1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 #include <linux/pinctrl/consumer.h>
59 
60 #include <asm/cacheflush.h>
61 
62 #include "fec.h"
63 
64 static void set_multicast_list(struct net_device *ndev);
65 
66 #if defined(CONFIG_ARM)
67 #define FEC_ALIGNMENT	0xf
68 #else
69 #define FEC_ALIGNMENT	0x3
70 #endif
71 
72 #define DRIVER_NAME	"fec"
73 
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE	(1 << 5)
76 #define FEC_ENET_RSEM_V	0x84
77 #define FEC_ENET_RSFL_V	16
78 #define FEC_ENET_RAEM_V	0x8
79 #define FEC_ENET_RAFL_V	0x8
80 #define FEC_ENET_OPD_V	0xFFF0
81 
82 /* Controller is ENET-MAC */
83 #define FEC_QUIRK_ENET_MAC		(1 << 0)
84 /* Controller needs driver to swap frame */
85 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
86 /* Controller uses gasket */
87 #define FEC_QUIRK_USE_GASKET		(1 << 2)
88 /* Controller has GBIT support */
89 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
90 /* Controller has extend desc buffer */
91 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
92 /* Controller has hardware checksum support */
93 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
94 /* Controller has hardware vlan support */
95 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
96 /* ENET IP errata ERR006358
97  *
98  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
99  * detected as not set during a prior frame transmission, then the
100  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
101  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
102  * frames not being transmitted until there is a 0-to-1 transition on
103  * ENET_TDAR[TDAR].
104  */
105 #define FEC_QUIRK_ERR006358            (1 << 7)
106 
107 static struct platform_device_id fec_devtype[] = {
108 	{
109 		/* keep it for coldfire */
110 		.name = DRIVER_NAME,
111 		.driver_data = 0,
112 	}, {
113 		.name = "imx25-fec",
114 		.driver_data = FEC_QUIRK_USE_GASKET,
115 	}, {
116 		.name = "imx27-fec",
117 		.driver_data = 0,
118 	}, {
119 		.name = "imx28-fec",
120 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
121 	}, {
122 		.name = "imx6q-fec",
123 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
126 	}, {
127 		.name = "mvf600-fec",
128 		.driver_data = FEC_QUIRK_ENET_MAC,
129 	}, {
130 		/* sentinel */
131 	}
132 };
133 MODULE_DEVICE_TABLE(platform, fec_devtype);
134 
135 enum imx_fec_type {
136 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
137 	IMX27_FEC,	/* runs on i.mx27/35/51 */
138 	IMX28_FEC,
139 	IMX6Q_FEC,
140 	MVF600_FEC,
141 };
142 
143 static const struct of_device_id fec_dt_ids[] = {
144 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
145 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
146 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
147 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
148 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
149 	{ /* sentinel */ }
150 };
151 MODULE_DEVICE_TABLE(of, fec_dt_ids);
152 
153 static unsigned char macaddr[ETH_ALEN];
154 module_param_array(macaddr, byte, NULL, 0);
155 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
156 
157 #if defined(CONFIG_M5272)
158 /*
159  * Some hardware gets it MAC address out of local flash memory.
160  * if this is non-zero then assume it is the address to get MAC from.
161  */
162 #if defined(CONFIG_NETtel)
163 #define	FEC_FLASHMAC	0xf0006006
164 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
165 #define	FEC_FLASHMAC	0xf0006000
166 #elif defined(CONFIG_CANCam)
167 #define	FEC_FLASHMAC	0xf0020000
168 #elif defined (CONFIG_M5272C3)
169 #define	FEC_FLASHMAC	(0xffe04000 + 4)
170 #elif defined(CONFIG_MOD5272)
171 #define FEC_FLASHMAC	0xffc0406b
172 #else
173 #define	FEC_FLASHMAC	0
174 #endif
175 #endif /* CONFIG_M5272 */
176 
177 /* Interrupt events/masks. */
178 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
179 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
180 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
181 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
182 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
183 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
184 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
185 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
186 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
187 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
188 
189 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
190 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
191 
192 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
193  */
194 #define PKT_MAXBUF_SIZE		1522
195 #define PKT_MINBUF_SIZE		64
196 #define PKT_MAXBLR_SIZE		1536
197 
198 /* FEC receive acceleration */
199 #define FEC_RACC_IPDIS		(1 << 1)
200 #define FEC_RACC_PRODIS		(1 << 2)
201 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
202 
203 /*
204  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
205  * size bits. Other FEC hardware does not, so we need to take that into
206  * account when setting it.
207  */
208 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
209     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
210 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
211 #else
212 #define	OPT_FRAME_SIZE	0
213 #endif
214 
215 /* FEC MII MMFR bits definition */
216 #define FEC_MMFR_ST		(1 << 30)
217 #define FEC_MMFR_OP_READ	(2 << 28)
218 #define FEC_MMFR_OP_WRITE	(1 << 28)
219 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
220 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
221 #define FEC_MMFR_TA		(2 << 16)
222 #define FEC_MMFR_DATA(v)	(v & 0xffff)
223 
224 #define FEC_MII_TIMEOUT		30000 /* us */
225 
226 /* Transmitter timeout */
227 #define TX_TIMEOUT (2 * HZ)
228 
229 #define FEC_PAUSE_FLAG_AUTONEG	0x1
230 #define FEC_PAUSE_FLAG_ENABLE	0x2
231 
232 #define TSO_HEADER_SIZE		128
233 /* Max number of allowed TCP segments for software TSO */
234 #define FEC_MAX_TSO_SEGS	100
235 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
236 
237 #define IS_TSO_HEADER(txq, addr) \
238 	((addr >= txq->tso_hdrs_dma) && \
239 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
240 
241 static int mii_cnt;
242 
243 static inline
244 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
245 {
246 	struct bufdesc *new_bd = bdp + 1;
247 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
248 	struct bufdesc_ex *ex_base;
249 	struct bufdesc *base;
250 	int ring_size;
251 
252 	if (bdp >= fep->tx_bd_base) {
253 		base = fep->tx_bd_base;
254 		ring_size = fep->tx_ring_size;
255 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
256 	} else {
257 		base = fep->rx_bd_base;
258 		ring_size = fep->rx_ring_size;
259 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
260 	}
261 
262 	if (fep->bufdesc_ex)
263 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
264 			ex_base : ex_new_bd);
265 	else
266 		return (new_bd >= (base + ring_size)) ?
267 			base : new_bd;
268 }
269 
270 static inline
271 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
272 {
273 	struct bufdesc *new_bd = bdp - 1;
274 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
275 	struct bufdesc_ex *ex_base;
276 	struct bufdesc *base;
277 	int ring_size;
278 
279 	if (bdp >= fep->tx_bd_base) {
280 		base = fep->tx_bd_base;
281 		ring_size = fep->tx_ring_size;
282 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
283 	} else {
284 		base = fep->rx_bd_base;
285 		ring_size = fep->rx_ring_size;
286 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
287 	}
288 
289 	if (fep->bufdesc_ex)
290 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
291 			(ex_new_bd + ring_size) : ex_new_bd);
292 	else
293 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
294 }
295 
296 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
297 				struct fec_enet_private *fep)
298 {
299 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
300 }
301 
302 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
303 {
304 	int entries;
305 
306 	entries = ((const char *)fep->dirty_tx -
307 			(const char *)fep->cur_tx) / fep->bufdesc_size - 1;
308 
309 	return entries > 0 ? entries : entries + fep->tx_ring_size;
310 }
311 
312 static void *swap_buffer(void *bufaddr, int len)
313 {
314 	int i;
315 	unsigned int *buf = bufaddr;
316 
317 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
318 		*buf = cpu_to_be32(*buf);
319 
320 	return bufaddr;
321 }
322 
323 static void fec_dump(struct net_device *ndev)
324 {
325 	struct fec_enet_private *fep = netdev_priv(ndev);
326 	struct bufdesc *bdp = fep->tx_bd_base;
327 	unsigned int index = 0;
328 
329 	netdev_info(ndev, "TX ring dump\n");
330 	pr_info("Nr     SC     addr       len  SKB\n");
331 
332 	do {
333 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
334 			index,
335 			bdp == fep->cur_tx ? 'S' : ' ',
336 			bdp == fep->dirty_tx ? 'H' : ' ',
337 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
338 			fep->tx_skbuff[index]);
339 		bdp = fec_enet_get_nextdesc(bdp, fep);
340 		index++;
341 	} while (bdp != fep->tx_bd_base);
342 }
343 
344 static inline bool is_ipv4_pkt(struct sk_buff *skb)
345 {
346 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
347 }
348 
349 static int
350 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
351 {
352 	/* Only run for packets requiring a checksum. */
353 	if (skb->ip_summed != CHECKSUM_PARTIAL)
354 		return 0;
355 
356 	if (unlikely(skb_cow_head(skb, 0)))
357 		return -1;
358 
359 	if (is_ipv4_pkt(skb))
360 		ip_hdr(skb)->check = 0;
361 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
362 
363 	return 0;
364 }
365 
366 static int
367 fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
368 {
369 	struct fec_enet_private *fep = netdev_priv(ndev);
370 	const struct platform_device_id *id_entry =
371 				platform_get_device_id(fep->pdev);
372 	struct bufdesc *bdp = fep->cur_tx;
373 	struct bufdesc_ex *ebdp;
374 	int nr_frags = skb_shinfo(skb)->nr_frags;
375 	int frag, frag_len;
376 	unsigned short status;
377 	unsigned int estatus = 0;
378 	skb_frag_t *this_frag;
379 	unsigned int index;
380 	void *bufaddr;
381 	dma_addr_t addr;
382 	int i;
383 
384 	for (frag = 0; frag < nr_frags; frag++) {
385 		this_frag = &skb_shinfo(skb)->frags[frag];
386 		bdp = fec_enet_get_nextdesc(bdp, fep);
387 		ebdp = (struct bufdesc_ex *)bdp;
388 
389 		status = bdp->cbd_sc;
390 		status &= ~BD_ENET_TX_STATS;
391 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
392 		frag_len = skb_shinfo(skb)->frags[frag].size;
393 
394 		/* Handle the last BD specially */
395 		if (frag == nr_frags - 1) {
396 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
397 			if (fep->bufdesc_ex) {
398 				estatus |= BD_ENET_TX_INT;
399 				if (unlikely(skb_shinfo(skb)->tx_flags &
400 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
401 					estatus |= BD_ENET_TX_TS;
402 			}
403 		}
404 
405 		if (fep->bufdesc_ex) {
406 			if (skb->ip_summed == CHECKSUM_PARTIAL)
407 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
408 			ebdp->cbd_bdu = 0;
409 			ebdp->cbd_esc = estatus;
410 		}
411 
412 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
413 
414 		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
415 		if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
416 			id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
417 			memcpy(fep->tx_bounce[index], bufaddr, frag_len);
418 			bufaddr = fep->tx_bounce[index];
419 
420 			if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
421 				swap_buffer(bufaddr, frag_len);
422 		}
423 
424 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
425 				      DMA_TO_DEVICE);
426 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
427 			dev_kfree_skb_any(skb);
428 			if (net_ratelimit())
429 				netdev_err(ndev, "Tx DMA memory map failed\n");
430 			goto dma_mapping_error;
431 		}
432 
433 		bdp->cbd_bufaddr = addr;
434 		bdp->cbd_datlen = frag_len;
435 		bdp->cbd_sc = status;
436 	}
437 
438 	fep->cur_tx = bdp;
439 
440 	return 0;
441 
442 dma_mapping_error:
443 	bdp = fep->cur_tx;
444 	for (i = 0; i < frag; i++) {
445 		bdp = fec_enet_get_nextdesc(bdp, fep);
446 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
447 				bdp->cbd_datlen, DMA_TO_DEVICE);
448 	}
449 	return NETDEV_TX_OK;
450 }
451 
452 static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
453 {
454 	struct fec_enet_private *fep = netdev_priv(ndev);
455 	const struct platform_device_id *id_entry =
456 				platform_get_device_id(fep->pdev);
457 	int nr_frags = skb_shinfo(skb)->nr_frags;
458 	struct bufdesc *bdp, *last_bdp;
459 	void *bufaddr;
460 	dma_addr_t addr;
461 	unsigned short status;
462 	unsigned short buflen;
463 	unsigned int estatus = 0;
464 	unsigned int index;
465 	int entries_free;
466 	int ret;
467 
468 	entries_free = fec_enet_get_free_txdesc_num(fep);
469 	if (entries_free < MAX_SKB_FRAGS + 1) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "NOT enough BD for SG!\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Protocol checksum off-load for TCP and UDP. */
477 	if (fec_enet_clear_csum(skb, ndev)) {
478 		dev_kfree_skb_any(skb);
479 		return NETDEV_TX_OK;
480 	}
481 
482 	/* Fill in a Tx ring entry */
483 	bdp = fep->cur_tx;
484 	status = bdp->cbd_sc;
485 	status &= ~BD_ENET_TX_STATS;
486 
487 	/* Set buffer length and buffer pointer */
488 	bufaddr = skb->data;
489 	buflen = skb_headlen(skb);
490 
491 	index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
492 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
493 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
494 		memcpy(fep->tx_bounce[index], skb->data, buflen);
495 		bufaddr = fep->tx_bounce[index];
496 
497 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
498 			swap_buffer(bufaddr, buflen);
499 	}
500 
501 	/* Push the data cache so the CPM does not get stale memory data. */
502 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
503 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
504 		dev_kfree_skb_any(skb);
505 		if (net_ratelimit())
506 			netdev_err(ndev, "Tx DMA memory map failed\n");
507 		return NETDEV_TX_OK;
508 	}
509 
510 	if (nr_frags) {
511 		ret = fec_enet_txq_submit_frag_skb(skb, ndev);
512 		if (ret)
513 			return ret;
514 	} else {
515 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
516 		if (fep->bufdesc_ex) {
517 			estatus = BD_ENET_TX_INT;
518 			if (unlikely(skb_shinfo(skb)->tx_flags &
519 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
520 				estatus |= BD_ENET_TX_TS;
521 		}
522 	}
523 
524 	if (fep->bufdesc_ex) {
525 
526 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
527 
528 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
529 			fep->hwts_tx_en))
530 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
531 
532 		if (skb->ip_summed == CHECKSUM_PARTIAL)
533 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
534 
535 		ebdp->cbd_bdu = 0;
536 		ebdp->cbd_esc = estatus;
537 	}
538 
539 	last_bdp = fep->cur_tx;
540 	index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
541 	/* Save skb pointer */
542 	fep->tx_skbuff[index] = skb;
543 
544 	bdp->cbd_datlen = buflen;
545 	bdp->cbd_bufaddr = addr;
546 
547 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
548 	 * it's the last BD of the frame, and to put the CRC on the end.
549 	 */
550 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
551 	bdp->cbd_sc = status;
552 
553 	/* If this was the last BD in the ring, start at the beginning again. */
554 	bdp = fec_enet_get_nextdesc(last_bdp, fep);
555 
556 	skb_tx_timestamp(skb);
557 
558 	fep->cur_tx = bdp;
559 
560 	/* Trigger transmission start */
561 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
562 
563 	return 0;
564 }
565 
566 static int
567 fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
568 			struct bufdesc *bdp, int index, char *data,
569 			int size, bool last_tcp, bool is_last)
570 {
571 	struct fec_enet_private *fep = netdev_priv(ndev);
572 	const struct platform_device_id *id_entry =
573 				platform_get_device_id(fep->pdev);
574 	struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
575 	unsigned short status;
576 	unsigned int estatus = 0;
577 	dma_addr_t addr;
578 
579 	status = bdp->cbd_sc;
580 	status &= ~BD_ENET_TX_STATS;
581 
582 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
583 
584 	if (((unsigned long) data) & FEC_ALIGNMENT ||
585 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
586 		memcpy(fep->tx_bounce[index], data, size);
587 		data = fep->tx_bounce[index];
588 
589 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
590 			swap_buffer(data, size);
591 	}
592 
593 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
594 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
595 		dev_kfree_skb_any(skb);
596 		if (net_ratelimit())
597 			netdev_err(ndev, "Tx DMA memory map failed\n");
598 		return NETDEV_TX_BUSY;
599 	}
600 
601 	bdp->cbd_datlen = size;
602 	bdp->cbd_bufaddr = addr;
603 
604 	if (fep->bufdesc_ex) {
605 		if (skb->ip_summed == CHECKSUM_PARTIAL)
606 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
607 		ebdp->cbd_bdu = 0;
608 		ebdp->cbd_esc = estatus;
609 	}
610 
611 	/* Handle the last BD specially */
612 	if (last_tcp)
613 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
614 	if (is_last) {
615 		status |= BD_ENET_TX_INTR;
616 		if (fep->bufdesc_ex)
617 			ebdp->cbd_esc |= BD_ENET_TX_INT;
618 	}
619 
620 	bdp->cbd_sc = status;
621 
622 	return 0;
623 }
624 
625 static int
626 fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
627 			struct bufdesc *bdp, int index)
628 {
629 	struct fec_enet_private *fep = netdev_priv(ndev);
630 	const struct platform_device_id *id_entry =
631 				platform_get_device_id(fep->pdev);
632 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
633 	struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
634 	void *bufaddr;
635 	unsigned long dmabuf;
636 	unsigned short status;
637 	unsigned int estatus = 0;
638 
639 	status = bdp->cbd_sc;
640 	status &= ~BD_ENET_TX_STATS;
641 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
642 
643 	bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
644 	dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
645 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
646 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
647 		memcpy(fep->tx_bounce[index], skb->data, hdr_len);
648 		bufaddr = fep->tx_bounce[index];
649 
650 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
651 			swap_buffer(bufaddr, hdr_len);
652 
653 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
654 					hdr_len, DMA_TO_DEVICE);
655 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
656 			dev_kfree_skb_any(skb);
657 			if (net_ratelimit())
658 				netdev_err(ndev, "Tx DMA memory map failed\n");
659 			return NETDEV_TX_BUSY;
660 		}
661 	}
662 
663 	bdp->cbd_bufaddr = dmabuf;
664 	bdp->cbd_datlen = hdr_len;
665 
666 	if (fep->bufdesc_ex) {
667 		if (skb->ip_summed == CHECKSUM_PARTIAL)
668 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
669 		ebdp->cbd_bdu = 0;
670 		ebdp->cbd_esc = estatus;
671 	}
672 
673 	bdp->cbd_sc = status;
674 
675 	return 0;
676 }
677 
678 static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
679 {
680 	struct fec_enet_private *fep = netdev_priv(ndev);
681 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
682 	int total_len, data_left;
683 	struct bufdesc *bdp = fep->cur_tx;
684 	struct tso_t tso;
685 	unsigned int index = 0;
686 	int ret;
687 
688 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
689 		dev_kfree_skb_any(skb);
690 		if (net_ratelimit())
691 			netdev_err(ndev, "NOT enough BD for TSO!\n");
692 		return NETDEV_TX_OK;
693 	}
694 
695 	/* Protocol checksum off-load for TCP and UDP. */
696 	if (fec_enet_clear_csum(skb, ndev)) {
697 		dev_kfree_skb_any(skb);
698 		return NETDEV_TX_OK;
699 	}
700 
701 	/* Initialize the TSO handler, and prepare the first payload */
702 	tso_start(skb, &tso);
703 
704 	total_len = skb->len - hdr_len;
705 	while (total_len > 0) {
706 		char *hdr;
707 
708 		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
709 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
710 		total_len -= data_left;
711 
712 		/* prepare packet headers: MAC + IP + TCP */
713 		hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
714 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
715 		ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
716 		if (ret)
717 			goto err_release;
718 
719 		while (data_left > 0) {
720 			int size;
721 
722 			size = min_t(int, tso.size, data_left);
723 			bdp = fec_enet_get_nextdesc(bdp, fep);
724 			index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
725 			ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
726 							size, size == data_left,
727 							total_len == 0);
728 			if (ret)
729 				goto err_release;
730 
731 			data_left -= size;
732 			tso_build_data(skb, &tso, size);
733 		}
734 
735 		bdp = fec_enet_get_nextdesc(bdp, fep);
736 	}
737 
738 	/* Save skb pointer */
739 	fep->tx_skbuff[index] = skb;
740 
741 	skb_tx_timestamp(skb);
742 	fep->cur_tx = bdp;
743 
744 	/* Trigger transmission start */
745 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
746 
747 	return 0;
748 
749 err_release:
750 	/* TODO: Release all used data descriptors for TSO */
751 	return ret;
752 }
753 
754 static netdev_tx_t
755 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
756 {
757 	struct fec_enet_private *fep = netdev_priv(ndev);
758 	int entries_free;
759 	int ret;
760 
761 	if (skb_is_gso(skb))
762 		ret = fec_enet_txq_submit_tso(skb, ndev);
763 	else
764 		ret = fec_enet_txq_submit_skb(skb, ndev);
765 	if (ret)
766 		return ret;
767 
768 	entries_free = fec_enet_get_free_txdesc_num(fep);
769 	if (entries_free <= fep->tx_stop_threshold)
770 		netif_stop_queue(ndev);
771 
772 	return NETDEV_TX_OK;
773 }
774 
775 /* Init RX & TX buffer descriptors
776  */
777 static void fec_enet_bd_init(struct net_device *dev)
778 {
779 	struct fec_enet_private *fep = netdev_priv(dev);
780 	struct bufdesc *bdp;
781 	unsigned int i;
782 
783 	/* Initialize the receive buffer descriptors. */
784 	bdp = fep->rx_bd_base;
785 	for (i = 0; i < fep->rx_ring_size; i++) {
786 
787 		/* Initialize the BD for every fragment in the page. */
788 		if (bdp->cbd_bufaddr)
789 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
790 		else
791 			bdp->cbd_sc = 0;
792 		bdp = fec_enet_get_nextdesc(bdp, fep);
793 	}
794 
795 	/* Set the last buffer to wrap */
796 	bdp = fec_enet_get_prevdesc(bdp, fep);
797 	bdp->cbd_sc |= BD_SC_WRAP;
798 
799 	fep->cur_rx = fep->rx_bd_base;
800 
801 	/* ...and the same for transmit */
802 	bdp = fep->tx_bd_base;
803 	fep->cur_tx = bdp;
804 	for (i = 0; i < fep->tx_ring_size; i++) {
805 
806 		/* Initialize the BD for every fragment in the page. */
807 		bdp->cbd_sc = 0;
808 		if (fep->tx_skbuff[i]) {
809 			dev_kfree_skb_any(fep->tx_skbuff[i]);
810 			fep->tx_skbuff[i] = NULL;
811 		}
812 		bdp->cbd_bufaddr = 0;
813 		bdp = fec_enet_get_nextdesc(bdp, fep);
814 	}
815 
816 	/* Set the last buffer to wrap */
817 	bdp = fec_enet_get_prevdesc(bdp, fep);
818 	bdp->cbd_sc |= BD_SC_WRAP;
819 	fep->dirty_tx = bdp;
820 }
821 
822 /*
823  * This function is called to start or restart the FEC during a link
824  * change, transmit timeout, or to reconfigure the FEC.  The network
825  * packet processing for this device must be stopped before this call.
826  */
827 static void
828 fec_restart(struct net_device *ndev)
829 {
830 	struct fec_enet_private *fep = netdev_priv(ndev);
831 	const struct platform_device_id *id_entry =
832 				platform_get_device_id(fep->pdev);
833 	int i;
834 	u32 val;
835 	u32 temp_mac[2];
836 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
837 	u32 ecntl = 0x2; /* ETHEREN */
838 
839 	/* Whack a reset.  We should wait for this. */
840 	writel(1, fep->hwp + FEC_ECNTRL);
841 	udelay(10);
842 
843 	/*
844 	 * enet-mac reset will reset mac address registers too,
845 	 * so need to reconfigure it.
846 	 */
847 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
848 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
849 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
850 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
851 	}
852 
853 	/* Clear any outstanding interrupt. */
854 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
855 
856 	/* Set maximum receive buffer size. */
857 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
858 
859 	fec_enet_bd_init(ndev);
860 
861 	/* Set receive and transmit descriptor base. */
862 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
863 	if (fep->bufdesc_ex)
864 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
865 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
866 	else
867 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
868 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
869 
870 
871 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
872 		if (fep->tx_skbuff[i]) {
873 			dev_kfree_skb_any(fep->tx_skbuff[i]);
874 			fep->tx_skbuff[i] = NULL;
875 		}
876 	}
877 
878 	/* Enable MII mode */
879 	if (fep->full_duplex == DUPLEX_FULL) {
880 		/* FD enable */
881 		writel(0x04, fep->hwp + FEC_X_CNTRL);
882 	} else {
883 		/* No Rcv on Xmit */
884 		rcntl |= 0x02;
885 		writel(0x0, fep->hwp + FEC_X_CNTRL);
886 	}
887 
888 	/* Set MII speed */
889 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
890 
891 #if !defined(CONFIG_M5272)
892 	/* set RX checksum */
893 	val = readl(fep->hwp + FEC_RACC);
894 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
895 		val |= FEC_RACC_OPTIONS;
896 	else
897 		val &= ~FEC_RACC_OPTIONS;
898 	writel(val, fep->hwp + FEC_RACC);
899 #endif
900 
901 	/*
902 	 * The phy interface and speed need to get configured
903 	 * differently on enet-mac.
904 	 */
905 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
906 		/* Enable flow control and length check */
907 		rcntl |= 0x40000000 | 0x00000020;
908 
909 		/* RGMII, RMII or MII */
910 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
911 			rcntl |= (1 << 6);
912 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
913 			rcntl |= (1 << 8);
914 		else
915 			rcntl &= ~(1 << 8);
916 
917 		/* 1G, 100M or 10M */
918 		if (fep->phy_dev) {
919 			if (fep->phy_dev->speed == SPEED_1000)
920 				ecntl |= (1 << 5);
921 			else if (fep->phy_dev->speed == SPEED_100)
922 				rcntl &= ~(1 << 9);
923 			else
924 				rcntl |= (1 << 9);
925 		}
926 	} else {
927 #ifdef FEC_MIIGSK_ENR
928 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
929 			u32 cfgr;
930 			/* disable the gasket and wait */
931 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
932 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
933 				udelay(1);
934 
935 			/*
936 			 * configure the gasket:
937 			 *   RMII, 50 MHz, no loopback, no echo
938 			 *   MII, 25 MHz, no loopback, no echo
939 			 */
940 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
941 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
942 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
943 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
944 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
945 
946 			/* re-enable the gasket */
947 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
948 		}
949 #endif
950 	}
951 
952 #if !defined(CONFIG_M5272)
953 	/* enable pause frame*/
954 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
955 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
956 	     fep->phy_dev && fep->phy_dev->pause)) {
957 		rcntl |= FEC_ENET_FCE;
958 
959 		/* set FIFO threshold parameter to reduce overrun */
960 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
961 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
962 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
963 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
964 
965 		/* OPD */
966 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
967 	} else {
968 		rcntl &= ~FEC_ENET_FCE;
969 	}
970 #endif /* !defined(CONFIG_M5272) */
971 
972 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
973 
974 	/* Setup multicast filter. */
975 	set_multicast_list(ndev);
976 #ifndef CONFIG_M5272
977 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
978 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
979 #endif
980 
981 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
982 		/* enable ENET endian swap */
983 		ecntl |= (1 << 8);
984 		/* enable ENET store and forward mode */
985 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
986 	}
987 
988 	if (fep->bufdesc_ex)
989 		ecntl |= (1 << 4);
990 
991 #ifndef CONFIG_M5272
992 	/* Enable the MIB statistic event counters */
993 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
994 #endif
995 
996 	/* And last, enable the transmit and receive processing */
997 	writel(ecntl, fep->hwp + FEC_ECNTRL);
998 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
999 
1000 	if (fep->bufdesc_ex)
1001 		fec_ptp_start_cyclecounter(ndev);
1002 
1003 	/* Enable interrupts we wish to service */
1004 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1005 }
1006 
1007 static void
1008 fec_stop(struct net_device *ndev)
1009 {
1010 	struct fec_enet_private *fep = netdev_priv(ndev);
1011 	const struct platform_device_id *id_entry =
1012 				platform_get_device_id(fep->pdev);
1013 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1014 
1015 	/* We cannot expect a graceful transmit stop without link !!! */
1016 	if (fep->link) {
1017 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1018 		udelay(10);
1019 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1020 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1021 	}
1022 
1023 	/* Whack a reset.  We should wait for this. */
1024 	writel(1, fep->hwp + FEC_ECNTRL);
1025 	udelay(10);
1026 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1027 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1028 
1029 	/* We have to keep ENET enabled to have MII interrupt stay working */
1030 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1031 		writel(2, fep->hwp + FEC_ECNTRL);
1032 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1033 	}
1034 }
1035 
1036 
1037 static void
1038 fec_timeout(struct net_device *ndev)
1039 {
1040 	struct fec_enet_private *fep = netdev_priv(ndev);
1041 
1042 	fec_dump(ndev);
1043 
1044 	ndev->stats.tx_errors++;
1045 
1046 	schedule_work(&fep->tx_timeout_work);
1047 }
1048 
1049 static void fec_enet_timeout_work(struct work_struct *work)
1050 {
1051 	struct fec_enet_private *fep =
1052 		container_of(work, struct fec_enet_private, tx_timeout_work);
1053 	struct net_device *ndev = fep->netdev;
1054 
1055 	rtnl_lock();
1056 	if (netif_device_present(ndev) || netif_running(ndev)) {
1057 		napi_disable(&fep->napi);
1058 		netif_tx_lock_bh(ndev);
1059 		fec_restart(ndev);
1060 		netif_wake_queue(ndev);
1061 		netif_tx_unlock_bh(ndev);
1062 		napi_enable(&fep->napi);
1063 	}
1064 	rtnl_unlock();
1065 }
1066 
1067 static void
1068 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1069 	struct skb_shared_hwtstamps *hwtstamps)
1070 {
1071 	unsigned long flags;
1072 	u64 ns;
1073 
1074 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1075 	ns = timecounter_cyc2time(&fep->tc, ts);
1076 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1077 
1078 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1079 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1080 }
1081 
1082 static void
1083 fec_enet_tx(struct net_device *ndev)
1084 {
1085 	struct	fec_enet_private *fep;
1086 	struct bufdesc *bdp;
1087 	unsigned short status;
1088 	struct	sk_buff	*skb;
1089 	int	index = 0;
1090 	int	entries_free;
1091 
1092 	fep = netdev_priv(ndev);
1093 	bdp = fep->dirty_tx;
1094 
1095 	/* get next bdp of dirty_tx */
1096 	bdp = fec_enet_get_nextdesc(bdp, fep);
1097 
1098 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1099 
1100 		/* current queue is empty */
1101 		if (bdp == fep->cur_tx)
1102 			break;
1103 
1104 		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
1105 
1106 		skb = fep->tx_skbuff[index];
1107 		fep->tx_skbuff[index] = NULL;
1108 		if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
1109 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1110 					bdp->cbd_datlen, DMA_TO_DEVICE);
1111 		bdp->cbd_bufaddr = 0;
1112 		if (!skb) {
1113 			bdp = fec_enet_get_nextdesc(bdp, fep);
1114 			continue;
1115 		}
1116 
1117 		/* Check for errors. */
1118 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1119 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1120 				   BD_ENET_TX_CSL)) {
1121 			ndev->stats.tx_errors++;
1122 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1123 				ndev->stats.tx_heartbeat_errors++;
1124 			if (status & BD_ENET_TX_LC)  /* Late collision */
1125 				ndev->stats.tx_window_errors++;
1126 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1127 				ndev->stats.tx_aborted_errors++;
1128 			if (status & BD_ENET_TX_UN)  /* Underrun */
1129 				ndev->stats.tx_fifo_errors++;
1130 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1131 				ndev->stats.tx_carrier_errors++;
1132 		} else {
1133 			ndev->stats.tx_packets++;
1134 			ndev->stats.tx_bytes += skb->len;
1135 		}
1136 
1137 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1138 			fep->bufdesc_ex) {
1139 			struct skb_shared_hwtstamps shhwtstamps;
1140 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1141 
1142 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1143 			skb_tstamp_tx(skb, &shhwtstamps);
1144 		}
1145 
1146 		/* Deferred means some collisions occurred during transmit,
1147 		 * but we eventually sent the packet OK.
1148 		 */
1149 		if (status & BD_ENET_TX_DEF)
1150 			ndev->stats.collisions++;
1151 
1152 		/* Free the sk buffer associated with this last transmit */
1153 		dev_kfree_skb_any(skb);
1154 
1155 		fep->dirty_tx = bdp;
1156 
1157 		/* Update pointer to next buffer descriptor to be transmitted */
1158 		bdp = fec_enet_get_nextdesc(bdp, fep);
1159 
1160 		/* Since we have freed up a buffer, the ring is no longer full
1161 		 */
1162 		if (netif_queue_stopped(ndev)) {
1163 			entries_free = fec_enet_get_free_txdesc_num(fep);
1164 			if (entries_free >= fep->tx_wake_threshold)
1165 				netif_wake_queue(ndev);
1166 		}
1167 	}
1168 
1169 	/* ERR006538: Keep the transmitter going */
1170 	if (bdp != fep->cur_tx && readl(fep->hwp + FEC_X_DES_ACTIVE) == 0)
1171 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1172 }
1173 
1174 /* During a receive, the cur_rx points to the current incoming buffer.
1175  * When we update through the ring, if the next incoming buffer has
1176  * not been given to the system, we just set the empty indicator,
1177  * effectively tossing the packet.
1178  */
1179 static int
1180 fec_enet_rx(struct net_device *ndev, int budget)
1181 {
1182 	struct fec_enet_private *fep = netdev_priv(ndev);
1183 	const struct platform_device_id *id_entry =
1184 				platform_get_device_id(fep->pdev);
1185 	struct bufdesc *bdp;
1186 	unsigned short status;
1187 	struct	sk_buff	*skb;
1188 	ushort	pkt_len;
1189 	__u8 *data;
1190 	int	pkt_received = 0;
1191 	struct	bufdesc_ex *ebdp = NULL;
1192 	bool	vlan_packet_rcvd = false;
1193 	u16	vlan_tag;
1194 	int	index = 0;
1195 
1196 #ifdef CONFIG_M532x
1197 	flush_cache_all();
1198 #endif
1199 
1200 	/* First, grab all of the stats for the incoming packet.
1201 	 * These get messed up if we get called due to a busy condition.
1202 	 */
1203 	bdp = fep->cur_rx;
1204 
1205 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1206 
1207 		if (pkt_received >= budget)
1208 			break;
1209 		pkt_received++;
1210 
1211 		/* Since we have allocated space to hold a complete frame,
1212 		 * the last indicator should be set.
1213 		 */
1214 		if ((status & BD_ENET_RX_LAST) == 0)
1215 			netdev_err(ndev, "rcv is not +last\n");
1216 
1217 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1218 
1219 		/* Check for errors. */
1220 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1221 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1222 			ndev->stats.rx_errors++;
1223 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1224 				/* Frame too long or too short. */
1225 				ndev->stats.rx_length_errors++;
1226 			}
1227 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1228 				ndev->stats.rx_frame_errors++;
1229 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1230 				ndev->stats.rx_crc_errors++;
1231 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1232 				ndev->stats.rx_fifo_errors++;
1233 		}
1234 
1235 		/* Report late collisions as a frame error.
1236 		 * On this error, the BD is closed, but we don't know what we
1237 		 * have in the buffer.  So, just drop this frame on the floor.
1238 		 */
1239 		if (status & BD_ENET_RX_CL) {
1240 			ndev->stats.rx_errors++;
1241 			ndev->stats.rx_frame_errors++;
1242 			goto rx_processing_done;
1243 		}
1244 
1245 		/* Process the incoming frame. */
1246 		ndev->stats.rx_packets++;
1247 		pkt_len = bdp->cbd_datlen;
1248 		ndev->stats.rx_bytes += pkt_len;
1249 
1250 		index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
1251 		data = fep->rx_skbuff[index]->data;
1252 		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1253 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1254 
1255 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1256 			swap_buffer(data, pkt_len);
1257 
1258 		/* Extract the enhanced buffer descriptor */
1259 		ebdp = NULL;
1260 		if (fep->bufdesc_ex)
1261 			ebdp = (struct bufdesc_ex *)bdp;
1262 
1263 		/* If this is a VLAN packet remove the VLAN Tag */
1264 		vlan_packet_rcvd = false;
1265 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1266 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1267 			/* Push and remove the vlan tag */
1268 			struct vlan_hdr *vlan_header =
1269 					(struct vlan_hdr *) (data + ETH_HLEN);
1270 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1271 			pkt_len -= VLAN_HLEN;
1272 
1273 			vlan_packet_rcvd = true;
1274 		}
1275 
1276 		/* This does 16 byte alignment, exactly what we need.
1277 		 * The packet length includes FCS, but we don't want to
1278 		 * include that when passing upstream as it messes up
1279 		 * bridging applications.
1280 		 */
1281 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1282 
1283 		if (unlikely(!skb)) {
1284 			ndev->stats.rx_dropped++;
1285 		} else {
1286 			int payload_offset = (2 * ETH_ALEN);
1287 			skb_reserve(skb, NET_IP_ALIGN);
1288 			skb_put(skb, pkt_len - 4);	/* Make room */
1289 
1290 			/* Extract the frame data without the VLAN header. */
1291 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
1292 			if (vlan_packet_rcvd)
1293 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
1294 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
1295 						       data + payload_offset,
1296 						       pkt_len - 4 - (2 * ETH_ALEN));
1297 
1298 			skb->protocol = eth_type_trans(skb, ndev);
1299 
1300 			/* Get receive timestamp from the skb */
1301 			if (fep->hwts_rx_en && fep->bufdesc_ex)
1302 				fec_enet_hwtstamp(fep, ebdp->ts,
1303 						  skb_hwtstamps(skb));
1304 
1305 			if (fep->bufdesc_ex &&
1306 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1307 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1308 					/* don't check it */
1309 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1310 				} else {
1311 					skb_checksum_none_assert(skb);
1312 				}
1313 			}
1314 
1315 			/* Handle received VLAN packets */
1316 			if (vlan_packet_rcvd)
1317 				__vlan_hwaccel_put_tag(skb,
1318 						       htons(ETH_P_8021Q),
1319 						       vlan_tag);
1320 
1321 			napi_gro_receive(&fep->napi, skb);
1322 		}
1323 
1324 		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1325 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1326 rx_processing_done:
1327 		/* Clear the status flags for this buffer */
1328 		status &= ~BD_ENET_RX_STATS;
1329 
1330 		/* Mark the buffer empty */
1331 		status |= BD_ENET_RX_EMPTY;
1332 		bdp->cbd_sc = status;
1333 
1334 		if (fep->bufdesc_ex) {
1335 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1336 
1337 			ebdp->cbd_esc = BD_ENET_RX_INT;
1338 			ebdp->cbd_prot = 0;
1339 			ebdp->cbd_bdu = 0;
1340 		}
1341 
1342 		/* Update BD pointer to next entry */
1343 		bdp = fec_enet_get_nextdesc(bdp, fep);
1344 
1345 		/* Doing this here will keep the FEC running while we process
1346 		 * incoming frames.  On a heavily loaded network, we should be
1347 		 * able to keep up at the expense of system resources.
1348 		 */
1349 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1350 	}
1351 	fep->cur_rx = bdp;
1352 
1353 	return pkt_received;
1354 }
1355 
1356 static irqreturn_t
1357 fec_enet_interrupt(int irq, void *dev_id)
1358 {
1359 	struct net_device *ndev = dev_id;
1360 	struct fec_enet_private *fep = netdev_priv(ndev);
1361 	const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1362 	uint int_events;
1363 	irqreturn_t ret = IRQ_NONE;
1364 
1365 	int_events = readl(fep->hwp + FEC_IEVENT);
1366 	writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1367 
1368 	if (int_events & napi_mask) {
1369 		ret = IRQ_HANDLED;
1370 
1371 		/* Disable the NAPI interrupts */
1372 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1373 		napi_schedule(&fep->napi);
1374 	}
1375 
1376 	if (int_events & FEC_ENET_MII) {
1377 		ret = IRQ_HANDLED;
1378 		complete(&fep->mdio_done);
1379 	}
1380 
1381 	return ret;
1382 }
1383 
1384 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1385 {
1386 	struct net_device *ndev = napi->dev;
1387 	struct fec_enet_private *fep = netdev_priv(ndev);
1388 	int pkts;
1389 
1390 	/*
1391 	 * Clear any pending transmit or receive interrupts before
1392 	 * processing the rings to avoid racing with the hardware.
1393 	 */
1394 	writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1395 
1396 	pkts = fec_enet_rx(ndev, budget);
1397 
1398 	fec_enet_tx(ndev);
1399 
1400 	if (pkts < budget) {
1401 		napi_complete(napi);
1402 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1403 	}
1404 	return pkts;
1405 }
1406 
1407 /* ------------------------------------------------------------------------- */
1408 static void fec_get_mac(struct net_device *ndev)
1409 {
1410 	struct fec_enet_private *fep = netdev_priv(ndev);
1411 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1412 	unsigned char *iap, tmpaddr[ETH_ALEN];
1413 
1414 	/*
1415 	 * try to get mac address in following order:
1416 	 *
1417 	 * 1) module parameter via kernel command line in form
1418 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1419 	 */
1420 	iap = macaddr;
1421 
1422 	/*
1423 	 * 2) from device tree data
1424 	 */
1425 	if (!is_valid_ether_addr(iap)) {
1426 		struct device_node *np = fep->pdev->dev.of_node;
1427 		if (np) {
1428 			const char *mac = of_get_mac_address(np);
1429 			if (mac)
1430 				iap = (unsigned char *) mac;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * 3) from flash or fuse (via platform data)
1436 	 */
1437 	if (!is_valid_ether_addr(iap)) {
1438 #ifdef CONFIG_M5272
1439 		if (FEC_FLASHMAC)
1440 			iap = (unsigned char *)FEC_FLASHMAC;
1441 #else
1442 		if (pdata)
1443 			iap = (unsigned char *)&pdata->mac;
1444 #endif
1445 	}
1446 
1447 	/*
1448 	 * 4) FEC mac registers set by bootloader
1449 	 */
1450 	if (!is_valid_ether_addr(iap)) {
1451 		*((__be32 *) &tmpaddr[0]) =
1452 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1453 		*((__be16 *) &tmpaddr[4]) =
1454 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1455 		iap = &tmpaddr[0];
1456 	}
1457 
1458 	/*
1459 	 * 5) random mac address
1460 	 */
1461 	if (!is_valid_ether_addr(iap)) {
1462 		/* Report it and use a random ethernet address instead */
1463 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1464 		eth_hw_addr_random(ndev);
1465 		netdev_info(ndev, "Using random MAC address: %pM\n",
1466 			    ndev->dev_addr);
1467 		return;
1468 	}
1469 
1470 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1471 
1472 	/* Adjust MAC if using macaddr */
1473 	if (iap == macaddr)
1474 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1475 }
1476 
1477 /* ------------------------------------------------------------------------- */
1478 
1479 /*
1480  * Phy section
1481  */
1482 static void fec_enet_adjust_link(struct net_device *ndev)
1483 {
1484 	struct fec_enet_private *fep = netdev_priv(ndev);
1485 	struct phy_device *phy_dev = fep->phy_dev;
1486 	int status_change = 0;
1487 
1488 	/* Prevent a state halted on mii error */
1489 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1490 		phy_dev->state = PHY_RESUMING;
1491 		return;
1492 	}
1493 
1494 	/*
1495 	 * If the netdev is down, or is going down, we're not interested
1496 	 * in link state events, so just mark our idea of the link as down
1497 	 * and ignore the event.
1498 	 */
1499 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1500 		fep->link = 0;
1501 	} else if (phy_dev->link) {
1502 		if (!fep->link) {
1503 			fep->link = phy_dev->link;
1504 			status_change = 1;
1505 		}
1506 
1507 		if (fep->full_duplex != phy_dev->duplex) {
1508 			fep->full_duplex = phy_dev->duplex;
1509 			status_change = 1;
1510 		}
1511 
1512 		if (phy_dev->speed != fep->speed) {
1513 			fep->speed = phy_dev->speed;
1514 			status_change = 1;
1515 		}
1516 
1517 		/* if any of the above changed restart the FEC */
1518 		if (status_change) {
1519 			napi_disable(&fep->napi);
1520 			netif_tx_lock_bh(ndev);
1521 			fec_restart(ndev);
1522 			netif_wake_queue(ndev);
1523 			netif_tx_unlock_bh(ndev);
1524 			napi_enable(&fep->napi);
1525 		}
1526 	} else {
1527 		if (fep->link) {
1528 			napi_disable(&fep->napi);
1529 			netif_tx_lock_bh(ndev);
1530 			fec_stop(ndev);
1531 			netif_tx_unlock_bh(ndev);
1532 			napi_enable(&fep->napi);
1533 			fep->link = phy_dev->link;
1534 			status_change = 1;
1535 		}
1536 	}
1537 
1538 	if (status_change)
1539 		phy_print_status(phy_dev);
1540 }
1541 
1542 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1543 {
1544 	struct fec_enet_private *fep = bus->priv;
1545 	unsigned long time_left;
1546 
1547 	fep->mii_timeout = 0;
1548 	init_completion(&fep->mdio_done);
1549 
1550 	/* start a read op */
1551 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1552 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1553 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1554 
1555 	/* wait for end of transfer */
1556 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1557 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1558 	if (time_left == 0) {
1559 		fep->mii_timeout = 1;
1560 		netdev_err(fep->netdev, "MDIO read timeout\n");
1561 		return -ETIMEDOUT;
1562 	}
1563 
1564 	/* return value */
1565 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1566 }
1567 
1568 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1569 			   u16 value)
1570 {
1571 	struct fec_enet_private *fep = bus->priv;
1572 	unsigned long time_left;
1573 
1574 	fep->mii_timeout = 0;
1575 	init_completion(&fep->mdio_done);
1576 
1577 	/* start a write op */
1578 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1579 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1580 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1581 		fep->hwp + FEC_MII_DATA);
1582 
1583 	/* wait for end of transfer */
1584 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1585 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1586 	if (time_left == 0) {
1587 		fep->mii_timeout = 1;
1588 		netdev_err(fep->netdev, "MDIO write timeout\n");
1589 		return -ETIMEDOUT;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1596 {
1597 	struct fec_enet_private *fep = netdev_priv(ndev);
1598 	int ret;
1599 
1600 	if (enable) {
1601 		ret = clk_prepare_enable(fep->clk_ahb);
1602 		if (ret)
1603 			return ret;
1604 		ret = clk_prepare_enable(fep->clk_ipg);
1605 		if (ret)
1606 			goto failed_clk_ipg;
1607 		if (fep->clk_enet_out) {
1608 			ret = clk_prepare_enable(fep->clk_enet_out);
1609 			if (ret)
1610 				goto failed_clk_enet_out;
1611 		}
1612 		if (fep->clk_ptp) {
1613 			ret = clk_prepare_enable(fep->clk_ptp);
1614 			if (ret)
1615 				goto failed_clk_ptp;
1616 		}
1617 	} else {
1618 		clk_disable_unprepare(fep->clk_ahb);
1619 		clk_disable_unprepare(fep->clk_ipg);
1620 		if (fep->clk_enet_out)
1621 			clk_disable_unprepare(fep->clk_enet_out);
1622 		if (fep->clk_ptp)
1623 			clk_disable_unprepare(fep->clk_ptp);
1624 	}
1625 
1626 	return 0;
1627 failed_clk_ptp:
1628 	if (fep->clk_enet_out)
1629 		clk_disable_unprepare(fep->clk_enet_out);
1630 failed_clk_enet_out:
1631 		clk_disable_unprepare(fep->clk_ipg);
1632 failed_clk_ipg:
1633 		clk_disable_unprepare(fep->clk_ahb);
1634 
1635 	return ret;
1636 }
1637 
1638 static int fec_enet_mii_probe(struct net_device *ndev)
1639 {
1640 	struct fec_enet_private *fep = netdev_priv(ndev);
1641 	const struct platform_device_id *id_entry =
1642 				platform_get_device_id(fep->pdev);
1643 	struct phy_device *phy_dev = NULL;
1644 	char mdio_bus_id[MII_BUS_ID_SIZE];
1645 	char phy_name[MII_BUS_ID_SIZE + 3];
1646 	int phy_id;
1647 	int dev_id = fep->dev_id;
1648 
1649 	fep->phy_dev = NULL;
1650 
1651 	/* check for attached phy */
1652 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1653 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1654 			continue;
1655 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1656 			continue;
1657 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1658 			continue;
1659 		if (dev_id--)
1660 			continue;
1661 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1662 		break;
1663 	}
1664 
1665 	if (phy_id >= PHY_MAX_ADDR) {
1666 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1667 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1668 		phy_id = 0;
1669 	}
1670 
1671 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1672 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1673 			      fep->phy_interface);
1674 	if (IS_ERR(phy_dev)) {
1675 		netdev_err(ndev, "could not attach to PHY\n");
1676 		return PTR_ERR(phy_dev);
1677 	}
1678 
1679 	/* mask with MAC supported features */
1680 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1681 		phy_dev->supported &= PHY_GBIT_FEATURES;
1682 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1683 #if !defined(CONFIG_M5272)
1684 		phy_dev->supported |= SUPPORTED_Pause;
1685 #endif
1686 	}
1687 	else
1688 		phy_dev->supported &= PHY_BASIC_FEATURES;
1689 
1690 	phy_dev->advertising = phy_dev->supported;
1691 
1692 	fep->phy_dev = phy_dev;
1693 	fep->link = 0;
1694 	fep->full_duplex = 0;
1695 
1696 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1697 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1698 		    fep->phy_dev->irq);
1699 
1700 	return 0;
1701 }
1702 
1703 static int fec_enet_mii_init(struct platform_device *pdev)
1704 {
1705 	static struct mii_bus *fec0_mii_bus;
1706 	struct net_device *ndev = platform_get_drvdata(pdev);
1707 	struct fec_enet_private *fep = netdev_priv(ndev);
1708 	const struct platform_device_id *id_entry =
1709 				platform_get_device_id(fep->pdev);
1710 	int err = -ENXIO, i;
1711 
1712 	/*
1713 	 * The dual fec interfaces are not equivalent with enet-mac.
1714 	 * Here are the differences:
1715 	 *
1716 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1717 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1718 	 *  - external phys can only be configured by fec0
1719 	 *
1720 	 * That is to say fec1 can not work independently. It only works
1721 	 * when fec0 is working. The reason behind this design is that the
1722 	 * second interface is added primarily for Switch mode.
1723 	 *
1724 	 * Because of the last point above, both phys are attached on fec0
1725 	 * mdio interface in board design, and need to be configured by
1726 	 * fec0 mii_bus.
1727 	 */
1728 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1729 		/* fec1 uses fec0 mii_bus */
1730 		if (mii_cnt && fec0_mii_bus) {
1731 			fep->mii_bus = fec0_mii_bus;
1732 			mii_cnt++;
1733 			return 0;
1734 		}
1735 		return -ENOENT;
1736 	}
1737 
1738 	fep->mii_timeout = 0;
1739 
1740 	/*
1741 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1742 	 *
1743 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1744 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1745 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1746 	 * document.
1747 	 */
1748 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1749 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1750 		fep->phy_speed--;
1751 	fep->phy_speed <<= 1;
1752 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1753 
1754 	fep->mii_bus = mdiobus_alloc();
1755 	if (fep->mii_bus == NULL) {
1756 		err = -ENOMEM;
1757 		goto err_out;
1758 	}
1759 
1760 	fep->mii_bus->name = "fec_enet_mii_bus";
1761 	fep->mii_bus->read = fec_enet_mdio_read;
1762 	fep->mii_bus->write = fec_enet_mdio_write;
1763 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1764 		pdev->name, fep->dev_id + 1);
1765 	fep->mii_bus->priv = fep;
1766 	fep->mii_bus->parent = &pdev->dev;
1767 
1768 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1769 	if (!fep->mii_bus->irq) {
1770 		err = -ENOMEM;
1771 		goto err_out_free_mdiobus;
1772 	}
1773 
1774 	for (i = 0; i < PHY_MAX_ADDR; i++)
1775 		fep->mii_bus->irq[i] = PHY_POLL;
1776 
1777 	if (mdiobus_register(fep->mii_bus))
1778 		goto err_out_free_mdio_irq;
1779 
1780 	mii_cnt++;
1781 
1782 	/* save fec0 mii_bus */
1783 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1784 		fec0_mii_bus = fep->mii_bus;
1785 
1786 	return 0;
1787 
1788 err_out_free_mdio_irq:
1789 	kfree(fep->mii_bus->irq);
1790 err_out_free_mdiobus:
1791 	mdiobus_free(fep->mii_bus);
1792 err_out:
1793 	return err;
1794 }
1795 
1796 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1797 {
1798 	if (--mii_cnt == 0) {
1799 		mdiobus_unregister(fep->mii_bus);
1800 		kfree(fep->mii_bus->irq);
1801 		mdiobus_free(fep->mii_bus);
1802 	}
1803 }
1804 
1805 static int fec_enet_get_settings(struct net_device *ndev,
1806 				  struct ethtool_cmd *cmd)
1807 {
1808 	struct fec_enet_private *fep = netdev_priv(ndev);
1809 	struct phy_device *phydev = fep->phy_dev;
1810 
1811 	if (!phydev)
1812 		return -ENODEV;
1813 
1814 	return phy_ethtool_gset(phydev, cmd);
1815 }
1816 
1817 static int fec_enet_set_settings(struct net_device *ndev,
1818 				 struct ethtool_cmd *cmd)
1819 {
1820 	struct fec_enet_private *fep = netdev_priv(ndev);
1821 	struct phy_device *phydev = fep->phy_dev;
1822 
1823 	if (!phydev)
1824 		return -ENODEV;
1825 
1826 	return phy_ethtool_sset(phydev, cmd);
1827 }
1828 
1829 static void fec_enet_get_drvinfo(struct net_device *ndev,
1830 				 struct ethtool_drvinfo *info)
1831 {
1832 	struct fec_enet_private *fep = netdev_priv(ndev);
1833 
1834 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1835 		sizeof(info->driver));
1836 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1837 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1838 }
1839 
1840 static int fec_enet_get_ts_info(struct net_device *ndev,
1841 				struct ethtool_ts_info *info)
1842 {
1843 	struct fec_enet_private *fep = netdev_priv(ndev);
1844 
1845 	if (fep->bufdesc_ex) {
1846 
1847 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1848 					SOF_TIMESTAMPING_RX_SOFTWARE |
1849 					SOF_TIMESTAMPING_SOFTWARE |
1850 					SOF_TIMESTAMPING_TX_HARDWARE |
1851 					SOF_TIMESTAMPING_RX_HARDWARE |
1852 					SOF_TIMESTAMPING_RAW_HARDWARE;
1853 		if (fep->ptp_clock)
1854 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1855 		else
1856 			info->phc_index = -1;
1857 
1858 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1859 				 (1 << HWTSTAMP_TX_ON);
1860 
1861 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1862 				   (1 << HWTSTAMP_FILTER_ALL);
1863 		return 0;
1864 	} else {
1865 		return ethtool_op_get_ts_info(ndev, info);
1866 	}
1867 }
1868 
1869 #if !defined(CONFIG_M5272)
1870 
1871 static void fec_enet_get_pauseparam(struct net_device *ndev,
1872 				    struct ethtool_pauseparam *pause)
1873 {
1874 	struct fec_enet_private *fep = netdev_priv(ndev);
1875 
1876 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1877 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1878 	pause->rx_pause = pause->tx_pause;
1879 }
1880 
1881 static int fec_enet_set_pauseparam(struct net_device *ndev,
1882 				   struct ethtool_pauseparam *pause)
1883 {
1884 	struct fec_enet_private *fep = netdev_priv(ndev);
1885 
1886 	if (!fep->phy_dev)
1887 		return -ENODEV;
1888 
1889 	if (pause->tx_pause != pause->rx_pause) {
1890 		netdev_info(ndev,
1891 			"hardware only support enable/disable both tx and rx");
1892 		return -EINVAL;
1893 	}
1894 
1895 	fep->pause_flag = 0;
1896 
1897 	/* tx pause must be same as rx pause */
1898 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1899 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1900 
1901 	if (pause->rx_pause || pause->autoneg) {
1902 		fep->phy_dev->supported |= ADVERTISED_Pause;
1903 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1904 	} else {
1905 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1906 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1907 	}
1908 
1909 	if (pause->autoneg) {
1910 		if (netif_running(ndev))
1911 			fec_stop(ndev);
1912 		phy_start_aneg(fep->phy_dev);
1913 	}
1914 	if (netif_running(ndev)) {
1915 		napi_disable(&fep->napi);
1916 		netif_tx_lock_bh(ndev);
1917 		fec_restart(ndev);
1918 		netif_wake_queue(ndev);
1919 		netif_tx_unlock_bh(ndev);
1920 		napi_enable(&fep->napi);
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static const struct fec_stat {
1927 	char name[ETH_GSTRING_LEN];
1928 	u16 offset;
1929 } fec_stats[] = {
1930 	/* RMON TX */
1931 	{ "tx_dropped", RMON_T_DROP },
1932 	{ "tx_packets", RMON_T_PACKETS },
1933 	{ "tx_broadcast", RMON_T_BC_PKT },
1934 	{ "tx_multicast", RMON_T_MC_PKT },
1935 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1936 	{ "tx_undersize", RMON_T_UNDERSIZE },
1937 	{ "tx_oversize", RMON_T_OVERSIZE },
1938 	{ "tx_fragment", RMON_T_FRAG },
1939 	{ "tx_jabber", RMON_T_JAB },
1940 	{ "tx_collision", RMON_T_COL },
1941 	{ "tx_64byte", RMON_T_P64 },
1942 	{ "tx_65to127byte", RMON_T_P65TO127 },
1943 	{ "tx_128to255byte", RMON_T_P128TO255 },
1944 	{ "tx_256to511byte", RMON_T_P256TO511 },
1945 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1946 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1947 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1948 	{ "tx_octets", RMON_T_OCTETS },
1949 
1950 	/* IEEE TX */
1951 	{ "IEEE_tx_drop", IEEE_T_DROP },
1952 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1953 	{ "IEEE_tx_1col", IEEE_T_1COL },
1954 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1955 	{ "IEEE_tx_def", IEEE_T_DEF },
1956 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1957 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1958 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1959 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1960 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1961 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1962 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1963 
1964 	/* RMON RX */
1965 	{ "rx_packets", RMON_R_PACKETS },
1966 	{ "rx_broadcast", RMON_R_BC_PKT },
1967 	{ "rx_multicast", RMON_R_MC_PKT },
1968 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1969 	{ "rx_undersize", RMON_R_UNDERSIZE },
1970 	{ "rx_oversize", RMON_R_OVERSIZE },
1971 	{ "rx_fragment", RMON_R_FRAG },
1972 	{ "rx_jabber", RMON_R_JAB },
1973 	{ "rx_64byte", RMON_R_P64 },
1974 	{ "rx_65to127byte", RMON_R_P65TO127 },
1975 	{ "rx_128to255byte", RMON_R_P128TO255 },
1976 	{ "rx_256to511byte", RMON_R_P256TO511 },
1977 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1978 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1979 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1980 	{ "rx_octets", RMON_R_OCTETS },
1981 
1982 	/* IEEE RX */
1983 	{ "IEEE_rx_drop", IEEE_R_DROP },
1984 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1985 	{ "IEEE_rx_crc", IEEE_R_CRC },
1986 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1987 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1988 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1989 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1990 };
1991 
1992 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1993 	struct ethtool_stats *stats, u64 *data)
1994 {
1995 	struct fec_enet_private *fep = netdev_priv(dev);
1996 	int i;
1997 
1998 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1999 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2000 }
2001 
2002 static void fec_enet_get_strings(struct net_device *netdev,
2003 	u32 stringset, u8 *data)
2004 {
2005 	int i;
2006 	switch (stringset) {
2007 	case ETH_SS_STATS:
2008 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2009 			memcpy(data + i * ETH_GSTRING_LEN,
2010 				fec_stats[i].name, ETH_GSTRING_LEN);
2011 		break;
2012 	}
2013 }
2014 
2015 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2016 {
2017 	switch (sset) {
2018 	case ETH_SS_STATS:
2019 		return ARRAY_SIZE(fec_stats);
2020 	default:
2021 		return -EOPNOTSUPP;
2022 	}
2023 }
2024 #endif /* !defined(CONFIG_M5272) */
2025 
2026 static int fec_enet_nway_reset(struct net_device *dev)
2027 {
2028 	struct fec_enet_private *fep = netdev_priv(dev);
2029 	struct phy_device *phydev = fep->phy_dev;
2030 
2031 	if (!phydev)
2032 		return -ENODEV;
2033 
2034 	return genphy_restart_aneg(phydev);
2035 }
2036 
2037 static const struct ethtool_ops fec_enet_ethtool_ops = {
2038 	.get_settings		= fec_enet_get_settings,
2039 	.set_settings		= fec_enet_set_settings,
2040 	.get_drvinfo		= fec_enet_get_drvinfo,
2041 	.nway_reset		= fec_enet_nway_reset,
2042 	.get_link		= ethtool_op_get_link,
2043 #ifndef CONFIG_M5272
2044 	.get_pauseparam		= fec_enet_get_pauseparam,
2045 	.set_pauseparam		= fec_enet_set_pauseparam,
2046 	.get_strings		= fec_enet_get_strings,
2047 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2048 	.get_sset_count		= fec_enet_get_sset_count,
2049 #endif
2050 	.get_ts_info		= fec_enet_get_ts_info,
2051 };
2052 
2053 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2054 {
2055 	struct fec_enet_private *fep = netdev_priv(ndev);
2056 	struct phy_device *phydev = fep->phy_dev;
2057 
2058 	if (!netif_running(ndev))
2059 		return -EINVAL;
2060 
2061 	if (!phydev)
2062 		return -ENODEV;
2063 
2064 	if (fep->bufdesc_ex) {
2065 		if (cmd == SIOCSHWTSTAMP)
2066 			return fec_ptp_set(ndev, rq);
2067 		if (cmd == SIOCGHWTSTAMP)
2068 			return fec_ptp_get(ndev, rq);
2069 	}
2070 
2071 	return phy_mii_ioctl(phydev, rq, cmd);
2072 }
2073 
2074 static void fec_enet_free_buffers(struct net_device *ndev)
2075 {
2076 	struct fec_enet_private *fep = netdev_priv(ndev);
2077 	unsigned int i;
2078 	struct sk_buff *skb;
2079 	struct bufdesc	*bdp;
2080 
2081 	bdp = fep->rx_bd_base;
2082 	for (i = 0; i < fep->rx_ring_size; i++) {
2083 		skb = fep->rx_skbuff[i];
2084 		fep->rx_skbuff[i] = NULL;
2085 		if (skb) {
2086 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
2087 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2088 			dev_kfree_skb(skb);
2089 		}
2090 		bdp = fec_enet_get_nextdesc(bdp, fep);
2091 	}
2092 
2093 	bdp = fep->tx_bd_base;
2094 	for (i = 0; i < fep->tx_ring_size; i++) {
2095 		kfree(fep->tx_bounce[i]);
2096 		fep->tx_bounce[i] = NULL;
2097 		skb = fep->tx_skbuff[i];
2098 		fep->tx_skbuff[i] = NULL;
2099 		dev_kfree_skb(skb);
2100 	}
2101 }
2102 
2103 static int fec_enet_alloc_buffers(struct net_device *ndev)
2104 {
2105 	struct fec_enet_private *fep = netdev_priv(ndev);
2106 	unsigned int i;
2107 	struct sk_buff *skb;
2108 	struct bufdesc	*bdp;
2109 
2110 	bdp = fep->rx_bd_base;
2111 	for (i = 0; i < fep->rx_ring_size; i++) {
2112 		dma_addr_t addr;
2113 
2114 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2115 		if (!skb)
2116 			goto err_alloc;
2117 
2118 		addr = dma_map_single(&fep->pdev->dev, skb->data,
2119 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2120 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
2121 			dev_kfree_skb(skb);
2122 			if (net_ratelimit())
2123 				netdev_err(ndev, "Rx DMA memory map failed\n");
2124 			goto err_alloc;
2125 		}
2126 
2127 		fep->rx_skbuff[i] = skb;
2128 		bdp->cbd_bufaddr = addr;
2129 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2130 
2131 		if (fep->bufdesc_ex) {
2132 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2133 			ebdp->cbd_esc = BD_ENET_RX_INT;
2134 		}
2135 
2136 		bdp = fec_enet_get_nextdesc(bdp, fep);
2137 	}
2138 
2139 	/* Set the last buffer to wrap. */
2140 	bdp = fec_enet_get_prevdesc(bdp, fep);
2141 	bdp->cbd_sc |= BD_SC_WRAP;
2142 
2143 	bdp = fep->tx_bd_base;
2144 	for (i = 0; i < fep->tx_ring_size; i++) {
2145 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2146 		if (!fep->tx_bounce[i])
2147 			goto err_alloc;
2148 
2149 		bdp->cbd_sc = 0;
2150 		bdp->cbd_bufaddr = 0;
2151 
2152 		if (fep->bufdesc_ex) {
2153 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2154 			ebdp->cbd_esc = BD_ENET_TX_INT;
2155 		}
2156 
2157 		bdp = fec_enet_get_nextdesc(bdp, fep);
2158 	}
2159 
2160 	/* Set the last buffer to wrap. */
2161 	bdp = fec_enet_get_prevdesc(bdp, fep);
2162 	bdp->cbd_sc |= BD_SC_WRAP;
2163 
2164 	return 0;
2165 
2166  err_alloc:
2167 	fec_enet_free_buffers(ndev);
2168 	return -ENOMEM;
2169 }
2170 
2171 static int
2172 fec_enet_open(struct net_device *ndev)
2173 {
2174 	struct fec_enet_private *fep = netdev_priv(ndev);
2175 	int ret;
2176 
2177 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2178 	ret = fec_enet_clk_enable(ndev, true);
2179 	if (ret)
2180 		return ret;
2181 
2182 	/* I should reset the ring buffers here, but I don't yet know
2183 	 * a simple way to do that.
2184 	 */
2185 
2186 	ret = fec_enet_alloc_buffers(ndev);
2187 	if (ret)
2188 		return ret;
2189 
2190 	/* Probe and connect to PHY when open the interface */
2191 	ret = fec_enet_mii_probe(ndev);
2192 	if (ret) {
2193 		fec_enet_free_buffers(ndev);
2194 		return ret;
2195 	}
2196 
2197 	fec_restart(ndev);
2198 	napi_enable(&fep->napi);
2199 	phy_start(fep->phy_dev);
2200 	netif_start_queue(ndev);
2201 	return 0;
2202 }
2203 
2204 static int
2205 fec_enet_close(struct net_device *ndev)
2206 {
2207 	struct fec_enet_private *fep = netdev_priv(ndev);
2208 
2209 	phy_stop(fep->phy_dev);
2210 
2211 	if (netif_device_present(ndev)) {
2212 		napi_disable(&fep->napi);
2213 		netif_tx_disable(ndev);
2214 		fec_stop(ndev);
2215 	}
2216 
2217 	phy_disconnect(fep->phy_dev);
2218 	fep->phy_dev = NULL;
2219 
2220 	fec_enet_clk_enable(ndev, false);
2221 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2222 	fec_enet_free_buffers(ndev);
2223 
2224 	return 0;
2225 }
2226 
2227 /* Set or clear the multicast filter for this adaptor.
2228  * Skeleton taken from sunlance driver.
2229  * The CPM Ethernet implementation allows Multicast as well as individual
2230  * MAC address filtering.  Some of the drivers check to make sure it is
2231  * a group multicast address, and discard those that are not.  I guess I
2232  * will do the same for now, but just remove the test if you want
2233  * individual filtering as well (do the upper net layers want or support
2234  * this kind of feature?).
2235  */
2236 
2237 #define HASH_BITS	6		/* #bits in hash */
2238 #define CRC32_POLY	0xEDB88320
2239 
2240 static void set_multicast_list(struct net_device *ndev)
2241 {
2242 	struct fec_enet_private *fep = netdev_priv(ndev);
2243 	struct netdev_hw_addr *ha;
2244 	unsigned int i, bit, data, crc, tmp;
2245 	unsigned char hash;
2246 
2247 	if (ndev->flags & IFF_PROMISC) {
2248 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2249 		tmp |= 0x8;
2250 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2251 		return;
2252 	}
2253 
2254 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2255 	tmp &= ~0x8;
2256 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2257 
2258 	if (ndev->flags & IFF_ALLMULTI) {
2259 		/* Catch all multicast addresses, so set the
2260 		 * filter to all 1's
2261 		 */
2262 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2263 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2264 
2265 		return;
2266 	}
2267 
2268 	/* Clear filter and add the addresses in hash register
2269 	 */
2270 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2271 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2272 
2273 	netdev_for_each_mc_addr(ha, ndev) {
2274 		/* calculate crc32 value of mac address */
2275 		crc = 0xffffffff;
2276 
2277 		for (i = 0; i < ndev->addr_len; i++) {
2278 			data = ha->addr[i];
2279 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2280 				crc = (crc >> 1) ^
2281 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2282 			}
2283 		}
2284 
2285 		/* only upper 6 bits (HASH_BITS) are used
2286 		 * which point to specific bit in he hash registers
2287 		 */
2288 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2289 
2290 		if (hash > 31) {
2291 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2292 			tmp |= 1 << (hash - 32);
2293 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2294 		} else {
2295 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2296 			tmp |= 1 << hash;
2297 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2298 		}
2299 	}
2300 }
2301 
2302 /* Set a MAC change in hardware. */
2303 static int
2304 fec_set_mac_address(struct net_device *ndev, void *p)
2305 {
2306 	struct fec_enet_private *fep = netdev_priv(ndev);
2307 	struct sockaddr *addr = p;
2308 
2309 	if (addr) {
2310 		if (!is_valid_ether_addr(addr->sa_data))
2311 			return -EADDRNOTAVAIL;
2312 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2313 	}
2314 
2315 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2316 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2317 		fep->hwp + FEC_ADDR_LOW);
2318 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2319 		fep->hwp + FEC_ADDR_HIGH);
2320 	return 0;
2321 }
2322 
2323 #ifdef CONFIG_NET_POLL_CONTROLLER
2324 /**
2325  * fec_poll_controller - FEC Poll controller function
2326  * @dev: The FEC network adapter
2327  *
2328  * Polled functionality used by netconsole and others in non interrupt mode
2329  *
2330  */
2331 static void fec_poll_controller(struct net_device *dev)
2332 {
2333 	int i;
2334 	struct fec_enet_private *fep = netdev_priv(dev);
2335 
2336 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2337 		if (fep->irq[i] > 0) {
2338 			disable_irq(fep->irq[i]);
2339 			fec_enet_interrupt(fep->irq[i], dev);
2340 			enable_irq(fep->irq[i]);
2341 		}
2342 	}
2343 }
2344 #endif
2345 
2346 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2347 
2348 static int fec_set_features(struct net_device *netdev,
2349 	netdev_features_t features)
2350 {
2351 	struct fec_enet_private *fep = netdev_priv(netdev);
2352 	netdev_features_t changed = features ^ netdev->features;
2353 
2354 	/* Quiesce the device if necessary */
2355 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2356 		napi_disable(&fep->napi);
2357 		netif_tx_lock_bh(netdev);
2358 		fec_stop(netdev);
2359 	}
2360 
2361 	netdev->features = features;
2362 
2363 	/* Receive checksum has been changed */
2364 	if (changed & NETIF_F_RXCSUM) {
2365 		if (features & NETIF_F_RXCSUM)
2366 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2367 		else
2368 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2369 	}
2370 
2371 	/* Resume the device after updates */
2372 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2373 		fec_restart(netdev);
2374 		netif_wake_queue(netdev);
2375 		netif_tx_unlock_bh(netdev);
2376 		napi_enable(&fep->napi);
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static const struct net_device_ops fec_netdev_ops = {
2383 	.ndo_open		= fec_enet_open,
2384 	.ndo_stop		= fec_enet_close,
2385 	.ndo_start_xmit		= fec_enet_start_xmit,
2386 	.ndo_set_rx_mode	= set_multicast_list,
2387 	.ndo_change_mtu		= eth_change_mtu,
2388 	.ndo_validate_addr	= eth_validate_addr,
2389 	.ndo_tx_timeout		= fec_timeout,
2390 	.ndo_set_mac_address	= fec_set_mac_address,
2391 	.ndo_do_ioctl		= fec_enet_ioctl,
2392 #ifdef CONFIG_NET_POLL_CONTROLLER
2393 	.ndo_poll_controller	= fec_poll_controller,
2394 #endif
2395 	.ndo_set_features	= fec_set_features,
2396 };
2397 
2398  /*
2399   * XXX:  We need to clean up on failure exits here.
2400   *
2401   */
2402 static int fec_enet_init(struct net_device *ndev)
2403 {
2404 	struct fec_enet_private *fep = netdev_priv(ndev);
2405 	const struct platform_device_id *id_entry =
2406 				platform_get_device_id(fep->pdev);
2407 	struct bufdesc *cbd_base;
2408 	int bd_size;
2409 
2410 	/* init the tx & rx ring size */
2411 	fep->tx_ring_size = TX_RING_SIZE;
2412 	fep->rx_ring_size = RX_RING_SIZE;
2413 
2414 	fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2415 	fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
2416 
2417 	if (fep->bufdesc_ex)
2418 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2419 	else
2420 		fep->bufdesc_size = sizeof(struct bufdesc);
2421 	bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
2422 			fep->bufdesc_size;
2423 
2424 	/* Allocate memory for buffer descriptors. */
2425 	cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
2426 				      GFP_KERNEL);
2427 	if (!cbd_base)
2428 		return -ENOMEM;
2429 
2430 	fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
2431 						&fep->tso_hdrs_dma, GFP_KERNEL);
2432 	if (!fep->tso_hdrs) {
2433 		dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
2434 		return -ENOMEM;
2435 	}
2436 
2437 	memset(cbd_base, 0, PAGE_SIZE);
2438 
2439 	fep->netdev = ndev;
2440 
2441 	/* Get the Ethernet address */
2442 	fec_get_mac(ndev);
2443 	/* make sure MAC we just acquired is programmed into the hw */
2444 	fec_set_mac_address(ndev, NULL);
2445 
2446 	/* Set receive and transmit descriptor base. */
2447 	fep->rx_bd_base = cbd_base;
2448 	if (fep->bufdesc_ex)
2449 		fep->tx_bd_base = (struct bufdesc *)
2450 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2451 	else
2452 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2453 
2454 	/* The FEC Ethernet specific entries in the device structure */
2455 	ndev->watchdog_timeo = TX_TIMEOUT;
2456 	ndev->netdev_ops = &fec_netdev_ops;
2457 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2458 
2459 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2460 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2461 
2462 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
2463 		/* enable hw VLAN support */
2464 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2465 
2466 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2467 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
2468 
2469 		/* enable hw accelerator */
2470 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2471 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
2472 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2473 	}
2474 
2475 	ndev->hw_features = ndev->features;
2476 
2477 	fec_restart(ndev);
2478 
2479 	return 0;
2480 }
2481 
2482 #ifdef CONFIG_OF
2483 static void fec_reset_phy(struct platform_device *pdev)
2484 {
2485 	int err, phy_reset;
2486 	int msec = 1;
2487 	struct device_node *np = pdev->dev.of_node;
2488 
2489 	if (!np)
2490 		return;
2491 
2492 	of_property_read_u32(np, "phy-reset-duration", &msec);
2493 	/* A sane reset duration should not be longer than 1s */
2494 	if (msec > 1000)
2495 		msec = 1;
2496 
2497 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2498 	if (!gpio_is_valid(phy_reset))
2499 		return;
2500 
2501 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2502 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2503 	if (err) {
2504 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2505 		return;
2506 	}
2507 	msleep(msec);
2508 	gpio_set_value(phy_reset, 1);
2509 }
2510 #else /* CONFIG_OF */
2511 static void fec_reset_phy(struct platform_device *pdev)
2512 {
2513 	/*
2514 	 * In case of platform probe, the reset has been done
2515 	 * by machine code.
2516 	 */
2517 }
2518 #endif /* CONFIG_OF */
2519 
2520 static int
2521 fec_probe(struct platform_device *pdev)
2522 {
2523 	struct fec_enet_private *fep;
2524 	struct fec_platform_data *pdata;
2525 	struct net_device *ndev;
2526 	int i, irq, ret = 0;
2527 	struct resource *r;
2528 	const struct of_device_id *of_id;
2529 	static int dev_id;
2530 
2531 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2532 	if (of_id)
2533 		pdev->id_entry = of_id->data;
2534 
2535 	/* Init network device */
2536 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2537 	if (!ndev)
2538 		return -ENOMEM;
2539 
2540 	SET_NETDEV_DEV(ndev, &pdev->dev);
2541 
2542 	/* setup board info structure */
2543 	fep = netdev_priv(ndev);
2544 
2545 #if !defined(CONFIG_M5272)
2546 	/* default enable pause frame auto negotiation */
2547 	if (pdev->id_entry &&
2548 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2549 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2550 #endif
2551 
2552 	/* Select default pin state */
2553 	pinctrl_pm_select_default_state(&pdev->dev);
2554 
2555 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2556 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2557 	if (IS_ERR(fep->hwp)) {
2558 		ret = PTR_ERR(fep->hwp);
2559 		goto failed_ioremap;
2560 	}
2561 
2562 	fep->pdev = pdev;
2563 	fep->dev_id = dev_id++;
2564 
2565 	fep->bufdesc_ex = 0;
2566 
2567 	platform_set_drvdata(pdev, ndev);
2568 
2569 	ret = of_get_phy_mode(pdev->dev.of_node);
2570 	if (ret < 0) {
2571 		pdata = dev_get_platdata(&pdev->dev);
2572 		if (pdata)
2573 			fep->phy_interface = pdata->phy;
2574 		else
2575 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2576 	} else {
2577 		fep->phy_interface = ret;
2578 	}
2579 
2580 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2581 	if (IS_ERR(fep->clk_ipg)) {
2582 		ret = PTR_ERR(fep->clk_ipg);
2583 		goto failed_clk;
2584 	}
2585 
2586 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2587 	if (IS_ERR(fep->clk_ahb)) {
2588 		ret = PTR_ERR(fep->clk_ahb);
2589 		goto failed_clk;
2590 	}
2591 
2592 	/* enet_out is optional, depends on board */
2593 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2594 	if (IS_ERR(fep->clk_enet_out))
2595 		fep->clk_enet_out = NULL;
2596 
2597 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2598 	fep->bufdesc_ex =
2599 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2600 	if (IS_ERR(fep->clk_ptp)) {
2601 		fep->clk_ptp = NULL;
2602 		fep->bufdesc_ex = 0;
2603 	}
2604 
2605 	ret = fec_enet_clk_enable(ndev, true);
2606 	if (ret)
2607 		goto failed_clk;
2608 
2609 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2610 	if (!IS_ERR(fep->reg_phy)) {
2611 		ret = regulator_enable(fep->reg_phy);
2612 		if (ret) {
2613 			dev_err(&pdev->dev,
2614 				"Failed to enable phy regulator: %d\n", ret);
2615 			goto failed_regulator;
2616 		}
2617 	} else {
2618 		fep->reg_phy = NULL;
2619 	}
2620 
2621 	fec_reset_phy(pdev);
2622 
2623 	if (fep->bufdesc_ex)
2624 		fec_ptp_init(pdev);
2625 
2626 	ret = fec_enet_init(ndev);
2627 	if (ret)
2628 		goto failed_init;
2629 
2630 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2631 		irq = platform_get_irq(pdev, i);
2632 		if (irq < 0) {
2633 			if (i)
2634 				break;
2635 			ret = irq;
2636 			goto failed_irq;
2637 		}
2638 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2639 				       0, pdev->name, ndev);
2640 		if (ret)
2641 			goto failed_irq;
2642 	}
2643 
2644 	ret = fec_enet_mii_init(pdev);
2645 	if (ret)
2646 		goto failed_mii_init;
2647 
2648 	/* Carrier starts down, phylib will bring it up */
2649 	netif_carrier_off(ndev);
2650 	fec_enet_clk_enable(ndev, false);
2651 	pinctrl_pm_select_sleep_state(&pdev->dev);
2652 
2653 	ret = register_netdev(ndev);
2654 	if (ret)
2655 		goto failed_register;
2656 
2657 	if (fep->bufdesc_ex && fep->ptp_clock)
2658 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2659 
2660 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
2661 	return 0;
2662 
2663 failed_register:
2664 	fec_enet_mii_remove(fep);
2665 failed_mii_init:
2666 failed_irq:
2667 failed_init:
2668 	if (fep->reg_phy)
2669 		regulator_disable(fep->reg_phy);
2670 failed_regulator:
2671 	fec_enet_clk_enable(ndev, false);
2672 failed_clk:
2673 failed_ioremap:
2674 	free_netdev(ndev);
2675 
2676 	return ret;
2677 }
2678 
2679 static int
2680 fec_drv_remove(struct platform_device *pdev)
2681 {
2682 	struct net_device *ndev = platform_get_drvdata(pdev);
2683 	struct fec_enet_private *fep = netdev_priv(ndev);
2684 
2685 	cancel_work_sync(&fep->tx_timeout_work);
2686 	unregister_netdev(ndev);
2687 	fec_enet_mii_remove(fep);
2688 	del_timer_sync(&fep->time_keep);
2689 	if (fep->reg_phy)
2690 		regulator_disable(fep->reg_phy);
2691 	if (fep->ptp_clock)
2692 		ptp_clock_unregister(fep->ptp_clock);
2693 	fec_enet_clk_enable(ndev, false);
2694 	free_netdev(ndev);
2695 
2696 	return 0;
2697 }
2698 
2699 static int __maybe_unused fec_suspend(struct device *dev)
2700 {
2701 	struct net_device *ndev = dev_get_drvdata(dev);
2702 	struct fec_enet_private *fep = netdev_priv(ndev);
2703 
2704 	rtnl_lock();
2705 	if (netif_running(ndev)) {
2706 		phy_stop(fep->phy_dev);
2707 		napi_disable(&fep->napi);
2708 		netif_tx_lock_bh(ndev);
2709 		netif_device_detach(ndev);
2710 		netif_tx_unlock_bh(ndev);
2711 		fec_stop(ndev);
2712 	}
2713 	rtnl_unlock();
2714 
2715 	fec_enet_clk_enable(ndev, false);
2716 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2717 
2718 	if (fep->reg_phy)
2719 		regulator_disable(fep->reg_phy);
2720 
2721 	return 0;
2722 }
2723 
2724 static int __maybe_unused fec_resume(struct device *dev)
2725 {
2726 	struct net_device *ndev = dev_get_drvdata(dev);
2727 	struct fec_enet_private *fep = netdev_priv(ndev);
2728 	int ret;
2729 
2730 	if (fep->reg_phy) {
2731 		ret = regulator_enable(fep->reg_phy);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 
2736 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2737 	ret = fec_enet_clk_enable(ndev, true);
2738 	if (ret)
2739 		goto failed_clk;
2740 
2741 	rtnl_lock();
2742 	if (netif_running(ndev)) {
2743 		fec_restart(ndev);
2744 		netif_tx_lock_bh(ndev);
2745 		netif_device_attach(ndev);
2746 		netif_tx_unlock_bh(ndev);
2747 		napi_enable(&fep->napi);
2748 		phy_start(fep->phy_dev);
2749 	}
2750 	rtnl_unlock();
2751 
2752 	return 0;
2753 
2754 failed_clk:
2755 	if (fep->reg_phy)
2756 		regulator_disable(fep->reg_phy);
2757 	return ret;
2758 }
2759 
2760 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2761 
2762 static struct platform_driver fec_driver = {
2763 	.driver	= {
2764 		.name	= DRIVER_NAME,
2765 		.owner	= THIS_MODULE,
2766 		.pm	= &fec_pm_ops,
2767 		.of_match_table = fec_dt_ids,
2768 	},
2769 	.id_table = fec_devtype,
2770 	.probe	= fec_probe,
2771 	.remove	= fec_drv_remove,
2772 };
2773 
2774 module_platform_driver(fec_driver);
2775 
2776 MODULE_ALIAS("platform:"DRIVER_NAME);
2777 MODULE_LICENSE("GPL");
2778