yet know 2854 * a simple way to do that. 2855 */ 2856 2857 ret = fec_enet_alloc_buffers(ndev); 2858 if (ret) 2859 goto err_enet_alloc; 2860 2861 /* Init MAC prior to mii bus probe */ 2862 fec_restart(ndev); 2863 2864 /* Probe and connect to PHY when open the interface */ 2865 ret = fec_enet_mii_probe(ndev); 2866 if (ret) 2867 goto err_enet_mii_probe; 2868 2869 /* Call phy_reset_after_clk_enable() again if it failed during 2870 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 2871 */ 2872 if (reset_again) 2873 phy_reset_after_clk_enable(ndev->phydev); 2874 2875 if (fep->quirks & FEC_QUIRK_ERR006687) 2876 imx6q_cpuidle_fec_irqs_used(); 2877 2878 napi_enable(&fep->napi); 2879 phy_start(ndev->phydev); 2880 netif_tx_start_all_queues(ndev); 2881 2882 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 2883 FEC_WOL_FLAG_ENABLE); 2884 2885 return 0; 2886 2887 err_enet_mii_probe: 2888 fec_enet_free_buffers(ndev); 2889 err_enet_alloc: 2890 fec_enet_clk_enable(ndev, false); 2891 clk_enable: 2892 pm_runtime_mark_last_busy(&fep->pdev->dev); 2893 pm_runtime_put_autosuspend(&fep->pdev->dev); 2894 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2895 return ret; 2896 } 2897 2898 static int 2899 fec_enet_close(struct net_device *ndev) 2900 { 2901 struct fec_enet_private *fep = netdev_priv(ndev); 2902 2903 phy_stop(ndev->phydev); 2904 2905 if (netif_device_present(ndev)) { 2906 napi_disable(&fep->napi); 2907 netif_tx_disable(ndev); 2908 fec_stop(ndev); 2909 } 2910 2911 phy_disconnect(ndev->phydev); 2912 2913 if (fep->quirks & FEC_QUIRK_ERR006687) 2914 imx6q_cpuidle_fec_irqs_unused(); 2915 2916 fec_enet_update_ethtool_stats(ndev); 2917 2918 fec_enet_clk_enable(ndev, false); 2919 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2920 pm_runtime_mark_last_busy(&fep->pdev->dev); 2921 pm_runtime_put_autosuspend(&fep->pdev->dev); 2922 2923 fec_enet_free_buffers(ndev); 2924 2925 return 0; 2926 } 2927 2928 /* Set or clear the multicast filter for this adaptor. 2929 * Skeleton taken from sunlance driver. 2930 * The CPM Ethernet implementation allows Multicast as well as individual 2931 * MAC address filtering. Some of the drivers check to make sure it is 2932 * a group multicast address, and discard those that are not. I guess I 2933 * will do the same for now, but just remove the test if you want 2934 * individual filtering as well (do the upper net layers want or support 2935 * this kind of feature?). 2936 */ 2937 2938 #define FEC_HASH_BITS 6 /* #bits in hash */ 2939 2940 static void set_multicast_list(struct net_device *ndev) 2941 { 2942 struct fec_enet_private *fep = netdev_priv(ndev); 2943 struct netdev_hw_addr *ha; 2944 unsigned int crc, tmp; 2945 unsigned char hash; 2946 unsigned int hash_high = 0, hash_low = 0; 2947 2948 if (ndev->flags & IFF_PROMISC) { 2949 tmp = readl(fep->hwp + FEC_R_CNTRL); 2950 tmp |= 0x8; 2951 writel(tmp, fep->hwp + FEC_R_CNTRL); 2952 return; 2953 } 2954 2955 tmp = readl(fep->hwp + FEC_R_CNTRL); 2956 tmp &= ~0x8; 2957 writel(tmp, fep->hwp + FEC_R_CNTRL); 2958 2959 if (ndev->flags & IFF_ALLMULTI) { 2960 /* Catch all multicast addresses, so set the 2961 * filter to all 1's 2962 */ 2963 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2964 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2965 2966 return; 2967 } 2968 2969 /* Add the addresses in hash register */ 2970 netdev_for_each_mc_addr(ha, ndev) { 2971 /* calculate crc32 value of mac address */ 2972 crc = ether_crc_le(ndev->addr_len, ha->addr); 2973 2974 /* only upper 6 bits (FEC_HASH_BITS) are used 2975 * which point to specific bit in the hash registers 2976 */ 2977 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 2978 2979 if (hash > 31) 2980 hash_high |= 1 << (hash - 32); 2981 else 2982 hash_low |= 1 << hash; 2983 } 2984 2985 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2986 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2987 } 2988 2989 /* Set a MAC change in hardware. */ 2990 static int 2991 fec_set_mac_address(struct net_device *ndev, void *p) 2992 { 2993 struct fec_enet_private *fep = netdev_priv(ndev); 2994 struct sockaddr *addr = p; 2995 2996 if (addr) { 2997 if (!is_valid_ether_addr(addr->sa_data)) 2998 return -EADDRNOTAVAIL; 2999 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3000 } 3001 3002 /* Add netif status check here to avoid system hang in below case: 3003 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3004 * After ethx down, fec all clocks are gated off and then register 3005 * access causes system hang. 3006 */ 3007 if (!netif_running(ndev)) 3008 return 0; 3009 3010 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3011 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3012 fep->hwp + FEC_ADDR_LOW); 3013 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3014 fep->hwp + FEC_ADDR_HIGH); 3015 return 0; 3016 } 3017 3018 #ifdef CONFIG_NET_POLL_CONTROLLER 3019 /** 3020 * fec_poll_controller - FEC Poll controller function 3021 * @dev: The FEC network adapter 3022 * 3023 * Polled functionality used by netconsole and others in non interrupt mode 3024 * 3025 */ 3026 static void fec_poll_controller(struct net_device *dev) 3027 { 3028 int i; 3029 struct fec_enet_private *fep = netdev_priv(dev); 3030 3031 for (i = 0; i < FEC_IRQ_NUM; i++) { 3032 if (fep->irq[i] > 0) { 3033 disable_irq(fep->irq[i]); 3034 fec_enet_interrupt(fep->irq[i], dev); 3035 enable_irq(fep->irq[i]); 3036 } 3037 } 3038 } 3039 #endif 3040 3041 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3042 netdev_features_t features) 3043 { 3044 struct fec_enet_private *fep = netdev_priv(netdev); 3045 netdev_features_t changed = features ^ netdev->features; 3046 3047 netdev->features = features; 3048 3049 /* Receive checksum has been changed */ 3050 if (changed & NETIF_F_RXCSUM) { 3051 if (features & NETIF_F_RXCSUM) 3052 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3053 else 3054 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3055 } 3056 } 3057 3058 static int fec_set_features(struct net_device *netdev, 3059 netdev_features_t features) 3060 { 3061 struct fec_enet_private *fep = netdev_priv(netdev); 3062 netdev_features_t changed = features ^ netdev->features; 3063 3064 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3065 napi_disable(&fep->napi); 3066 netif_tx_lock_bh(netdev); 3067 fec_stop(netdev); 3068 fec_enet_set_netdev_features(netdev, features); 3069 fec_restart(netdev); 3070 netif_tx_wake_all_queues(netdev); 3071 netif_tx_unlock_bh(netdev); 3072 napi_enable(&fep->napi); 3073 } else { 3074 fec_enet_set_netdev_features(netdev, features); 3075 } 3076 3077 return 0; 3078 } 3079 3080 static const struct net_device_ops fec_netdev_ops = { 3081 .ndo_open = fec_enet_open, 3082 .ndo_stop = fec_enet_close, 3083 .ndo_start_xmit = fec_enet_start_xmit, 3084 .ndo_set_rx_mode = set_multicast_list, 3085 .ndo_validate_addr = eth_validate_addr, 3086 .ndo_tx_timeout = fec_timeout, 3087 .ndo_set_mac_address = fec_set_mac_address, 3088 .ndo_do_ioctl = fec_enet_ioctl, 3089 #ifdef CONFIG_NET_POLL_CONTROLLER 3090 .ndo_poll_controller = fec_poll_controller, 3091 #endif 3092 .ndo_set_features = fec_set_features, 3093 }; 3094 3095 static const unsigned short offset_des_active_rxq[] = { 3096 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3097 }; 3098 3099 static const unsigned short offset_des_active_txq[] = { 3100 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3101 }; 3102 3103 /* 3104 * XXX: We need to clean up on failure exits here. 3105 * 3106 */ 3107 static int fec_enet_init(struct net_device *ndev) 3108 { 3109 struct fec_enet_private *fep = netdev_priv(ndev); 3110 struct bufdesc *cbd_base; 3111 dma_addr_t bd_dma; 3112 int bd_size; 3113 unsigned int i; 3114 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3115 sizeof(struct bufdesc); 3116 unsigned dsize_log2 = __fls(dsize); 3117 int ret; 3118 3119 WARN_ON(dsize != (1 << dsize_log2)); 3120 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3121 fep->rx_align = 0xf; 3122 fep->tx_align = 0xf; 3123 #else 3124 fep->rx_align = 0x3; 3125 fep->tx_align = 0x3; 3126 #endif 3127 3128 /* Check mask of the streaming and coherent API */ 3129 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3130 if (ret < 0) { 3131 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3132 return ret; 3133 } 3134 3135 fec_enet_alloc_queue(ndev); 3136 3137 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3138 3139 /* Allocate memory for buffer descriptors. */ 3140 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3141 GFP_KERNEL); 3142 if (!cbd_base) { 3143 return -ENOMEM; 3144 } 3145 3146 memset(cbd_base, 0, bd_size); 3147 3148 /* Get the Ethernet address */ 3149 fec_get_mac(ndev); 3150 /* make sure MAC we just acquired is programmed into the hw */ 3151 fec_set_mac_address(ndev, NULL); 3152 3153 /* Set receive and transmit descriptor base. */ 3154 for (i = 0; i < fep->num_rx_queues; i++) { 3155 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3156 unsigned size = dsize * rxq->bd.ring_size; 3157 3158 rxq->bd.qid = i; 3159 rxq->bd.base = cbd_base; 3160 rxq->bd.cur = cbd_base; 3161 rxq->bd.dma = bd_dma; 3162 rxq->bd.dsize = dsize; 3163 rxq->bd.dsize_log2 = dsize_log2; 3164 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3165 bd_dma += size; 3166 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3167 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3168 } 3169 3170 for (i = 0; i < fep->num_tx_queues; i++) { 3171 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3172 unsigned size = dsize * txq->bd.ring_size; 3173 3174 txq->bd.qid = i; 3175 txq->bd.base = cbd_base; 3176 txq->bd.cur = cbd_base; 3177 txq->bd.dma = bd_dma; 3178 txq->bd.dsize = dsize; 3179 txq->bd.dsize_log2 = dsize_log2; 3180 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3181 bd_dma += size; 3182 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3183 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3184 } 3185 3186 3187 /* The FEC Ethernet specific entries in the device structure */ 3188 ndev->watchdog_timeo = TX_TIMEOUT; 3189 ndev->netdev_ops = &fec_netdev_ops; 3190 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3191 3192 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3193 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3194 3195 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3196 /* enable hw VLAN support */ 3197 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3198 3199 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3200 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3201 3202 /* enable hw accelerator */ 3203 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3204 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3205 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3206 } 3207 3208 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3209 fep->tx_align = 0; 3210 fep->rx_align = 0x3f; 3211 } 3212 3213 ndev->hw_features = ndev->features; 3214 3215 fec_restart(ndev); 3216 3217 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3218 fec_enet_clear_ethtool_stats(ndev); 3219 else 3220 fec_enet_update_ethtool_stats(ndev); 3221 3222 return 0; 3223 } 3224 3225 #ifdef CONFIG_OF 3226 static int fec_reset_phy(struct platform_device *pdev) 3227 { 3228 int err, phy_reset; 3229 bool active_high = false; 3230 int msec = 1, phy_post_delay = 0; 3231 struct device_node *np = pdev->dev.of_node; 3232 3233 if (!np) 3234 return 0; 3235 3236 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3237 /* A sane reset duration should not be longer than 1s */ 3238 if (!err && msec > 1000) 3239 msec = 1; 3240 3241 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3242 if (phy_reset == -EPROBE_DEFER) 3243 return phy_reset; 3244 else if (!gpio_is_valid(phy_reset)) 3245 return 0; 3246 3247 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3248 /* valid reset duration should be less than 1s */ 3249 if (!err && phy_post_delay > 1000) 3250 return -EINVAL; 3251 3252 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3253 3254 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3255 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3256 "phy-reset"); 3257 if (err) { 3258 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3259 return err; 3260 } 3261 3262 if (msec > 20) 3263 msleep(msec); 3264 else 3265 usleep_range(msec * 1000, msec * 1000 + 1000); 3266 3267 gpio_set_value_cansleep(phy_reset, !active_high); 3268 3269 if (!phy_post_delay) 3270 return 0; 3271 3272 if (phy_post_delay > 20) 3273 msleep(phy_post_delay); 3274 else 3275 usleep_range(phy_post_delay * 1000, 3276 phy_post_delay * 1000 + 1000); 3277 3278 return 0; 3279 } 3280 #else /* CONFIG_OF */ 3281 static int fec_reset_phy(struct platform_device *pdev) 3282 { 3283 /* 3284 * In case of platform probe, the reset has been done 3285 * by machine code. 3286 */ 3287 return 0; 3288 } 3289 #endif /* CONFIG_OF */ 3290 3291 static void 3292 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3293 { 3294 struct device_node *np = pdev->dev.of_node; 3295 3296 *num_tx = *num_rx = 1; 3297 3298 if (!np || !of_device_is_available(np)) 3299 return; 3300 3301 /* parse the num of tx and rx queues */ 3302 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3303 3304 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3305 3306 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3307 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3308 *num_tx); 3309 *num_tx = 1; 3310 return; 3311 } 3312 3313 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3314 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3315 *num_rx); 3316 *num_rx = 1; 3317 return; 3318 } 3319 3320 } 3321 3322 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3323 { 3324 int irq_cnt = platform_irq_count(pdev); 3325 3326 if (irq_cnt > FEC_IRQ_NUM) 3327 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3328 else if (irq_cnt == 2) 3329 irq_cnt = 1; /* last for pps */ 3330 else if (irq_cnt <= 0) 3331 irq_cnt = 1; /* At least 1 irq is needed */ 3332 return irq_cnt; 3333 } 3334 3335 static int 3336 fec_probe(struct platform_device *pdev) 3337 { 3338 struct fec_enet_private *fep; 3339 struct fec_platform_data *pdata; 3340 struct net_device *ndev; 3341 int i, irq, ret = 0; 3342 struct resource *r; 3343 const struct of_device_id *of_id; 3344 static int dev_id; 3345 struct device_node *np = pdev->dev.of_node, *phy_node; 3346 int num_tx_qs; 3347 int num_rx_qs; 3348 char irq_name[8]; 3349 int irq_cnt; 3350 3351 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3352 3353 /* Init network device */ 3354 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3355 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3356 if (!ndev) 3357 return -ENOMEM; 3358 3359 SET_NETDEV_DEV(ndev, &pdev->dev); 3360 3361 /* setup board info structure */ 3362 fep = netdev_priv(ndev); 3363 3364 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3365 if (of_id) 3366 pdev->id_entry = of_id->data; 3367 fep->quirks = pdev->id_entry->driver_data; 3368 3369 fep->netdev = ndev; 3370 fep->num_rx_queues = num_rx_qs; 3371 fep->num_tx_queues = num_tx_qs; 3372 3373 #if !defined(CONFIG_M5272) 3374 /* default enable pause frame auto negotiation */ 3375 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3376 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3377 #endif 3378 3379 /* Select default pin state */ 3380 pinctrl_pm_select_default_state(&pdev->dev); 3381 3382 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3383 fep->hwp = devm_ioremap_resource(&pdev->dev, r); 3384 if (IS_ERR(fep->hwp)) { 3385 ret = PTR_ERR(fep->hwp); 3386 goto failed_ioremap; 3387 } 3388 3389 fep->pdev = pdev; 3390 fep->dev_id = dev_id++; 3391 3392 platform_set_drvdata(pdev, ndev); 3393 3394 if ((of_machine_is_compatible("fsl,imx6q") || 3395 of_machine_is_compatible("fsl,imx6dl")) && 3396 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3397 fep->quirks |= FEC_QUIRK_ERR006687; 3398 3399 if (of_get_property(np, "fsl,magic-packet", NULL)) 3400 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3401 3402 phy_node = of_parse_phandle(np, "phy-handle", 0); 3403 if (!phy_node && of_phy_is_fixed_link(np)) { 3404 ret = of_phy_register_fixed_link(np); 3405 if (ret < 0) { 3406 dev_err(&pdev->dev, 3407 "broken fixed-link specification\n"); 3408 goto failed_phy; 3409 } 3410 phy_node = of_node_get(np); 3411 } 3412 fep->phy_node = phy_node; 3413 3414 ret = of_get_phy_mode(pdev->dev.of_node); 3415 if (ret < 0) { 3416 pdata = dev_get_platdata(&pdev->dev); 3417 if (pdata) 3418 fep->phy_interface = pdata->phy; 3419 else 3420 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3421 } else { 3422 fep->phy_interface = ret; 3423 } 3424 3425 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3426 if (IS_ERR(fep->clk_ipg)) { 3427 ret = PTR_ERR(fep->clk_ipg); 3428 goto failed_clk; 3429 } 3430 3431 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3432 if (IS_ERR(fep->clk_ahb)) { 3433 ret = PTR_ERR(fep->clk_ahb); 3434 goto failed_clk; 3435 } 3436 3437 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3438 3439 /* enet_out is optional, depends on board */ 3440 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3441 if (IS_ERR(fep->clk_enet_out)) 3442 fep->clk_enet_out = NULL; 3443 3444 fep->ptp_clk_on = false; 3445 mutex_init(&fep->ptp_clk_mutex); 3446 3447 /* clk_ref is optional, depends on board */ 3448 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3449 if (IS_ERR(fep->clk_ref)) 3450 fep->clk_ref = NULL; 3451 3452 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3453 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3454 if (IS_ERR(fep->clk_ptp)) { 3455 fep->clk_ptp = NULL; 3456 fep->bufdesc_ex = false; 3457 } 3458 3459 ret = fec_enet_clk_enable(ndev, true); 3460 if (ret) 3461 goto failed_clk; 3462 3463 ret = clk_prepare_enable(fep->clk_ipg); 3464 if (ret) 3465 goto failed_clk_ipg; 3466 ret = clk_prepare_enable(fep->clk_ahb); 3467 if (ret) 3468 goto failed_clk_ahb; 3469 3470 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3471 if (!IS_ERR(fep->reg_phy)) { 3472 ret = regulator_enable(fep->reg_phy); 3473 if (ret) { 3474 dev_err(&pdev->dev, 3475 "Failed to enable phy regulator: %d\n", ret); 3476 clk_disable_unprepare(fep->clk_ipg); 3477 goto failed_regulator; 3478 } 3479 } else { 3480 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3481 ret = -EPROBE_DEFER; 3482 goto failed_regulator; 3483 } 3484 fep->reg_phy = NULL; 3485 } 3486 3487 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3488 pm_runtime_use_autosuspend(&pdev->dev); 3489 pm_runtime_get_noresume(&pdev->dev); 3490 pm_runtime_set_active(&pdev->dev); 3491 pm_runtime_enable(&pdev->dev); 3492 3493 ret = fec_reset_phy(pdev); 3494 if (ret) 3495 goto failed_reset; 3496 3497 irq_cnt = fec_enet_get_irq_cnt(pdev); 3498 if (fep->bufdesc_ex) 3499 fec_ptp_init(pdev, irq_cnt); 3500 3501 ret = fec_enet_init(ndev); 3502 if (ret) 3503 goto failed_init; 3504 3505 for (i = 0; i < irq_cnt; i++) { 3506 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3507 irq = platform_get_irq_byname(pdev, irq_name); 3508 if (irq < 0) 3509 irq = platform_get_irq(pdev, i); 3510 if (irq < 0) { 3511 ret = irq; 3512 goto failed_irq; 3513 } 3514 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3515 0, pdev->name, ndev); 3516 if (ret) 3517 goto failed_irq; 3518 3519 fep->irq[i] = irq; 3520 } 3521 3522 init_completion(&fep->mdio_done); 3523 ret = fec_enet_mii_init(pdev); 3524 if (ret) 3525 goto failed_mii_init; 3526 3527 /* Carrier starts down, phylib will bring it up */ 3528 netif_carrier_off(ndev); 3529 fec_enet_clk_enable(ndev, false); 3530 pinctrl_pm_select_sleep_state(&pdev->dev); 3531 3532 ret = register_netdev(ndev); 3533 if (ret) 3534 goto failed_register; 3535 3536 device_init_wakeup(&ndev->dev, fep->wol_flag & 3537 FEC_WOL_HAS_MAGIC_PACKET); 3538 3539 if (fep->bufdesc_ex && fep->ptp_clock) 3540 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3541 3542 fep->rx_copybreak = COPYBREAK_DEFAULT; 3543 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3544 3545 pm_runtime_mark_last_busy(&pdev->dev); 3546 pm_runtime_put_autosuspend(&pdev->dev); 3547 3548 return 0; 3549 3550 failed_register: 3551 fec_enet_mii_remove(fep); 3552 failed_mii_init: 3553 failed_irq: 3554 failed_init: 3555 fec_ptp_stop(pdev); 3556 if (fep->reg_phy) 3557 regulator_disable(fep->reg_phy); 3558 failed_reset: 3559 pm_runtime_put(&pdev->dev); 3560 pm_runtime_disable(&pdev->dev); 3561 failed_regulator: 3562 clk_disable_unprepare(fep->clk_ahb); 3563 failed_clk_ahb: 3564 clk_disable_unprepare(fep->clk_ipg); 3565 failed_clk_ipg: 3566 fec_enet_clk_enable(ndev, false); 3567 failed_clk: 3568 if (of_phy_is_fixed_link(np)) 3569 of_phy_deregister_fixed_link(np); 3570 of_node_put(phy_node); 3571 failed_phy: 3572 dev_id--; 3573 failed_ioremap: 3574 free_netdev(ndev); 3575 3576 return ret; 3577 } 3578 3579 static int 3580 fec_drv_remove(struct platform_device *pdev) 3581 { 3582 struct net_device *ndev = platform_get_drvdata(pdev); 3583 struct fec_enet_private *fep = netdev_priv(ndev); 3584 struct device_node *np = pdev->dev.of_node; 3585 3586 cancel_work_sync(&fep->tx_timeout_work); 3587 fec_ptp_stop(pdev); 3588 unregister_netdev(ndev); 3589 fec_enet_mii_remove(fep); 3590 if (fep->reg_phy) 3591 regulator_disable(fep->reg_phy); 3592 pm_runtime_put(&pdev->dev); 3593 pm_runtime_disable(&pdev->dev); 3594 if (of_phy_is_fixed_link(np)) 3595 of_phy_deregister_fixed_link(np); 3596 of_node_put(fep->phy_node); 3597 free_netdev(ndev); 3598 3599 return 0; 3600 } 3601 3602 static int __maybe_unused fec_suspend(struct device *dev) 3603 { 3604 struct net_device *ndev = dev_get_drvdata(dev); 3605 struct fec_enet_private *fep = netdev_priv(ndev); 3606 3607 rtnl_lock(); 3608 if (netif_running(ndev)) { 3609 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3610 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3611 phy_stop(ndev->phydev); 3612 napi_disable(&fep->napi); 3613 netif_tx_lock_bh(ndev); 3614 netif_device_detach(ndev); 3615 netif_tx_unlock_bh(ndev); 3616 fec_stop(ndev); 3617 fec_enet_clk_enable(ndev, false); 3618 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3619 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3620 } 3621 rtnl_unlock(); 3622 3623 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3624 regulator_disable(fep->reg_phy); 3625 3626 /* SOC supply clock to phy, when clock is disabled, phy link down 3627 * SOC control phy regulator, when regulator is disabled, phy link down 3628 */ 3629 if (fep->clk_enet_out || fep->reg_phy) 3630 fep->link = 0; 3631 3632 return 0; 3633 } 3634 3635 static int __maybe_unused fec_resume(struct device *dev) 3636 { 3637 struct net_device *ndev = dev_get_drvdata(dev); 3638 struct fec_enet_private *fep = netdev_priv(ndev); 3639 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 3640 int ret; 3641 int val; 3642 3643 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3644 ret = regulator_enable(fep->reg_phy); 3645 if (ret) 3646 return ret; 3647 } 3648 3649 rtnl_lock(); 3650 if (netif_running(ndev)) { 3651 ret = fec_enet_clk_enable(ndev, true); 3652 if (ret) { 3653 rtnl_unlock(); 3654 goto failed_clk; 3655 } 3656 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3657 if (pdata && pdata->sleep_mode_enable) 3658 pdata->sleep_mode_enable(false); 3659 val = readl(fep->hwp + FEC_ECNTRL); 3660 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3661 writel(val, fep->hwp + FEC_ECNTRL); 3662 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3663 } else { 3664 pinctrl_pm_select_default_state(&fep->pdev->dev); 3665 } 3666 fec_restart(ndev); 3667 netif_tx_lock_bh(ndev); 3668 netif_device_attach(ndev); 3669 netif_tx_unlock_bh(ndev); 3670 napi_enable(&fep->napi); 3671 phy_start(ndev->phydev); 3672 } 3673 rtnl_unlock(); 3674 3675 return 0; 3676 3677 failed_clk: 3678 if (fep->reg_phy) 3679 regulator_disable(fep->reg_phy); 3680 return ret; 3681 } 3682 3683 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3684 { 3685 struct net_device *ndev = dev_get_drvdata(dev); 3686 struct fec_enet_private *fep = netdev_priv(ndev); 3687 3688 clk_disable_unprepare(fep->clk_ahb); 3689 clk_disable_unprepare(fep->clk_ipg); 3690 3691 return 0; 3692 } 3693 3694 static int __maybe_unused fec_runtime_resume(struct device *dev) 3695 { 3696 struct net_device *ndev = dev_get_drvdata(dev); 3697 struct fec_enet_private *fep = netdev_priv(ndev); 3698 int ret; 3699 3700 ret = clk_prepare_enable(fep->clk_ahb); 3701 if (ret) 3702 return ret; 3703 ret = clk_prepare_enable(fep->clk_ipg); 3704 if (ret) 3705 goto failed_clk_ipg; 3706 3707 return 0; 3708 3709 failed_clk_ipg: 3710 clk_disable_unprepare(fep->clk_ahb); 3711 return ret; 3712 } 3713 3714 static const struct dev_pm_ops fec_pm_ops = { 3715 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3716 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3717 }; 3718 3719 static struct platform_driver fec_driver = { 3720 .driver = { 3721 .name = DRIVER_NAME, 3722 .pm = &fec_pm_ops, 3723 .of_match_table = fec_dt_ids, 3724 }, 3725 .id_table = fec_devtype, 3726 .probe = fec_probe, 3727 .remove = fec_drv_remove, 3728 }; 3729 3730 module_platform_driver(fec_driver); 3731 3732 MODULE_ALIAS("platform:"DRIVER_NAME); 3733 MODULE_LICENSE("GPL"); 3734