1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
95 	}, {
96 		.name = "imx6q-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
98 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
99 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
100 	}, {
101 		.name = "mvf600-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC,
103 	}, {
104 		.name = "imx6sx-fec",
105 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
106 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
107 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
108 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
109 	}, {
110 		/* sentinel */
111 	}
112 };
113 MODULE_DEVICE_TABLE(platform, fec_devtype);
114 
115 enum imx_fec_type {
116 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
117 	IMX27_FEC,	/* runs on i.mx27/35/51 */
118 	IMX28_FEC,
119 	IMX6Q_FEC,
120 	MVF600_FEC,
121 	IMX6SX_FEC,
122 };
123 
124 static const struct of_device_id fec_dt_ids[] = {
125 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
126 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
127 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
128 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
129 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
130 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
131 	{ /* sentinel */ }
132 };
133 MODULE_DEVICE_TABLE(of, fec_dt_ids);
134 
135 static unsigned char macaddr[ETH_ALEN];
136 module_param_array(macaddr, byte, NULL, 0);
137 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
138 
139 #if defined(CONFIG_M5272)
140 /*
141  * Some hardware gets it MAC address out of local flash memory.
142  * if this is non-zero then assume it is the address to get MAC from.
143  */
144 #if defined(CONFIG_NETtel)
145 #define	FEC_FLASHMAC	0xf0006006
146 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
147 #define	FEC_FLASHMAC	0xf0006000
148 #elif defined(CONFIG_CANCam)
149 #define	FEC_FLASHMAC	0xf0020000
150 #elif defined (CONFIG_M5272C3)
151 #define	FEC_FLASHMAC	(0xffe04000 + 4)
152 #elif defined(CONFIG_MOD5272)
153 #define FEC_FLASHMAC	0xffc0406b
154 #else
155 #define	FEC_FLASHMAC	0
156 #endif
157 #endif /* CONFIG_M5272 */
158 
159 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
160  */
161 #define PKT_MAXBUF_SIZE		1522
162 #define PKT_MINBUF_SIZE		64
163 #define PKT_MAXBLR_SIZE		1536
164 
165 /* FEC receive acceleration */
166 #define FEC_RACC_IPDIS		(1 << 1)
167 #define FEC_RACC_PRODIS		(1 << 2)
168 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
169 
170 /*
171  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172  * size bits. Other FEC hardware does not, so we need to take that into
173  * account when setting it.
174  */
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
177 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
178 #else
179 #define	OPT_FRAME_SIZE	0
180 #endif
181 
182 /* FEC MII MMFR bits definition */
183 #define FEC_MMFR_ST		(1 << 30)
184 #define FEC_MMFR_OP_READ	(2 << 28)
185 #define FEC_MMFR_OP_WRITE	(1 << 28)
186 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
187 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
188 #define FEC_MMFR_TA		(2 << 16)
189 #define FEC_MMFR_DATA(v)	(v & 0xffff)
190 
191 #define FEC_MII_TIMEOUT		30000 /* us */
192 
193 /* Transmitter timeout */
194 #define TX_TIMEOUT (2 * HZ)
195 
196 #define FEC_PAUSE_FLAG_AUTONEG	0x1
197 #define FEC_PAUSE_FLAG_ENABLE	0x2
198 
199 #define COPYBREAK_DEFAULT	256
200 
201 #define TSO_HEADER_SIZE		128
202 /* Max number of allowed TCP segments for software TSO */
203 #define FEC_MAX_TSO_SEGS	100
204 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
205 
206 #define IS_TSO_HEADER(txq, addr) \
207 	((addr >= txq->tso_hdrs_dma) && \
208 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
209 
210 static int mii_cnt;
211 
212 static inline
213 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
214 				      struct fec_enet_private *fep,
215 				      int queue_id)
216 {
217 	struct bufdesc *new_bd = bdp + 1;
218 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
219 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
220 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
221 	struct bufdesc_ex *ex_base;
222 	struct bufdesc *base;
223 	int ring_size;
224 
225 	if (bdp >= txq->tx_bd_base) {
226 		base = txq->tx_bd_base;
227 		ring_size = txq->tx_ring_size;
228 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
229 	} else {
230 		base = rxq->rx_bd_base;
231 		ring_size = rxq->rx_ring_size;
232 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
233 	}
234 
235 	if (fep->bufdesc_ex)
236 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
237 			ex_base : ex_new_bd);
238 	else
239 		return (new_bd >= (base + ring_size)) ?
240 			base : new_bd;
241 }
242 
243 static inline
244 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
245 				      struct fec_enet_private *fep,
246 				      int queue_id)
247 {
248 	struct bufdesc *new_bd = bdp - 1;
249 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
250 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
251 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
252 	struct bufdesc_ex *ex_base;
253 	struct bufdesc *base;
254 	int ring_size;
255 
256 	if (bdp >= txq->tx_bd_base) {
257 		base = txq->tx_bd_base;
258 		ring_size = txq->tx_ring_size;
259 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
260 	} else {
261 		base = rxq->rx_bd_base;
262 		ring_size = rxq->rx_ring_size;
263 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
264 	}
265 
266 	if (fep->bufdesc_ex)
267 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
268 			(ex_new_bd + ring_size) : ex_new_bd);
269 	else
270 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
271 }
272 
273 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
274 				struct fec_enet_private *fep)
275 {
276 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
277 }
278 
279 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
280 					struct fec_enet_priv_tx_q *txq)
281 {
282 	int entries;
283 
284 	entries = ((const char *)txq->dirty_tx -
285 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
286 
287 	return entries > 0 ? entries : entries + txq->tx_ring_size;
288 }
289 
290 static void *swap_buffer(void *bufaddr, int len)
291 {
292 	int i;
293 	unsigned int *buf = bufaddr;
294 
295 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
296 		*buf = cpu_to_be32(*buf);
297 
298 	return bufaddr;
299 }
300 
301 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
302 {
303 	int i;
304 	unsigned int *src = src_buf;
305 	unsigned int *dst = dst_buf;
306 
307 	for (i = 0; i < len; i += 4, src++, dst++)
308 		*dst = swab32p(src);
309 }
310 
311 static void fec_dump(struct net_device *ndev)
312 {
313 	struct fec_enet_private *fep = netdev_priv(ndev);
314 	struct bufdesc *bdp;
315 	struct fec_enet_priv_tx_q *txq;
316 	int index = 0;
317 
318 	netdev_info(ndev, "TX ring dump\n");
319 	pr_info("Nr     SC     addr       len  SKB\n");
320 
321 	txq = fep->tx_queue[0];
322 	bdp = txq->tx_bd_base;
323 
324 	do {
325 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
326 			index,
327 			bdp == txq->cur_tx ? 'S' : ' ',
328 			bdp == txq->dirty_tx ? 'H' : ' ',
329 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
330 			txq->tx_skbuff[index]);
331 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
332 		index++;
333 	} while (bdp != txq->tx_bd_base);
334 }
335 
336 static inline bool is_ipv4_pkt(struct sk_buff *skb)
337 {
338 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
339 }
340 
341 static int
342 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
343 {
344 	/* Only run for packets requiring a checksum. */
345 	if (skb->ip_summed != CHECKSUM_PARTIAL)
346 		return 0;
347 
348 	if (unlikely(skb_cow_head(skb, 0)))
349 		return -1;
350 
351 	if (is_ipv4_pkt(skb))
352 		ip_hdr(skb)->check = 0;
353 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
354 
355 	return 0;
356 }
357 
358 static int
359 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
360 			     struct sk_buff *skb,
361 			     struct net_device *ndev)
362 {
363 	struct fec_enet_private *fep = netdev_priv(ndev);
364 	const struct platform_device_id *id_entry =
365 				platform_get_device_id(fep->pdev);
366 	struct bufdesc *bdp = txq->cur_tx;
367 	struct bufdesc_ex *ebdp;
368 	int nr_frags = skb_shinfo(skb)->nr_frags;
369 	unsigned short queue = skb_get_queue_mapping(skb);
370 	int frag, frag_len;
371 	unsigned short status;
372 	unsigned int estatus = 0;
373 	skb_frag_t *this_frag;
374 	unsigned int index;
375 	void *bufaddr;
376 	dma_addr_t addr;
377 	int i;
378 
379 	for (frag = 0; frag < nr_frags; frag++) {
380 		this_frag = &skb_shinfo(skb)->frags[frag];
381 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
382 		ebdp = (struct bufdesc_ex *)bdp;
383 
384 		status = bdp->cbd_sc;
385 		status &= ~BD_ENET_TX_STATS;
386 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
387 		frag_len = skb_shinfo(skb)->frags[frag].size;
388 
389 		/* Handle the last BD specially */
390 		if (frag == nr_frags - 1) {
391 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
392 			if (fep->bufdesc_ex) {
393 				estatus |= BD_ENET_TX_INT;
394 				if (unlikely(skb_shinfo(skb)->tx_flags &
395 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
396 					estatus |= BD_ENET_TX_TS;
397 			}
398 		}
399 
400 		if (fep->bufdesc_ex) {
401 			if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
402 				estatus |= FEC_TX_BD_FTYPE(queue);
403 			if (skb->ip_summed == CHECKSUM_PARTIAL)
404 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
405 			ebdp->cbd_bdu = 0;
406 			ebdp->cbd_esc = estatus;
407 		}
408 
409 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
410 
411 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
412 		if (((unsigned long) bufaddr) & fep->tx_align ||
413 			id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
414 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
415 			bufaddr = txq->tx_bounce[index];
416 
417 			if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
418 				swap_buffer(bufaddr, frag_len);
419 		}
420 
421 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
422 				      DMA_TO_DEVICE);
423 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
424 			dev_kfree_skb_any(skb);
425 			if (net_ratelimit())
426 				netdev_err(ndev, "Tx DMA memory map failed\n");
427 			goto dma_mapping_error;
428 		}
429 
430 		bdp->cbd_bufaddr = addr;
431 		bdp->cbd_datlen = frag_len;
432 		bdp->cbd_sc = status;
433 	}
434 
435 	txq->cur_tx = bdp;
436 
437 	return 0;
438 
439 dma_mapping_error:
440 	bdp = txq->cur_tx;
441 	for (i = 0; i < frag; i++) {
442 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
443 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
444 				bdp->cbd_datlen, DMA_TO_DEVICE);
445 	}
446 	return NETDEV_TX_OK;
447 }
448 
449 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
450 				   struct sk_buff *skb, struct net_device *ndev)
451 {
452 	struct fec_enet_private *fep = netdev_priv(ndev);
453 	const struct platform_device_id *id_entry =
454 				platform_get_device_id(fep->pdev);
455 	int nr_frags = skb_shinfo(skb)->nr_frags;
456 	struct bufdesc *bdp, *last_bdp;
457 	void *bufaddr;
458 	dma_addr_t addr;
459 	unsigned short status;
460 	unsigned short buflen;
461 	unsigned short queue;
462 	unsigned int estatus = 0;
463 	unsigned int index;
464 	int entries_free;
465 	int ret;
466 
467 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
468 	if (entries_free < MAX_SKB_FRAGS + 1) {
469 		dev_kfree_skb_any(skb);
470 		if (net_ratelimit())
471 			netdev_err(ndev, "NOT enough BD for SG!\n");
472 		return NETDEV_TX_OK;
473 	}
474 
475 	/* Protocol checksum off-load for TCP and UDP. */
476 	if (fec_enet_clear_csum(skb, ndev)) {
477 		dev_kfree_skb_any(skb);
478 		return NETDEV_TX_OK;
479 	}
480 
481 	/* Fill in a Tx ring entry */
482 	bdp = txq->cur_tx;
483 	status = bdp->cbd_sc;
484 	status &= ~BD_ENET_TX_STATS;
485 
486 	/* Set buffer length and buffer pointer */
487 	bufaddr = skb->data;
488 	buflen = skb_headlen(skb);
489 
490 	queue = skb_get_queue_mapping(skb);
491 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
492 	if (((unsigned long) bufaddr) & fep->tx_align ||
493 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
494 		memcpy(txq->tx_bounce[index], skb->data, buflen);
495 		bufaddr = txq->tx_bounce[index];
496 
497 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
498 			swap_buffer(bufaddr, buflen);
499 	}
500 
501 	/* Push the data cache so the CPM does not get stale memory data. */
502 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
503 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
504 		dev_kfree_skb_any(skb);
505 		if (net_ratelimit())
506 			netdev_err(ndev, "Tx DMA memory map failed\n");
507 		return NETDEV_TX_OK;
508 	}
509 
510 	if (nr_frags) {
511 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
512 		if (ret)
513 			return ret;
514 	} else {
515 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
516 		if (fep->bufdesc_ex) {
517 			estatus = BD_ENET_TX_INT;
518 			if (unlikely(skb_shinfo(skb)->tx_flags &
519 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
520 				estatus |= BD_ENET_TX_TS;
521 		}
522 	}
523 
524 	if (fep->bufdesc_ex) {
525 
526 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
527 
528 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
529 			fep->hwts_tx_en))
530 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
531 
532 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
533 			estatus |= FEC_TX_BD_FTYPE(queue);
534 
535 		if (skb->ip_summed == CHECKSUM_PARTIAL)
536 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
537 
538 		ebdp->cbd_bdu = 0;
539 		ebdp->cbd_esc = estatus;
540 	}
541 
542 	last_bdp = txq->cur_tx;
543 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
544 	/* Save skb pointer */
545 	txq->tx_skbuff[index] = skb;
546 
547 	bdp->cbd_datlen = buflen;
548 	bdp->cbd_bufaddr = addr;
549 
550 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
551 	 * it's the last BD of the frame, and to put the CRC on the end.
552 	 */
553 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
554 	bdp->cbd_sc = status;
555 
556 	/* If this was the last BD in the ring, start at the beginning again. */
557 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
558 
559 	skb_tx_timestamp(skb);
560 
561 	txq->cur_tx = bdp;
562 
563 	/* Trigger transmission start */
564 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
565 
566 	return 0;
567 }
568 
569 static int
570 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
571 			  struct net_device *ndev,
572 			  struct bufdesc *bdp, int index, char *data,
573 			  int size, bool last_tcp, bool is_last)
574 {
575 	struct fec_enet_private *fep = netdev_priv(ndev);
576 	const struct platform_device_id *id_entry =
577 				platform_get_device_id(fep->pdev);
578 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
579 	unsigned short queue = skb_get_queue_mapping(skb);
580 	unsigned short status;
581 	unsigned int estatus = 0;
582 	dma_addr_t addr;
583 
584 	status = bdp->cbd_sc;
585 	status &= ~BD_ENET_TX_STATS;
586 
587 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
588 
589 	if (((unsigned long) data) & fep->tx_align ||
590 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
591 		memcpy(txq->tx_bounce[index], data, size);
592 		data = txq->tx_bounce[index];
593 
594 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
595 			swap_buffer(data, size);
596 	}
597 
598 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
599 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
600 		dev_kfree_skb_any(skb);
601 		if (net_ratelimit())
602 			netdev_err(ndev, "Tx DMA memory map failed\n");
603 		return NETDEV_TX_BUSY;
604 	}
605 
606 	bdp->cbd_datlen = size;
607 	bdp->cbd_bufaddr = addr;
608 
609 	if (fep->bufdesc_ex) {
610 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
611 			estatus |= FEC_TX_BD_FTYPE(queue);
612 		if (skb->ip_summed == CHECKSUM_PARTIAL)
613 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
614 		ebdp->cbd_bdu = 0;
615 		ebdp->cbd_esc = estatus;
616 	}
617 
618 	/* Handle the last BD specially */
619 	if (last_tcp)
620 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
621 	if (is_last) {
622 		status |= BD_ENET_TX_INTR;
623 		if (fep->bufdesc_ex)
624 			ebdp->cbd_esc |= BD_ENET_TX_INT;
625 	}
626 
627 	bdp->cbd_sc = status;
628 
629 	return 0;
630 }
631 
632 static int
633 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
634 			 struct sk_buff *skb, struct net_device *ndev,
635 			 struct bufdesc *bdp, int index)
636 {
637 	struct fec_enet_private *fep = netdev_priv(ndev);
638 	const struct platform_device_id *id_entry =
639 				platform_get_device_id(fep->pdev);
640 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
641 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
642 	unsigned short queue = skb_get_queue_mapping(skb);
643 	void *bufaddr;
644 	unsigned long dmabuf;
645 	unsigned short status;
646 	unsigned int estatus = 0;
647 
648 	status = bdp->cbd_sc;
649 	status &= ~BD_ENET_TX_STATS;
650 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
651 
652 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
653 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
654 	if (((unsigned long)bufaddr) & fep->tx_align ||
655 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
656 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
657 		bufaddr = txq->tx_bounce[index];
658 
659 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
660 			swap_buffer(bufaddr, hdr_len);
661 
662 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
663 					hdr_len, DMA_TO_DEVICE);
664 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
665 			dev_kfree_skb_any(skb);
666 			if (net_ratelimit())
667 				netdev_err(ndev, "Tx DMA memory map failed\n");
668 			return NETDEV_TX_BUSY;
669 		}
670 	}
671 
672 	bdp->cbd_bufaddr = dmabuf;
673 	bdp->cbd_datlen = hdr_len;
674 
675 	if (fep->bufdesc_ex) {
676 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
677 			estatus |= FEC_TX_BD_FTYPE(queue);
678 		if (skb->ip_summed == CHECKSUM_PARTIAL)
679 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
680 		ebdp->cbd_bdu = 0;
681 		ebdp->cbd_esc = estatus;
682 	}
683 
684 	bdp->cbd_sc = status;
685 
686 	return 0;
687 }
688 
689 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
690 				   struct sk_buff *skb,
691 				   struct net_device *ndev)
692 {
693 	struct fec_enet_private *fep = netdev_priv(ndev);
694 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
695 	int total_len, data_left;
696 	struct bufdesc *bdp = txq->cur_tx;
697 	unsigned short queue = skb_get_queue_mapping(skb);
698 	struct tso_t tso;
699 	unsigned int index = 0;
700 	int ret;
701 	const struct platform_device_id *id_entry =
702 				platform_get_device_id(fep->pdev);
703 
704 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
705 		dev_kfree_skb_any(skb);
706 		if (net_ratelimit())
707 			netdev_err(ndev, "NOT enough BD for TSO!\n");
708 		return NETDEV_TX_OK;
709 	}
710 
711 	/* Protocol checksum off-load for TCP and UDP. */
712 	if (fec_enet_clear_csum(skb, ndev)) {
713 		dev_kfree_skb_any(skb);
714 		return NETDEV_TX_OK;
715 	}
716 
717 	/* Initialize the TSO handler, and prepare the first payload */
718 	tso_start(skb, &tso);
719 
720 	total_len = skb->len - hdr_len;
721 	while (total_len > 0) {
722 		char *hdr;
723 
724 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
725 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
726 		total_len -= data_left;
727 
728 		/* prepare packet headers: MAC + IP + TCP */
729 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
730 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
731 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
732 		if (ret)
733 			goto err_release;
734 
735 		while (data_left > 0) {
736 			int size;
737 
738 			size = min_t(int, tso.size, data_left);
739 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
740 			index = fec_enet_get_bd_index(txq->tx_bd_base,
741 						      bdp, fep);
742 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
743 							bdp, index,
744 							tso.data, size,
745 							size == data_left,
746 							total_len == 0);
747 			if (ret)
748 				goto err_release;
749 
750 			data_left -= size;
751 			tso_build_data(skb, &tso, size);
752 		}
753 
754 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
755 	}
756 
757 	/* Save skb pointer */
758 	txq->tx_skbuff[index] = skb;
759 
760 	skb_tx_timestamp(skb);
761 	txq->cur_tx = bdp;
762 
763 	/* Trigger transmission start */
764 	if (!(id_entry->driver_data & FEC_QUIRK_ERR007885) ||
765 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
768 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
769 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
770 
771 	return 0;
772 
773 err_release:
774 	/* TODO: Release all used data descriptors for TSO */
775 	return ret;
776 }
777 
778 static netdev_tx_t
779 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
780 {
781 	struct fec_enet_private *fep = netdev_priv(ndev);
782 	int entries_free;
783 	unsigned short queue;
784 	struct fec_enet_priv_tx_q *txq;
785 	struct netdev_queue *nq;
786 	int ret;
787 
788 	queue = skb_get_queue_mapping(skb);
789 	txq = fep->tx_queue[queue];
790 	nq = netdev_get_tx_queue(ndev, queue);
791 
792 	if (skb_is_gso(skb))
793 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
794 	else
795 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
796 	if (ret)
797 		return ret;
798 
799 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
800 	if (entries_free <= txq->tx_stop_threshold)
801 		netif_tx_stop_queue(nq);
802 
803 	return NETDEV_TX_OK;
804 }
805 
806 /* Init RX & TX buffer descriptors
807  */
808 static void fec_enet_bd_init(struct net_device *dev)
809 {
810 	struct fec_enet_private *fep = netdev_priv(dev);
811 	struct fec_enet_priv_tx_q *txq;
812 	struct fec_enet_priv_rx_q *rxq;
813 	struct bufdesc *bdp;
814 	unsigned int i;
815 	unsigned int q;
816 
817 	for (q = 0; q < fep->num_rx_queues; q++) {
818 		/* Initialize the receive buffer descriptors. */
819 		rxq = fep->rx_queue[q];
820 		bdp = rxq->rx_bd_base;
821 
822 		for (i = 0; i < rxq->rx_ring_size; i++) {
823 
824 			/* Initialize the BD for every fragment in the page. */
825 			if (bdp->cbd_bufaddr)
826 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
827 			else
828 				bdp->cbd_sc = 0;
829 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
830 		}
831 
832 		/* Set the last buffer to wrap */
833 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
834 		bdp->cbd_sc |= BD_SC_WRAP;
835 
836 		rxq->cur_rx = rxq->rx_bd_base;
837 	}
838 
839 	for (q = 0; q < fep->num_tx_queues; q++) {
840 		/* ...and the same for transmit */
841 		txq = fep->tx_queue[q];
842 		bdp = txq->tx_bd_base;
843 		txq->cur_tx = bdp;
844 
845 		for (i = 0; i < txq->tx_ring_size; i++) {
846 			/* Initialize the BD for every fragment in the page. */
847 			bdp->cbd_sc = 0;
848 			if (txq->tx_skbuff[i]) {
849 				dev_kfree_skb_any(txq->tx_skbuff[i]);
850 				txq->tx_skbuff[i] = NULL;
851 			}
852 			bdp->cbd_bufaddr = 0;
853 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
854 		}
855 
856 		/* Set the last buffer to wrap */
857 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
858 		bdp->cbd_sc |= BD_SC_WRAP;
859 		txq->dirty_tx = bdp;
860 	}
861 }
862 
863 static void fec_enet_active_rxring(struct net_device *ndev)
864 {
865 	struct fec_enet_private *fep = netdev_priv(ndev);
866 	int i;
867 
868 	for (i = 0; i < fep->num_rx_queues; i++)
869 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
870 }
871 
872 static void fec_enet_enable_ring(struct net_device *ndev)
873 {
874 	struct fec_enet_private *fep = netdev_priv(ndev);
875 	struct fec_enet_priv_tx_q *txq;
876 	struct fec_enet_priv_rx_q *rxq;
877 	int i;
878 
879 	for (i = 0; i < fep->num_rx_queues; i++) {
880 		rxq = fep->rx_queue[i];
881 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(RCMR_MATCHEN | RCMR_CMP(i),
886 			       fep->hwp + FEC_RCMR(i));
887 	}
888 
889 	for (i = 0; i < fep->num_tx_queues; i++) {
890 		txq = fep->tx_queue[i];
891 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892 
893 		/* enable DMA1/2 */
894 		if (i)
895 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896 			       fep->hwp + FEC_DMA_CFG(i));
897 	}
898 }
899 
900 static void fec_enet_reset_skb(struct net_device *ndev)
901 {
902 	struct fec_enet_private *fep = netdev_priv(ndev);
903 	struct fec_enet_priv_tx_q *txq;
904 	int i, j;
905 
906 	for (i = 0; i < fep->num_tx_queues; i++) {
907 		txq = fep->tx_queue[i];
908 
909 		for (j = 0; j < txq->tx_ring_size; j++) {
910 			if (txq->tx_skbuff[j]) {
911 				dev_kfree_skb_any(txq->tx_skbuff[j]);
912 				txq->tx_skbuff[j] = NULL;
913 			}
914 		}
915 	}
916 }
917 
918 /*
919  * This function is called to start or restart the FEC during a link
920  * change, transmit timeout, or to reconfigure the FEC.  The network
921  * packet processing for this device must be stopped before this call.
922  */
923 static void
924 fec_restart(struct net_device *ndev)
925 {
926 	struct fec_enet_private *fep = netdev_priv(ndev);
927 	const struct platform_device_id *id_entry =
928 				platform_get_device_id(fep->pdev);
929 	u32 val;
930 	u32 temp_mac[2];
931 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
932 	u32 ecntl = 0x2; /* ETHEREN */
933 
934 	/* Whack a reset.  We should wait for this.
935 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
936 	 * instead of reset MAC itself.
937 	 */
938 	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
939 		writel(0, fep->hwp + FEC_ECNTRL);
940 	} else {
941 		writel(1, fep->hwp + FEC_ECNTRL);
942 		udelay(10);
943 	}
944 
945 	/*
946 	 * enet-mac reset will reset mac address registers too,
947 	 * so need to reconfigure it.
948 	 */
949 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
950 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
951 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
952 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
953 	}
954 
955 	/* Clear any outstanding interrupt. */
956 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
957 
958 	/* Set maximum receive buffer size. */
959 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
960 
961 	fec_enet_bd_init(ndev);
962 
963 	fec_enet_enable_ring(ndev);
964 
965 	/* Reset tx SKB buffers. */
966 	fec_enet_reset_skb(ndev);
967 
968 	/* Enable MII mode */
969 	if (fep->full_duplex == DUPLEX_FULL) {
970 		/* FD enable */
971 		writel(0x04, fep->hwp + FEC_X_CNTRL);
972 	} else {
973 		/* No Rcv on Xmit */
974 		rcntl |= 0x02;
975 		writel(0x0, fep->hwp + FEC_X_CNTRL);
976 	}
977 
978 	/* Set MII speed */
979 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
980 
981 #if !defined(CONFIG_M5272)
982 	/* set RX checksum */
983 	val = readl(fep->hwp + FEC_RACC);
984 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
985 		val |= FEC_RACC_OPTIONS;
986 	else
987 		val &= ~FEC_RACC_OPTIONS;
988 	writel(val, fep->hwp + FEC_RACC);
989 #endif
990 
991 	/*
992 	 * The phy interface and speed need to get configured
993 	 * differently on enet-mac.
994 	 */
995 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
996 		/* Enable flow control and length check */
997 		rcntl |= 0x40000000 | 0x00000020;
998 
999 		/* RGMII, RMII or MII */
1000 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
1001 			rcntl |= (1 << 6);
1002 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003 			rcntl |= (1 << 8);
1004 		else
1005 			rcntl &= ~(1 << 8);
1006 
1007 		/* 1G, 100M or 10M */
1008 		if (fep->phy_dev) {
1009 			if (fep->phy_dev->speed == SPEED_1000)
1010 				ecntl |= (1 << 5);
1011 			else if (fep->phy_dev->speed == SPEED_100)
1012 				rcntl &= ~(1 << 9);
1013 			else
1014 				rcntl |= (1 << 9);
1015 		}
1016 	} else {
1017 #ifdef FEC_MIIGSK_ENR
1018 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
1019 			u32 cfgr;
1020 			/* disable the gasket and wait */
1021 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023 				udelay(1);
1024 
1025 			/*
1026 			 * configure the gasket:
1027 			 *   RMII, 50 MHz, no loopback, no echo
1028 			 *   MII, 25 MHz, no loopback, no echo
1029 			 */
1030 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035 
1036 			/* re-enable the gasket */
1037 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038 		}
1039 #endif
1040 	}
1041 
1042 #if !defined(CONFIG_M5272)
1043 	/* enable pause frame*/
1044 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046 	     fep->phy_dev && fep->phy_dev->pause)) {
1047 		rcntl |= FEC_ENET_FCE;
1048 
1049 		/* set FIFO threshold parameter to reduce overrun */
1050 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054 
1055 		/* OPD */
1056 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057 	} else {
1058 		rcntl &= ~FEC_ENET_FCE;
1059 	}
1060 #endif /* !defined(CONFIG_M5272) */
1061 
1062 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063 
1064 	/* Setup multicast filter. */
1065 	set_multicast_list(ndev);
1066 #ifndef CONFIG_M5272
1067 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069 #endif
1070 
1071 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1072 		/* enable ENET endian swap */
1073 		ecntl |= (1 << 8);
1074 		/* enable ENET store and forward mode */
1075 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076 	}
1077 
1078 	if (fep->bufdesc_ex)
1079 		ecntl |= (1 << 4);
1080 
1081 #ifndef CONFIG_M5272
1082 	/* Enable the MIB statistic event counters */
1083 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084 #endif
1085 
1086 	/* And last, enable the transmit and receive processing */
1087 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1088 	fec_enet_active_rxring(ndev);
1089 
1090 	if (fep->bufdesc_ex)
1091 		fec_ptp_start_cyclecounter(ndev);
1092 
1093 	/* Enable interrupts we wish to service */
1094 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1095 
1096 	/* Init the interrupt coalescing */
1097 	fec_enet_itr_coal_init(ndev);
1098 
1099 }
1100 
1101 static void
1102 fec_stop(struct net_device *ndev)
1103 {
1104 	struct fec_enet_private *fep = netdev_priv(ndev);
1105 	const struct platform_device_id *id_entry =
1106 				platform_get_device_id(fep->pdev);
1107 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1108 
1109 	/* We cannot expect a graceful transmit stop without link !!! */
1110 	if (fep->link) {
1111 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1112 		udelay(10);
1113 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1114 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1115 	}
1116 
1117 	/* Whack a reset.  We should wait for this.
1118 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1119 	 * instead of reset MAC itself.
1120 	 */
1121 	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
1122 		writel(0, fep->hwp + FEC_ECNTRL);
1123 	} else {
1124 		writel(1, fep->hwp + FEC_ECNTRL);
1125 		udelay(10);
1126 	}
1127 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1128 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1129 
1130 	/* We have to keep ENET enabled to have MII interrupt stay working */
1131 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1132 		writel(2, fep->hwp + FEC_ECNTRL);
1133 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1134 	}
1135 }
1136 
1137 
1138 static void
1139 fec_timeout(struct net_device *ndev)
1140 {
1141 	struct fec_enet_private *fep = netdev_priv(ndev);
1142 
1143 	fec_dump(ndev);
1144 
1145 	ndev->stats.tx_errors++;
1146 
1147 	schedule_work(&fep->tx_timeout_work);
1148 }
1149 
1150 static void fec_enet_timeout_work(struct work_struct *work)
1151 {
1152 	struct fec_enet_private *fep =
1153 		container_of(work, struct fec_enet_private, tx_timeout_work);
1154 	struct net_device *ndev = fep->netdev;
1155 
1156 	rtnl_lock();
1157 	if (netif_device_present(ndev) || netif_running(ndev)) {
1158 		napi_disable(&fep->napi);
1159 		netif_tx_lock_bh(ndev);
1160 		fec_restart(ndev);
1161 		netif_wake_queue(ndev);
1162 		netif_tx_unlock_bh(ndev);
1163 		napi_enable(&fep->napi);
1164 	}
1165 	rtnl_unlock();
1166 }
1167 
1168 static void
1169 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1170 	struct skb_shared_hwtstamps *hwtstamps)
1171 {
1172 	unsigned long flags;
1173 	u64 ns;
1174 
1175 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1176 	ns = timecounter_cyc2time(&fep->tc, ts);
1177 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1178 
1179 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1180 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1181 }
1182 
1183 static void
1184 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1185 {
1186 	struct	fec_enet_private *fep;
1187 	struct bufdesc *bdp;
1188 	unsigned short status;
1189 	struct	sk_buff	*skb;
1190 	struct fec_enet_priv_tx_q *txq;
1191 	struct netdev_queue *nq;
1192 	int	index = 0;
1193 	int	entries_free;
1194 
1195 	fep = netdev_priv(ndev);
1196 
1197 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1198 
1199 	txq = fep->tx_queue[queue_id];
1200 	/* get next bdp of dirty_tx */
1201 	nq = netdev_get_tx_queue(ndev, queue_id);
1202 	bdp = txq->dirty_tx;
1203 
1204 	/* get next bdp of dirty_tx */
1205 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1206 
1207 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1208 
1209 		/* current queue is empty */
1210 		if (bdp == txq->cur_tx)
1211 			break;
1212 
1213 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1214 
1215 		skb = txq->tx_skbuff[index];
1216 		txq->tx_skbuff[index] = NULL;
1217 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1218 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1219 					bdp->cbd_datlen, DMA_TO_DEVICE);
1220 		bdp->cbd_bufaddr = 0;
1221 		if (!skb) {
1222 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1223 			continue;
1224 		}
1225 
1226 		/* Check for errors. */
1227 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1229 				   BD_ENET_TX_CSL)) {
1230 			ndev->stats.tx_errors++;
1231 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1232 				ndev->stats.tx_heartbeat_errors++;
1233 			if (status & BD_ENET_TX_LC)  /* Late collision */
1234 				ndev->stats.tx_window_errors++;
1235 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1236 				ndev->stats.tx_aborted_errors++;
1237 			if (status & BD_ENET_TX_UN)  /* Underrun */
1238 				ndev->stats.tx_fifo_errors++;
1239 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240 				ndev->stats.tx_carrier_errors++;
1241 		} else {
1242 			ndev->stats.tx_packets++;
1243 			ndev->stats.tx_bytes += skb->len;
1244 		}
1245 
1246 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247 			fep->bufdesc_ex) {
1248 			struct skb_shared_hwtstamps shhwtstamps;
1249 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250 
1251 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1252 			skb_tstamp_tx(skb, &shhwtstamps);
1253 		}
1254 
1255 		/* Deferred means some collisions occurred during transmit,
1256 		 * but we eventually sent the packet OK.
1257 		 */
1258 		if (status & BD_ENET_TX_DEF)
1259 			ndev->stats.collisions++;
1260 
1261 		/* Free the sk buffer associated with this last transmit */
1262 		dev_kfree_skb_any(skb);
1263 
1264 		txq->dirty_tx = bdp;
1265 
1266 		/* Update pointer to next buffer descriptor to be transmitted */
1267 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1268 
1269 		/* Since we have freed up a buffer, the ring is no longer full
1270 		 */
1271 		if (netif_queue_stopped(ndev)) {
1272 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1273 			if (entries_free >= txq->tx_wake_threshold)
1274 				netif_tx_wake_queue(nq);
1275 		}
1276 	}
1277 
1278 	/* ERR006538: Keep the transmitter going */
1279 	if (bdp != txq->cur_tx &&
1280 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1281 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1282 }
1283 
1284 static void
1285 fec_enet_tx(struct net_device *ndev)
1286 {
1287 	struct fec_enet_private *fep = netdev_priv(ndev);
1288 	u16 queue_id;
1289 	/* First process class A queue, then Class B and Best Effort queue */
1290 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1291 		clear_bit(queue_id, &fep->work_tx);
1292 		fec_enet_tx_queue(ndev, queue_id);
1293 	}
1294 	return;
1295 }
1296 
1297 static int
1298 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1299 {
1300 	struct  fec_enet_private *fep = netdev_priv(ndev);
1301 	int off;
1302 
1303 	off = ((unsigned long)skb->data) & fep->rx_align;
1304 	if (off)
1305 		skb_reserve(skb, fep->rx_align + 1 - off);
1306 
1307 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1308 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1309 					  DMA_FROM_DEVICE);
1310 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1311 		if (net_ratelimit())
1312 			netdev_err(ndev, "Rx DMA memory map failed\n");
1313 		return -ENOMEM;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1320 			       struct bufdesc *bdp, u32 length, bool swap)
1321 {
1322 	struct  fec_enet_private *fep = netdev_priv(ndev);
1323 	struct sk_buff *new_skb;
1324 
1325 	if (length > fep->rx_copybreak)
1326 		return false;
1327 
1328 	new_skb = netdev_alloc_skb(ndev, length);
1329 	if (!new_skb)
1330 		return false;
1331 
1332 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1333 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1334 				DMA_FROM_DEVICE);
1335 	if (!swap)
1336 		memcpy(new_skb->data, (*skb)->data, length);
1337 	else
1338 		swap_buffer2(new_skb->data, (*skb)->data, length);
1339 	*skb = new_skb;
1340 
1341 	return true;
1342 }
1343 
1344 /* During a receive, the cur_rx points to the current incoming buffer.
1345  * When we update through the ring, if the next incoming buffer has
1346  * not been given to the system, we just set the empty indicator,
1347  * effectively tossing the packet.
1348  */
1349 static int
1350 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1351 {
1352 	struct fec_enet_private *fep = netdev_priv(ndev);
1353 	const struct platform_device_id *id_entry =
1354 				platform_get_device_id(fep->pdev);
1355 	struct fec_enet_priv_rx_q *rxq;
1356 	struct bufdesc *bdp;
1357 	unsigned short status;
1358 	struct  sk_buff *skb_new = NULL;
1359 	struct  sk_buff *skb;
1360 	ushort	pkt_len;
1361 	__u8 *data;
1362 	int	pkt_received = 0;
1363 	struct	bufdesc_ex *ebdp = NULL;
1364 	bool	vlan_packet_rcvd = false;
1365 	u16	vlan_tag;
1366 	int	index = 0;
1367 	bool	is_copybreak;
1368 	bool	need_swap = id_entry->driver_data & FEC_QUIRK_SWAP_FRAME;
1369 
1370 #ifdef CONFIG_M532x
1371 	flush_cache_all();
1372 #endif
1373 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1374 	rxq = fep->rx_queue[queue_id];
1375 
1376 	/* First, grab all of the stats for the incoming packet.
1377 	 * These get messed up if we get called due to a busy condition.
1378 	 */
1379 	bdp = rxq->cur_rx;
1380 
1381 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1382 
1383 		if (pkt_received >= budget)
1384 			break;
1385 		pkt_received++;
1386 
1387 		/* Since we have allocated space to hold a complete frame,
1388 		 * the last indicator should be set.
1389 		 */
1390 		if ((status & BD_ENET_RX_LAST) == 0)
1391 			netdev_err(ndev, "rcv is not +last\n");
1392 
1393 
1394 		/* Check for errors. */
1395 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1396 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1397 			ndev->stats.rx_errors++;
1398 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1399 				/* Frame too long or too short. */
1400 				ndev->stats.rx_length_errors++;
1401 			}
1402 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1403 				ndev->stats.rx_frame_errors++;
1404 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1405 				ndev->stats.rx_crc_errors++;
1406 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1407 				ndev->stats.rx_fifo_errors++;
1408 		}
1409 
1410 		/* Report late collisions as a frame error.
1411 		 * On this error, the BD is closed, but we don't know what we
1412 		 * have in the buffer.  So, just drop this frame on the floor.
1413 		 */
1414 		if (status & BD_ENET_RX_CL) {
1415 			ndev->stats.rx_errors++;
1416 			ndev->stats.rx_frame_errors++;
1417 			goto rx_processing_done;
1418 		}
1419 
1420 		/* Process the incoming frame. */
1421 		ndev->stats.rx_packets++;
1422 		pkt_len = bdp->cbd_datlen;
1423 		ndev->stats.rx_bytes += pkt_len;
1424 
1425 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1426 		skb = rxq->rx_skbuff[index];
1427 
1428 		/* The packet length includes FCS, but we don't want to
1429 		 * include that when passing upstream as it messes up
1430 		 * bridging applications.
1431 		 */
1432 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1433 						  need_swap);
1434 		if (!is_copybreak) {
1435 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1436 			if (unlikely(!skb_new)) {
1437 				ndev->stats.rx_dropped++;
1438 				goto rx_processing_done;
1439 			}
1440 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1441 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1442 					 DMA_FROM_DEVICE);
1443 		}
1444 
1445 		prefetch(skb->data - NET_IP_ALIGN);
1446 		skb_put(skb, pkt_len - 4);
1447 		data = skb->data;
1448 		if (!is_copybreak && need_swap)
1449 			swap_buffer(data, pkt_len);
1450 
1451 		/* Extract the enhanced buffer descriptor */
1452 		ebdp = NULL;
1453 		if (fep->bufdesc_ex)
1454 			ebdp = (struct bufdesc_ex *)bdp;
1455 
1456 		/* If this is a VLAN packet remove the VLAN Tag */
1457 		vlan_packet_rcvd = false;
1458 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1459 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1460 			/* Push and remove the vlan tag */
1461 			struct vlan_hdr *vlan_header =
1462 					(struct vlan_hdr *) (data + ETH_HLEN);
1463 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1464 
1465 			vlan_packet_rcvd = true;
1466 
1467 			skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1468 						       data, (2 * ETH_ALEN));
1469 			skb_pull(skb, VLAN_HLEN);
1470 		}
1471 
1472 		skb->protocol = eth_type_trans(skb, ndev);
1473 
1474 		/* Get receive timestamp from the skb */
1475 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1476 			fec_enet_hwtstamp(fep, ebdp->ts,
1477 					  skb_hwtstamps(skb));
1478 
1479 		if (fep->bufdesc_ex &&
1480 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1481 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1482 				/* don't check it */
1483 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1484 			} else {
1485 				skb_checksum_none_assert(skb);
1486 			}
1487 		}
1488 
1489 		/* Handle received VLAN packets */
1490 		if (vlan_packet_rcvd)
1491 			__vlan_hwaccel_put_tag(skb,
1492 					       htons(ETH_P_8021Q),
1493 					       vlan_tag);
1494 
1495 		napi_gro_receive(&fep->napi, skb);
1496 
1497 		if (is_copybreak) {
1498 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1499 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1500 						   DMA_FROM_DEVICE);
1501 		} else {
1502 			rxq->rx_skbuff[index] = skb_new;
1503 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1504 		}
1505 
1506 rx_processing_done:
1507 		/* Clear the status flags for this buffer */
1508 		status &= ~BD_ENET_RX_STATS;
1509 
1510 		/* Mark the buffer empty */
1511 		status |= BD_ENET_RX_EMPTY;
1512 		bdp->cbd_sc = status;
1513 
1514 		if (fep->bufdesc_ex) {
1515 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1516 
1517 			ebdp->cbd_esc = BD_ENET_RX_INT;
1518 			ebdp->cbd_prot = 0;
1519 			ebdp->cbd_bdu = 0;
1520 		}
1521 
1522 		/* Update BD pointer to next entry */
1523 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1524 
1525 		/* Doing this here will keep the FEC running while we process
1526 		 * incoming frames.  On a heavily loaded network, we should be
1527 		 * able to keep up at the expense of system resources.
1528 		 */
1529 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1530 	}
1531 	rxq->cur_rx = bdp;
1532 	return pkt_received;
1533 }
1534 
1535 static int
1536 fec_enet_rx(struct net_device *ndev, int budget)
1537 {
1538 	int     pkt_received = 0;
1539 	u16	queue_id;
1540 	struct fec_enet_private *fep = netdev_priv(ndev);
1541 
1542 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1543 		clear_bit(queue_id, &fep->work_rx);
1544 		pkt_received += fec_enet_rx_queue(ndev,
1545 					budget - pkt_received, queue_id);
1546 	}
1547 	return pkt_received;
1548 }
1549 
1550 static bool
1551 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1552 {
1553 	if (int_events == 0)
1554 		return false;
1555 
1556 	if (int_events & FEC_ENET_RXF)
1557 		fep->work_rx |= (1 << 2);
1558 	if (int_events & FEC_ENET_RXF_1)
1559 		fep->work_rx |= (1 << 0);
1560 	if (int_events & FEC_ENET_RXF_2)
1561 		fep->work_rx |= (1 << 1);
1562 
1563 	if (int_events & FEC_ENET_TXF)
1564 		fep->work_tx |= (1 << 2);
1565 	if (int_events & FEC_ENET_TXF_1)
1566 		fep->work_tx |= (1 << 0);
1567 	if (int_events & FEC_ENET_TXF_2)
1568 		fep->work_tx |= (1 << 1);
1569 
1570 	return true;
1571 }
1572 
1573 static irqreturn_t
1574 fec_enet_interrupt(int irq, void *dev_id)
1575 {
1576 	struct net_device *ndev = dev_id;
1577 	struct fec_enet_private *fep = netdev_priv(ndev);
1578 	const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1579 	uint int_events;
1580 	irqreturn_t ret = IRQ_NONE;
1581 
1582 	int_events = readl(fep->hwp + FEC_IEVENT);
1583 	writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1584 	fec_enet_collect_events(fep, int_events);
1585 
1586 	if (int_events & napi_mask) {
1587 		ret = IRQ_HANDLED;
1588 
1589 		/* Disable the NAPI interrupts */
1590 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1591 		napi_schedule(&fep->napi);
1592 	}
1593 
1594 	if (int_events & FEC_ENET_MII) {
1595 		ret = IRQ_HANDLED;
1596 		complete(&fep->mdio_done);
1597 	}
1598 
1599 	if (fep->ptp_clock)
1600 		fec_ptp_check_pps_event(fep);
1601 
1602 	return ret;
1603 }
1604 
1605 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1606 {
1607 	struct net_device *ndev = napi->dev;
1608 	struct fec_enet_private *fep = netdev_priv(ndev);
1609 	int pkts;
1610 
1611 	/*
1612 	 * Clear any pending transmit or receive interrupts before
1613 	 * processing the rings to avoid racing with the hardware.
1614 	 */
1615 	writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1616 
1617 	pkts = fec_enet_rx(ndev, budget);
1618 
1619 	fec_enet_tx(ndev);
1620 
1621 	if (pkts < budget) {
1622 		napi_complete(napi);
1623 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1624 	}
1625 	return pkts;
1626 }
1627 
1628 /* ------------------------------------------------------------------------- */
1629 static void fec_get_mac(struct net_device *ndev)
1630 {
1631 	struct fec_enet_private *fep = netdev_priv(ndev);
1632 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1633 	unsigned char *iap, tmpaddr[ETH_ALEN];
1634 
1635 	/*
1636 	 * try to get mac address in following order:
1637 	 *
1638 	 * 1) module parameter via kernel command line in form
1639 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1640 	 */
1641 	iap = macaddr;
1642 
1643 	/*
1644 	 * 2) from device tree data
1645 	 */
1646 	if (!is_valid_ether_addr(iap)) {
1647 		struct device_node *np = fep->pdev->dev.of_node;
1648 		if (np) {
1649 			const char *mac = of_get_mac_address(np);
1650 			if (mac)
1651 				iap = (unsigned char *) mac;
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * 3) from flash or fuse (via platform data)
1657 	 */
1658 	if (!is_valid_ether_addr(iap)) {
1659 #ifdef CONFIG_M5272
1660 		if (FEC_FLASHMAC)
1661 			iap = (unsigned char *)FEC_FLASHMAC;
1662 #else
1663 		if (pdata)
1664 			iap = (unsigned char *)&pdata->mac;
1665 #endif
1666 	}
1667 
1668 	/*
1669 	 * 4) FEC mac registers set by bootloader
1670 	 */
1671 	if (!is_valid_ether_addr(iap)) {
1672 		*((__be32 *) &tmpaddr[0]) =
1673 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1674 		*((__be16 *) &tmpaddr[4]) =
1675 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1676 		iap = &tmpaddr[0];
1677 	}
1678 
1679 	/*
1680 	 * 5) random mac address
1681 	 */
1682 	if (!is_valid_ether_addr(iap)) {
1683 		/* Report it and use a random ethernet address instead */
1684 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1685 		eth_hw_addr_random(ndev);
1686 		netdev_info(ndev, "Using random MAC address: %pM\n",
1687 			    ndev->dev_addr);
1688 		return;
1689 	}
1690 
1691 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1692 
1693 	/* Adjust MAC if using macaddr */
1694 	if (iap == macaddr)
1695 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1696 }
1697 
1698 /* ------------------------------------------------------------------------- */
1699 
1700 /*
1701  * Phy section
1702  */
1703 static void fec_enet_adjust_link(struct net_device *ndev)
1704 {
1705 	struct fec_enet_private *fep = netdev_priv(ndev);
1706 	struct phy_device *phy_dev = fep->phy_dev;
1707 	int status_change = 0;
1708 
1709 	/* Prevent a state halted on mii error */
1710 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1711 		phy_dev->state = PHY_RESUMING;
1712 		return;
1713 	}
1714 
1715 	/*
1716 	 * If the netdev is down, or is going down, we're not interested
1717 	 * in link state events, so just mark our idea of the link as down
1718 	 * and ignore the event.
1719 	 */
1720 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1721 		fep->link = 0;
1722 	} else if (phy_dev->link) {
1723 		if (!fep->link) {
1724 			fep->link = phy_dev->link;
1725 			status_change = 1;
1726 		}
1727 
1728 		if (fep->full_duplex != phy_dev->duplex) {
1729 			fep->full_duplex = phy_dev->duplex;
1730 			status_change = 1;
1731 		}
1732 
1733 		if (phy_dev->speed != fep->speed) {
1734 			fep->speed = phy_dev->speed;
1735 			status_change = 1;
1736 		}
1737 
1738 		/* if any of the above changed restart the FEC */
1739 		if (status_change) {
1740 			napi_disable(&fep->napi);
1741 			netif_tx_lock_bh(ndev);
1742 			fec_restart(ndev);
1743 			netif_wake_queue(ndev);
1744 			netif_tx_unlock_bh(ndev);
1745 			napi_enable(&fep->napi);
1746 		}
1747 	} else {
1748 		if (fep->link) {
1749 			napi_disable(&fep->napi);
1750 			netif_tx_lock_bh(ndev);
1751 			fec_stop(ndev);
1752 			netif_tx_unlock_bh(ndev);
1753 			napi_enable(&fep->napi);
1754 			fep->link = phy_dev->link;
1755 			status_change = 1;
1756 		}
1757 	}
1758 
1759 	if (status_change)
1760 		phy_print_status(phy_dev);
1761 }
1762 
1763 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1764 {
1765 	struct fec_enet_private *fep = bus->priv;
1766 	unsigned long time_left;
1767 
1768 	fep->mii_timeout = 0;
1769 	init_completion(&fep->mdio_done);
1770 
1771 	/* start a read op */
1772 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1773 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1774 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1775 
1776 	/* wait for end of transfer */
1777 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1778 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1779 	if (time_left == 0) {
1780 		fep->mii_timeout = 1;
1781 		netdev_err(fep->netdev, "MDIO read timeout\n");
1782 		return -ETIMEDOUT;
1783 	}
1784 
1785 	/* return value */
1786 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1787 }
1788 
1789 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1790 			   u16 value)
1791 {
1792 	struct fec_enet_private *fep = bus->priv;
1793 	unsigned long time_left;
1794 
1795 	fep->mii_timeout = 0;
1796 	init_completion(&fep->mdio_done);
1797 
1798 	/* start a write op */
1799 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1800 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1802 		fep->hwp + FEC_MII_DATA);
1803 
1804 	/* wait for end of transfer */
1805 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1806 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1807 	if (time_left == 0) {
1808 		fep->mii_timeout = 1;
1809 		netdev_err(fep->netdev, "MDIO write timeout\n");
1810 		return -ETIMEDOUT;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1817 {
1818 	struct fec_enet_private *fep = netdev_priv(ndev);
1819 	int ret;
1820 
1821 	if (enable) {
1822 		ret = clk_prepare_enable(fep->clk_ahb);
1823 		if (ret)
1824 			return ret;
1825 		ret = clk_prepare_enable(fep->clk_ipg);
1826 		if (ret)
1827 			goto failed_clk_ipg;
1828 		if (fep->clk_enet_out) {
1829 			ret = clk_prepare_enable(fep->clk_enet_out);
1830 			if (ret)
1831 				goto failed_clk_enet_out;
1832 		}
1833 		if (fep->clk_ptp) {
1834 			mutex_lock(&fep->ptp_clk_mutex);
1835 			ret = clk_prepare_enable(fep->clk_ptp);
1836 			if (ret) {
1837 				mutex_unlock(&fep->ptp_clk_mutex);
1838 				goto failed_clk_ptp;
1839 			} else {
1840 				fep->ptp_clk_on = true;
1841 			}
1842 			mutex_unlock(&fep->ptp_clk_mutex);
1843 		}
1844 		if (fep->clk_ref) {
1845 			ret = clk_prepare_enable(fep->clk_ref);
1846 			if (ret)
1847 				goto failed_clk_ref;
1848 		}
1849 	} else {
1850 		clk_disable_unprepare(fep->clk_ahb);
1851 		clk_disable_unprepare(fep->clk_ipg);
1852 		if (fep->clk_enet_out)
1853 			clk_disable_unprepare(fep->clk_enet_out);
1854 		if (fep->clk_ptp) {
1855 			mutex_lock(&fep->ptp_clk_mutex);
1856 			clk_disable_unprepare(fep->clk_ptp);
1857 			fep->ptp_clk_on = false;
1858 			mutex_unlock(&fep->ptp_clk_mutex);
1859 		}
1860 		if (fep->clk_ref)
1861 			clk_disable_unprepare(fep->clk_ref);
1862 	}
1863 
1864 	return 0;
1865 
1866 failed_clk_ref:
1867 	if (fep->clk_ref)
1868 		clk_disable_unprepare(fep->clk_ref);
1869 failed_clk_ptp:
1870 	if (fep->clk_enet_out)
1871 		clk_disable_unprepare(fep->clk_enet_out);
1872 failed_clk_enet_out:
1873 		clk_disable_unprepare(fep->clk_ipg);
1874 failed_clk_ipg:
1875 		clk_disable_unprepare(fep->clk_ahb);
1876 
1877 	return ret;
1878 }
1879 
1880 static int fec_enet_mii_probe(struct net_device *ndev)
1881 {
1882 	struct fec_enet_private *fep = netdev_priv(ndev);
1883 	const struct platform_device_id *id_entry =
1884 				platform_get_device_id(fep->pdev);
1885 	struct phy_device *phy_dev = NULL;
1886 	char mdio_bus_id[MII_BUS_ID_SIZE];
1887 	char phy_name[MII_BUS_ID_SIZE + 3];
1888 	int phy_id;
1889 	int dev_id = fep->dev_id;
1890 
1891 	fep->phy_dev = NULL;
1892 
1893 	if (fep->phy_node) {
1894 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1895 					 &fec_enet_adjust_link, 0,
1896 					 fep->phy_interface);
1897 	} else {
1898 		/* check for attached phy */
1899 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1900 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1901 				continue;
1902 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1903 				continue;
1904 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1905 				continue;
1906 			if (dev_id--)
1907 				continue;
1908 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1909 			break;
1910 		}
1911 
1912 		if (phy_id >= PHY_MAX_ADDR) {
1913 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1914 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1915 			phy_id = 0;
1916 		}
1917 
1918 		snprintf(phy_name, sizeof(phy_name),
1919 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1920 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1921 				      fep->phy_interface);
1922 	}
1923 
1924 	if (IS_ERR(phy_dev)) {
1925 		netdev_err(ndev, "could not attach to PHY\n");
1926 		return PTR_ERR(phy_dev);
1927 	}
1928 
1929 	/* mask with MAC supported features */
1930 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1931 		phy_dev->supported &= PHY_GBIT_FEATURES;
1932 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1933 #if !defined(CONFIG_M5272)
1934 		phy_dev->supported |= SUPPORTED_Pause;
1935 #endif
1936 	}
1937 	else
1938 		phy_dev->supported &= PHY_BASIC_FEATURES;
1939 
1940 	phy_dev->advertising = phy_dev->supported;
1941 
1942 	fep->phy_dev = phy_dev;
1943 	fep->link = 0;
1944 	fep->full_duplex = 0;
1945 
1946 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1947 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1948 		    fep->phy_dev->irq);
1949 
1950 	return 0;
1951 }
1952 
1953 static int fec_enet_mii_init(struct platform_device *pdev)
1954 {
1955 	static struct mii_bus *fec0_mii_bus;
1956 	struct net_device *ndev = platform_get_drvdata(pdev);
1957 	struct fec_enet_private *fep = netdev_priv(ndev);
1958 	const struct platform_device_id *id_entry =
1959 				platform_get_device_id(fep->pdev);
1960 	struct device_node *node;
1961 	int err = -ENXIO, i;
1962 
1963 	/*
1964 	 * The dual fec interfaces are not equivalent with enet-mac.
1965 	 * Here are the differences:
1966 	 *
1967 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1968 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1969 	 *  - external phys can only be configured by fec0
1970 	 *
1971 	 * That is to say fec1 can not work independently. It only works
1972 	 * when fec0 is working. The reason behind this design is that the
1973 	 * second interface is added primarily for Switch mode.
1974 	 *
1975 	 * Because of the last point above, both phys are attached on fec0
1976 	 * mdio interface in board design, and need to be configured by
1977 	 * fec0 mii_bus.
1978 	 */
1979 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1980 		/* fec1 uses fec0 mii_bus */
1981 		if (mii_cnt && fec0_mii_bus) {
1982 			fep->mii_bus = fec0_mii_bus;
1983 			mii_cnt++;
1984 			return 0;
1985 		}
1986 		return -ENOENT;
1987 	}
1988 
1989 	fep->mii_timeout = 0;
1990 
1991 	/*
1992 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1993 	 *
1994 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1995 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1996 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1997 	 * document.
1998 	 */
1999 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2000 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2001 		fep->phy_speed--;
2002 	fep->phy_speed <<= 1;
2003 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2004 
2005 	fep->mii_bus = mdiobus_alloc();
2006 	if (fep->mii_bus == NULL) {
2007 		err = -ENOMEM;
2008 		goto err_out;
2009 	}
2010 
2011 	fep->mii_bus->name = "fec_enet_mii_bus";
2012 	fep->mii_bus->read = fec_enet_mdio_read;
2013 	fep->mii_bus->write = fec_enet_mdio_write;
2014 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2015 		pdev->name, fep->dev_id + 1);
2016 	fep->mii_bus->priv = fep;
2017 	fep->mii_bus->parent = &pdev->dev;
2018 
2019 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2020 	if (!fep->mii_bus->irq) {
2021 		err = -ENOMEM;
2022 		goto err_out_free_mdiobus;
2023 	}
2024 
2025 	for (i = 0; i < PHY_MAX_ADDR; i++)
2026 		fep->mii_bus->irq[i] = PHY_POLL;
2027 
2028 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2029 	if (node) {
2030 		err = of_mdiobus_register(fep->mii_bus, node);
2031 		of_node_put(node);
2032 	} else {
2033 		err = mdiobus_register(fep->mii_bus);
2034 	}
2035 
2036 	if (err)
2037 		goto err_out_free_mdio_irq;
2038 
2039 	mii_cnt++;
2040 
2041 	/* save fec0 mii_bus */
2042 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2043 		fec0_mii_bus = fep->mii_bus;
2044 
2045 	return 0;
2046 
2047 err_out_free_mdio_irq:
2048 	kfree(fep->mii_bus->irq);
2049 err_out_free_mdiobus:
2050 	mdiobus_free(fep->mii_bus);
2051 err_out:
2052 	return err;
2053 }
2054 
2055 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2056 {
2057 	if (--mii_cnt == 0) {
2058 		mdiobus_unregister(fep->mii_bus);
2059 		kfree(fep->mii_bus->irq);
2060 		mdiobus_free(fep->mii_bus);
2061 	}
2062 }
2063 
2064 static int fec_enet_get_settings(struct net_device *ndev,
2065 				  struct ethtool_cmd *cmd)
2066 {
2067 	struct fec_enet_private *fep = netdev_priv(ndev);
2068 	struct phy_device *phydev = fep->phy_dev;
2069 
2070 	if (!phydev)
2071 		return -ENODEV;
2072 
2073 	return phy_ethtool_gset(phydev, cmd);
2074 }
2075 
2076 static int fec_enet_set_settings(struct net_device *ndev,
2077 				 struct ethtool_cmd *cmd)
2078 {
2079 	struct fec_enet_private *fep = netdev_priv(ndev);
2080 	struct phy_device *phydev = fep->phy_dev;
2081 
2082 	if (!phydev)
2083 		return -ENODEV;
2084 
2085 	return phy_ethtool_sset(phydev, cmd);
2086 }
2087 
2088 static void fec_enet_get_drvinfo(struct net_device *ndev,
2089 				 struct ethtool_drvinfo *info)
2090 {
2091 	struct fec_enet_private *fep = netdev_priv(ndev);
2092 
2093 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2094 		sizeof(info->driver));
2095 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2096 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2097 }
2098 
2099 static int fec_enet_get_ts_info(struct net_device *ndev,
2100 				struct ethtool_ts_info *info)
2101 {
2102 	struct fec_enet_private *fep = netdev_priv(ndev);
2103 
2104 	if (fep->bufdesc_ex) {
2105 
2106 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2107 					SOF_TIMESTAMPING_RX_SOFTWARE |
2108 					SOF_TIMESTAMPING_SOFTWARE |
2109 					SOF_TIMESTAMPING_TX_HARDWARE |
2110 					SOF_TIMESTAMPING_RX_HARDWARE |
2111 					SOF_TIMESTAMPING_RAW_HARDWARE;
2112 		if (fep->ptp_clock)
2113 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2114 		else
2115 			info->phc_index = -1;
2116 
2117 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2118 				 (1 << HWTSTAMP_TX_ON);
2119 
2120 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2121 				   (1 << HWTSTAMP_FILTER_ALL);
2122 		return 0;
2123 	} else {
2124 		return ethtool_op_get_ts_info(ndev, info);
2125 	}
2126 }
2127 
2128 #if !defined(CONFIG_M5272)
2129 
2130 static void fec_enet_get_pauseparam(struct net_device *ndev,
2131 				    struct ethtool_pauseparam *pause)
2132 {
2133 	struct fec_enet_private *fep = netdev_priv(ndev);
2134 
2135 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2136 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2137 	pause->rx_pause = pause->tx_pause;
2138 }
2139 
2140 static int fec_enet_set_pauseparam(struct net_device *ndev,
2141 				   struct ethtool_pauseparam *pause)
2142 {
2143 	struct fec_enet_private *fep = netdev_priv(ndev);
2144 
2145 	if (!fep->phy_dev)
2146 		return -ENODEV;
2147 
2148 	if (pause->tx_pause != pause->rx_pause) {
2149 		netdev_info(ndev,
2150 			"hardware only support enable/disable both tx and rx");
2151 		return -EINVAL;
2152 	}
2153 
2154 	fep->pause_flag = 0;
2155 
2156 	/* tx pause must be same as rx pause */
2157 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2158 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2159 
2160 	if (pause->rx_pause || pause->autoneg) {
2161 		fep->phy_dev->supported |= ADVERTISED_Pause;
2162 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2163 	} else {
2164 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2165 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2166 	}
2167 
2168 	if (pause->autoneg) {
2169 		if (netif_running(ndev))
2170 			fec_stop(ndev);
2171 		phy_start_aneg(fep->phy_dev);
2172 	}
2173 	if (netif_running(ndev)) {
2174 		napi_disable(&fep->napi);
2175 		netif_tx_lock_bh(ndev);
2176 		fec_restart(ndev);
2177 		netif_wake_queue(ndev);
2178 		netif_tx_unlock_bh(ndev);
2179 		napi_enable(&fep->napi);
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 static const struct fec_stat {
2186 	char name[ETH_GSTRING_LEN];
2187 	u16 offset;
2188 } fec_stats[] = {
2189 	/* RMON TX */
2190 	{ "tx_dropped", RMON_T_DROP },
2191 	{ "tx_packets", RMON_T_PACKETS },
2192 	{ "tx_broadcast", RMON_T_BC_PKT },
2193 	{ "tx_multicast", RMON_T_MC_PKT },
2194 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2195 	{ "tx_undersize", RMON_T_UNDERSIZE },
2196 	{ "tx_oversize", RMON_T_OVERSIZE },
2197 	{ "tx_fragment", RMON_T_FRAG },
2198 	{ "tx_jabber", RMON_T_JAB },
2199 	{ "tx_collision", RMON_T_COL },
2200 	{ "tx_64byte", RMON_T_P64 },
2201 	{ "tx_65to127byte", RMON_T_P65TO127 },
2202 	{ "tx_128to255byte", RMON_T_P128TO255 },
2203 	{ "tx_256to511byte", RMON_T_P256TO511 },
2204 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2205 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2206 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2207 	{ "tx_octets", RMON_T_OCTETS },
2208 
2209 	/* IEEE TX */
2210 	{ "IEEE_tx_drop", IEEE_T_DROP },
2211 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2212 	{ "IEEE_tx_1col", IEEE_T_1COL },
2213 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2214 	{ "IEEE_tx_def", IEEE_T_DEF },
2215 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2216 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2217 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2218 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2219 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2220 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2221 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2222 
2223 	/* RMON RX */
2224 	{ "rx_packets", RMON_R_PACKETS },
2225 	{ "rx_broadcast", RMON_R_BC_PKT },
2226 	{ "rx_multicast", RMON_R_MC_PKT },
2227 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2228 	{ "rx_undersize", RMON_R_UNDERSIZE },
2229 	{ "rx_oversize", RMON_R_OVERSIZE },
2230 	{ "rx_fragment", RMON_R_FRAG },
2231 	{ "rx_jabber", RMON_R_JAB },
2232 	{ "rx_64byte", RMON_R_P64 },
2233 	{ "rx_65to127byte", RMON_R_P65TO127 },
2234 	{ "rx_128to255byte", RMON_R_P128TO255 },
2235 	{ "rx_256to511byte", RMON_R_P256TO511 },
2236 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2237 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2238 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2239 	{ "rx_octets", RMON_R_OCTETS },
2240 
2241 	/* IEEE RX */
2242 	{ "IEEE_rx_drop", IEEE_R_DROP },
2243 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2244 	{ "IEEE_rx_crc", IEEE_R_CRC },
2245 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2246 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2247 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2248 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2249 };
2250 
2251 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2252 	struct ethtool_stats *stats, u64 *data)
2253 {
2254 	struct fec_enet_private *fep = netdev_priv(dev);
2255 	int i;
2256 
2257 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2258 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2259 }
2260 
2261 static void fec_enet_get_strings(struct net_device *netdev,
2262 	u32 stringset, u8 *data)
2263 {
2264 	int i;
2265 	switch (stringset) {
2266 	case ETH_SS_STATS:
2267 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2268 			memcpy(data + i * ETH_GSTRING_LEN,
2269 				fec_stats[i].name, ETH_GSTRING_LEN);
2270 		break;
2271 	}
2272 }
2273 
2274 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2275 {
2276 	switch (sset) {
2277 	case ETH_SS_STATS:
2278 		return ARRAY_SIZE(fec_stats);
2279 	default:
2280 		return -EOPNOTSUPP;
2281 	}
2282 }
2283 #endif /* !defined(CONFIG_M5272) */
2284 
2285 static int fec_enet_nway_reset(struct net_device *dev)
2286 {
2287 	struct fec_enet_private *fep = netdev_priv(dev);
2288 	struct phy_device *phydev = fep->phy_dev;
2289 
2290 	if (!phydev)
2291 		return -ENODEV;
2292 
2293 	return genphy_restart_aneg(phydev);
2294 }
2295 
2296 /* ITR clock source is enet system clock (clk_ahb).
2297  * TCTT unit is cycle_ns * 64 cycle
2298  * So, the ICTT value = X us / (cycle_ns * 64)
2299  */
2300 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2301 {
2302 	struct fec_enet_private *fep = netdev_priv(ndev);
2303 
2304 	return us * (fep->itr_clk_rate / 64000) / 1000;
2305 }
2306 
2307 /* Set threshold for interrupt coalescing */
2308 static void fec_enet_itr_coal_set(struct net_device *ndev)
2309 {
2310 	struct fec_enet_private *fep = netdev_priv(ndev);
2311 	const struct platform_device_id *id_entry =
2312 				platform_get_device_id(fep->pdev);
2313 	int rx_itr, tx_itr;
2314 
2315 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2316 		return;
2317 
2318 	/* Must be greater than zero to avoid unpredictable behavior */
2319 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2320 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2321 		return;
2322 
2323 	/* Select enet system clock as Interrupt Coalescing
2324 	 * timer Clock Source
2325 	 */
2326 	rx_itr = FEC_ITR_CLK_SEL;
2327 	tx_itr = FEC_ITR_CLK_SEL;
2328 
2329 	/* set ICFT and ICTT */
2330 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2331 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2332 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2333 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2334 
2335 	rx_itr |= FEC_ITR_EN;
2336 	tx_itr |= FEC_ITR_EN;
2337 
2338 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2339 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2340 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2341 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2342 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2343 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2344 }
2345 
2346 static int
2347 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2348 {
2349 	struct fec_enet_private *fep = netdev_priv(ndev);
2350 	const struct platform_device_id *id_entry =
2351 				platform_get_device_id(fep->pdev);
2352 
2353 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2354 		return -EOPNOTSUPP;
2355 
2356 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2357 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2358 
2359 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2360 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2361 
2362 	return 0;
2363 }
2364 
2365 static int
2366 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2367 {
2368 	struct fec_enet_private *fep = netdev_priv(ndev);
2369 	const struct platform_device_id *id_entry =
2370 				platform_get_device_id(fep->pdev);
2371 
2372 	unsigned int cycle;
2373 
2374 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2375 		return -EOPNOTSUPP;
2376 
2377 	if (ec->rx_max_coalesced_frames > 255) {
2378 		pr_err("Rx coalesced frames exceed hardware limiation");
2379 		return -EINVAL;
2380 	}
2381 
2382 	if (ec->tx_max_coalesced_frames > 255) {
2383 		pr_err("Tx coalesced frame exceed hardware limiation");
2384 		return -EINVAL;
2385 	}
2386 
2387 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2388 	if (cycle > 0xFFFF) {
2389 		pr_err("Rx coalesed usec exceeed hardware limiation");
2390 		return -EINVAL;
2391 	}
2392 
2393 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2394 	if (cycle > 0xFFFF) {
2395 		pr_err("Rx coalesed usec exceeed hardware limiation");
2396 		return -EINVAL;
2397 	}
2398 
2399 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2400 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2401 
2402 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2403 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2404 
2405 	fec_enet_itr_coal_set(ndev);
2406 
2407 	return 0;
2408 }
2409 
2410 static void fec_enet_itr_coal_init(struct net_device *ndev)
2411 {
2412 	struct ethtool_coalesce ec;
2413 
2414 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2415 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2416 
2417 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2418 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2419 
2420 	fec_enet_set_coalesce(ndev, &ec);
2421 }
2422 
2423 static int fec_enet_get_tunable(struct net_device *netdev,
2424 				const struct ethtool_tunable *tuna,
2425 				void *data)
2426 {
2427 	struct fec_enet_private *fep = netdev_priv(netdev);
2428 	int ret = 0;
2429 
2430 	switch (tuna->id) {
2431 	case ETHTOOL_RX_COPYBREAK:
2432 		*(u32 *)data = fep->rx_copybreak;
2433 		break;
2434 	default:
2435 		ret = -EINVAL;
2436 		break;
2437 	}
2438 
2439 	return ret;
2440 }
2441 
2442 static int fec_enet_set_tunable(struct net_device *netdev,
2443 				const struct ethtool_tunable *tuna,
2444 				const void *data)
2445 {
2446 	struct fec_enet_private *fep = netdev_priv(netdev);
2447 	int ret = 0;
2448 
2449 	switch (tuna->id) {
2450 	case ETHTOOL_RX_COPYBREAK:
2451 		fep->rx_copybreak = *(u32 *)data;
2452 		break;
2453 	default:
2454 		ret = -EINVAL;
2455 		break;
2456 	}
2457 
2458 	return ret;
2459 }
2460 
2461 static const struct ethtool_ops fec_enet_ethtool_ops = {
2462 	.get_settings		= fec_enet_get_settings,
2463 	.set_settings		= fec_enet_set_settings,
2464 	.get_drvinfo		= fec_enet_get_drvinfo,
2465 	.nway_reset		= fec_enet_nway_reset,
2466 	.get_link		= ethtool_op_get_link,
2467 	.get_coalesce		= fec_enet_get_coalesce,
2468 	.set_coalesce		= fec_enet_set_coalesce,
2469 #ifndef CONFIG_M5272
2470 	.get_pauseparam		= fec_enet_get_pauseparam,
2471 	.set_pauseparam		= fec_enet_set_pauseparam,
2472 	.get_strings		= fec_enet_get_strings,
2473 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2474 	.get_sset_count		= fec_enet_get_sset_count,
2475 #endif
2476 	.get_ts_info		= fec_enet_get_ts_info,
2477 	.get_tunable		= fec_enet_get_tunable,
2478 	.set_tunable		= fec_enet_set_tunable,
2479 };
2480 
2481 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2482 {
2483 	struct fec_enet_private *fep = netdev_priv(ndev);
2484 	struct phy_device *phydev = fep->phy_dev;
2485 
2486 	if (!netif_running(ndev))
2487 		return -EINVAL;
2488 
2489 	if (!phydev)
2490 		return -ENODEV;
2491 
2492 	if (fep->bufdesc_ex) {
2493 		if (cmd == SIOCSHWTSTAMP)
2494 			return fec_ptp_set(ndev, rq);
2495 		if (cmd == SIOCGHWTSTAMP)
2496 			return fec_ptp_get(ndev, rq);
2497 	}
2498 
2499 	return phy_mii_ioctl(phydev, rq, cmd);
2500 }
2501 
2502 static void fec_enet_free_buffers(struct net_device *ndev)
2503 {
2504 	struct fec_enet_private *fep = netdev_priv(ndev);
2505 	unsigned int i;
2506 	struct sk_buff *skb;
2507 	struct bufdesc	*bdp;
2508 	struct fec_enet_priv_tx_q *txq;
2509 	struct fec_enet_priv_rx_q *rxq;
2510 	unsigned int q;
2511 
2512 	for (q = 0; q < fep->num_rx_queues; q++) {
2513 		rxq = fep->rx_queue[q];
2514 		bdp = rxq->rx_bd_base;
2515 		for (i = 0; i < rxq->rx_ring_size; i++) {
2516 			skb = rxq->rx_skbuff[i];
2517 			rxq->rx_skbuff[i] = NULL;
2518 			if (skb) {
2519 				dma_unmap_single(&fep->pdev->dev,
2520 						 bdp->cbd_bufaddr,
2521 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2522 						 DMA_FROM_DEVICE);
2523 				dev_kfree_skb(skb);
2524 			}
2525 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2526 		}
2527 	}
2528 
2529 	for (q = 0; q < fep->num_tx_queues; q++) {
2530 		txq = fep->tx_queue[q];
2531 		bdp = txq->tx_bd_base;
2532 		for (i = 0; i < txq->tx_ring_size; i++) {
2533 			kfree(txq->tx_bounce[i]);
2534 			txq->tx_bounce[i] = NULL;
2535 			skb = txq->tx_skbuff[i];
2536 			txq->tx_skbuff[i] = NULL;
2537 			dev_kfree_skb(skb);
2538 		}
2539 	}
2540 }
2541 
2542 static void fec_enet_free_queue(struct net_device *ndev)
2543 {
2544 	struct fec_enet_private *fep = netdev_priv(ndev);
2545 	int i;
2546 	struct fec_enet_priv_tx_q *txq;
2547 
2548 	for (i = 0; i < fep->num_tx_queues; i++)
2549 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2550 			txq = fep->tx_queue[i];
2551 			dma_free_coherent(NULL,
2552 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2553 					  txq->tso_hdrs,
2554 					  txq->tso_hdrs_dma);
2555 		}
2556 
2557 	for (i = 0; i < fep->num_rx_queues; i++)
2558 		if (fep->rx_queue[i])
2559 			kfree(fep->rx_queue[i]);
2560 
2561 	for (i = 0; i < fep->num_tx_queues; i++)
2562 		if (fep->tx_queue[i])
2563 			kfree(fep->tx_queue[i]);
2564 }
2565 
2566 static int fec_enet_alloc_queue(struct net_device *ndev)
2567 {
2568 	struct fec_enet_private *fep = netdev_priv(ndev);
2569 	int i;
2570 	int ret = 0;
2571 	struct fec_enet_priv_tx_q *txq;
2572 
2573 	for (i = 0; i < fep->num_tx_queues; i++) {
2574 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2575 		if (!txq) {
2576 			ret = -ENOMEM;
2577 			goto alloc_failed;
2578 		}
2579 
2580 		fep->tx_queue[i] = txq;
2581 		txq->tx_ring_size = TX_RING_SIZE;
2582 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2583 
2584 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2585 		txq->tx_wake_threshold =
2586 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2587 
2588 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2589 					txq->tx_ring_size * TSO_HEADER_SIZE,
2590 					&txq->tso_hdrs_dma,
2591 					GFP_KERNEL);
2592 		if (!txq->tso_hdrs) {
2593 			ret = -ENOMEM;
2594 			goto alloc_failed;
2595 		}
2596 	}
2597 
2598 	for (i = 0; i < fep->num_rx_queues; i++) {
2599 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2600 					   GFP_KERNEL);
2601 		if (!fep->rx_queue[i]) {
2602 			ret = -ENOMEM;
2603 			goto alloc_failed;
2604 		}
2605 
2606 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2607 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2608 	}
2609 	return ret;
2610 
2611 alloc_failed:
2612 	fec_enet_free_queue(ndev);
2613 	return ret;
2614 }
2615 
2616 static int
2617 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2618 {
2619 	struct fec_enet_private *fep = netdev_priv(ndev);
2620 	unsigned int i;
2621 	struct sk_buff *skb;
2622 	struct bufdesc	*bdp;
2623 	struct fec_enet_priv_rx_q *rxq;
2624 
2625 	rxq = fep->rx_queue[queue];
2626 	bdp = rxq->rx_bd_base;
2627 	for (i = 0; i < rxq->rx_ring_size; i++) {
2628 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2629 		if (!skb)
2630 			goto err_alloc;
2631 
2632 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2633 			dev_kfree_skb(skb);
2634 			goto err_alloc;
2635 		}
2636 
2637 		rxq->rx_skbuff[i] = skb;
2638 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2639 
2640 		if (fep->bufdesc_ex) {
2641 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2642 			ebdp->cbd_esc = BD_ENET_RX_INT;
2643 		}
2644 
2645 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2646 	}
2647 
2648 	/* Set the last buffer to wrap. */
2649 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2650 	bdp->cbd_sc |= BD_SC_WRAP;
2651 	return 0;
2652 
2653  err_alloc:
2654 	fec_enet_free_buffers(ndev);
2655 	return -ENOMEM;
2656 }
2657 
2658 static int
2659 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2660 {
2661 	struct fec_enet_private *fep = netdev_priv(ndev);
2662 	unsigned int i;
2663 	struct bufdesc  *bdp;
2664 	struct fec_enet_priv_tx_q *txq;
2665 
2666 	txq = fep->tx_queue[queue];
2667 	bdp = txq->tx_bd_base;
2668 	for (i = 0; i < txq->tx_ring_size; i++) {
2669 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2670 		if (!txq->tx_bounce[i])
2671 			goto err_alloc;
2672 
2673 		bdp->cbd_sc = 0;
2674 		bdp->cbd_bufaddr = 0;
2675 
2676 		if (fep->bufdesc_ex) {
2677 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2678 			ebdp->cbd_esc = BD_ENET_TX_INT;
2679 		}
2680 
2681 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2682 	}
2683 
2684 	/* Set the last buffer to wrap. */
2685 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2686 	bdp->cbd_sc |= BD_SC_WRAP;
2687 
2688 	return 0;
2689 
2690  err_alloc:
2691 	fec_enet_free_buffers(ndev);
2692 	return -ENOMEM;
2693 }
2694 
2695 static int fec_enet_alloc_buffers(struct net_device *ndev)
2696 {
2697 	struct fec_enet_private *fep = netdev_priv(ndev);
2698 	unsigned int i;
2699 
2700 	for (i = 0; i < fep->num_rx_queues; i++)
2701 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2702 			return -ENOMEM;
2703 
2704 	for (i = 0; i < fep->num_tx_queues; i++)
2705 		if (fec_enet_alloc_txq_buffers(ndev, i))
2706 			return -ENOMEM;
2707 	return 0;
2708 }
2709 
2710 static int
2711 fec_enet_open(struct net_device *ndev)
2712 {
2713 	struct fec_enet_private *fep = netdev_priv(ndev);
2714 	int ret;
2715 
2716 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2717 	ret = fec_enet_clk_enable(ndev, true);
2718 	if (ret)
2719 		return ret;
2720 
2721 	/* I should reset the ring buffers here, but I don't yet know
2722 	 * a simple way to do that.
2723 	 */
2724 
2725 	ret = fec_enet_alloc_buffers(ndev);
2726 	if (ret)
2727 		goto err_enet_alloc;
2728 
2729 	/* Probe and connect to PHY when open the interface */
2730 	ret = fec_enet_mii_probe(ndev);
2731 	if (ret)
2732 		goto err_enet_mii_probe;
2733 
2734 	fec_restart(ndev);
2735 	napi_enable(&fep->napi);
2736 	phy_start(fep->phy_dev);
2737 	netif_tx_start_all_queues(ndev);
2738 
2739 	return 0;
2740 
2741 err_enet_mii_probe:
2742 	fec_enet_free_buffers(ndev);
2743 err_enet_alloc:
2744 	fec_enet_clk_enable(ndev, false);
2745 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2746 	return ret;
2747 }
2748 
2749 static int
2750 fec_enet_close(struct net_device *ndev)
2751 {
2752 	struct fec_enet_private *fep = netdev_priv(ndev);
2753 
2754 	phy_stop(fep->phy_dev);
2755 
2756 	if (netif_device_present(ndev)) {
2757 		napi_disable(&fep->napi);
2758 		netif_tx_disable(ndev);
2759 		fec_stop(ndev);
2760 	}
2761 
2762 	phy_disconnect(fep->phy_dev);
2763 	fep->phy_dev = NULL;
2764 
2765 	fec_enet_clk_enable(ndev, false);
2766 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2767 	fec_enet_free_buffers(ndev);
2768 
2769 	return 0;
2770 }
2771 
2772 /* Set or clear the multicast filter for this adaptor.
2773  * Skeleton taken from sunlance driver.
2774  * The CPM Ethernet implementation allows Multicast as well as individual
2775  * MAC address filtering.  Some of the drivers check to make sure it is
2776  * a group multicast address, and discard those that are not.  I guess I
2777  * will do the same for now, but just remove the test if you want
2778  * individual filtering as well (do the upper net layers want or support
2779  * this kind of feature?).
2780  */
2781 
2782 #define HASH_BITS	6		/* #bits in hash */
2783 #define CRC32_POLY	0xEDB88320
2784 
2785 static void set_multicast_list(struct net_device *ndev)
2786 {
2787 	struct fec_enet_private *fep = netdev_priv(ndev);
2788 	struct netdev_hw_addr *ha;
2789 	unsigned int i, bit, data, crc, tmp;
2790 	unsigned char hash;
2791 
2792 	if (ndev->flags & IFF_PROMISC) {
2793 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2794 		tmp |= 0x8;
2795 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2796 		return;
2797 	}
2798 
2799 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2800 	tmp &= ~0x8;
2801 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2802 
2803 	if (ndev->flags & IFF_ALLMULTI) {
2804 		/* Catch all multicast addresses, so set the
2805 		 * filter to all 1's
2806 		 */
2807 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2808 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2809 
2810 		return;
2811 	}
2812 
2813 	/* Clear filter and add the addresses in hash register
2814 	 */
2815 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2816 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2817 
2818 	netdev_for_each_mc_addr(ha, ndev) {
2819 		/* calculate crc32 value of mac address */
2820 		crc = 0xffffffff;
2821 
2822 		for (i = 0; i < ndev->addr_len; i++) {
2823 			data = ha->addr[i];
2824 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2825 				crc = (crc >> 1) ^
2826 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2827 			}
2828 		}
2829 
2830 		/* only upper 6 bits (HASH_BITS) are used
2831 		 * which point to specific bit in he hash registers
2832 		 */
2833 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2834 
2835 		if (hash > 31) {
2836 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2837 			tmp |= 1 << (hash - 32);
2838 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2839 		} else {
2840 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2841 			tmp |= 1 << hash;
2842 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2843 		}
2844 	}
2845 }
2846 
2847 /* Set a MAC change in hardware. */
2848 static int
2849 fec_set_mac_address(struct net_device *ndev, void *p)
2850 {
2851 	struct fec_enet_private *fep = netdev_priv(ndev);
2852 	struct sockaddr *addr = p;
2853 
2854 	if (addr) {
2855 		if (!is_valid_ether_addr(addr->sa_data))
2856 			return -EADDRNOTAVAIL;
2857 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2858 	}
2859 
2860 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2861 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2862 		fep->hwp + FEC_ADDR_LOW);
2863 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2864 		fep->hwp + FEC_ADDR_HIGH);
2865 	return 0;
2866 }
2867 
2868 #ifdef CONFIG_NET_POLL_CONTROLLER
2869 /**
2870  * fec_poll_controller - FEC Poll controller function
2871  * @dev: The FEC network adapter
2872  *
2873  * Polled functionality used by netconsole and others in non interrupt mode
2874  *
2875  */
2876 static void fec_poll_controller(struct net_device *dev)
2877 {
2878 	int i;
2879 	struct fec_enet_private *fep = netdev_priv(dev);
2880 
2881 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2882 		if (fep->irq[i] > 0) {
2883 			disable_irq(fep->irq[i]);
2884 			fec_enet_interrupt(fep->irq[i], dev);
2885 			enable_irq(fep->irq[i]);
2886 		}
2887 	}
2888 }
2889 #endif
2890 
2891 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2892 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2893 	netdev_features_t features)
2894 {
2895 	struct fec_enet_private *fep = netdev_priv(netdev);
2896 	netdev_features_t changed = features ^ netdev->features;
2897 
2898 	netdev->features = features;
2899 
2900 	/* Receive checksum has been changed */
2901 	if (changed & NETIF_F_RXCSUM) {
2902 		if (features & NETIF_F_RXCSUM)
2903 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2904 		else
2905 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2906 	}
2907 }
2908 
2909 static int fec_set_features(struct net_device *netdev,
2910 	netdev_features_t features)
2911 {
2912 	struct fec_enet_private *fep = netdev_priv(netdev);
2913 	netdev_features_t changed = features ^ netdev->features;
2914 
2915 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2916 		napi_disable(&fep->napi);
2917 		netif_tx_lock_bh(netdev);
2918 		fec_stop(netdev);
2919 		fec_enet_set_netdev_features(netdev, features);
2920 		fec_restart(netdev);
2921 		netif_tx_wake_all_queues(netdev);
2922 		netif_tx_unlock_bh(netdev);
2923 		napi_enable(&fep->napi);
2924 	} else {
2925 		fec_enet_set_netdev_features(netdev, features);
2926 	}
2927 
2928 	return 0;
2929 }
2930 
2931 static const struct net_device_ops fec_netdev_ops = {
2932 	.ndo_open		= fec_enet_open,
2933 	.ndo_stop		= fec_enet_close,
2934 	.ndo_start_xmit		= fec_enet_start_xmit,
2935 	.ndo_set_rx_mode	= set_multicast_list,
2936 	.ndo_change_mtu		= eth_change_mtu,
2937 	.ndo_validate_addr	= eth_validate_addr,
2938 	.ndo_tx_timeout		= fec_timeout,
2939 	.ndo_set_mac_address	= fec_set_mac_address,
2940 	.ndo_do_ioctl		= fec_enet_ioctl,
2941 #ifdef CONFIG_NET_POLL_CONTROLLER
2942 	.ndo_poll_controller	= fec_poll_controller,
2943 #endif
2944 	.ndo_set_features	= fec_set_features,
2945 };
2946 
2947  /*
2948   * XXX:  We need to clean up on failure exits here.
2949   *
2950   */
2951 static int fec_enet_init(struct net_device *ndev)
2952 {
2953 	struct fec_enet_private *fep = netdev_priv(ndev);
2954 	const struct platform_device_id *id_entry =
2955 				platform_get_device_id(fep->pdev);
2956 	struct fec_enet_priv_tx_q *txq;
2957 	struct fec_enet_priv_rx_q *rxq;
2958 	struct bufdesc *cbd_base;
2959 	dma_addr_t bd_dma;
2960 	int bd_size;
2961 	unsigned int i;
2962 
2963 #if defined(CONFIG_ARM)
2964 	fep->rx_align = 0xf;
2965 	fep->tx_align = 0xf;
2966 #else
2967 	fep->rx_align = 0x3;
2968 	fep->tx_align = 0x3;
2969 #endif
2970 
2971 	fec_enet_alloc_queue(ndev);
2972 
2973 	if (fep->bufdesc_ex)
2974 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2975 	else
2976 		fep->bufdesc_size = sizeof(struct bufdesc);
2977 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2978 			fep->bufdesc_size;
2979 
2980 	/* Allocate memory for buffer descriptors. */
2981 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2982 				      GFP_KERNEL);
2983 	if (!cbd_base) {
2984 		return -ENOMEM;
2985 	}
2986 
2987 	memset(cbd_base, 0, bd_size);
2988 
2989 	/* Get the Ethernet address */
2990 	fec_get_mac(ndev);
2991 	/* make sure MAC we just acquired is programmed into the hw */
2992 	fec_set_mac_address(ndev, NULL);
2993 
2994 	/* Set receive and transmit descriptor base. */
2995 	for (i = 0; i < fep->num_rx_queues; i++) {
2996 		rxq = fep->rx_queue[i];
2997 		rxq->index = i;
2998 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2999 		rxq->bd_dma = bd_dma;
3000 		if (fep->bufdesc_ex) {
3001 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3002 			cbd_base = (struct bufdesc *)
3003 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3004 		} else {
3005 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3006 			cbd_base += rxq->rx_ring_size;
3007 		}
3008 	}
3009 
3010 	for (i = 0; i < fep->num_tx_queues; i++) {
3011 		txq = fep->tx_queue[i];
3012 		txq->index = i;
3013 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3014 		txq->bd_dma = bd_dma;
3015 		if (fep->bufdesc_ex) {
3016 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3017 			cbd_base = (struct bufdesc *)
3018 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3019 		} else {
3020 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3021 			cbd_base += txq->tx_ring_size;
3022 		}
3023 	}
3024 
3025 
3026 	/* The FEC Ethernet specific entries in the device structure */
3027 	ndev->watchdog_timeo = TX_TIMEOUT;
3028 	ndev->netdev_ops = &fec_netdev_ops;
3029 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3030 
3031 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3032 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3033 
3034 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
3035 		/* enable hw VLAN support */
3036 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3037 
3038 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
3039 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3040 
3041 		/* enable hw accelerator */
3042 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3043 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3044 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3045 	}
3046 
3047 	if (id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
3048 		fep->tx_align = 0;
3049 		fep->rx_align = 0x3f;
3050 	}
3051 
3052 	ndev->hw_features = ndev->features;
3053 
3054 	fec_restart(ndev);
3055 
3056 	return 0;
3057 }
3058 
3059 #ifdef CONFIG_OF
3060 static void fec_reset_phy(struct platform_device *pdev)
3061 {
3062 	int err, phy_reset;
3063 	int msec = 1;
3064 	struct device_node *np = pdev->dev.of_node;
3065 
3066 	if (!np)
3067 		return;
3068 
3069 	of_property_read_u32(np, "phy-reset-duration", &msec);
3070 	/* A sane reset duration should not be longer than 1s */
3071 	if (msec > 1000)
3072 		msec = 1;
3073 
3074 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3075 	if (!gpio_is_valid(phy_reset))
3076 		return;
3077 
3078 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3079 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3080 	if (err) {
3081 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3082 		return;
3083 	}
3084 	msleep(msec);
3085 	gpio_set_value(phy_reset, 1);
3086 }
3087 #else /* CONFIG_OF */
3088 static void fec_reset_phy(struct platform_device *pdev)
3089 {
3090 	/*
3091 	 * In case of platform probe, the reset has been done
3092 	 * by machine code.
3093 	 */
3094 }
3095 #endif /* CONFIG_OF */
3096 
3097 static void
3098 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3099 {
3100 	struct device_node *np = pdev->dev.of_node;
3101 	int err;
3102 
3103 	*num_tx = *num_rx = 1;
3104 
3105 	if (!np || !of_device_is_available(np))
3106 		return;
3107 
3108 	/* parse the num of tx and rx queues */
3109 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3110 	if (err)
3111 		*num_tx = 1;
3112 
3113 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3114 	if (err)
3115 		*num_rx = 1;
3116 
3117 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3118 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3119 			 *num_tx);
3120 		*num_tx = 1;
3121 		return;
3122 	}
3123 
3124 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3125 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3126 			 *num_rx);
3127 		*num_rx = 1;
3128 		return;
3129 	}
3130 
3131 }
3132 
3133 static int
3134 fec_probe(struct platform_device *pdev)
3135 {
3136 	struct fec_enet_private *fep;
3137 	struct fec_platform_data *pdata;
3138 	struct net_device *ndev;
3139 	int i, irq, ret = 0;
3140 	struct resource *r;
3141 	const struct of_device_id *of_id;
3142 	static int dev_id;
3143 	struct device_node *np = pdev->dev.of_node, *phy_node;
3144 	int num_tx_qs;
3145 	int num_rx_qs;
3146 
3147 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3148 	if (of_id)
3149 		pdev->id_entry = of_id->data;
3150 
3151 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3152 
3153 	/* Init network device */
3154 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3155 				  num_tx_qs, num_rx_qs);
3156 	if (!ndev)
3157 		return -ENOMEM;
3158 
3159 	SET_NETDEV_DEV(ndev, &pdev->dev);
3160 
3161 	/* setup board info structure */
3162 	fep = netdev_priv(ndev);
3163 
3164 	fep->num_rx_queues = num_rx_qs;
3165 	fep->num_tx_queues = num_tx_qs;
3166 
3167 #if !defined(CONFIG_M5272)
3168 	/* default enable pause frame auto negotiation */
3169 	if (pdev->id_entry &&
3170 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
3171 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3172 #endif
3173 
3174 	/* Select default pin state */
3175 	pinctrl_pm_select_default_state(&pdev->dev);
3176 
3177 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3178 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3179 	if (IS_ERR(fep->hwp)) {
3180 		ret = PTR_ERR(fep->hwp);
3181 		goto failed_ioremap;
3182 	}
3183 
3184 	fep->pdev = pdev;
3185 	fep->dev_id = dev_id++;
3186 
3187 	fep->bufdesc_ex = 0;
3188 
3189 	platform_set_drvdata(pdev, ndev);
3190 
3191 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3192 	if (!phy_node && of_phy_is_fixed_link(np)) {
3193 		ret = of_phy_register_fixed_link(np);
3194 		if (ret < 0) {
3195 			dev_err(&pdev->dev,
3196 				"broken fixed-link specification\n");
3197 			goto failed_phy;
3198 		}
3199 		phy_node = of_node_get(np);
3200 	}
3201 	fep->phy_node = phy_node;
3202 
3203 	ret = of_get_phy_mode(pdev->dev.of_node);
3204 	if (ret < 0) {
3205 		pdata = dev_get_platdata(&pdev->dev);
3206 		if (pdata)
3207 			fep->phy_interface = pdata->phy;
3208 		else
3209 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3210 	} else {
3211 		fep->phy_interface = ret;
3212 	}
3213 
3214 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3215 	if (IS_ERR(fep->clk_ipg)) {
3216 		ret = PTR_ERR(fep->clk_ipg);
3217 		goto failed_clk;
3218 	}
3219 
3220 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3221 	if (IS_ERR(fep->clk_ahb)) {
3222 		ret = PTR_ERR(fep->clk_ahb);
3223 		goto failed_clk;
3224 	}
3225 
3226 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3227 
3228 	/* enet_out is optional, depends on board */
3229 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3230 	if (IS_ERR(fep->clk_enet_out))
3231 		fep->clk_enet_out = NULL;
3232 
3233 	fep->ptp_clk_on = false;
3234 	mutex_init(&fep->ptp_clk_mutex);
3235 
3236 	/* clk_ref is optional, depends on board */
3237 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3238 	if (IS_ERR(fep->clk_ref))
3239 		fep->clk_ref = NULL;
3240 
3241 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3242 	fep->bufdesc_ex =
3243 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
3244 	if (IS_ERR(fep->clk_ptp)) {
3245 		fep->clk_ptp = NULL;
3246 		fep->bufdesc_ex = 0;
3247 	}
3248 
3249 	ret = fec_enet_clk_enable(ndev, true);
3250 	if (ret)
3251 		goto failed_clk;
3252 
3253 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3254 	if (!IS_ERR(fep->reg_phy)) {
3255 		ret = regulator_enable(fep->reg_phy);
3256 		if (ret) {
3257 			dev_err(&pdev->dev,
3258 				"Failed to enable phy regulator: %d\n", ret);
3259 			goto failed_regulator;
3260 		}
3261 	} else {
3262 		fep->reg_phy = NULL;
3263 	}
3264 
3265 	fec_reset_phy(pdev);
3266 
3267 	if (fep->bufdesc_ex)
3268 		fec_ptp_init(pdev);
3269 
3270 	ret = fec_enet_init(ndev);
3271 	if (ret)
3272 		goto failed_init;
3273 
3274 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3275 		irq = platform_get_irq(pdev, i);
3276 		if (irq < 0) {
3277 			if (i)
3278 				break;
3279 			ret = irq;
3280 			goto failed_irq;
3281 		}
3282 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3283 				       0, pdev->name, ndev);
3284 		if (ret)
3285 			goto failed_irq;
3286 	}
3287 
3288 	init_completion(&fep->mdio_done);
3289 	ret = fec_enet_mii_init(pdev);
3290 	if (ret)
3291 		goto failed_mii_init;
3292 
3293 	/* Carrier starts down, phylib will bring it up */
3294 	netif_carrier_off(ndev);
3295 	fec_enet_clk_enable(ndev, false);
3296 	pinctrl_pm_select_sleep_state(&pdev->dev);
3297 
3298 	ret = register_netdev(ndev);
3299 	if (ret)
3300 		goto failed_register;
3301 
3302 	if (fep->bufdesc_ex && fep->ptp_clock)
3303 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3304 
3305 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3306 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3307 	return 0;
3308 
3309 failed_register:
3310 	fec_enet_mii_remove(fep);
3311 failed_mii_init:
3312 failed_irq:
3313 failed_init:
3314 	if (fep->reg_phy)
3315 		regulator_disable(fep->reg_phy);
3316 failed_regulator:
3317 	fec_enet_clk_enable(ndev, false);
3318 failed_clk:
3319 failed_phy:
3320 	of_node_put(phy_node);
3321 failed_ioremap:
3322 	free_netdev(ndev);
3323 
3324 	return ret;
3325 }
3326 
3327 static int
3328 fec_drv_remove(struct platform_device *pdev)
3329 {
3330 	struct net_device *ndev = platform_get_drvdata(pdev);
3331 	struct fec_enet_private *fep = netdev_priv(ndev);
3332 
3333 	cancel_delayed_work_sync(&fep->time_keep);
3334 	cancel_work_sync(&fep->tx_timeout_work);
3335 	unregister_netdev(ndev);
3336 	fec_enet_mii_remove(fep);
3337 	if (fep->reg_phy)
3338 		regulator_disable(fep->reg_phy);
3339 	if (fep->ptp_clock)
3340 		ptp_clock_unregister(fep->ptp_clock);
3341 	fec_enet_clk_enable(ndev, false);
3342 	of_node_put(fep->phy_node);
3343 	free_netdev(ndev);
3344 
3345 	return 0;
3346 }
3347 
3348 static int __maybe_unused fec_suspend(struct device *dev)
3349 {
3350 	struct net_device *ndev = dev_get_drvdata(dev);
3351 	struct fec_enet_private *fep = netdev_priv(ndev);
3352 
3353 	rtnl_lock();
3354 	if (netif_running(ndev)) {
3355 		phy_stop(fep->phy_dev);
3356 		napi_disable(&fep->napi);
3357 		netif_tx_lock_bh(ndev);
3358 		netif_device_detach(ndev);
3359 		netif_tx_unlock_bh(ndev);
3360 		fec_stop(ndev);
3361 		fec_enet_clk_enable(ndev, false);
3362 		pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3363 	}
3364 	rtnl_unlock();
3365 
3366 	if (fep->reg_phy)
3367 		regulator_disable(fep->reg_phy);
3368 
3369 	return 0;
3370 }
3371 
3372 static int __maybe_unused fec_resume(struct device *dev)
3373 {
3374 	struct net_device *ndev = dev_get_drvdata(dev);
3375 	struct fec_enet_private *fep = netdev_priv(ndev);
3376 	int ret;
3377 
3378 	if (fep->reg_phy) {
3379 		ret = regulator_enable(fep->reg_phy);
3380 		if (ret)
3381 			return ret;
3382 	}
3383 
3384 	rtnl_lock();
3385 	if (netif_running(ndev)) {
3386 		pinctrl_pm_select_default_state(&fep->pdev->dev);
3387 		ret = fec_enet_clk_enable(ndev, true);
3388 		if (ret) {
3389 			rtnl_unlock();
3390 			goto failed_clk;
3391 		}
3392 		fec_restart(ndev);
3393 		netif_tx_lock_bh(ndev);
3394 		netif_device_attach(ndev);
3395 		netif_tx_unlock_bh(ndev);
3396 		napi_enable(&fep->napi);
3397 		phy_start(fep->phy_dev);
3398 	}
3399 	rtnl_unlock();
3400 
3401 	return 0;
3402 
3403 failed_clk:
3404 	if (fep->reg_phy)
3405 		regulator_disable(fep->reg_phy);
3406 	return ret;
3407 }
3408 
3409 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3410 
3411 static struct platform_driver fec_driver = {
3412 	.driver	= {
3413 		.name	= DRIVER_NAME,
3414 		.owner	= THIS_MODULE,
3415 		.pm	= &fec_pm_ops,
3416 		.of_match_table = fec_dt_ids,
3417 	},
3418 	.id_table = fec_devtype,
3419 	.probe	= fec_probe,
3420 	.remove	= fec_drv_remove,
3421 };
3422 
3423 module_platform_driver(fec_driver);
3424 
3425 MODULE_ALIAS("platform:"DRIVER_NAME);
3426 MODULE_LICENSE("GPL");
3427