1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/pinctrl/consumer.h>
57 #include <linux/regulator/consumer.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 #if defined(CONFIG_ARM)
64 #define FEC_ALIGNMENT	0xf
65 #else
66 #define FEC_ALIGNMENT	0x3
67 #endif
68 
69 #define DRIVER_NAME	"fec"
70 #define FEC_NAPI_WEIGHT	64
71 
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE	(1 << 5)
74 #define FEC_ENET_RSEM_V	0x84
75 #define FEC_ENET_RSFL_V	16
76 #define FEC_ENET_RAEM_V	0x8
77 #define FEC_ENET_RAFL_V	0x8
78 #define FEC_ENET_OPD_V	0xFFF0
79 
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC		(1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET		(1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
92 
93 static struct platform_device_id fec_devtype[] = {
94 	{
95 		/* keep it for coldfire */
96 		.name = DRIVER_NAME,
97 		.driver_data = 0,
98 	}, {
99 		.name = "imx25-fec",
100 		.driver_data = FEC_QUIRK_USE_GASKET,
101 	}, {
102 		.name = "imx27-fec",
103 		.driver_data = 0,
104 	}, {
105 		.name = "imx28-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
107 	}, {
108 		.name = "imx6q-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM,
111 	}, {
112 		.name = "mvf600-fec",
113 		.driver_data = FEC_QUIRK_ENET_MAC,
114 	}, {
115 		/* sentinel */
116 	}
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119 
120 enum imx_fec_type {
121 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
122 	IMX27_FEC,	/* runs on i.mx27/35/51 */
123 	IMX28_FEC,
124 	IMX6Q_FEC,
125 	MVF600_FEC,
126 };
127 
128 static const struct of_device_id fec_dt_ids[] = {
129 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
130 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
131 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
132 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
133 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
134 	{ /* sentinel */ }
135 };
136 MODULE_DEVICE_TABLE(of, fec_dt_ids);
137 
138 static unsigned char macaddr[ETH_ALEN];
139 module_param_array(macaddr, byte, NULL, 0);
140 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
141 
142 #if defined(CONFIG_M5272)
143 /*
144  * Some hardware gets it MAC address out of local flash memory.
145  * if this is non-zero then assume it is the address to get MAC from.
146  */
147 #if defined(CONFIG_NETtel)
148 #define	FEC_FLASHMAC	0xf0006006
149 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
150 #define	FEC_FLASHMAC	0xf0006000
151 #elif defined(CONFIG_CANCam)
152 #define	FEC_FLASHMAC	0xf0020000
153 #elif defined (CONFIG_M5272C3)
154 #define	FEC_FLASHMAC	(0xffe04000 + 4)
155 #elif defined(CONFIG_MOD5272)
156 #define FEC_FLASHMAC	0xffc0406b
157 #else
158 #define	FEC_FLASHMAC	0
159 #endif
160 #endif /* CONFIG_M5272 */
161 
162 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
163 #error "FEC: descriptor ring size constants too large"
164 #endif
165 
166 /* Interrupt events/masks. */
167 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
168 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
169 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
170 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
171 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
172 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
173 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
174 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
175 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
176 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
177 
178 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
179 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
180 
181 /* The FEC stores dest/src/type, data, and checksum for receive packets.
182  */
183 #define PKT_MAXBUF_SIZE		1518
184 #define PKT_MINBUF_SIZE		64
185 #define PKT_MAXBLR_SIZE		1520
186 
187 /* FEC receive acceleration */
188 #define FEC_RACC_IPDIS		(1 << 1)
189 #define FEC_RACC_PRODIS		(1 << 2)
190 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
191 
192 /*
193  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194  * size bits. Other FEC hardware does not, so we need to take that into
195  * account when setting it.
196  */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
200 #else
201 #define	OPT_FRAME_SIZE	0
202 #endif
203 
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST		(1 << 30)
206 #define FEC_MMFR_OP_READ	(2 << 28)
207 #define FEC_MMFR_OP_WRITE	(1 << 28)
208 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
210 #define FEC_MMFR_TA		(2 << 16)
211 #define FEC_MMFR_DATA(v)	(v & 0xffff)
212 
213 #define FEC_MII_TIMEOUT		30000 /* us */
214 
215 /* Transmitter timeout */
216 #define TX_TIMEOUT (2 * HZ)
217 
218 #define FEC_PAUSE_FLAG_AUTONEG	0x1
219 #define FEC_PAUSE_FLAG_ENABLE	0x2
220 
221 static int mii_cnt;
222 
223 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, int is_ex)
224 {
225 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
226 	if (is_ex)
227 		return (struct bufdesc *)(ex + 1);
228 	else
229 		return bdp + 1;
230 }
231 
232 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, int is_ex)
233 {
234 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
235 	if (is_ex)
236 		return (struct bufdesc *)(ex - 1);
237 	else
238 		return bdp - 1;
239 }
240 
241 static void *swap_buffer(void *bufaddr, int len)
242 {
243 	int i;
244 	unsigned int *buf = bufaddr;
245 
246 	for (i = 0; i < (len + 3) / 4; i++, buf++)
247 		*buf = cpu_to_be32(*buf);
248 
249 	return bufaddr;
250 }
251 
252 static int
253 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
254 {
255 	/* Only run for packets requiring a checksum. */
256 	if (skb->ip_summed != CHECKSUM_PARTIAL)
257 		return 0;
258 
259 	if (unlikely(skb_cow_head(skb, 0)))
260 		return -1;
261 
262 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
263 
264 	return 0;
265 }
266 
267 static netdev_tx_t
268 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
269 {
270 	struct fec_enet_private *fep = netdev_priv(ndev);
271 	const struct platform_device_id *id_entry =
272 				platform_get_device_id(fep->pdev);
273 	struct bufdesc *bdp;
274 	void *bufaddr;
275 	unsigned short	status;
276 	unsigned int index;
277 
278 	if (!fep->link) {
279 		/* Link is down or auto-negotiation is in progress. */
280 		return NETDEV_TX_BUSY;
281 	}
282 
283 	/* Fill in a Tx ring entry */
284 	bdp = fep->cur_tx;
285 
286 	status = bdp->cbd_sc;
287 
288 	if (status & BD_ENET_TX_READY) {
289 		/* Ooops.  All transmit buffers are full.  Bail out.
290 		 * This should not happen, since ndev->tbusy should be set.
291 		 */
292 		netdev_err(ndev, "tx queue full!\n");
293 		return NETDEV_TX_BUSY;
294 	}
295 
296 	/* Protocol checksum off-load for TCP and UDP. */
297 	if (fec_enet_clear_csum(skb, ndev)) {
298 		kfree_skb(skb);
299 		return NETDEV_TX_OK;
300 	}
301 
302 	/* Clear all of the status flags */
303 	status &= ~BD_ENET_TX_STATS;
304 
305 	/* Set buffer length and buffer pointer */
306 	bufaddr = skb->data;
307 	bdp->cbd_datlen = skb->len;
308 
309 	/*
310 	 * On some FEC implementations data must be aligned on
311 	 * 4-byte boundaries. Use bounce buffers to copy data
312 	 * and get it aligned. Ugh.
313 	 */
314 	if (fep->bufdesc_ex)
315 		index = (struct bufdesc_ex *)bdp -
316 			(struct bufdesc_ex *)fep->tx_bd_base;
317 	else
318 		index = bdp - fep->tx_bd_base;
319 
320 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
321 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
322 		bufaddr = fep->tx_bounce[index];
323 	}
324 
325 	/*
326 	 * Some design made an incorrect assumption on endian mode of
327 	 * the system that it's running on. As the result, driver has to
328 	 * swap every frame going to and coming from the controller.
329 	 */
330 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
331 		swap_buffer(bufaddr, skb->len);
332 
333 	/* Save skb pointer */
334 	fep->tx_skbuff[index] = skb;
335 
336 	/* Push the data cache so the CPM does not get stale memory
337 	 * data.
338 	 */
339 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
340 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
341 
342 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
343 	 * it's the last BD of the frame, and to put the CRC on the end.
344 	 */
345 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
346 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
347 	bdp->cbd_sc = status;
348 
349 	if (fep->bufdesc_ex) {
350 
351 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
352 		ebdp->cbd_bdu = 0;
353 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
354 			fep->hwts_tx_en)) {
355 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
356 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
357 		} else {
358 			ebdp->cbd_esc = BD_ENET_TX_INT;
359 
360 			/* Enable protocol checksum flags
361 			 * We do not bother with the IP Checksum bits as they
362 			 * are done by the kernel
363 			 */
364 			if (skb->ip_summed == CHECKSUM_PARTIAL)
365 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
366 		}
367 	}
368 	/* If this was the last BD in the ring, start at the beginning again. */
369 	if (status & BD_ENET_TX_WRAP)
370 		bdp = fep->tx_bd_base;
371 	else
372 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
373 
374 	fep->cur_tx = bdp;
375 
376 	if (fep->cur_tx == fep->dirty_tx)
377 		netif_stop_queue(ndev);
378 
379 	/* Trigger transmission start */
380 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
381 
382 	skb_tx_timestamp(skb);
383 
384 	return NETDEV_TX_OK;
385 }
386 
387 /* Init RX & TX buffer descriptors
388  */
389 static void fec_enet_bd_init(struct net_device *dev)
390 {
391 	struct fec_enet_private *fep = netdev_priv(dev);
392 	struct bufdesc *bdp;
393 	unsigned int i;
394 
395 	/* Initialize the receive buffer descriptors. */
396 	bdp = fep->rx_bd_base;
397 	for (i = 0; i < RX_RING_SIZE; i++) {
398 
399 		/* Initialize the BD for every fragment in the page. */
400 		if (bdp->cbd_bufaddr)
401 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
402 		else
403 			bdp->cbd_sc = 0;
404 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
405 	}
406 
407 	/* Set the last buffer to wrap */
408 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
409 	bdp->cbd_sc |= BD_SC_WRAP;
410 
411 	fep->cur_rx = fep->rx_bd_base;
412 
413 	/* ...and the same for transmit */
414 	bdp = fep->tx_bd_base;
415 	fep->cur_tx = bdp;
416 	for (i = 0; i < TX_RING_SIZE; i++) {
417 
418 		/* Initialize the BD for every fragment in the page. */
419 		bdp->cbd_sc = 0;
420 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
421 			dev_kfree_skb_any(fep->tx_skbuff[i]);
422 			fep->tx_skbuff[i] = NULL;
423 		}
424 		bdp->cbd_bufaddr = 0;
425 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
426 	}
427 
428 	/* Set the last buffer to wrap */
429 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
430 	bdp->cbd_sc |= BD_SC_WRAP;
431 	fep->dirty_tx = bdp;
432 }
433 
434 /* This function is called to start or restart the FEC during a link
435  * change.  This only happens when switching between half and full
436  * duplex.
437  */
438 static void
439 fec_restart(struct net_device *ndev, int duplex)
440 {
441 	struct fec_enet_private *fep = netdev_priv(ndev);
442 	const struct platform_device_id *id_entry =
443 				platform_get_device_id(fep->pdev);
444 	int i;
445 	u32 val;
446 	u32 temp_mac[2];
447 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
448 	u32 ecntl = 0x2; /* ETHEREN */
449 
450 	if (netif_running(ndev)) {
451 		netif_device_detach(ndev);
452 		napi_disable(&fep->napi);
453 		netif_stop_queue(ndev);
454 		netif_tx_lock_bh(ndev);
455 	}
456 
457 	/* Whack a reset.  We should wait for this. */
458 	writel(1, fep->hwp + FEC_ECNTRL);
459 	udelay(10);
460 
461 	/*
462 	 * enet-mac reset will reset mac address registers too,
463 	 * so need to reconfigure it.
464 	 */
465 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
466 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
467 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
468 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
469 	}
470 
471 	/* Clear any outstanding interrupt. */
472 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
473 
474 	/* Reset all multicast.	*/
475 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
476 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
477 #ifndef CONFIG_M5272
478 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
479 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
480 #endif
481 
482 	/* Set maximum receive buffer size. */
483 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
484 
485 	fec_enet_bd_init(ndev);
486 
487 	/* Set receive and transmit descriptor base. */
488 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
489 	if (fep->bufdesc_ex)
490 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
491 			* RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
492 	else
493 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
494 			* RX_RING_SIZE,	fep->hwp + FEC_X_DES_START);
495 
496 
497 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
498 		if (fep->tx_skbuff[i]) {
499 			dev_kfree_skb_any(fep->tx_skbuff[i]);
500 			fep->tx_skbuff[i] = NULL;
501 		}
502 	}
503 
504 	/* Enable MII mode */
505 	if (duplex) {
506 		/* FD enable */
507 		writel(0x04, fep->hwp + FEC_X_CNTRL);
508 	} else {
509 		/* No Rcv on Xmit */
510 		rcntl |= 0x02;
511 		writel(0x0, fep->hwp + FEC_X_CNTRL);
512 	}
513 
514 	fep->full_duplex = duplex;
515 
516 	/* Set MII speed */
517 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
518 
519 #if !defined(CONFIG_M5272)
520 	/* set RX checksum */
521 	val = readl(fep->hwp + FEC_RACC);
522 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
523 		val |= FEC_RACC_OPTIONS;
524 	else
525 		val &= ~FEC_RACC_OPTIONS;
526 	writel(val, fep->hwp + FEC_RACC);
527 #endif
528 
529 	/*
530 	 * The phy interface and speed need to get configured
531 	 * differently on enet-mac.
532 	 */
533 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
534 		/* Enable flow control and length check */
535 		rcntl |= 0x40000000 | 0x00000020;
536 
537 		/* RGMII, RMII or MII */
538 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
539 			rcntl |= (1 << 6);
540 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
541 			rcntl |= (1 << 8);
542 		else
543 			rcntl &= ~(1 << 8);
544 
545 		/* 1G, 100M or 10M */
546 		if (fep->phy_dev) {
547 			if (fep->phy_dev->speed == SPEED_1000)
548 				ecntl |= (1 << 5);
549 			else if (fep->phy_dev->speed == SPEED_100)
550 				rcntl &= ~(1 << 9);
551 			else
552 				rcntl |= (1 << 9);
553 		}
554 	} else {
555 #ifdef FEC_MIIGSK_ENR
556 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
557 			u32 cfgr;
558 			/* disable the gasket and wait */
559 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
560 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
561 				udelay(1);
562 
563 			/*
564 			 * configure the gasket:
565 			 *   RMII, 50 MHz, no loopback, no echo
566 			 *   MII, 25 MHz, no loopback, no echo
567 			 */
568 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
569 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
570 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
571 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
572 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
573 
574 			/* re-enable the gasket */
575 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
576 		}
577 #endif
578 	}
579 
580 #if !defined(CONFIG_M5272)
581 	/* enable pause frame*/
582 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
583 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
584 	     fep->phy_dev && fep->phy_dev->pause)) {
585 		rcntl |= FEC_ENET_FCE;
586 
587 		/* set FIFO threshold parameter to reduce overrun */
588 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
589 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
590 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
591 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
592 
593 		/* OPD */
594 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
595 	} else {
596 		rcntl &= ~FEC_ENET_FCE;
597 	}
598 #endif /* !defined(CONFIG_M5272) */
599 
600 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
601 
602 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
603 		/* enable ENET endian swap */
604 		ecntl |= (1 << 8);
605 		/* enable ENET store and forward mode */
606 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
607 	}
608 
609 	if (fep->bufdesc_ex)
610 		ecntl |= (1 << 4);
611 
612 	/* And last, enable the transmit and receive processing */
613 	writel(ecntl, fep->hwp + FEC_ECNTRL);
614 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
615 
616 	if (fep->bufdesc_ex)
617 		fec_ptp_start_cyclecounter(ndev);
618 
619 	/* Enable interrupts we wish to service */
620 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
621 
622 	if (netif_running(ndev)) {
623 		netif_tx_unlock_bh(ndev);
624 		netif_wake_queue(ndev);
625 		napi_enable(&fep->napi);
626 		netif_device_attach(ndev);
627 	}
628 }
629 
630 static void
631 fec_stop(struct net_device *ndev)
632 {
633 	struct fec_enet_private *fep = netdev_priv(ndev);
634 	const struct platform_device_id *id_entry =
635 				platform_get_device_id(fep->pdev);
636 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
637 
638 	/* We cannot expect a graceful transmit stop without link !!! */
639 	if (fep->link) {
640 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
641 		udelay(10);
642 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
643 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
644 	}
645 
646 	/* Whack a reset.  We should wait for this. */
647 	writel(1, fep->hwp + FEC_ECNTRL);
648 	udelay(10);
649 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
650 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
651 
652 	/* We have to keep ENET enabled to have MII interrupt stay working */
653 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
654 		writel(2, fep->hwp + FEC_ECNTRL);
655 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
656 	}
657 }
658 
659 
660 static void
661 fec_timeout(struct net_device *ndev)
662 {
663 	struct fec_enet_private *fep = netdev_priv(ndev);
664 
665 	ndev->stats.tx_errors++;
666 
667 	fep->delay_work.timeout = true;
668 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
669 }
670 
671 static void fec_enet_work(struct work_struct *work)
672 {
673 	struct fec_enet_private *fep =
674 		container_of(work,
675 			     struct fec_enet_private,
676 			     delay_work.delay_work.work);
677 
678 	if (fep->delay_work.timeout) {
679 		fep->delay_work.timeout = false;
680 		fec_restart(fep->netdev, fep->full_duplex);
681 		netif_wake_queue(fep->netdev);
682 	}
683 }
684 
685 static void
686 fec_enet_tx(struct net_device *ndev)
687 {
688 	struct	fec_enet_private *fep;
689 	struct bufdesc *bdp;
690 	unsigned short status;
691 	struct	sk_buff	*skb;
692 	int	index = 0;
693 
694 	fep = netdev_priv(ndev);
695 	bdp = fep->dirty_tx;
696 
697 	/* get next bdp of dirty_tx */
698 	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
699 		bdp = fep->tx_bd_base;
700 	else
701 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
702 
703 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
704 
705 		/* current queue is empty */
706 		if (bdp == fep->cur_tx)
707 			break;
708 
709 		if (fep->bufdesc_ex)
710 			index = (struct bufdesc_ex *)bdp -
711 				(struct bufdesc_ex *)fep->tx_bd_base;
712 		else
713 			index = bdp - fep->tx_bd_base;
714 
715 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
716 				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
717 		bdp->cbd_bufaddr = 0;
718 
719 		skb = fep->tx_skbuff[index];
720 
721 		/* Check for errors. */
722 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
723 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
724 				   BD_ENET_TX_CSL)) {
725 			ndev->stats.tx_errors++;
726 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
727 				ndev->stats.tx_heartbeat_errors++;
728 			if (status & BD_ENET_TX_LC)  /* Late collision */
729 				ndev->stats.tx_window_errors++;
730 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
731 				ndev->stats.tx_aborted_errors++;
732 			if (status & BD_ENET_TX_UN)  /* Underrun */
733 				ndev->stats.tx_fifo_errors++;
734 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
735 				ndev->stats.tx_carrier_errors++;
736 		} else {
737 			ndev->stats.tx_packets++;
738 		}
739 
740 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
741 			fep->bufdesc_ex) {
742 			struct skb_shared_hwtstamps shhwtstamps;
743 			unsigned long flags;
744 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
745 
746 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
747 			spin_lock_irqsave(&fep->tmreg_lock, flags);
748 			shhwtstamps.hwtstamp = ns_to_ktime(
749 				timecounter_cyc2time(&fep->tc, ebdp->ts));
750 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
751 			skb_tstamp_tx(skb, &shhwtstamps);
752 		}
753 
754 		if (status & BD_ENET_TX_READY)
755 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
756 
757 		/* Deferred means some collisions occurred during transmit,
758 		 * but we eventually sent the packet OK.
759 		 */
760 		if (status & BD_ENET_TX_DEF)
761 			ndev->stats.collisions++;
762 
763 		/* Free the sk buffer associated with this last transmit */
764 		dev_kfree_skb_any(skb);
765 		fep->tx_skbuff[index] = NULL;
766 
767 		fep->dirty_tx = bdp;
768 
769 		/* Update pointer to next buffer descriptor to be transmitted */
770 		if (status & BD_ENET_TX_WRAP)
771 			bdp = fep->tx_bd_base;
772 		else
773 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
774 
775 		/* Since we have freed up a buffer, the ring is no longer full
776 		 */
777 		if (fep->dirty_tx != fep->cur_tx) {
778 			if (netif_queue_stopped(ndev))
779 				netif_wake_queue(ndev);
780 		}
781 	}
782 	return;
783 }
784 
785 
786 /* During a receive, the cur_rx points to the current incoming buffer.
787  * When we update through the ring, if the next incoming buffer has
788  * not been given to the system, we just set the empty indicator,
789  * effectively tossing the packet.
790  */
791 static int
792 fec_enet_rx(struct net_device *ndev, int budget)
793 {
794 	struct fec_enet_private *fep = netdev_priv(ndev);
795 	const struct platform_device_id *id_entry =
796 				platform_get_device_id(fep->pdev);
797 	struct bufdesc *bdp;
798 	unsigned short status;
799 	struct	sk_buff	*skb;
800 	ushort	pkt_len;
801 	__u8 *data;
802 	int	pkt_received = 0;
803 
804 #ifdef CONFIG_M532x
805 	flush_cache_all();
806 #endif
807 
808 	/* First, grab all of the stats for the incoming packet.
809 	 * These get messed up if we get called due to a busy condition.
810 	 */
811 	bdp = fep->cur_rx;
812 
813 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
814 
815 		if (pkt_received >= budget)
816 			break;
817 		pkt_received++;
818 
819 		/* Since we have allocated space to hold a complete frame,
820 		 * the last indicator should be set.
821 		 */
822 		if ((status & BD_ENET_RX_LAST) == 0)
823 			netdev_err(ndev, "rcv is not +last\n");
824 
825 		if (!fep->opened)
826 			goto rx_processing_done;
827 
828 		/* Check for errors. */
829 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
830 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
831 			ndev->stats.rx_errors++;
832 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
833 				/* Frame too long or too short. */
834 				ndev->stats.rx_length_errors++;
835 			}
836 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
837 				ndev->stats.rx_frame_errors++;
838 			if (status & BD_ENET_RX_CR)	/* CRC Error */
839 				ndev->stats.rx_crc_errors++;
840 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
841 				ndev->stats.rx_fifo_errors++;
842 		}
843 
844 		/* Report late collisions as a frame error.
845 		 * On this error, the BD is closed, but we don't know what we
846 		 * have in the buffer.  So, just drop this frame on the floor.
847 		 */
848 		if (status & BD_ENET_RX_CL) {
849 			ndev->stats.rx_errors++;
850 			ndev->stats.rx_frame_errors++;
851 			goto rx_processing_done;
852 		}
853 
854 		/* Process the incoming frame. */
855 		ndev->stats.rx_packets++;
856 		pkt_len = bdp->cbd_datlen;
857 		ndev->stats.rx_bytes += pkt_len;
858 		data = (__u8*)__va(bdp->cbd_bufaddr);
859 
860 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
861 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
862 
863 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
864 			swap_buffer(data, pkt_len);
865 
866 		/* This does 16 byte alignment, exactly what we need.
867 		 * The packet length includes FCS, but we don't want to
868 		 * include that when passing upstream as it messes up
869 		 * bridging applications.
870 		 */
871 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
872 
873 		if (unlikely(!skb)) {
874 			ndev->stats.rx_dropped++;
875 		} else {
876 			skb_reserve(skb, NET_IP_ALIGN);
877 			skb_put(skb, pkt_len - 4);	/* Make room */
878 			skb_copy_to_linear_data(skb, data, pkt_len - 4);
879 			skb->protocol = eth_type_trans(skb, ndev);
880 
881 			/* Get receive timestamp from the skb */
882 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
883 				struct skb_shared_hwtstamps *shhwtstamps =
884 							    skb_hwtstamps(skb);
885 				unsigned long flags;
886 				struct bufdesc_ex *ebdp =
887 					(struct bufdesc_ex *)bdp;
888 
889 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
890 
891 				spin_lock_irqsave(&fep->tmreg_lock, flags);
892 				shhwtstamps->hwtstamp = ns_to_ktime(
893 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
894 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
895 			}
896 
897 			if (fep->bufdesc_ex &&
898 				(fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
899 				struct bufdesc_ex *ebdp =
900 					(struct bufdesc_ex *)bdp;
901 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
902 					/* don't check it */
903 					skb->ip_summed = CHECKSUM_UNNECESSARY;
904 				} else {
905 					skb_checksum_none_assert(skb);
906 				}
907 			}
908 
909 			if (!skb_defer_rx_timestamp(skb))
910 				napi_gro_receive(&fep->napi, skb);
911 		}
912 
913 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
914 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
915 rx_processing_done:
916 		/* Clear the status flags for this buffer */
917 		status &= ~BD_ENET_RX_STATS;
918 
919 		/* Mark the buffer empty */
920 		status |= BD_ENET_RX_EMPTY;
921 		bdp->cbd_sc = status;
922 
923 		if (fep->bufdesc_ex) {
924 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
925 
926 			ebdp->cbd_esc = BD_ENET_RX_INT;
927 			ebdp->cbd_prot = 0;
928 			ebdp->cbd_bdu = 0;
929 		}
930 
931 		/* Update BD pointer to next entry */
932 		if (status & BD_ENET_RX_WRAP)
933 			bdp = fep->rx_bd_base;
934 		else
935 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
936 		/* Doing this here will keep the FEC running while we process
937 		 * incoming frames.  On a heavily loaded network, we should be
938 		 * able to keep up at the expense of system resources.
939 		 */
940 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
941 	}
942 	fep->cur_rx = bdp;
943 
944 	return pkt_received;
945 }
946 
947 static irqreturn_t
948 fec_enet_interrupt(int irq, void *dev_id)
949 {
950 	struct net_device *ndev = dev_id;
951 	struct fec_enet_private *fep = netdev_priv(ndev);
952 	uint int_events;
953 	irqreturn_t ret = IRQ_NONE;
954 
955 	do {
956 		int_events = readl(fep->hwp + FEC_IEVENT);
957 		writel(int_events, fep->hwp + FEC_IEVENT);
958 
959 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
960 			ret = IRQ_HANDLED;
961 
962 			/* Disable the RX interrupt */
963 			if (napi_schedule_prep(&fep->napi)) {
964 				writel(FEC_RX_DISABLED_IMASK,
965 					fep->hwp + FEC_IMASK);
966 				__napi_schedule(&fep->napi);
967 			}
968 		}
969 
970 		if (int_events & FEC_ENET_MII) {
971 			ret = IRQ_HANDLED;
972 			complete(&fep->mdio_done);
973 		}
974 	} while (int_events);
975 
976 	return ret;
977 }
978 
979 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
980 {
981 	struct net_device *ndev = napi->dev;
982 	int pkts = fec_enet_rx(ndev, budget);
983 	struct fec_enet_private *fep = netdev_priv(ndev);
984 
985 	fec_enet_tx(ndev);
986 
987 	if (pkts < budget) {
988 		napi_complete(napi);
989 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
990 	}
991 	return pkts;
992 }
993 
994 /* ------------------------------------------------------------------------- */
995 static void fec_get_mac(struct net_device *ndev)
996 {
997 	struct fec_enet_private *fep = netdev_priv(ndev);
998 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
999 	unsigned char *iap, tmpaddr[ETH_ALEN];
1000 
1001 	/*
1002 	 * try to get mac address in following order:
1003 	 *
1004 	 * 1) module parameter via kernel command line in form
1005 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1006 	 */
1007 	iap = macaddr;
1008 
1009 	/*
1010 	 * 2) from device tree data
1011 	 */
1012 	if (!is_valid_ether_addr(iap)) {
1013 		struct device_node *np = fep->pdev->dev.of_node;
1014 		if (np) {
1015 			const char *mac = of_get_mac_address(np);
1016 			if (mac)
1017 				iap = (unsigned char *) mac;
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * 3) from flash or fuse (via platform data)
1023 	 */
1024 	if (!is_valid_ether_addr(iap)) {
1025 #ifdef CONFIG_M5272
1026 		if (FEC_FLASHMAC)
1027 			iap = (unsigned char *)FEC_FLASHMAC;
1028 #else
1029 		if (pdata)
1030 			iap = (unsigned char *)&pdata->mac;
1031 #endif
1032 	}
1033 
1034 	/*
1035 	 * 4) FEC mac registers set by bootloader
1036 	 */
1037 	if (!is_valid_ether_addr(iap)) {
1038 		*((unsigned long *) &tmpaddr[0]) =
1039 			be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
1040 		*((unsigned short *) &tmpaddr[4]) =
1041 			be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1042 		iap = &tmpaddr[0];
1043 	}
1044 
1045 	/*
1046 	 * 5) random mac address
1047 	 */
1048 	if (!is_valid_ether_addr(iap)) {
1049 		/* Report it and use a random ethernet address instead */
1050 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1051 		eth_hw_addr_random(ndev);
1052 		netdev_info(ndev, "Using random MAC address: %pM\n",
1053 			    ndev->dev_addr);
1054 		return;
1055 	}
1056 
1057 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1058 
1059 	/* Adjust MAC if using macaddr */
1060 	if (iap == macaddr)
1061 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1062 }
1063 
1064 /* ------------------------------------------------------------------------- */
1065 
1066 /*
1067  * Phy section
1068  */
1069 static void fec_enet_adjust_link(struct net_device *ndev)
1070 {
1071 	struct fec_enet_private *fep = netdev_priv(ndev);
1072 	struct phy_device *phy_dev = fep->phy_dev;
1073 	int status_change = 0;
1074 
1075 	/* Prevent a state halted on mii error */
1076 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1077 		phy_dev->state = PHY_RESUMING;
1078 		return;
1079 	}
1080 
1081 	if (phy_dev->link) {
1082 		if (!fep->link) {
1083 			fep->link = phy_dev->link;
1084 			status_change = 1;
1085 		}
1086 
1087 		if (fep->full_duplex != phy_dev->duplex)
1088 			status_change = 1;
1089 
1090 		if (phy_dev->speed != fep->speed) {
1091 			fep->speed = phy_dev->speed;
1092 			status_change = 1;
1093 		}
1094 
1095 		/* if any of the above changed restart the FEC */
1096 		if (status_change)
1097 			fec_restart(ndev, phy_dev->duplex);
1098 	} else {
1099 		if (fep->link) {
1100 			fec_stop(ndev);
1101 			fep->link = phy_dev->link;
1102 			status_change = 1;
1103 		}
1104 	}
1105 
1106 	if (status_change)
1107 		phy_print_status(phy_dev);
1108 }
1109 
1110 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1111 {
1112 	struct fec_enet_private *fep = bus->priv;
1113 	unsigned long time_left;
1114 
1115 	fep->mii_timeout = 0;
1116 	init_completion(&fep->mdio_done);
1117 
1118 	/* start a read op */
1119 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1120 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1121 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1122 
1123 	/* wait for end of transfer */
1124 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1125 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1126 	if (time_left == 0) {
1127 		fep->mii_timeout = 1;
1128 		netdev_err(fep->netdev, "MDIO read timeout\n");
1129 		return -ETIMEDOUT;
1130 	}
1131 
1132 	/* return value */
1133 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1134 }
1135 
1136 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1137 			   u16 value)
1138 {
1139 	struct fec_enet_private *fep = bus->priv;
1140 	unsigned long time_left;
1141 
1142 	fep->mii_timeout = 0;
1143 	init_completion(&fep->mdio_done);
1144 
1145 	/* start a write op */
1146 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1147 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1148 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1149 		fep->hwp + FEC_MII_DATA);
1150 
1151 	/* wait for end of transfer */
1152 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1153 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1154 	if (time_left == 0) {
1155 		fep->mii_timeout = 1;
1156 		netdev_err(fep->netdev, "MDIO write timeout\n");
1157 		return -ETIMEDOUT;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 static int fec_enet_mdio_reset(struct mii_bus *bus)
1164 {
1165 	return 0;
1166 }
1167 
1168 static int fec_enet_mii_probe(struct net_device *ndev)
1169 {
1170 	struct fec_enet_private *fep = netdev_priv(ndev);
1171 	const struct platform_device_id *id_entry =
1172 				platform_get_device_id(fep->pdev);
1173 	struct phy_device *phy_dev = NULL;
1174 	char mdio_bus_id[MII_BUS_ID_SIZE];
1175 	char phy_name[MII_BUS_ID_SIZE + 3];
1176 	int phy_id;
1177 	int dev_id = fep->dev_id;
1178 
1179 	fep->phy_dev = NULL;
1180 
1181 	/* check for attached phy */
1182 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1183 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1184 			continue;
1185 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1186 			continue;
1187 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1188 			continue;
1189 		if (dev_id--)
1190 			continue;
1191 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1192 		break;
1193 	}
1194 
1195 	if (phy_id >= PHY_MAX_ADDR) {
1196 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1197 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1198 		phy_id = 0;
1199 	}
1200 
1201 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1202 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1203 			      fep->phy_interface);
1204 	if (IS_ERR(phy_dev)) {
1205 		netdev_err(ndev, "could not attach to PHY\n");
1206 		return PTR_ERR(phy_dev);
1207 	}
1208 
1209 	/* mask with MAC supported features */
1210 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1211 		phy_dev->supported &= PHY_GBIT_FEATURES;
1212 #if !defined(CONFIG_M5272)
1213 		phy_dev->supported |= SUPPORTED_Pause;
1214 #endif
1215 	}
1216 	else
1217 		phy_dev->supported &= PHY_BASIC_FEATURES;
1218 
1219 	phy_dev->advertising = phy_dev->supported;
1220 
1221 	fep->phy_dev = phy_dev;
1222 	fep->link = 0;
1223 	fep->full_duplex = 0;
1224 
1225 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1226 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1227 		    fep->phy_dev->irq);
1228 
1229 	return 0;
1230 }
1231 
1232 static int fec_enet_mii_init(struct platform_device *pdev)
1233 {
1234 	static struct mii_bus *fec0_mii_bus;
1235 	struct net_device *ndev = platform_get_drvdata(pdev);
1236 	struct fec_enet_private *fep = netdev_priv(ndev);
1237 	const struct platform_device_id *id_entry =
1238 				platform_get_device_id(fep->pdev);
1239 	int err = -ENXIO, i;
1240 
1241 	/*
1242 	 * The dual fec interfaces are not equivalent with enet-mac.
1243 	 * Here are the differences:
1244 	 *
1245 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1246 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1247 	 *  - external phys can only be configured by fec0
1248 	 *
1249 	 * That is to say fec1 can not work independently. It only works
1250 	 * when fec0 is working. The reason behind this design is that the
1251 	 * second interface is added primarily for Switch mode.
1252 	 *
1253 	 * Because of the last point above, both phys are attached on fec0
1254 	 * mdio interface in board design, and need to be configured by
1255 	 * fec0 mii_bus.
1256 	 */
1257 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1258 		/* fec1 uses fec0 mii_bus */
1259 		if (mii_cnt && fec0_mii_bus) {
1260 			fep->mii_bus = fec0_mii_bus;
1261 			mii_cnt++;
1262 			return 0;
1263 		}
1264 		return -ENOENT;
1265 	}
1266 
1267 	fep->mii_timeout = 0;
1268 
1269 	/*
1270 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1271 	 *
1272 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1273 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1274 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1275 	 * document.
1276 	 */
1277 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1278 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1279 		fep->phy_speed--;
1280 	fep->phy_speed <<= 1;
1281 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1282 
1283 	fep->mii_bus = mdiobus_alloc();
1284 	if (fep->mii_bus == NULL) {
1285 		err = -ENOMEM;
1286 		goto err_out;
1287 	}
1288 
1289 	fep->mii_bus->name = "fec_enet_mii_bus";
1290 	fep->mii_bus->read = fec_enet_mdio_read;
1291 	fep->mii_bus->write = fec_enet_mdio_write;
1292 	fep->mii_bus->reset = fec_enet_mdio_reset;
1293 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1294 		pdev->name, fep->dev_id + 1);
1295 	fep->mii_bus->priv = fep;
1296 	fep->mii_bus->parent = &pdev->dev;
1297 
1298 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1299 	if (!fep->mii_bus->irq) {
1300 		err = -ENOMEM;
1301 		goto err_out_free_mdiobus;
1302 	}
1303 
1304 	for (i = 0; i < PHY_MAX_ADDR; i++)
1305 		fep->mii_bus->irq[i] = PHY_POLL;
1306 
1307 	if (mdiobus_register(fep->mii_bus))
1308 		goto err_out_free_mdio_irq;
1309 
1310 	mii_cnt++;
1311 
1312 	/* save fec0 mii_bus */
1313 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1314 		fec0_mii_bus = fep->mii_bus;
1315 
1316 	return 0;
1317 
1318 err_out_free_mdio_irq:
1319 	kfree(fep->mii_bus->irq);
1320 err_out_free_mdiobus:
1321 	mdiobus_free(fep->mii_bus);
1322 err_out:
1323 	return err;
1324 }
1325 
1326 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1327 {
1328 	if (--mii_cnt == 0) {
1329 		mdiobus_unregister(fep->mii_bus);
1330 		kfree(fep->mii_bus->irq);
1331 		mdiobus_free(fep->mii_bus);
1332 	}
1333 }
1334 
1335 static int fec_enet_get_settings(struct net_device *ndev,
1336 				  struct ethtool_cmd *cmd)
1337 {
1338 	struct fec_enet_private *fep = netdev_priv(ndev);
1339 	struct phy_device *phydev = fep->phy_dev;
1340 
1341 	if (!phydev)
1342 		return -ENODEV;
1343 
1344 	return phy_ethtool_gset(phydev, cmd);
1345 }
1346 
1347 static int fec_enet_set_settings(struct net_device *ndev,
1348 				 struct ethtool_cmd *cmd)
1349 {
1350 	struct fec_enet_private *fep = netdev_priv(ndev);
1351 	struct phy_device *phydev = fep->phy_dev;
1352 
1353 	if (!phydev)
1354 		return -ENODEV;
1355 
1356 	return phy_ethtool_sset(phydev, cmd);
1357 }
1358 
1359 static void fec_enet_get_drvinfo(struct net_device *ndev,
1360 				 struct ethtool_drvinfo *info)
1361 {
1362 	struct fec_enet_private *fep = netdev_priv(ndev);
1363 
1364 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1365 		sizeof(info->driver));
1366 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1367 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1368 }
1369 
1370 static int fec_enet_get_ts_info(struct net_device *ndev,
1371 				struct ethtool_ts_info *info)
1372 {
1373 	struct fec_enet_private *fep = netdev_priv(ndev);
1374 
1375 	if (fep->bufdesc_ex) {
1376 
1377 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1378 					SOF_TIMESTAMPING_RX_SOFTWARE |
1379 					SOF_TIMESTAMPING_SOFTWARE |
1380 					SOF_TIMESTAMPING_TX_HARDWARE |
1381 					SOF_TIMESTAMPING_RX_HARDWARE |
1382 					SOF_TIMESTAMPING_RAW_HARDWARE;
1383 		if (fep->ptp_clock)
1384 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1385 		else
1386 			info->phc_index = -1;
1387 
1388 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1389 				 (1 << HWTSTAMP_TX_ON);
1390 
1391 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1392 				   (1 << HWTSTAMP_FILTER_ALL);
1393 		return 0;
1394 	} else {
1395 		return ethtool_op_get_ts_info(ndev, info);
1396 	}
1397 }
1398 
1399 #if !defined(CONFIG_M5272)
1400 
1401 static void fec_enet_get_pauseparam(struct net_device *ndev,
1402 				    struct ethtool_pauseparam *pause)
1403 {
1404 	struct fec_enet_private *fep = netdev_priv(ndev);
1405 
1406 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1407 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1408 	pause->rx_pause = pause->tx_pause;
1409 }
1410 
1411 static int fec_enet_set_pauseparam(struct net_device *ndev,
1412 				   struct ethtool_pauseparam *pause)
1413 {
1414 	struct fec_enet_private *fep = netdev_priv(ndev);
1415 
1416 	if (pause->tx_pause != pause->rx_pause) {
1417 		netdev_info(ndev,
1418 			"hardware only support enable/disable both tx and rx");
1419 		return -EINVAL;
1420 	}
1421 
1422 	fep->pause_flag = 0;
1423 
1424 	/* tx pause must be same as rx pause */
1425 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1426 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1427 
1428 	if (pause->rx_pause || pause->autoneg) {
1429 		fep->phy_dev->supported |= ADVERTISED_Pause;
1430 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1431 	} else {
1432 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1433 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1434 	}
1435 
1436 	if (pause->autoneg) {
1437 		if (netif_running(ndev))
1438 			fec_stop(ndev);
1439 		phy_start_aneg(fep->phy_dev);
1440 	}
1441 	if (netif_running(ndev))
1442 		fec_restart(ndev, 0);
1443 
1444 	return 0;
1445 }
1446 
1447 #endif /* !defined(CONFIG_M5272) */
1448 
1449 static const struct ethtool_ops fec_enet_ethtool_ops = {
1450 #if !defined(CONFIG_M5272)
1451 	.get_pauseparam		= fec_enet_get_pauseparam,
1452 	.set_pauseparam		= fec_enet_set_pauseparam,
1453 #endif
1454 	.get_settings		= fec_enet_get_settings,
1455 	.set_settings		= fec_enet_set_settings,
1456 	.get_drvinfo		= fec_enet_get_drvinfo,
1457 	.get_link		= ethtool_op_get_link,
1458 	.get_ts_info		= fec_enet_get_ts_info,
1459 };
1460 
1461 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1462 {
1463 	struct fec_enet_private *fep = netdev_priv(ndev);
1464 	struct phy_device *phydev = fep->phy_dev;
1465 
1466 	if (!netif_running(ndev))
1467 		return -EINVAL;
1468 
1469 	if (!phydev)
1470 		return -ENODEV;
1471 
1472 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1473 		return fec_ptp_ioctl(ndev, rq, cmd);
1474 
1475 	return phy_mii_ioctl(phydev, rq, cmd);
1476 }
1477 
1478 static void fec_enet_free_buffers(struct net_device *ndev)
1479 {
1480 	struct fec_enet_private *fep = netdev_priv(ndev);
1481 	unsigned int i;
1482 	struct sk_buff *skb;
1483 	struct bufdesc	*bdp;
1484 
1485 	bdp = fep->rx_bd_base;
1486 	for (i = 0; i < RX_RING_SIZE; i++) {
1487 		skb = fep->rx_skbuff[i];
1488 
1489 		if (bdp->cbd_bufaddr)
1490 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1491 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1492 		if (skb)
1493 			dev_kfree_skb(skb);
1494 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1495 	}
1496 
1497 	bdp = fep->tx_bd_base;
1498 	for (i = 0; i < TX_RING_SIZE; i++)
1499 		kfree(fep->tx_bounce[i]);
1500 }
1501 
1502 static int fec_enet_alloc_buffers(struct net_device *ndev)
1503 {
1504 	struct fec_enet_private *fep = netdev_priv(ndev);
1505 	unsigned int i;
1506 	struct sk_buff *skb;
1507 	struct bufdesc	*bdp;
1508 
1509 	bdp = fep->rx_bd_base;
1510 	for (i = 0; i < RX_RING_SIZE; i++) {
1511 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1512 		if (!skb) {
1513 			fec_enet_free_buffers(ndev);
1514 			return -ENOMEM;
1515 		}
1516 		fep->rx_skbuff[i] = skb;
1517 
1518 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1519 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1520 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1521 
1522 		if (fep->bufdesc_ex) {
1523 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1524 			ebdp->cbd_esc = BD_ENET_RX_INT;
1525 		}
1526 
1527 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1528 	}
1529 
1530 	/* Set the last buffer to wrap. */
1531 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1532 	bdp->cbd_sc |= BD_SC_WRAP;
1533 
1534 	bdp = fep->tx_bd_base;
1535 	for (i = 0; i < TX_RING_SIZE; i++) {
1536 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1537 
1538 		bdp->cbd_sc = 0;
1539 		bdp->cbd_bufaddr = 0;
1540 
1541 		if (fep->bufdesc_ex) {
1542 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1543 			ebdp->cbd_esc = BD_ENET_TX_INT;
1544 		}
1545 
1546 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1547 	}
1548 
1549 	/* Set the last buffer to wrap. */
1550 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1551 	bdp->cbd_sc |= BD_SC_WRAP;
1552 
1553 	return 0;
1554 }
1555 
1556 static int
1557 fec_enet_open(struct net_device *ndev)
1558 {
1559 	struct fec_enet_private *fep = netdev_priv(ndev);
1560 	int ret;
1561 
1562 	napi_enable(&fep->napi);
1563 
1564 	/* I should reset the ring buffers here, but I don't yet know
1565 	 * a simple way to do that.
1566 	 */
1567 
1568 	ret = fec_enet_alloc_buffers(ndev);
1569 	if (ret)
1570 		return ret;
1571 
1572 	/* Probe and connect to PHY when open the interface */
1573 	ret = fec_enet_mii_probe(ndev);
1574 	if (ret) {
1575 		fec_enet_free_buffers(ndev);
1576 		return ret;
1577 	}
1578 	phy_start(fep->phy_dev);
1579 	netif_start_queue(ndev);
1580 	fep->opened = 1;
1581 	return 0;
1582 }
1583 
1584 static int
1585 fec_enet_close(struct net_device *ndev)
1586 {
1587 	struct fec_enet_private *fep = netdev_priv(ndev);
1588 
1589 	/* Don't know what to do yet. */
1590 	napi_disable(&fep->napi);
1591 	fep->opened = 0;
1592 	netif_stop_queue(ndev);
1593 	fec_stop(ndev);
1594 
1595 	if (fep->phy_dev) {
1596 		phy_stop(fep->phy_dev);
1597 		phy_disconnect(fep->phy_dev);
1598 	}
1599 
1600 	fec_enet_free_buffers(ndev);
1601 
1602 	return 0;
1603 }
1604 
1605 /* Set or clear the multicast filter for this adaptor.
1606  * Skeleton taken from sunlance driver.
1607  * The CPM Ethernet implementation allows Multicast as well as individual
1608  * MAC address filtering.  Some of the drivers check to make sure it is
1609  * a group multicast address, and discard those that are not.  I guess I
1610  * will do the same for now, but just remove the test if you want
1611  * individual filtering as well (do the upper net layers want or support
1612  * this kind of feature?).
1613  */
1614 
1615 #define HASH_BITS	6		/* #bits in hash */
1616 #define CRC32_POLY	0xEDB88320
1617 
1618 static void set_multicast_list(struct net_device *ndev)
1619 {
1620 	struct fec_enet_private *fep = netdev_priv(ndev);
1621 	struct netdev_hw_addr *ha;
1622 	unsigned int i, bit, data, crc, tmp;
1623 	unsigned char hash;
1624 
1625 	if (ndev->flags & IFF_PROMISC) {
1626 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1627 		tmp |= 0x8;
1628 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1629 		return;
1630 	}
1631 
1632 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1633 	tmp &= ~0x8;
1634 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1635 
1636 	if (ndev->flags & IFF_ALLMULTI) {
1637 		/* Catch all multicast addresses, so set the
1638 		 * filter to all 1's
1639 		 */
1640 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1641 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1642 
1643 		return;
1644 	}
1645 
1646 	/* Clear filter and add the addresses in hash register
1647 	 */
1648 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1649 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1650 
1651 	netdev_for_each_mc_addr(ha, ndev) {
1652 		/* calculate crc32 value of mac address */
1653 		crc = 0xffffffff;
1654 
1655 		for (i = 0; i < ndev->addr_len; i++) {
1656 			data = ha->addr[i];
1657 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1658 				crc = (crc >> 1) ^
1659 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1660 			}
1661 		}
1662 
1663 		/* only upper 6 bits (HASH_BITS) are used
1664 		 * which point to specific bit in he hash registers
1665 		 */
1666 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1667 
1668 		if (hash > 31) {
1669 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1670 			tmp |= 1 << (hash - 32);
1671 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1672 		} else {
1673 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1674 			tmp |= 1 << hash;
1675 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1676 		}
1677 	}
1678 }
1679 
1680 /* Set a MAC change in hardware. */
1681 static int
1682 fec_set_mac_address(struct net_device *ndev, void *p)
1683 {
1684 	struct fec_enet_private *fep = netdev_priv(ndev);
1685 	struct sockaddr *addr = p;
1686 
1687 	if (!is_valid_ether_addr(addr->sa_data))
1688 		return -EADDRNOTAVAIL;
1689 
1690 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1691 
1692 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1693 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1694 		fep->hwp + FEC_ADDR_LOW);
1695 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1696 		fep->hwp + FEC_ADDR_HIGH);
1697 	return 0;
1698 }
1699 
1700 #ifdef CONFIG_NET_POLL_CONTROLLER
1701 /**
1702  * fec_poll_controller - FEC Poll controller function
1703  * @dev: The FEC network adapter
1704  *
1705  * Polled functionality used by netconsole and others in non interrupt mode
1706  *
1707  */
1708 static void fec_poll_controller(struct net_device *dev)
1709 {
1710 	int i;
1711 	struct fec_enet_private *fep = netdev_priv(dev);
1712 
1713 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1714 		if (fep->irq[i] > 0) {
1715 			disable_irq(fep->irq[i]);
1716 			fec_enet_interrupt(fep->irq[i], dev);
1717 			enable_irq(fep->irq[i]);
1718 		}
1719 	}
1720 }
1721 #endif
1722 
1723 static int fec_set_features(struct net_device *netdev,
1724 	netdev_features_t features)
1725 {
1726 	struct fec_enet_private *fep = netdev_priv(netdev);
1727 	netdev_features_t changed = features ^ netdev->features;
1728 
1729 	netdev->features = features;
1730 
1731 	/* Receive checksum has been changed */
1732 	if (changed & NETIF_F_RXCSUM) {
1733 		if (features & NETIF_F_RXCSUM)
1734 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1735 		else
1736 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1737 
1738 		if (netif_running(netdev)) {
1739 			fec_stop(netdev);
1740 			fec_restart(netdev, fep->phy_dev->duplex);
1741 			netif_wake_queue(netdev);
1742 		} else {
1743 			fec_restart(netdev, fep->phy_dev->duplex);
1744 		}
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 static const struct net_device_ops fec_netdev_ops = {
1751 	.ndo_open		= fec_enet_open,
1752 	.ndo_stop		= fec_enet_close,
1753 	.ndo_start_xmit		= fec_enet_start_xmit,
1754 	.ndo_set_rx_mode	= set_multicast_list,
1755 	.ndo_change_mtu		= eth_change_mtu,
1756 	.ndo_validate_addr	= eth_validate_addr,
1757 	.ndo_tx_timeout		= fec_timeout,
1758 	.ndo_set_mac_address	= fec_set_mac_address,
1759 	.ndo_do_ioctl		= fec_enet_ioctl,
1760 #ifdef CONFIG_NET_POLL_CONTROLLER
1761 	.ndo_poll_controller	= fec_poll_controller,
1762 #endif
1763 	.ndo_set_features	= fec_set_features,
1764 };
1765 
1766  /*
1767   * XXX:  We need to clean up on failure exits here.
1768   *
1769   */
1770 static int fec_enet_init(struct net_device *ndev)
1771 {
1772 	struct fec_enet_private *fep = netdev_priv(ndev);
1773 	const struct platform_device_id *id_entry =
1774 				platform_get_device_id(fep->pdev);
1775 	struct bufdesc *cbd_base;
1776 
1777 	/* Allocate memory for buffer descriptors. */
1778 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1779 				      GFP_KERNEL);
1780 	if (!cbd_base)
1781 		return -ENOMEM;
1782 
1783 	memset(cbd_base, 0, PAGE_SIZE);
1784 
1785 	fep->netdev = ndev;
1786 
1787 	/* Get the Ethernet address */
1788 	fec_get_mac(ndev);
1789 
1790 	/* Set receive and transmit descriptor base. */
1791 	fep->rx_bd_base = cbd_base;
1792 	if (fep->bufdesc_ex)
1793 		fep->tx_bd_base = (struct bufdesc *)
1794 			(((struct bufdesc_ex *)cbd_base) + RX_RING_SIZE);
1795 	else
1796 		fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1797 
1798 	/* The FEC Ethernet specific entries in the device structure */
1799 	ndev->watchdog_timeo = TX_TIMEOUT;
1800 	ndev->netdev_ops = &fec_netdev_ops;
1801 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
1802 
1803 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
1804 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, FEC_NAPI_WEIGHT);
1805 
1806 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
1807 		/* enable hw accelerator */
1808 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1809 				| NETIF_F_RXCSUM);
1810 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1811 				| NETIF_F_RXCSUM);
1812 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1813 	}
1814 
1815 	fec_restart(ndev, 0);
1816 
1817 	return 0;
1818 }
1819 
1820 #ifdef CONFIG_OF
1821 static void fec_reset_phy(struct platform_device *pdev)
1822 {
1823 	int err, phy_reset;
1824 	int msec = 1;
1825 	struct device_node *np = pdev->dev.of_node;
1826 
1827 	if (!np)
1828 		return;
1829 
1830 	of_property_read_u32(np, "phy-reset-duration", &msec);
1831 	/* A sane reset duration should not be longer than 1s */
1832 	if (msec > 1000)
1833 		msec = 1;
1834 
1835 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1836 	if (!gpio_is_valid(phy_reset))
1837 		return;
1838 
1839 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
1840 				    GPIOF_OUT_INIT_LOW, "phy-reset");
1841 	if (err) {
1842 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
1843 		return;
1844 	}
1845 	msleep(msec);
1846 	gpio_set_value(phy_reset, 1);
1847 }
1848 #else /* CONFIG_OF */
1849 static void fec_reset_phy(struct platform_device *pdev)
1850 {
1851 	/*
1852 	 * In case of platform probe, the reset has been done
1853 	 * by machine code.
1854 	 */
1855 }
1856 #endif /* CONFIG_OF */
1857 
1858 static int
1859 fec_probe(struct platform_device *pdev)
1860 {
1861 	struct fec_enet_private *fep;
1862 	struct fec_platform_data *pdata;
1863 	struct net_device *ndev;
1864 	int i, irq, ret = 0;
1865 	struct resource *r;
1866 	const struct of_device_id *of_id;
1867 	static int dev_id;
1868 	struct pinctrl *pinctrl;
1869 	struct regulator *reg_phy;
1870 
1871 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
1872 	if (of_id)
1873 		pdev->id_entry = of_id->data;
1874 
1875 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1876 	if (!r)
1877 		return -ENXIO;
1878 
1879 	/* Init network device */
1880 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1881 	if (!ndev)
1882 		return -ENOMEM;
1883 
1884 	SET_NETDEV_DEV(ndev, &pdev->dev);
1885 
1886 	/* setup board info structure */
1887 	fep = netdev_priv(ndev);
1888 
1889 #if !defined(CONFIG_M5272)
1890 	/* default enable pause frame auto negotiation */
1891 	if (pdev->id_entry &&
1892 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
1893 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
1894 #endif
1895 
1896 	fep->hwp = devm_request_and_ioremap(&pdev->dev, r);
1897 	fep->pdev = pdev;
1898 	fep->dev_id = dev_id++;
1899 
1900 	fep->bufdesc_ex = 0;
1901 
1902 	if (!fep->hwp) {
1903 		ret = -ENOMEM;
1904 		goto failed_ioremap;
1905 	}
1906 
1907 	platform_set_drvdata(pdev, ndev);
1908 
1909 	ret = of_get_phy_mode(pdev->dev.of_node);
1910 	if (ret < 0) {
1911 		pdata = pdev->dev.platform_data;
1912 		if (pdata)
1913 			fep->phy_interface = pdata->phy;
1914 		else
1915 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
1916 	} else {
1917 		fep->phy_interface = ret;
1918 	}
1919 
1920 	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1921 	if (IS_ERR(pinctrl)) {
1922 		ret = PTR_ERR(pinctrl);
1923 		goto failed_pin;
1924 	}
1925 
1926 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1927 	if (IS_ERR(fep->clk_ipg)) {
1928 		ret = PTR_ERR(fep->clk_ipg);
1929 		goto failed_clk;
1930 	}
1931 
1932 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1933 	if (IS_ERR(fep->clk_ahb)) {
1934 		ret = PTR_ERR(fep->clk_ahb);
1935 		goto failed_clk;
1936 	}
1937 
1938 	/* enet_out is optional, depends on board */
1939 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
1940 	if (IS_ERR(fep->clk_enet_out))
1941 		fep->clk_enet_out = NULL;
1942 
1943 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
1944 	fep->bufdesc_ex =
1945 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
1946 	if (IS_ERR(fep->clk_ptp)) {
1947 		fep->clk_ptp = NULL;
1948 		fep->bufdesc_ex = 0;
1949 	}
1950 
1951 	clk_prepare_enable(fep->clk_ahb);
1952 	clk_prepare_enable(fep->clk_ipg);
1953 	clk_prepare_enable(fep->clk_enet_out);
1954 	clk_prepare_enable(fep->clk_ptp);
1955 
1956 	reg_phy = devm_regulator_get(&pdev->dev, "phy");
1957 	if (!IS_ERR(reg_phy)) {
1958 		ret = regulator_enable(reg_phy);
1959 		if (ret) {
1960 			dev_err(&pdev->dev,
1961 				"Failed to enable phy regulator: %d\n", ret);
1962 			goto failed_regulator;
1963 		}
1964 	}
1965 
1966 	fec_reset_phy(pdev);
1967 
1968 	if (fep->bufdesc_ex)
1969 		fec_ptp_init(ndev, pdev);
1970 
1971 	ret = fec_enet_init(ndev);
1972 	if (ret)
1973 		goto failed_init;
1974 
1975 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1976 		irq = platform_get_irq(pdev, i);
1977 		if (irq < 0) {
1978 			if (i)
1979 				break;
1980 			ret = irq;
1981 			goto failed_irq;
1982 		}
1983 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1984 		if (ret) {
1985 			while (--i >= 0) {
1986 				irq = platform_get_irq(pdev, i);
1987 				free_irq(irq, ndev);
1988 			}
1989 			goto failed_irq;
1990 		}
1991 	}
1992 
1993 	ret = fec_enet_mii_init(pdev);
1994 	if (ret)
1995 		goto failed_mii_init;
1996 
1997 	/* Carrier starts down, phylib will bring it up */
1998 	netif_carrier_off(ndev);
1999 
2000 	ret = register_netdev(ndev);
2001 	if (ret)
2002 		goto failed_register;
2003 
2004 	if (fep->bufdesc_ex && fep->ptp_clock)
2005 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2006 
2007 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2008 	return 0;
2009 
2010 failed_register:
2011 	fec_enet_mii_remove(fep);
2012 failed_mii_init:
2013 failed_init:
2014 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2015 		irq = platform_get_irq(pdev, i);
2016 		if (irq > 0)
2017 			free_irq(irq, ndev);
2018 	}
2019 failed_irq:
2020 failed_regulator:
2021 	clk_disable_unprepare(fep->clk_ahb);
2022 	clk_disable_unprepare(fep->clk_ipg);
2023 	clk_disable_unprepare(fep->clk_enet_out);
2024 	clk_disable_unprepare(fep->clk_ptp);
2025 failed_pin:
2026 failed_clk:
2027 failed_ioremap:
2028 	free_netdev(ndev);
2029 
2030 	return ret;
2031 }
2032 
2033 static int
2034 fec_drv_remove(struct platform_device *pdev)
2035 {
2036 	struct net_device *ndev = platform_get_drvdata(pdev);
2037 	struct fec_enet_private *fep = netdev_priv(ndev);
2038 	int i;
2039 
2040 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2041 	unregister_netdev(ndev);
2042 	fec_enet_mii_remove(fep);
2043 	del_timer_sync(&fep->time_keep);
2044 	clk_disable_unprepare(fep->clk_ptp);
2045 	if (fep->ptp_clock)
2046 		ptp_clock_unregister(fep->ptp_clock);
2047 	clk_disable_unprepare(fep->clk_enet_out);
2048 	clk_disable_unprepare(fep->clk_ahb);
2049 	clk_disable_unprepare(fep->clk_ipg);
2050 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2051 		int irq = platform_get_irq(pdev, i);
2052 		if (irq > 0)
2053 			free_irq(irq, ndev);
2054 	}
2055 	free_netdev(ndev);
2056 
2057 	platform_set_drvdata(pdev, NULL);
2058 
2059 	return 0;
2060 }
2061 
2062 #ifdef CONFIG_PM_SLEEP
2063 static int
2064 fec_suspend(struct device *dev)
2065 {
2066 	struct net_device *ndev = dev_get_drvdata(dev);
2067 	struct fec_enet_private *fep = netdev_priv(ndev);
2068 
2069 	if (netif_running(ndev)) {
2070 		fec_stop(ndev);
2071 		netif_device_detach(ndev);
2072 	}
2073 	clk_disable_unprepare(fep->clk_enet_out);
2074 	clk_disable_unprepare(fep->clk_ahb);
2075 	clk_disable_unprepare(fep->clk_ipg);
2076 
2077 	return 0;
2078 }
2079 
2080 static int
2081 fec_resume(struct device *dev)
2082 {
2083 	struct net_device *ndev = dev_get_drvdata(dev);
2084 	struct fec_enet_private *fep = netdev_priv(ndev);
2085 
2086 	clk_prepare_enable(fep->clk_enet_out);
2087 	clk_prepare_enable(fep->clk_ahb);
2088 	clk_prepare_enable(fep->clk_ipg);
2089 	if (netif_running(ndev)) {
2090 		fec_restart(ndev, fep->full_duplex);
2091 		netif_device_attach(ndev);
2092 	}
2093 
2094 	return 0;
2095 }
2096 #endif /* CONFIG_PM_SLEEP */
2097 
2098 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2099 
2100 static struct platform_driver fec_driver = {
2101 	.driver	= {
2102 		.name	= DRIVER_NAME,
2103 		.owner	= THIS_MODULE,
2104 		.pm	= &fec_pm_ops,
2105 		.of_match_table = fec_dt_ids,
2106 	},
2107 	.id_table = fec_devtype,
2108 	.probe	= fec_probe,
2109 	.remove	= fec_drv_remove,
2110 };
2111 
2112 module_platform_driver(fec_driver);
2113 
2114 MODULE_LICENSE("GPL");
2115