1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = FEC_QUIRK_MIB_CLEAR,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 				FEC_QUIRK_HAS_COALESCE,
123 	}, {
124 		/* sentinel */
125 	}
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128 
129 enum imx_fec_type {
130 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
131 	IMX27_FEC,	/* runs on i.mx27/35/51 */
132 	IMX28_FEC,
133 	IMX6Q_FEC,
134 	MVF600_FEC,
135 	IMX6SX_FEC,
136 	IMX6UL_FEC,
137 };
138 
139 static const struct of_device_id fec_dt_ids[] = {
140 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176  *
177  * 2048 byte skbufs are allocated. However, alignment requirements
178  * varies between FEC variants. Worst case is 64, so round down by 64.
179  */
180 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE		64
182 
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS		(1 << 1)
185 #define FEC_RACC_PRODIS		(1 << 2)
186 #define FEC_RACC_SHIFT16	BIT(7)
187 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
188 
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
191 
192 /*
193  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194  * size bits. Other FEC hardware does not, so we need to take that into
195  * account when setting it.
196  */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
200 #else
201 #define	OPT_FRAME_SIZE	0
202 #endif
203 
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST		(1 << 30)
206 #define FEC_MMFR_OP_READ	(2 << 28)
207 #define FEC_MMFR_OP_WRITE	(1 << 28)
208 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
210 #define FEC_MMFR_TA		(2 << 16)
211 #define FEC_MMFR_DATA(v)	(v & 0xffff)
212 /* FEC ECR bits definition */
213 #define FEC_ECR_MAGICEN		(1 << 2)
214 #define FEC_ECR_SLEEP		(1 << 3)
215 
216 #define FEC_MII_TIMEOUT		30000 /* us */
217 
218 /* Transmitter timeout */
219 #define TX_TIMEOUT (2 * HZ)
220 
221 #define FEC_PAUSE_FLAG_AUTONEG	0x1
222 #define FEC_PAUSE_FLAG_ENABLE	0x2
223 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
224 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
225 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
226 
227 #define COPYBREAK_DEFAULT	256
228 
229 /* Max number of allowed TCP segments for software TSO */
230 #define FEC_MAX_TSO_SEGS	100
231 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
232 
233 #define IS_TSO_HEADER(txq, addr) \
234 	((addr >= txq->tso_hdrs_dma) && \
235 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
236 
237 static int mii_cnt;
238 
239 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
240 					     struct bufdesc_prop *bd)
241 {
242 	return (bdp >= bd->last) ? bd->base
243 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
244 }
245 
246 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
247 					     struct bufdesc_prop *bd)
248 {
249 	return (bdp <= bd->base) ? bd->last
250 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
251 }
252 
253 static int fec_enet_get_bd_index(struct bufdesc *bdp,
254 				 struct bufdesc_prop *bd)
255 {
256 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
257 }
258 
259 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
260 {
261 	int entries;
262 
263 	entries = (((const char *)txq->dirty_tx -
264 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
265 
266 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
267 }
268 
269 static void swap_buffer(void *bufaddr, int len)
270 {
271 	int i;
272 	unsigned int *buf = bufaddr;
273 
274 	for (i = 0; i < len; i += 4, buf++)
275 		swab32s(buf);
276 }
277 
278 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
279 {
280 	int i;
281 	unsigned int *src = src_buf;
282 	unsigned int *dst = dst_buf;
283 
284 	for (i = 0; i < len; i += 4, src++, dst++)
285 		*dst = swab32p(src);
286 }
287 
288 static void fec_dump(struct net_device *ndev)
289 {
290 	struct fec_enet_private *fep = netdev_priv(ndev);
291 	struct bufdesc *bdp;
292 	struct fec_enet_priv_tx_q *txq;
293 	int index = 0;
294 
295 	netdev_info(ndev, "TX ring dump\n");
296 	pr_info("Nr     SC     addr       len  SKB\n");
297 
298 	txq = fep->tx_queue[0];
299 	bdp = txq->bd.base;
300 
301 	do {
302 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
303 			index,
304 			bdp == txq->bd.cur ? 'S' : ' ',
305 			bdp == txq->dirty_tx ? 'H' : ' ',
306 			fec16_to_cpu(bdp->cbd_sc),
307 			fec32_to_cpu(bdp->cbd_bufaddr),
308 			fec16_to_cpu(bdp->cbd_datlen),
309 			txq->tx_skbuff[index]);
310 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
311 		index++;
312 	} while (bdp != txq->bd.base);
313 }
314 
315 static inline bool is_ipv4_pkt(struct sk_buff *skb)
316 {
317 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
318 }
319 
320 static int
321 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
322 {
323 	/* Only run for packets requiring a checksum. */
324 	if (skb->ip_summed != CHECKSUM_PARTIAL)
325 		return 0;
326 
327 	if (unlikely(skb_cow_head(skb, 0)))
328 		return -1;
329 
330 	if (is_ipv4_pkt(skb))
331 		ip_hdr(skb)->check = 0;
332 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
333 
334 	return 0;
335 }
336 
337 static struct bufdesc *
338 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
339 			     struct sk_buff *skb,
340 			     struct net_device *ndev)
341 {
342 	struct fec_enet_private *fep = netdev_priv(ndev);
343 	struct bufdesc *bdp = txq->bd.cur;
344 	struct bufdesc_ex *ebdp;
345 	int nr_frags = skb_shinfo(skb)->nr_frags;
346 	int frag, frag_len;
347 	unsigned short status;
348 	unsigned int estatus = 0;
349 	skb_frag_t *this_frag;
350 	unsigned int index;
351 	void *bufaddr;
352 	dma_addr_t addr;
353 	int i;
354 
355 	for (frag = 0; frag < nr_frags; frag++) {
356 		this_frag = &skb_shinfo(skb)->frags[frag];
357 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
358 		ebdp = (struct bufdesc_ex *)bdp;
359 
360 		status = fec16_to_cpu(bdp->cbd_sc);
361 		status &= ~BD_ENET_TX_STATS;
362 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
363 		frag_len = skb_shinfo(skb)->frags[frag].size;
364 
365 		/* Handle the last BD specially */
366 		if (frag == nr_frags - 1) {
367 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
368 			if (fep->bufdesc_ex) {
369 				estatus |= BD_ENET_TX_INT;
370 				if (unlikely(skb_shinfo(skb)->tx_flags &
371 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
372 					estatus |= BD_ENET_TX_TS;
373 			}
374 		}
375 
376 		if (fep->bufdesc_ex) {
377 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
378 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
379 			if (skb->ip_summed == CHECKSUM_PARTIAL)
380 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
381 			ebdp->cbd_bdu = 0;
382 			ebdp->cbd_esc = cpu_to_fec32(estatus);
383 		}
384 
385 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
386 
387 		index = fec_enet_get_bd_index(bdp, &txq->bd);
388 		if (((unsigned long) bufaddr) & fep->tx_align ||
389 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
390 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
391 			bufaddr = txq->tx_bounce[index];
392 
393 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
394 				swap_buffer(bufaddr, frag_len);
395 		}
396 
397 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
398 				      DMA_TO_DEVICE);
399 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
400 			if (net_ratelimit())
401 				netdev_err(ndev, "Tx DMA memory map failed\n");
402 			goto dma_mapping_error;
403 		}
404 
405 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
406 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
407 		/* Make sure the updates to rest of the descriptor are
408 		 * performed before transferring ownership.
409 		 */
410 		wmb();
411 		bdp->cbd_sc = cpu_to_fec16(status);
412 	}
413 
414 	return bdp;
415 dma_mapping_error:
416 	bdp = txq->bd.cur;
417 	for (i = 0; i < frag; i++) {
418 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
419 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
420 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
421 	}
422 	return ERR_PTR(-ENOMEM);
423 }
424 
425 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
426 				   struct sk_buff *skb, struct net_device *ndev)
427 {
428 	struct fec_enet_private *fep = netdev_priv(ndev);
429 	int nr_frags = skb_shinfo(skb)->nr_frags;
430 	struct bufdesc *bdp, *last_bdp;
431 	void *bufaddr;
432 	dma_addr_t addr;
433 	unsigned short status;
434 	unsigned short buflen;
435 	unsigned int estatus = 0;
436 	unsigned int index;
437 	int entries_free;
438 
439 	entries_free = fec_enet_get_free_txdesc_num(txq);
440 	if (entries_free < MAX_SKB_FRAGS + 1) {
441 		dev_kfree_skb_any(skb);
442 		if (net_ratelimit())
443 			netdev_err(ndev, "NOT enough BD for SG!\n");
444 		return NETDEV_TX_OK;
445 	}
446 
447 	/* Protocol checksum off-load for TCP and UDP. */
448 	if (fec_enet_clear_csum(skb, ndev)) {
449 		dev_kfree_skb_any(skb);
450 		return NETDEV_TX_OK;
451 	}
452 
453 	/* Fill in a Tx ring entry */
454 	bdp = txq->bd.cur;
455 	last_bdp = bdp;
456 	status = fec16_to_cpu(bdp->cbd_sc);
457 	status &= ~BD_ENET_TX_STATS;
458 
459 	/* Set buffer length and buffer pointer */
460 	bufaddr = skb->data;
461 	buflen = skb_headlen(skb);
462 
463 	index = fec_enet_get_bd_index(bdp, &txq->bd);
464 	if (((unsigned long) bufaddr) & fep->tx_align ||
465 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 		memcpy(txq->tx_bounce[index], skb->data, buflen);
467 		bufaddr = txq->tx_bounce[index];
468 
469 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 			swap_buffer(bufaddr, buflen);
471 	}
472 
473 	/* Push the data cache so the CPM does not get stale memory data. */
474 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
475 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 		dev_kfree_skb_any(skb);
477 		if (net_ratelimit())
478 			netdev_err(ndev, "Tx DMA memory map failed\n");
479 		return NETDEV_TX_OK;
480 	}
481 
482 	if (nr_frags) {
483 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
484 		if (IS_ERR(last_bdp)) {
485 			dma_unmap_single(&fep->pdev->dev, addr,
486 					 buflen, DMA_TO_DEVICE);
487 			dev_kfree_skb_any(skb);
488 			return NETDEV_TX_OK;
489 		}
490 	} else {
491 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
492 		if (fep->bufdesc_ex) {
493 			estatus = BD_ENET_TX_INT;
494 			if (unlikely(skb_shinfo(skb)->tx_flags &
495 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
496 				estatus |= BD_ENET_TX_TS;
497 		}
498 	}
499 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
500 	bdp->cbd_datlen = cpu_to_fec16(buflen);
501 
502 	if (fep->bufdesc_ex) {
503 
504 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
505 
506 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
507 			fep->hwts_tx_en))
508 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
509 
510 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
511 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
512 
513 		if (skb->ip_summed == CHECKSUM_PARTIAL)
514 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515 
516 		ebdp->cbd_bdu = 0;
517 		ebdp->cbd_esc = cpu_to_fec32(estatus);
518 	}
519 
520 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
521 	/* Save skb pointer */
522 	txq->tx_skbuff[index] = skb;
523 
524 	/* Make sure the updates to rest of the descriptor are performed before
525 	 * transferring ownership.
526 	 */
527 	wmb();
528 
529 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
530 	 * it's the last BD of the frame, and to put the CRC on the end.
531 	 */
532 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
533 	bdp->cbd_sc = cpu_to_fec16(status);
534 
535 	/* If this was the last BD in the ring, start at the beginning again. */
536 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
537 
538 	skb_tx_timestamp(skb);
539 
540 	/* Make sure the update to bdp and tx_skbuff are performed before
541 	 * txq->bd.cur.
542 	 */
543 	wmb();
544 	txq->bd.cur = bdp;
545 
546 	/* Trigger transmission start */
547 	writel(0, txq->bd.reg_desc_active);
548 
549 	return 0;
550 }
551 
552 static int
553 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
554 			  struct net_device *ndev,
555 			  struct bufdesc *bdp, int index, char *data,
556 			  int size, bool last_tcp, bool is_last)
557 {
558 	struct fec_enet_private *fep = netdev_priv(ndev);
559 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
560 	unsigned short status;
561 	unsigned int estatus = 0;
562 	dma_addr_t addr;
563 
564 	status = fec16_to_cpu(bdp->cbd_sc);
565 	status &= ~BD_ENET_TX_STATS;
566 
567 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
568 
569 	if (((unsigned long) data) & fep->tx_align ||
570 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
571 		memcpy(txq->tx_bounce[index], data, size);
572 		data = txq->tx_bounce[index];
573 
574 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
575 			swap_buffer(data, size);
576 	}
577 
578 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
579 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
580 		dev_kfree_skb_any(skb);
581 		if (net_ratelimit())
582 			netdev_err(ndev, "Tx DMA memory map failed\n");
583 		return NETDEV_TX_BUSY;
584 	}
585 
586 	bdp->cbd_datlen = cpu_to_fec16(size);
587 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
588 
589 	if (fep->bufdesc_ex) {
590 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
591 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
592 		if (skb->ip_summed == CHECKSUM_PARTIAL)
593 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
594 		ebdp->cbd_bdu = 0;
595 		ebdp->cbd_esc = cpu_to_fec32(estatus);
596 	}
597 
598 	/* Handle the last BD specially */
599 	if (last_tcp)
600 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
601 	if (is_last) {
602 		status |= BD_ENET_TX_INTR;
603 		if (fep->bufdesc_ex)
604 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
605 	}
606 
607 	bdp->cbd_sc = cpu_to_fec16(status);
608 
609 	return 0;
610 }
611 
612 static int
613 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
614 			 struct sk_buff *skb, struct net_device *ndev,
615 			 struct bufdesc *bdp, int index)
616 {
617 	struct fec_enet_private *fep = netdev_priv(ndev);
618 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
619 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
620 	void *bufaddr;
621 	unsigned long dmabuf;
622 	unsigned short status;
623 	unsigned int estatus = 0;
624 
625 	status = fec16_to_cpu(bdp->cbd_sc);
626 	status &= ~BD_ENET_TX_STATS;
627 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
628 
629 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
630 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
631 	if (((unsigned long)bufaddr) & fep->tx_align ||
632 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
633 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
634 		bufaddr = txq->tx_bounce[index];
635 
636 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
637 			swap_buffer(bufaddr, hdr_len);
638 
639 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
640 					hdr_len, DMA_TO_DEVICE);
641 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
642 			dev_kfree_skb_any(skb);
643 			if (net_ratelimit())
644 				netdev_err(ndev, "Tx DMA memory map failed\n");
645 			return NETDEV_TX_BUSY;
646 		}
647 	}
648 
649 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
650 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
651 
652 	if (fep->bufdesc_ex) {
653 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
654 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
655 		if (skb->ip_summed == CHECKSUM_PARTIAL)
656 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
657 		ebdp->cbd_bdu = 0;
658 		ebdp->cbd_esc = cpu_to_fec32(estatus);
659 	}
660 
661 	bdp->cbd_sc = cpu_to_fec16(status);
662 
663 	return 0;
664 }
665 
666 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
667 				   struct sk_buff *skb,
668 				   struct net_device *ndev)
669 {
670 	struct fec_enet_private *fep = netdev_priv(ndev);
671 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 	int total_len, data_left;
673 	struct bufdesc *bdp = txq->bd.cur;
674 	struct tso_t tso;
675 	unsigned int index = 0;
676 	int ret;
677 
678 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
679 		dev_kfree_skb_any(skb);
680 		if (net_ratelimit())
681 			netdev_err(ndev, "NOT enough BD for TSO!\n");
682 		return NETDEV_TX_OK;
683 	}
684 
685 	/* Protocol checksum off-load for TCP and UDP. */
686 	if (fec_enet_clear_csum(skb, ndev)) {
687 		dev_kfree_skb_any(skb);
688 		return NETDEV_TX_OK;
689 	}
690 
691 	/* Initialize the TSO handler, and prepare the first payload */
692 	tso_start(skb, &tso);
693 
694 	total_len = skb->len - hdr_len;
695 	while (total_len > 0) {
696 		char *hdr;
697 
698 		index = fec_enet_get_bd_index(bdp, &txq->bd);
699 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
700 		total_len -= data_left;
701 
702 		/* prepare packet headers: MAC + IP + TCP */
703 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
704 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
705 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
706 		if (ret)
707 			goto err_release;
708 
709 		while (data_left > 0) {
710 			int size;
711 
712 			size = min_t(int, tso.size, data_left);
713 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
714 			index = fec_enet_get_bd_index(bdp, &txq->bd);
715 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
716 							bdp, index,
717 							tso.data, size,
718 							size == data_left,
719 							total_len == 0);
720 			if (ret)
721 				goto err_release;
722 
723 			data_left -= size;
724 			tso_build_data(skb, &tso, size);
725 		}
726 
727 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
728 	}
729 
730 	/* Save skb pointer */
731 	txq->tx_skbuff[index] = skb;
732 
733 	skb_tx_timestamp(skb);
734 	txq->bd.cur = bdp;
735 
736 	/* Trigger transmission start */
737 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
738 	    !readl(txq->bd.reg_desc_active) ||
739 	    !readl(txq->bd.reg_desc_active) ||
740 	    !readl(txq->bd.reg_desc_active) ||
741 	    !readl(txq->bd.reg_desc_active))
742 		writel(0, txq->bd.reg_desc_active);
743 
744 	return 0;
745 
746 err_release:
747 	/* TODO: Release all used data descriptors for TSO */
748 	return ret;
749 }
750 
751 static netdev_tx_t
752 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
753 {
754 	struct fec_enet_private *fep = netdev_priv(ndev);
755 	int entries_free;
756 	unsigned short queue;
757 	struct fec_enet_priv_tx_q *txq;
758 	struct netdev_queue *nq;
759 	int ret;
760 
761 	queue = skb_get_queue_mapping(skb);
762 	txq = fep->tx_queue[queue];
763 	nq = netdev_get_tx_queue(ndev, queue);
764 
765 	if (skb_is_gso(skb))
766 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
767 	else
768 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
769 	if (ret)
770 		return ret;
771 
772 	entries_free = fec_enet_get_free_txdesc_num(txq);
773 	if (entries_free <= txq->tx_stop_threshold)
774 		netif_tx_stop_queue(nq);
775 
776 	return NETDEV_TX_OK;
777 }
778 
779 /* Init RX & TX buffer descriptors
780  */
781 static void fec_enet_bd_init(struct net_device *dev)
782 {
783 	struct fec_enet_private *fep = netdev_priv(dev);
784 	struct fec_enet_priv_tx_q *txq;
785 	struct fec_enet_priv_rx_q *rxq;
786 	struct bufdesc *bdp;
787 	unsigned int i;
788 	unsigned int q;
789 
790 	for (q = 0; q < fep->num_rx_queues; q++) {
791 		/* Initialize the receive buffer descriptors. */
792 		rxq = fep->rx_queue[q];
793 		bdp = rxq->bd.base;
794 
795 		for (i = 0; i < rxq->bd.ring_size; i++) {
796 
797 			/* Initialize the BD for every fragment in the page. */
798 			if (bdp->cbd_bufaddr)
799 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
800 			else
801 				bdp->cbd_sc = cpu_to_fec16(0);
802 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
803 		}
804 
805 		/* Set the last buffer to wrap */
806 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
807 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
808 
809 		rxq->bd.cur = rxq->bd.base;
810 	}
811 
812 	for (q = 0; q < fep->num_tx_queues; q++) {
813 		/* ...and the same for transmit */
814 		txq = fep->tx_queue[q];
815 		bdp = txq->bd.base;
816 		txq->bd.cur = bdp;
817 
818 		for (i = 0; i < txq->bd.ring_size; i++) {
819 			/* Initialize the BD for every fragment in the page. */
820 			bdp->cbd_sc = cpu_to_fec16(0);
821 			if (txq->tx_skbuff[i]) {
822 				dev_kfree_skb_any(txq->tx_skbuff[i]);
823 				txq->tx_skbuff[i] = NULL;
824 			}
825 			bdp->cbd_bufaddr = cpu_to_fec32(0);
826 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
827 		}
828 
829 		/* Set the last buffer to wrap */
830 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
831 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
832 		txq->dirty_tx = bdp;
833 	}
834 }
835 
836 static void fec_enet_active_rxring(struct net_device *ndev)
837 {
838 	struct fec_enet_private *fep = netdev_priv(ndev);
839 	int i;
840 
841 	for (i = 0; i < fep->num_rx_queues; i++)
842 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
843 }
844 
845 static void fec_enet_enable_ring(struct net_device *ndev)
846 {
847 	struct fec_enet_private *fep = netdev_priv(ndev);
848 	struct fec_enet_priv_tx_q *txq;
849 	struct fec_enet_priv_rx_q *rxq;
850 	int i;
851 
852 	for (i = 0; i < fep->num_rx_queues; i++) {
853 		rxq = fep->rx_queue[i];
854 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
855 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
856 
857 		/* enable DMA1/2 */
858 		if (i)
859 			writel(RCMR_MATCHEN | RCMR_CMP(i),
860 			       fep->hwp + FEC_RCMR(i));
861 	}
862 
863 	for (i = 0; i < fep->num_tx_queues; i++) {
864 		txq = fep->tx_queue[i];
865 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
866 
867 		/* enable DMA1/2 */
868 		if (i)
869 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
870 			       fep->hwp + FEC_DMA_CFG(i));
871 	}
872 }
873 
874 static void fec_enet_reset_skb(struct net_device *ndev)
875 {
876 	struct fec_enet_private *fep = netdev_priv(ndev);
877 	struct fec_enet_priv_tx_q *txq;
878 	int i, j;
879 
880 	for (i = 0; i < fep->num_tx_queues; i++) {
881 		txq = fep->tx_queue[i];
882 
883 		for (j = 0; j < txq->bd.ring_size; j++) {
884 			if (txq->tx_skbuff[j]) {
885 				dev_kfree_skb_any(txq->tx_skbuff[j]);
886 				txq->tx_skbuff[j] = NULL;
887 			}
888 		}
889 	}
890 }
891 
892 /*
893  * This function is called to start or restart the FEC during a link
894  * change, transmit timeout, or to reconfigure the FEC.  The network
895  * packet processing for this device must be stopped before this call.
896  */
897 static void
898 fec_restart(struct net_device *ndev)
899 {
900 	struct fec_enet_private *fep = netdev_priv(ndev);
901 	u32 val;
902 	u32 temp_mac[2];
903 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
904 	u32 ecntl = 0x2; /* ETHEREN */
905 
906 	/* Whack a reset.  We should wait for this.
907 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
908 	 * instead of reset MAC itself.
909 	 */
910 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
911 		writel(0, fep->hwp + FEC_ECNTRL);
912 	} else {
913 		writel(1, fep->hwp + FEC_ECNTRL);
914 		udelay(10);
915 	}
916 
917 	/*
918 	 * enet-mac reset will reset mac address registers too,
919 	 * so need to reconfigure it.
920 	 */
921 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
922 	writel((__force u32)cpu_to_be32(temp_mac[0]),
923 	       fep->hwp + FEC_ADDR_LOW);
924 	writel((__force u32)cpu_to_be32(temp_mac[1]),
925 	       fep->hwp + FEC_ADDR_HIGH);
926 
927 	/* Clear any outstanding interrupt. */
928 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
929 
930 	fec_enet_bd_init(ndev);
931 
932 	fec_enet_enable_ring(ndev);
933 
934 	/* Reset tx SKB buffers. */
935 	fec_enet_reset_skb(ndev);
936 
937 	/* Enable MII mode */
938 	if (fep->full_duplex == DUPLEX_FULL) {
939 		/* FD enable */
940 		writel(0x04, fep->hwp + FEC_X_CNTRL);
941 	} else {
942 		/* No Rcv on Xmit */
943 		rcntl |= 0x02;
944 		writel(0x0, fep->hwp + FEC_X_CNTRL);
945 	}
946 
947 	/* Set MII speed */
948 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
949 
950 #if !defined(CONFIG_M5272)
951 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
952 		val = readl(fep->hwp + FEC_RACC);
953 		/* align IP header */
954 		val |= FEC_RACC_SHIFT16;
955 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
956 			/* set RX checksum */
957 			val |= FEC_RACC_OPTIONS;
958 		else
959 			val &= ~FEC_RACC_OPTIONS;
960 		writel(val, fep->hwp + FEC_RACC);
961 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
962 	}
963 #endif
964 
965 	/*
966 	 * The phy interface and speed need to get configured
967 	 * differently on enet-mac.
968 	 */
969 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
970 		/* Enable flow control and length check */
971 		rcntl |= 0x40000000 | 0x00000020;
972 
973 		/* RGMII, RMII or MII */
974 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
975 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
976 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
977 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
978 			rcntl |= (1 << 6);
979 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
980 			rcntl |= (1 << 8);
981 		else
982 			rcntl &= ~(1 << 8);
983 
984 		/* 1G, 100M or 10M */
985 		if (ndev->phydev) {
986 			if (ndev->phydev->speed == SPEED_1000)
987 				ecntl |= (1 << 5);
988 			else if (ndev->phydev->speed == SPEED_100)
989 				rcntl &= ~(1 << 9);
990 			else
991 				rcntl |= (1 << 9);
992 		}
993 	} else {
994 #ifdef FEC_MIIGSK_ENR
995 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
996 			u32 cfgr;
997 			/* disable the gasket and wait */
998 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
999 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1000 				udelay(1);
1001 
1002 			/*
1003 			 * configure the gasket:
1004 			 *   RMII, 50 MHz, no loopback, no echo
1005 			 *   MII, 25 MHz, no loopback, no echo
1006 			 */
1007 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1008 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1009 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1010 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1011 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1012 
1013 			/* re-enable the gasket */
1014 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1015 		}
1016 #endif
1017 	}
1018 
1019 #if !defined(CONFIG_M5272)
1020 	/* enable pause frame*/
1021 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1022 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1023 	     ndev->phydev && ndev->phydev->pause)) {
1024 		rcntl |= FEC_ENET_FCE;
1025 
1026 		/* set FIFO threshold parameter to reduce overrun */
1027 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1028 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1029 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1030 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1031 
1032 		/* OPD */
1033 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1034 	} else {
1035 		rcntl &= ~FEC_ENET_FCE;
1036 	}
1037 #endif /* !defined(CONFIG_M5272) */
1038 
1039 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1040 
1041 	/* Setup multicast filter. */
1042 	set_multicast_list(ndev);
1043 #ifndef CONFIG_M5272
1044 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1045 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1046 #endif
1047 
1048 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1049 		/* enable ENET endian swap */
1050 		ecntl |= (1 << 8);
1051 		/* enable ENET store and forward mode */
1052 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1053 	}
1054 
1055 	if (fep->bufdesc_ex)
1056 		ecntl |= (1 << 4);
1057 
1058 #ifndef CONFIG_M5272
1059 	/* Enable the MIB statistic event counters */
1060 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1061 #endif
1062 
1063 	/* And last, enable the transmit and receive processing */
1064 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1065 	fec_enet_active_rxring(ndev);
1066 
1067 	if (fep->bufdesc_ex)
1068 		fec_ptp_start_cyclecounter(ndev);
1069 
1070 	/* Enable interrupts we wish to service */
1071 	if (fep->link)
1072 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1073 	else
1074 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1075 
1076 	/* Init the interrupt coalescing */
1077 	fec_enet_itr_coal_init(ndev);
1078 
1079 }
1080 
1081 static void
1082 fec_stop(struct net_device *ndev)
1083 {
1084 	struct fec_enet_private *fep = netdev_priv(ndev);
1085 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1086 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1087 	u32 val;
1088 
1089 	/* We cannot expect a graceful transmit stop without link !!! */
1090 	if (fep->link) {
1091 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1092 		udelay(10);
1093 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1094 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1095 	}
1096 
1097 	/* Whack a reset.  We should wait for this.
1098 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1099 	 * instead of reset MAC itself.
1100 	 */
1101 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1102 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1103 			writel(0, fep->hwp + FEC_ECNTRL);
1104 		} else {
1105 			writel(1, fep->hwp + FEC_ECNTRL);
1106 			udelay(10);
1107 		}
1108 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1109 	} else {
1110 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1111 		val = readl(fep->hwp + FEC_ECNTRL);
1112 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1113 		writel(val, fep->hwp + FEC_ECNTRL);
1114 
1115 		if (pdata && pdata->sleep_mode_enable)
1116 			pdata->sleep_mode_enable(true);
1117 	}
1118 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1119 
1120 	/* We have to keep ENET enabled to have MII interrupt stay working */
1121 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1122 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1123 		writel(2, fep->hwp + FEC_ECNTRL);
1124 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1125 	}
1126 }
1127 
1128 
1129 static void
1130 fec_timeout(struct net_device *ndev)
1131 {
1132 	struct fec_enet_private *fep = netdev_priv(ndev);
1133 
1134 	fec_dump(ndev);
1135 
1136 	ndev->stats.tx_errors++;
1137 
1138 	schedule_work(&fep->tx_timeout_work);
1139 }
1140 
1141 static void fec_enet_timeout_work(struct work_struct *work)
1142 {
1143 	struct fec_enet_private *fep =
1144 		container_of(work, struct fec_enet_private, tx_timeout_work);
1145 	struct net_device *ndev = fep->netdev;
1146 
1147 	rtnl_lock();
1148 	if (netif_device_present(ndev) || netif_running(ndev)) {
1149 		napi_disable(&fep->napi);
1150 		netif_tx_lock_bh(ndev);
1151 		fec_restart(ndev);
1152 		netif_wake_queue(ndev);
1153 		netif_tx_unlock_bh(ndev);
1154 		napi_enable(&fep->napi);
1155 	}
1156 	rtnl_unlock();
1157 }
1158 
1159 static void
1160 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1161 	struct skb_shared_hwtstamps *hwtstamps)
1162 {
1163 	unsigned long flags;
1164 	u64 ns;
1165 
1166 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1167 	ns = timecounter_cyc2time(&fep->tc, ts);
1168 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1169 
1170 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1171 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1172 }
1173 
1174 static void
1175 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1176 {
1177 	struct	fec_enet_private *fep;
1178 	struct bufdesc *bdp;
1179 	unsigned short status;
1180 	struct	sk_buff	*skb;
1181 	struct fec_enet_priv_tx_q *txq;
1182 	struct netdev_queue *nq;
1183 	int	index = 0;
1184 	int	entries_free;
1185 
1186 	fep = netdev_priv(ndev);
1187 
1188 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1189 
1190 	txq = fep->tx_queue[queue_id];
1191 	/* get next bdp of dirty_tx */
1192 	nq = netdev_get_tx_queue(ndev, queue_id);
1193 	bdp = txq->dirty_tx;
1194 
1195 	/* get next bdp of dirty_tx */
1196 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1197 
1198 	while (bdp != READ_ONCE(txq->bd.cur)) {
1199 		/* Order the load of bd.cur and cbd_sc */
1200 		rmb();
1201 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1202 		if (status & BD_ENET_TX_READY)
1203 			break;
1204 
1205 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1206 
1207 		skb = txq->tx_skbuff[index];
1208 		txq->tx_skbuff[index] = NULL;
1209 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1210 			dma_unmap_single(&fep->pdev->dev,
1211 					 fec32_to_cpu(bdp->cbd_bufaddr),
1212 					 fec16_to_cpu(bdp->cbd_datlen),
1213 					 DMA_TO_DEVICE);
1214 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1215 		if (!skb)
1216 			goto skb_done;
1217 
1218 		/* Check for errors. */
1219 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1220 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1221 				   BD_ENET_TX_CSL)) {
1222 			ndev->stats.tx_errors++;
1223 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1224 				ndev->stats.tx_heartbeat_errors++;
1225 			if (status & BD_ENET_TX_LC)  /* Late collision */
1226 				ndev->stats.tx_window_errors++;
1227 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1228 				ndev->stats.tx_aborted_errors++;
1229 			if (status & BD_ENET_TX_UN)  /* Underrun */
1230 				ndev->stats.tx_fifo_errors++;
1231 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1232 				ndev->stats.tx_carrier_errors++;
1233 		} else {
1234 			ndev->stats.tx_packets++;
1235 			ndev->stats.tx_bytes += skb->len;
1236 		}
1237 
1238 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1239 			fep->bufdesc_ex) {
1240 			struct skb_shared_hwtstamps shhwtstamps;
1241 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1242 
1243 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1244 			skb_tstamp_tx(skb, &shhwtstamps);
1245 		}
1246 
1247 		/* Deferred means some collisions occurred during transmit,
1248 		 * but we eventually sent the packet OK.
1249 		 */
1250 		if (status & BD_ENET_TX_DEF)
1251 			ndev->stats.collisions++;
1252 
1253 		/* Free the sk buffer associated with this last transmit */
1254 		dev_kfree_skb_any(skb);
1255 skb_done:
1256 		/* Make sure the update to bdp and tx_skbuff are performed
1257 		 * before dirty_tx
1258 		 */
1259 		wmb();
1260 		txq->dirty_tx = bdp;
1261 
1262 		/* Update pointer to next buffer descriptor to be transmitted */
1263 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264 
1265 		/* Since we have freed up a buffer, the ring is no longer full
1266 		 */
1267 		if (netif_queue_stopped(ndev)) {
1268 			entries_free = fec_enet_get_free_txdesc_num(txq);
1269 			if (entries_free >= txq->tx_wake_threshold)
1270 				netif_tx_wake_queue(nq);
1271 		}
1272 	}
1273 
1274 	/* ERR006358: Keep the transmitter going */
1275 	if (bdp != txq->bd.cur &&
1276 	    readl(txq->bd.reg_desc_active) == 0)
1277 		writel(0, txq->bd.reg_desc_active);
1278 }
1279 
1280 static void
1281 fec_enet_tx(struct net_device *ndev)
1282 {
1283 	struct fec_enet_private *fep = netdev_priv(ndev);
1284 	u16 queue_id;
1285 	/* First process class A queue, then Class B and Best Effort queue */
1286 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1287 		clear_bit(queue_id, &fep->work_tx);
1288 		fec_enet_tx_queue(ndev, queue_id);
1289 	}
1290 	return;
1291 }
1292 
1293 static int
1294 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1295 {
1296 	struct  fec_enet_private *fep = netdev_priv(ndev);
1297 	int off;
1298 
1299 	off = ((unsigned long)skb->data) & fep->rx_align;
1300 	if (off)
1301 		skb_reserve(skb, fep->rx_align + 1 - off);
1302 
1303 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1304 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1305 		if (net_ratelimit())
1306 			netdev_err(ndev, "Rx DMA memory map failed\n");
1307 		return -ENOMEM;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1314 			       struct bufdesc *bdp, u32 length, bool swap)
1315 {
1316 	struct  fec_enet_private *fep = netdev_priv(ndev);
1317 	struct sk_buff *new_skb;
1318 
1319 	if (length > fep->rx_copybreak)
1320 		return false;
1321 
1322 	new_skb = netdev_alloc_skb(ndev, length);
1323 	if (!new_skb)
1324 		return false;
1325 
1326 	dma_sync_single_for_cpu(&fep->pdev->dev,
1327 				fec32_to_cpu(bdp->cbd_bufaddr),
1328 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1329 				DMA_FROM_DEVICE);
1330 	if (!swap)
1331 		memcpy(new_skb->data, (*skb)->data, length);
1332 	else
1333 		swap_buffer2(new_skb->data, (*skb)->data, length);
1334 	*skb = new_skb;
1335 
1336 	return true;
1337 }
1338 
1339 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1340  * When we update through the ring, if the next incoming buffer has
1341  * not been given to the system, we just set the empty indicator,
1342  * effectively tossing the packet.
1343  */
1344 static int
1345 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1346 {
1347 	struct fec_enet_private *fep = netdev_priv(ndev);
1348 	struct fec_enet_priv_rx_q *rxq;
1349 	struct bufdesc *bdp;
1350 	unsigned short status;
1351 	struct  sk_buff *skb_new = NULL;
1352 	struct  sk_buff *skb;
1353 	ushort	pkt_len;
1354 	__u8 *data;
1355 	int	pkt_received = 0;
1356 	struct	bufdesc_ex *ebdp = NULL;
1357 	bool	vlan_packet_rcvd = false;
1358 	u16	vlan_tag;
1359 	int	index = 0;
1360 	bool	is_copybreak;
1361 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1362 
1363 #ifdef CONFIG_M532x
1364 	flush_cache_all();
1365 #endif
1366 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1367 	rxq = fep->rx_queue[queue_id];
1368 
1369 	/* First, grab all of the stats for the incoming packet.
1370 	 * These get messed up if we get called due to a busy condition.
1371 	 */
1372 	bdp = rxq->bd.cur;
1373 
1374 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1375 
1376 		if (pkt_received >= budget)
1377 			break;
1378 		pkt_received++;
1379 
1380 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1381 
1382 		/* Check for errors. */
1383 		status ^= BD_ENET_RX_LAST;
1384 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1385 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1386 			   BD_ENET_RX_CL)) {
1387 			ndev->stats.rx_errors++;
1388 			if (status & BD_ENET_RX_OV) {
1389 				/* FIFO overrun */
1390 				ndev->stats.rx_fifo_errors++;
1391 				goto rx_processing_done;
1392 			}
1393 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1394 						| BD_ENET_RX_LAST)) {
1395 				/* Frame too long or too short. */
1396 				ndev->stats.rx_length_errors++;
1397 				if (status & BD_ENET_RX_LAST)
1398 					netdev_err(ndev, "rcv is not +last\n");
1399 			}
1400 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1401 				ndev->stats.rx_crc_errors++;
1402 			/* Report late collisions as a frame error. */
1403 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1404 				ndev->stats.rx_frame_errors++;
1405 			goto rx_processing_done;
1406 		}
1407 
1408 		/* Process the incoming frame. */
1409 		ndev->stats.rx_packets++;
1410 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1411 		ndev->stats.rx_bytes += pkt_len;
1412 
1413 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1414 		skb = rxq->rx_skbuff[index];
1415 
1416 		/* The packet length includes FCS, but we don't want to
1417 		 * include that when passing upstream as it messes up
1418 		 * bridging applications.
1419 		 */
1420 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1421 						  need_swap);
1422 		if (!is_copybreak) {
1423 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1424 			if (unlikely(!skb_new)) {
1425 				ndev->stats.rx_dropped++;
1426 				goto rx_processing_done;
1427 			}
1428 			dma_unmap_single(&fep->pdev->dev,
1429 					 fec32_to_cpu(bdp->cbd_bufaddr),
1430 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1431 					 DMA_FROM_DEVICE);
1432 		}
1433 
1434 		prefetch(skb->data - NET_IP_ALIGN);
1435 		skb_put(skb, pkt_len - 4);
1436 		data = skb->data;
1437 
1438 		if (!is_copybreak && need_swap)
1439 			swap_buffer(data, pkt_len);
1440 
1441 #if !defined(CONFIG_M5272)
1442 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1443 			data = skb_pull_inline(skb, 2);
1444 #endif
1445 
1446 		/* Extract the enhanced buffer descriptor */
1447 		ebdp = NULL;
1448 		if (fep->bufdesc_ex)
1449 			ebdp = (struct bufdesc_ex *)bdp;
1450 
1451 		/* If this is a VLAN packet remove the VLAN Tag */
1452 		vlan_packet_rcvd = false;
1453 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1454 		    fep->bufdesc_ex &&
1455 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1456 			/* Push and remove the vlan tag */
1457 			struct vlan_hdr *vlan_header =
1458 					(struct vlan_hdr *) (data + ETH_HLEN);
1459 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1460 
1461 			vlan_packet_rcvd = true;
1462 
1463 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1464 			skb_pull(skb, VLAN_HLEN);
1465 		}
1466 
1467 		skb->protocol = eth_type_trans(skb, ndev);
1468 
1469 		/* Get receive timestamp from the skb */
1470 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1471 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1472 					  skb_hwtstamps(skb));
1473 
1474 		if (fep->bufdesc_ex &&
1475 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1476 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1477 				/* don't check it */
1478 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1479 			} else {
1480 				skb_checksum_none_assert(skb);
1481 			}
1482 		}
1483 
1484 		/* Handle received VLAN packets */
1485 		if (vlan_packet_rcvd)
1486 			__vlan_hwaccel_put_tag(skb,
1487 					       htons(ETH_P_8021Q),
1488 					       vlan_tag);
1489 
1490 		napi_gro_receive(&fep->napi, skb);
1491 
1492 		if (is_copybreak) {
1493 			dma_sync_single_for_device(&fep->pdev->dev,
1494 						   fec32_to_cpu(bdp->cbd_bufaddr),
1495 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1496 						   DMA_FROM_DEVICE);
1497 		} else {
1498 			rxq->rx_skbuff[index] = skb_new;
1499 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1500 		}
1501 
1502 rx_processing_done:
1503 		/* Clear the status flags for this buffer */
1504 		status &= ~BD_ENET_RX_STATS;
1505 
1506 		/* Mark the buffer empty */
1507 		status |= BD_ENET_RX_EMPTY;
1508 
1509 		if (fep->bufdesc_ex) {
1510 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1511 
1512 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1513 			ebdp->cbd_prot = 0;
1514 			ebdp->cbd_bdu = 0;
1515 		}
1516 		/* Make sure the updates to rest of the descriptor are
1517 		 * performed before transferring ownership.
1518 		 */
1519 		wmb();
1520 		bdp->cbd_sc = cpu_to_fec16(status);
1521 
1522 		/* Update BD pointer to next entry */
1523 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1524 
1525 		/* Doing this here will keep the FEC running while we process
1526 		 * incoming frames.  On a heavily loaded network, we should be
1527 		 * able to keep up at the expense of system resources.
1528 		 */
1529 		writel(0, rxq->bd.reg_desc_active);
1530 	}
1531 	rxq->bd.cur = bdp;
1532 	return pkt_received;
1533 }
1534 
1535 static int
1536 fec_enet_rx(struct net_device *ndev, int budget)
1537 {
1538 	int     pkt_received = 0;
1539 	u16	queue_id;
1540 	struct fec_enet_private *fep = netdev_priv(ndev);
1541 
1542 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1543 		int ret;
1544 
1545 		ret = fec_enet_rx_queue(ndev,
1546 					budget - pkt_received, queue_id);
1547 
1548 		if (ret < budget - pkt_received)
1549 			clear_bit(queue_id, &fep->work_rx);
1550 
1551 		pkt_received += ret;
1552 	}
1553 	return pkt_received;
1554 }
1555 
1556 static bool
1557 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1558 {
1559 	if (int_events == 0)
1560 		return false;
1561 
1562 	if (int_events & FEC_ENET_RXF_0)
1563 		fep->work_rx |= (1 << 2);
1564 	if (int_events & FEC_ENET_RXF_1)
1565 		fep->work_rx |= (1 << 0);
1566 	if (int_events & FEC_ENET_RXF_2)
1567 		fep->work_rx |= (1 << 1);
1568 
1569 	if (int_events & FEC_ENET_TXF_0)
1570 		fep->work_tx |= (1 << 2);
1571 	if (int_events & FEC_ENET_TXF_1)
1572 		fep->work_tx |= (1 << 0);
1573 	if (int_events & FEC_ENET_TXF_2)
1574 		fep->work_tx |= (1 << 1);
1575 
1576 	return true;
1577 }
1578 
1579 static irqreturn_t
1580 fec_enet_interrupt(int irq, void *dev_id)
1581 {
1582 	struct net_device *ndev = dev_id;
1583 	struct fec_enet_private *fep = netdev_priv(ndev);
1584 	uint int_events;
1585 	irqreturn_t ret = IRQ_NONE;
1586 
1587 	int_events = readl(fep->hwp + FEC_IEVENT);
1588 	writel(int_events, fep->hwp + FEC_IEVENT);
1589 	fec_enet_collect_events(fep, int_events);
1590 
1591 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1592 		ret = IRQ_HANDLED;
1593 
1594 		if (napi_schedule_prep(&fep->napi)) {
1595 			/* Disable the NAPI interrupts */
1596 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1597 			__napi_schedule(&fep->napi);
1598 		}
1599 	}
1600 
1601 	if (int_events & FEC_ENET_MII) {
1602 		ret = IRQ_HANDLED;
1603 		complete(&fep->mdio_done);
1604 	}
1605 	return ret;
1606 }
1607 
1608 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1609 {
1610 	struct net_device *ndev = napi->dev;
1611 	struct fec_enet_private *fep = netdev_priv(ndev);
1612 	int pkts;
1613 
1614 	pkts = fec_enet_rx(ndev, budget);
1615 
1616 	fec_enet_tx(ndev);
1617 
1618 	if (pkts < budget) {
1619 		napi_complete_done(napi, pkts);
1620 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1621 	}
1622 	return pkts;
1623 }
1624 
1625 /* ------------------------------------------------------------------------- */
1626 static void fec_get_mac(struct net_device *ndev)
1627 {
1628 	struct fec_enet_private *fep = netdev_priv(ndev);
1629 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1630 	unsigned char *iap, tmpaddr[ETH_ALEN];
1631 
1632 	/*
1633 	 * try to get mac address in following order:
1634 	 *
1635 	 * 1) module parameter via kernel command line in form
1636 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1637 	 */
1638 	iap = macaddr;
1639 
1640 	/*
1641 	 * 2) from device tree data
1642 	 */
1643 	if (!is_valid_ether_addr(iap)) {
1644 		struct device_node *np = fep->pdev->dev.of_node;
1645 		if (np) {
1646 			const char *mac = of_get_mac_address(np);
1647 			if (mac)
1648 				iap = (unsigned char *) mac;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * 3) from flash or fuse (via platform data)
1654 	 */
1655 	if (!is_valid_ether_addr(iap)) {
1656 #ifdef CONFIG_M5272
1657 		if (FEC_FLASHMAC)
1658 			iap = (unsigned char *)FEC_FLASHMAC;
1659 #else
1660 		if (pdata)
1661 			iap = (unsigned char *)&pdata->mac;
1662 #endif
1663 	}
1664 
1665 	/*
1666 	 * 4) FEC mac registers set by bootloader
1667 	 */
1668 	if (!is_valid_ether_addr(iap)) {
1669 		*((__be32 *) &tmpaddr[0]) =
1670 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1671 		*((__be16 *) &tmpaddr[4]) =
1672 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1673 		iap = &tmpaddr[0];
1674 	}
1675 
1676 	/*
1677 	 * 5) random mac address
1678 	 */
1679 	if (!is_valid_ether_addr(iap)) {
1680 		/* Report it and use a random ethernet address instead */
1681 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1682 		eth_hw_addr_random(ndev);
1683 		netdev_info(ndev, "Using random MAC address: %pM\n",
1684 			    ndev->dev_addr);
1685 		return;
1686 	}
1687 
1688 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1689 
1690 	/* Adjust MAC if using macaddr */
1691 	if (iap == macaddr)
1692 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1693 }
1694 
1695 /* ------------------------------------------------------------------------- */
1696 
1697 /*
1698  * Phy section
1699  */
1700 static void fec_enet_adjust_link(struct net_device *ndev)
1701 {
1702 	struct fec_enet_private *fep = netdev_priv(ndev);
1703 	struct phy_device *phy_dev = ndev->phydev;
1704 	int status_change = 0;
1705 
1706 	/* Prevent a state halted on mii error */
1707 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1708 		phy_dev->state = PHY_RESUMING;
1709 		return;
1710 	}
1711 
1712 	/*
1713 	 * If the netdev is down, or is going down, we're not interested
1714 	 * in link state events, so just mark our idea of the link as down
1715 	 * and ignore the event.
1716 	 */
1717 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1718 		fep->link = 0;
1719 	} else if (phy_dev->link) {
1720 		if (!fep->link) {
1721 			fep->link = phy_dev->link;
1722 			status_change = 1;
1723 		}
1724 
1725 		if (fep->full_duplex != phy_dev->duplex) {
1726 			fep->full_duplex = phy_dev->duplex;
1727 			status_change = 1;
1728 		}
1729 
1730 		if (phy_dev->speed != fep->speed) {
1731 			fep->speed = phy_dev->speed;
1732 			status_change = 1;
1733 		}
1734 
1735 		/* if any of the above changed restart the FEC */
1736 		if (status_change) {
1737 			napi_disable(&fep->napi);
1738 			netif_tx_lock_bh(ndev);
1739 			fec_restart(ndev);
1740 			netif_wake_queue(ndev);
1741 			netif_tx_unlock_bh(ndev);
1742 			napi_enable(&fep->napi);
1743 		}
1744 	} else {
1745 		if (fep->link) {
1746 			napi_disable(&fep->napi);
1747 			netif_tx_lock_bh(ndev);
1748 			fec_stop(ndev);
1749 			netif_tx_unlock_bh(ndev);
1750 			napi_enable(&fep->napi);
1751 			fep->link = phy_dev->link;
1752 			status_change = 1;
1753 		}
1754 	}
1755 
1756 	if (status_change)
1757 		phy_print_status(phy_dev);
1758 }
1759 
1760 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1761 {
1762 	struct fec_enet_private *fep = bus->priv;
1763 	struct device *dev = &fep->pdev->dev;
1764 	unsigned long time_left;
1765 	int ret = 0;
1766 
1767 	ret = pm_runtime_get_sync(dev);
1768 	if (ret < 0)
1769 		return ret;
1770 
1771 	fep->mii_timeout = 0;
1772 	reinit_completion(&fep->mdio_done);
1773 
1774 	/* start a read op */
1775 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1776 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1777 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1778 
1779 	/* wait for end of transfer */
1780 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1781 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1782 	if (time_left == 0) {
1783 		fep->mii_timeout = 1;
1784 		netdev_err(fep->netdev, "MDIO read timeout\n");
1785 		ret = -ETIMEDOUT;
1786 		goto out;
1787 	}
1788 
1789 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1790 
1791 out:
1792 	pm_runtime_mark_last_busy(dev);
1793 	pm_runtime_put_autosuspend(dev);
1794 
1795 	return ret;
1796 }
1797 
1798 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1799 			   u16 value)
1800 {
1801 	struct fec_enet_private *fep = bus->priv;
1802 	struct device *dev = &fep->pdev->dev;
1803 	unsigned long time_left;
1804 	int ret;
1805 
1806 	ret = pm_runtime_get_sync(dev);
1807 	if (ret < 0)
1808 		return ret;
1809 	else
1810 		ret = 0;
1811 
1812 	fep->mii_timeout = 0;
1813 	reinit_completion(&fep->mdio_done);
1814 
1815 	/* start a write op */
1816 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1817 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1818 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1819 		fep->hwp + FEC_MII_DATA);
1820 
1821 	/* wait for end of transfer */
1822 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1823 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1824 	if (time_left == 0) {
1825 		fep->mii_timeout = 1;
1826 		netdev_err(fep->netdev, "MDIO write timeout\n");
1827 		ret  = -ETIMEDOUT;
1828 	}
1829 
1830 	pm_runtime_mark_last_busy(dev);
1831 	pm_runtime_put_autosuspend(dev);
1832 
1833 	return ret;
1834 }
1835 
1836 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1837 {
1838 	struct fec_enet_private *fep = netdev_priv(ndev);
1839 	int ret;
1840 
1841 	if (enable) {
1842 		ret = clk_prepare_enable(fep->clk_ahb);
1843 		if (ret)
1844 			return ret;
1845 
1846 		ret = clk_prepare_enable(fep->clk_enet_out);
1847 		if (ret)
1848 			goto failed_clk_enet_out;
1849 
1850 		if (fep->clk_ptp) {
1851 			mutex_lock(&fep->ptp_clk_mutex);
1852 			ret = clk_prepare_enable(fep->clk_ptp);
1853 			if (ret) {
1854 				mutex_unlock(&fep->ptp_clk_mutex);
1855 				goto failed_clk_ptp;
1856 			} else {
1857 				fep->ptp_clk_on = true;
1858 			}
1859 			mutex_unlock(&fep->ptp_clk_mutex);
1860 		}
1861 
1862 		ret = clk_prepare_enable(fep->clk_ref);
1863 		if (ret)
1864 			goto failed_clk_ref;
1865 	} else {
1866 		clk_disable_unprepare(fep->clk_ahb);
1867 		clk_disable_unprepare(fep->clk_enet_out);
1868 		if (fep->clk_ptp) {
1869 			mutex_lock(&fep->ptp_clk_mutex);
1870 			clk_disable_unprepare(fep->clk_ptp);
1871 			fep->ptp_clk_on = false;
1872 			mutex_unlock(&fep->ptp_clk_mutex);
1873 		}
1874 		clk_disable_unprepare(fep->clk_ref);
1875 	}
1876 
1877 	return 0;
1878 
1879 failed_clk_ref:
1880 	if (fep->clk_ref)
1881 		clk_disable_unprepare(fep->clk_ref);
1882 failed_clk_ptp:
1883 	if (fep->clk_enet_out)
1884 		clk_disable_unprepare(fep->clk_enet_out);
1885 failed_clk_enet_out:
1886 		clk_disable_unprepare(fep->clk_ahb);
1887 
1888 	return ret;
1889 }
1890 
1891 static int fec_enet_mii_probe(struct net_device *ndev)
1892 {
1893 	struct fec_enet_private *fep = netdev_priv(ndev);
1894 	struct phy_device *phy_dev = NULL;
1895 	char mdio_bus_id[MII_BUS_ID_SIZE];
1896 	char phy_name[MII_BUS_ID_SIZE + 3];
1897 	int phy_id;
1898 	int dev_id = fep->dev_id;
1899 
1900 	if (fep->phy_node) {
1901 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1902 					 &fec_enet_adjust_link, 0,
1903 					 fep->phy_interface);
1904 		if (!phy_dev) {
1905 			netdev_err(ndev, "Unable to connect to phy\n");
1906 			return -ENODEV;
1907 		}
1908 	} else {
1909 		/* check for attached phy */
1910 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1911 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1912 				continue;
1913 			if (dev_id--)
1914 				continue;
1915 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1916 			break;
1917 		}
1918 
1919 		if (phy_id >= PHY_MAX_ADDR) {
1920 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1921 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1922 			phy_id = 0;
1923 		}
1924 
1925 		snprintf(phy_name, sizeof(phy_name),
1926 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1927 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1928 				      fep->phy_interface);
1929 	}
1930 
1931 	if (IS_ERR(phy_dev)) {
1932 		netdev_err(ndev, "could not attach to PHY\n");
1933 		return PTR_ERR(phy_dev);
1934 	}
1935 
1936 	/* mask with MAC supported features */
1937 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1938 		phy_dev->supported &= PHY_GBIT_FEATURES;
1939 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1940 #if !defined(CONFIG_M5272)
1941 		phy_dev->supported |= SUPPORTED_Pause;
1942 #endif
1943 	}
1944 	else
1945 		phy_dev->supported &= PHY_BASIC_FEATURES;
1946 
1947 	phy_dev->advertising = phy_dev->supported;
1948 
1949 	fep->link = 0;
1950 	fep->full_duplex = 0;
1951 
1952 	phy_attached_info(phy_dev);
1953 
1954 	return 0;
1955 }
1956 
1957 static int fec_enet_mii_init(struct platform_device *pdev)
1958 {
1959 	static struct mii_bus *fec0_mii_bus;
1960 	struct net_device *ndev = platform_get_drvdata(pdev);
1961 	struct fec_enet_private *fep = netdev_priv(ndev);
1962 	struct device_node *node;
1963 	int err = -ENXIO;
1964 	u32 mii_speed, holdtime;
1965 
1966 	/*
1967 	 * The i.MX28 dual fec interfaces are not equal.
1968 	 * Here are the differences:
1969 	 *
1970 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1971 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1972 	 *  - external phys can only be configured by fec0
1973 	 *
1974 	 * That is to say fec1 can not work independently. It only works
1975 	 * when fec0 is working. The reason behind this design is that the
1976 	 * second interface is added primarily for Switch mode.
1977 	 *
1978 	 * Because of the last point above, both phys are attached on fec0
1979 	 * mdio interface in board design, and need to be configured by
1980 	 * fec0 mii_bus.
1981 	 */
1982 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1983 		/* fec1 uses fec0 mii_bus */
1984 		if (mii_cnt && fec0_mii_bus) {
1985 			fep->mii_bus = fec0_mii_bus;
1986 			mii_cnt++;
1987 			return 0;
1988 		}
1989 		return -ENOENT;
1990 	}
1991 
1992 	fep->mii_timeout = 0;
1993 
1994 	/*
1995 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1996 	 *
1997 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1998 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1999 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2000 	 * document.
2001 	 */
2002 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2003 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2004 		mii_speed--;
2005 	if (mii_speed > 63) {
2006 		dev_err(&pdev->dev,
2007 			"fec clock (%lu) too fast to get right mii speed\n",
2008 			clk_get_rate(fep->clk_ipg));
2009 		err = -EINVAL;
2010 		goto err_out;
2011 	}
2012 
2013 	/*
2014 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2015 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2016 	 * versions are RAZ there, so just ignore the difference and write the
2017 	 * register always.
2018 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2019 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2020 	 * output.
2021 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2022 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2023 	 * holdtime cannot result in a value greater than 3.
2024 	 */
2025 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2026 
2027 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2028 
2029 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2030 
2031 	fep->mii_bus = mdiobus_alloc();
2032 	if (fep->mii_bus == NULL) {
2033 		err = -ENOMEM;
2034 		goto err_out;
2035 	}
2036 
2037 	fep->mii_bus->name = "fec_enet_mii_bus";
2038 	fep->mii_bus->read = fec_enet_mdio_read;
2039 	fep->mii_bus->write = fec_enet_mdio_write;
2040 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2041 		pdev->name, fep->dev_id + 1);
2042 	fep->mii_bus->priv = fep;
2043 	fep->mii_bus->parent = &pdev->dev;
2044 
2045 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2046 	if (node) {
2047 		err = of_mdiobus_register(fep->mii_bus, node);
2048 		of_node_put(node);
2049 	} else {
2050 		err = mdiobus_register(fep->mii_bus);
2051 	}
2052 
2053 	if (err)
2054 		goto err_out_free_mdiobus;
2055 
2056 	mii_cnt++;
2057 
2058 	/* save fec0 mii_bus */
2059 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2060 		fec0_mii_bus = fep->mii_bus;
2061 
2062 	return 0;
2063 
2064 err_out_free_mdiobus:
2065 	mdiobus_free(fep->mii_bus);
2066 err_out:
2067 	return err;
2068 }
2069 
2070 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2071 {
2072 	if (--mii_cnt == 0) {
2073 		mdiobus_unregister(fep->mii_bus);
2074 		mdiobus_free(fep->mii_bus);
2075 	}
2076 }
2077 
2078 static void fec_enet_get_drvinfo(struct net_device *ndev,
2079 				 struct ethtool_drvinfo *info)
2080 {
2081 	struct fec_enet_private *fep = netdev_priv(ndev);
2082 
2083 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2084 		sizeof(info->driver));
2085 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2086 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2087 }
2088 
2089 static int fec_enet_get_regs_len(struct net_device *ndev)
2090 {
2091 	struct fec_enet_private *fep = netdev_priv(ndev);
2092 	struct resource *r;
2093 	int s = 0;
2094 
2095 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2096 	if (r)
2097 		s = resource_size(r);
2098 
2099 	return s;
2100 }
2101 
2102 /* List of registers that can be safety be read to dump them with ethtool */
2103 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2104 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2105 static u32 fec_enet_register_offset[] = {
2106 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2107 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2108 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2109 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2110 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2111 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2112 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2113 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2114 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2115 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2116 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2117 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2118 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2119 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2120 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2121 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2122 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2123 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2124 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2125 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2126 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2127 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2128 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2129 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2130 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2131 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2132 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2133 };
2134 #else
2135 static u32 fec_enet_register_offset[] = {
2136 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2137 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2138 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2139 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2140 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2141 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2142 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2143 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2144 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2145 };
2146 #endif
2147 
2148 static void fec_enet_get_regs(struct net_device *ndev,
2149 			      struct ethtool_regs *regs, void *regbuf)
2150 {
2151 	struct fec_enet_private *fep = netdev_priv(ndev);
2152 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2153 	u32 *buf = (u32 *)regbuf;
2154 	u32 i, off;
2155 
2156 	memset(buf, 0, regs->len);
2157 
2158 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2159 		off = fec_enet_register_offset[i] / 4;
2160 		buf[off] = readl(&theregs[off]);
2161 	}
2162 }
2163 
2164 static int fec_enet_get_ts_info(struct net_device *ndev,
2165 				struct ethtool_ts_info *info)
2166 {
2167 	struct fec_enet_private *fep = netdev_priv(ndev);
2168 
2169 	if (fep->bufdesc_ex) {
2170 
2171 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2172 					SOF_TIMESTAMPING_RX_SOFTWARE |
2173 					SOF_TIMESTAMPING_SOFTWARE |
2174 					SOF_TIMESTAMPING_TX_HARDWARE |
2175 					SOF_TIMESTAMPING_RX_HARDWARE |
2176 					SOF_TIMESTAMPING_RAW_HARDWARE;
2177 		if (fep->ptp_clock)
2178 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2179 		else
2180 			info->phc_index = -1;
2181 
2182 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2183 				 (1 << HWTSTAMP_TX_ON);
2184 
2185 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2186 				   (1 << HWTSTAMP_FILTER_ALL);
2187 		return 0;
2188 	} else {
2189 		return ethtool_op_get_ts_info(ndev, info);
2190 	}
2191 }
2192 
2193 #if !defined(CONFIG_M5272)
2194 
2195 static void fec_enet_get_pauseparam(struct net_device *ndev,
2196 				    struct ethtool_pauseparam *pause)
2197 {
2198 	struct fec_enet_private *fep = netdev_priv(ndev);
2199 
2200 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2201 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2202 	pause->rx_pause = pause->tx_pause;
2203 }
2204 
2205 static int fec_enet_set_pauseparam(struct net_device *ndev,
2206 				   struct ethtool_pauseparam *pause)
2207 {
2208 	struct fec_enet_private *fep = netdev_priv(ndev);
2209 
2210 	if (!ndev->phydev)
2211 		return -ENODEV;
2212 
2213 	if (pause->tx_pause != pause->rx_pause) {
2214 		netdev_info(ndev,
2215 			"hardware only support enable/disable both tx and rx");
2216 		return -EINVAL;
2217 	}
2218 
2219 	fep->pause_flag = 0;
2220 
2221 	/* tx pause must be same as rx pause */
2222 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2223 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2224 
2225 	if (pause->rx_pause || pause->autoneg) {
2226 		ndev->phydev->supported |= ADVERTISED_Pause;
2227 		ndev->phydev->advertising |= ADVERTISED_Pause;
2228 	} else {
2229 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2230 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2231 	}
2232 
2233 	if (pause->autoneg) {
2234 		if (netif_running(ndev))
2235 			fec_stop(ndev);
2236 		phy_start_aneg(ndev->phydev);
2237 	}
2238 	if (netif_running(ndev)) {
2239 		napi_disable(&fep->napi);
2240 		netif_tx_lock_bh(ndev);
2241 		fec_restart(ndev);
2242 		netif_wake_queue(ndev);
2243 		netif_tx_unlock_bh(ndev);
2244 		napi_enable(&fep->napi);
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 static const struct fec_stat {
2251 	char name[ETH_GSTRING_LEN];
2252 	u16 offset;
2253 } fec_stats[] = {
2254 	/* RMON TX */
2255 	{ "tx_dropped", RMON_T_DROP },
2256 	{ "tx_packets", RMON_T_PACKETS },
2257 	{ "tx_broadcast", RMON_T_BC_PKT },
2258 	{ "tx_multicast", RMON_T_MC_PKT },
2259 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2260 	{ "tx_undersize", RMON_T_UNDERSIZE },
2261 	{ "tx_oversize", RMON_T_OVERSIZE },
2262 	{ "tx_fragment", RMON_T_FRAG },
2263 	{ "tx_jabber", RMON_T_JAB },
2264 	{ "tx_collision", RMON_T_COL },
2265 	{ "tx_64byte", RMON_T_P64 },
2266 	{ "tx_65to127byte", RMON_T_P65TO127 },
2267 	{ "tx_128to255byte", RMON_T_P128TO255 },
2268 	{ "tx_256to511byte", RMON_T_P256TO511 },
2269 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2270 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2271 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2272 	{ "tx_octets", RMON_T_OCTETS },
2273 
2274 	/* IEEE TX */
2275 	{ "IEEE_tx_drop", IEEE_T_DROP },
2276 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2277 	{ "IEEE_tx_1col", IEEE_T_1COL },
2278 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2279 	{ "IEEE_tx_def", IEEE_T_DEF },
2280 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2281 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2282 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2283 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2284 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2285 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2286 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2287 
2288 	/* RMON RX */
2289 	{ "rx_packets", RMON_R_PACKETS },
2290 	{ "rx_broadcast", RMON_R_BC_PKT },
2291 	{ "rx_multicast", RMON_R_MC_PKT },
2292 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2293 	{ "rx_undersize", RMON_R_UNDERSIZE },
2294 	{ "rx_oversize", RMON_R_OVERSIZE },
2295 	{ "rx_fragment", RMON_R_FRAG },
2296 	{ "rx_jabber", RMON_R_JAB },
2297 	{ "rx_64byte", RMON_R_P64 },
2298 	{ "rx_65to127byte", RMON_R_P65TO127 },
2299 	{ "rx_128to255byte", RMON_R_P128TO255 },
2300 	{ "rx_256to511byte", RMON_R_P256TO511 },
2301 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2302 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2303 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2304 	{ "rx_octets", RMON_R_OCTETS },
2305 
2306 	/* IEEE RX */
2307 	{ "IEEE_rx_drop", IEEE_R_DROP },
2308 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2309 	{ "IEEE_rx_crc", IEEE_R_CRC },
2310 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2311 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2312 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2313 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2314 };
2315 
2316 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2317 
2318 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2319 {
2320 	struct fec_enet_private *fep = netdev_priv(dev);
2321 	int i;
2322 
2323 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2324 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2325 }
2326 
2327 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2328 				       struct ethtool_stats *stats, u64 *data)
2329 {
2330 	struct fec_enet_private *fep = netdev_priv(dev);
2331 
2332 	if (netif_running(dev))
2333 		fec_enet_update_ethtool_stats(dev);
2334 
2335 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2336 }
2337 
2338 static void fec_enet_get_strings(struct net_device *netdev,
2339 	u32 stringset, u8 *data)
2340 {
2341 	int i;
2342 	switch (stringset) {
2343 	case ETH_SS_STATS:
2344 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2345 			memcpy(data + i * ETH_GSTRING_LEN,
2346 				fec_stats[i].name, ETH_GSTRING_LEN);
2347 		break;
2348 	}
2349 }
2350 
2351 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2352 {
2353 	switch (sset) {
2354 	case ETH_SS_STATS:
2355 		return ARRAY_SIZE(fec_stats);
2356 	default:
2357 		return -EOPNOTSUPP;
2358 	}
2359 }
2360 
2361 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2362 {
2363 	struct fec_enet_private *fep = netdev_priv(dev);
2364 	int i;
2365 
2366 	/* Disable MIB statistics counters */
2367 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2368 
2369 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2370 		writel(0, fep->hwp + fec_stats[i].offset);
2371 
2372 	/* Don't disable MIB statistics counters */
2373 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2374 }
2375 
2376 #else	/* !defined(CONFIG_M5272) */
2377 #define FEC_STATS_SIZE	0
2378 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2379 {
2380 }
2381 
2382 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2383 {
2384 }
2385 #endif /* !defined(CONFIG_M5272) */
2386 
2387 /* ITR clock source is enet system clock (clk_ahb).
2388  * TCTT unit is cycle_ns * 64 cycle
2389  * So, the ICTT value = X us / (cycle_ns * 64)
2390  */
2391 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2392 {
2393 	struct fec_enet_private *fep = netdev_priv(ndev);
2394 
2395 	return us * (fep->itr_clk_rate / 64000) / 1000;
2396 }
2397 
2398 /* Set threshold for interrupt coalescing */
2399 static void fec_enet_itr_coal_set(struct net_device *ndev)
2400 {
2401 	struct fec_enet_private *fep = netdev_priv(ndev);
2402 	int rx_itr, tx_itr;
2403 
2404 	/* Must be greater than zero to avoid unpredictable behavior */
2405 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2406 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2407 		return;
2408 
2409 	/* Select enet system clock as Interrupt Coalescing
2410 	 * timer Clock Source
2411 	 */
2412 	rx_itr = FEC_ITR_CLK_SEL;
2413 	tx_itr = FEC_ITR_CLK_SEL;
2414 
2415 	/* set ICFT and ICTT */
2416 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2417 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2418 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2419 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2420 
2421 	rx_itr |= FEC_ITR_EN;
2422 	tx_itr |= FEC_ITR_EN;
2423 
2424 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2425 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2426 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2427 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2428 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2429 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2430 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2431 	}
2432 }
2433 
2434 static int
2435 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2436 {
2437 	struct fec_enet_private *fep = netdev_priv(ndev);
2438 
2439 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2440 		return -EOPNOTSUPP;
2441 
2442 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2443 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2444 
2445 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2446 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2447 
2448 	return 0;
2449 }
2450 
2451 static int
2452 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2453 {
2454 	struct fec_enet_private *fep = netdev_priv(ndev);
2455 	unsigned int cycle;
2456 
2457 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2458 		return -EOPNOTSUPP;
2459 
2460 	if (ec->rx_max_coalesced_frames > 255) {
2461 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2462 		return -EINVAL;
2463 	}
2464 
2465 	if (ec->tx_max_coalesced_frames > 255) {
2466 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2467 		return -EINVAL;
2468 	}
2469 
2470 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2471 	if (cycle > 0xFFFF) {
2472 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2473 		return -EINVAL;
2474 	}
2475 
2476 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2477 	if (cycle > 0xFFFF) {
2478 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2479 		return -EINVAL;
2480 	}
2481 
2482 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2483 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2484 
2485 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2486 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2487 
2488 	fec_enet_itr_coal_set(ndev);
2489 
2490 	return 0;
2491 }
2492 
2493 static void fec_enet_itr_coal_init(struct net_device *ndev)
2494 {
2495 	struct ethtool_coalesce ec;
2496 
2497 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2498 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2499 
2500 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2501 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2502 
2503 	fec_enet_set_coalesce(ndev, &ec);
2504 }
2505 
2506 static int fec_enet_get_tunable(struct net_device *netdev,
2507 				const struct ethtool_tunable *tuna,
2508 				void *data)
2509 {
2510 	struct fec_enet_private *fep = netdev_priv(netdev);
2511 	int ret = 0;
2512 
2513 	switch (tuna->id) {
2514 	case ETHTOOL_RX_COPYBREAK:
2515 		*(u32 *)data = fep->rx_copybreak;
2516 		break;
2517 	default:
2518 		ret = -EINVAL;
2519 		break;
2520 	}
2521 
2522 	return ret;
2523 }
2524 
2525 static int fec_enet_set_tunable(struct net_device *netdev,
2526 				const struct ethtool_tunable *tuna,
2527 				const void *data)
2528 {
2529 	struct fec_enet_private *fep = netdev_priv(netdev);
2530 	int ret = 0;
2531 
2532 	switch (tuna->id) {
2533 	case ETHTOOL_RX_COPYBREAK:
2534 		fep->rx_copybreak = *(u32 *)data;
2535 		break;
2536 	default:
2537 		ret = -EINVAL;
2538 		break;
2539 	}
2540 
2541 	return ret;
2542 }
2543 
2544 static void
2545 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2546 {
2547 	struct fec_enet_private *fep = netdev_priv(ndev);
2548 
2549 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2550 		wol->supported = WAKE_MAGIC;
2551 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2552 	} else {
2553 		wol->supported = wol->wolopts = 0;
2554 	}
2555 }
2556 
2557 static int
2558 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2559 {
2560 	struct fec_enet_private *fep = netdev_priv(ndev);
2561 
2562 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2563 		return -EINVAL;
2564 
2565 	if (wol->wolopts & ~WAKE_MAGIC)
2566 		return -EINVAL;
2567 
2568 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2569 	if (device_may_wakeup(&ndev->dev)) {
2570 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2571 		if (fep->irq[0] > 0)
2572 			enable_irq_wake(fep->irq[0]);
2573 	} else {
2574 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2575 		if (fep->irq[0] > 0)
2576 			disable_irq_wake(fep->irq[0]);
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 static const struct ethtool_ops fec_enet_ethtool_ops = {
2583 	.get_drvinfo		= fec_enet_get_drvinfo,
2584 	.get_regs_len		= fec_enet_get_regs_len,
2585 	.get_regs		= fec_enet_get_regs,
2586 	.nway_reset		= phy_ethtool_nway_reset,
2587 	.get_link		= ethtool_op_get_link,
2588 	.get_coalesce		= fec_enet_get_coalesce,
2589 	.set_coalesce		= fec_enet_set_coalesce,
2590 #ifndef CONFIG_M5272
2591 	.get_pauseparam		= fec_enet_get_pauseparam,
2592 	.set_pauseparam		= fec_enet_set_pauseparam,
2593 	.get_strings		= fec_enet_get_strings,
2594 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2595 	.get_sset_count		= fec_enet_get_sset_count,
2596 #endif
2597 	.get_ts_info		= fec_enet_get_ts_info,
2598 	.get_tunable		= fec_enet_get_tunable,
2599 	.set_tunable		= fec_enet_set_tunable,
2600 	.get_wol		= fec_enet_get_wol,
2601 	.set_wol		= fec_enet_set_wol,
2602 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2603 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2604 };
2605 
2606 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2607 {
2608 	struct fec_enet_private *fep = netdev_priv(ndev);
2609 	struct phy_device *phydev = ndev->phydev;
2610 
2611 	if (!netif_running(ndev))
2612 		return -EINVAL;
2613 
2614 	if (!phydev)
2615 		return -ENODEV;
2616 
2617 	if (fep->bufdesc_ex) {
2618 		if (cmd == SIOCSHWTSTAMP)
2619 			return fec_ptp_set(ndev, rq);
2620 		if (cmd == SIOCGHWTSTAMP)
2621 			return fec_ptp_get(ndev, rq);
2622 	}
2623 
2624 	return phy_mii_ioctl(phydev, rq, cmd);
2625 }
2626 
2627 static void fec_enet_free_buffers(struct net_device *ndev)
2628 {
2629 	struct fec_enet_private *fep = netdev_priv(ndev);
2630 	unsigned int i;
2631 	struct sk_buff *skb;
2632 	struct bufdesc	*bdp;
2633 	struct fec_enet_priv_tx_q *txq;
2634 	struct fec_enet_priv_rx_q *rxq;
2635 	unsigned int q;
2636 
2637 	for (q = 0; q < fep->num_rx_queues; q++) {
2638 		rxq = fep->rx_queue[q];
2639 		bdp = rxq->bd.base;
2640 		for (i = 0; i < rxq->bd.ring_size; i++) {
2641 			skb = rxq->rx_skbuff[i];
2642 			rxq->rx_skbuff[i] = NULL;
2643 			if (skb) {
2644 				dma_unmap_single(&fep->pdev->dev,
2645 						 fec32_to_cpu(bdp->cbd_bufaddr),
2646 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2647 						 DMA_FROM_DEVICE);
2648 				dev_kfree_skb(skb);
2649 			}
2650 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2651 		}
2652 	}
2653 
2654 	for (q = 0; q < fep->num_tx_queues; q++) {
2655 		txq = fep->tx_queue[q];
2656 		bdp = txq->bd.base;
2657 		for (i = 0; i < txq->bd.ring_size; i++) {
2658 			kfree(txq->tx_bounce[i]);
2659 			txq->tx_bounce[i] = NULL;
2660 			skb = txq->tx_skbuff[i];
2661 			txq->tx_skbuff[i] = NULL;
2662 			dev_kfree_skb(skb);
2663 		}
2664 	}
2665 }
2666 
2667 static void fec_enet_free_queue(struct net_device *ndev)
2668 {
2669 	struct fec_enet_private *fep = netdev_priv(ndev);
2670 	int i;
2671 	struct fec_enet_priv_tx_q *txq;
2672 
2673 	for (i = 0; i < fep->num_tx_queues; i++)
2674 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2675 			txq = fep->tx_queue[i];
2676 			dma_free_coherent(&fep->pdev->dev,
2677 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2678 					  txq->tso_hdrs,
2679 					  txq->tso_hdrs_dma);
2680 		}
2681 
2682 	for (i = 0; i < fep->num_rx_queues; i++)
2683 		kfree(fep->rx_queue[i]);
2684 	for (i = 0; i < fep->num_tx_queues; i++)
2685 		kfree(fep->tx_queue[i]);
2686 }
2687 
2688 static int fec_enet_alloc_queue(struct net_device *ndev)
2689 {
2690 	struct fec_enet_private *fep = netdev_priv(ndev);
2691 	int i;
2692 	int ret = 0;
2693 	struct fec_enet_priv_tx_q *txq;
2694 
2695 	for (i = 0; i < fep->num_tx_queues; i++) {
2696 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2697 		if (!txq) {
2698 			ret = -ENOMEM;
2699 			goto alloc_failed;
2700 		}
2701 
2702 		fep->tx_queue[i] = txq;
2703 		txq->bd.ring_size = TX_RING_SIZE;
2704 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2705 
2706 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2707 		txq->tx_wake_threshold =
2708 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2709 
2710 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2711 					txq->bd.ring_size * TSO_HEADER_SIZE,
2712 					&txq->tso_hdrs_dma,
2713 					GFP_KERNEL);
2714 		if (!txq->tso_hdrs) {
2715 			ret = -ENOMEM;
2716 			goto alloc_failed;
2717 		}
2718 	}
2719 
2720 	for (i = 0; i < fep->num_rx_queues; i++) {
2721 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2722 					   GFP_KERNEL);
2723 		if (!fep->rx_queue[i]) {
2724 			ret = -ENOMEM;
2725 			goto alloc_failed;
2726 		}
2727 
2728 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2729 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2730 	}
2731 	return ret;
2732 
2733 alloc_failed:
2734 	fec_enet_free_queue(ndev);
2735 	return ret;
2736 }
2737 
2738 static int
2739 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2740 {
2741 	struct fec_enet_private *fep = netdev_priv(ndev);
2742 	unsigned int i;
2743 	struct sk_buff *skb;
2744 	struct bufdesc	*bdp;
2745 	struct fec_enet_priv_rx_q *rxq;
2746 
2747 	rxq = fep->rx_queue[queue];
2748 	bdp = rxq->bd.base;
2749 	for (i = 0; i < rxq->bd.ring_size; i++) {
2750 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2751 		if (!skb)
2752 			goto err_alloc;
2753 
2754 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2755 			dev_kfree_skb(skb);
2756 			goto err_alloc;
2757 		}
2758 
2759 		rxq->rx_skbuff[i] = skb;
2760 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2761 
2762 		if (fep->bufdesc_ex) {
2763 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2764 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2765 		}
2766 
2767 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2768 	}
2769 
2770 	/* Set the last buffer to wrap. */
2771 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2772 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2773 	return 0;
2774 
2775  err_alloc:
2776 	fec_enet_free_buffers(ndev);
2777 	return -ENOMEM;
2778 }
2779 
2780 static int
2781 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2782 {
2783 	struct fec_enet_private *fep = netdev_priv(ndev);
2784 	unsigned int i;
2785 	struct bufdesc  *bdp;
2786 	struct fec_enet_priv_tx_q *txq;
2787 
2788 	txq = fep->tx_queue[queue];
2789 	bdp = txq->bd.base;
2790 	for (i = 0; i < txq->bd.ring_size; i++) {
2791 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2792 		if (!txq->tx_bounce[i])
2793 			goto err_alloc;
2794 
2795 		bdp->cbd_sc = cpu_to_fec16(0);
2796 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2797 
2798 		if (fep->bufdesc_ex) {
2799 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2800 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2801 		}
2802 
2803 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2804 	}
2805 
2806 	/* Set the last buffer to wrap. */
2807 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2808 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2809 
2810 	return 0;
2811 
2812  err_alloc:
2813 	fec_enet_free_buffers(ndev);
2814 	return -ENOMEM;
2815 }
2816 
2817 static int fec_enet_alloc_buffers(struct net_device *ndev)
2818 {
2819 	struct fec_enet_private *fep = netdev_priv(ndev);
2820 	unsigned int i;
2821 
2822 	for (i = 0; i < fep->num_rx_queues; i++)
2823 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2824 			return -ENOMEM;
2825 
2826 	for (i = 0; i < fep->num_tx_queues; i++)
2827 		if (fec_enet_alloc_txq_buffers(ndev, i))
2828 			return -ENOMEM;
2829 	return 0;
2830 }
2831 
2832 static int
2833 fec_enet_open(struct net_device *ndev)
2834 {
2835 	struct fec_enet_private *fep = netdev_priv(ndev);
2836 	int ret;
2837 
2838 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2839 	if (ret < 0)
2840 		return ret;
2841 
2842 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2843 	ret = fec_enet_clk_enable(ndev, true);
2844 	if (ret)
2845 		goto clk_enable;
2846 
2847 	/* I should reset the ring buffers here, but I don't yet know
2848 	 * a simple way to do that.
2849 	 */
2850 
2851 	ret = fec_enet_alloc_buffers(ndev);
2852 	if (ret)
2853 		goto err_enet_alloc;
2854 
2855 	/* Init MAC prior to mii bus probe */
2856 	fec_restart(ndev);
2857 
2858 	/* Probe and connect to PHY when open the interface */
2859 	ret = fec_enet_mii_probe(ndev);
2860 	if (ret)
2861 		goto err_enet_mii_probe;
2862 
2863 	if (fep->quirks & FEC_QUIRK_ERR006687)
2864 		imx6q_cpuidle_fec_irqs_used();
2865 
2866 	napi_enable(&fep->napi);
2867 	phy_start(ndev->phydev);
2868 	netif_tx_start_all_queues(ndev);
2869 
2870 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2871 				 FEC_WOL_FLAG_ENABLE);
2872 
2873 	return 0;
2874 
2875 err_enet_mii_probe:
2876 	fec_enet_free_buffers(ndev);
2877 err_enet_alloc:
2878 	fec_enet_clk_enable(ndev, false);
2879 clk_enable:
2880 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2881 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2882 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2883 	return ret;
2884 }
2885 
2886 static int
2887 fec_enet_close(struct net_device *ndev)
2888 {
2889 	struct fec_enet_private *fep = netdev_priv(ndev);
2890 
2891 	phy_stop(ndev->phydev);
2892 
2893 	if (netif_device_present(ndev)) {
2894 		napi_disable(&fep->napi);
2895 		netif_tx_disable(ndev);
2896 		fec_stop(ndev);
2897 	}
2898 
2899 	phy_disconnect(ndev->phydev);
2900 
2901 	if (fep->quirks & FEC_QUIRK_ERR006687)
2902 		imx6q_cpuidle_fec_irqs_unused();
2903 
2904 	fec_enet_update_ethtool_stats(ndev);
2905 
2906 	fec_enet_clk_enable(ndev, false);
2907 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2908 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2909 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2910 
2911 	fec_enet_free_buffers(ndev);
2912 
2913 	return 0;
2914 }
2915 
2916 /* Set or clear the multicast filter for this adaptor.
2917  * Skeleton taken from sunlance driver.
2918  * The CPM Ethernet implementation allows Multicast as well as individual
2919  * MAC address filtering.  Some of the drivers check to make sure it is
2920  * a group multicast address, and discard those that are not.  I guess I
2921  * will do the same for now, but just remove the test if you want
2922  * individual filtering as well (do the upper net layers want or support
2923  * this kind of feature?).
2924  */
2925 
2926 #define FEC_HASH_BITS	6		/* #bits in hash */
2927 #define CRC32_POLY	0xEDB88320
2928 
2929 static void set_multicast_list(struct net_device *ndev)
2930 {
2931 	struct fec_enet_private *fep = netdev_priv(ndev);
2932 	struct netdev_hw_addr *ha;
2933 	unsigned int i, bit, data, crc, tmp;
2934 	unsigned char hash;
2935 	unsigned int hash_high = 0, hash_low = 0;
2936 
2937 	if (ndev->flags & IFF_PROMISC) {
2938 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2939 		tmp |= 0x8;
2940 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2941 		return;
2942 	}
2943 
2944 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2945 	tmp &= ~0x8;
2946 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2947 
2948 	if (ndev->flags & IFF_ALLMULTI) {
2949 		/* Catch all multicast addresses, so set the
2950 		 * filter to all 1's
2951 		 */
2952 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2953 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2954 
2955 		return;
2956 	}
2957 
2958 	/* Add the addresses in hash register */
2959 	netdev_for_each_mc_addr(ha, ndev) {
2960 		/* calculate crc32 value of mac address */
2961 		crc = 0xffffffff;
2962 
2963 		for (i = 0; i < ndev->addr_len; i++) {
2964 			data = ha->addr[i];
2965 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2966 				crc = (crc >> 1) ^
2967 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2968 			}
2969 		}
2970 
2971 		/* only upper 6 bits (FEC_HASH_BITS) are used
2972 		 * which point to specific bit in the hash registers
2973 		 */
2974 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2975 
2976 		if (hash > 31)
2977 			hash_high |= 1 << (hash - 32);
2978 		else
2979 			hash_low |= 1 << hash;
2980 	}
2981 
2982 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2983 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2984 }
2985 
2986 /* Set a MAC change in hardware. */
2987 static int
2988 fec_set_mac_address(struct net_device *ndev, void *p)
2989 {
2990 	struct fec_enet_private *fep = netdev_priv(ndev);
2991 	struct sockaddr *addr = p;
2992 
2993 	if (addr) {
2994 		if (!is_valid_ether_addr(addr->sa_data))
2995 			return -EADDRNOTAVAIL;
2996 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2997 	}
2998 
2999 	/* Add netif status check here to avoid system hang in below case:
3000 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3001 	 * After ethx down, fec all clocks are gated off and then register
3002 	 * access causes system hang.
3003 	 */
3004 	if (!netif_running(ndev))
3005 		return 0;
3006 
3007 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3008 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3009 		fep->hwp + FEC_ADDR_LOW);
3010 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3011 		fep->hwp + FEC_ADDR_HIGH);
3012 	return 0;
3013 }
3014 
3015 #ifdef CONFIG_NET_POLL_CONTROLLER
3016 /**
3017  * fec_poll_controller - FEC Poll controller function
3018  * @dev: The FEC network adapter
3019  *
3020  * Polled functionality used by netconsole and others in non interrupt mode
3021  *
3022  */
3023 static void fec_poll_controller(struct net_device *dev)
3024 {
3025 	int i;
3026 	struct fec_enet_private *fep = netdev_priv(dev);
3027 
3028 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3029 		if (fep->irq[i] > 0) {
3030 			disable_irq(fep->irq[i]);
3031 			fec_enet_interrupt(fep->irq[i], dev);
3032 			enable_irq(fep->irq[i]);
3033 		}
3034 	}
3035 }
3036 #endif
3037 
3038 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3039 	netdev_features_t features)
3040 {
3041 	struct fec_enet_private *fep = netdev_priv(netdev);
3042 	netdev_features_t changed = features ^ netdev->features;
3043 
3044 	netdev->features = features;
3045 
3046 	/* Receive checksum has been changed */
3047 	if (changed & NETIF_F_RXCSUM) {
3048 		if (features & NETIF_F_RXCSUM)
3049 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3050 		else
3051 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3052 	}
3053 }
3054 
3055 static int fec_set_features(struct net_device *netdev,
3056 	netdev_features_t features)
3057 {
3058 	struct fec_enet_private *fep = netdev_priv(netdev);
3059 	netdev_features_t changed = features ^ netdev->features;
3060 
3061 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3062 		napi_disable(&fep->napi);
3063 		netif_tx_lock_bh(netdev);
3064 		fec_stop(netdev);
3065 		fec_enet_set_netdev_features(netdev, features);
3066 		fec_restart(netdev);
3067 		netif_tx_wake_all_queues(netdev);
3068 		netif_tx_unlock_bh(netdev);
3069 		napi_enable(&fep->napi);
3070 	} else {
3071 		fec_enet_set_netdev_features(netdev, features);
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 static const struct net_device_ops fec_netdev_ops = {
3078 	.ndo_open		= fec_enet_open,
3079 	.ndo_stop		= fec_enet_close,
3080 	.ndo_start_xmit		= fec_enet_start_xmit,
3081 	.ndo_set_rx_mode	= set_multicast_list,
3082 	.ndo_validate_addr	= eth_validate_addr,
3083 	.ndo_tx_timeout		= fec_timeout,
3084 	.ndo_set_mac_address	= fec_set_mac_address,
3085 	.ndo_do_ioctl		= fec_enet_ioctl,
3086 #ifdef CONFIG_NET_POLL_CONTROLLER
3087 	.ndo_poll_controller	= fec_poll_controller,
3088 #endif
3089 	.ndo_set_features	= fec_set_features,
3090 };
3091 
3092 static const unsigned short offset_des_active_rxq[] = {
3093 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3094 };
3095 
3096 static const unsigned short offset_des_active_txq[] = {
3097 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3098 };
3099 
3100  /*
3101   * XXX:  We need to clean up on failure exits here.
3102   *
3103   */
3104 static int fec_enet_init(struct net_device *ndev)
3105 {
3106 	struct fec_enet_private *fep = netdev_priv(ndev);
3107 	struct bufdesc *cbd_base;
3108 	dma_addr_t bd_dma;
3109 	int bd_size;
3110 	unsigned int i;
3111 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3112 			sizeof(struct bufdesc);
3113 	unsigned dsize_log2 = __fls(dsize);
3114 
3115 	WARN_ON(dsize != (1 << dsize_log2));
3116 #if defined(CONFIG_ARM)
3117 	fep->rx_align = 0xf;
3118 	fep->tx_align = 0xf;
3119 #else
3120 	fep->rx_align = 0x3;
3121 	fep->tx_align = 0x3;
3122 #endif
3123 
3124 	fec_enet_alloc_queue(ndev);
3125 
3126 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3127 
3128 	/* Allocate memory for buffer descriptors. */
3129 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3130 				       GFP_KERNEL);
3131 	if (!cbd_base) {
3132 		return -ENOMEM;
3133 	}
3134 
3135 	memset(cbd_base, 0, bd_size);
3136 
3137 	/* Get the Ethernet address */
3138 	fec_get_mac(ndev);
3139 	/* make sure MAC we just acquired is programmed into the hw */
3140 	fec_set_mac_address(ndev, NULL);
3141 
3142 	/* Set receive and transmit descriptor base. */
3143 	for (i = 0; i < fep->num_rx_queues; i++) {
3144 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3145 		unsigned size = dsize * rxq->bd.ring_size;
3146 
3147 		rxq->bd.qid = i;
3148 		rxq->bd.base = cbd_base;
3149 		rxq->bd.cur = cbd_base;
3150 		rxq->bd.dma = bd_dma;
3151 		rxq->bd.dsize = dsize;
3152 		rxq->bd.dsize_log2 = dsize_log2;
3153 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3154 		bd_dma += size;
3155 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3156 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3157 	}
3158 
3159 	for (i = 0; i < fep->num_tx_queues; i++) {
3160 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3161 		unsigned size = dsize * txq->bd.ring_size;
3162 
3163 		txq->bd.qid = i;
3164 		txq->bd.base = cbd_base;
3165 		txq->bd.cur = cbd_base;
3166 		txq->bd.dma = bd_dma;
3167 		txq->bd.dsize = dsize;
3168 		txq->bd.dsize_log2 = dsize_log2;
3169 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3170 		bd_dma += size;
3171 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3172 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3173 	}
3174 
3175 
3176 	/* The FEC Ethernet specific entries in the device structure */
3177 	ndev->watchdog_timeo = TX_TIMEOUT;
3178 	ndev->netdev_ops = &fec_netdev_ops;
3179 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3180 
3181 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3182 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3183 
3184 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3185 		/* enable hw VLAN support */
3186 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3187 
3188 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3189 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3190 
3191 		/* enable hw accelerator */
3192 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3193 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3194 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3195 	}
3196 
3197 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3198 		fep->tx_align = 0;
3199 		fep->rx_align = 0x3f;
3200 	}
3201 
3202 	ndev->hw_features = ndev->features;
3203 
3204 	fec_restart(ndev);
3205 
3206 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3207 		fec_enet_clear_ethtool_stats(ndev);
3208 	else
3209 		fec_enet_update_ethtool_stats(ndev);
3210 
3211 	return 0;
3212 }
3213 
3214 #ifdef CONFIG_OF
3215 static int fec_reset_phy(struct platform_device *pdev)
3216 {
3217 	int err, phy_reset;
3218 	bool active_high = false;
3219 	int msec = 1, phy_post_delay = 0;
3220 	struct device_node *np = pdev->dev.of_node;
3221 
3222 	if (!np)
3223 		return 0;
3224 
3225 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3226 	/* A sane reset duration should not be longer than 1s */
3227 	if (!err && msec > 1000)
3228 		msec = 1;
3229 
3230 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3231 	if (phy_reset == -EPROBE_DEFER)
3232 		return phy_reset;
3233 	else if (!gpio_is_valid(phy_reset))
3234 		return 0;
3235 
3236 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3237 	/* valid reset duration should be less than 1s */
3238 	if (!err && phy_post_delay > 1000)
3239 		return -EINVAL;
3240 
3241 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3242 
3243 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3244 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3245 			"phy-reset");
3246 	if (err) {
3247 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3248 		return err;
3249 	}
3250 
3251 	if (msec > 20)
3252 		msleep(msec);
3253 	else
3254 		usleep_range(msec * 1000, msec * 1000 + 1000);
3255 
3256 	gpio_set_value_cansleep(phy_reset, !active_high);
3257 
3258 	if (!phy_post_delay)
3259 		return 0;
3260 
3261 	if (phy_post_delay > 20)
3262 		msleep(phy_post_delay);
3263 	else
3264 		usleep_range(phy_post_delay * 1000,
3265 			     phy_post_delay * 1000 + 1000);
3266 
3267 	return 0;
3268 }
3269 #else /* CONFIG_OF */
3270 static int fec_reset_phy(struct platform_device *pdev)
3271 {
3272 	/*
3273 	 * In case of platform probe, the reset has been done
3274 	 * by machine code.
3275 	 */
3276 	return 0;
3277 }
3278 #endif /* CONFIG_OF */
3279 
3280 static void
3281 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3282 {
3283 	struct device_node *np = pdev->dev.of_node;
3284 
3285 	*num_tx = *num_rx = 1;
3286 
3287 	if (!np || !of_device_is_available(np))
3288 		return;
3289 
3290 	/* parse the num of tx and rx queues */
3291 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3292 
3293 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3294 
3295 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3296 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3297 			 *num_tx);
3298 		*num_tx = 1;
3299 		return;
3300 	}
3301 
3302 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3303 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3304 			 *num_rx);
3305 		*num_rx = 1;
3306 		return;
3307 	}
3308 
3309 }
3310 
3311 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3312 {
3313 	int irq_cnt = platform_irq_count(pdev);
3314 
3315 	if (irq_cnt > FEC_IRQ_NUM)
3316 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3317 	else if (irq_cnt == 2)
3318 		irq_cnt = 1;	/* last for pps */
3319 	else if (irq_cnt <= 0)
3320 		irq_cnt = 1;	/* At least 1 irq is needed */
3321 	return irq_cnt;
3322 }
3323 
3324 static int
3325 fec_probe(struct platform_device *pdev)
3326 {
3327 	struct fec_enet_private *fep;
3328 	struct fec_platform_data *pdata;
3329 	struct net_device *ndev;
3330 	int i, irq, ret = 0;
3331 	struct resource *r;
3332 	const struct of_device_id *of_id;
3333 	static int dev_id;
3334 	struct device_node *np = pdev->dev.of_node, *phy_node;
3335 	int num_tx_qs;
3336 	int num_rx_qs;
3337 	char irq_name[8];
3338 	int irq_cnt;
3339 
3340 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3341 
3342 	/* Init network device */
3343 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3344 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3345 	if (!ndev)
3346 		return -ENOMEM;
3347 
3348 	SET_NETDEV_DEV(ndev, &pdev->dev);
3349 
3350 	/* setup board info structure */
3351 	fep = netdev_priv(ndev);
3352 
3353 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3354 	if (of_id)
3355 		pdev->id_entry = of_id->data;
3356 	fep->quirks = pdev->id_entry->driver_data;
3357 
3358 	fep->netdev = ndev;
3359 	fep->num_rx_queues = num_rx_qs;
3360 	fep->num_tx_queues = num_tx_qs;
3361 
3362 #if !defined(CONFIG_M5272)
3363 	/* default enable pause frame auto negotiation */
3364 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3365 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3366 #endif
3367 
3368 	/* Select default pin state */
3369 	pinctrl_pm_select_default_state(&pdev->dev);
3370 
3371 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3372 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3373 	if (IS_ERR(fep->hwp)) {
3374 		ret = PTR_ERR(fep->hwp);
3375 		goto failed_ioremap;
3376 	}
3377 
3378 	fep->pdev = pdev;
3379 	fep->dev_id = dev_id++;
3380 
3381 	platform_set_drvdata(pdev, ndev);
3382 
3383 	if ((of_machine_is_compatible("fsl,imx6q") ||
3384 	     of_machine_is_compatible("fsl,imx6dl")) &&
3385 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3386 		fep->quirks |= FEC_QUIRK_ERR006687;
3387 
3388 	if (of_get_property(np, "fsl,magic-packet", NULL))
3389 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3390 
3391 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3392 	if (!phy_node && of_phy_is_fixed_link(np)) {
3393 		ret = of_phy_register_fixed_link(np);
3394 		if (ret < 0) {
3395 			dev_err(&pdev->dev,
3396 				"broken fixed-link specification\n");
3397 			goto failed_phy;
3398 		}
3399 		phy_node = of_node_get(np);
3400 	}
3401 	fep->phy_node = phy_node;
3402 
3403 	ret = of_get_phy_mode(pdev->dev.of_node);
3404 	if (ret < 0) {
3405 		pdata = dev_get_platdata(&pdev->dev);
3406 		if (pdata)
3407 			fep->phy_interface = pdata->phy;
3408 		else
3409 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3410 	} else {
3411 		fep->phy_interface = ret;
3412 	}
3413 
3414 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3415 	if (IS_ERR(fep->clk_ipg)) {
3416 		ret = PTR_ERR(fep->clk_ipg);
3417 		goto failed_clk;
3418 	}
3419 
3420 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3421 	if (IS_ERR(fep->clk_ahb)) {
3422 		ret = PTR_ERR(fep->clk_ahb);
3423 		goto failed_clk;
3424 	}
3425 
3426 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3427 
3428 	/* enet_out is optional, depends on board */
3429 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3430 	if (IS_ERR(fep->clk_enet_out))
3431 		fep->clk_enet_out = NULL;
3432 
3433 	fep->ptp_clk_on = false;
3434 	mutex_init(&fep->ptp_clk_mutex);
3435 
3436 	/* clk_ref is optional, depends on board */
3437 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3438 	if (IS_ERR(fep->clk_ref))
3439 		fep->clk_ref = NULL;
3440 
3441 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3442 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3443 	if (IS_ERR(fep->clk_ptp)) {
3444 		fep->clk_ptp = NULL;
3445 		fep->bufdesc_ex = false;
3446 	}
3447 
3448 	ret = fec_enet_clk_enable(ndev, true);
3449 	if (ret)
3450 		goto failed_clk;
3451 
3452 	ret = clk_prepare_enable(fep->clk_ipg);
3453 	if (ret)
3454 		goto failed_clk_ipg;
3455 
3456 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3457 	if (!IS_ERR(fep->reg_phy)) {
3458 		ret = regulator_enable(fep->reg_phy);
3459 		if (ret) {
3460 			dev_err(&pdev->dev,
3461 				"Failed to enable phy regulator: %d\n", ret);
3462 			clk_disable_unprepare(fep->clk_ipg);
3463 			goto failed_regulator;
3464 		}
3465 	} else {
3466 		fep->reg_phy = NULL;
3467 	}
3468 
3469 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3470 	pm_runtime_use_autosuspend(&pdev->dev);
3471 	pm_runtime_get_noresume(&pdev->dev);
3472 	pm_runtime_set_active(&pdev->dev);
3473 	pm_runtime_enable(&pdev->dev);
3474 
3475 	ret = fec_reset_phy(pdev);
3476 	if (ret)
3477 		goto failed_reset;
3478 
3479 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3480 	if (fep->bufdesc_ex)
3481 		fec_ptp_init(pdev, irq_cnt);
3482 
3483 	ret = fec_enet_init(ndev);
3484 	if (ret)
3485 		goto failed_init;
3486 
3487 	for (i = 0; i < irq_cnt; i++) {
3488 		sprintf(irq_name, "int%d", i);
3489 		irq = platform_get_irq_byname(pdev, irq_name);
3490 		if (irq < 0)
3491 			irq = platform_get_irq(pdev, i);
3492 		if (irq < 0) {
3493 			ret = irq;
3494 			goto failed_irq;
3495 		}
3496 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3497 				       0, pdev->name, ndev);
3498 		if (ret)
3499 			goto failed_irq;
3500 
3501 		fep->irq[i] = irq;
3502 	}
3503 
3504 	init_completion(&fep->mdio_done);
3505 	ret = fec_enet_mii_init(pdev);
3506 	if (ret)
3507 		goto failed_mii_init;
3508 
3509 	/* Carrier starts down, phylib will bring it up */
3510 	netif_carrier_off(ndev);
3511 	fec_enet_clk_enable(ndev, false);
3512 	pinctrl_pm_select_sleep_state(&pdev->dev);
3513 
3514 	ret = register_netdev(ndev);
3515 	if (ret)
3516 		goto failed_register;
3517 
3518 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3519 			   FEC_WOL_HAS_MAGIC_PACKET);
3520 
3521 	if (fep->bufdesc_ex && fep->ptp_clock)
3522 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3523 
3524 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3525 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3526 
3527 	pm_runtime_mark_last_busy(&pdev->dev);
3528 	pm_runtime_put_autosuspend(&pdev->dev);
3529 
3530 	return 0;
3531 
3532 failed_register:
3533 	fec_enet_mii_remove(fep);
3534 failed_mii_init:
3535 failed_irq:
3536 failed_init:
3537 	fec_ptp_stop(pdev);
3538 	if (fep->reg_phy)
3539 		regulator_disable(fep->reg_phy);
3540 failed_reset:
3541 	pm_runtime_put(&pdev->dev);
3542 	pm_runtime_disable(&pdev->dev);
3543 failed_regulator:
3544 failed_clk_ipg:
3545 	fec_enet_clk_enable(ndev, false);
3546 failed_clk:
3547 	if (of_phy_is_fixed_link(np))
3548 		of_phy_deregister_fixed_link(np);
3549 failed_phy:
3550 	of_node_put(phy_node);
3551 failed_ioremap:
3552 	free_netdev(ndev);
3553 
3554 	return ret;
3555 }
3556 
3557 static int
3558 fec_drv_remove(struct platform_device *pdev)
3559 {
3560 	struct net_device *ndev = platform_get_drvdata(pdev);
3561 	struct fec_enet_private *fep = netdev_priv(ndev);
3562 	struct device_node *np = pdev->dev.of_node;
3563 
3564 	cancel_work_sync(&fep->tx_timeout_work);
3565 	fec_ptp_stop(pdev);
3566 	unregister_netdev(ndev);
3567 	fec_enet_mii_remove(fep);
3568 	if (fep->reg_phy)
3569 		regulator_disable(fep->reg_phy);
3570 	if (of_phy_is_fixed_link(np))
3571 		of_phy_deregister_fixed_link(np);
3572 	of_node_put(fep->phy_node);
3573 	free_netdev(ndev);
3574 
3575 	return 0;
3576 }
3577 
3578 static int __maybe_unused fec_suspend(struct device *dev)
3579 {
3580 	struct net_device *ndev = dev_get_drvdata(dev);
3581 	struct fec_enet_private *fep = netdev_priv(ndev);
3582 
3583 	rtnl_lock();
3584 	if (netif_running(ndev)) {
3585 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3586 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3587 		phy_stop(ndev->phydev);
3588 		napi_disable(&fep->napi);
3589 		netif_tx_lock_bh(ndev);
3590 		netif_device_detach(ndev);
3591 		netif_tx_unlock_bh(ndev);
3592 		fec_stop(ndev);
3593 		fec_enet_clk_enable(ndev, false);
3594 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3595 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3596 	}
3597 	rtnl_unlock();
3598 
3599 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3600 		regulator_disable(fep->reg_phy);
3601 
3602 	/* SOC supply clock to phy, when clock is disabled, phy link down
3603 	 * SOC control phy regulator, when regulator is disabled, phy link down
3604 	 */
3605 	if (fep->clk_enet_out || fep->reg_phy)
3606 		fep->link = 0;
3607 
3608 	return 0;
3609 }
3610 
3611 static int __maybe_unused fec_resume(struct device *dev)
3612 {
3613 	struct net_device *ndev = dev_get_drvdata(dev);
3614 	struct fec_enet_private *fep = netdev_priv(ndev);
3615 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3616 	int ret;
3617 	int val;
3618 
3619 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3620 		ret = regulator_enable(fep->reg_phy);
3621 		if (ret)
3622 			return ret;
3623 	}
3624 
3625 	rtnl_lock();
3626 	if (netif_running(ndev)) {
3627 		ret = fec_enet_clk_enable(ndev, true);
3628 		if (ret) {
3629 			rtnl_unlock();
3630 			goto failed_clk;
3631 		}
3632 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3633 			if (pdata && pdata->sleep_mode_enable)
3634 				pdata->sleep_mode_enable(false);
3635 			val = readl(fep->hwp + FEC_ECNTRL);
3636 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3637 			writel(val, fep->hwp + FEC_ECNTRL);
3638 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3639 		} else {
3640 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3641 		}
3642 		fec_restart(ndev);
3643 		netif_tx_lock_bh(ndev);
3644 		netif_device_attach(ndev);
3645 		netif_tx_unlock_bh(ndev);
3646 		napi_enable(&fep->napi);
3647 		phy_start(ndev->phydev);
3648 	}
3649 	rtnl_unlock();
3650 
3651 	return 0;
3652 
3653 failed_clk:
3654 	if (fep->reg_phy)
3655 		regulator_disable(fep->reg_phy);
3656 	return ret;
3657 }
3658 
3659 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3660 {
3661 	struct net_device *ndev = dev_get_drvdata(dev);
3662 	struct fec_enet_private *fep = netdev_priv(ndev);
3663 
3664 	clk_disable_unprepare(fep->clk_ipg);
3665 
3666 	return 0;
3667 }
3668 
3669 static int __maybe_unused fec_runtime_resume(struct device *dev)
3670 {
3671 	struct net_device *ndev = dev_get_drvdata(dev);
3672 	struct fec_enet_private *fep = netdev_priv(ndev);
3673 
3674 	return clk_prepare_enable(fep->clk_ipg);
3675 }
3676 
3677 static const struct dev_pm_ops fec_pm_ops = {
3678 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3679 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3680 };
3681 
3682 static struct platform_driver fec_driver = {
3683 	.driver	= {
3684 		.name	= DRIVER_NAME,
3685 		.pm	= &fec_pm_ops,
3686 		.of_match_table = fec_dt_ids,
3687 	},
3688 	.id_table = fec_devtype,
3689 	.probe	= fec_probe,
3690 	.remove	= fec_drv_remove,
3691 };
3692 
3693 module_platform_driver(fec_driver);
3694 
3695 MODULE_ALIAS("platform:"DRIVER_NAME);
3696 MODULE_LICENSE("GPL");
3697