1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = 0,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE |
121 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
122 	}, {
123 		/* sentinel */
124 	}
125 };
126 MODULE_DEVICE_TABLE(platform, fec_devtype);
127 
128 enum imx_fec_type {
129 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
130 	IMX27_FEC,	/* runs on i.mx27/35/51 */
131 	IMX28_FEC,
132 	IMX6Q_FEC,
133 	MVF600_FEC,
134 	IMX6SX_FEC,
135 	IMX6UL_FEC,
136 };
137 
138 static const struct of_device_id fec_dt_ids[] = {
139 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
140 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
141 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
142 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
143 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
144 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
145 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
146 	{ /* sentinel */ }
147 };
148 MODULE_DEVICE_TABLE(of, fec_dt_ids);
149 
150 static unsigned char macaddr[ETH_ALEN];
151 module_param_array(macaddr, byte, NULL, 0);
152 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
153 
154 #if defined(CONFIG_M5272)
155 /*
156  * Some hardware gets it MAC address out of local flash memory.
157  * if this is non-zero then assume it is the address to get MAC from.
158  */
159 #if defined(CONFIG_NETtel)
160 #define	FEC_FLASHMAC	0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define	FEC_FLASHMAC	0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define	FEC_FLASHMAC	0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define	FEC_FLASHMAC	(0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC	0xffc0406b
169 #else
170 #define	FEC_FLASHMAC	0
171 #endif
172 #endif /* CONFIG_M5272 */
173 
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
175  */
176 #define PKT_MAXBUF_SIZE		1522
177 #define PKT_MINBUF_SIZE		64
178 #define PKT_MAXBLR_SIZE		1536
179 
180 /* FEC receive acceleration */
181 #define FEC_RACC_IPDIS		(1 << 1)
182 #define FEC_RACC_PRODIS		(1 << 2)
183 #define FEC_RACC_SHIFT16	BIT(7)
184 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
185 
186 /*
187  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
188  * size bits. Other FEC hardware does not, so we need to take that into
189  * account when setting it.
190  */
191 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
192     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
193 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
194 #else
195 #define	OPT_FRAME_SIZE	0
196 #endif
197 
198 /* FEC MII MMFR bits definition */
199 #define FEC_MMFR_ST		(1 << 30)
200 #define FEC_MMFR_OP_READ	(2 << 28)
201 #define FEC_MMFR_OP_WRITE	(1 << 28)
202 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
203 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
204 #define FEC_MMFR_TA		(2 << 16)
205 #define FEC_MMFR_DATA(v)	(v & 0xffff)
206 /* FEC ECR bits definition */
207 #define FEC_ECR_MAGICEN		(1 << 2)
208 #define FEC_ECR_SLEEP		(1 << 3)
209 
210 #define FEC_MII_TIMEOUT		30000 /* us */
211 
212 /* Transmitter timeout */
213 #define TX_TIMEOUT (2 * HZ)
214 
215 #define FEC_PAUSE_FLAG_AUTONEG	0x1
216 #define FEC_PAUSE_FLAG_ENABLE	0x2
217 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
218 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
219 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
220 
221 #define COPYBREAK_DEFAULT	256
222 
223 #define TSO_HEADER_SIZE		128
224 /* Max number of allowed TCP segments for software TSO */
225 #define FEC_MAX_TSO_SEGS	100
226 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
227 
228 #define IS_TSO_HEADER(txq, addr) \
229 	((addr >= txq->tso_hdrs_dma) && \
230 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
231 
232 static int mii_cnt;
233 
234 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
235 					     struct bufdesc_prop *bd)
236 {
237 	return (bdp >= bd->last) ? bd->base
238 			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
239 }
240 
241 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
242 					     struct bufdesc_prop *bd)
243 {
244 	return (bdp <= bd->base) ? bd->last
245 			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
246 }
247 
248 static int fec_enet_get_bd_index(struct bufdesc *bdp,
249 				 struct bufdesc_prop *bd)
250 {
251 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
252 }
253 
254 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
255 {
256 	int entries;
257 
258 	entries = (((const char *)txq->dirty_tx -
259 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
260 
261 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
262 }
263 
264 static void swap_buffer(void *bufaddr, int len)
265 {
266 	int i;
267 	unsigned int *buf = bufaddr;
268 
269 	for (i = 0; i < len; i += 4, buf++)
270 		swab32s(buf);
271 }
272 
273 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
274 {
275 	int i;
276 	unsigned int *src = src_buf;
277 	unsigned int *dst = dst_buf;
278 
279 	for (i = 0; i < len; i += 4, src++, dst++)
280 		*dst = swab32p(src);
281 }
282 
283 static void fec_dump(struct net_device *ndev)
284 {
285 	struct fec_enet_private *fep = netdev_priv(ndev);
286 	struct bufdesc *bdp;
287 	struct fec_enet_priv_tx_q *txq;
288 	int index = 0;
289 
290 	netdev_info(ndev, "TX ring dump\n");
291 	pr_info("Nr     SC     addr       len  SKB\n");
292 
293 	txq = fep->tx_queue[0];
294 	bdp = txq->bd.base;
295 
296 	do {
297 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
298 			index,
299 			bdp == txq->bd.cur ? 'S' : ' ',
300 			bdp == txq->dirty_tx ? 'H' : ' ',
301 			fec16_to_cpu(bdp->cbd_sc),
302 			fec32_to_cpu(bdp->cbd_bufaddr),
303 			fec16_to_cpu(bdp->cbd_datlen),
304 			txq->tx_skbuff[index]);
305 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
306 		index++;
307 	} while (bdp != txq->bd.base);
308 }
309 
310 static inline bool is_ipv4_pkt(struct sk_buff *skb)
311 {
312 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
313 }
314 
315 static int
316 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
317 {
318 	/* Only run for packets requiring a checksum. */
319 	if (skb->ip_summed != CHECKSUM_PARTIAL)
320 		return 0;
321 
322 	if (unlikely(skb_cow_head(skb, 0)))
323 		return -1;
324 
325 	if (is_ipv4_pkt(skb))
326 		ip_hdr(skb)->check = 0;
327 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
328 
329 	return 0;
330 }
331 
332 static struct bufdesc *
333 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
334 			     struct sk_buff *skb,
335 			     struct net_device *ndev)
336 {
337 	struct fec_enet_private *fep = netdev_priv(ndev);
338 	struct bufdesc *bdp = txq->bd.cur;
339 	struct bufdesc_ex *ebdp;
340 	int nr_frags = skb_shinfo(skb)->nr_frags;
341 	int frag, frag_len;
342 	unsigned short status;
343 	unsigned int estatus = 0;
344 	skb_frag_t *this_frag;
345 	unsigned int index;
346 	void *bufaddr;
347 	dma_addr_t addr;
348 	int i;
349 
350 	for (frag = 0; frag < nr_frags; frag++) {
351 		this_frag = &skb_shinfo(skb)->frags[frag];
352 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
353 		ebdp = (struct bufdesc_ex *)bdp;
354 
355 		status = fec16_to_cpu(bdp->cbd_sc);
356 		status &= ~BD_ENET_TX_STATS;
357 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
358 		frag_len = skb_shinfo(skb)->frags[frag].size;
359 
360 		/* Handle the last BD specially */
361 		if (frag == nr_frags - 1) {
362 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
363 			if (fep->bufdesc_ex) {
364 				estatus |= BD_ENET_TX_INT;
365 				if (unlikely(skb_shinfo(skb)->tx_flags &
366 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
367 					estatus |= BD_ENET_TX_TS;
368 			}
369 		}
370 
371 		if (fep->bufdesc_ex) {
372 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
373 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
374 			if (skb->ip_summed == CHECKSUM_PARTIAL)
375 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
376 			ebdp->cbd_bdu = 0;
377 			ebdp->cbd_esc = cpu_to_fec32(estatus);
378 		}
379 
380 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
381 
382 		index = fec_enet_get_bd_index(bdp, &txq->bd);
383 		if (((unsigned long) bufaddr) & fep->tx_align ||
384 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
385 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
386 			bufaddr = txq->tx_bounce[index];
387 
388 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
389 				swap_buffer(bufaddr, frag_len);
390 		}
391 
392 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
393 				      DMA_TO_DEVICE);
394 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
395 			if (net_ratelimit())
396 				netdev_err(ndev, "Tx DMA memory map failed\n");
397 			goto dma_mapping_error;
398 		}
399 
400 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
401 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
402 		/* Make sure the updates to rest of the descriptor are
403 		 * performed before transferring ownership.
404 		 */
405 		wmb();
406 		bdp->cbd_sc = cpu_to_fec16(status);
407 	}
408 
409 	return bdp;
410 dma_mapping_error:
411 	bdp = txq->bd.cur;
412 	for (i = 0; i < frag; i++) {
413 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
414 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
415 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
416 	}
417 	return ERR_PTR(-ENOMEM);
418 }
419 
420 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
421 				   struct sk_buff *skb, struct net_device *ndev)
422 {
423 	struct fec_enet_private *fep = netdev_priv(ndev);
424 	int nr_frags = skb_shinfo(skb)->nr_frags;
425 	struct bufdesc *bdp, *last_bdp;
426 	void *bufaddr;
427 	dma_addr_t addr;
428 	unsigned short status;
429 	unsigned short buflen;
430 	unsigned int estatus = 0;
431 	unsigned int index;
432 	int entries_free;
433 
434 	entries_free = fec_enet_get_free_txdesc_num(txq);
435 	if (entries_free < MAX_SKB_FRAGS + 1) {
436 		dev_kfree_skb_any(skb);
437 		if (net_ratelimit())
438 			netdev_err(ndev, "NOT enough BD for SG!\n");
439 		return NETDEV_TX_OK;
440 	}
441 
442 	/* Protocol checksum off-load for TCP and UDP. */
443 	if (fec_enet_clear_csum(skb, ndev)) {
444 		dev_kfree_skb_any(skb);
445 		return NETDEV_TX_OK;
446 	}
447 
448 	/* Fill in a Tx ring entry */
449 	bdp = txq->bd.cur;
450 	last_bdp = bdp;
451 	status = fec16_to_cpu(bdp->cbd_sc);
452 	status &= ~BD_ENET_TX_STATS;
453 
454 	/* Set buffer length and buffer pointer */
455 	bufaddr = skb->data;
456 	buflen = skb_headlen(skb);
457 
458 	index = fec_enet_get_bd_index(bdp, &txq->bd);
459 	if (((unsigned long) bufaddr) & fep->tx_align ||
460 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
461 		memcpy(txq->tx_bounce[index], skb->data, buflen);
462 		bufaddr = txq->tx_bounce[index];
463 
464 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
465 			swap_buffer(bufaddr, buflen);
466 	}
467 
468 	/* Push the data cache so the CPM does not get stale memory data. */
469 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
470 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
471 		dev_kfree_skb_any(skb);
472 		if (net_ratelimit())
473 			netdev_err(ndev, "Tx DMA memory map failed\n");
474 		return NETDEV_TX_OK;
475 	}
476 
477 	if (nr_frags) {
478 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
479 		if (IS_ERR(last_bdp)) {
480 			dma_unmap_single(&fep->pdev->dev, addr,
481 					 buflen, DMA_TO_DEVICE);
482 			dev_kfree_skb_any(skb);
483 			return NETDEV_TX_OK;
484 		}
485 	} else {
486 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
487 		if (fep->bufdesc_ex) {
488 			estatus = BD_ENET_TX_INT;
489 			if (unlikely(skb_shinfo(skb)->tx_flags &
490 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
491 				estatus |= BD_ENET_TX_TS;
492 		}
493 	}
494 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
495 	bdp->cbd_datlen = cpu_to_fec16(buflen);
496 
497 	if (fep->bufdesc_ex) {
498 
499 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
500 
501 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
502 			fep->hwts_tx_en))
503 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
504 
505 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
506 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
507 
508 		if (skb->ip_summed == CHECKSUM_PARTIAL)
509 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
510 
511 		ebdp->cbd_bdu = 0;
512 		ebdp->cbd_esc = cpu_to_fec32(estatus);
513 	}
514 
515 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
516 	/* Save skb pointer */
517 	txq->tx_skbuff[index] = skb;
518 
519 	/* Make sure the updates to rest of the descriptor are performed before
520 	 * transferring ownership.
521 	 */
522 	wmb();
523 
524 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
525 	 * it's the last BD of the frame, and to put the CRC on the end.
526 	 */
527 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
528 	bdp->cbd_sc = cpu_to_fec16(status);
529 
530 	/* If this was the last BD in the ring, start at the beginning again. */
531 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
532 
533 	skb_tx_timestamp(skb);
534 
535 	/* Make sure the update to bdp and tx_skbuff are performed before
536 	 * txq->bd.cur.
537 	 */
538 	wmb();
539 	txq->bd.cur = bdp;
540 
541 	/* Trigger transmission start */
542 	writel(0, txq->bd.reg_desc_active);
543 
544 	return 0;
545 }
546 
547 static int
548 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
549 			  struct net_device *ndev,
550 			  struct bufdesc *bdp, int index, char *data,
551 			  int size, bool last_tcp, bool is_last)
552 {
553 	struct fec_enet_private *fep = netdev_priv(ndev);
554 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
555 	unsigned short status;
556 	unsigned int estatus = 0;
557 	dma_addr_t addr;
558 
559 	status = fec16_to_cpu(bdp->cbd_sc);
560 	status &= ~BD_ENET_TX_STATS;
561 
562 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
563 
564 	if (((unsigned long) data) & fep->tx_align ||
565 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
566 		memcpy(txq->tx_bounce[index], data, size);
567 		data = txq->tx_bounce[index];
568 
569 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
570 			swap_buffer(data, size);
571 	}
572 
573 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
574 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
575 		dev_kfree_skb_any(skb);
576 		if (net_ratelimit())
577 			netdev_err(ndev, "Tx DMA memory map failed\n");
578 		return NETDEV_TX_BUSY;
579 	}
580 
581 	bdp->cbd_datlen = cpu_to_fec16(size);
582 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
583 
584 	if (fep->bufdesc_ex) {
585 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
586 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
587 		if (skb->ip_summed == CHECKSUM_PARTIAL)
588 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
589 		ebdp->cbd_bdu = 0;
590 		ebdp->cbd_esc = cpu_to_fec32(estatus);
591 	}
592 
593 	/* Handle the last BD specially */
594 	if (last_tcp)
595 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
596 	if (is_last) {
597 		status |= BD_ENET_TX_INTR;
598 		if (fep->bufdesc_ex)
599 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
600 	}
601 
602 	bdp->cbd_sc = cpu_to_fec16(status);
603 
604 	return 0;
605 }
606 
607 static int
608 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
609 			 struct sk_buff *skb, struct net_device *ndev,
610 			 struct bufdesc *bdp, int index)
611 {
612 	struct fec_enet_private *fep = netdev_priv(ndev);
613 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
614 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
615 	void *bufaddr;
616 	unsigned long dmabuf;
617 	unsigned short status;
618 	unsigned int estatus = 0;
619 
620 	status = fec16_to_cpu(bdp->cbd_sc);
621 	status &= ~BD_ENET_TX_STATS;
622 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
623 
624 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
625 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
626 	if (((unsigned long)bufaddr) & fep->tx_align ||
627 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
628 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
629 		bufaddr = txq->tx_bounce[index];
630 
631 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
632 			swap_buffer(bufaddr, hdr_len);
633 
634 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
635 					hdr_len, DMA_TO_DEVICE);
636 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
637 			dev_kfree_skb_any(skb);
638 			if (net_ratelimit())
639 				netdev_err(ndev, "Tx DMA memory map failed\n");
640 			return NETDEV_TX_BUSY;
641 		}
642 	}
643 
644 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
645 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
646 
647 	if (fep->bufdesc_ex) {
648 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
649 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
650 		if (skb->ip_summed == CHECKSUM_PARTIAL)
651 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
652 		ebdp->cbd_bdu = 0;
653 		ebdp->cbd_esc = cpu_to_fec32(estatus);
654 	}
655 
656 	bdp->cbd_sc = cpu_to_fec16(status);
657 
658 	return 0;
659 }
660 
661 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
662 				   struct sk_buff *skb,
663 				   struct net_device *ndev)
664 {
665 	struct fec_enet_private *fep = netdev_priv(ndev);
666 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
667 	int total_len, data_left;
668 	struct bufdesc *bdp = txq->bd.cur;
669 	struct tso_t tso;
670 	unsigned int index = 0;
671 	int ret;
672 
673 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
674 		dev_kfree_skb_any(skb);
675 		if (net_ratelimit())
676 			netdev_err(ndev, "NOT enough BD for TSO!\n");
677 		return NETDEV_TX_OK;
678 	}
679 
680 	/* Protocol checksum off-load for TCP and UDP. */
681 	if (fec_enet_clear_csum(skb, ndev)) {
682 		dev_kfree_skb_any(skb);
683 		return NETDEV_TX_OK;
684 	}
685 
686 	/* Initialize the TSO handler, and prepare the first payload */
687 	tso_start(skb, &tso);
688 
689 	total_len = skb->len - hdr_len;
690 	while (total_len > 0) {
691 		char *hdr;
692 
693 		index = fec_enet_get_bd_index(bdp, &txq->bd);
694 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
695 		total_len -= data_left;
696 
697 		/* prepare packet headers: MAC + IP + TCP */
698 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
699 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
700 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
701 		if (ret)
702 			goto err_release;
703 
704 		while (data_left > 0) {
705 			int size;
706 
707 			size = min_t(int, tso.size, data_left);
708 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
709 			index = fec_enet_get_bd_index(bdp, &txq->bd);
710 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
711 							bdp, index,
712 							tso.data, size,
713 							size == data_left,
714 							total_len == 0);
715 			if (ret)
716 				goto err_release;
717 
718 			data_left -= size;
719 			tso_build_data(skb, &tso, size);
720 		}
721 
722 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
723 	}
724 
725 	/* Save skb pointer */
726 	txq->tx_skbuff[index] = skb;
727 
728 	skb_tx_timestamp(skb);
729 	txq->bd.cur = bdp;
730 
731 	/* Trigger transmission start */
732 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
733 	    !readl(txq->bd.reg_desc_active) ||
734 	    !readl(txq->bd.reg_desc_active) ||
735 	    !readl(txq->bd.reg_desc_active) ||
736 	    !readl(txq->bd.reg_desc_active))
737 		writel(0, txq->bd.reg_desc_active);
738 
739 	return 0;
740 
741 err_release:
742 	/* TODO: Release all used data descriptors for TSO */
743 	return ret;
744 }
745 
746 static netdev_tx_t
747 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
748 {
749 	struct fec_enet_private *fep = netdev_priv(ndev);
750 	int entries_free;
751 	unsigned short queue;
752 	struct fec_enet_priv_tx_q *txq;
753 	struct netdev_queue *nq;
754 	int ret;
755 
756 	queue = skb_get_queue_mapping(skb);
757 	txq = fep->tx_queue[queue];
758 	nq = netdev_get_tx_queue(ndev, queue);
759 
760 	if (skb_is_gso(skb))
761 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
762 	else
763 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
764 	if (ret)
765 		return ret;
766 
767 	entries_free = fec_enet_get_free_txdesc_num(txq);
768 	if (entries_free <= txq->tx_stop_threshold)
769 		netif_tx_stop_queue(nq);
770 
771 	return NETDEV_TX_OK;
772 }
773 
774 /* Init RX & TX buffer descriptors
775  */
776 static void fec_enet_bd_init(struct net_device *dev)
777 {
778 	struct fec_enet_private *fep = netdev_priv(dev);
779 	struct fec_enet_priv_tx_q *txq;
780 	struct fec_enet_priv_rx_q *rxq;
781 	struct bufdesc *bdp;
782 	unsigned int i;
783 	unsigned int q;
784 
785 	for (q = 0; q < fep->num_rx_queues; q++) {
786 		/* Initialize the receive buffer descriptors. */
787 		rxq = fep->rx_queue[q];
788 		bdp = rxq->bd.base;
789 
790 		for (i = 0; i < rxq->bd.ring_size; i++) {
791 
792 			/* Initialize the BD for every fragment in the page. */
793 			if (bdp->cbd_bufaddr)
794 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
795 			else
796 				bdp->cbd_sc = cpu_to_fec16(0);
797 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
798 		}
799 
800 		/* Set the last buffer to wrap */
801 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
802 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
803 
804 		rxq->bd.cur = rxq->bd.base;
805 	}
806 
807 	for (q = 0; q < fep->num_tx_queues; q++) {
808 		/* ...and the same for transmit */
809 		txq = fep->tx_queue[q];
810 		bdp = txq->bd.base;
811 		txq->bd.cur = bdp;
812 
813 		for (i = 0; i < txq->bd.ring_size; i++) {
814 			/* Initialize the BD for every fragment in the page. */
815 			bdp->cbd_sc = cpu_to_fec16(0);
816 			if (txq->tx_skbuff[i]) {
817 				dev_kfree_skb_any(txq->tx_skbuff[i]);
818 				txq->tx_skbuff[i] = NULL;
819 			}
820 			bdp->cbd_bufaddr = cpu_to_fec32(0);
821 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
822 		}
823 
824 		/* Set the last buffer to wrap */
825 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
826 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
827 		txq->dirty_tx = bdp;
828 	}
829 }
830 
831 static void fec_enet_active_rxring(struct net_device *ndev)
832 {
833 	struct fec_enet_private *fep = netdev_priv(ndev);
834 	int i;
835 
836 	for (i = 0; i < fep->num_rx_queues; i++)
837 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
838 }
839 
840 static void fec_enet_enable_ring(struct net_device *ndev)
841 {
842 	struct fec_enet_private *fep = netdev_priv(ndev);
843 	struct fec_enet_priv_tx_q *txq;
844 	struct fec_enet_priv_rx_q *rxq;
845 	int i;
846 
847 	for (i = 0; i < fep->num_rx_queues; i++) {
848 		rxq = fep->rx_queue[i];
849 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
850 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
851 
852 		/* enable DMA1/2 */
853 		if (i)
854 			writel(RCMR_MATCHEN | RCMR_CMP(i),
855 			       fep->hwp + FEC_RCMR(i));
856 	}
857 
858 	for (i = 0; i < fep->num_tx_queues; i++) {
859 		txq = fep->tx_queue[i];
860 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
861 
862 		/* enable DMA1/2 */
863 		if (i)
864 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
865 			       fep->hwp + FEC_DMA_CFG(i));
866 	}
867 }
868 
869 static void fec_enet_reset_skb(struct net_device *ndev)
870 {
871 	struct fec_enet_private *fep = netdev_priv(ndev);
872 	struct fec_enet_priv_tx_q *txq;
873 	int i, j;
874 
875 	for (i = 0; i < fep->num_tx_queues; i++) {
876 		txq = fep->tx_queue[i];
877 
878 		for (j = 0; j < txq->bd.ring_size; j++) {
879 			if (txq->tx_skbuff[j]) {
880 				dev_kfree_skb_any(txq->tx_skbuff[j]);
881 				txq->tx_skbuff[j] = NULL;
882 			}
883 		}
884 	}
885 }
886 
887 /*
888  * This function is called to start or restart the FEC during a link
889  * change, transmit timeout, or to reconfigure the FEC.  The network
890  * packet processing for this device must be stopped before this call.
891  */
892 static void
893 fec_restart(struct net_device *ndev)
894 {
895 	struct fec_enet_private *fep = netdev_priv(ndev);
896 	u32 val;
897 	u32 temp_mac[2];
898 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
899 	u32 ecntl = 0x2; /* ETHEREN */
900 
901 	/* Whack a reset.  We should wait for this.
902 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
903 	 * instead of reset MAC itself.
904 	 */
905 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
906 		writel(0, fep->hwp + FEC_ECNTRL);
907 	} else {
908 		writel(1, fep->hwp + FEC_ECNTRL);
909 		udelay(10);
910 	}
911 
912 	/*
913 	 * enet-mac reset will reset mac address registers too,
914 	 * so need to reconfigure it.
915 	 */
916 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
917 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
918 		writel((__force u32)cpu_to_be32(temp_mac[0]),
919 		       fep->hwp + FEC_ADDR_LOW);
920 		writel((__force u32)cpu_to_be32(temp_mac[1]),
921 		       fep->hwp + FEC_ADDR_HIGH);
922 	}
923 
924 	/* Clear any outstanding interrupt. */
925 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
926 
927 	fec_enet_bd_init(ndev);
928 
929 	fec_enet_enable_ring(ndev);
930 
931 	/* Reset tx SKB buffers. */
932 	fec_enet_reset_skb(ndev);
933 
934 	/* Enable MII mode */
935 	if (fep->full_duplex == DUPLEX_FULL) {
936 		/* FD enable */
937 		writel(0x04, fep->hwp + FEC_X_CNTRL);
938 	} else {
939 		/* No Rcv on Xmit */
940 		rcntl |= 0x02;
941 		writel(0x0, fep->hwp + FEC_X_CNTRL);
942 	}
943 
944 	/* Set MII speed */
945 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
946 
947 #if !defined(CONFIG_M5272)
948 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
949 		val = readl(fep->hwp + FEC_RACC);
950 		/* align IP header */
951 		val |= FEC_RACC_SHIFT16;
952 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
953 			/* set RX checksum */
954 			val |= FEC_RACC_OPTIONS;
955 		else
956 			val &= ~FEC_RACC_OPTIONS;
957 		writel(val, fep->hwp + FEC_RACC);
958 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
959 	}
960 #endif
961 
962 	/*
963 	 * The phy interface and speed need to get configured
964 	 * differently on enet-mac.
965 	 */
966 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
967 		/* Enable flow control and length check */
968 		rcntl |= 0x40000000 | 0x00000020;
969 
970 		/* RGMII, RMII or MII */
971 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
972 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
973 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
974 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
975 			rcntl |= (1 << 6);
976 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
977 			rcntl |= (1 << 8);
978 		else
979 			rcntl &= ~(1 << 8);
980 
981 		/* 1G, 100M or 10M */
982 		if (ndev->phydev) {
983 			if (ndev->phydev->speed == SPEED_1000)
984 				ecntl |= (1 << 5);
985 			else if (ndev->phydev->speed == SPEED_100)
986 				rcntl &= ~(1 << 9);
987 			else
988 				rcntl |= (1 << 9);
989 		}
990 	} else {
991 #ifdef FEC_MIIGSK_ENR
992 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
993 			u32 cfgr;
994 			/* disable the gasket and wait */
995 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
996 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
997 				udelay(1);
998 
999 			/*
1000 			 * configure the gasket:
1001 			 *   RMII, 50 MHz, no loopback, no echo
1002 			 *   MII, 25 MHz, no loopback, no echo
1003 			 */
1004 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1005 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1006 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1007 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1008 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1009 
1010 			/* re-enable the gasket */
1011 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1012 		}
1013 #endif
1014 	}
1015 
1016 #if !defined(CONFIG_M5272)
1017 	/* enable pause frame*/
1018 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1019 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1020 	     ndev->phydev && ndev->phydev->pause)) {
1021 		rcntl |= FEC_ENET_FCE;
1022 
1023 		/* set FIFO threshold parameter to reduce overrun */
1024 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1025 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1026 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1027 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1028 
1029 		/* OPD */
1030 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1031 	} else {
1032 		rcntl &= ~FEC_ENET_FCE;
1033 	}
1034 #endif /* !defined(CONFIG_M5272) */
1035 
1036 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1037 
1038 	/* Setup multicast filter. */
1039 	set_multicast_list(ndev);
1040 #ifndef CONFIG_M5272
1041 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1042 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1043 #endif
1044 
1045 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1046 		/* enable ENET endian swap */
1047 		ecntl |= (1 << 8);
1048 		/* enable ENET store and forward mode */
1049 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1050 	}
1051 
1052 	if (fep->bufdesc_ex)
1053 		ecntl |= (1 << 4);
1054 
1055 #ifndef CONFIG_M5272
1056 	/* Enable the MIB statistic event counters */
1057 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1058 #endif
1059 
1060 	/* And last, enable the transmit and receive processing */
1061 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1062 	fec_enet_active_rxring(ndev);
1063 
1064 	if (fep->bufdesc_ex)
1065 		fec_ptp_start_cyclecounter(ndev);
1066 
1067 	/* Enable interrupts we wish to service */
1068 	if (fep->link)
1069 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1070 	else
1071 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1072 
1073 	/* Init the interrupt coalescing */
1074 	fec_enet_itr_coal_init(ndev);
1075 
1076 }
1077 
1078 static void
1079 fec_stop(struct net_device *ndev)
1080 {
1081 	struct fec_enet_private *fep = netdev_priv(ndev);
1082 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1083 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1084 	u32 val;
1085 
1086 	/* We cannot expect a graceful transmit stop without link !!! */
1087 	if (fep->link) {
1088 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1089 		udelay(10);
1090 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1091 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1092 	}
1093 
1094 	/* Whack a reset.  We should wait for this.
1095 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1096 	 * instead of reset MAC itself.
1097 	 */
1098 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1099 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1100 			writel(0, fep->hwp + FEC_ECNTRL);
1101 		} else {
1102 			writel(1, fep->hwp + FEC_ECNTRL);
1103 			udelay(10);
1104 		}
1105 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1106 	} else {
1107 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1108 		val = readl(fep->hwp + FEC_ECNTRL);
1109 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1110 		writel(val, fep->hwp + FEC_ECNTRL);
1111 
1112 		if (pdata && pdata->sleep_mode_enable)
1113 			pdata->sleep_mode_enable(true);
1114 	}
1115 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1116 
1117 	/* We have to keep ENET enabled to have MII interrupt stay working */
1118 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1119 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1120 		writel(2, fep->hwp + FEC_ECNTRL);
1121 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1122 	}
1123 }
1124 
1125 
1126 static void
1127 fec_timeout(struct net_device *ndev)
1128 {
1129 	struct fec_enet_private *fep = netdev_priv(ndev);
1130 
1131 	fec_dump(ndev);
1132 
1133 	ndev->stats.tx_errors++;
1134 
1135 	schedule_work(&fep->tx_timeout_work);
1136 }
1137 
1138 static void fec_enet_timeout_work(struct work_struct *work)
1139 {
1140 	struct fec_enet_private *fep =
1141 		container_of(work, struct fec_enet_private, tx_timeout_work);
1142 	struct net_device *ndev = fep->netdev;
1143 
1144 	rtnl_lock();
1145 	if (netif_device_present(ndev) || netif_running(ndev)) {
1146 		napi_disable(&fep->napi);
1147 		netif_tx_lock_bh(ndev);
1148 		fec_restart(ndev);
1149 		netif_wake_queue(ndev);
1150 		netif_tx_unlock_bh(ndev);
1151 		napi_enable(&fep->napi);
1152 	}
1153 	rtnl_unlock();
1154 }
1155 
1156 static void
1157 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1158 	struct skb_shared_hwtstamps *hwtstamps)
1159 {
1160 	unsigned long flags;
1161 	u64 ns;
1162 
1163 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1164 	ns = timecounter_cyc2time(&fep->tc, ts);
1165 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1166 
1167 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1168 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1169 }
1170 
1171 static void
1172 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1173 {
1174 	struct	fec_enet_private *fep;
1175 	struct bufdesc *bdp;
1176 	unsigned short status;
1177 	struct	sk_buff	*skb;
1178 	struct fec_enet_priv_tx_q *txq;
1179 	struct netdev_queue *nq;
1180 	int	index = 0;
1181 	int	entries_free;
1182 
1183 	fep = netdev_priv(ndev);
1184 
1185 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1186 
1187 	txq = fep->tx_queue[queue_id];
1188 	/* get next bdp of dirty_tx */
1189 	nq = netdev_get_tx_queue(ndev, queue_id);
1190 	bdp = txq->dirty_tx;
1191 
1192 	/* get next bdp of dirty_tx */
1193 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1194 
1195 	while (bdp != READ_ONCE(txq->bd.cur)) {
1196 		/* Order the load of bd.cur and cbd_sc */
1197 		rmb();
1198 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1199 		if (status & BD_ENET_TX_READY)
1200 			break;
1201 
1202 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1203 
1204 		skb = txq->tx_skbuff[index];
1205 		txq->tx_skbuff[index] = NULL;
1206 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1207 			dma_unmap_single(&fep->pdev->dev,
1208 					 fec32_to_cpu(bdp->cbd_bufaddr),
1209 					 fec16_to_cpu(bdp->cbd_datlen),
1210 					 DMA_TO_DEVICE);
1211 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1212 		if (!skb)
1213 			goto skb_done;
1214 
1215 		/* Check for errors. */
1216 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1217 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1218 				   BD_ENET_TX_CSL)) {
1219 			ndev->stats.tx_errors++;
1220 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1221 				ndev->stats.tx_heartbeat_errors++;
1222 			if (status & BD_ENET_TX_LC)  /* Late collision */
1223 				ndev->stats.tx_window_errors++;
1224 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1225 				ndev->stats.tx_aborted_errors++;
1226 			if (status & BD_ENET_TX_UN)  /* Underrun */
1227 				ndev->stats.tx_fifo_errors++;
1228 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1229 				ndev->stats.tx_carrier_errors++;
1230 		} else {
1231 			ndev->stats.tx_packets++;
1232 			ndev->stats.tx_bytes += skb->len;
1233 		}
1234 
1235 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1236 			fep->bufdesc_ex) {
1237 			struct skb_shared_hwtstamps shhwtstamps;
1238 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1239 
1240 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1241 			skb_tstamp_tx(skb, &shhwtstamps);
1242 		}
1243 
1244 		/* Deferred means some collisions occurred during transmit,
1245 		 * but we eventually sent the packet OK.
1246 		 */
1247 		if (status & BD_ENET_TX_DEF)
1248 			ndev->stats.collisions++;
1249 
1250 		/* Free the sk buffer associated with this last transmit */
1251 		dev_kfree_skb_any(skb);
1252 skb_done:
1253 		/* Make sure the update to bdp and tx_skbuff are performed
1254 		 * before dirty_tx
1255 		 */
1256 		wmb();
1257 		txq->dirty_tx = bdp;
1258 
1259 		/* Update pointer to next buffer descriptor to be transmitted */
1260 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1261 
1262 		/* Since we have freed up a buffer, the ring is no longer full
1263 		 */
1264 		if (netif_queue_stopped(ndev)) {
1265 			entries_free = fec_enet_get_free_txdesc_num(txq);
1266 			if (entries_free >= txq->tx_wake_threshold)
1267 				netif_tx_wake_queue(nq);
1268 		}
1269 	}
1270 
1271 	/* ERR006538: Keep the transmitter going */
1272 	if (bdp != txq->bd.cur &&
1273 	    readl(txq->bd.reg_desc_active) == 0)
1274 		writel(0, txq->bd.reg_desc_active);
1275 }
1276 
1277 static void
1278 fec_enet_tx(struct net_device *ndev)
1279 {
1280 	struct fec_enet_private *fep = netdev_priv(ndev);
1281 	u16 queue_id;
1282 	/* First process class A queue, then Class B and Best Effort queue */
1283 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1284 		clear_bit(queue_id, &fep->work_tx);
1285 		fec_enet_tx_queue(ndev, queue_id);
1286 	}
1287 	return;
1288 }
1289 
1290 static int
1291 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1292 {
1293 	struct  fec_enet_private *fep = netdev_priv(ndev);
1294 	int off;
1295 
1296 	off = ((unsigned long)skb->data) & fep->rx_align;
1297 	if (off)
1298 		skb_reserve(skb, fep->rx_align + 1 - off);
1299 
1300 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1301 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1302 		if (net_ratelimit())
1303 			netdev_err(ndev, "Rx DMA memory map failed\n");
1304 		return -ENOMEM;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1311 			       struct bufdesc *bdp, u32 length, bool swap)
1312 {
1313 	struct  fec_enet_private *fep = netdev_priv(ndev);
1314 	struct sk_buff *new_skb;
1315 
1316 	if (length > fep->rx_copybreak)
1317 		return false;
1318 
1319 	new_skb = netdev_alloc_skb(ndev, length);
1320 	if (!new_skb)
1321 		return false;
1322 
1323 	dma_sync_single_for_cpu(&fep->pdev->dev,
1324 				fec32_to_cpu(bdp->cbd_bufaddr),
1325 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1326 				DMA_FROM_DEVICE);
1327 	if (!swap)
1328 		memcpy(new_skb->data, (*skb)->data, length);
1329 	else
1330 		swap_buffer2(new_skb->data, (*skb)->data, length);
1331 	*skb = new_skb;
1332 
1333 	return true;
1334 }
1335 
1336 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1337  * When we update through the ring, if the next incoming buffer has
1338  * not been given to the system, we just set the empty indicator,
1339  * effectively tossing the packet.
1340  */
1341 static int
1342 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1343 {
1344 	struct fec_enet_private *fep = netdev_priv(ndev);
1345 	struct fec_enet_priv_rx_q *rxq;
1346 	struct bufdesc *bdp;
1347 	unsigned short status;
1348 	struct  sk_buff *skb_new = NULL;
1349 	struct  sk_buff *skb;
1350 	ushort	pkt_len;
1351 	__u8 *data;
1352 	int	pkt_received = 0;
1353 	struct	bufdesc_ex *ebdp = NULL;
1354 	bool	vlan_packet_rcvd = false;
1355 	u16	vlan_tag;
1356 	int	index = 0;
1357 	bool	is_copybreak;
1358 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1359 
1360 #ifdef CONFIG_M532x
1361 	flush_cache_all();
1362 #endif
1363 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1364 	rxq = fep->rx_queue[queue_id];
1365 
1366 	/* First, grab all of the stats for the incoming packet.
1367 	 * These get messed up if we get called due to a busy condition.
1368 	 */
1369 	bdp = rxq->bd.cur;
1370 
1371 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1372 
1373 		if (pkt_received >= budget)
1374 			break;
1375 		pkt_received++;
1376 
1377 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1378 
1379 		/* Check for errors. */
1380 		status ^= BD_ENET_RX_LAST;
1381 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1382 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1383 			   BD_ENET_RX_CL)) {
1384 			ndev->stats.rx_errors++;
1385 			if (status & BD_ENET_RX_OV) {
1386 				/* FIFO overrun */
1387 				ndev->stats.rx_fifo_errors++;
1388 				goto rx_processing_done;
1389 			}
1390 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1391 						| BD_ENET_RX_LAST)) {
1392 				/* Frame too long or too short. */
1393 				ndev->stats.rx_length_errors++;
1394 				if (status & BD_ENET_RX_LAST)
1395 					netdev_err(ndev, "rcv is not +last\n");
1396 			}
1397 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1398 				ndev->stats.rx_crc_errors++;
1399 			/* Report late collisions as a frame error. */
1400 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1401 				ndev->stats.rx_frame_errors++;
1402 			goto rx_processing_done;
1403 		}
1404 
1405 		/* Process the incoming frame. */
1406 		ndev->stats.rx_packets++;
1407 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1408 		ndev->stats.rx_bytes += pkt_len;
1409 
1410 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1411 		skb = rxq->rx_skbuff[index];
1412 
1413 		/* The packet length includes FCS, but we don't want to
1414 		 * include that when passing upstream as it messes up
1415 		 * bridging applications.
1416 		 */
1417 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1418 						  need_swap);
1419 		if (!is_copybreak) {
1420 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1421 			if (unlikely(!skb_new)) {
1422 				ndev->stats.rx_dropped++;
1423 				goto rx_processing_done;
1424 			}
1425 			dma_unmap_single(&fep->pdev->dev,
1426 					 fec32_to_cpu(bdp->cbd_bufaddr),
1427 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1428 					 DMA_FROM_DEVICE);
1429 		}
1430 
1431 		prefetch(skb->data - NET_IP_ALIGN);
1432 		skb_put(skb, pkt_len - 4);
1433 		data = skb->data;
1434 
1435 #if !defined(CONFIG_M5272)
1436 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1437 			data = skb_pull_inline(skb, 2);
1438 #endif
1439 
1440 		if (!is_copybreak && need_swap)
1441 			swap_buffer(data, pkt_len);
1442 
1443 		/* Extract the enhanced buffer descriptor */
1444 		ebdp = NULL;
1445 		if (fep->bufdesc_ex)
1446 			ebdp = (struct bufdesc_ex *)bdp;
1447 
1448 		/* If this is a VLAN packet remove the VLAN Tag */
1449 		vlan_packet_rcvd = false;
1450 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1451 		    fep->bufdesc_ex &&
1452 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1453 			/* Push and remove the vlan tag */
1454 			struct vlan_hdr *vlan_header =
1455 					(struct vlan_hdr *) (data + ETH_HLEN);
1456 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1457 
1458 			vlan_packet_rcvd = true;
1459 
1460 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1461 			skb_pull(skb, VLAN_HLEN);
1462 		}
1463 
1464 		skb->protocol = eth_type_trans(skb, ndev);
1465 
1466 		/* Get receive timestamp from the skb */
1467 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1468 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1469 					  skb_hwtstamps(skb));
1470 
1471 		if (fep->bufdesc_ex &&
1472 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1473 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1474 				/* don't check it */
1475 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1476 			} else {
1477 				skb_checksum_none_assert(skb);
1478 			}
1479 		}
1480 
1481 		/* Handle received VLAN packets */
1482 		if (vlan_packet_rcvd)
1483 			__vlan_hwaccel_put_tag(skb,
1484 					       htons(ETH_P_8021Q),
1485 					       vlan_tag);
1486 
1487 		napi_gro_receive(&fep->napi, skb);
1488 
1489 		if (is_copybreak) {
1490 			dma_sync_single_for_device(&fep->pdev->dev,
1491 						   fec32_to_cpu(bdp->cbd_bufaddr),
1492 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 						   DMA_FROM_DEVICE);
1494 		} else {
1495 			rxq->rx_skbuff[index] = skb_new;
1496 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1497 		}
1498 
1499 rx_processing_done:
1500 		/* Clear the status flags for this buffer */
1501 		status &= ~BD_ENET_RX_STATS;
1502 
1503 		/* Mark the buffer empty */
1504 		status |= BD_ENET_RX_EMPTY;
1505 
1506 		if (fep->bufdesc_ex) {
1507 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1508 
1509 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1510 			ebdp->cbd_prot = 0;
1511 			ebdp->cbd_bdu = 0;
1512 		}
1513 		/* Make sure the updates to rest of the descriptor are
1514 		 * performed before transferring ownership.
1515 		 */
1516 		wmb();
1517 		bdp->cbd_sc = cpu_to_fec16(status);
1518 
1519 		/* Update BD pointer to next entry */
1520 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1521 
1522 		/* Doing this here will keep the FEC running while we process
1523 		 * incoming frames.  On a heavily loaded network, we should be
1524 		 * able to keep up at the expense of system resources.
1525 		 */
1526 		writel(0, rxq->bd.reg_desc_active);
1527 	}
1528 	rxq->bd.cur = bdp;
1529 	return pkt_received;
1530 }
1531 
1532 static int
1533 fec_enet_rx(struct net_device *ndev, int budget)
1534 {
1535 	int     pkt_received = 0;
1536 	u16	queue_id;
1537 	struct fec_enet_private *fep = netdev_priv(ndev);
1538 
1539 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1540 		int ret;
1541 
1542 		ret = fec_enet_rx_queue(ndev,
1543 					budget - pkt_received, queue_id);
1544 
1545 		if (ret < budget - pkt_received)
1546 			clear_bit(queue_id, &fep->work_rx);
1547 
1548 		pkt_received += ret;
1549 	}
1550 	return pkt_received;
1551 }
1552 
1553 static bool
1554 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1555 {
1556 	if (int_events == 0)
1557 		return false;
1558 
1559 	if (int_events & FEC_ENET_RXF)
1560 		fep->work_rx |= (1 << 2);
1561 	if (int_events & FEC_ENET_RXF_1)
1562 		fep->work_rx |= (1 << 0);
1563 	if (int_events & FEC_ENET_RXF_2)
1564 		fep->work_rx |= (1 << 1);
1565 
1566 	if (int_events & FEC_ENET_TXF)
1567 		fep->work_tx |= (1 << 2);
1568 	if (int_events & FEC_ENET_TXF_1)
1569 		fep->work_tx |= (1 << 0);
1570 	if (int_events & FEC_ENET_TXF_2)
1571 		fep->work_tx |= (1 << 1);
1572 
1573 	return true;
1574 }
1575 
1576 static irqreturn_t
1577 fec_enet_interrupt(int irq, void *dev_id)
1578 {
1579 	struct net_device *ndev = dev_id;
1580 	struct fec_enet_private *fep = netdev_priv(ndev);
1581 	uint int_events;
1582 	irqreturn_t ret = IRQ_NONE;
1583 
1584 	int_events = readl(fep->hwp + FEC_IEVENT);
1585 	writel(int_events, fep->hwp + FEC_IEVENT);
1586 	fec_enet_collect_events(fep, int_events);
1587 
1588 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1589 		ret = IRQ_HANDLED;
1590 
1591 		if (napi_schedule_prep(&fep->napi)) {
1592 			/* Disable the NAPI interrupts */
1593 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1594 			__napi_schedule(&fep->napi);
1595 		}
1596 	}
1597 
1598 	if (int_events & FEC_ENET_MII) {
1599 		ret = IRQ_HANDLED;
1600 		complete(&fep->mdio_done);
1601 	}
1602 
1603 	if (fep->ptp_clock)
1604 		fec_ptp_check_pps_event(fep);
1605 
1606 	return ret;
1607 }
1608 
1609 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1610 {
1611 	struct net_device *ndev = napi->dev;
1612 	struct fec_enet_private *fep = netdev_priv(ndev);
1613 	int pkts;
1614 
1615 	pkts = fec_enet_rx(ndev, budget);
1616 
1617 	fec_enet_tx(ndev);
1618 
1619 	if (pkts < budget) {
1620 		napi_complete(napi);
1621 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1622 	}
1623 	return pkts;
1624 }
1625 
1626 /* ------------------------------------------------------------------------- */
1627 static void fec_get_mac(struct net_device *ndev)
1628 {
1629 	struct fec_enet_private *fep = netdev_priv(ndev);
1630 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1631 	unsigned char *iap, tmpaddr[ETH_ALEN];
1632 
1633 	/*
1634 	 * try to get mac address in following order:
1635 	 *
1636 	 * 1) module parameter via kernel command line in form
1637 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1638 	 */
1639 	iap = macaddr;
1640 
1641 	/*
1642 	 * 2) from device tree data
1643 	 */
1644 	if (!is_valid_ether_addr(iap)) {
1645 		struct device_node *np = fep->pdev->dev.of_node;
1646 		if (np) {
1647 			const char *mac = of_get_mac_address(np);
1648 			if (mac)
1649 				iap = (unsigned char *) mac;
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * 3) from flash or fuse (via platform data)
1655 	 */
1656 	if (!is_valid_ether_addr(iap)) {
1657 #ifdef CONFIG_M5272
1658 		if (FEC_FLASHMAC)
1659 			iap = (unsigned char *)FEC_FLASHMAC;
1660 #else
1661 		if (pdata)
1662 			iap = (unsigned char *)&pdata->mac;
1663 #endif
1664 	}
1665 
1666 	/*
1667 	 * 4) FEC mac registers set by bootloader
1668 	 */
1669 	if (!is_valid_ether_addr(iap)) {
1670 		*((__be32 *) &tmpaddr[0]) =
1671 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1672 		*((__be16 *) &tmpaddr[4]) =
1673 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1674 		iap = &tmpaddr[0];
1675 	}
1676 
1677 	/*
1678 	 * 5) random mac address
1679 	 */
1680 	if (!is_valid_ether_addr(iap)) {
1681 		/* Report it and use a random ethernet address instead */
1682 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1683 		eth_hw_addr_random(ndev);
1684 		netdev_info(ndev, "Using random MAC address: %pM\n",
1685 			    ndev->dev_addr);
1686 		return;
1687 	}
1688 
1689 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1690 
1691 	/* Adjust MAC if using macaddr */
1692 	if (iap == macaddr)
1693 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1694 }
1695 
1696 /* ------------------------------------------------------------------------- */
1697 
1698 /*
1699  * Phy section
1700  */
1701 static void fec_enet_adjust_link(struct net_device *ndev)
1702 {
1703 	struct fec_enet_private *fep = netdev_priv(ndev);
1704 	struct phy_device *phy_dev = ndev->phydev;
1705 	int status_change = 0;
1706 
1707 	/* Prevent a state halted on mii error */
1708 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1709 		phy_dev->state = PHY_RESUMING;
1710 		return;
1711 	}
1712 
1713 	/*
1714 	 * If the netdev is down, or is going down, we're not interested
1715 	 * in link state events, so just mark our idea of the link as down
1716 	 * and ignore the event.
1717 	 */
1718 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1719 		fep->link = 0;
1720 	} else if (phy_dev->link) {
1721 		if (!fep->link) {
1722 			fep->link = phy_dev->link;
1723 			status_change = 1;
1724 		}
1725 
1726 		if (fep->full_duplex != phy_dev->duplex) {
1727 			fep->full_duplex = phy_dev->duplex;
1728 			status_change = 1;
1729 		}
1730 
1731 		if (phy_dev->speed != fep->speed) {
1732 			fep->speed = phy_dev->speed;
1733 			status_change = 1;
1734 		}
1735 
1736 		/* if any of the above changed restart the FEC */
1737 		if (status_change) {
1738 			napi_disable(&fep->napi);
1739 			netif_tx_lock_bh(ndev);
1740 			fec_restart(ndev);
1741 			netif_wake_queue(ndev);
1742 			netif_tx_unlock_bh(ndev);
1743 			napi_enable(&fep->napi);
1744 		}
1745 	} else {
1746 		if (fep->link) {
1747 			napi_disable(&fep->napi);
1748 			netif_tx_lock_bh(ndev);
1749 			fec_stop(ndev);
1750 			netif_tx_unlock_bh(ndev);
1751 			napi_enable(&fep->napi);
1752 			fep->link = phy_dev->link;
1753 			status_change = 1;
1754 		}
1755 	}
1756 
1757 	if (status_change)
1758 		phy_print_status(phy_dev);
1759 }
1760 
1761 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1762 {
1763 	struct fec_enet_private *fep = bus->priv;
1764 	struct device *dev = &fep->pdev->dev;
1765 	unsigned long time_left;
1766 	int ret = 0;
1767 
1768 	ret = pm_runtime_get_sync(dev);
1769 	if (ret < 0)
1770 		return ret;
1771 
1772 	fep->mii_timeout = 0;
1773 	reinit_completion(&fep->mdio_done);
1774 
1775 	/* start a read op */
1776 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1777 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1778 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1779 
1780 	/* wait for end of transfer */
1781 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1782 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1783 	if (time_left == 0) {
1784 		fep->mii_timeout = 1;
1785 		netdev_err(fep->netdev, "MDIO read timeout\n");
1786 		ret = -ETIMEDOUT;
1787 		goto out;
1788 	}
1789 
1790 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1791 
1792 out:
1793 	pm_runtime_mark_last_busy(dev);
1794 	pm_runtime_put_autosuspend(dev);
1795 
1796 	return ret;
1797 }
1798 
1799 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1800 			   u16 value)
1801 {
1802 	struct fec_enet_private *fep = bus->priv;
1803 	struct device *dev = &fep->pdev->dev;
1804 	unsigned long time_left;
1805 	int ret;
1806 
1807 	ret = pm_runtime_get_sync(dev);
1808 	if (ret < 0)
1809 		return ret;
1810 	else
1811 		ret = 0;
1812 
1813 	fep->mii_timeout = 0;
1814 	reinit_completion(&fep->mdio_done);
1815 
1816 	/* start a write op */
1817 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1818 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1819 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1820 		fep->hwp + FEC_MII_DATA);
1821 
1822 	/* wait for end of transfer */
1823 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1824 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1825 	if (time_left == 0) {
1826 		fep->mii_timeout = 1;
1827 		netdev_err(fep->netdev, "MDIO write timeout\n");
1828 		ret  = -ETIMEDOUT;
1829 	}
1830 
1831 	pm_runtime_mark_last_busy(dev);
1832 	pm_runtime_put_autosuspend(dev);
1833 
1834 	return ret;
1835 }
1836 
1837 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1838 {
1839 	struct fec_enet_private *fep = netdev_priv(ndev);
1840 	int ret;
1841 
1842 	if (enable) {
1843 		ret = clk_prepare_enable(fep->clk_ahb);
1844 		if (ret)
1845 			return ret;
1846 		if (fep->clk_enet_out) {
1847 			ret = clk_prepare_enable(fep->clk_enet_out);
1848 			if (ret)
1849 				goto failed_clk_enet_out;
1850 		}
1851 		if (fep->clk_ptp) {
1852 			mutex_lock(&fep->ptp_clk_mutex);
1853 			ret = clk_prepare_enable(fep->clk_ptp);
1854 			if (ret) {
1855 				mutex_unlock(&fep->ptp_clk_mutex);
1856 				goto failed_clk_ptp;
1857 			} else {
1858 				fep->ptp_clk_on = true;
1859 			}
1860 			mutex_unlock(&fep->ptp_clk_mutex);
1861 		}
1862 		if (fep->clk_ref) {
1863 			ret = clk_prepare_enable(fep->clk_ref);
1864 			if (ret)
1865 				goto failed_clk_ref;
1866 		}
1867 	} else {
1868 		clk_disable_unprepare(fep->clk_ahb);
1869 		if (fep->clk_enet_out)
1870 			clk_disable_unprepare(fep->clk_enet_out);
1871 		if (fep->clk_ptp) {
1872 			mutex_lock(&fep->ptp_clk_mutex);
1873 			clk_disable_unprepare(fep->clk_ptp);
1874 			fep->ptp_clk_on = false;
1875 			mutex_unlock(&fep->ptp_clk_mutex);
1876 		}
1877 		if (fep->clk_ref)
1878 			clk_disable_unprepare(fep->clk_ref);
1879 	}
1880 
1881 	return 0;
1882 
1883 failed_clk_ref:
1884 	if (fep->clk_ref)
1885 		clk_disable_unprepare(fep->clk_ref);
1886 failed_clk_ptp:
1887 	if (fep->clk_enet_out)
1888 		clk_disable_unprepare(fep->clk_enet_out);
1889 failed_clk_enet_out:
1890 		clk_disable_unprepare(fep->clk_ahb);
1891 
1892 	return ret;
1893 }
1894 
1895 static int fec_enet_mii_probe(struct net_device *ndev)
1896 {
1897 	struct fec_enet_private *fep = netdev_priv(ndev);
1898 	struct phy_device *phy_dev = NULL;
1899 	char mdio_bus_id[MII_BUS_ID_SIZE];
1900 	char phy_name[MII_BUS_ID_SIZE + 3];
1901 	int phy_id;
1902 	int dev_id = fep->dev_id;
1903 
1904 	if (fep->phy_node) {
1905 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1906 					 &fec_enet_adjust_link, 0,
1907 					 fep->phy_interface);
1908 		if (!phy_dev)
1909 			return -ENODEV;
1910 	} else {
1911 		/* check for attached phy */
1912 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1913 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1914 				continue;
1915 			if (dev_id--)
1916 				continue;
1917 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1918 			break;
1919 		}
1920 
1921 		if (phy_id >= PHY_MAX_ADDR) {
1922 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1923 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1924 			phy_id = 0;
1925 		}
1926 
1927 		snprintf(phy_name, sizeof(phy_name),
1928 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1929 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1930 				      fep->phy_interface);
1931 	}
1932 
1933 	if (IS_ERR(phy_dev)) {
1934 		netdev_err(ndev, "could not attach to PHY\n");
1935 		return PTR_ERR(phy_dev);
1936 	}
1937 
1938 	/* mask with MAC supported features */
1939 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1940 		phy_dev->supported &= PHY_GBIT_FEATURES;
1941 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1942 #if !defined(CONFIG_M5272)
1943 		phy_dev->supported |= SUPPORTED_Pause;
1944 #endif
1945 	}
1946 	else
1947 		phy_dev->supported &= PHY_BASIC_FEATURES;
1948 
1949 	phy_dev->advertising = phy_dev->supported;
1950 
1951 	fep->link = 0;
1952 	fep->full_duplex = 0;
1953 
1954 	phy_attached_info(phy_dev);
1955 
1956 	return 0;
1957 }
1958 
1959 static int fec_enet_mii_init(struct platform_device *pdev)
1960 {
1961 	static struct mii_bus *fec0_mii_bus;
1962 	struct net_device *ndev = platform_get_drvdata(pdev);
1963 	struct fec_enet_private *fep = netdev_priv(ndev);
1964 	struct device_node *node;
1965 	int err = -ENXIO;
1966 	u32 mii_speed, holdtime;
1967 
1968 	/*
1969 	 * The i.MX28 dual fec interfaces are not equal.
1970 	 * Here are the differences:
1971 	 *
1972 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1973 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1974 	 *  - external phys can only be configured by fec0
1975 	 *
1976 	 * That is to say fec1 can not work independently. It only works
1977 	 * when fec0 is working. The reason behind this design is that the
1978 	 * second interface is added primarily for Switch mode.
1979 	 *
1980 	 * Because of the last point above, both phys are attached on fec0
1981 	 * mdio interface in board design, and need to be configured by
1982 	 * fec0 mii_bus.
1983 	 */
1984 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1985 		/* fec1 uses fec0 mii_bus */
1986 		if (mii_cnt && fec0_mii_bus) {
1987 			fep->mii_bus = fec0_mii_bus;
1988 			mii_cnt++;
1989 			return 0;
1990 		}
1991 		return -ENOENT;
1992 	}
1993 
1994 	fep->mii_timeout = 0;
1995 
1996 	/*
1997 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1998 	 *
1999 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2000 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2001 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2002 	 * document.
2003 	 */
2004 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2005 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2006 		mii_speed--;
2007 	if (mii_speed > 63) {
2008 		dev_err(&pdev->dev,
2009 			"fec clock (%lu) to fast to get right mii speed\n",
2010 			clk_get_rate(fep->clk_ipg));
2011 		err = -EINVAL;
2012 		goto err_out;
2013 	}
2014 
2015 	/*
2016 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2017 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2018 	 * versions are RAZ there, so just ignore the difference and write the
2019 	 * register always.
2020 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2021 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2022 	 * output.
2023 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2024 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2025 	 * holdtime cannot result in a value greater than 3.
2026 	 */
2027 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2028 
2029 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2030 
2031 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2032 
2033 	fep->mii_bus = mdiobus_alloc();
2034 	if (fep->mii_bus == NULL) {
2035 		err = -ENOMEM;
2036 		goto err_out;
2037 	}
2038 
2039 	fep->mii_bus->name = "fec_enet_mii_bus";
2040 	fep->mii_bus->read = fec_enet_mdio_read;
2041 	fep->mii_bus->write = fec_enet_mdio_write;
2042 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2043 		pdev->name, fep->dev_id + 1);
2044 	fep->mii_bus->priv = fep;
2045 	fep->mii_bus->parent = &pdev->dev;
2046 
2047 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2048 	if (node) {
2049 		err = of_mdiobus_register(fep->mii_bus, node);
2050 		of_node_put(node);
2051 	} else {
2052 		err = mdiobus_register(fep->mii_bus);
2053 	}
2054 
2055 	if (err)
2056 		goto err_out_free_mdiobus;
2057 
2058 	mii_cnt++;
2059 
2060 	/* save fec0 mii_bus */
2061 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2062 		fec0_mii_bus = fep->mii_bus;
2063 
2064 	return 0;
2065 
2066 err_out_free_mdiobus:
2067 	mdiobus_free(fep->mii_bus);
2068 err_out:
2069 	return err;
2070 }
2071 
2072 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2073 {
2074 	if (--mii_cnt == 0) {
2075 		mdiobus_unregister(fep->mii_bus);
2076 		mdiobus_free(fep->mii_bus);
2077 	}
2078 }
2079 
2080 static void fec_enet_get_drvinfo(struct net_device *ndev,
2081 				 struct ethtool_drvinfo *info)
2082 {
2083 	struct fec_enet_private *fep = netdev_priv(ndev);
2084 
2085 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2086 		sizeof(info->driver));
2087 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2088 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2089 }
2090 
2091 static int fec_enet_get_regs_len(struct net_device *ndev)
2092 {
2093 	struct fec_enet_private *fep = netdev_priv(ndev);
2094 	struct resource *r;
2095 	int s = 0;
2096 
2097 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2098 	if (r)
2099 		s = resource_size(r);
2100 
2101 	return s;
2102 }
2103 
2104 /* List of registers that can be safety be read to dump them with ethtool */
2105 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2106 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2107 static u32 fec_enet_register_offset[] = {
2108 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2109 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2110 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2111 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2112 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2113 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2114 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2115 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2116 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2117 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2118 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2119 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2120 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2121 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2122 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2123 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2124 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2125 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2126 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2127 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2128 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2129 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2130 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2131 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2132 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2133 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2134 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2135 };
2136 #else
2137 static u32 fec_enet_register_offset[] = {
2138 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2139 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2140 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2141 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2142 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2143 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2144 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2145 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2146 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2147 };
2148 #endif
2149 
2150 static void fec_enet_get_regs(struct net_device *ndev,
2151 			      struct ethtool_regs *regs, void *regbuf)
2152 {
2153 	struct fec_enet_private *fep = netdev_priv(ndev);
2154 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2155 	u32 *buf = (u32 *)regbuf;
2156 	u32 i, off;
2157 
2158 	memset(buf, 0, regs->len);
2159 
2160 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2161 		off = fec_enet_register_offset[i] / 4;
2162 		buf[off] = readl(&theregs[off]);
2163 	}
2164 }
2165 
2166 static int fec_enet_get_ts_info(struct net_device *ndev,
2167 				struct ethtool_ts_info *info)
2168 {
2169 	struct fec_enet_private *fep = netdev_priv(ndev);
2170 
2171 	if (fep->bufdesc_ex) {
2172 
2173 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2174 					SOF_TIMESTAMPING_RX_SOFTWARE |
2175 					SOF_TIMESTAMPING_SOFTWARE |
2176 					SOF_TIMESTAMPING_TX_HARDWARE |
2177 					SOF_TIMESTAMPING_RX_HARDWARE |
2178 					SOF_TIMESTAMPING_RAW_HARDWARE;
2179 		if (fep->ptp_clock)
2180 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2181 		else
2182 			info->phc_index = -1;
2183 
2184 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2185 				 (1 << HWTSTAMP_TX_ON);
2186 
2187 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2188 				   (1 << HWTSTAMP_FILTER_ALL);
2189 		return 0;
2190 	} else {
2191 		return ethtool_op_get_ts_info(ndev, info);
2192 	}
2193 }
2194 
2195 #if !defined(CONFIG_M5272)
2196 
2197 static void fec_enet_get_pauseparam(struct net_device *ndev,
2198 				    struct ethtool_pauseparam *pause)
2199 {
2200 	struct fec_enet_private *fep = netdev_priv(ndev);
2201 
2202 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2203 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2204 	pause->rx_pause = pause->tx_pause;
2205 }
2206 
2207 static int fec_enet_set_pauseparam(struct net_device *ndev,
2208 				   struct ethtool_pauseparam *pause)
2209 {
2210 	struct fec_enet_private *fep = netdev_priv(ndev);
2211 
2212 	if (!ndev->phydev)
2213 		return -ENODEV;
2214 
2215 	if (pause->tx_pause != pause->rx_pause) {
2216 		netdev_info(ndev,
2217 			"hardware only support enable/disable both tx and rx");
2218 		return -EINVAL;
2219 	}
2220 
2221 	fep->pause_flag = 0;
2222 
2223 	/* tx pause must be same as rx pause */
2224 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2225 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2226 
2227 	if (pause->rx_pause || pause->autoneg) {
2228 		ndev->phydev->supported |= ADVERTISED_Pause;
2229 		ndev->phydev->advertising |= ADVERTISED_Pause;
2230 	} else {
2231 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2232 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2233 	}
2234 
2235 	if (pause->autoneg) {
2236 		if (netif_running(ndev))
2237 			fec_stop(ndev);
2238 		phy_start_aneg(ndev->phydev);
2239 	}
2240 	if (netif_running(ndev)) {
2241 		napi_disable(&fep->napi);
2242 		netif_tx_lock_bh(ndev);
2243 		fec_restart(ndev);
2244 		netif_wake_queue(ndev);
2245 		netif_tx_unlock_bh(ndev);
2246 		napi_enable(&fep->napi);
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 static const struct fec_stat {
2253 	char name[ETH_GSTRING_LEN];
2254 	u16 offset;
2255 } fec_stats[] = {
2256 	/* RMON TX */
2257 	{ "tx_dropped", RMON_T_DROP },
2258 	{ "tx_packets", RMON_T_PACKETS },
2259 	{ "tx_broadcast", RMON_T_BC_PKT },
2260 	{ "tx_multicast", RMON_T_MC_PKT },
2261 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2262 	{ "tx_undersize", RMON_T_UNDERSIZE },
2263 	{ "tx_oversize", RMON_T_OVERSIZE },
2264 	{ "tx_fragment", RMON_T_FRAG },
2265 	{ "tx_jabber", RMON_T_JAB },
2266 	{ "tx_collision", RMON_T_COL },
2267 	{ "tx_64byte", RMON_T_P64 },
2268 	{ "tx_65to127byte", RMON_T_P65TO127 },
2269 	{ "tx_128to255byte", RMON_T_P128TO255 },
2270 	{ "tx_256to511byte", RMON_T_P256TO511 },
2271 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2272 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2273 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2274 	{ "tx_octets", RMON_T_OCTETS },
2275 
2276 	/* IEEE TX */
2277 	{ "IEEE_tx_drop", IEEE_T_DROP },
2278 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2279 	{ "IEEE_tx_1col", IEEE_T_1COL },
2280 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2281 	{ "IEEE_tx_def", IEEE_T_DEF },
2282 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2283 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2284 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2285 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2286 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2287 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2288 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2289 
2290 	/* RMON RX */
2291 	{ "rx_packets", RMON_R_PACKETS },
2292 	{ "rx_broadcast", RMON_R_BC_PKT },
2293 	{ "rx_multicast", RMON_R_MC_PKT },
2294 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2295 	{ "rx_undersize", RMON_R_UNDERSIZE },
2296 	{ "rx_oversize", RMON_R_OVERSIZE },
2297 	{ "rx_fragment", RMON_R_FRAG },
2298 	{ "rx_jabber", RMON_R_JAB },
2299 	{ "rx_64byte", RMON_R_P64 },
2300 	{ "rx_65to127byte", RMON_R_P65TO127 },
2301 	{ "rx_128to255byte", RMON_R_P128TO255 },
2302 	{ "rx_256to511byte", RMON_R_P256TO511 },
2303 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2304 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2305 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2306 	{ "rx_octets", RMON_R_OCTETS },
2307 
2308 	/* IEEE RX */
2309 	{ "IEEE_rx_drop", IEEE_R_DROP },
2310 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2311 	{ "IEEE_rx_crc", IEEE_R_CRC },
2312 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2313 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2314 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2315 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2316 };
2317 
2318 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2319 	struct ethtool_stats *stats, u64 *data)
2320 {
2321 	struct fec_enet_private *fep = netdev_priv(dev);
2322 	int i;
2323 
2324 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2325 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2326 }
2327 
2328 static void fec_enet_get_strings(struct net_device *netdev,
2329 	u32 stringset, u8 *data)
2330 {
2331 	int i;
2332 	switch (stringset) {
2333 	case ETH_SS_STATS:
2334 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2335 			memcpy(data + i * ETH_GSTRING_LEN,
2336 				fec_stats[i].name, ETH_GSTRING_LEN);
2337 		break;
2338 	}
2339 }
2340 
2341 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2342 {
2343 	switch (sset) {
2344 	case ETH_SS_STATS:
2345 		return ARRAY_SIZE(fec_stats);
2346 	default:
2347 		return -EOPNOTSUPP;
2348 	}
2349 }
2350 #endif /* !defined(CONFIG_M5272) */
2351 
2352 static int fec_enet_nway_reset(struct net_device *dev)
2353 {
2354 	struct phy_device *phydev = dev->phydev;
2355 
2356 	if (!phydev)
2357 		return -ENODEV;
2358 
2359 	return genphy_restart_aneg(phydev);
2360 }
2361 
2362 /* ITR clock source is enet system clock (clk_ahb).
2363  * TCTT unit is cycle_ns * 64 cycle
2364  * So, the ICTT value = X us / (cycle_ns * 64)
2365  */
2366 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2367 {
2368 	struct fec_enet_private *fep = netdev_priv(ndev);
2369 
2370 	return us * (fep->itr_clk_rate / 64000) / 1000;
2371 }
2372 
2373 /* Set threshold for interrupt coalescing */
2374 static void fec_enet_itr_coal_set(struct net_device *ndev)
2375 {
2376 	struct fec_enet_private *fep = netdev_priv(ndev);
2377 	int rx_itr, tx_itr;
2378 
2379 	/* Must be greater than zero to avoid unpredictable behavior */
2380 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2381 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2382 		return;
2383 
2384 	/* Select enet system clock as Interrupt Coalescing
2385 	 * timer Clock Source
2386 	 */
2387 	rx_itr = FEC_ITR_CLK_SEL;
2388 	tx_itr = FEC_ITR_CLK_SEL;
2389 
2390 	/* set ICFT and ICTT */
2391 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2392 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2393 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2394 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2395 
2396 	rx_itr |= FEC_ITR_EN;
2397 	tx_itr |= FEC_ITR_EN;
2398 
2399 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2400 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2401 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2402 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2403 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2404 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2405 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2406 	}
2407 }
2408 
2409 static int
2410 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2411 {
2412 	struct fec_enet_private *fep = netdev_priv(ndev);
2413 
2414 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2415 		return -EOPNOTSUPP;
2416 
2417 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2418 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2419 
2420 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2421 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2422 
2423 	return 0;
2424 }
2425 
2426 static int
2427 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2428 {
2429 	struct fec_enet_private *fep = netdev_priv(ndev);
2430 	unsigned int cycle;
2431 
2432 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2433 		return -EOPNOTSUPP;
2434 
2435 	if (ec->rx_max_coalesced_frames > 255) {
2436 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2437 		return -EINVAL;
2438 	}
2439 
2440 	if (ec->tx_max_coalesced_frames > 255) {
2441 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2442 		return -EINVAL;
2443 	}
2444 
2445 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2446 	if (cycle > 0xFFFF) {
2447 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2448 		return -EINVAL;
2449 	}
2450 
2451 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2452 	if (cycle > 0xFFFF) {
2453 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2454 		return -EINVAL;
2455 	}
2456 
2457 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2458 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2459 
2460 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2461 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2462 
2463 	fec_enet_itr_coal_set(ndev);
2464 
2465 	return 0;
2466 }
2467 
2468 static void fec_enet_itr_coal_init(struct net_device *ndev)
2469 {
2470 	struct ethtool_coalesce ec;
2471 
2472 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2473 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2474 
2475 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2476 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2477 
2478 	fec_enet_set_coalesce(ndev, &ec);
2479 }
2480 
2481 static int fec_enet_get_tunable(struct net_device *netdev,
2482 				const struct ethtool_tunable *tuna,
2483 				void *data)
2484 {
2485 	struct fec_enet_private *fep = netdev_priv(netdev);
2486 	int ret = 0;
2487 
2488 	switch (tuna->id) {
2489 	case ETHTOOL_RX_COPYBREAK:
2490 		*(u32 *)data = fep->rx_copybreak;
2491 		break;
2492 	default:
2493 		ret = -EINVAL;
2494 		break;
2495 	}
2496 
2497 	return ret;
2498 }
2499 
2500 static int fec_enet_set_tunable(struct net_device *netdev,
2501 				const struct ethtool_tunable *tuna,
2502 				const void *data)
2503 {
2504 	struct fec_enet_private *fep = netdev_priv(netdev);
2505 	int ret = 0;
2506 
2507 	switch (tuna->id) {
2508 	case ETHTOOL_RX_COPYBREAK:
2509 		fep->rx_copybreak = *(u32 *)data;
2510 		break;
2511 	default:
2512 		ret = -EINVAL;
2513 		break;
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 static void
2520 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2521 {
2522 	struct fec_enet_private *fep = netdev_priv(ndev);
2523 
2524 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2525 		wol->supported = WAKE_MAGIC;
2526 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2527 	} else {
2528 		wol->supported = wol->wolopts = 0;
2529 	}
2530 }
2531 
2532 static int
2533 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2534 {
2535 	struct fec_enet_private *fep = netdev_priv(ndev);
2536 
2537 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2538 		return -EINVAL;
2539 
2540 	if (wol->wolopts & ~WAKE_MAGIC)
2541 		return -EINVAL;
2542 
2543 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2544 	if (device_may_wakeup(&ndev->dev)) {
2545 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2546 		if (fep->irq[0] > 0)
2547 			enable_irq_wake(fep->irq[0]);
2548 	} else {
2549 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2550 		if (fep->irq[0] > 0)
2551 			disable_irq_wake(fep->irq[0]);
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 static const struct ethtool_ops fec_enet_ethtool_ops = {
2558 	.get_drvinfo		= fec_enet_get_drvinfo,
2559 	.get_regs_len		= fec_enet_get_regs_len,
2560 	.get_regs		= fec_enet_get_regs,
2561 	.nway_reset		= fec_enet_nway_reset,
2562 	.get_link		= ethtool_op_get_link,
2563 	.get_coalesce		= fec_enet_get_coalesce,
2564 	.set_coalesce		= fec_enet_set_coalesce,
2565 #ifndef CONFIG_M5272
2566 	.get_pauseparam		= fec_enet_get_pauseparam,
2567 	.set_pauseparam		= fec_enet_set_pauseparam,
2568 	.get_strings		= fec_enet_get_strings,
2569 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2570 	.get_sset_count		= fec_enet_get_sset_count,
2571 #endif
2572 	.get_ts_info		= fec_enet_get_ts_info,
2573 	.get_tunable		= fec_enet_get_tunable,
2574 	.set_tunable		= fec_enet_set_tunable,
2575 	.get_wol		= fec_enet_get_wol,
2576 	.set_wol		= fec_enet_set_wol,
2577 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2578 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2579 };
2580 
2581 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2582 {
2583 	struct fec_enet_private *fep = netdev_priv(ndev);
2584 	struct phy_device *phydev = ndev->phydev;
2585 
2586 	if (!netif_running(ndev))
2587 		return -EINVAL;
2588 
2589 	if (!phydev)
2590 		return -ENODEV;
2591 
2592 	if (fep->bufdesc_ex) {
2593 		if (cmd == SIOCSHWTSTAMP)
2594 			return fec_ptp_set(ndev, rq);
2595 		if (cmd == SIOCGHWTSTAMP)
2596 			return fec_ptp_get(ndev, rq);
2597 	}
2598 
2599 	return phy_mii_ioctl(phydev, rq, cmd);
2600 }
2601 
2602 static void fec_enet_free_buffers(struct net_device *ndev)
2603 {
2604 	struct fec_enet_private *fep = netdev_priv(ndev);
2605 	unsigned int i;
2606 	struct sk_buff *skb;
2607 	struct bufdesc	*bdp;
2608 	struct fec_enet_priv_tx_q *txq;
2609 	struct fec_enet_priv_rx_q *rxq;
2610 	unsigned int q;
2611 
2612 	for (q = 0; q < fep->num_rx_queues; q++) {
2613 		rxq = fep->rx_queue[q];
2614 		bdp = rxq->bd.base;
2615 		for (i = 0; i < rxq->bd.ring_size; i++) {
2616 			skb = rxq->rx_skbuff[i];
2617 			rxq->rx_skbuff[i] = NULL;
2618 			if (skb) {
2619 				dma_unmap_single(&fep->pdev->dev,
2620 						 fec32_to_cpu(bdp->cbd_bufaddr),
2621 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2622 						 DMA_FROM_DEVICE);
2623 				dev_kfree_skb(skb);
2624 			}
2625 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2626 		}
2627 	}
2628 
2629 	for (q = 0; q < fep->num_tx_queues; q++) {
2630 		txq = fep->tx_queue[q];
2631 		bdp = txq->bd.base;
2632 		for (i = 0; i < txq->bd.ring_size; i++) {
2633 			kfree(txq->tx_bounce[i]);
2634 			txq->tx_bounce[i] = NULL;
2635 			skb = txq->tx_skbuff[i];
2636 			txq->tx_skbuff[i] = NULL;
2637 			dev_kfree_skb(skb);
2638 		}
2639 	}
2640 }
2641 
2642 static void fec_enet_free_queue(struct net_device *ndev)
2643 {
2644 	struct fec_enet_private *fep = netdev_priv(ndev);
2645 	int i;
2646 	struct fec_enet_priv_tx_q *txq;
2647 
2648 	for (i = 0; i < fep->num_tx_queues; i++)
2649 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2650 			txq = fep->tx_queue[i];
2651 			dma_free_coherent(NULL,
2652 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2653 					  txq->tso_hdrs,
2654 					  txq->tso_hdrs_dma);
2655 		}
2656 
2657 	for (i = 0; i < fep->num_rx_queues; i++)
2658 		kfree(fep->rx_queue[i]);
2659 	for (i = 0; i < fep->num_tx_queues; i++)
2660 		kfree(fep->tx_queue[i]);
2661 }
2662 
2663 static int fec_enet_alloc_queue(struct net_device *ndev)
2664 {
2665 	struct fec_enet_private *fep = netdev_priv(ndev);
2666 	int i;
2667 	int ret = 0;
2668 	struct fec_enet_priv_tx_q *txq;
2669 
2670 	for (i = 0; i < fep->num_tx_queues; i++) {
2671 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2672 		if (!txq) {
2673 			ret = -ENOMEM;
2674 			goto alloc_failed;
2675 		}
2676 
2677 		fep->tx_queue[i] = txq;
2678 		txq->bd.ring_size = TX_RING_SIZE;
2679 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2680 
2681 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2682 		txq->tx_wake_threshold =
2683 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2684 
2685 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2686 					txq->bd.ring_size * TSO_HEADER_SIZE,
2687 					&txq->tso_hdrs_dma,
2688 					GFP_KERNEL);
2689 		if (!txq->tso_hdrs) {
2690 			ret = -ENOMEM;
2691 			goto alloc_failed;
2692 		}
2693 	}
2694 
2695 	for (i = 0; i < fep->num_rx_queues; i++) {
2696 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2697 					   GFP_KERNEL);
2698 		if (!fep->rx_queue[i]) {
2699 			ret = -ENOMEM;
2700 			goto alloc_failed;
2701 		}
2702 
2703 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2704 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2705 	}
2706 	return ret;
2707 
2708 alloc_failed:
2709 	fec_enet_free_queue(ndev);
2710 	return ret;
2711 }
2712 
2713 static int
2714 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2715 {
2716 	struct fec_enet_private *fep = netdev_priv(ndev);
2717 	unsigned int i;
2718 	struct sk_buff *skb;
2719 	struct bufdesc	*bdp;
2720 	struct fec_enet_priv_rx_q *rxq;
2721 
2722 	rxq = fep->rx_queue[queue];
2723 	bdp = rxq->bd.base;
2724 	for (i = 0; i < rxq->bd.ring_size; i++) {
2725 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2726 		if (!skb)
2727 			goto err_alloc;
2728 
2729 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2730 			dev_kfree_skb(skb);
2731 			goto err_alloc;
2732 		}
2733 
2734 		rxq->rx_skbuff[i] = skb;
2735 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2736 
2737 		if (fep->bufdesc_ex) {
2738 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2739 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2740 		}
2741 
2742 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2743 	}
2744 
2745 	/* Set the last buffer to wrap. */
2746 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2747 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2748 	return 0;
2749 
2750  err_alloc:
2751 	fec_enet_free_buffers(ndev);
2752 	return -ENOMEM;
2753 }
2754 
2755 static int
2756 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2757 {
2758 	struct fec_enet_private *fep = netdev_priv(ndev);
2759 	unsigned int i;
2760 	struct bufdesc  *bdp;
2761 	struct fec_enet_priv_tx_q *txq;
2762 
2763 	txq = fep->tx_queue[queue];
2764 	bdp = txq->bd.base;
2765 	for (i = 0; i < txq->bd.ring_size; i++) {
2766 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2767 		if (!txq->tx_bounce[i])
2768 			goto err_alloc;
2769 
2770 		bdp->cbd_sc = cpu_to_fec16(0);
2771 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2772 
2773 		if (fep->bufdesc_ex) {
2774 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2775 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2776 		}
2777 
2778 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2779 	}
2780 
2781 	/* Set the last buffer to wrap. */
2782 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2783 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2784 
2785 	return 0;
2786 
2787  err_alloc:
2788 	fec_enet_free_buffers(ndev);
2789 	return -ENOMEM;
2790 }
2791 
2792 static int fec_enet_alloc_buffers(struct net_device *ndev)
2793 {
2794 	struct fec_enet_private *fep = netdev_priv(ndev);
2795 	unsigned int i;
2796 
2797 	for (i = 0; i < fep->num_rx_queues; i++)
2798 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2799 			return -ENOMEM;
2800 
2801 	for (i = 0; i < fep->num_tx_queues; i++)
2802 		if (fec_enet_alloc_txq_buffers(ndev, i))
2803 			return -ENOMEM;
2804 	return 0;
2805 }
2806 
2807 static int
2808 fec_enet_open(struct net_device *ndev)
2809 {
2810 	struct fec_enet_private *fep = netdev_priv(ndev);
2811 	int ret;
2812 
2813 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2814 	if (ret < 0)
2815 		return ret;
2816 
2817 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2818 	ret = fec_enet_clk_enable(ndev, true);
2819 	if (ret)
2820 		goto clk_enable;
2821 
2822 	/* I should reset the ring buffers here, but I don't yet know
2823 	 * a simple way to do that.
2824 	 */
2825 
2826 	ret = fec_enet_alloc_buffers(ndev);
2827 	if (ret)
2828 		goto err_enet_alloc;
2829 
2830 	/* Init MAC prior to mii bus probe */
2831 	fec_restart(ndev);
2832 
2833 	/* Probe and connect to PHY when open the interface */
2834 	ret = fec_enet_mii_probe(ndev);
2835 	if (ret)
2836 		goto err_enet_mii_probe;
2837 
2838 	if (fep->quirks & FEC_QUIRK_ERR006687)
2839 		imx6q_cpuidle_fec_irqs_used();
2840 
2841 	napi_enable(&fep->napi);
2842 	phy_start(ndev->phydev);
2843 	netif_tx_start_all_queues(ndev);
2844 
2845 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2846 				 FEC_WOL_FLAG_ENABLE);
2847 
2848 	return 0;
2849 
2850 err_enet_mii_probe:
2851 	fec_enet_free_buffers(ndev);
2852 err_enet_alloc:
2853 	fec_enet_clk_enable(ndev, false);
2854 clk_enable:
2855 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2856 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2857 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2858 	return ret;
2859 }
2860 
2861 static int
2862 fec_enet_close(struct net_device *ndev)
2863 {
2864 	struct fec_enet_private *fep = netdev_priv(ndev);
2865 
2866 	phy_stop(ndev->phydev);
2867 
2868 	if (netif_device_present(ndev)) {
2869 		napi_disable(&fep->napi);
2870 		netif_tx_disable(ndev);
2871 		fec_stop(ndev);
2872 	}
2873 
2874 	phy_disconnect(ndev->phydev);
2875 
2876 	if (fep->quirks & FEC_QUIRK_ERR006687)
2877 		imx6q_cpuidle_fec_irqs_unused();
2878 
2879 	fec_enet_clk_enable(ndev, false);
2880 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2881 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2882 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2883 
2884 	fec_enet_free_buffers(ndev);
2885 
2886 	return 0;
2887 }
2888 
2889 /* Set or clear the multicast filter for this adaptor.
2890  * Skeleton taken from sunlance driver.
2891  * The CPM Ethernet implementation allows Multicast as well as individual
2892  * MAC address filtering.  Some of the drivers check to make sure it is
2893  * a group multicast address, and discard those that are not.  I guess I
2894  * will do the same for now, but just remove the test if you want
2895  * individual filtering as well (do the upper net layers want or support
2896  * this kind of feature?).
2897  */
2898 
2899 #define HASH_BITS	6		/* #bits in hash */
2900 #define CRC32_POLY	0xEDB88320
2901 
2902 static void set_multicast_list(struct net_device *ndev)
2903 {
2904 	struct fec_enet_private *fep = netdev_priv(ndev);
2905 	struct netdev_hw_addr *ha;
2906 	unsigned int i, bit, data, crc, tmp;
2907 	unsigned char hash;
2908 
2909 	if (ndev->flags & IFF_PROMISC) {
2910 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2911 		tmp |= 0x8;
2912 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2913 		return;
2914 	}
2915 
2916 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2917 	tmp &= ~0x8;
2918 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2919 
2920 	if (ndev->flags & IFF_ALLMULTI) {
2921 		/* Catch all multicast addresses, so set the
2922 		 * filter to all 1's
2923 		 */
2924 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2925 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2926 
2927 		return;
2928 	}
2929 
2930 	/* Clear filter and add the addresses in hash register
2931 	 */
2932 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2934 
2935 	netdev_for_each_mc_addr(ha, ndev) {
2936 		/* calculate crc32 value of mac address */
2937 		crc = 0xffffffff;
2938 
2939 		for (i = 0; i < ndev->addr_len; i++) {
2940 			data = ha->addr[i];
2941 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2942 				crc = (crc >> 1) ^
2943 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2944 			}
2945 		}
2946 
2947 		/* only upper 6 bits (HASH_BITS) are used
2948 		 * which point to specific bit in he hash registers
2949 		 */
2950 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2951 
2952 		if (hash > 31) {
2953 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2954 			tmp |= 1 << (hash - 32);
2955 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2956 		} else {
2957 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2958 			tmp |= 1 << hash;
2959 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2960 		}
2961 	}
2962 }
2963 
2964 /* Set a MAC change in hardware. */
2965 static int
2966 fec_set_mac_address(struct net_device *ndev, void *p)
2967 {
2968 	struct fec_enet_private *fep = netdev_priv(ndev);
2969 	struct sockaddr *addr = p;
2970 
2971 	if (addr) {
2972 		if (!is_valid_ether_addr(addr->sa_data))
2973 			return -EADDRNOTAVAIL;
2974 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2975 	}
2976 
2977 	/* Add netif status check here to avoid system hang in below case:
2978 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2979 	 * After ethx down, fec all clocks are gated off and then register
2980 	 * access causes system hang.
2981 	 */
2982 	if (!netif_running(ndev))
2983 		return 0;
2984 
2985 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2986 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2987 		fep->hwp + FEC_ADDR_LOW);
2988 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2989 		fep->hwp + FEC_ADDR_HIGH);
2990 	return 0;
2991 }
2992 
2993 #ifdef CONFIG_NET_POLL_CONTROLLER
2994 /**
2995  * fec_poll_controller - FEC Poll controller function
2996  * @dev: The FEC network adapter
2997  *
2998  * Polled functionality used by netconsole and others in non interrupt mode
2999  *
3000  */
3001 static void fec_poll_controller(struct net_device *dev)
3002 {
3003 	int i;
3004 	struct fec_enet_private *fep = netdev_priv(dev);
3005 
3006 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3007 		if (fep->irq[i] > 0) {
3008 			disable_irq(fep->irq[i]);
3009 			fec_enet_interrupt(fep->irq[i], dev);
3010 			enable_irq(fep->irq[i]);
3011 		}
3012 	}
3013 }
3014 #endif
3015 
3016 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3017 	netdev_features_t features)
3018 {
3019 	struct fec_enet_private *fep = netdev_priv(netdev);
3020 	netdev_features_t changed = features ^ netdev->features;
3021 
3022 	netdev->features = features;
3023 
3024 	/* Receive checksum has been changed */
3025 	if (changed & NETIF_F_RXCSUM) {
3026 		if (features & NETIF_F_RXCSUM)
3027 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3028 		else
3029 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3030 	}
3031 }
3032 
3033 static int fec_set_features(struct net_device *netdev,
3034 	netdev_features_t features)
3035 {
3036 	struct fec_enet_private *fep = netdev_priv(netdev);
3037 	netdev_features_t changed = features ^ netdev->features;
3038 
3039 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3040 		napi_disable(&fep->napi);
3041 		netif_tx_lock_bh(netdev);
3042 		fec_stop(netdev);
3043 		fec_enet_set_netdev_features(netdev, features);
3044 		fec_restart(netdev);
3045 		netif_tx_wake_all_queues(netdev);
3046 		netif_tx_unlock_bh(netdev);
3047 		napi_enable(&fep->napi);
3048 	} else {
3049 		fec_enet_set_netdev_features(netdev, features);
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 static const struct net_device_ops fec_netdev_ops = {
3056 	.ndo_open		= fec_enet_open,
3057 	.ndo_stop		= fec_enet_close,
3058 	.ndo_start_xmit		= fec_enet_start_xmit,
3059 	.ndo_set_rx_mode	= set_multicast_list,
3060 	.ndo_change_mtu		= eth_change_mtu,
3061 	.ndo_validate_addr	= eth_validate_addr,
3062 	.ndo_tx_timeout		= fec_timeout,
3063 	.ndo_set_mac_address	= fec_set_mac_address,
3064 	.ndo_do_ioctl		= fec_enet_ioctl,
3065 #ifdef CONFIG_NET_POLL_CONTROLLER
3066 	.ndo_poll_controller	= fec_poll_controller,
3067 #endif
3068 	.ndo_set_features	= fec_set_features,
3069 };
3070 
3071 static const unsigned short offset_des_active_rxq[] = {
3072 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3073 };
3074 
3075 static const unsigned short offset_des_active_txq[] = {
3076 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3077 };
3078 
3079  /*
3080   * XXX:  We need to clean up on failure exits here.
3081   *
3082   */
3083 static int fec_enet_init(struct net_device *ndev)
3084 {
3085 	struct fec_enet_private *fep = netdev_priv(ndev);
3086 	struct bufdesc *cbd_base;
3087 	dma_addr_t bd_dma;
3088 	int bd_size;
3089 	unsigned int i;
3090 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3091 			sizeof(struct bufdesc);
3092 	unsigned dsize_log2 = __fls(dsize);
3093 
3094 	WARN_ON(dsize != (1 << dsize_log2));
3095 #if defined(CONFIG_ARM)
3096 	fep->rx_align = 0xf;
3097 	fep->tx_align = 0xf;
3098 #else
3099 	fep->rx_align = 0x3;
3100 	fep->tx_align = 0x3;
3101 #endif
3102 
3103 	fec_enet_alloc_queue(ndev);
3104 
3105 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3106 
3107 	/* Allocate memory for buffer descriptors. */
3108 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3109 				       GFP_KERNEL);
3110 	if (!cbd_base) {
3111 		return -ENOMEM;
3112 	}
3113 
3114 	memset(cbd_base, 0, bd_size);
3115 
3116 	/* Get the Ethernet address */
3117 	fec_get_mac(ndev);
3118 	/* make sure MAC we just acquired is programmed into the hw */
3119 	fec_set_mac_address(ndev, NULL);
3120 
3121 	/* Set receive and transmit descriptor base. */
3122 	for (i = 0; i < fep->num_rx_queues; i++) {
3123 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3124 		unsigned size = dsize * rxq->bd.ring_size;
3125 
3126 		rxq->bd.qid = i;
3127 		rxq->bd.base = cbd_base;
3128 		rxq->bd.cur = cbd_base;
3129 		rxq->bd.dma = bd_dma;
3130 		rxq->bd.dsize = dsize;
3131 		rxq->bd.dsize_log2 = dsize_log2;
3132 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3133 		bd_dma += size;
3134 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3135 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3136 	}
3137 
3138 	for (i = 0; i < fep->num_tx_queues; i++) {
3139 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3140 		unsigned size = dsize * txq->bd.ring_size;
3141 
3142 		txq->bd.qid = i;
3143 		txq->bd.base = cbd_base;
3144 		txq->bd.cur = cbd_base;
3145 		txq->bd.dma = bd_dma;
3146 		txq->bd.dsize = dsize;
3147 		txq->bd.dsize_log2 = dsize_log2;
3148 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3149 		bd_dma += size;
3150 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3151 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3152 	}
3153 
3154 
3155 	/* The FEC Ethernet specific entries in the device structure */
3156 	ndev->watchdog_timeo = TX_TIMEOUT;
3157 	ndev->netdev_ops = &fec_netdev_ops;
3158 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3159 
3160 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3161 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3162 
3163 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3164 		/* enable hw VLAN support */
3165 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3166 
3167 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3168 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3169 
3170 		/* enable hw accelerator */
3171 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3172 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3173 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3174 	}
3175 
3176 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3177 		fep->tx_align = 0;
3178 		fep->rx_align = 0x3f;
3179 	}
3180 
3181 	ndev->hw_features = ndev->features;
3182 
3183 	fec_restart(ndev);
3184 
3185 	return 0;
3186 }
3187 
3188 #ifdef CONFIG_OF
3189 static void fec_reset_phy(struct platform_device *pdev)
3190 {
3191 	int err, phy_reset;
3192 	bool active_high = false;
3193 	int msec = 1;
3194 	struct device_node *np = pdev->dev.of_node;
3195 
3196 	if (!np)
3197 		return;
3198 
3199 	of_property_read_u32(np, "phy-reset-duration", &msec);
3200 	/* A sane reset duration should not be longer than 1s */
3201 	if (msec > 1000)
3202 		msec = 1;
3203 
3204 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3205 	if (!gpio_is_valid(phy_reset))
3206 		return;
3207 
3208 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3209 
3210 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3211 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3212 			"phy-reset");
3213 	if (err) {
3214 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3215 		return;
3216 	}
3217 
3218 	if (msec > 20)
3219 		msleep(msec);
3220 	else
3221 		usleep_range(msec * 1000, msec * 1000 + 1000);
3222 
3223 	gpio_set_value_cansleep(phy_reset, !active_high);
3224 }
3225 #else /* CONFIG_OF */
3226 static void fec_reset_phy(struct platform_device *pdev)
3227 {
3228 	/*
3229 	 * In case of platform probe, the reset has been done
3230 	 * by machine code.
3231 	 */
3232 }
3233 #endif /* CONFIG_OF */
3234 
3235 static void
3236 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3237 {
3238 	struct device_node *np = pdev->dev.of_node;
3239 
3240 	*num_tx = *num_rx = 1;
3241 
3242 	if (!np || !of_device_is_available(np))
3243 		return;
3244 
3245 	/* parse the num of tx and rx queues */
3246 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3247 
3248 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3249 
3250 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3251 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3252 			 *num_tx);
3253 		*num_tx = 1;
3254 		return;
3255 	}
3256 
3257 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3258 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3259 			 *num_rx);
3260 		*num_rx = 1;
3261 		return;
3262 	}
3263 
3264 }
3265 
3266 static int
3267 fec_probe(struct platform_device *pdev)
3268 {
3269 	struct fec_enet_private *fep;
3270 	struct fec_platform_data *pdata;
3271 	struct net_device *ndev;
3272 	int i, irq, ret = 0;
3273 	struct resource *r;
3274 	const struct of_device_id *of_id;
3275 	static int dev_id;
3276 	struct device_node *np = pdev->dev.of_node, *phy_node;
3277 	int num_tx_qs;
3278 	int num_rx_qs;
3279 
3280 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3281 
3282 	/* Init network device */
3283 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3284 				  num_tx_qs, num_rx_qs);
3285 	if (!ndev)
3286 		return -ENOMEM;
3287 
3288 	SET_NETDEV_DEV(ndev, &pdev->dev);
3289 
3290 	/* setup board info structure */
3291 	fep = netdev_priv(ndev);
3292 
3293 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3294 	if (of_id)
3295 		pdev->id_entry = of_id->data;
3296 	fep->quirks = pdev->id_entry->driver_data;
3297 
3298 	fep->netdev = ndev;
3299 	fep->num_rx_queues = num_rx_qs;
3300 	fep->num_tx_queues = num_tx_qs;
3301 
3302 #if !defined(CONFIG_M5272)
3303 	/* default enable pause frame auto negotiation */
3304 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3305 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3306 #endif
3307 
3308 	/* Select default pin state */
3309 	pinctrl_pm_select_default_state(&pdev->dev);
3310 
3311 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3312 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3313 	if (IS_ERR(fep->hwp)) {
3314 		ret = PTR_ERR(fep->hwp);
3315 		goto failed_ioremap;
3316 	}
3317 
3318 	fep->pdev = pdev;
3319 	fep->dev_id = dev_id++;
3320 
3321 	platform_set_drvdata(pdev, ndev);
3322 
3323 	if ((of_machine_is_compatible("fsl,imx6q") ||
3324 	     of_machine_is_compatible("fsl,imx6dl")) &&
3325 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3326 		fep->quirks |= FEC_QUIRK_ERR006687;
3327 
3328 	if (of_get_property(np, "fsl,magic-packet", NULL))
3329 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3330 
3331 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3332 	if (!phy_node && of_phy_is_fixed_link(np)) {
3333 		ret = of_phy_register_fixed_link(np);
3334 		if (ret < 0) {
3335 			dev_err(&pdev->dev,
3336 				"broken fixed-link specification\n");
3337 			goto failed_phy;
3338 		}
3339 		phy_node = of_node_get(np);
3340 	}
3341 	fep->phy_node = phy_node;
3342 
3343 	ret = of_get_phy_mode(pdev->dev.of_node);
3344 	if (ret < 0) {
3345 		pdata = dev_get_platdata(&pdev->dev);
3346 		if (pdata)
3347 			fep->phy_interface = pdata->phy;
3348 		else
3349 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3350 	} else {
3351 		fep->phy_interface = ret;
3352 	}
3353 
3354 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3355 	if (IS_ERR(fep->clk_ipg)) {
3356 		ret = PTR_ERR(fep->clk_ipg);
3357 		goto failed_clk;
3358 	}
3359 
3360 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3361 	if (IS_ERR(fep->clk_ahb)) {
3362 		ret = PTR_ERR(fep->clk_ahb);
3363 		goto failed_clk;
3364 	}
3365 
3366 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3367 
3368 	/* enet_out is optional, depends on board */
3369 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3370 	if (IS_ERR(fep->clk_enet_out))
3371 		fep->clk_enet_out = NULL;
3372 
3373 	fep->ptp_clk_on = false;
3374 	mutex_init(&fep->ptp_clk_mutex);
3375 
3376 	/* clk_ref is optional, depends on board */
3377 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3378 	if (IS_ERR(fep->clk_ref))
3379 		fep->clk_ref = NULL;
3380 
3381 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3382 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3383 	if (IS_ERR(fep->clk_ptp)) {
3384 		fep->clk_ptp = NULL;
3385 		fep->bufdesc_ex = false;
3386 	}
3387 
3388 	ret = fec_enet_clk_enable(ndev, true);
3389 	if (ret)
3390 		goto failed_clk;
3391 
3392 	ret = clk_prepare_enable(fep->clk_ipg);
3393 	if (ret)
3394 		goto failed_clk_ipg;
3395 
3396 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3397 	if (!IS_ERR(fep->reg_phy)) {
3398 		ret = regulator_enable(fep->reg_phy);
3399 		if (ret) {
3400 			dev_err(&pdev->dev,
3401 				"Failed to enable phy regulator: %d\n", ret);
3402 			goto failed_regulator;
3403 		}
3404 	} else {
3405 		fep->reg_phy = NULL;
3406 	}
3407 
3408 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3409 	pm_runtime_use_autosuspend(&pdev->dev);
3410 	pm_runtime_get_noresume(&pdev->dev);
3411 	pm_runtime_set_active(&pdev->dev);
3412 	pm_runtime_enable(&pdev->dev);
3413 
3414 	fec_reset_phy(pdev);
3415 
3416 	if (fep->bufdesc_ex)
3417 		fec_ptp_init(pdev);
3418 
3419 	ret = fec_enet_init(ndev);
3420 	if (ret)
3421 		goto failed_init;
3422 
3423 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3424 		irq = platform_get_irq(pdev, i);
3425 		if (irq < 0) {
3426 			if (i)
3427 				break;
3428 			ret = irq;
3429 			goto failed_irq;
3430 		}
3431 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3432 				       0, pdev->name, ndev);
3433 		if (ret)
3434 			goto failed_irq;
3435 
3436 		fep->irq[i] = irq;
3437 	}
3438 
3439 	init_completion(&fep->mdio_done);
3440 	ret = fec_enet_mii_init(pdev);
3441 	if (ret)
3442 		goto failed_mii_init;
3443 
3444 	/* Carrier starts down, phylib will bring it up */
3445 	netif_carrier_off(ndev);
3446 	fec_enet_clk_enable(ndev, false);
3447 	pinctrl_pm_select_sleep_state(&pdev->dev);
3448 
3449 	ret = register_netdev(ndev);
3450 	if (ret)
3451 		goto failed_register;
3452 
3453 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3454 			   FEC_WOL_HAS_MAGIC_PACKET);
3455 
3456 	if (fep->bufdesc_ex && fep->ptp_clock)
3457 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3458 
3459 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3460 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3461 
3462 	pm_runtime_mark_last_busy(&pdev->dev);
3463 	pm_runtime_put_autosuspend(&pdev->dev);
3464 
3465 	return 0;
3466 
3467 failed_register:
3468 	fec_enet_mii_remove(fep);
3469 failed_mii_init:
3470 failed_irq:
3471 failed_init:
3472 	fec_ptp_stop(pdev);
3473 	if (fep->reg_phy)
3474 		regulator_disable(fep->reg_phy);
3475 failed_regulator:
3476 	clk_disable_unprepare(fep->clk_ipg);
3477 failed_clk_ipg:
3478 	fec_enet_clk_enable(ndev, false);
3479 failed_clk:
3480 failed_phy:
3481 	of_node_put(phy_node);
3482 failed_ioremap:
3483 	free_netdev(ndev);
3484 
3485 	return ret;
3486 }
3487 
3488 static int
3489 fec_drv_remove(struct platform_device *pdev)
3490 {
3491 	struct net_device *ndev = platform_get_drvdata(pdev);
3492 	struct fec_enet_private *fep = netdev_priv(ndev);
3493 
3494 	cancel_work_sync(&fep->tx_timeout_work);
3495 	fec_ptp_stop(pdev);
3496 	unregister_netdev(ndev);
3497 	fec_enet_mii_remove(fep);
3498 	if (fep->reg_phy)
3499 		regulator_disable(fep->reg_phy);
3500 	of_node_put(fep->phy_node);
3501 	free_netdev(ndev);
3502 
3503 	return 0;
3504 }
3505 
3506 static int __maybe_unused fec_suspend(struct device *dev)
3507 {
3508 	struct net_device *ndev = dev_get_drvdata(dev);
3509 	struct fec_enet_private *fep = netdev_priv(ndev);
3510 
3511 	rtnl_lock();
3512 	if (netif_running(ndev)) {
3513 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3514 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3515 		phy_stop(ndev->phydev);
3516 		napi_disable(&fep->napi);
3517 		netif_tx_lock_bh(ndev);
3518 		netif_device_detach(ndev);
3519 		netif_tx_unlock_bh(ndev);
3520 		fec_stop(ndev);
3521 		fec_enet_clk_enable(ndev, false);
3522 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3523 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3524 	}
3525 	rtnl_unlock();
3526 
3527 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3528 		regulator_disable(fep->reg_phy);
3529 
3530 	/* SOC supply clock to phy, when clock is disabled, phy link down
3531 	 * SOC control phy regulator, when regulator is disabled, phy link down
3532 	 */
3533 	if (fep->clk_enet_out || fep->reg_phy)
3534 		fep->link = 0;
3535 
3536 	return 0;
3537 }
3538 
3539 static int __maybe_unused fec_resume(struct device *dev)
3540 {
3541 	struct net_device *ndev = dev_get_drvdata(dev);
3542 	struct fec_enet_private *fep = netdev_priv(ndev);
3543 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3544 	int ret;
3545 	int val;
3546 
3547 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3548 		ret = regulator_enable(fep->reg_phy);
3549 		if (ret)
3550 			return ret;
3551 	}
3552 
3553 	rtnl_lock();
3554 	if (netif_running(ndev)) {
3555 		ret = fec_enet_clk_enable(ndev, true);
3556 		if (ret) {
3557 			rtnl_unlock();
3558 			goto failed_clk;
3559 		}
3560 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3561 			if (pdata && pdata->sleep_mode_enable)
3562 				pdata->sleep_mode_enable(false);
3563 			val = readl(fep->hwp + FEC_ECNTRL);
3564 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3565 			writel(val, fep->hwp + FEC_ECNTRL);
3566 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3567 		} else {
3568 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3569 		}
3570 		fec_restart(ndev);
3571 		netif_tx_lock_bh(ndev);
3572 		netif_device_attach(ndev);
3573 		netif_tx_unlock_bh(ndev);
3574 		napi_enable(&fep->napi);
3575 		phy_start(ndev->phydev);
3576 	}
3577 	rtnl_unlock();
3578 
3579 	return 0;
3580 
3581 failed_clk:
3582 	if (fep->reg_phy)
3583 		regulator_disable(fep->reg_phy);
3584 	return ret;
3585 }
3586 
3587 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3588 {
3589 	struct net_device *ndev = dev_get_drvdata(dev);
3590 	struct fec_enet_private *fep = netdev_priv(ndev);
3591 
3592 	clk_disable_unprepare(fep->clk_ipg);
3593 
3594 	return 0;
3595 }
3596 
3597 static int __maybe_unused fec_runtime_resume(struct device *dev)
3598 {
3599 	struct net_device *ndev = dev_get_drvdata(dev);
3600 	struct fec_enet_private *fep = netdev_priv(ndev);
3601 
3602 	return clk_prepare_enable(fep->clk_ipg);
3603 }
3604 
3605 static const struct dev_pm_ops fec_pm_ops = {
3606 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3607 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3608 };
3609 
3610 static struct platform_driver fec_driver = {
3611 	.driver	= {
3612 		.name	= DRIVER_NAME,
3613 		.pm	= &fec_pm_ops,
3614 		.of_match_table = fec_dt_ids,
3615 	},
3616 	.id_table = fec_devtype,
3617 	.probe	= fec_probe,
3618 	.remove	= fec_drv_remove,
3619 };
3620 
3621 module_platform_driver(fec_driver);
3622 
3623 MODULE_ALIAS("platform:"DRIVER_NAME);
3624 MODULE_LICENSE("GPL");
3625