1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 static void set_multicast_list(struct net_device *ndev);
64 
65 #if defined(CONFIG_ARM)
66 #define FEC_ALIGNMENT	0xf
67 #else
68 #define FEC_ALIGNMENT	0x3
69 #endif
70 
71 #define DRIVER_NAME	"fec"
72 #define FEC_NAPI_WEIGHT	64
73 
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE	(1 << 5)
76 #define FEC_ENET_RSEM_V	0x84
77 #define FEC_ENET_RSFL_V	16
78 #define FEC_ENET_RAEM_V	0x8
79 #define FEC_ENET_RAFL_V	0x8
80 #define FEC_ENET_OPD_V	0xFFF0
81 
82 /* Controller is ENET-MAC */
83 #define FEC_QUIRK_ENET_MAC		(1 << 0)
84 /* Controller needs driver to swap frame */
85 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
86 /* Controller uses gasket */
87 #define FEC_QUIRK_USE_GASKET		(1 << 2)
88 /* Controller has GBIT support */
89 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
90 /* Controller has extend desc buffer */
91 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
92 /* Controller has hardware checksum support */
93 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
94 /* Controller has hardware vlan support */
95 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
96 /* ENET IP errata ERR006358
97  *
98  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
99  * detected as not set during a prior frame transmission, then the
100  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
101  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
102  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
103  * detected as not set during a prior frame transmission, then the
104  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
105  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
106  * frames not being transmitted until there is a 0-to-1 transition on
107  * ENET_TDAR[TDAR].
108  */
109 #define FEC_QUIRK_ERR006358            (1 << 7)
110 
111 static struct platform_device_id fec_devtype[] = {
112 	{
113 		/* keep it for coldfire */
114 		.name = DRIVER_NAME,
115 		.driver_data = 0,
116 	}, {
117 		.name = "imx25-fec",
118 		.driver_data = FEC_QUIRK_USE_GASKET,
119 	}, {
120 		.name = "imx27-fec",
121 		.driver_data = 0,
122 	}, {
123 		.name = "imx28-fec",
124 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
125 	}, {
126 		.name = "imx6q-fec",
127 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
128 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
129 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
130 	}, {
131 		.name = "mvf600-fec",
132 		.driver_data = FEC_QUIRK_ENET_MAC,
133 	}, {
134 		/* sentinel */
135 	}
136 };
137 MODULE_DEVICE_TABLE(platform, fec_devtype);
138 
139 enum imx_fec_type {
140 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
141 	IMX27_FEC,	/* runs on i.mx27/35/51 */
142 	IMX28_FEC,
143 	IMX6Q_FEC,
144 	MVF600_FEC,
145 };
146 
147 static const struct of_device_id fec_dt_ids[] = {
148 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
149 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
150 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
151 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
152 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
153 	{ /* sentinel */ }
154 };
155 MODULE_DEVICE_TABLE(of, fec_dt_ids);
156 
157 static unsigned char macaddr[ETH_ALEN];
158 module_param_array(macaddr, byte, NULL, 0);
159 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
160 
161 #if defined(CONFIG_M5272)
162 /*
163  * Some hardware gets it MAC address out of local flash memory.
164  * if this is non-zero then assume it is the address to get MAC from.
165  */
166 #if defined(CONFIG_NETtel)
167 #define	FEC_FLASHMAC	0xf0006006
168 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
169 #define	FEC_FLASHMAC	0xf0006000
170 #elif defined(CONFIG_CANCam)
171 #define	FEC_FLASHMAC	0xf0020000
172 #elif defined (CONFIG_M5272C3)
173 #define	FEC_FLASHMAC	(0xffe04000 + 4)
174 #elif defined(CONFIG_MOD5272)
175 #define FEC_FLASHMAC	0xffc0406b
176 #else
177 #define	FEC_FLASHMAC	0
178 #endif
179 #endif /* CONFIG_M5272 */
180 
181 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
182 #error "FEC: descriptor ring size constants too large"
183 #endif
184 
185 /* Interrupt events/masks. */
186 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
187 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
188 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
189 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
190 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
191 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
192 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
193 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
194 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
195 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
196 
197 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
198 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
199 
200 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
201  */
202 #define PKT_MAXBUF_SIZE		1522
203 #define PKT_MINBUF_SIZE		64
204 #define PKT_MAXBLR_SIZE		1536
205 
206 /* FEC receive acceleration */
207 #define FEC_RACC_IPDIS		(1 << 1)
208 #define FEC_RACC_PRODIS		(1 << 2)
209 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
210 
211 /*
212  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
213  * size bits. Other FEC hardware does not, so we need to take that into
214  * account when setting it.
215  */
216 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
217     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
218 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
219 #else
220 #define	OPT_FRAME_SIZE	0
221 #endif
222 
223 /* FEC MII MMFR bits definition */
224 #define FEC_MMFR_ST		(1 << 30)
225 #define FEC_MMFR_OP_READ	(2 << 28)
226 #define FEC_MMFR_OP_WRITE	(1 << 28)
227 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
228 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
229 #define FEC_MMFR_TA		(2 << 16)
230 #define FEC_MMFR_DATA(v)	(v & 0xffff)
231 
232 #define FEC_MII_TIMEOUT		30000 /* us */
233 
234 /* Transmitter timeout */
235 #define TX_TIMEOUT (2 * HZ)
236 
237 #define FEC_PAUSE_FLAG_AUTONEG	0x1
238 #define FEC_PAUSE_FLAG_ENABLE	0x2
239 
240 static int mii_cnt;
241 
242 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, int is_ex)
243 {
244 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
245 	if (is_ex)
246 		return (struct bufdesc *)(ex + 1);
247 	else
248 		return bdp + 1;
249 }
250 
251 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, int is_ex)
252 {
253 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
254 	if (is_ex)
255 		return (struct bufdesc *)(ex - 1);
256 	else
257 		return bdp - 1;
258 }
259 
260 static void *swap_buffer(void *bufaddr, int len)
261 {
262 	int i;
263 	unsigned int *buf = bufaddr;
264 
265 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
266 		*buf = cpu_to_be32(*buf);
267 
268 	return bufaddr;
269 }
270 
271 static int
272 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
273 {
274 	/* Only run for packets requiring a checksum. */
275 	if (skb->ip_summed != CHECKSUM_PARTIAL)
276 		return 0;
277 
278 	if (unlikely(skb_cow_head(skb, 0)))
279 		return -1;
280 
281 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
282 
283 	return 0;
284 }
285 
286 static netdev_tx_t
287 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
288 {
289 	struct fec_enet_private *fep = netdev_priv(ndev);
290 	const struct platform_device_id *id_entry =
291 				platform_get_device_id(fep->pdev);
292 	struct bufdesc *bdp, *bdp_pre;
293 	void *bufaddr;
294 	unsigned short	status;
295 	unsigned int index;
296 
297 	/* Fill in a Tx ring entry */
298 	bdp = fep->cur_tx;
299 
300 	status = bdp->cbd_sc;
301 
302 	if (status & BD_ENET_TX_READY) {
303 		/* Ooops.  All transmit buffers are full.  Bail out.
304 		 * This should not happen, since ndev->tbusy should be set.
305 		 */
306 		netdev_err(ndev, "tx queue full!\n");
307 		return NETDEV_TX_BUSY;
308 	}
309 
310 	/* Protocol checksum off-load for TCP and UDP. */
311 	if (fec_enet_clear_csum(skb, ndev)) {
312 		kfree_skb(skb);
313 		return NETDEV_TX_OK;
314 	}
315 
316 	/* Clear all of the status flags */
317 	status &= ~BD_ENET_TX_STATS;
318 
319 	/* Set buffer length and buffer pointer */
320 	bufaddr = skb->data;
321 	bdp->cbd_datlen = skb->len;
322 
323 	/*
324 	 * On some FEC implementations data must be aligned on
325 	 * 4-byte boundaries. Use bounce buffers to copy data
326 	 * and get it aligned. Ugh.
327 	 */
328 	if (fep->bufdesc_ex)
329 		index = (struct bufdesc_ex *)bdp -
330 			(struct bufdesc_ex *)fep->tx_bd_base;
331 	else
332 		index = bdp - fep->tx_bd_base;
333 
334 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
335 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
336 		bufaddr = fep->tx_bounce[index];
337 	}
338 
339 	/*
340 	 * Some design made an incorrect assumption on endian mode of
341 	 * the system that it's running on. As the result, driver has to
342 	 * swap every frame going to and coming from the controller.
343 	 */
344 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
345 		swap_buffer(bufaddr, skb->len);
346 
347 	/* Save skb pointer */
348 	fep->tx_skbuff[index] = skb;
349 
350 	/* Push the data cache so the CPM does not get stale memory
351 	 * data.
352 	 */
353 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
354 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
355 
356 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
357 	 * it's the last BD of the frame, and to put the CRC on the end.
358 	 */
359 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
360 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
361 	bdp->cbd_sc = status;
362 
363 	if (fep->bufdesc_ex) {
364 
365 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
366 		ebdp->cbd_bdu = 0;
367 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
368 			fep->hwts_tx_en)) {
369 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
370 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
371 		} else {
372 			ebdp->cbd_esc = BD_ENET_TX_INT;
373 
374 			/* Enable protocol checksum flags
375 			 * We do not bother with the IP Checksum bits as they
376 			 * are done by the kernel
377 			 */
378 			if (skb->ip_summed == CHECKSUM_PARTIAL)
379 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
380 		}
381 	}
382 
383 	bdp_pre = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
384 	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
385 	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
386 		fep->delay_work.trig_tx = true;
387 		schedule_delayed_work(&(fep->delay_work.delay_work),
388 					msecs_to_jiffies(1));
389 	}
390 
391 	/* If this was the last BD in the ring, start at the beginning again. */
392 	if (status & BD_ENET_TX_WRAP)
393 		bdp = fep->tx_bd_base;
394 	else
395 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
396 
397 	fep->cur_tx = bdp;
398 
399 	if (fep->cur_tx == fep->dirty_tx)
400 		netif_stop_queue(ndev);
401 
402 	/* Trigger transmission start */
403 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
404 
405 	skb_tx_timestamp(skb);
406 
407 	return NETDEV_TX_OK;
408 }
409 
410 /* Init RX & TX buffer descriptors
411  */
412 static void fec_enet_bd_init(struct net_device *dev)
413 {
414 	struct fec_enet_private *fep = netdev_priv(dev);
415 	struct bufdesc *bdp;
416 	unsigned int i;
417 
418 	/* Initialize the receive buffer descriptors. */
419 	bdp = fep->rx_bd_base;
420 	for (i = 0; i < RX_RING_SIZE; i++) {
421 
422 		/* Initialize the BD for every fragment in the page. */
423 		if (bdp->cbd_bufaddr)
424 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
425 		else
426 			bdp->cbd_sc = 0;
427 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
428 	}
429 
430 	/* Set the last buffer to wrap */
431 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
432 	bdp->cbd_sc |= BD_SC_WRAP;
433 
434 	fep->cur_rx = fep->rx_bd_base;
435 
436 	/* ...and the same for transmit */
437 	bdp = fep->tx_bd_base;
438 	fep->cur_tx = bdp;
439 	for (i = 0; i < TX_RING_SIZE; i++) {
440 
441 		/* Initialize the BD for every fragment in the page. */
442 		bdp->cbd_sc = 0;
443 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
444 			dev_kfree_skb_any(fep->tx_skbuff[i]);
445 			fep->tx_skbuff[i] = NULL;
446 		}
447 		bdp->cbd_bufaddr = 0;
448 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
449 	}
450 
451 	/* Set the last buffer to wrap */
452 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
453 	bdp->cbd_sc |= BD_SC_WRAP;
454 	fep->dirty_tx = bdp;
455 }
456 
457 /* This function is called to start or restart the FEC during a link
458  * change.  This only happens when switching between half and full
459  * duplex.
460  */
461 static void
462 fec_restart(struct net_device *ndev, int duplex)
463 {
464 	struct fec_enet_private *fep = netdev_priv(ndev);
465 	const struct platform_device_id *id_entry =
466 				platform_get_device_id(fep->pdev);
467 	int i;
468 	u32 val;
469 	u32 temp_mac[2];
470 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
471 	u32 ecntl = 0x2; /* ETHEREN */
472 
473 	if (netif_running(ndev)) {
474 		netif_device_detach(ndev);
475 		napi_disable(&fep->napi);
476 		netif_stop_queue(ndev);
477 		netif_tx_lock_bh(ndev);
478 	}
479 
480 	/* Whack a reset.  We should wait for this. */
481 	writel(1, fep->hwp + FEC_ECNTRL);
482 	udelay(10);
483 
484 	/*
485 	 * enet-mac reset will reset mac address registers too,
486 	 * so need to reconfigure it.
487 	 */
488 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
489 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
490 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
491 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
492 	}
493 
494 	/* Clear any outstanding interrupt. */
495 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
496 
497 	/* Setup multicast filter. */
498 	set_multicast_list(ndev);
499 #ifndef CONFIG_M5272
500 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
501 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
502 #endif
503 
504 	/* Set maximum receive buffer size. */
505 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
506 
507 	fec_enet_bd_init(ndev);
508 
509 	/* Set receive and transmit descriptor base. */
510 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
511 	if (fep->bufdesc_ex)
512 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
513 			* RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
514 	else
515 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
516 			* RX_RING_SIZE,	fep->hwp + FEC_X_DES_START);
517 
518 
519 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
520 		if (fep->tx_skbuff[i]) {
521 			dev_kfree_skb_any(fep->tx_skbuff[i]);
522 			fep->tx_skbuff[i] = NULL;
523 		}
524 	}
525 
526 	/* Enable MII mode */
527 	if (duplex) {
528 		/* FD enable */
529 		writel(0x04, fep->hwp + FEC_X_CNTRL);
530 	} else {
531 		/* No Rcv on Xmit */
532 		rcntl |= 0x02;
533 		writel(0x0, fep->hwp + FEC_X_CNTRL);
534 	}
535 
536 	fep->full_duplex = duplex;
537 
538 	/* Set MII speed */
539 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
540 
541 #if !defined(CONFIG_M5272)
542 	/* set RX checksum */
543 	val = readl(fep->hwp + FEC_RACC);
544 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
545 		val |= FEC_RACC_OPTIONS;
546 	else
547 		val &= ~FEC_RACC_OPTIONS;
548 	writel(val, fep->hwp + FEC_RACC);
549 #endif
550 
551 	/*
552 	 * The phy interface and speed need to get configured
553 	 * differently on enet-mac.
554 	 */
555 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
556 		/* Enable flow control and length check */
557 		rcntl |= 0x40000000 | 0x00000020;
558 
559 		/* RGMII, RMII or MII */
560 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
561 			rcntl |= (1 << 6);
562 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
563 			rcntl |= (1 << 8);
564 		else
565 			rcntl &= ~(1 << 8);
566 
567 		/* 1G, 100M or 10M */
568 		if (fep->phy_dev) {
569 			if (fep->phy_dev->speed == SPEED_1000)
570 				ecntl |= (1 << 5);
571 			else if (fep->phy_dev->speed == SPEED_100)
572 				rcntl &= ~(1 << 9);
573 			else
574 				rcntl |= (1 << 9);
575 		}
576 	} else {
577 #ifdef FEC_MIIGSK_ENR
578 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
579 			u32 cfgr;
580 			/* disable the gasket and wait */
581 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
582 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
583 				udelay(1);
584 
585 			/*
586 			 * configure the gasket:
587 			 *   RMII, 50 MHz, no loopback, no echo
588 			 *   MII, 25 MHz, no loopback, no echo
589 			 */
590 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
591 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
592 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
593 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
594 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
595 
596 			/* re-enable the gasket */
597 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
598 		}
599 #endif
600 	}
601 
602 #if !defined(CONFIG_M5272)
603 	/* enable pause frame*/
604 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
605 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
606 	     fep->phy_dev && fep->phy_dev->pause)) {
607 		rcntl |= FEC_ENET_FCE;
608 
609 		/* set FIFO threshold parameter to reduce overrun */
610 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
611 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
612 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
613 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
614 
615 		/* OPD */
616 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
617 	} else {
618 		rcntl &= ~FEC_ENET_FCE;
619 	}
620 #endif /* !defined(CONFIG_M5272) */
621 
622 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
623 
624 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
625 		/* enable ENET endian swap */
626 		ecntl |= (1 << 8);
627 		/* enable ENET store and forward mode */
628 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
629 	}
630 
631 	if (fep->bufdesc_ex)
632 		ecntl |= (1 << 4);
633 
634 #ifndef CONFIG_M5272
635 	/* Enable the MIB statistic event counters */
636 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
637 #endif
638 
639 	/* And last, enable the transmit and receive processing */
640 	writel(ecntl, fep->hwp + FEC_ECNTRL);
641 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
642 
643 	if (fep->bufdesc_ex)
644 		fec_ptp_start_cyclecounter(ndev);
645 
646 	/* Enable interrupts we wish to service */
647 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
648 
649 	if (netif_running(ndev)) {
650 		netif_tx_unlock_bh(ndev);
651 		netif_wake_queue(ndev);
652 		napi_enable(&fep->napi);
653 		netif_device_attach(ndev);
654 	}
655 }
656 
657 static void
658 fec_stop(struct net_device *ndev)
659 {
660 	struct fec_enet_private *fep = netdev_priv(ndev);
661 	const struct platform_device_id *id_entry =
662 				platform_get_device_id(fep->pdev);
663 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
664 
665 	/* We cannot expect a graceful transmit stop without link !!! */
666 	if (fep->link) {
667 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
668 		udelay(10);
669 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
670 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
671 	}
672 
673 	/* Whack a reset.  We should wait for this. */
674 	writel(1, fep->hwp + FEC_ECNTRL);
675 	udelay(10);
676 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
677 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
678 
679 	/* We have to keep ENET enabled to have MII interrupt stay working */
680 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
681 		writel(2, fep->hwp + FEC_ECNTRL);
682 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
683 	}
684 }
685 
686 
687 static void
688 fec_timeout(struct net_device *ndev)
689 {
690 	struct fec_enet_private *fep = netdev_priv(ndev);
691 
692 	ndev->stats.tx_errors++;
693 
694 	fep->delay_work.timeout = true;
695 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
696 }
697 
698 static void fec_enet_work(struct work_struct *work)
699 {
700 	struct fec_enet_private *fep =
701 		container_of(work,
702 			     struct fec_enet_private,
703 			     delay_work.delay_work.work);
704 
705 	if (fep->delay_work.timeout) {
706 		fep->delay_work.timeout = false;
707 		fec_restart(fep->netdev, fep->full_duplex);
708 		netif_wake_queue(fep->netdev);
709 	}
710 
711 	if (fep->delay_work.trig_tx) {
712 		fep->delay_work.trig_tx = false;
713 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
714 	}
715 }
716 
717 static void
718 fec_enet_tx(struct net_device *ndev)
719 {
720 	struct	fec_enet_private *fep;
721 	struct bufdesc *bdp;
722 	unsigned short status;
723 	struct	sk_buff	*skb;
724 	int	index = 0;
725 
726 	fep = netdev_priv(ndev);
727 	bdp = fep->dirty_tx;
728 
729 	/* get next bdp of dirty_tx */
730 	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
731 		bdp = fep->tx_bd_base;
732 	else
733 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
734 
735 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
736 
737 		/* current queue is empty */
738 		if (bdp == fep->cur_tx)
739 			break;
740 
741 		if (fep->bufdesc_ex)
742 			index = (struct bufdesc_ex *)bdp -
743 				(struct bufdesc_ex *)fep->tx_bd_base;
744 		else
745 			index = bdp - fep->tx_bd_base;
746 
747 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
748 				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
749 		bdp->cbd_bufaddr = 0;
750 
751 		skb = fep->tx_skbuff[index];
752 
753 		/* Check for errors. */
754 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
755 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
756 				   BD_ENET_TX_CSL)) {
757 			ndev->stats.tx_errors++;
758 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
759 				ndev->stats.tx_heartbeat_errors++;
760 			if (status & BD_ENET_TX_LC)  /* Late collision */
761 				ndev->stats.tx_window_errors++;
762 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
763 				ndev->stats.tx_aborted_errors++;
764 			if (status & BD_ENET_TX_UN)  /* Underrun */
765 				ndev->stats.tx_fifo_errors++;
766 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
767 				ndev->stats.tx_carrier_errors++;
768 		} else {
769 			ndev->stats.tx_packets++;
770 			ndev->stats.tx_bytes += bdp->cbd_datlen;
771 		}
772 
773 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
774 			fep->bufdesc_ex) {
775 			struct skb_shared_hwtstamps shhwtstamps;
776 			unsigned long flags;
777 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
778 
779 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
780 			spin_lock_irqsave(&fep->tmreg_lock, flags);
781 			shhwtstamps.hwtstamp = ns_to_ktime(
782 				timecounter_cyc2time(&fep->tc, ebdp->ts));
783 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
784 			skb_tstamp_tx(skb, &shhwtstamps);
785 		}
786 
787 		if (status & BD_ENET_TX_READY)
788 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
789 
790 		/* Deferred means some collisions occurred during transmit,
791 		 * but we eventually sent the packet OK.
792 		 */
793 		if (status & BD_ENET_TX_DEF)
794 			ndev->stats.collisions++;
795 
796 		/* Free the sk buffer associated with this last transmit */
797 		dev_kfree_skb_any(skb);
798 		fep->tx_skbuff[index] = NULL;
799 
800 		fep->dirty_tx = bdp;
801 
802 		/* Update pointer to next buffer descriptor to be transmitted */
803 		if (status & BD_ENET_TX_WRAP)
804 			bdp = fep->tx_bd_base;
805 		else
806 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
807 
808 		/* Since we have freed up a buffer, the ring is no longer full
809 		 */
810 		if (fep->dirty_tx != fep->cur_tx) {
811 			if (netif_queue_stopped(ndev))
812 				netif_wake_queue(ndev);
813 		}
814 	}
815 	return;
816 }
817 
818 
819 /* During a receive, the cur_rx points to the current incoming buffer.
820  * When we update through the ring, if the next incoming buffer has
821  * not been given to the system, we just set the empty indicator,
822  * effectively tossing the packet.
823  */
824 static int
825 fec_enet_rx(struct net_device *ndev, int budget)
826 {
827 	struct fec_enet_private *fep = netdev_priv(ndev);
828 	const struct platform_device_id *id_entry =
829 				platform_get_device_id(fep->pdev);
830 	struct bufdesc *bdp;
831 	unsigned short status;
832 	struct	sk_buff	*skb;
833 	ushort	pkt_len;
834 	__u8 *data;
835 	int	pkt_received = 0;
836 	struct	bufdesc_ex *ebdp = NULL;
837 	bool	vlan_packet_rcvd = false;
838 	u16	vlan_tag;
839 
840 #ifdef CONFIG_M532x
841 	flush_cache_all();
842 #endif
843 
844 	/* First, grab all of the stats for the incoming packet.
845 	 * These get messed up if we get called due to a busy condition.
846 	 */
847 	bdp = fep->cur_rx;
848 
849 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
850 
851 		if (pkt_received >= budget)
852 			break;
853 		pkt_received++;
854 
855 		/* Since we have allocated space to hold a complete frame,
856 		 * the last indicator should be set.
857 		 */
858 		if ((status & BD_ENET_RX_LAST) == 0)
859 			netdev_err(ndev, "rcv is not +last\n");
860 
861 		if (!fep->opened)
862 			goto rx_processing_done;
863 
864 		/* Check for errors. */
865 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
866 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
867 			ndev->stats.rx_errors++;
868 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
869 				/* Frame too long or too short. */
870 				ndev->stats.rx_length_errors++;
871 			}
872 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
873 				ndev->stats.rx_frame_errors++;
874 			if (status & BD_ENET_RX_CR)	/* CRC Error */
875 				ndev->stats.rx_crc_errors++;
876 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
877 				ndev->stats.rx_fifo_errors++;
878 		}
879 
880 		/* Report late collisions as a frame error.
881 		 * On this error, the BD is closed, but we don't know what we
882 		 * have in the buffer.  So, just drop this frame on the floor.
883 		 */
884 		if (status & BD_ENET_RX_CL) {
885 			ndev->stats.rx_errors++;
886 			ndev->stats.rx_frame_errors++;
887 			goto rx_processing_done;
888 		}
889 
890 		/* Process the incoming frame. */
891 		ndev->stats.rx_packets++;
892 		pkt_len = bdp->cbd_datlen;
893 		ndev->stats.rx_bytes += pkt_len;
894 		data = (__u8*)__va(bdp->cbd_bufaddr);
895 
896 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
897 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
898 
899 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
900 			swap_buffer(data, pkt_len);
901 
902 		/* Extract the enhanced buffer descriptor */
903 		ebdp = NULL;
904 		if (fep->bufdesc_ex)
905 			ebdp = (struct bufdesc_ex *)bdp;
906 
907 		/* If this is a VLAN packet remove the VLAN Tag */
908 		vlan_packet_rcvd = false;
909 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
910 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
911 			/* Push and remove the vlan tag */
912 			struct vlan_hdr *vlan_header =
913 					(struct vlan_hdr *) (data + ETH_HLEN);
914 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
915 			pkt_len -= VLAN_HLEN;
916 
917 			vlan_packet_rcvd = true;
918 		}
919 
920 		/* This does 16 byte alignment, exactly what we need.
921 		 * The packet length includes FCS, but we don't want to
922 		 * include that when passing upstream as it messes up
923 		 * bridging applications.
924 		 */
925 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
926 
927 		if (unlikely(!skb)) {
928 			ndev->stats.rx_dropped++;
929 		} else {
930 			int payload_offset = (2 * ETH_ALEN);
931 			skb_reserve(skb, NET_IP_ALIGN);
932 			skb_put(skb, pkt_len - 4);	/* Make room */
933 
934 			/* Extract the frame data without the VLAN header. */
935 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
936 			if (vlan_packet_rcvd)
937 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
938 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
939 						       data + payload_offset,
940 						       pkt_len - 4 - (2 * ETH_ALEN));
941 
942 			skb->protocol = eth_type_trans(skb, ndev);
943 
944 			/* Get receive timestamp from the skb */
945 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
946 				struct skb_shared_hwtstamps *shhwtstamps =
947 							    skb_hwtstamps(skb);
948 				unsigned long flags;
949 
950 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
951 
952 				spin_lock_irqsave(&fep->tmreg_lock, flags);
953 				shhwtstamps->hwtstamp = ns_to_ktime(
954 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
955 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
956 			}
957 
958 			if (fep->bufdesc_ex &&
959 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
960 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
961 					/* don't check it */
962 					skb->ip_summed = CHECKSUM_UNNECESSARY;
963 				} else {
964 					skb_checksum_none_assert(skb);
965 				}
966 			}
967 
968 			/* Handle received VLAN packets */
969 			if (vlan_packet_rcvd)
970 				__vlan_hwaccel_put_tag(skb,
971 						       htons(ETH_P_8021Q),
972 						       vlan_tag);
973 
974 			if (!skb_defer_rx_timestamp(skb))
975 				napi_gro_receive(&fep->napi, skb);
976 		}
977 
978 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
979 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
980 rx_processing_done:
981 		/* Clear the status flags for this buffer */
982 		status &= ~BD_ENET_RX_STATS;
983 
984 		/* Mark the buffer empty */
985 		status |= BD_ENET_RX_EMPTY;
986 		bdp->cbd_sc = status;
987 
988 		if (fep->bufdesc_ex) {
989 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
990 
991 			ebdp->cbd_esc = BD_ENET_RX_INT;
992 			ebdp->cbd_prot = 0;
993 			ebdp->cbd_bdu = 0;
994 		}
995 
996 		/* Update BD pointer to next entry */
997 		if (status & BD_ENET_RX_WRAP)
998 			bdp = fep->rx_bd_base;
999 		else
1000 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1001 		/* Doing this here will keep the FEC running while we process
1002 		 * incoming frames.  On a heavily loaded network, we should be
1003 		 * able to keep up at the expense of system resources.
1004 		 */
1005 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1006 	}
1007 	fep->cur_rx = bdp;
1008 
1009 	return pkt_received;
1010 }
1011 
1012 static irqreturn_t
1013 fec_enet_interrupt(int irq, void *dev_id)
1014 {
1015 	struct net_device *ndev = dev_id;
1016 	struct fec_enet_private *fep = netdev_priv(ndev);
1017 	uint int_events;
1018 	irqreturn_t ret = IRQ_NONE;
1019 
1020 	do {
1021 		int_events = readl(fep->hwp + FEC_IEVENT);
1022 		writel(int_events, fep->hwp + FEC_IEVENT);
1023 
1024 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1025 			ret = IRQ_HANDLED;
1026 
1027 			/* Disable the RX interrupt */
1028 			if (napi_schedule_prep(&fep->napi)) {
1029 				writel(FEC_RX_DISABLED_IMASK,
1030 					fep->hwp + FEC_IMASK);
1031 				__napi_schedule(&fep->napi);
1032 			}
1033 		}
1034 
1035 		if (int_events & FEC_ENET_MII) {
1036 			ret = IRQ_HANDLED;
1037 			complete(&fep->mdio_done);
1038 		}
1039 	} while (int_events);
1040 
1041 	return ret;
1042 }
1043 
1044 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1045 {
1046 	struct net_device *ndev = napi->dev;
1047 	int pkts = fec_enet_rx(ndev, budget);
1048 	struct fec_enet_private *fep = netdev_priv(ndev);
1049 
1050 	fec_enet_tx(ndev);
1051 
1052 	if (pkts < budget) {
1053 		napi_complete(napi);
1054 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1055 	}
1056 	return pkts;
1057 }
1058 
1059 /* ------------------------------------------------------------------------- */
1060 static void fec_get_mac(struct net_device *ndev)
1061 {
1062 	struct fec_enet_private *fep = netdev_priv(ndev);
1063 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1064 	unsigned char *iap, tmpaddr[ETH_ALEN];
1065 
1066 	/*
1067 	 * try to get mac address in following order:
1068 	 *
1069 	 * 1) module parameter via kernel command line in form
1070 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1071 	 */
1072 	iap = macaddr;
1073 
1074 	/*
1075 	 * 2) from device tree data
1076 	 */
1077 	if (!is_valid_ether_addr(iap)) {
1078 		struct device_node *np = fep->pdev->dev.of_node;
1079 		if (np) {
1080 			const char *mac = of_get_mac_address(np);
1081 			if (mac)
1082 				iap = (unsigned char *) mac;
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * 3) from flash or fuse (via platform data)
1088 	 */
1089 	if (!is_valid_ether_addr(iap)) {
1090 #ifdef CONFIG_M5272
1091 		if (FEC_FLASHMAC)
1092 			iap = (unsigned char *)FEC_FLASHMAC;
1093 #else
1094 		if (pdata)
1095 			iap = (unsigned char *)&pdata->mac;
1096 #endif
1097 	}
1098 
1099 	/*
1100 	 * 4) FEC mac registers set by bootloader
1101 	 */
1102 	if (!is_valid_ether_addr(iap)) {
1103 		*((unsigned long *) &tmpaddr[0]) =
1104 			be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
1105 		*((unsigned short *) &tmpaddr[4]) =
1106 			be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1107 		iap = &tmpaddr[0];
1108 	}
1109 
1110 	/*
1111 	 * 5) random mac address
1112 	 */
1113 	if (!is_valid_ether_addr(iap)) {
1114 		/* Report it and use a random ethernet address instead */
1115 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1116 		eth_hw_addr_random(ndev);
1117 		netdev_info(ndev, "Using random MAC address: %pM\n",
1118 			    ndev->dev_addr);
1119 		return;
1120 	}
1121 
1122 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1123 
1124 	/* Adjust MAC if using macaddr */
1125 	if (iap == macaddr)
1126 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1127 }
1128 
1129 /* ------------------------------------------------------------------------- */
1130 
1131 /*
1132  * Phy section
1133  */
1134 static void fec_enet_adjust_link(struct net_device *ndev)
1135 {
1136 	struct fec_enet_private *fep = netdev_priv(ndev);
1137 	struct phy_device *phy_dev = fep->phy_dev;
1138 	int status_change = 0;
1139 
1140 	/* Prevent a state halted on mii error */
1141 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1142 		phy_dev->state = PHY_RESUMING;
1143 		return;
1144 	}
1145 
1146 	if (phy_dev->link) {
1147 		if (!fep->link) {
1148 			fep->link = phy_dev->link;
1149 			status_change = 1;
1150 		}
1151 
1152 		if (fep->full_duplex != phy_dev->duplex)
1153 			status_change = 1;
1154 
1155 		if (phy_dev->speed != fep->speed) {
1156 			fep->speed = phy_dev->speed;
1157 			status_change = 1;
1158 		}
1159 
1160 		/* if any of the above changed restart the FEC */
1161 		if (status_change)
1162 			fec_restart(ndev, phy_dev->duplex);
1163 	} else {
1164 		if (fep->link) {
1165 			fec_stop(ndev);
1166 			fep->link = phy_dev->link;
1167 			status_change = 1;
1168 		}
1169 	}
1170 
1171 	if (status_change)
1172 		phy_print_status(phy_dev);
1173 }
1174 
1175 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1176 {
1177 	struct fec_enet_private *fep = bus->priv;
1178 	unsigned long time_left;
1179 
1180 	fep->mii_timeout = 0;
1181 	init_completion(&fep->mdio_done);
1182 
1183 	/* start a read op */
1184 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1185 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1186 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1187 
1188 	/* wait for end of transfer */
1189 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1190 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1191 	if (time_left == 0) {
1192 		fep->mii_timeout = 1;
1193 		netdev_err(fep->netdev, "MDIO read timeout\n");
1194 		return -ETIMEDOUT;
1195 	}
1196 
1197 	/* return value */
1198 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1199 }
1200 
1201 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1202 			   u16 value)
1203 {
1204 	struct fec_enet_private *fep = bus->priv;
1205 	unsigned long time_left;
1206 
1207 	fep->mii_timeout = 0;
1208 	init_completion(&fep->mdio_done);
1209 
1210 	/* start a write op */
1211 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1212 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1213 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1214 		fep->hwp + FEC_MII_DATA);
1215 
1216 	/* wait for end of transfer */
1217 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1218 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1219 	if (time_left == 0) {
1220 		fep->mii_timeout = 1;
1221 		netdev_err(fep->netdev, "MDIO write timeout\n");
1222 		return -ETIMEDOUT;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 static int fec_enet_mdio_reset(struct mii_bus *bus)
1229 {
1230 	return 0;
1231 }
1232 
1233 static int fec_enet_mii_probe(struct net_device *ndev)
1234 {
1235 	struct fec_enet_private *fep = netdev_priv(ndev);
1236 	const struct platform_device_id *id_entry =
1237 				platform_get_device_id(fep->pdev);
1238 	struct phy_device *phy_dev = NULL;
1239 	char mdio_bus_id[MII_BUS_ID_SIZE];
1240 	char phy_name[MII_BUS_ID_SIZE + 3];
1241 	int phy_id;
1242 	int dev_id = fep->dev_id;
1243 
1244 	fep->phy_dev = NULL;
1245 
1246 	/* check for attached phy */
1247 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1248 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1249 			continue;
1250 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1251 			continue;
1252 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1253 			continue;
1254 		if (dev_id--)
1255 			continue;
1256 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1257 		break;
1258 	}
1259 
1260 	if (phy_id >= PHY_MAX_ADDR) {
1261 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1262 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1263 		phy_id = 0;
1264 	}
1265 
1266 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1267 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1268 			      fep->phy_interface);
1269 	if (IS_ERR(phy_dev)) {
1270 		netdev_err(ndev, "could not attach to PHY\n");
1271 		return PTR_ERR(phy_dev);
1272 	}
1273 
1274 	/* mask with MAC supported features */
1275 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1276 		phy_dev->supported &= PHY_GBIT_FEATURES;
1277 #if !defined(CONFIG_M5272)
1278 		phy_dev->supported |= SUPPORTED_Pause;
1279 #endif
1280 	}
1281 	else
1282 		phy_dev->supported &= PHY_BASIC_FEATURES;
1283 
1284 	phy_dev->advertising = phy_dev->supported;
1285 
1286 	fep->phy_dev = phy_dev;
1287 	fep->link = 0;
1288 	fep->full_duplex = 0;
1289 
1290 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1291 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1292 		    fep->phy_dev->irq);
1293 
1294 	return 0;
1295 }
1296 
1297 static int fec_enet_mii_init(struct platform_device *pdev)
1298 {
1299 	static struct mii_bus *fec0_mii_bus;
1300 	struct net_device *ndev = platform_get_drvdata(pdev);
1301 	struct fec_enet_private *fep = netdev_priv(ndev);
1302 	const struct platform_device_id *id_entry =
1303 				platform_get_device_id(fep->pdev);
1304 	int err = -ENXIO, i;
1305 
1306 	/*
1307 	 * The dual fec interfaces are not equivalent with enet-mac.
1308 	 * Here are the differences:
1309 	 *
1310 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1311 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1312 	 *  - external phys can only be configured by fec0
1313 	 *
1314 	 * That is to say fec1 can not work independently. It only works
1315 	 * when fec0 is working. The reason behind this design is that the
1316 	 * second interface is added primarily for Switch mode.
1317 	 *
1318 	 * Because of the last point above, both phys are attached on fec0
1319 	 * mdio interface in board design, and need to be configured by
1320 	 * fec0 mii_bus.
1321 	 */
1322 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1323 		/* fec1 uses fec0 mii_bus */
1324 		if (mii_cnt && fec0_mii_bus) {
1325 			fep->mii_bus = fec0_mii_bus;
1326 			mii_cnt++;
1327 			return 0;
1328 		}
1329 		return -ENOENT;
1330 	}
1331 
1332 	fep->mii_timeout = 0;
1333 
1334 	/*
1335 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1336 	 *
1337 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1338 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1339 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1340 	 * document.
1341 	 */
1342 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1343 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1344 		fep->phy_speed--;
1345 	fep->phy_speed <<= 1;
1346 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1347 
1348 	fep->mii_bus = mdiobus_alloc();
1349 	if (fep->mii_bus == NULL) {
1350 		err = -ENOMEM;
1351 		goto err_out;
1352 	}
1353 
1354 	fep->mii_bus->name = "fec_enet_mii_bus";
1355 	fep->mii_bus->read = fec_enet_mdio_read;
1356 	fep->mii_bus->write = fec_enet_mdio_write;
1357 	fep->mii_bus->reset = fec_enet_mdio_reset;
1358 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1359 		pdev->name, fep->dev_id + 1);
1360 	fep->mii_bus->priv = fep;
1361 	fep->mii_bus->parent = &pdev->dev;
1362 
1363 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1364 	if (!fep->mii_bus->irq) {
1365 		err = -ENOMEM;
1366 		goto err_out_free_mdiobus;
1367 	}
1368 
1369 	for (i = 0; i < PHY_MAX_ADDR; i++)
1370 		fep->mii_bus->irq[i] = PHY_POLL;
1371 
1372 	if (mdiobus_register(fep->mii_bus))
1373 		goto err_out_free_mdio_irq;
1374 
1375 	mii_cnt++;
1376 
1377 	/* save fec0 mii_bus */
1378 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1379 		fec0_mii_bus = fep->mii_bus;
1380 
1381 	return 0;
1382 
1383 err_out_free_mdio_irq:
1384 	kfree(fep->mii_bus->irq);
1385 err_out_free_mdiobus:
1386 	mdiobus_free(fep->mii_bus);
1387 err_out:
1388 	return err;
1389 }
1390 
1391 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1392 {
1393 	if (--mii_cnt == 0) {
1394 		mdiobus_unregister(fep->mii_bus);
1395 		kfree(fep->mii_bus->irq);
1396 		mdiobus_free(fep->mii_bus);
1397 	}
1398 }
1399 
1400 static int fec_enet_get_settings(struct net_device *ndev,
1401 				  struct ethtool_cmd *cmd)
1402 {
1403 	struct fec_enet_private *fep = netdev_priv(ndev);
1404 	struct phy_device *phydev = fep->phy_dev;
1405 
1406 	if (!phydev)
1407 		return -ENODEV;
1408 
1409 	return phy_ethtool_gset(phydev, cmd);
1410 }
1411 
1412 static int fec_enet_set_settings(struct net_device *ndev,
1413 				 struct ethtool_cmd *cmd)
1414 {
1415 	struct fec_enet_private *fep = netdev_priv(ndev);
1416 	struct phy_device *phydev = fep->phy_dev;
1417 
1418 	if (!phydev)
1419 		return -ENODEV;
1420 
1421 	return phy_ethtool_sset(phydev, cmd);
1422 }
1423 
1424 static void fec_enet_get_drvinfo(struct net_device *ndev,
1425 				 struct ethtool_drvinfo *info)
1426 {
1427 	struct fec_enet_private *fep = netdev_priv(ndev);
1428 
1429 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1430 		sizeof(info->driver));
1431 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1432 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1433 }
1434 
1435 static int fec_enet_get_ts_info(struct net_device *ndev,
1436 				struct ethtool_ts_info *info)
1437 {
1438 	struct fec_enet_private *fep = netdev_priv(ndev);
1439 
1440 	if (fep->bufdesc_ex) {
1441 
1442 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1443 					SOF_TIMESTAMPING_RX_SOFTWARE |
1444 					SOF_TIMESTAMPING_SOFTWARE |
1445 					SOF_TIMESTAMPING_TX_HARDWARE |
1446 					SOF_TIMESTAMPING_RX_HARDWARE |
1447 					SOF_TIMESTAMPING_RAW_HARDWARE;
1448 		if (fep->ptp_clock)
1449 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1450 		else
1451 			info->phc_index = -1;
1452 
1453 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1454 				 (1 << HWTSTAMP_TX_ON);
1455 
1456 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1457 				   (1 << HWTSTAMP_FILTER_ALL);
1458 		return 0;
1459 	} else {
1460 		return ethtool_op_get_ts_info(ndev, info);
1461 	}
1462 }
1463 
1464 #if !defined(CONFIG_M5272)
1465 
1466 static void fec_enet_get_pauseparam(struct net_device *ndev,
1467 				    struct ethtool_pauseparam *pause)
1468 {
1469 	struct fec_enet_private *fep = netdev_priv(ndev);
1470 
1471 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1472 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1473 	pause->rx_pause = pause->tx_pause;
1474 }
1475 
1476 static int fec_enet_set_pauseparam(struct net_device *ndev,
1477 				   struct ethtool_pauseparam *pause)
1478 {
1479 	struct fec_enet_private *fep = netdev_priv(ndev);
1480 
1481 	if (pause->tx_pause != pause->rx_pause) {
1482 		netdev_info(ndev,
1483 			"hardware only support enable/disable both tx and rx");
1484 		return -EINVAL;
1485 	}
1486 
1487 	fep->pause_flag = 0;
1488 
1489 	/* tx pause must be same as rx pause */
1490 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1491 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1492 
1493 	if (pause->rx_pause || pause->autoneg) {
1494 		fep->phy_dev->supported |= ADVERTISED_Pause;
1495 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1496 	} else {
1497 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1498 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1499 	}
1500 
1501 	if (pause->autoneg) {
1502 		if (netif_running(ndev))
1503 			fec_stop(ndev);
1504 		phy_start_aneg(fep->phy_dev);
1505 	}
1506 	if (netif_running(ndev))
1507 		fec_restart(ndev, 0);
1508 
1509 	return 0;
1510 }
1511 
1512 static const struct fec_stat {
1513 	char name[ETH_GSTRING_LEN];
1514 	u16 offset;
1515 } fec_stats[] = {
1516 	/* RMON TX */
1517 	{ "tx_dropped", RMON_T_DROP },
1518 	{ "tx_packets", RMON_T_PACKETS },
1519 	{ "tx_broadcast", RMON_T_BC_PKT },
1520 	{ "tx_multicast", RMON_T_MC_PKT },
1521 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1522 	{ "tx_undersize", RMON_T_UNDERSIZE },
1523 	{ "tx_oversize", RMON_T_OVERSIZE },
1524 	{ "tx_fragment", RMON_T_FRAG },
1525 	{ "tx_jabber", RMON_T_JAB },
1526 	{ "tx_collision", RMON_T_COL },
1527 	{ "tx_64byte", RMON_T_P64 },
1528 	{ "tx_65to127byte", RMON_T_P65TO127 },
1529 	{ "tx_128to255byte", RMON_T_P128TO255 },
1530 	{ "tx_256to511byte", RMON_T_P256TO511 },
1531 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1532 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1533 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1534 	{ "tx_octets", RMON_T_OCTETS },
1535 
1536 	/* IEEE TX */
1537 	{ "IEEE_tx_drop", IEEE_T_DROP },
1538 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1539 	{ "IEEE_tx_1col", IEEE_T_1COL },
1540 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1541 	{ "IEEE_tx_def", IEEE_T_DEF },
1542 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1543 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1544 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1545 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1546 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1547 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1548 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1549 
1550 	/* RMON RX */
1551 	{ "rx_packets", RMON_R_PACKETS },
1552 	{ "rx_broadcast", RMON_R_BC_PKT },
1553 	{ "rx_multicast", RMON_R_MC_PKT },
1554 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1555 	{ "rx_undersize", RMON_R_UNDERSIZE },
1556 	{ "rx_oversize", RMON_R_OVERSIZE },
1557 	{ "rx_fragment", RMON_R_FRAG },
1558 	{ "rx_jabber", RMON_R_JAB },
1559 	{ "rx_64byte", RMON_R_P64 },
1560 	{ "rx_65to127byte", RMON_R_P65TO127 },
1561 	{ "rx_128to255byte", RMON_R_P128TO255 },
1562 	{ "rx_256to511byte", RMON_R_P256TO511 },
1563 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1564 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1565 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1566 	{ "rx_octets", RMON_R_OCTETS },
1567 
1568 	/* IEEE RX */
1569 	{ "IEEE_rx_drop", IEEE_R_DROP },
1570 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1571 	{ "IEEE_rx_crc", IEEE_R_CRC },
1572 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1573 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1574 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1575 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1576 };
1577 
1578 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1579 	struct ethtool_stats *stats, u64 *data)
1580 {
1581 	struct fec_enet_private *fep = netdev_priv(dev);
1582 	int i;
1583 
1584 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1585 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1586 }
1587 
1588 static void fec_enet_get_strings(struct net_device *netdev,
1589 	u32 stringset, u8 *data)
1590 {
1591 	int i;
1592 	switch (stringset) {
1593 	case ETH_SS_STATS:
1594 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1595 			memcpy(data + i * ETH_GSTRING_LEN,
1596 				fec_stats[i].name, ETH_GSTRING_LEN);
1597 		break;
1598 	}
1599 }
1600 
1601 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1602 {
1603 	switch (sset) {
1604 	case ETH_SS_STATS:
1605 		return ARRAY_SIZE(fec_stats);
1606 	default:
1607 		return -EOPNOTSUPP;
1608 	}
1609 }
1610 #endif /* !defined(CONFIG_M5272) */
1611 
1612 static int fec_enet_nway_reset(struct net_device *dev)
1613 {
1614 	struct fec_enet_private *fep = netdev_priv(dev);
1615 	struct phy_device *phydev = fep->phy_dev;
1616 
1617 	if (!phydev)
1618 		return -ENODEV;
1619 
1620 	return genphy_restart_aneg(phydev);
1621 }
1622 
1623 static const struct ethtool_ops fec_enet_ethtool_ops = {
1624 #if !defined(CONFIG_M5272)
1625 	.get_pauseparam		= fec_enet_get_pauseparam,
1626 	.set_pauseparam		= fec_enet_set_pauseparam,
1627 #endif
1628 	.get_settings		= fec_enet_get_settings,
1629 	.set_settings		= fec_enet_set_settings,
1630 	.get_drvinfo		= fec_enet_get_drvinfo,
1631 	.get_link		= ethtool_op_get_link,
1632 	.get_ts_info		= fec_enet_get_ts_info,
1633 	.nway_reset		= fec_enet_nway_reset,
1634 #ifndef CONFIG_M5272
1635 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1636 	.get_strings		= fec_enet_get_strings,
1637 	.get_sset_count		= fec_enet_get_sset_count,
1638 #endif
1639 };
1640 
1641 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1642 {
1643 	struct fec_enet_private *fep = netdev_priv(ndev);
1644 	struct phy_device *phydev = fep->phy_dev;
1645 
1646 	if (!netif_running(ndev))
1647 		return -EINVAL;
1648 
1649 	if (!phydev)
1650 		return -ENODEV;
1651 
1652 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1653 		return fec_ptp_ioctl(ndev, rq, cmd);
1654 
1655 	return phy_mii_ioctl(phydev, rq, cmd);
1656 }
1657 
1658 static void fec_enet_free_buffers(struct net_device *ndev)
1659 {
1660 	struct fec_enet_private *fep = netdev_priv(ndev);
1661 	unsigned int i;
1662 	struct sk_buff *skb;
1663 	struct bufdesc	*bdp;
1664 
1665 	bdp = fep->rx_bd_base;
1666 	for (i = 0; i < RX_RING_SIZE; i++) {
1667 		skb = fep->rx_skbuff[i];
1668 
1669 		if (bdp->cbd_bufaddr)
1670 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1671 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1672 		if (skb)
1673 			dev_kfree_skb(skb);
1674 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1675 	}
1676 
1677 	bdp = fep->tx_bd_base;
1678 	for (i = 0; i < TX_RING_SIZE; i++)
1679 		kfree(fep->tx_bounce[i]);
1680 }
1681 
1682 static int fec_enet_alloc_buffers(struct net_device *ndev)
1683 {
1684 	struct fec_enet_private *fep = netdev_priv(ndev);
1685 	unsigned int i;
1686 	struct sk_buff *skb;
1687 	struct bufdesc	*bdp;
1688 
1689 	bdp = fep->rx_bd_base;
1690 	for (i = 0; i < RX_RING_SIZE; i++) {
1691 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1692 		if (!skb) {
1693 			fec_enet_free_buffers(ndev);
1694 			return -ENOMEM;
1695 		}
1696 		fep->rx_skbuff[i] = skb;
1697 
1698 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1699 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1700 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1701 
1702 		if (fep->bufdesc_ex) {
1703 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1704 			ebdp->cbd_esc = BD_ENET_RX_INT;
1705 		}
1706 
1707 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1708 	}
1709 
1710 	/* Set the last buffer to wrap. */
1711 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1712 	bdp->cbd_sc |= BD_SC_WRAP;
1713 
1714 	bdp = fep->tx_bd_base;
1715 	for (i = 0; i < TX_RING_SIZE; i++) {
1716 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1717 
1718 		bdp->cbd_sc = 0;
1719 		bdp->cbd_bufaddr = 0;
1720 
1721 		if (fep->bufdesc_ex) {
1722 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1723 			ebdp->cbd_esc = BD_ENET_TX_INT;
1724 		}
1725 
1726 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1727 	}
1728 
1729 	/* Set the last buffer to wrap. */
1730 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1731 	bdp->cbd_sc |= BD_SC_WRAP;
1732 
1733 	return 0;
1734 }
1735 
1736 static int
1737 fec_enet_open(struct net_device *ndev)
1738 {
1739 	struct fec_enet_private *fep = netdev_priv(ndev);
1740 	int ret;
1741 
1742 	napi_enable(&fep->napi);
1743 
1744 	/* I should reset the ring buffers here, but I don't yet know
1745 	 * a simple way to do that.
1746 	 */
1747 
1748 	ret = fec_enet_alloc_buffers(ndev);
1749 	if (ret)
1750 		return ret;
1751 
1752 	/* Probe and connect to PHY when open the interface */
1753 	ret = fec_enet_mii_probe(ndev);
1754 	if (ret) {
1755 		fec_enet_free_buffers(ndev);
1756 		return ret;
1757 	}
1758 	phy_start(fep->phy_dev);
1759 	netif_start_queue(ndev);
1760 	fep->opened = 1;
1761 	return 0;
1762 }
1763 
1764 static int
1765 fec_enet_close(struct net_device *ndev)
1766 {
1767 	struct fec_enet_private *fep = netdev_priv(ndev);
1768 
1769 	/* Don't know what to do yet. */
1770 	napi_disable(&fep->napi);
1771 	fep->opened = 0;
1772 	netif_stop_queue(ndev);
1773 	fec_stop(ndev);
1774 
1775 	if (fep->phy_dev) {
1776 		phy_stop(fep->phy_dev);
1777 		phy_disconnect(fep->phy_dev);
1778 	}
1779 
1780 	fec_enet_free_buffers(ndev);
1781 
1782 	return 0;
1783 }
1784 
1785 /* Set or clear the multicast filter for this adaptor.
1786  * Skeleton taken from sunlance driver.
1787  * The CPM Ethernet implementation allows Multicast as well as individual
1788  * MAC address filtering.  Some of the drivers check to make sure it is
1789  * a group multicast address, and discard those that are not.  I guess I
1790  * will do the same for now, but just remove the test if you want
1791  * individual filtering as well (do the upper net layers want or support
1792  * this kind of feature?).
1793  */
1794 
1795 #define HASH_BITS	6		/* #bits in hash */
1796 #define CRC32_POLY	0xEDB88320
1797 
1798 static void set_multicast_list(struct net_device *ndev)
1799 {
1800 	struct fec_enet_private *fep = netdev_priv(ndev);
1801 	struct netdev_hw_addr *ha;
1802 	unsigned int i, bit, data, crc, tmp;
1803 	unsigned char hash;
1804 
1805 	if (ndev->flags & IFF_PROMISC) {
1806 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1807 		tmp |= 0x8;
1808 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1809 		return;
1810 	}
1811 
1812 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1813 	tmp &= ~0x8;
1814 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1815 
1816 	if (ndev->flags & IFF_ALLMULTI) {
1817 		/* Catch all multicast addresses, so set the
1818 		 * filter to all 1's
1819 		 */
1820 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1821 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1822 
1823 		return;
1824 	}
1825 
1826 	/* Clear filter and add the addresses in hash register
1827 	 */
1828 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1829 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1830 
1831 	netdev_for_each_mc_addr(ha, ndev) {
1832 		/* calculate crc32 value of mac address */
1833 		crc = 0xffffffff;
1834 
1835 		for (i = 0; i < ndev->addr_len; i++) {
1836 			data = ha->addr[i];
1837 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1838 				crc = (crc >> 1) ^
1839 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1840 			}
1841 		}
1842 
1843 		/* only upper 6 bits (HASH_BITS) are used
1844 		 * which point to specific bit in he hash registers
1845 		 */
1846 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1847 
1848 		if (hash > 31) {
1849 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1850 			tmp |= 1 << (hash - 32);
1851 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1852 		} else {
1853 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1854 			tmp |= 1 << hash;
1855 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1856 		}
1857 	}
1858 }
1859 
1860 /* Set a MAC change in hardware. */
1861 static int
1862 fec_set_mac_address(struct net_device *ndev, void *p)
1863 {
1864 	struct fec_enet_private *fep = netdev_priv(ndev);
1865 	struct sockaddr *addr = p;
1866 
1867 	if (!is_valid_ether_addr(addr->sa_data))
1868 		return -EADDRNOTAVAIL;
1869 
1870 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1871 
1872 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1873 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1874 		fep->hwp + FEC_ADDR_LOW);
1875 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1876 		fep->hwp + FEC_ADDR_HIGH);
1877 	return 0;
1878 }
1879 
1880 #ifdef CONFIG_NET_POLL_CONTROLLER
1881 /**
1882  * fec_poll_controller - FEC Poll controller function
1883  * @dev: The FEC network adapter
1884  *
1885  * Polled functionality used by netconsole and others in non interrupt mode
1886  *
1887  */
1888 static void fec_poll_controller(struct net_device *dev)
1889 {
1890 	int i;
1891 	struct fec_enet_private *fep = netdev_priv(dev);
1892 
1893 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1894 		if (fep->irq[i] > 0) {
1895 			disable_irq(fep->irq[i]);
1896 			fec_enet_interrupt(fep->irq[i], dev);
1897 			enable_irq(fep->irq[i]);
1898 		}
1899 	}
1900 }
1901 #endif
1902 
1903 static int fec_set_features(struct net_device *netdev,
1904 	netdev_features_t features)
1905 {
1906 	struct fec_enet_private *fep = netdev_priv(netdev);
1907 	netdev_features_t changed = features ^ netdev->features;
1908 
1909 	netdev->features = features;
1910 
1911 	/* Receive checksum has been changed */
1912 	if (changed & NETIF_F_RXCSUM) {
1913 		if (features & NETIF_F_RXCSUM)
1914 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1915 		else
1916 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1917 
1918 		if (netif_running(netdev)) {
1919 			fec_stop(netdev);
1920 			fec_restart(netdev, fep->phy_dev->duplex);
1921 			netif_wake_queue(netdev);
1922 		} else {
1923 			fec_restart(netdev, fep->phy_dev->duplex);
1924 		}
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static const struct net_device_ops fec_netdev_ops = {
1931 	.ndo_open		= fec_enet_open,
1932 	.ndo_stop		= fec_enet_close,
1933 	.ndo_start_xmit		= fec_enet_start_xmit,
1934 	.ndo_set_rx_mode	= set_multicast_list,
1935 	.ndo_change_mtu		= eth_change_mtu,
1936 	.ndo_validate_addr	= eth_validate_addr,
1937 	.ndo_tx_timeout		= fec_timeout,
1938 	.ndo_set_mac_address	= fec_set_mac_address,
1939 	.ndo_do_ioctl		= fec_enet_ioctl,
1940 #ifdef CONFIG_NET_POLL_CONTROLLER
1941 	.ndo_poll_controller	= fec_poll_controller,
1942 #endif
1943 	.ndo_set_features	= fec_set_features,
1944 };
1945 
1946  /*
1947   * XXX:  We need to clean up on failure exits here.
1948   *
1949   */
1950 static int fec_enet_init(struct net_device *ndev)
1951 {
1952 	struct fec_enet_private *fep = netdev_priv(ndev);
1953 	const struct platform_device_id *id_entry =
1954 				platform_get_device_id(fep->pdev);
1955 	struct bufdesc *cbd_base;
1956 
1957 	/* Allocate memory for buffer descriptors. */
1958 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1959 				      GFP_KERNEL);
1960 	if (!cbd_base)
1961 		return -ENOMEM;
1962 
1963 	memset(cbd_base, 0, PAGE_SIZE);
1964 
1965 	fep->netdev = ndev;
1966 
1967 	/* Get the Ethernet address */
1968 	fec_get_mac(ndev);
1969 
1970 	/* Set receive and transmit descriptor base. */
1971 	fep->rx_bd_base = cbd_base;
1972 	if (fep->bufdesc_ex)
1973 		fep->tx_bd_base = (struct bufdesc *)
1974 			(((struct bufdesc_ex *)cbd_base) + RX_RING_SIZE);
1975 	else
1976 		fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1977 
1978 	/* The FEC Ethernet specific entries in the device structure */
1979 	ndev->watchdog_timeo = TX_TIMEOUT;
1980 	ndev->netdev_ops = &fec_netdev_ops;
1981 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
1982 
1983 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
1984 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, FEC_NAPI_WEIGHT);
1985 
1986 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
1987 		/* enable hw VLAN support */
1988 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1989 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
1990 	}
1991 
1992 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
1993 		/* enable hw accelerator */
1994 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1995 				| NETIF_F_RXCSUM);
1996 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1997 				| NETIF_F_RXCSUM);
1998 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1999 	}
2000 
2001 	fec_restart(ndev, 0);
2002 
2003 	return 0;
2004 }
2005 
2006 #ifdef CONFIG_OF
2007 static void fec_reset_phy(struct platform_device *pdev)
2008 {
2009 	int err, phy_reset;
2010 	int msec = 1;
2011 	struct device_node *np = pdev->dev.of_node;
2012 
2013 	if (!np)
2014 		return;
2015 
2016 	of_property_read_u32(np, "phy-reset-duration", &msec);
2017 	/* A sane reset duration should not be longer than 1s */
2018 	if (msec > 1000)
2019 		msec = 1;
2020 
2021 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2022 	if (!gpio_is_valid(phy_reset))
2023 		return;
2024 
2025 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2026 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2027 	if (err) {
2028 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2029 		return;
2030 	}
2031 	msleep(msec);
2032 	gpio_set_value(phy_reset, 1);
2033 }
2034 #else /* CONFIG_OF */
2035 static void fec_reset_phy(struct platform_device *pdev)
2036 {
2037 	/*
2038 	 * In case of platform probe, the reset has been done
2039 	 * by machine code.
2040 	 */
2041 }
2042 #endif /* CONFIG_OF */
2043 
2044 static int
2045 fec_probe(struct platform_device *pdev)
2046 {
2047 	struct fec_enet_private *fep;
2048 	struct fec_platform_data *pdata;
2049 	struct net_device *ndev;
2050 	int i, irq, ret = 0;
2051 	struct resource *r;
2052 	const struct of_device_id *of_id;
2053 	static int dev_id;
2054 
2055 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2056 	if (of_id)
2057 		pdev->id_entry = of_id->data;
2058 
2059 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2060 	if (!r)
2061 		return -ENXIO;
2062 
2063 	/* Init network device */
2064 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2065 	if (!ndev)
2066 		return -ENOMEM;
2067 
2068 	SET_NETDEV_DEV(ndev, &pdev->dev);
2069 
2070 	/* setup board info structure */
2071 	fep = netdev_priv(ndev);
2072 
2073 #if !defined(CONFIG_M5272)
2074 	/* default enable pause frame auto negotiation */
2075 	if (pdev->id_entry &&
2076 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2077 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2078 #endif
2079 
2080 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2081 	if (IS_ERR(fep->hwp)) {
2082 		ret = PTR_ERR(fep->hwp);
2083 		goto failed_ioremap;
2084 	}
2085 
2086 	fep->pdev = pdev;
2087 	fep->dev_id = dev_id++;
2088 
2089 	fep->bufdesc_ex = 0;
2090 
2091 	platform_set_drvdata(pdev, ndev);
2092 
2093 	ret = of_get_phy_mode(pdev->dev.of_node);
2094 	if (ret < 0) {
2095 		pdata = pdev->dev.platform_data;
2096 		if (pdata)
2097 			fep->phy_interface = pdata->phy;
2098 		else
2099 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2100 	} else {
2101 		fep->phy_interface = ret;
2102 	}
2103 
2104 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2105 	if (IS_ERR(fep->clk_ipg)) {
2106 		ret = PTR_ERR(fep->clk_ipg);
2107 		goto failed_clk;
2108 	}
2109 
2110 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2111 	if (IS_ERR(fep->clk_ahb)) {
2112 		ret = PTR_ERR(fep->clk_ahb);
2113 		goto failed_clk;
2114 	}
2115 
2116 	/* enet_out is optional, depends on board */
2117 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2118 	if (IS_ERR(fep->clk_enet_out))
2119 		fep->clk_enet_out = NULL;
2120 
2121 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2122 	fep->bufdesc_ex =
2123 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2124 	if (IS_ERR(fep->clk_ptp)) {
2125 		fep->clk_ptp = NULL;
2126 		fep->bufdesc_ex = 0;
2127 	}
2128 
2129 	clk_prepare_enable(fep->clk_ahb);
2130 	clk_prepare_enable(fep->clk_ipg);
2131 	clk_prepare_enable(fep->clk_enet_out);
2132 	clk_prepare_enable(fep->clk_ptp);
2133 
2134 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2135 	if (!IS_ERR(fep->reg_phy)) {
2136 		ret = regulator_enable(fep->reg_phy);
2137 		if (ret) {
2138 			dev_err(&pdev->dev,
2139 				"Failed to enable phy regulator: %d\n", ret);
2140 			goto failed_regulator;
2141 		}
2142 	} else {
2143 		fep->reg_phy = NULL;
2144 	}
2145 
2146 	fec_reset_phy(pdev);
2147 
2148 	if (fep->bufdesc_ex)
2149 		fec_ptp_init(pdev);
2150 
2151 	ret = fec_enet_init(ndev);
2152 	if (ret)
2153 		goto failed_init;
2154 
2155 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2156 		irq = platform_get_irq(pdev, i);
2157 		if (irq < 0) {
2158 			if (i)
2159 				break;
2160 			ret = irq;
2161 			goto failed_irq;
2162 		}
2163 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
2164 		if (ret) {
2165 			while (--i >= 0) {
2166 				irq = platform_get_irq(pdev, i);
2167 				free_irq(irq, ndev);
2168 			}
2169 			goto failed_irq;
2170 		}
2171 	}
2172 
2173 	ret = fec_enet_mii_init(pdev);
2174 	if (ret)
2175 		goto failed_mii_init;
2176 
2177 	/* Carrier starts down, phylib will bring it up */
2178 	netif_carrier_off(ndev);
2179 
2180 	ret = register_netdev(ndev);
2181 	if (ret)
2182 		goto failed_register;
2183 
2184 	if (fep->bufdesc_ex && fep->ptp_clock)
2185 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2186 
2187 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2188 	return 0;
2189 
2190 failed_register:
2191 	fec_enet_mii_remove(fep);
2192 failed_mii_init:
2193 failed_irq:
2194 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2195 		irq = platform_get_irq(pdev, i);
2196 		if (irq > 0)
2197 			free_irq(irq, ndev);
2198 	}
2199 failed_init:
2200 	if (fep->reg_phy)
2201 		regulator_disable(fep->reg_phy);
2202 failed_regulator:
2203 	clk_disable_unprepare(fep->clk_ahb);
2204 	clk_disable_unprepare(fep->clk_ipg);
2205 	clk_disable_unprepare(fep->clk_enet_out);
2206 	clk_disable_unprepare(fep->clk_ptp);
2207 failed_clk:
2208 failed_ioremap:
2209 	free_netdev(ndev);
2210 
2211 	return ret;
2212 }
2213 
2214 static int
2215 fec_drv_remove(struct platform_device *pdev)
2216 {
2217 	struct net_device *ndev = platform_get_drvdata(pdev);
2218 	struct fec_enet_private *fep = netdev_priv(ndev);
2219 	int i;
2220 
2221 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2222 	unregister_netdev(ndev);
2223 	fec_enet_mii_remove(fep);
2224 	del_timer_sync(&fep->time_keep);
2225 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2226 		int irq = platform_get_irq(pdev, i);
2227 		if (irq > 0)
2228 			free_irq(irq, ndev);
2229 	}
2230 	if (fep->reg_phy)
2231 		regulator_disable(fep->reg_phy);
2232 	clk_disable_unprepare(fep->clk_ptp);
2233 	if (fep->ptp_clock)
2234 		ptp_clock_unregister(fep->ptp_clock);
2235 	clk_disable_unprepare(fep->clk_enet_out);
2236 	clk_disable_unprepare(fep->clk_ahb);
2237 	clk_disable_unprepare(fep->clk_ipg);
2238 	free_netdev(ndev);
2239 
2240 	return 0;
2241 }
2242 
2243 #ifdef CONFIG_PM_SLEEP
2244 static int
2245 fec_suspend(struct device *dev)
2246 {
2247 	struct net_device *ndev = dev_get_drvdata(dev);
2248 	struct fec_enet_private *fep = netdev_priv(ndev);
2249 
2250 	if (netif_running(ndev)) {
2251 		fec_stop(ndev);
2252 		netif_device_detach(ndev);
2253 	}
2254 	clk_disable_unprepare(fep->clk_enet_out);
2255 	clk_disable_unprepare(fep->clk_ahb);
2256 	clk_disable_unprepare(fep->clk_ipg);
2257 
2258 	if (fep->reg_phy)
2259 		regulator_disable(fep->reg_phy);
2260 
2261 	return 0;
2262 }
2263 
2264 static int
2265 fec_resume(struct device *dev)
2266 {
2267 	struct net_device *ndev = dev_get_drvdata(dev);
2268 	struct fec_enet_private *fep = netdev_priv(ndev);
2269 	int ret;
2270 
2271 	if (fep->reg_phy) {
2272 		ret = regulator_enable(fep->reg_phy);
2273 		if (ret)
2274 			return ret;
2275 	}
2276 
2277 	clk_prepare_enable(fep->clk_enet_out);
2278 	clk_prepare_enable(fep->clk_ahb);
2279 	clk_prepare_enable(fep->clk_ipg);
2280 	if (netif_running(ndev)) {
2281 		fec_restart(ndev, fep->full_duplex);
2282 		netif_device_attach(ndev);
2283 	}
2284 
2285 	return 0;
2286 }
2287 #endif /* CONFIG_PM_SLEEP */
2288 
2289 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2290 
2291 static struct platform_driver fec_driver = {
2292 	.driver	= {
2293 		.name	= DRIVER_NAME,
2294 		.owner	= THIS_MODULE,
2295 		.pm	= &fec_pm_ops,
2296 		.of_match_table = fec_dt_ids,
2297 	},
2298 	.id_table = fec_devtype,
2299 	.probe	= fec_probe,
2300 	.remove	= fec_drv_remove,
2301 };
2302 
2303 module_platform_driver(fec_driver);
2304 
2305 MODULE_ALIAS("platform:"DRIVER_NAME);
2306 MODULE_LICENSE("GPL");
2307