1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/phy.h>
52 #include <linux/fec.h>
53 #include <linux/of.h>
54 #include <linux/of_device.h>
55 #include <linux/of_gpio.h>
56 #include <linux/of_mdio.h>
57 #include <linux/of_net.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/if_vlan.h>
60 #include <linux/pinctrl/consumer.h>
61 #include <linux/prefetch.h>
62 
63 #include <asm/cacheflush.h>
64 
65 #include "fec.h"
66 
67 static void set_multicast_list(struct net_device *ndev);
68 static void fec_enet_itr_coal_init(struct net_device *ndev);
69 
70 #define DRIVER_NAME	"fec"
71 
72 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
73 
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE	(1 << 5)
76 #define FEC_ENET_RSEM_V	0x84
77 #define FEC_ENET_RSFL_V	16
78 #define FEC_ENET_RAEM_V	0x8
79 #define FEC_ENET_RAFL_V	0x8
80 #define FEC_ENET_OPD_V	0xFFF0
81 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
82 
83 static struct platform_device_id fec_devtype[] = {
84 	{
85 		/* keep it for coldfire */
86 		.name = DRIVER_NAME,
87 		.driver_data = 0,
88 	}, {
89 		.name = "imx25-fec",
90 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
91 	}, {
92 		.name = "imx27-fec",
93 		.driver_data = FEC_QUIRK_HAS_RACC,
94 	}, {
95 		.name = "imx28-fec",
96 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
97 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
98 	}, {
99 		.name = "imx6q-fec",
100 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
101 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
102 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
103 				FEC_QUIRK_HAS_RACC,
104 	}, {
105 		.name = "mvf600-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
107 	}, {
108 		.name = "imx6sx-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
112 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
113 				FEC_QUIRK_HAS_RACC,
114 	}, {
115 		/* sentinel */
116 	}
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119 
120 enum imx_fec_type {
121 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
122 	IMX27_FEC,	/* runs on i.mx27/35/51 */
123 	IMX28_FEC,
124 	IMX6Q_FEC,
125 	MVF600_FEC,
126 	IMX6SX_FEC,
127 };
128 
129 static const struct of_device_id fec_dt_ids[] = {
130 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
131 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
132 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
133 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
134 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
135 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
136 	{ /* sentinel */ }
137 };
138 MODULE_DEVICE_TABLE(of, fec_dt_ids);
139 
140 static unsigned char macaddr[ETH_ALEN];
141 module_param_array(macaddr, byte, NULL, 0);
142 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
143 
144 #if defined(CONFIG_M5272)
145 /*
146  * Some hardware gets it MAC address out of local flash memory.
147  * if this is non-zero then assume it is the address to get MAC from.
148  */
149 #if defined(CONFIG_NETtel)
150 #define	FEC_FLASHMAC	0xf0006006
151 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
152 #define	FEC_FLASHMAC	0xf0006000
153 #elif defined(CONFIG_CANCam)
154 #define	FEC_FLASHMAC	0xf0020000
155 #elif defined (CONFIG_M5272C3)
156 #define	FEC_FLASHMAC	(0xffe04000 + 4)
157 #elif defined(CONFIG_MOD5272)
158 #define FEC_FLASHMAC	0xffc0406b
159 #else
160 #define	FEC_FLASHMAC	0
161 #endif
162 #endif /* CONFIG_M5272 */
163 
164 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
165  */
166 #define PKT_MAXBUF_SIZE		1522
167 #define PKT_MINBUF_SIZE		64
168 #define PKT_MAXBLR_SIZE		1536
169 
170 /* FEC receive acceleration */
171 #define FEC_RACC_IPDIS		(1 << 1)
172 #define FEC_RACC_PRODIS		(1 << 2)
173 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
174 
175 /*
176  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
177  * size bits. Other FEC hardware does not, so we need to take that into
178  * account when setting it.
179  */
180 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
181     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
182 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
183 #else
184 #define	OPT_FRAME_SIZE	0
185 #endif
186 
187 /* FEC MII MMFR bits definition */
188 #define FEC_MMFR_ST		(1 << 30)
189 #define FEC_MMFR_OP_READ	(2 << 28)
190 #define FEC_MMFR_OP_WRITE	(1 << 28)
191 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
192 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
193 #define FEC_MMFR_TA		(2 << 16)
194 #define FEC_MMFR_DATA(v)	(v & 0xffff)
195 /* FEC ECR bits definition */
196 #define FEC_ECR_MAGICEN		(1 << 2)
197 #define FEC_ECR_SLEEP		(1 << 3)
198 
199 #define FEC_MII_TIMEOUT		30000 /* us */
200 
201 /* Transmitter timeout */
202 #define TX_TIMEOUT (2 * HZ)
203 
204 #define FEC_PAUSE_FLAG_AUTONEG	0x1
205 #define FEC_PAUSE_FLAG_ENABLE	0x2
206 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
207 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
208 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
209 
210 #define COPYBREAK_DEFAULT	256
211 
212 #define TSO_HEADER_SIZE		128
213 /* Max number of allowed TCP segments for software TSO */
214 #define FEC_MAX_TSO_SEGS	100
215 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
216 
217 #define IS_TSO_HEADER(txq, addr) \
218 	((addr >= txq->tso_hdrs_dma) && \
219 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
220 
221 static int mii_cnt;
222 
223 static inline
224 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225 				      struct fec_enet_private *fep,
226 				      int queue_id)
227 {
228 	struct bufdesc *new_bd = bdp + 1;
229 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
230 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
231 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
232 	struct bufdesc_ex *ex_base;
233 	struct bufdesc *base;
234 	int ring_size;
235 
236 	if (bdp >= txq->tx_bd_base) {
237 		base = txq->tx_bd_base;
238 		ring_size = txq->tx_ring_size;
239 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
240 	} else {
241 		base = rxq->rx_bd_base;
242 		ring_size = rxq->rx_ring_size;
243 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
244 	}
245 
246 	if (fep->bufdesc_ex)
247 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
248 			ex_base : ex_new_bd);
249 	else
250 		return (new_bd >= (base + ring_size)) ?
251 			base : new_bd;
252 }
253 
254 static inline
255 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
256 				      struct fec_enet_private *fep,
257 				      int queue_id)
258 {
259 	struct bufdesc *new_bd = bdp - 1;
260 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
261 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
262 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
263 	struct bufdesc_ex *ex_base;
264 	struct bufdesc *base;
265 	int ring_size;
266 
267 	if (bdp >= txq->tx_bd_base) {
268 		base = txq->tx_bd_base;
269 		ring_size = txq->tx_ring_size;
270 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
271 	} else {
272 		base = rxq->rx_bd_base;
273 		ring_size = rxq->rx_ring_size;
274 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
275 	}
276 
277 	if (fep->bufdesc_ex)
278 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
279 			(ex_new_bd + ring_size) : ex_new_bd);
280 	else
281 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
282 }
283 
284 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
285 				struct fec_enet_private *fep)
286 {
287 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
288 }
289 
290 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
291 					struct fec_enet_priv_tx_q *txq)
292 {
293 	int entries;
294 
295 	entries = ((const char *)txq->dirty_tx -
296 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
297 
298 	return entries > 0 ? entries : entries + txq->tx_ring_size;
299 }
300 
301 static void swap_buffer(void *bufaddr, int len)
302 {
303 	int i;
304 	unsigned int *buf = bufaddr;
305 
306 	for (i = 0; i < len; i += 4, buf++)
307 		swab32s(buf);
308 }
309 
310 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
311 {
312 	int i;
313 	unsigned int *src = src_buf;
314 	unsigned int *dst = dst_buf;
315 
316 	for (i = 0; i < len; i += 4, src++, dst++)
317 		*dst = swab32p(src);
318 }
319 
320 static void fec_dump(struct net_device *ndev)
321 {
322 	struct fec_enet_private *fep = netdev_priv(ndev);
323 	struct bufdesc *bdp;
324 	struct fec_enet_priv_tx_q *txq;
325 	int index = 0;
326 
327 	netdev_info(ndev, "TX ring dump\n");
328 	pr_info("Nr     SC     addr       len  SKB\n");
329 
330 	txq = fep->tx_queue[0];
331 	bdp = txq->tx_bd_base;
332 
333 	do {
334 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
335 			index,
336 			bdp == txq->cur_tx ? 'S' : ' ',
337 			bdp == txq->dirty_tx ? 'H' : ' ',
338 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
339 			txq->tx_skbuff[index]);
340 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
341 		index++;
342 	} while (bdp != txq->tx_bd_base);
343 }
344 
345 static inline bool is_ipv4_pkt(struct sk_buff *skb)
346 {
347 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
348 }
349 
350 static int
351 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
352 {
353 	/* Only run for packets requiring a checksum. */
354 	if (skb->ip_summed != CHECKSUM_PARTIAL)
355 		return 0;
356 
357 	if (unlikely(skb_cow_head(skb, 0)))
358 		return -1;
359 
360 	if (is_ipv4_pkt(skb))
361 		ip_hdr(skb)->check = 0;
362 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
363 
364 	return 0;
365 }
366 
367 static struct bufdesc *
368 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
369 			     struct sk_buff *skb,
370 			     struct net_device *ndev)
371 {
372 	struct fec_enet_private *fep = netdev_priv(ndev);
373 	struct bufdesc *bdp = txq->cur_tx;
374 	struct bufdesc_ex *ebdp;
375 	int nr_frags = skb_shinfo(skb)->nr_frags;
376 	unsigned short queue = skb_get_queue_mapping(skb);
377 	int frag, frag_len;
378 	unsigned short status;
379 	unsigned int estatus = 0;
380 	skb_frag_t *this_frag;
381 	unsigned int index;
382 	void *bufaddr;
383 	dma_addr_t addr;
384 	int i;
385 
386 	for (frag = 0; frag < nr_frags; frag++) {
387 		this_frag = &skb_shinfo(skb)->frags[frag];
388 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
389 		ebdp = (struct bufdesc_ex *)bdp;
390 
391 		status = bdp->cbd_sc;
392 		status &= ~BD_ENET_TX_STATS;
393 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
394 		frag_len = skb_shinfo(skb)->frags[frag].size;
395 
396 		/* Handle the last BD specially */
397 		if (frag == nr_frags - 1) {
398 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
399 			if (fep->bufdesc_ex) {
400 				estatus |= BD_ENET_TX_INT;
401 				if (unlikely(skb_shinfo(skb)->tx_flags &
402 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
403 					estatus |= BD_ENET_TX_TS;
404 			}
405 		}
406 
407 		if (fep->bufdesc_ex) {
408 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
409 				estatus |= FEC_TX_BD_FTYPE(queue);
410 			if (skb->ip_summed == CHECKSUM_PARTIAL)
411 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
412 			ebdp->cbd_bdu = 0;
413 			ebdp->cbd_esc = estatus;
414 		}
415 
416 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
417 
418 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
419 		if (((unsigned long) bufaddr) & fep->tx_align ||
420 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
421 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
422 			bufaddr = txq->tx_bounce[index];
423 
424 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
425 				swap_buffer(bufaddr, frag_len);
426 		}
427 
428 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
429 				      DMA_TO_DEVICE);
430 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
431 			dev_kfree_skb_any(skb);
432 			if (net_ratelimit())
433 				netdev_err(ndev, "Tx DMA memory map failed\n");
434 			goto dma_mapping_error;
435 		}
436 
437 		bdp->cbd_bufaddr = addr;
438 		bdp->cbd_datlen = frag_len;
439 		bdp->cbd_sc = status;
440 	}
441 
442 	return bdp;
443 dma_mapping_error:
444 	bdp = txq->cur_tx;
445 	for (i = 0; i < frag; i++) {
446 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
447 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
448 				bdp->cbd_datlen, DMA_TO_DEVICE);
449 	}
450 	return ERR_PTR(-ENOMEM);
451 }
452 
453 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
454 				   struct sk_buff *skb, struct net_device *ndev)
455 {
456 	struct fec_enet_private *fep = netdev_priv(ndev);
457 	int nr_frags = skb_shinfo(skb)->nr_frags;
458 	struct bufdesc *bdp, *last_bdp;
459 	void *bufaddr;
460 	dma_addr_t addr;
461 	unsigned short status;
462 	unsigned short buflen;
463 	unsigned short queue;
464 	unsigned int estatus = 0;
465 	unsigned int index;
466 	int entries_free;
467 
468 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 	if (entries_free < MAX_SKB_FRAGS + 1) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "NOT enough BD for SG!\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Protocol checksum off-load for TCP and UDP. */
477 	if (fec_enet_clear_csum(skb, ndev)) {
478 		dev_kfree_skb_any(skb);
479 		return NETDEV_TX_OK;
480 	}
481 
482 	/* Fill in a Tx ring entry */
483 	bdp = txq->cur_tx;
484 	last_bdp = bdp;
485 	status = bdp->cbd_sc;
486 	status &= ~BD_ENET_TX_STATS;
487 
488 	/* Set buffer length and buffer pointer */
489 	bufaddr = skb->data;
490 	buflen = skb_headlen(skb);
491 
492 	queue = skb_get_queue_mapping(skb);
493 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
494 	if (((unsigned long) bufaddr) & fep->tx_align ||
495 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
496 		memcpy(txq->tx_bounce[index], skb->data, buflen);
497 		bufaddr = txq->tx_bounce[index];
498 
499 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
500 			swap_buffer(bufaddr, buflen);
501 	}
502 
503 	/* Push the data cache so the CPM does not get stale memory data. */
504 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
505 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
506 		dev_kfree_skb_any(skb);
507 		if (net_ratelimit())
508 			netdev_err(ndev, "Tx DMA memory map failed\n");
509 		return NETDEV_TX_OK;
510 	}
511 
512 	if (nr_frags) {
513 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
514 		if (IS_ERR(last_bdp))
515 			return NETDEV_TX_OK;
516 	} else {
517 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
518 		if (fep->bufdesc_ex) {
519 			estatus = BD_ENET_TX_INT;
520 			if (unlikely(skb_shinfo(skb)->tx_flags &
521 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
522 				estatus |= BD_ENET_TX_TS;
523 		}
524 	}
525 
526 	if (fep->bufdesc_ex) {
527 
528 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
529 
530 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
531 			fep->hwts_tx_en))
532 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
533 
534 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
535 			estatus |= FEC_TX_BD_FTYPE(queue);
536 
537 		if (skb->ip_summed == CHECKSUM_PARTIAL)
538 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
539 
540 		ebdp->cbd_bdu = 0;
541 		ebdp->cbd_esc = estatus;
542 	}
543 
544 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 	/* Save skb pointer */
546 	txq->tx_skbuff[index] = skb;
547 
548 	bdp->cbd_datlen = buflen;
549 	bdp->cbd_bufaddr = addr;
550 
551 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
552 	 * it's the last BD of the frame, and to put the CRC on the end.
553 	 */
554 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 	bdp->cbd_sc = status;
556 
557 	/* If this was the last BD in the ring, start at the beginning again. */
558 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559 
560 	skb_tx_timestamp(skb);
561 
562 	/* Make sure the update to bdp and tx_skbuff are performed before
563 	 * cur_tx.
564 	 */
565 	wmb();
566 	txq->cur_tx = bdp;
567 
568 	/* Trigger transmission start */
569 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
570 
571 	return 0;
572 }
573 
574 static int
575 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
576 			  struct net_device *ndev,
577 			  struct bufdesc *bdp, int index, char *data,
578 			  int size, bool last_tcp, bool is_last)
579 {
580 	struct fec_enet_private *fep = netdev_priv(ndev);
581 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
582 	unsigned short queue = skb_get_queue_mapping(skb);
583 	unsigned short status;
584 	unsigned int estatus = 0;
585 	dma_addr_t addr;
586 
587 	status = bdp->cbd_sc;
588 	status &= ~BD_ENET_TX_STATS;
589 
590 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
591 
592 	if (((unsigned long) data) & fep->tx_align ||
593 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
594 		memcpy(txq->tx_bounce[index], data, size);
595 		data = txq->tx_bounce[index];
596 
597 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
598 			swap_buffer(data, size);
599 	}
600 
601 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
602 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
603 		dev_kfree_skb_any(skb);
604 		if (net_ratelimit())
605 			netdev_err(ndev, "Tx DMA memory map failed\n");
606 		return NETDEV_TX_BUSY;
607 	}
608 
609 	bdp->cbd_datlen = size;
610 	bdp->cbd_bufaddr = addr;
611 
612 	if (fep->bufdesc_ex) {
613 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
614 			estatus |= FEC_TX_BD_FTYPE(queue);
615 		if (skb->ip_summed == CHECKSUM_PARTIAL)
616 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
617 		ebdp->cbd_bdu = 0;
618 		ebdp->cbd_esc = estatus;
619 	}
620 
621 	/* Handle the last BD specially */
622 	if (last_tcp)
623 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
624 	if (is_last) {
625 		status |= BD_ENET_TX_INTR;
626 		if (fep->bufdesc_ex)
627 			ebdp->cbd_esc |= BD_ENET_TX_INT;
628 	}
629 
630 	bdp->cbd_sc = status;
631 
632 	return 0;
633 }
634 
635 static int
636 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
637 			 struct sk_buff *skb, struct net_device *ndev,
638 			 struct bufdesc *bdp, int index)
639 {
640 	struct fec_enet_private *fep = netdev_priv(ndev);
641 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
642 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
643 	unsigned short queue = skb_get_queue_mapping(skb);
644 	void *bufaddr;
645 	unsigned long dmabuf;
646 	unsigned short status;
647 	unsigned int estatus = 0;
648 
649 	status = bdp->cbd_sc;
650 	status &= ~BD_ENET_TX_STATS;
651 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
652 
653 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
654 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
655 	if (((unsigned long)bufaddr) & fep->tx_align ||
656 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
657 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
658 		bufaddr = txq->tx_bounce[index];
659 
660 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
661 			swap_buffer(bufaddr, hdr_len);
662 
663 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
664 					hdr_len, DMA_TO_DEVICE);
665 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
666 			dev_kfree_skb_any(skb);
667 			if (net_ratelimit())
668 				netdev_err(ndev, "Tx DMA memory map failed\n");
669 			return NETDEV_TX_BUSY;
670 		}
671 	}
672 
673 	bdp->cbd_bufaddr = dmabuf;
674 	bdp->cbd_datlen = hdr_len;
675 
676 	if (fep->bufdesc_ex) {
677 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
678 			estatus |= FEC_TX_BD_FTYPE(queue);
679 		if (skb->ip_summed == CHECKSUM_PARTIAL)
680 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
681 		ebdp->cbd_bdu = 0;
682 		ebdp->cbd_esc = estatus;
683 	}
684 
685 	bdp->cbd_sc = status;
686 
687 	return 0;
688 }
689 
690 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
691 				   struct sk_buff *skb,
692 				   struct net_device *ndev)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
696 	int total_len, data_left;
697 	struct bufdesc *bdp = txq->cur_tx;
698 	unsigned short queue = skb_get_queue_mapping(skb);
699 	struct tso_t tso;
700 	unsigned int index = 0;
701 	int ret;
702 
703 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
704 		dev_kfree_skb_any(skb);
705 		if (net_ratelimit())
706 			netdev_err(ndev, "NOT enough BD for TSO!\n");
707 		return NETDEV_TX_OK;
708 	}
709 
710 	/* Protocol checksum off-load for TCP and UDP. */
711 	if (fec_enet_clear_csum(skb, ndev)) {
712 		dev_kfree_skb_any(skb);
713 		return NETDEV_TX_OK;
714 	}
715 
716 	/* Initialize the TSO handler, and prepare the first payload */
717 	tso_start(skb, &tso);
718 
719 	total_len = skb->len - hdr_len;
720 	while (total_len > 0) {
721 		char *hdr;
722 
723 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
724 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
725 		total_len -= data_left;
726 
727 		/* prepare packet headers: MAC + IP + TCP */
728 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
729 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
730 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
731 		if (ret)
732 			goto err_release;
733 
734 		while (data_left > 0) {
735 			int size;
736 
737 			size = min_t(int, tso.size, data_left);
738 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
739 			index = fec_enet_get_bd_index(txq->tx_bd_base,
740 						      bdp, fep);
741 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
742 							bdp, index,
743 							tso.data, size,
744 							size == data_left,
745 							total_len == 0);
746 			if (ret)
747 				goto err_release;
748 
749 			data_left -= size;
750 			tso_build_data(skb, &tso, size);
751 		}
752 
753 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
754 	}
755 
756 	/* Save skb pointer */
757 	txq->tx_skbuff[index] = skb;
758 
759 	skb_tx_timestamp(skb);
760 	txq->cur_tx = bdp;
761 
762 	/* Trigger transmission start */
763 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
764 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
765 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
768 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
769 
770 	return 0;
771 
772 err_release:
773 	/* TODO: Release all used data descriptors for TSO */
774 	return ret;
775 }
776 
777 static netdev_tx_t
778 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
779 {
780 	struct fec_enet_private *fep = netdev_priv(ndev);
781 	int entries_free;
782 	unsigned short queue;
783 	struct fec_enet_priv_tx_q *txq;
784 	struct netdev_queue *nq;
785 	int ret;
786 
787 	queue = skb_get_queue_mapping(skb);
788 	txq = fep->tx_queue[queue];
789 	nq = netdev_get_tx_queue(ndev, queue);
790 
791 	if (skb_is_gso(skb))
792 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
793 	else
794 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
795 	if (ret)
796 		return ret;
797 
798 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
799 	if (entries_free <= txq->tx_stop_threshold)
800 		netif_tx_stop_queue(nq);
801 
802 	return NETDEV_TX_OK;
803 }
804 
805 /* Init RX & TX buffer descriptors
806  */
807 static void fec_enet_bd_init(struct net_device *dev)
808 {
809 	struct fec_enet_private *fep = netdev_priv(dev);
810 	struct fec_enet_priv_tx_q *txq;
811 	struct fec_enet_priv_rx_q *rxq;
812 	struct bufdesc *bdp;
813 	unsigned int i;
814 	unsigned int q;
815 
816 	for (q = 0; q < fep->num_rx_queues; q++) {
817 		/* Initialize the receive buffer descriptors. */
818 		rxq = fep->rx_queue[q];
819 		bdp = rxq->rx_bd_base;
820 
821 		for (i = 0; i < rxq->rx_ring_size; i++) {
822 
823 			/* Initialize the BD for every fragment in the page. */
824 			if (bdp->cbd_bufaddr)
825 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
826 			else
827 				bdp->cbd_sc = 0;
828 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
829 		}
830 
831 		/* Set the last buffer to wrap */
832 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
833 		bdp->cbd_sc |= BD_SC_WRAP;
834 
835 		rxq->cur_rx = rxq->rx_bd_base;
836 	}
837 
838 	for (q = 0; q < fep->num_tx_queues; q++) {
839 		/* ...and the same for transmit */
840 		txq = fep->tx_queue[q];
841 		bdp = txq->tx_bd_base;
842 		txq->cur_tx = bdp;
843 
844 		for (i = 0; i < txq->tx_ring_size; i++) {
845 			/* Initialize the BD for every fragment in the page. */
846 			bdp->cbd_sc = 0;
847 			if (txq->tx_skbuff[i]) {
848 				dev_kfree_skb_any(txq->tx_skbuff[i]);
849 				txq->tx_skbuff[i] = NULL;
850 			}
851 			bdp->cbd_bufaddr = 0;
852 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
853 		}
854 
855 		/* Set the last buffer to wrap */
856 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
857 		bdp->cbd_sc |= BD_SC_WRAP;
858 		txq->dirty_tx = bdp;
859 	}
860 }
861 
862 static void fec_enet_active_rxring(struct net_device *ndev)
863 {
864 	struct fec_enet_private *fep = netdev_priv(ndev);
865 	int i;
866 
867 	for (i = 0; i < fep->num_rx_queues; i++)
868 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
869 }
870 
871 static void fec_enet_enable_ring(struct net_device *ndev)
872 {
873 	struct fec_enet_private *fep = netdev_priv(ndev);
874 	struct fec_enet_priv_tx_q *txq;
875 	struct fec_enet_priv_rx_q *rxq;
876 	int i;
877 
878 	for (i = 0; i < fep->num_rx_queues; i++) {
879 		rxq = fep->rx_queue[i];
880 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
881 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(RCMR_MATCHEN | RCMR_CMP(i),
886 			       fep->hwp + FEC_RCMR(i));
887 	}
888 
889 	for (i = 0; i < fep->num_tx_queues; i++) {
890 		txq = fep->tx_queue[i];
891 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892 
893 		/* enable DMA1/2 */
894 		if (i)
895 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896 			       fep->hwp + FEC_DMA_CFG(i));
897 	}
898 }
899 
900 static void fec_enet_reset_skb(struct net_device *ndev)
901 {
902 	struct fec_enet_private *fep = netdev_priv(ndev);
903 	struct fec_enet_priv_tx_q *txq;
904 	int i, j;
905 
906 	for (i = 0; i < fep->num_tx_queues; i++) {
907 		txq = fep->tx_queue[i];
908 
909 		for (j = 0; j < txq->tx_ring_size; j++) {
910 			if (txq->tx_skbuff[j]) {
911 				dev_kfree_skb_any(txq->tx_skbuff[j]);
912 				txq->tx_skbuff[j] = NULL;
913 			}
914 		}
915 	}
916 }
917 
918 /*
919  * This function is called to start or restart the FEC during a link
920  * change, transmit timeout, or to reconfigure the FEC.  The network
921  * packet processing for this device must be stopped before this call.
922  */
923 static void
924 fec_restart(struct net_device *ndev)
925 {
926 	struct fec_enet_private *fep = netdev_priv(ndev);
927 	u32 val;
928 	u32 temp_mac[2];
929 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
930 	u32 ecntl = 0x2; /* ETHEREN */
931 
932 	/* Whack a reset.  We should wait for this.
933 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
934 	 * instead of reset MAC itself.
935 	 */
936 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
937 		writel(0, fep->hwp + FEC_ECNTRL);
938 	} else {
939 		writel(1, fep->hwp + FEC_ECNTRL);
940 		udelay(10);
941 	}
942 
943 	/*
944 	 * enet-mac reset will reset mac address registers too,
945 	 * so need to reconfigure it.
946 	 */
947 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
948 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
949 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
950 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
951 	}
952 
953 	/* Clear any outstanding interrupt. */
954 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
955 
956 	fec_enet_bd_init(ndev);
957 
958 	fec_enet_enable_ring(ndev);
959 
960 	/* Reset tx SKB buffers. */
961 	fec_enet_reset_skb(ndev);
962 
963 	/* Enable MII mode */
964 	if (fep->full_duplex == DUPLEX_FULL) {
965 		/* FD enable */
966 		writel(0x04, fep->hwp + FEC_X_CNTRL);
967 	} else {
968 		/* No Rcv on Xmit */
969 		rcntl |= 0x02;
970 		writel(0x0, fep->hwp + FEC_X_CNTRL);
971 	}
972 
973 	/* Set MII speed */
974 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
975 
976 #if !defined(CONFIG_M5272)
977 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
978 		/* set RX checksum */
979 		val = readl(fep->hwp + FEC_RACC);
980 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
981 			val |= FEC_RACC_OPTIONS;
982 		else
983 			val &= ~FEC_RACC_OPTIONS;
984 		writel(val, fep->hwp + FEC_RACC);
985 	}
986 #endif
987 
988 	/*
989 	 * The phy interface and speed need to get configured
990 	 * differently on enet-mac.
991 	 */
992 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
993 		/* Enable flow control and length check */
994 		rcntl |= 0x40000000 | 0x00000020;
995 
996 		/* RGMII, RMII or MII */
997 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
998 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
999 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1000 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1001 			rcntl |= (1 << 6);
1002 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003 			rcntl |= (1 << 8);
1004 		else
1005 			rcntl &= ~(1 << 8);
1006 
1007 		/* 1G, 100M or 10M */
1008 		if (fep->phy_dev) {
1009 			if (fep->phy_dev->speed == SPEED_1000)
1010 				ecntl |= (1 << 5);
1011 			else if (fep->phy_dev->speed == SPEED_100)
1012 				rcntl &= ~(1 << 9);
1013 			else
1014 				rcntl |= (1 << 9);
1015 		}
1016 	} else {
1017 #ifdef FEC_MIIGSK_ENR
1018 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1019 			u32 cfgr;
1020 			/* disable the gasket and wait */
1021 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023 				udelay(1);
1024 
1025 			/*
1026 			 * configure the gasket:
1027 			 *   RMII, 50 MHz, no loopback, no echo
1028 			 *   MII, 25 MHz, no loopback, no echo
1029 			 */
1030 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035 
1036 			/* re-enable the gasket */
1037 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038 		}
1039 #endif
1040 	}
1041 
1042 #if !defined(CONFIG_M5272)
1043 	/* enable pause frame*/
1044 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046 	     fep->phy_dev && fep->phy_dev->pause)) {
1047 		rcntl |= FEC_ENET_FCE;
1048 
1049 		/* set FIFO threshold parameter to reduce overrun */
1050 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054 
1055 		/* OPD */
1056 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057 	} else {
1058 		rcntl &= ~FEC_ENET_FCE;
1059 	}
1060 #endif /* !defined(CONFIG_M5272) */
1061 
1062 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063 
1064 	/* Setup multicast filter. */
1065 	set_multicast_list(ndev);
1066 #ifndef CONFIG_M5272
1067 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069 #endif
1070 
1071 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1072 		/* enable ENET endian swap */
1073 		ecntl |= (1 << 8);
1074 		/* enable ENET store and forward mode */
1075 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076 	}
1077 
1078 	if (fep->bufdesc_ex)
1079 		ecntl |= (1 << 4);
1080 
1081 #ifndef CONFIG_M5272
1082 	/* Enable the MIB statistic event counters */
1083 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084 #endif
1085 
1086 	/* And last, enable the transmit and receive processing */
1087 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1088 	fec_enet_active_rxring(ndev);
1089 
1090 	if (fep->bufdesc_ex)
1091 		fec_ptp_start_cyclecounter(ndev);
1092 
1093 	/* Enable interrupts we wish to service */
1094 	if (fep->link)
1095 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1096 	else
1097 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1098 
1099 	/* Init the interrupt coalescing */
1100 	fec_enet_itr_coal_init(ndev);
1101 
1102 }
1103 
1104 static void
1105 fec_stop(struct net_device *ndev)
1106 {
1107 	struct fec_enet_private *fep = netdev_priv(ndev);
1108 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1109 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1110 	u32 val;
1111 
1112 	/* We cannot expect a graceful transmit stop without link !!! */
1113 	if (fep->link) {
1114 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1115 		udelay(10);
1116 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1117 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1118 	}
1119 
1120 	/* Whack a reset.  We should wait for this.
1121 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1122 	 * instead of reset MAC itself.
1123 	 */
1124 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1125 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1126 			writel(0, fep->hwp + FEC_ECNTRL);
1127 		} else {
1128 			writel(1, fep->hwp + FEC_ECNTRL);
1129 			udelay(10);
1130 		}
1131 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1132 	} else {
1133 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1134 		val = readl(fep->hwp + FEC_ECNTRL);
1135 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1136 		writel(val, fep->hwp + FEC_ECNTRL);
1137 
1138 		if (pdata && pdata->sleep_mode_enable)
1139 			pdata->sleep_mode_enable(true);
1140 	}
1141 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1142 
1143 	/* We have to keep ENET enabled to have MII interrupt stay working */
1144 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1145 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1146 		writel(2, fep->hwp + FEC_ECNTRL);
1147 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1148 	}
1149 }
1150 
1151 
1152 static void
1153 fec_timeout(struct net_device *ndev)
1154 {
1155 	struct fec_enet_private *fep = netdev_priv(ndev);
1156 
1157 	fec_dump(ndev);
1158 
1159 	ndev->stats.tx_errors++;
1160 
1161 	schedule_work(&fep->tx_timeout_work);
1162 }
1163 
1164 static void fec_enet_timeout_work(struct work_struct *work)
1165 {
1166 	struct fec_enet_private *fep =
1167 		container_of(work, struct fec_enet_private, tx_timeout_work);
1168 	struct net_device *ndev = fep->netdev;
1169 
1170 	rtnl_lock();
1171 	if (netif_device_present(ndev) || netif_running(ndev)) {
1172 		napi_disable(&fep->napi);
1173 		netif_tx_lock_bh(ndev);
1174 		fec_restart(ndev);
1175 		netif_wake_queue(ndev);
1176 		netif_tx_unlock_bh(ndev);
1177 		napi_enable(&fep->napi);
1178 	}
1179 	rtnl_unlock();
1180 }
1181 
1182 static void
1183 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1184 	struct skb_shared_hwtstamps *hwtstamps)
1185 {
1186 	unsigned long flags;
1187 	u64 ns;
1188 
1189 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1190 	ns = timecounter_cyc2time(&fep->tc, ts);
1191 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1192 
1193 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1194 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1195 }
1196 
1197 static void
1198 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1199 {
1200 	struct	fec_enet_private *fep;
1201 	struct bufdesc *bdp;
1202 	unsigned short status;
1203 	struct	sk_buff	*skb;
1204 	struct fec_enet_priv_tx_q *txq;
1205 	struct netdev_queue *nq;
1206 	int	index = 0;
1207 	int	entries_free;
1208 
1209 	fep = netdev_priv(ndev);
1210 
1211 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1212 
1213 	txq = fep->tx_queue[queue_id];
1214 	/* get next bdp of dirty_tx */
1215 	nq = netdev_get_tx_queue(ndev, queue_id);
1216 	bdp = txq->dirty_tx;
1217 
1218 	/* get next bdp of dirty_tx */
1219 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1220 
1221 	while (bdp != READ_ONCE(txq->cur_tx)) {
1222 		/* Order the load of cur_tx and cbd_sc */
1223 		rmb();
1224 		status = READ_ONCE(bdp->cbd_sc);
1225 		if (status & BD_ENET_TX_READY)
1226 			break;
1227 
1228 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1229 
1230 		skb = txq->tx_skbuff[index];
1231 		txq->tx_skbuff[index] = NULL;
1232 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1233 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1234 					bdp->cbd_datlen, DMA_TO_DEVICE);
1235 		bdp->cbd_bufaddr = 0;
1236 		if (!skb) {
1237 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1238 			continue;
1239 		}
1240 
1241 		/* Check for errors. */
1242 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1243 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1244 				   BD_ENET_TX_CSL)) {
1245 			ndev->stats.tx_errors++;
1246 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1247 				ndev->stats.tx_heartbeat_errors++;
1248 			if (status & BD_ENET_TX_LC)  /* Late collision */
1249 				ndev->stats.tx_window_errors++;
1250 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1251 				ndev->stats.tx_aborted_errors++;
1252 			if (status & BD_ENET_TX_UN)  /* Underrun */
1253 				ndev->stats.tx_fifo_errors++;
1254 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1255 				ndev->stats.tx_carrier_errors++;
1256 		} else {
1257 			ndev->stats.tx_packets++;
1258 			ndev->stats.tx_bytes += skb->len;
1259 		}
1260 
1261 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1262 			fep->bufdesc_ex) {
1263 			struct skb_shared_hwtstamps shhwtstamps;
1264 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1265 
1266 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1267 			skb_tstamp_tx(skb, &shhwtstamps);
1268 		}
1269 
1270 		/* Deferred means some collisions occurred during transmit,
1271 		 * but we eventually sent the packet OK.
1272 		 */
1273 		if (status & BD_ENET_TX_DEF)
1274 			ndev->stats.collisions++;
1275 
1276 		/* Free the sk buffer associated with this last transmit */
1277 		dev_kfree_skb_any(skb);
1278 
1279 		/* Make sure the update to bdp and tx_skbuff are performed
1280 		 * before dirty_tx
1281 		 */
1282 		wmb();
1283 		txq->dirty_tx = bdp;
1284 
1285 		/* Update pointer to next buffer descriptor to be transmitted */
1286 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1287 
1288 		/* Since we have freed up a buffer, the ring is no longer full
1289 		 */
1290 		if (netif_queue_stopped(ndev)) {
1291 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1292 			if (entries_free >= txq->tx_wake_threshold)
1293 				netif_tx_wake_queue(nq);
1294 		}
1295 	}
1296 
1297 	/* ERR006538: Keep the transmitter going */
1298 	if (bdp != txq->cur_tx &&
1299 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1300 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1301 }
1302 
1303 static void
1304 fec_enet_tx(struct net_device *ndev)
1305 {
1306 	struct fec_enet_private *fep = netdev_priv(ndev);
1307 	u16 queue_id;
1308 	/* First process class A queue, then Class B and Best Effort queue */
1309 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1310 		clear_bit(queue_id, &fep->work_tx);
1311 		fec_enet_tx_queue(ndev, queue_id);
1312 	}
1313 	return;
1314 }
1315 
1316 static int
1317 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1318 {
1319 	struct  fec_enet_private *fep = netdev_priv(ndev);
1320 	int off;
1321 
1322 	off = ((unsigned long)skb->data) & fep->rx_align;
1323 	if (off)
1324 		skb_reserve(skb, fep->rx_align + 1 - off);
1325 
1326 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1327 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1328 					  DMA_FROM_DEVICE);
1329 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1330 		if (net_ratelimit())
1331 			netdev_err(ndev, "Rx DMA memory map failed\n");
1332 		return -ENOMEM;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1339 			       struct bufdesc *bdp, u32 length, bool swap)
1340 {
1341 	struct  fec_enet_private *fep = netdev_priv(ndev);
1342 	struct sk_buff *new_skb;
1343 
1344 	if (length > fep->rx_copybreak)
1345 		return false;
1346 
1347 	new_skb = netdev_alloc_skb(ndev, length);
1348 	if (!new_skb)
1349 		return false;
1350 
1351 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1352 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1353 				DMA_FROM_DEVICE);
1354 	if (!swap)
1355 		memcpy(new_skb->data, (*skb)->data, length);
1356 	else
1357 		swap_buffer2(new_skb->data, (*skb)->data, length);
1358 	*skb = new_skb;
1359 
1360 	return true;
1361 }
1362 
1363 /* During a receive, the cur_rx points to the current incoming buffer.
1364  * When we update through the ring, if the next incoming buffer has
1365  * not been given to the system, we just set the empty indicator,
1366  * effectively tossing the packet.
1367  */
1368 static int
1369 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1370 {
1371 	struct fec_enet_private *fep = netdev_priv(ndev);
1372 	struct fec_enet_priv_rx_q *rxq;
1373 	struct bufdesc *bdp;
1374 	unsigned short status;
1375 	struct  sk_buff *skb_new = NULL;
1376 	struct  sk_buff *skb;
1377 	ushort	pkt_len;
1378 	__u8 *data;
1379 	int	pkt_received = 0;
1380 	struct	bufdesc_ex *ebdp = NULL;
1381 	bool	vlan_packet_rcvd = false;
1382 	u16	vlan_tag;
1383 	int	index = 0;
1384 	bool	is_copybreak;
1385 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1386 
1387 #ifdef CONFIG_M532x
1388 	flush_cache_all();
1389 #endif
1390 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1391 	rxq = fep->rx_queue[queue_id];
1392 
1393 	/* First, grab all of the stats for the incoming packet.
1394 	 * These get messed up if we get called due to a busy condition.
1395 	 */
1396 	bdp = rxq->cur_rx;
1397 
1398 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1399 
1400 		if (pkt_received >= budget)
1401 			break;
1402 		pkt_received++;
1403 
1404 		/* Since we have allocated space to hold a complete frame,
1405 		 * the last indicator should be set.
1406 		 */
1407 		if ((status & BD_ENET_RX_LAST) == 0)
1408 			netdev_err(ndev, "rcv is not +last\n");
1409 
1410 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1411 
1412 		/* Check for errors. */
1413 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1414 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1415 			ndev->stats.rx_errors++;
1416 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1417 				/* Frame too long or too short. */
1418 				ndev->stats.rx_length_errors++;
1419 			}
1420 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1421 				ndev->stats.rx_frame_errors++;
1422 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1423 				ndev->stats.rx_crc_errors++;
1424 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1425 				ndev->stats.rx_fifo_errors++;
1426 		}
1427 
1428 		/* Report late collisions as a frame error.
1429 		 * On this error, the BD is closed, but we don't know what we
1430 		 * have in the buffer.  So, just drop this frame on the floor.
1431 		 */
1432 		if (status & BD_ENET_RX_CL) {
1433 			ndev->stats.rx_errors++;
1434 			ndev->stats.rx_frame_errors++;
1435 			goto rx_processing_done;
1436 		}
1437 
1438 		/* Process the incoming frame. */
1439 		ndev->stats.rx_packets++;
1440 		pkt_len = bdp->cbd_datlen;
1441 		ndev->stats.rx_bytes += pkt_len;
1442 
1443 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1444 		skb = rxq->rx_skbuff[index];
1445 
1446 		/* The packet length includes FCS, but we don't want to
1447 		 * include that when passing upstream as it messes up
1448 		 * bridging applications.
1449 		 */
1450 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1451 						  need_swap);
1452 		if (!is_copybreak) {
1453 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1454 			if (unlikely(!skb_new)) {
1455 				ndev->stats.rx_dropped++;
1456 				goto rx_processing_done;
1457 			}
1458 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1459 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1460 					 DMA_FROM_DEVICE);
1461 		}
1462 
1463 		prefetch(skb->data - NET_IP_ALIGN);
1464 		skb_put(skb, pkt_len - 4);
1465 		data = skb->data;
1466 		if (!is_copybreak && need_swap)
1467 			swap_buffer(data, pkt_len);
1468 
1469 		/* Extract the enhanced buffer descriptor */
1470 		ebdp = NULL;
1471 		if (fep->bufdesc_ex)
1472 			ebdp = (struct bufdesc_ex *)bdp;
1473 
1474 		/* If this is a VLAN packet remove the VLAN Tag */
1475 		vlan_packet_rcvd = false;
1476 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1477 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1478 			/* Push and remove the vlan tag */
1479 			struct vlan_hdr *vlan_header =
1480 					(struct vlan_hdr *) (data + ETH_HLEN);
1481 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1482 
1483 			vlan_packet_rcvd = true;
1484 
1485 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1486 			skb_pull(skb, VLAN_HLEN);
1487 		}
1488 
1489 		skb->protocol = eth_type_trans(skb, ndev);
1490 
1491 		/* Get receive timestamp from the skb */
1492 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1493 			fec_enet_hwtstamp(fep, ebdp->ts,
1494 					  skb_hwtstamps(skb));
1495 
1496 		if (fep->bufdesc_ex &&
1497 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1498 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1499 				/* don't check it */
1500 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1501 			} else {
1502 				skb_checksum_none_assert(skb);
1503 			}
1504 		}
1505 
1506 		/* Handle received VLAN packets */
1507 		if (vlan_packet_rcvd)
1508 			__vlan_hwaccel_put_tag(skb,
1509 					       htons(ETH_P_8021Q),
1510 					       vlan_tag);
1511 
1512 		napi_gro_receive(&fep->napi, skb);
1513 
1514 		if (is_copybreak) {
1515 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1516 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1517 						   DMA_FROM_DEVICE);
1518 		} else {
1519 			rxq->rx_skbuff[index] = skb_new;
1520 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1521 		}
1522 
1523 rx_processing_done:
1524 		/* Clear the status flags for this buffer */
1525 		status &= ~BD_ENET_RX_STATS;
1526 
1527 		/* Mark the buffer empty */
1528 		status |= BD_ENET_RX_EMPTY;
1529 		bdp->cbd_sc = status;
1530 
1531 		if (fep->bufdesc_ex) {
1532 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1533 
1534 			ebdp->cbd_esc = BD_ENET_RX_INT;
1535 			ebdp->cbd_prot = 0;
1536 			ebdp->cbd_bdu = 0;
1537 		}
1538 
1539 		/* Update BD pointer to next entry */
1540 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1541 
1542 		/* Doing this here will keep the FEC running while we process
1543 		 * incoming frames.  On a heavily loaded network, we should be
1544 		 * able to keep up at the expense of system resources.
1545 		 */
1546 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1547 	}
1548 	rxq->cur_rx = bdp;
1549 	return pkt_received;
1550 }
1551 
1552 static int
1553 fec_enet_rx(struct net_device *ndev, int budget)
1554 {
1555 	int     pkt_received = 0;
1556 	u16	queue_id;
1557 	struct fec_enet_private *fep = netdev_priv(ndev);
1558 
1559 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1560 		clear_bit(queue_id, &fep->work_rx);
1561 		pkt_received += fec_enet_rx_queue(ndev,
1562 					budget - pkt_received, queue_id);
1563 	}
1564 	return pkt_received;
1565 }
1566 
1567 static bool
1568 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1569 {
1570 	if (int_events == 0)
1571 		return false;
1572 
1573 	if (int_events & FEC_ENET_RXF)
1574 		fep->work_rx |= (1 << 2);
1575 	if (int_events & FEC_ENET_RXF_1)
1576 		fep->work_rx |= (1 << 0);
1577 	if (int_events & FEC_ENET_RXF_2)
1578 		fep->work_rx |= (1 << 1);
1579 
1580 	if (int_events & FEC_ENET_TXF)
1581 		fep->work_tx |= (1 << 2);
1582 	if (int_events & FEC_ENET_TXF_1)
1583 		fep->work_tx |= (1 << 0);
1584 	if (int_events & FEC_ENET_TXF_2)
1585 		fep->work_tx |= (1 << 1);
1586 
1587 	return true;
1588 }
1589 
1590 static irqreturn_t
1591 fec_enet_interrupt(int irq, void *dev_id)
1592 {
1593 	struct net_device *ndev = dev_id;
1594 	struct fec_enet_private *fep = netdev_priv(ndev);
1595 	uint int_events;
1596 	irqreturn_t ret = IRQ_NONE;
1597 
1598 	int_events = readl(fep->hwp + FEC_IEVENT);
1599 	writel(int_events, fep->hwp + FEC_IEVENT);
1600 	fec_enet_collect_events(fep, int_events);
1601 
1602 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1603 		ret = IRQ_HANDLED;
1604 
1605 		if (napi_schedule_prep(&fep->napi)) {
1606 			/* Disable the NAPI interrupts */
1607 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1608 			__napi_schedule(&fep->napi);
1609 		}
1610 	}
1611 
1612 	if (int_events & FEC_ENET_MII) {
1613 		ret = IRQ_HANDLED;
1614 		complete(&fep->mdio_done);
1615 	}
1616 
1617 	if (fep->ptp_clock)
1618 		fec_ptp_check_pps_event(fep);
1619 
1620 	return ret;
1621 }
1622 
1623 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1624 {
1625 	struct net_device *ndev = napi->dev;
1626 	struct fec_enet_private *fep = netdev_priv(ndev);
1627 	int pkts;
1628 
1629 	pkts = fec_enet_rx(ndev, budget);
1630 
1631 	fec_enet_tx(ndev);
1632 
1633 	if (pkts < budget) {
1634 		napi_complete(napi);
1635 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1636 	}
1637 	return pkts;
1638 }
1639 
1640 /* ------------------------------------------------------------------------- */
1641 static void fec_get_mac(struct net_device *ndev)
1642 {
1643 	struct fec_enet_private *fep = netdev_priv(ndev);
1644 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1645 	unsigned char *iap, tmpaddr[ETH_ALEN];
1646 
1647 	/*
1648 	 * try to get mac address in following order:
1649 	 *
1650 	 * 1) module parameter via kernel command line in form
1651 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1652 	 */
1653 	iap = macaddr;
1654 
1655 	/*
1656 	 * 2) from device tree data
1657 	 */
1658 	if (!is_valid_ether_addr(iap)) {
1659 		struct device_node *np = fep->pdev->dev.of_node;
1660 		if (np) {
1661 			const char *mac = of_get_mac_address(np);
1662 			if (mac)
1663 				iap = (unsigned char *) mac;
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * 3) from flash or fuse (via platform data)
1669 	 */
1670 	if (!is_valid_ether_addr(iap)) {
1671 #ifdef CONFIG_M5272
1672 		if (FEC_FLASHMAC)
1673 			iap = (unsigned char *)FEC_FLASHMAC;
1674 #else
1675 		if (pdata)
1676 			iap = (unsigned char *)&pdata->mac;
1677 #endif
1678 	}
1679 
1680 	/*
1681 	 * 4) FEC mac registers set by bootloader
1682 	 */
1683 	if (!is_valid_ether_addr(iap)) {
1684 		*((__be32 *) &tmpaddr[0]) =
1685 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1686 		*((__be16 *) &tmpaddr[4]) =
1687 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1688 		iap = &tmpaddr[0];
1689 	}
1690 
1691 	/*
1692 	 * 5) random mac address
1693 	 */
1694 	if (!is_valid_ether_addr(iap)) {
1695 		/* Report it and use a random ethernet address instead */
1696 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1697 		eth_hw_addr_random(ndev);
1698 		netdev_info(ndev, "Using random MAC address: %pM\n",
1699 			    ndev->dev_addr);
1700 		return;
1701 	}
1702 
1703 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1704 
1705 	/* Adjust MAC if using macaddr */
1706 	if (iap == macaddr)
1707 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1708 }
1709 
1710 /* ------------------------------------------------------------------------- */
1711 
1712 /*
1713  * Phy section
1714  */
1715 static void fec_enet_adjust_link(struct net_device *ndev)
1716 {
1717 	struct fec_enet_private *fep = netdev_priv(ndev);
1718 	struct phy_device *phy_dev = fep->phy_dev;
1719 	int status_change = 0;
1720 
1721 	/* Prevent a state halted on mii error */
1722 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1723 		phy_dev->state = PHY_RESUMING;
1724 		return;
1725 	}
1726 
1727 	/*
1728 	 * If the netdev is down, or is going down, we're not interested
1729 	 * in link state events, so just mark our idea of the link as down
1730 	 * and ignore the event.
1731 	 */
1732 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1733 		fep->link = 0;
1734 	} else if (phy_dev->link) {
1735 		if (!fep->link) {
1736 			fep->link = phy_dev->link;
1737 			status_change = 1;
1738 		}
1739 
1740 		if (fep->full_duplex != phy_dev->duplex) {
1741 			fep->full_duplex = phy_dev->duplex;
1742 			status_change = 1;
1743 		}
1744 
1745 		if (phy_dev->speed != fep->speed) {
1746 			fep->speed = phy_dev->speed;
1747 			status_change = 1;
1748 		}
1749 
1750 		/* if any of the above changed restart the FEC */
1751 		if (status_change) {
1752 			napi_disable(&fep->napi);
1753 			netif_tx_lock_bh(ndev);
1754 			fec_restart(ndev);
1755 			netif_wake_queue(ndev);
1756 			netif_tx_unlock_bh(ndev);
1757 			napi_enable(&fep->napi);
1758 		}
1759 	} else {
1760 		if (fep->link) {
1761 			napi_disable(&fep->napi);
1762 			netif_tx_lock_bh(ndev);
1763 			fec_stop(ndev);
1764 			netif_tx_unlock_bh(ndev);
1765 			napi_enable(&fep->napi);
1766 			fep->link = phy_dev->link;
1767 			status_change = 1;
1768 		}
1769 	}
1770 
1771 	if (status_change)
1772 		phy_print_status(phy_dev);
1773 }
1774 
1775 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1776 {
1777 	struct fec_enet_private *fep = bus->priv;
1778 	struct device *dev = &fep->pdev->dev;
1779 	unsigned long time_left;
1780 	int ret = 0;
1781 
1782 	ret = pm_runtime_get_sync(dev);
1783 	if (ret < 0)
1784 		return ret;
1785 
1786 	fep->mii_timeout = 0;
1787 	reinit_completion(&fep->mdio_done);
1788 
1789 	/* start a read op */
1790 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1791 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1792 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1793 
1794 	/* wait for end of transfer */
1795 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1796 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1797 	if (time_left == 0) {
1798 		fep->mii_timeout = 1;
1799 		netdev_err(fep->netdev, "MDIO read timeout\n");
1800 		ret = -ETIMEDOUT;
1801 		goto out;
1802 	}
1803 
1804 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1805 
1806 out:
1807 	pm_runtime_mark_last_busy(dev);
1808 	pm_runtime_put_autosuspend(dev);
1809 
1810 	return ret;
1811 }
1812 
1813 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1814 			   u16 value)
1815 {
1816 	struct fec_enet_private *fep = bus->priv;
1817 	struct device *dev = &fep->pdev->dev;
1818 	unsigned long time_left;
1819 	int ret = 0;
1820 
1821 	ret = pm_runtime_get_sync(dev);
1822 	if (ret < 0)
1823 		return ret;
1824 
1825 	fep->mii_timeout = 0;
1826 	reinit_completion(&fep->mdio_done);
1827 
1828 	/* start a write op */
1829 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1830 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1831 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1832 		fep->hwp + FEC_MII_DATA);
1833 
1834 	/* wait for end of transfer */
1835 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1836 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1837 	if (time_left == 0) {
1838 		fep->mii_timeout = 1;
1839 		netdev_err(fep->netdev, "MDIO write timeout\n");
1840 		ret  = -ETIMEDOUT;
1841 	}
1842 
1843 	pm_runtime_mark_last_busy(dev);
1844 	pm_runtime_put_autosuspend(dev);
1845 
1846 	return ret;
1847 }
1848 
1849 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1850 {
1851 	struct fec_enet_private *fep = netdev_priv(ndev);
1852 	int ret;
1853 
1854 	if (enable) {
1855 		ret = clk_prepare_enable(fep->clk_ahb);
1856 		if (ret)
1857 			return ret;
1858 		if (fep->clk_enet_out) {
1859 			ret = clk_prepare_enable(fep->clk_enet_out);
1860 			if (ret)
1861 				goto failed_clk_enet_out;
1862 		}
1863 		if (fep->clk_ptp) {
1864 			mutex_lock(&fep->ptp_clk_mutex);
1865 			ret = clk_prepare_enable(fep->clk_ptp);
1866 			if (ret) {
1867 				mutex_unlock(&fep->ptp_clk_mutex);
1868 				goto failed_clk_ptp;
1869 			} else {
1870 				fep->ptp_clk_on = true;
1871 			}
1872 			mutex_unlock(&fep->ptp_clk_mutex);
1873 		}
1874 		if (fep->clk_ref) {
1875 			ret = clk_prepare_enable(fep->clk_ref);
1876 			if (ret)
1877 				goto failed_clk_ref;
1878 		}
1879 	} else {
1880 		clk_disable_unprepare(fep->clk_ahb);
1881 		if (fep->clk_enet_out)
1882 			clk_disable_unprepare(fep->clk_enet_out);
1883 		if (fep->clk_ptp) {
1884 			mutex_lock(&fep->ptp_clk_mutex);
1885 			clk_disable_unprepare(fep->clk_ptp);
1886 			fep->ptp_clk_on = false;
1887 			mutex_unlock(&fep->ptp_clk_mutex);
1888 		}
1889 		if (fep->clk_ref)
1890 			clk_disable_unprepare(fep->clk_ref);
1891 	}
1892 
1893 	return 0;
1894 
1895 failed_clk_ref:
1896 	if (fep->clk_ref)
1897 		clk_disable_unprepare(fep->clk_ref);
1898 failed_clk_ptp:
1899 	if (fep->clk_enet_out)
1900 		clk_disable_unprepare(fep->clk_enet_out);
1901 failed_clk_enet_out:
1902 		clk_disable_unprepare(fep->clk_ahb);
1903 
1904 	return ret;
1905 }
1906 
1907 static int fec_enet_mii_probe(struct net_device *ndev)
1908 {
1909 	struct fec_enet_private *fep = netdev_priv(ndev);
1910 	struct phy_device *phy_dev = NULL;
1911 	char mdio_bus_id[MII_BUS_ID_SIZE];
1912 	char phy_name[MII_BUS_ID_SIZE + 3];
1913 	int phy_id;
1914 	int dev_id = fep->dev_id;
1915 
1916 	fep->phy_dev = NULL;
1917 
1918 	if (fep->phy_node) {
1919 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1920 					 &fec_enet_adjust_link, 0,
1921 					 fep->phy_interface);
1922 		if (!phy_dev)
1923 			return -ENODEV;
1924 	} else {
1925 		/* check for attached phy */
1926 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1927 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1928 				continue;
1929 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1930 				continue;
1931 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1932 				continue;
1933 			if (dev_id--)
1934 				continue;
1935 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1936 			break;
1937 		}
1938 
1939 		if (phy_id >= PHY_MAX_ADDR) {
1940 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1941 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1942 			phy_id = 0;
1943 		}
1944 
1945 		snprintf(phy_name, sizeof(phy_name),
1946 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1947 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1948 				      fep->phy_interface);
1949 	}
1950 
1951 	if (IS_ERR(phy_dev)) {
1952 		netdev_err(ndev, "could not attach to PHY\n");
1953 		return PTR_ERR(phy_dev);
1954 	}
1955 
1956 	/* mask with MAC supported features */
1957 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1958 		phy_dev->supported &= PHY_GBIT_FEATURES;
1959 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1960 #if !defined(CONFIG_M5272)
1961 		phy_dev->supported |= SUPPORTED_Pause;
1962 #endif
1963 	}
1964 	else
1965 		phy_dev->supported &= PHY_BASIC_FEATURES;
1966 
1967 	phy_dev->advertising = phy_dev->supported;
1968 
1969 	fep->phy_dev = phy_dev;
1970 	fep->link = 0;
1971 	fep->full_duplex = 0;
1972 
1973 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1974 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1975 		    fep->phy_dev->irq);
1976 
1977 	return 0;
1978 }
1979 
1980 static int fec_enet_mii_init(struct platform_device *pdev)
1981 {
1982 	static struct mii_bus *fec0_mii_bus;
1983 	struct net_device *ndev = platform_get_drvdata(pdev);
1984 	struct fec_enet_private *fep = netdev_priv(ndev);
1985 	struct device_node *node;
1986 	int err = -ENXIO, i;
1987 	u32 mii_speed, holdtime;
1988 
1989 	/*
1990 	 * The i.MX28 dual fec interfaces are not equal.
1991 	 * Here are the differences:
1992 	 *
1993 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1994 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1995 	 *  - external phys can only be configured by fec0
1996 	 *
1997 	 * That is to say fec1 can not work independently. It only works
1998 	 * when fec0 is working. The reason behind this design is that the
1999 	 * second interface is added primarily for Switch mode.
2000 	 *
2001 	 * Because of the last point above, both phys are attached on fec0
2002 	 * mdio interface in board design, and need to be configured by
2003 	 * fec0 mii_bus.
2004 	 */
2005 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2006 		/* fec1 uses fec0 mii_bus */
2007 		if (mii_cnt && fec0_mii_bus) {
2008 			fep->mii_bus = fec0_mii_bus;
2009 			mii_cnt++;
2010 			return 0;
2011 		}
2012 		return -ENOENT;
2013 	}
2014 
2015 	fep->mii_timeout = 0;
2016 
2017 	/*
2018 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2019 	 *
2020 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2021 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2022 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2023 	 * document.
2024 	 */
2025 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2026 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2027 		mii_speed--;
2028 	if (mii_speed > 63) {
2029 		dev_err(&pdev->dev,
2030 			"fec clock (%lu) to fast to get right mii speed\n",
2031 			clk_get_rate(fep->clk_ipg));
2032 		err = -EINVAL;
2033 		goto err_out;
2034 	}
2035 
2036 	/*
2037 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2038 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2039 	 * versions are RAZ there, so just ignore the difference and write the
2040 	 * register always.
2041 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2042 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2043 	 * output.
2044 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2045 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2046 	 * holdtime cannot result in a value greater than 3.
2047 	 */
2048 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2049 
2050 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2051 
2052 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2053 
2054 	fep->mii_bus = mdiobus_alloc();
2055 	if (fep->mii_bus == NULL) {
2056 		err = -ENOMEM;
2057 		goto err_out;
2058 	}
2059 
2060 	fep->mii_bus->name = "fec_enet_mii_bus";
2061 	fep->mii_bus->read = fec_enet_mdio_read;
2062 	fep->mii_bus->write = fec_enet_mdio_write;
2063 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2064 		pdev->name, fep->dev_id + 1);
2065 	fep->mii_bus->priv = fep;
2066 	fep->mii_bus->parent = &pdev->dev;
2067 
2068 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2069 	if (!fep->mii_bus->irq) {
2070 		err = -ENOMEM;
2071 		goto err_out_free_mdiobus;
2072 	}
2073 
2074 	for (i = 0; i < PHY_MAX_ADDR; i++)
2075 		fep->mii_bus->irq[i] = PHY_POLL;
2076 
2077 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2078 	if (node) {
2079 		err = of_mdiobus_register(fep->mii_bus, node);
2080 		of_node_put(node);
2081 	} else {
2082 		err = mdiobus_register(fep->mii_bus);
2083 	}
2084 
2085 	if (err)
2086 		goto err_out_free_mdio_irq;
2087 
2088 	mii_cnt++;
2089 
2090 	/* save fec0 mii_bus */
2091 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2092 		fec0_mii_bus = fep->mii_bus;
2093 
2094 	return 0;
2095 
2096 err_out_free_mdio_irq:
2097 	kfree(fep->mii_bus->irq);
2098 err_out_free_mdiobus:
2099 	mdiobus_free(fep->mii_bus);
2100 err_out:
2101 	return err;
2102 }
2103 
2104 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2105 {
2106 	if (--mii_cnt == 0) {
2107 		mdiobus_unregister(fep->mii_bus);
2108 		kfree(fep->mii_bus->irq);
2109 		mdiobus_free(fep->mii_bus);
2110 	}
2111 }
2112 
2113 static int fec_enet_get_settings(struct net_device *ndev,
2114 				  struct ethtool_cmd *cmd)
2115 {
2116 	struct fec_enet_private *fep = netdev_priv(ndev);
2117 	struct phy_device *phydev = fep->phy_dev;
2118 
2119 	if (!phydev)
2120 		return -ENODEV;
2121 
2122 	return phy_ethtool_gset(phydev, cmd);
2123 }
2124 
2125 static int fec_enet_set_settings(struct net_device *ndev,
2126 				 struct ethtool_cmd *cmd)
2127 {
2128 	struct fec_enet_private *fep = netdev_priv(ndev);
2129 	struct phy_device *phydev = fep->phy_dev;
2130 
2131 	if (!phydev)
2132 		return -ENODEV;
2133 
2134 	return phy_ethtool_sset(phydev, cmd);
2135 }
2136 
2137 static void fec_enet_get_drvinfo(struct net_device *ndev,
2138 				 struct ethtool_drvinfo *info)
2139 {
2140 	struct fec_enet_private *fep = netdev_priv(ndev);
2141 
2142 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2143 		sizeof(info->driver));
2144 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2145 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2146 }
2147 
2148 static int fec_enet_get_regs_len(struct net_device *ndev)
2149 {
2150 	struct fec_enet_private *fep = netdev_priv(ndev);
2151 	struct resource *r;
2152 	int s = 0;
2153 
2154 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2155 	if (r)
2156 		s = resource_size(r);
2157 
2158 	return s;
2159 }
2160 
2161 /* List of registers that can be safety be read to dump them with ethtool */
2162 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2163 	defined(CONFIG_M520x) || defined(CONFIG_M532x) ||		\
2164 	defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2165 static u32 fec_enet_register_offset[] = {
2166 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2167 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2168 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2169 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2170 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2171 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2172 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2173 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2174 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2175 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2176 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2177 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2178 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2179 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2180 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2181 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2182 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2183 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2184 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2185 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2186 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2187 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2188 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2189 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2190 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2191 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2192 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2193 };
2194 #else
2195 static u32 fec_enet_register_offset[] = {
2196 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2197 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2198 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2199 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2200 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2201 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2202 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2203 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2204 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2205 };
2206 #endif
2207 
2208 static void fec_enet_get_regs(struct net_device *ndev,
2209 			      struct ethtool_regs *regs, void *regbuf)
2210 {
2211 	struct fec_enet_private *fep = netdev_priv(ndev);
2212 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2213 	u32 *buf = (u32 *)regbuf;
2214 	u32 i, off;
2215 
2216 	memset(buf, 0, regs->len);
2217 
2218 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2219 		off = fec_enet_register_offset[i] / 4;
2220 		buf[off] = readl(&theregs[off]);
2221 	}
2222 }
2223 
2224 static int fec_enet_get_ts_info(struct net_device *ndev,
2225 				struct ethtool_ts_info *info)
2226 {
2227 	struct fec_enet_private *fep = netdev_priv(ndev);
2228 
2229 	if (fep->bufdesc_ex) {
2230 
2231 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2232 					SOF_TIMESTAMPING_RX_SOFTWARE |
2233 					SOF_TIMESTAMPING_SOFTWARE |
2234 					SOF_TIMESTAMPING_TX_HARDWARE |
2235 					SOF_TIMESTAMPING_RX_HARDWARE |
2236 					SOF_TIMESTAMPING_RAW_HARDWARE;
2237 		if (fep->ptp_clock)
2238 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2239 		else
2240 			info->phc_index = -1;
2241 
2242 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2243 				 (1 << HWTSTAMP_TX_ON);
2244 
2245 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2246 				   (1 << HWTSTAMP_FILTER_ALL);
2247 		return 0;
2248 	} else {
2249 		return ethtool_op_get_ts_info(ndev, info);
2250 	}
2251 }
2252 
2253 #if !defined(CONFIG_M5272)
2254 
2255 static void fec_enet_get_pauseparam(struct net_device *ndev,
2256 				    struct ethtool_pauseparam *pause)
2257 {
2258 	struct fec_enet_private *fep = netdev_priv(ndev);
2259 
2260 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2261 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2262 	pause->rx_pause = pause->tx_pause;
2263 }
2264 
2265 static int fec_enet_set_pauseparam(struct net_device *ndev,
2266 				   struct ethtool_pauseparam *pause)
2267 {
2268 	struct fec_enet_private *fep = netdev_priv(ndev);
2269 
2270 	if (!fep->phy_dev)
2271 		return -ENODEV;
2272 
2273 	if (pause->tx_pause != pause->rx_pause) {
2274 		netdev_info(ndev,
2275 			"hardware only support enable/disable both tx and rx");
2276 		return -EINVAL;
2277 	}
2278 
2279 	fep->pause_flag = 0;
2280 
2281 	/* tx pause must be same as rx pause */
2282 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2283 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2284 
2285 	if (pause->rx_pause || pause->autoneg) {
2286 		fep->phy_dev->supported |= ADVERTISED_Pause;
2287 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2288 	} else {
2289 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2290 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2291 	}
2292 
2293 	if (pause->autoneg) {
2294 		if (netif_running(ndev))
2295 			fec_stop(ndev);
2296 		phy_start_aneg(fep->phy_dev);
2297 	}
2298 	if (netif_running(ndev)) {
2299 		napi_disable(&fep->napi);
2300 		netif_tx_lock_bh(ndev);
2301 		fec_restart(ndev);
2302 		netif_wake_queue(ndev);
2303 		netif_tx_unlock_bh(ndev);
2304 		napi_enable(&fep->napi);
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 static const struct fec_stat {
2311 	char name[ETH_GSTRING_LEN];
2312 	u16 offset;
2313 } fec_stats[] = {
2314 	/* RMON TX */
2315 	{ "tx_dropped", RMON_T_DROP },
2316 	{ "tx_packets", RMON_T_PACKETS },
2317 	{ "tx_broadcast", RMON_T_BC_PKT },
2318 	{ "tx_multicast", RMON_T_MC_PKT },
2319 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2320 	{ "tx_undersize", RMON_T_UNDERSIZE },
2321 	{ "tx_oversize", RMON_T_OVERSIZE },
2322 	{ "tx_fragment", RMON_T_FRAG },
2323 	{ "tx_jabber", RMON_T_JAB },
2324 	{ "tx_collision", RMON_T_COL },
2325 	{ "tx_64byte", RMON_T_P64 },
2326 	{ "tx_65to127byte", RMON_T_P65TO127 },
2327 	{ "tx_128to255byte", RMON_T_P128TO255 },
2328 	{ "tx_256to511byte", RMON_T_P256TO511 },
2329 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2330 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2331 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2332 	{ "tx_octets", RMON_T_OCTETS },
2333 
2334 	/* IEEE TX */
2335 	{ "IEEE_tx_drop", IEEE_T_DROP },
2336 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2337 	{ "IEEE_tx_1col", IEEE_T_1COL },
2338 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2339 	{ "IEEE_tx_def", IEEE_T_DEF },
2340 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2341 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2342 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2343 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2344 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2345 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2346 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2347 
2348 	/* RMON RX */
2349 	{ "rx_packets", RMON_R_PACKETS },
2350 	{ "rx_broadcast", RMON_R_BC_PKT },
2351 	{ "rx_multicast", RMON_R_MC_PKT },
2352 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2353 	{ "rx_undersize", RMON_R_UNDERSIZE },
2354 	{ "rx_oversize", RMON_R_OVERSIZE },
2355 	{ "rx_fragment", RMON_R_FRAG },
2356 	{ "rx_jabber", RMON_R_JAB },
2357 	{ "rx_64byte", RMON_R_P64 },
2358 	{ "rx_65to127byte", RMON_R_P65TO127 },
2359 	{ "rx_128to255byte", RMON_R_P128TO255 },
2360 	{ "rx_256to511byte", RMON_R_P256TO511 },
2361 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2362 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2363 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2364 	{ "rx_octets", RMON_R_OCTETS },
2365 
2366 	/* IEEE RX */
2367 	{ "IEEE_rx_drop", IEEE_R_DROP },
2368 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2369 	{ "IEEE_rx_crc", IEEE_R_CRC },
2370 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2371 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2372 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2373 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2374 };
2375 
2376 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2377 	struct ethtool_stats *stats, u64 *data)
2378 {
2379 	struct fec_enet_private *fep = netdev_priv(dev);
2380 	int i;
2381 
2382 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2383 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2384 }
2385 
2386 static void fec_enet_get_strings(struct net_device *netdev,
2387 	u32 stringset, u8 *data)
2388 {
2389 	int i;
2390 	switch (stringset) {
2391 	case ETH_SS_STATS:
2392 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2393 			memcpy(data + i * ETH_GSTRING_LEN,
2394 				fec_stats[i].name, ETH_GSTRING_LEN);
2395 		break;
2396 	}
2397 }
2398 
2399 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2400 {
2401 	switch (sset) {
2402 	case ETH_SS_STATS:
2403 		return ARRAY_SIZE(fec_stats);
2404 	default:
2405 		return -EOPNOTSUPP;
2406 	}
2407 }
2408 #endif /* !defined(CONFIG_M5272) */
2409 
2410 static int fec_enet_nway_reset(struct net_device *dev)
2411 {
2412 	struct fec_enet_private *fep = netdev_priv(dev);
2413 	struct phy_device *phydev = fep->phy_dev;
2414 
2415 	if (!phydev)
2416 		return -ENODEV;
2417 
2418 	return genphy_restart_aneg(phydev);
2419 }
2420 
2421 /* ITR clock source is enet system clock (clk_ahb).
2422  * TCTT unit is cycle_ns * 64 cycle
2423  * So, the ICTT value = X us / (cycle_ns * 64)
2424  */
2425 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2426 {
2427 	struct fec_enet_private *fep = netdev_priv(ndev);
2428 
2429 	return us * (fep->itr_clk_rate / 64000) / 1000;
2430 }
2431 
2432 /* Set threshold for interrupt coalescing */
2433 static void fec_enet_itr_coal_set(struct net_device *ndev)
2434 {
2435 	struct fec_enet_private *fep = netdev_priv(ndev);
2436 	int rx_itr, tx_itr;
2437 
2438 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2439 		return;
2440 
2441 	/* Must be greater than zero to avoid unpredictable behavior */
2442 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2443 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2444 		return;
2445 
2446 	/* Select enet system clock as Interrupt Coalescing
2447 	 * timer Clock Source
2448 	 */
2449 	rx_itr = FEC_ITR_CLK_SEL;
2450 	tx_itr = FEC_ITR_CLK_SEL;
2451 
2452 	/* set ICFT and ICTT */
2453 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2454 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2455 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2456 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2457 
2458 	rx_itr |= FEC_ITR_EN;
2459 	tx_itr |= FEC_ITR_EN;
2460 
2461 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2462 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2463 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2464 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2465 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2466 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2467 }
2468 
2469 static int
2470 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2471 {
2472 	struct fec_enet_private *fep = netdev_priv(ndev);
2473 
2474 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2475 		return -EOPNOTSUPP;
2476 
2477 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2478 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2479 
2480 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2481 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2482 
2483 	return 0;
2484 }
2485 
2486 static int
2487 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2488 {
2489 	struct fec_enet_private *fep = netdev_priv(ndev);
2490 	unsigned int cycle;
2491 
2492 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2493 		return -EOPNOTSUPP;
2494 
2495 	if (ec->rx_max_coalesced_frames > 255) {
2496 		pr_err("Rx coalesced frames exceed hardware limiation");
2497 		return -EINVAL;
2498 	}
2499 
2500 	if (ec->tx_max_coalesced_frames > 255) {
2501 		pr_err("Tx coalesced frame exceed hardware limiation");
2502 		return -EINVAL;
2503 	}
2504 
2505 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2506 	if (cycle > 0xFFFF) {
2507 		pr_err("Rx coalesed usec exceeed hardware limiation");
2508 		return -EINVAL;
2509 	}
2510 
2511 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2512 	if (cycle > 0xFFFF) {
2513 		pr_err("Rx coalesed usec exceeed hardware limiation");
2514 		return -EINVAL;
2515 	}
2516 
2517 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2518 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2519 
2520 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2521 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2522 
2523 	fec_enet_itr_coal_set(ndev);
2524 
2525 	return 0;
2526 }
2527 
2528 static void fec_enet_itr_coal_init(struct net_device *ndev)
2529 {
2530 	struct ethtool_coalesce ec;
2531 
2532 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2533 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2534 
2535 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2536 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2537 
2538 	fec_enet_set_coalesce(ndev, &ec);
2539 }
2540 
2541 static int fec_enet_get_tunable(struct net_device *netdev,
2542 				const struct ethtool_tunable *tuna,
2543 				void *data)
2544 {
2545 	struct fec_enet_private *fep = netdev_priv(netdev);
2546 	int ret = 0;
2547 
2548 	switch (tuna->id) {
2549 	case ETHTOOL_RX_COPYBREAK:
2550 		*(u32 *)data = fep->rx_copybreak;
2551 		break;
2552 	default:
2553 		ret = -EINVAL;
2554 		break;
2555 	}
2556 
2557 	return ret;
2558 }
2559 
2560 static int fec_enet_set_tunable(struct net_device *netdev,
2561 				const struct ethtool_tunable *tuna,
2562 				const void *data)
2563 {
2564 	struct fec_enet_private *fep = netdev_priv(netdev);
2565 	int ret = 0;
2566 
2567 	switch (tuna->id) {
2568 	case ETHTOOL_RX_COPYBREAK:
2569 		fep->rx_copybreak = *(u32 *)data;
2570 		break;
2571 	default:
2572 		ret = -EINVAL;
2573 		break;
2574 	}
2575 
2576 	return ret;
2577 }
2578 
2579 static void
2580 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2581 {
2582 	struct fec_enet_private *fep = netdev_priv(ndev);
2583 
2584 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2585 		wol->supported = WAKE_MAGIC;
2586 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2587 	} else {
2588 		wol->supported = wol->wolopts = 0;
2589 	}
2590 }
2591 
2592 static int
2593 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2594 {
2595 	struct fec_enet_private *fep = netdev_priv(ndev);
2596 
2597 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2598 		return -EINVAL;
2599 
2600 	if (wol->wolopts & ~WAKE_MAGIC)
2601 		return -EINVAL;
2602 
2603 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2604 	if (device_may_wakeup(&ndev->dev)) {
2605 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2606 		if (fep->irq[0] > 0)
2607 			enable_irq_wake(fep->irq[0]);
2608 	} else {
2609 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2610 		if (fep->irq[0] > 0)
2611 			disable_irq_wake(fep->irq[0]);
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 static const struct ethtool_ops fec_enet_ethtool_ops = {
2618 	.get_settings		= fec_enet_get_settings,
2619 	.set_settings		= fec_enet_set_settings,
2620 	.get_drvinfo		= fec_enet_get_drvinfo,
2621 	.get_regs_len		= fec_enet_get_regs_len,
2622 	.get_regs		= fec_enet_get_regs,
2623 	.nway_reset		= fec_enet_nway_reset,
2624 	.get_link		= ethtool_op_get_link,
2625 	.get_coalesce		= fec_enet_get_coalesce,
2626 	.set_coalesce		= fec_enet_set_coalesce,
2627 #ifndef CONFIG_M5272
2628 	.get_pauseparam		= fec_enet_get_pauseparam,
2629 	.set_pauseparam		= fec_enet_set_pauseparam,
2630 	.get_strings		= fec_enet_get_strings,
2631 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2632 	.get_sset_count		= fec_enet_get_sset_count,
2633 #endif
2634 	.get_ts_info		= fec_enet_get_ts_info,
2635 	.get_tunable		= fec_enet_get_tunable,
2636 	.set_tunable		= fec_enet_set_tunable,
2637 	.get_wol		= fec_enet_get_wol,
2638 	.set_wol		= fec_enet_set_wol,
2639 };
2640 
2641 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2642 {
2643 	struct fec_enet_private *fep = netdev_priv(ndev);
2644 	struct phy_device *phydev = fep->phy_dev;
2645 
2646 	if (!netif_running(ndev))
2647 		return -EINVAL;
2648 
2649 	if (!phydev)
2650 		return -ENODEV;
2651 
2652 	if (fep->bufdesc_ex) {
2653 		if (cmd == SIOCSHWTSTAMP)
2654 			return fec_ptp_set(ndev, rq);
2655 		if (cmd == SIOCGHWTSTAMP)
2656 			return fec_ptp_get(ndev, rq);
2657 	}
2658 
2659 	return phy_mii_ioctl(phydev, rq, cmd);
2660 }
2661 
2662 static void fec_enet_free_buffers(struct net_device *ndev)
2663 {
2664 	struct fec_enet_private *fep = netdev_priv(ndev);
2665 	unsigned int i;
2666 	struct sk_buff *skb;
2667 	struct bufdesc	*bdp;
2668 	struct fec_enet_priv_tx_q *txq;
2669 	struct fec_enet_priv_rx_q *rxq;
2670 	unsigned int q;
2671 
2672 	for (q = 0; q < fep->num_rx_queues; q++) {
2673 		rxq = fep->rx_queue[q];
2674 		bdp = rxq->rx_bd_base;
2675 		for (i = 0; i < rxq->rx_ring_size; i++) {
2676 			skb = rxq->rx_skbuff[i];
2677 			rxq->rx_skbuff[i] = NULL;
2678 			if (skb) {
2679 				dma_unmap_single(&fep->pdev->dev,
2680 						 bdp->cbd_bufaddr,
2681 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2682 						 DMA_FROM_DEVICE);
2683 				dev_kfree_skb(skb);
2684 			}
2685 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2686 		}
2687 	}
2688 
2689 	for (q = 0; q < fep->num_tx_queues; q++) {
2690 		txq = fep->tx_queue[q];
2691 		bdp = txq->tx_bd_base;
2692 		for (i = 0; i < txq->tx_ring_size; i++) {
2693 			kfree(txq->tx_bounce[i]);
2694 			txq->tx_bounce[i] = NULL;
2695 			skb = txq->tx_skbuff[i];
2696 			txq->tx_skbuff[i] = NULL;
2697 			dev_kfree_skb(skb);
2698 		}
2699 	}
2700 }
2701 
2702 static void fec_enet_free_queue(struct net_device *ndev)
2703 {
2704 	struct fec_enet_private *fep = netdev_priv(ndev);
2705 	int i;
2706 	struct fec_enet_priv_tx_q *txq;
2707 
2708 	for (i = 0; i < fep->num_tx_queues; i++)
2709 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2710 			txq = fep->tx_queue[i];
2711 			dma_free_coherent(NULL,
2712 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2713 					  txq->tso_hdrs,
2714 					  txq->tso_hdrs_dma);
2715 		}
2716 
2717 	for (i = 0; i < fep->num_rx_queues; i++)
2718 		kfree(fep->rx_queue[i]);
2719 	for (i = 0; i < fep->num_tx_queues; i++)
2720 		kfree(fep->tx_queue[i]);
2721 }
2722 
2723 static int fec_enet_alloc_queue(struct net_device *ndev)
2724 {
2725 	struct fec_enet_private *fep = netdev_priv(ndev);
2726 	int i;
2727 	int ret = 0;
2728 	struct fec_enet_priv_tx_q *txq;
2729 
2730 	for (i = 0; i < fep->num_tx_queues; i++) {
2731 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2732 		if (!txq) {
2733 			ret = -ENOMEM;
2734 			goto alloc_failed;
2735 		}
2736 
2737 		fep->tx_queue[i] = txq;
2738 		txq->tx_ring_size = TX_RING_SIZE;
2739 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2740 
2741 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2742 		txq->tx_wake_threshold =
2743 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2744 
2745 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2746 					txq->tx_ring_size * TSO_HEADER_SIZE,
2747 					&txq->tso_hdrs_dma,
2748 					GFP_KERNEL);
2749 		if (!txq->tso_hdrs) {
2750 			ret = -ENOMEM;
2751 			goto alloc_failed;
2752 		}
2753 	}
2754 
2755 	for (i = 0; i < fep->num_rx_queues; i++) {
2756 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2757 					   GFP_KERNEL);
2758 		if (!fep->rx_queue[i]) {
2759 			ret = -ENOMEM;
2760 			goto alloc_failed;
2761 		}
2762 
2763 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2764 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2765 	}
2766 	return ret;
2767 
2768 alloc_failed:
2769 	fec_enet_free_queue(ndev);
2770 	return ret;
2771 }
2772 
2773 static int
2774 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2775 {
2776 	struct fec_enet_private *fep = netdev_priv(ndev);
2777 	unsigned int i;
2778 	struct sk_buff *skb;
2779 	struct bufdesc	*bdp;
2780 	struct fec_enet_priv_rx_q *rxq;
2781 
2782 	rxq = fep->rx_queue[queue];
2783 	bdp = rxq->rx_bd_base;
2784 	for (i = 0; i < rxq->rx_ring_size; i++) {
2785 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2786 		if (!skb)
2787 			goto err_alloc;
2788 
2789 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2790 			dev_kfree_skb(skb);
2791 			goto err_alloc;
2792 		}
2793 
2794 		rxq->rx_skbuff[i] = skb;
2795 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2796 
2797 		if (fep->bufdesc_ex) {
2798 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2799 			ebdp->cbd_esc = BD_ENET_RX_INT;
2800 		}
2801 
2802 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2803 	}
2804 
2805 	/* Set the last buffer to wrap. */
2806 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2807 	bdp->cbd_sc |= BD_SC_WRAP;
2808 	return 0;
2809 
2810  err_alloc:
2811 	fec_enet_free_buffers(ndev);
2812 	return -ENOMEM;
2813 }
2814 
2815 static int
2816 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2817 {
2818 	struct fec_enet_private *fep = netdev_priv(ndev);
2819 	unsigned int i;
2820 	struct bufdesc  *bdp;
2821 	struct fec_enet_priv_tx_q *txq;
2822 
2823 	txq = fep->tx_queue[queue];
2824 	bdp = txq->tx_bd_base;
2825 	for (i = 0; i < txq->tx_ring_size; i++) {
2826 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2827 		if (!txq->tx_bounce[i])
2828 			goto err_alloc;
2829 
2830 		bdp->cbd_sc = 0;
2831 		bdp->cbd_bufaddr = 0;
2832 
2833 		if (fep->bufdesc_ex) {
2834 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2835 			ebdp->cbd_esc = BD_ENET_TX_INT;
2836 		}
2837 
2838 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2839 	}
2840 
2841 	/* Set the last buffer to wrap. */
2842 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2843 	bdp->cbd_sc |= BD_SC_WRAP;
2844 
2845 	return 0;
2846 
2847  err_alloc:
2848 	fec_enet_free_buffers(ndev);
2849 	return -ENOMEM;
2850 }
2851 
2852 static int fec_enet_alloc_buffers(struct net_device *ndev)
2853 {
2854 	struct fec_enet_private *fep = netdev_priv(ndev);
2855 	unsigned int i;
2856 
2857 	for (i = 0; i < fep->num_rx_queues; i++)
2858 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2859 			return -ENOMEM;
2860 
2861 	for (i = 0; i < fep->num_tx_queues; i++)
2862 		if (fec_enet_alloc_txq_buffers(ndev, i))
2863 			return -ENOMEM;
2864 	return 0;
2865 }
2866 
2867 static int
2868 fec_enet_open(struct net_device *ndev)
2869 {
2870 	struct fec_enet_private *fep = netdev_priv(ndev);
2871 	int ret;
2872 
2873 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2874 	if (ret < 0)
2875 		return ret;
2876 
2877 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2878 	ret = fec_enet_clk_enable(ndev, true);
2879 	if (ret)
2880 		goto clk_enable;
2881 
2882 	/* I should reset the ring buffers here, but I don't yet know
2883 	 * a simple way to do that.
2884 	 */
2885 
2886 	ret = fec_enet_alloc_buffers(ndev);
2887 	if (ret)
2888 		goto err_enet_alloc;
2889 
2890 	/* Init MAC prior to mii bus probe */
2891 	fec_restart(ndev);
2892 
2893 	/* Probe and connect to PHY when open the interface */
2894 	ret = fec_enet_mii_probe(ndev);
2895 	if (ret)
2896 		goto err_enet_mii_probe;
2897 
2898 	napi_enable(&fep->napi);
2899 	phy_start(fep->phy_dev);
2900 	netif_tx_start_all_queues(ndev);
2901 
2902 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2903 				 FEC_WOL_FLAG_ENABLE);
2904 
2905 	return 0;
2906 
2907 err_enet_mii_probe:
2908 	fec_enet_free_buffers(ndev);
2909 err_enet_alloc:
2910 	fec_enet_clk_enable(ndev, false);
2911 clk_enable:
2912 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2913 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2914 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2915 	return ret;
2916 }
2917 
2918 static int
2919 fec_enet_close(struct net_device *ndev)
2920 {
2921 	struct fec_enet_private *fep = netdev_priv(ndev);
2922 
2923 	phy_stop(fep->phy_dev);
2924 
2925 	if (netif_device_present(ndev)) {
2926 		napi_disable(&fep->napi);
2927 		netif_tx_disable(ndev);
2928 		fec_stop(ndev);
2929 	}
2930 
2931 	phy_disconnect(fep->phy_dev);
2932 	fep->phy_dev = NULL;
2933 
2934 	fec_enet_clk_enable(ndev, false);
2935 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2936 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2937 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2938 
2939 	fec_enet_free_buffers(ndev);
2940 
2941 	return 0;
2942 }
2943 
2944 /* Set or clear the multicast filter for this adaptor.
2945  * Skeleton taken from sunlance driver.
2946  * The CPM Ethernet implementation allows Multicast as well as individual
2947  * MAC address filtering.  Some of the drivers check to make sure it is
2948  * a group multicast address, and discard those that are not.  I guess I
2949  * will do the same for now, but just remove the test if you want
2950  * individual filtering as well (do the upper net layers want or support
2951  * this kind of feature?).
2952  */
2953 
2954 #define HASH_BITS	6		/* #bits in hash */
2955 #define CRC32_POLY	0xEDB88320
2956 
2957 static void set_multicast_list(struct net_device *ndev)
2958 {
2959 	struct fec_enet_private *fep = netdev_priv(ndev);
2960 	struct netdev_hw_addr *ha;
2961 	unsigned int i, bit, data, crc, tmp;
2962 	unsigned char hash;
2963 
2964 	if (ndev->flags & IFF_PROMISC) {
2965 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2966 		tmp |= 0x8;
2967 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2968 		return;
2969 	}
2970 
2971 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2972 	tmp &= ~0x8;
2973 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2974 
2975 	if (ndev->flags & IFF_ALLMULTI) {
2976 		/* Catch all multicast addresses, so set the
2977 		 * filter to all 1's
2978 		 */
2979 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2980 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2981 
2982 		return;
2983 	}
2984 
2985 	/* Clear filter and add the addresses in hash register
2986 	 */
2987 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2988 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2989 
2990 	netdev_for_each_mc_addr(ha, ndev) {
2991 		/* calculate crc32 value of mac address */
2992 		crc = 0xffffffff;
2993 
2994 		for (i = 0; i < ndev->addr_len; i++) {
2995 			data = ha->addr[i];
2996 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2997 				crc = (crc >> 1) ^
2998 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2999 			}
3000 		}
3001 
3002 		/* only upper 6 bits (HASH_BITS) are used
3003 		 * which point to specific bit in he hash registers
3004 		 */
3005 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
3006 
3007 		if (hash > 31) {
3008 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3009 			tmp |= 1 << (hash - 32);
3010 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3011 		} else {
3012 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3013 			tmp |= 1 << hash;
3014 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3015 		}
3016 	}
3017 }
3018 
3019 /* Set a MAC change in hardware. */
3020 static int
3021 fec_set_mac_address(struct net_device *ndev, void *p)
3022 {
3023 	struct fec_enet_private *fep = netdev_priv(ndev);
3024 	struct sockaddr *addr = p;
3025 
3026 	if (addr) {
3027 		if (!is_valid_ether_addr(addr->sa_data))
3028 			return -EADDRNOTAVAIL;
3029 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3030 	}
3031 
3032 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3033 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3034 		fep->hwp + FEC_ADDR_LOW);
3035 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3036 		fep->hwp + FEC_ADDR_HIGH);
3037 	return 0;
3038 }
3039 
3040 #ifdef CONFIG_NET_POLL_CONTROLLER
3041 /**
3042  * fec_poll_controller - FEC Poll controller function
3043  * @dev: The FEC network adapter
3044  *
3045  * Polled functionality used by netconsole and others in non interrupt mode
3046  *
3047  */
3048 static void fec_poll_controller(struct net_device *dev)
3049 {
3050 	int i;
3051 	struct fec_enet_private *fep = netdev_priv(dev);
3052 
3053 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3054 		if (fep->irq[i] > 0) {
3055 			disable_irq(fep->irq[i]);
3056 			fec_enet_interrupt(fep->irq[i], dev);
3057 			enable_irq(fep->irq[i]);
3058 		}
3059 	}
3060 }
3061 #endif
3062 
3063 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
3064 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3065 	netdev_features_t features)
3066 {
3067 	struct fec_enet_private *fep = netdev_priv(netdev);
3068 	netdev_features_t changed = features ^ netdev->features;
3069 
3070 	netdev->features = features;
3071 
3072 	/* Receive checksum has been changed */
3073 	if (changed & NETIF_F_RXCSUM) {
3074 		if (features & NETIF_F_RXCSUM)
3075 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3076 		else
3077 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3078 	}
3079 }
3080 
3081 static int fec_set_features(struct net_device *netdev,
3082 	netdev_features_t features)
3083 {
3084 	struct fec_enet_private *fep = netdev_priv(netdev);
3085 	netdev_features_t changed = features ^ netdev->features;
3086 
3087 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
3088 		napi_disable(&fep->napi);
3089 		netif_tx_lock_bh(netdev);
3090 		fec_stop(netdev);
3091 		fec_enet_set_netdev_features(netdev, features);
3092 		fec_restart(netdev);
3093 		netif_tx_wake_all_queues(netdev);
3094 		netif_tx_unlock_bh(netdev);
3095 		napi_enable(&fep->napi);
3096 	} else {
3097 		fec_enet_set_netdev_features(netdev, features);
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static const struct net_device_ops fec_netdev_ops = {
3104 	.ndo_open		= fec_enet_open,
3105 	.ndo_stop		= fec_enet_close,
3106 	.ndo_start_xmit		= fec_enet_start_xmit,
3107 	.ndo_set_rx_mode	= set_multicast_list,
3108 	.ndo_change_mtu		= eth_change_mtu,
3109 	.ndo_validate_addr	= eth_validate_addr,
3110 	.ndo_tx_timeout		= fec_timeout,
3111 	.ndo_set_mac_address	= fec_set_mac_address,
3112 	.ndo_do_ioctl		= fec_enet_ioctl,
3113 #ifdef CONFIG_NET_POLL_CONTROLLER
3114 	.ndo_poll_controller	= fec_poll_controller,
3115 #endif
3116 	.ndo_set_features	= fec_set_features,
3117 };
3118 
3119  /*
3120   * XXX:  We need to clean up on failure exits here.
3121   *
3122   */
3123 static int fec_enet_init(struct net_device *ndev)
3124 {
3125 	struct fec_enet_private *fep = netdev_priv(ndev);
3126 	struct fec_enet_priv_tx_q *txq;
3127 	struct fec_enet_priv_rx_q *rxq;
3128 	struct bufdesc *cbd_base;
3129 	dma_addr_t bd_dma;
3130 	int bd_size;
3131 	unsigned int i;
3132 
3133 #if defined(CONFIG_ARM)
3134 	fep->rx_align = 0xf;
3135 	fep->tx_align = 0xf;
3136 #else
3137 	fep->rx_align = 0x3;
3138 	fep->tx_align = 0x3;
3139 #endif
3140 
3141 	fec_enet_alloc_queue(ndev);
3142 
3143 	if (fep->bufdesc_ex)
3144 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3145 	else
3146 		fep->bufdesc_size = sizeof(struct bufdesc);
3147 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3148 			fep->bufdesc_size;
3149 
3150 	/* Allocate memory for buffer descriptors. */
3151 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3152 				       GFP_KERNEL);
3153 	if (!cbd_base) {
3154 		return -ENOMEM;
3155 	}
3156 
3157 	memset(cbd_base, 0, bd_size);
3158 
3159 	/* Get the Ethernet address */
3160 	fec_get_mac(ndev);
3161 	/* make sure MAC we just acquired is programmed into the hw */
3162 	fec_set_mac_address(ndev, NULL);
3163 
3164 	/* Set receive and transmit descriptor base. */
3165 	for (i = 0; i < fep->num_rx_queues; i++) {
3166 		rxq = fep->rx_queue[i];
3167 		rxq->index = i;
3168 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3169 		rxq->bd_dma = bd_dma;
3170 		if (fep->bufdesc_ex) {
3171 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3172 			cbd_base = (struct bufdesc *)
3173 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3174 		} else {
3175 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3176 			cbd_base += rxq->rx_ring_size;
3177 		}
3178 	}
3179 
3180 	for (i = 0; i < fep->num_tx_queues; i++) {
3181 		txq = fep->tx_queue[i];
3182 		txq->index = i;
3183 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3184 		txq->bd_dma = bd_dma;
3185 		if (fep->bufdesc_ex) {
3186 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3187 			cbd_base = (struct bufdesc *)
3188 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3189 		} else {
3190 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3191 			cbd_base += txq->tx_ring_size;
3192 		}
3193 	}
3194 
3195 
3196 	/* The FEC Ethernet specific entries in the device structure */
3197 	ndev->watchdog_timeo = TX_TIMEOUT;
3198 	ndev->netdev_ops = &fec_netdev_ops;
3199 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3200 
3201 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3202 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3203 
3204 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3205 		/* enable hw VLAN support */
3206 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3207 
3208 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3209 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3210 
3211 		/* enable hw accelerator */
3212 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3213 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3214 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3215 	}
3216 
3217 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3218 		fep->tx_align = 0;
3219 		fep->rx_align = 0x3f;
3220 	}
3221 
3222 	ndev->hw_features = ndev->features;
3223 
3224 	fec_restart(ndev);
3225 
3226 	return 0;
3227 }
3228 
3229 #ifdef CONFIG_OF
3230 static void fec_reset_phy(struct platform_device *pdev)
3231 {
3232 	int err, phy_reset;
3233 	int msec = 1;
3234 	struct device_node *np = pdev->dev.of_node;
3235 
3236 	if (!np)
3237 		return;
3238 
3239 	of_property_read_u32(np, "phy-reset-duration", &msec);
3240 	/* A sane reset duration should not be longer than 1s */
3241 	if (msec > 1000)
3242 		msec = 1;
3243 
3244 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3245 	if (!gpio_is_valid(phy_reset))
3246 		return;
3247 
3248 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3249 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3250 	if (err) {
3251 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3252 		return;
3253 	}
3254 	msleep(msec);
3255 	gpio_set_value(phy_reset, 1);
3256 }
3257 #else /* CONFIG_OF */
3258 static void fec_reset_phy(struct platform_device *pdev)
3259 {
3260 	/*
3261 	 * In case of platform probe, the reset has been done
3262 	 * by machine code.
3263 	 */
3264 }
3265 #endif /* CONFIG_OF */
3266 
3267 static void
3268 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3269 {
3270 	struct device_node *np = pdev->dev.of_node;
3271 	int err;
3272 
3273 	*num_tx = *num_rx = 1;
3274 
3275 	if (!np || !of_device_is_available(np))
3276 		return;
3277 
3278 	/* parse the num of tx and rx queues */
3279 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3280 	if (err)
3281 		*num_tx = 1;
3282 
3283 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3284 	if (err)
3285 		*num_rx = 1;
3286 
3287 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3288 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3289 			 *num_tx);
3290 		*num_tx = 1;
3291 		return;
3292 	}
3293 
3294 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3295 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3296 			 *num_rx);
3297 		*num_rx = 1;
3298 		return;
3299 	}
3300 
3301 }
3302 
3303 static int
3304 fec_probe(struct platform_device *pdev)
3305 {
3306 	struct fec_enet_private *fep;
3307 	struct fec_platform_data *pdata;
3308 	struct net_device *ndev;
3309 	int i, irq, ret = 0;
3310 	struct resource *r;
3311 	const struct of_device_id *of_id;
3312 	static int dev_id;
3313 	struct device_node *np = pdev->dev.of_node, *phy_node;
3314 	int num_tx_qs;
3315 	int num_rx_qs;
3316 
3317 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3318 
3319 	/* Init network device */
3320 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3321 				  num_tx_qs, num_rx_qs);
3322 	if (!ndev)
3323 		return -ENOMEM;
3324 
3325 	SET_NETDEV_DEV(ndev, &pdev->dev);
3326 
3327 	/* setup board info structure */
3328 	fep = netdev_priv(ndev);
3329 
3330 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3331 	if (of_id)
3332 		pdev->id_entry = of_id->data;
3333 	fep->quirks = pdev->id_entry->driver_data;
3334 
3335 	fep->netdev = ndev;
3336 	fep->num_rx_queues = num_rx_qs;
3337 	fep->num_tx_queues = num_tx_qs;
3338 
3339 #if !defined(CONFIG_M5272)
3340 	/* default enable pause frame auto negotiation */
3341 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3342 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3343 #endif
3344 
3345 	/* Select default pin state */
3346 	pinctrl_pm_select_default_state(&pdev->dev);
3347 
3348 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3349 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3350 	if (IS_ERR(fep->hwp)) {
3351 		ret = PTR_ERR(fep->hwp);
3352 		goto failed_ioremap;
3353 	}
3354 
3355 	fep->pdev = pdev;
3356 	fep->dev_id = dev_id++;
3357 
3358 	platform_set_drvdata(pdev, ndev);
3359 
3360 	if (of_get_property(np, "fsl,magic-packet", NULL))
3361 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3362 
3363 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3364 	if (!phy_node && of_phy_is_fixed_link(np)) {
3365 		ret = of_phy_register_fixed_link(np);
3366 		if (ret < 0) {
3367 			dev_err(&pdev->dev,
3368 				"broken fixed-link specification\n");
3369 			goto failed_phy;
3370 		}
3371 		phy_node = of_node_get(np);
3372 	}
3373 	fep->phy_node = phy_node;
3374 
3375 	ret = of_get_phy_mode(pdev->dev.of_node);
3376 	if (ret < 0) {
3377 		pdata = dev_get_platdata(&pdev->dev);
3378 		if (pdata)
3379 			fep->phy_interface = pdata->phy;
3380 		else
3381 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3382 	} else {
3383 		fep->phy_interface = ret;
3384 	}
3385 
3386 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3387 	if (IS_ERR(fep->clk_ipg)) {
3388 		ret = PTR_ERR(fep->clk_ipg);
3389 		goto failed_clk;
3390 	}
3391 
3392 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3393 	if (IS_ERR(fep->clk_ahb)) {
3394 		ret = PTR_ERR(fep->clk_ahb);
3395 		goto failed_clk;
3396 	}
3397 
3398 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3399 
3400 	/* enet_out is optional, depends on board */
3401 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3402 	if (IS_ERR(fep->clk_enet_out))
3403 		fep->clk_enet_out = NULL;
3404 
3405 	fep->ptp_clk_on = false;
3406 	mutex_init(&fep->ptp_clk_mutex);
3407 
3408 	/* clk_ref is optional, depends on board */
3409 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3410 	if (IS_ERR(fep->clk_ref))
3411 		fep->clk_ref = NULL;
3412 
3413 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3414 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3415 	if (IS_ERR(fep->clk_ptp)) {
3416 		fep->clk_ptp = NULL;
3417 		fep->bufdesc_ex = false;
3418 	}
3419 
3420 	ret = fec_enet_clk_enable(ndev, true);
3421 	if (ret)
3422 		goto failed_clk;
3423 
3424 	ret = clk_prepare_enable(fep->clk_ipg);
3425 	if (ret)
3426 		goto failed_clk_ipg;
3427 
3428 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3429 	if (!IS_ERR(fep->reg_phy)) {
3430 		ret = regulator_enable(fep->reg_phy);
3431 		if (ret) {
3432 			dev_err(&pdev->dev,
3433 				"Failed to enable phy regulator: %d\n", ret);
3434 			goto failed_regulator;
3435 		}
3436 	} else {
3437 		fep->reg_phy = NULL;
3438 	}
3439 
3440 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3441 	pm_runtime_use_autosuspend(&pdev->dev);
3442 	pm_runtime_get_noresume(&pdev->dev);
3443 	pm_runtime_set_active(&pdev->dev);
3444 	pm_runtime_enable(&pdev->dev);
3445 
3446 	fec_reset_phy(pdev);
3447 
3448 	if (fep->bufdesc_ex)
3449 		fec_ptp_init(pdev);
3450 
3451 	ret = fec_enet_init(ndev);
3452 	if (ret)
3453 		goto failed_init;
3454 
3455 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3456 		irq = platform_get_irq(pdev, i);
3457 		if (irq < 0) {
3458 			if (i)
3459 				break;
3460 			ret = irq;
3461 			goto failed_irq;
3462 		}
3463 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3464 				       0, pdev->name, ndev);
3465 		if (ret)
3466 			goto failed_irq;
3467 
3468 		fep->irq[i] = irq;
3469 	}
3470 
3471 	init_completion(&fep->mdio_done);
3472 	ret = fec_enet_mii_init(pdev);
3473 	if (ret)
3474 		goto failed_mii_init;
3475 
3476 	/* Carrier starts down, phylib will bring it up */
3477 	netif_carrier_off(ndev);
3478 	fec_enet_clk_enable(ndev, false);
3479 	pinctrl_pm_select_sleep_state(&pdev->dev);
3480 
3481 	ret = register_netdev(ndev);
3482 	if (ret)
3483 		goto failed_register;
3484 
3485 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3486 			   FEC_WOL_HAS_MAGIC_PACKET);
3487 
3488 	if (fep->bufdesc_ex && fep->ptp_clock)
3489 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3490 
3491 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3492 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3493 
3494 	pm_runtime_mark_last_busy(&pdev->dev);
3495 	pm_runtime_put_autosuspend(&pdev->dev);
3496 
3497 	return 0;
3498 
3499 failed_register:
3500 	fec_enet_mii_remove(fep);
3501 failed_mii_init:
3502 failed_irq:
3503 failed_init:
3504 	fec_ptp_stop(pdev);
3505 	if (fep->reg_phy)
3506 		regulator_disable(fep->reg_phy);
3507 failed_regulator:
3508 	clk_disable_unprepare(fep->clk_ipg);
3509 failed_clk_ipg:
3510 	fec_enet_clk_enable(ndev, false);
3511 failed_clk:
3512 failed_phy:
3513 	of_node_put(phy_node);
3514 failed_ioremap:
3515 	free_netdev(ndev);
3516 
3517 	return ret;
3518 }
3519 
3520 static int
3521 fec_drv_remove(struct platform_device *pdev)
3522 {
3523 	struct net_device *ndev = platform_get_drvdata(pdev);
3524 	struct fec_enet_private *fep = netdev_priv(ndev);
3525 
3526 	cancel_work_sync(&fep->tx_timeout_work);
3527 	fec_ptp_stop(pdev);
3528 	unregister_netdev(ndev);
3529 	fec_enet_mii_remove(fep);
3530 	if (fep->reg_phy)
3531 		regulator_disable(fep->reg_phy);
3532 	of_node_put(fep->phy_node);
3533 	free_netdev(ndev);
3534 
3535 	return 0;
3536 }
3537 
3538 static int __maybe_unused fec_suspend(struct device *dev)
3539 {
3540 	struct net_device *ndev = dev_get_drvdata(dev);
3541 	struct fec_enet_private *fep = netdev_priv(ndev);
3542 
3543 	rtnl_lock();
3544 	if (netif_running(ndev)) {
3545 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3546 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3547 		phy_stop(fep->phy_dev);
3548 		napi_disable(&fep->napi);
3549 		netif_tx_lock_bh(ndev);
3550 		netif_device_detach(ndev);
3551 		netif_tx_unlock_bh(ndev);
3552 		fec_stop(ndev);
3553 		fec_enet_clk_enable(ndev, false);
3554 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3555 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3556 	}
3557 	rtnl_unlock();
3558 
3559 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3560 		regulator_disable(fep->reg_phy);
3561 
3562 	/* SOC supply clock to phy, when clock is disabled, phy link down
3563 	 * SOC control phy regulator, when regulator is disabled, phy link down
3564 	 */
3565 	if (fep->clk_enet_out || fep->reg_phy)
3566 		fep->link = 0;
3567 
3568 	return 0;
3569 }
3570 
3571 static int __maybe_unused fec_resume(struct device *dev)
3572 {
3573 	struct net_device *ndev = dev_get_drvdata(dev);
3574 	struct fec_enet_private *fep = netdev_priv(ndev);
3575 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3576 	int ret;
3577 	int val;
3578 
3579 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3580 		ret = regulator_enable(fep->reg_phy);
3581 		if (ret)
3582 			return ret;
3583 	}
3584 
3585 	rtnl_lock();
3586 	if (netif_running(ndev)) {
3587 		ret = fec_enet_clk_enable(ndev, true);
3588 		if (ret) {
3589 			rtnl_unlock();
3590 			goto failed_clk;
3591 		}
3592 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3593 			if (pdata && pdata->sleep_mode_enable)
3594 				pdata->sleep_mode_enable(false);
3595 			val = readl(fep->hwp + FEC_ECNTRL);
3596 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3597 			writel(val, fep->hwp + FEC_ECNTRL);
3598 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3599 		} else {
3600 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3601 		}
3602 		fec_restart(ndev);
3603 		netif_tx_lock_bh(ndev);
3604 		netif_device_attach(ndev);
3605 		netif_tx_unlock_bh(ndev);
3606 		napi_enable(&fep->napi);
3607 		phy_start(fep->phy_dev);
3608 	}
3609 	rtnl_unlock();
3610 
3611 	return 0;
3612 
3613 failed_clk:
3614 	if (fep->reg_phy)
3615 		regulator_disable(fep->reg_phy);
3616 	return ret;
3617 }
3618 
3619 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3620 {
3621 	struct net_device *ndev = dev_get_drvdata(dev);
3622 	struct fec_enet_private *fep = netdev_priv(ndev);
3623 
3624 	clk_disable_unprepare(fep->clk_ipg);
3625 
3626 	return 0;
3627 }
3628 
3629 static int __maybe_unused fec_runtime_resume(struct device *dev)
3630 {
3631 	struct net_device *ndev = dev_get_drvdata(dev);
3632 	struct fec_enet_private *fep = netdev_priv(ndev);
3633 
3634 	return clk_prepare_enable(fep->clk_ipg);
3635 }
3636 
3637 static const struct dev_pm_ops fec_pm_ops = {
3638 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3639 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3640 };
3641 
3642 static struct platform_driver fec_driver = {
3643 	.driver	= {
3644 		.name	= DRIVER_NAME,
3645 		.pm	= &fec_pm_ops,
3646 		.of_match_table = fec_dt_ids,
3647 	},
3648 	.id_table = fec_devtype,
3649 	.probe	= fec_probe,
3650 	.remove	= fec_drv_remove,
3651 };
3652 
3653 module_platform_driver(fec_driver);
3654 
3655 MODULE_ALIAS("platform:"DRIVER_NAME);
3656 MODULE_LICENSE("GPL");
3657