1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = FEC_QUIRK_MIB_CLEAR,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 				FEC_QUIRK_HAS_COALESCE,
123 	}, {
124 		/* sentinel */
125 	}
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128 
129 enum imx_fec_type {
130 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
131 	IMX27_FEC,	/* runs on i.mx27/35/51 */
132 	IMX28_FEC,
133 	IMX6Q_FEC,
134 	MVF600_FEC,
135 	IMX6SX_FEC,
136 	IMX6UL_FEC,
137 };
138 
139 static const struct of_device_id fec_dt_ids[] = {
140 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176  *
177  * 2048 byte skbufs are allocated. However, alignment requirements
178  * varies between FEC variants. Worst case is 64, so round down by 64.
179  */
180 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE		64
182 
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS		(1 << 1)
185 #define FEC_RACC_PRODIS		(1 << 2)
186 #define FEC_RACC_SHIFT16	BIT(7)
187 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
188 
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
191 
192 /*
193  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194  * size bits. Other FEC hardware does not, so we need to take that into
195  * account when setting it.
196  */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
200 #else
201 #define	OPT_FRAME_SIZE	0
202 #endif
203 
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST		(1 << 30)
206 #define FEC_MMFR_OP_READ	(2 << 28)
207 #define FEC_MMFR_OP_WRITE	(1 << 28)
208 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
210 #define FEC_MMFR_TA		(2 << 16)
211 #define FEC_MMFR_DATA(v)	(v & 0xffff)
212 /* FEC ECR bits definition */
213 #define FEC_ECR_MAGICEN		(1 << 2)
214 #define FEC_ECR_SLEEP		(1 << 3)
215 
216 #define FEC_MII_TIMEOUT		30000 /* us */
217 
218 /* Transmitter timeout */
219 #define TX_TIMEOUT (2 * HZ)
220 
221 #define FEC_PAUSE_FLAG_AUTONEG	0x1
222 #define FEC_PAUSE_FLAG_ENABLE	0x2
223 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
224 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
225 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
226 
227 #define COPYBREAK_DEFAULT	256
228 
229 /* Max number of allowed TCP segments for software TSO */
230 #define FEC_MAX_TSO_SEGS	100
231 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
232 
233 #define IS_TSO_HEADER(txq, addr) \
234 	((addr >= txq->tso_hdrs_dma) && \
235 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
236 
237 static int mii_cnt;
238 
239 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
240 					     struct bufdesc_prop *bd)
241 {
242 	return (bdp >= bd->last) ? bd->base
243 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
244 }
245 
246 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
247 					     struct bufdesc_prop *bd)
248 {
249 	return (bdp <= bd->base) ? bd->last
250 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
251 }
252 
253 static int fec_enet_get_bd_index(struct bufdesc *bdp,
254 				 struct bufdesc_prop *bd)
255 {
256 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
257 }
258 
259 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
260 {
261 	int entries;
262 
263 	entries = (((const char *)txq->dirty_tx -
264 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
265 
266 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
267 }
268 
269 static void swap_buffer(void *bufaddr, int len)
270 {
271 	int i;
272 	unsigned int *buf = bufaddr;
273 
274 	for (i = 0; i < len; i += 4, buf++)
275 		swab32s(buf);
276 }
277 
278 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
279 {
280 	int i;
281 	unsigned int *src = src_buf;
282 	unsigned int *dst = dst_buf;
283 
284 	for (i = 0; i < len; i += 4, src++, dst++)
285 		*dst = swab32p(src);
286 }
287 
288 static void fec_dump(struct net_device *ndev)
289 {
290 	struct fec_enet_private *fep = netdev_priv(ndev);
291 	struct bufdesc *bdp;
292 	struct fec_enet_priv_tx_q *txq;
293 	int index = 0;
294 
295 	netdev_info(ndev, "TX ring dump\n");
296 	pr_info("Nr     SC     addr       len  SKB\n");
297 
298 	txq = fep->tx_queue[0];
299 	bdp = txq->bd.base;
300 
301 	do {
302 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
303 			index,
304 			bdp == txq->bd.cur ? 'S' : ' ',
305 			bdp == txq->dirty_tx ? 'H' : ' ',
306 			fec16_to_cpu(bdp->cbd_sc),
307 			fec32_to_cpu(bdp->cbd_bufaddr),
308 			fec16_to_cpu(bdp->cbd_datlen),
309 			txq->tx_skbuff[index]);
310 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
311 		index++;
312 	} while (bdp != txq->bd.base);
313 }
314 
315 static inline bool is_ipv4_pkt(struct sk_buff *skb)
316 {
317 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
318 }
319 
320 static int
321 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
322 {
323 	/* Only run for packets requiring a checksum. */
324 	if (skb->ip_summed != CHECKSUM_PARTIAL)
325 		return 0;
326 
327 	if (unlikely(skb_cow_head(skb, 0)))
328 		return -1;
329 
330 	if (is_ipv4_pkt(skb))
331 		ip_hdr(skb)->check = 0;
332 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
333 
334 	return 0;
335 }
336 
337 static struct bufdesc *
338 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
339 			     struct sk_buff *skb,
340 			     struct net_device *ndev)
341 {
342 	struct fec_enet_private *fep = netdev_priv(ndev);
343 	struct bufdesc *bdp = txq->bd.cur;
344 	struct bufdesc_ex *ebdp;
345 	int nr_frags = skb_shinfo(skb)->nr_frags;
346 	int frag, frag_len;
347 	unsigned short status;
348 	unsigned int estatus = 0;
349 	skb_frag_t *this_frag;
350 	unsigned int index;
351 	void *bufaddr;
352 	dma_addr_t addr;
353 	int i;
354 
355 	for (frag = 0; frag < nr_frags; frag++) {
356 		this_frag = &skb_shinfo(skb)->frags[frag];
357 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
358 		ebdp = (struct bufdesc_ex *)bdp;
359 
360 		status = fec16_to_cpu(bdp->cbd_sc);
361 		status &= ~BD_ENET_TX_STATS;
362 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
363 		frag_len = skb_shinfo(skb)->frags[frag].size;
364 
365 		/* Handle the last BD specially */
366 		if (frag == nr_frags - 1) {
367 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
368 			if (fep->bufdesc_ex) {
369 				estatus |= BD_ENET_TX_INT;
370 				if (unlikely(skb_shinfo(skb)->tx_flags &
371 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
372 					estatus |= BD_ENET_TX_TS;
373 			}
374 		}
375 
376 		if (fep->bufdesc_ex) {
377 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
378 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
379 			if (skb->ip_summed == CHECKSUM_PARTIAL)
380 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
381 			ebdp->cbd_bdu = 0;
382 			ebdp->cbd_esc = cpu_to_fec32(estatus);
383 		}
384 
385 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
386 
387 		index = fec_enet_get_bd_index(bdp, &txq->bd);
388 		if (((unsigned long) bufaddr) & fep->tx_align ||
389 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
390 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
391 			bufaddr = txq->tx_bounce[index];
392 
393 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
394 				swap_buffer(bufaddr, frag_len);
395 		}
396 
397 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
398 				      DMA_TO_DEVICE);
399 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
400 			if (net_ratelimit())
401 				netdev_err(ndev, "Tx DMA memory map failed\n");
402 			goto dma_mapping_error;
403 		}
404 
405 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
406 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
407 		/* Make sure the updates to rest of the descriptor are
408 		 * performed before transferring ownership.
409 		 */
410 		wmb();
411 		bdp->cbd_sc = cpu_to_fec16(status);
412 	}
413 
414 	return bdp;
415 dma_mapping_error:
416 	bdp = txq->bd.cur;
417 	for (i = 0; i < frag; i++) {
418 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
419 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
420 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
421 	}
422 	return ERR_PTR(-ENOMEM);
423 }
424 
425 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
426 				   struct sk_buff *skb, struct net_device *ndev)
427 {
428 	struct fec_enet_private *fep = netdev_priv(ndev);
429 	int nr_frags = skb_shinfo(skb)->nr_frags;
430 	struct bufdesc *bdp, *last_bdp;
431 	void *bufaddr;
432 	dma_addr_t addr;
433 	unsigned short status;
434 	unsigned short buflen;
435 	unsigned int estatus = 0;
436 	unsigned int index;
437 	int entries_free;
438 
439 	entries_free = fec_enet_get_free_txdesc_num(txq);
440 	if (entries_free < MAX_SKB_FRAGS + 1) {
441 		dev_kfree_skb_any(skb);
442 		if (net_ratelimit())
443 			netdev_err(ndev, "NOT enough BD for SG!\n");
444 		return NETDEV_TX_OK;
445 	}
446 
447 	/* Protocol checksum off-load for TCP and UDP. */
448 	if (fec_enet_clear_csum(skb, ndev)) {
449 		dev_kfree_skb_any(skb);
450 		return NETDEV_TX_OK;
451 	}
452 
453 	/* Fill in a Tx ring entry */
454 	bdp = txq->bd.cur;
455 	last_bdp = bdp;
456 	status = fec16_to_cpu(bdp->cbd_sc);
457 	status &= ~BD_ENET_TX_STATS;
458 
459 	/* Set buffer length and buffer pointer */
460 	bufaddr = skb->data;
461 	buflen = skb_headlen(skb);
462 
463 	index = fec_enet_get_bd_index(bdp, &txq->bd);
464 	if (((unsigned long) bufaddr) & fep->tx_align ||
465 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 		memcpy(txq->tx_bounce[index], skb->data, buflen);
467 		bufaddr = txq->tx_bounce[index];
468 
469 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 			swap_buffer(bufaddr, buflen);
471 	}
472 
473 	/* Push the data cache so the CPM does not get stale memory data. */
474 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
475 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 		dev_kfree_skb_any(skb);
477 		if (net_ratelimit())
478 			netdev_err(ndev, "Tx DMA memory map failed\n");
479 		return NETDEV_TX_OK;
480 	}
481 
482 	if (nr_frags) {
483 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
484 		if (IS_ERR(last_bdp)) {
485 			dma_unmap_single(&fep->pdev->dev, addr,
486 					 buflen, DMA_TO_DEVICE);
487 			dev_kfree_skb_any(skb);
488 			return NETDEV_TX_OK;
489 		}
490 	} else {
491 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
492 		if (fep->bufdesc_ex) {
493 			estatus = BD_ENET_TX_INT;
494 			if (unlikely(skb_shinfo(skb)->tx_flags &
495 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
496 				estatus |= BD_ENET_TX_TS;
497 		}
498 	}
499 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
500 	bdp->cbd_datlen = cpu_to_fec16(buflen);
501 
502 	if (fep->bufdesc_ex) {
503 
504 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
505 
506 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
507 			fep->hwts_tx_en))
508 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
509 
510 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
511 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
512 
513 		if (skb->ip_summed == CHECKSUM_PARTIAL)
514 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515 
516 		ebdp->cbd_bdu = 0;
517 		ebdp->cbd_esc = cpu_to_fec32(estatus);
518 	}
519 
520 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
521 	/* Save skb pointer */
522 	txq->tx_skbuff[index] = skb;
523 
524 	/* Make sure the updates to rest of the descriptor are performed before
525 	 * transferring ownership.
526 	 */
527 	wmb();
528 
529 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
530 	 * it's the last BD of the frame, and to put the CRC on the end.
531 	 */
532 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
533 	bdp->cbd_sc = cpu_to_fec16(status);
534 
535 	/* If this was the last BD in the ring, start at the beginning again. */
536 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
537 
538 	skb_tx_timestamp(skb);
539 
540 	/* Make sure the update to bdp and tx_skbuff are performed before
541 	 * txq->bd.cur.
542 	 */
543 	wmb();
544 	txq->bd.cur = bdp;
545 
546 	/* Trigger transmission start */
547 	writel(0, txq->bd.reg_desc_active);
548 
549 	return 0;
550 }
551 
552 static int
553 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
554 			  struct net_device *ndev,
555 			  struct bufdesc *bdp, int index, char *data,
556 			  int size, bool last_tcp, bool is_last)
557 {
558 	struct fec_enet_private *fep = netdev_priv(ndev);
559 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
560 	unsigned short status;
561 	unsigned int estatus = 0;
562 	dma_addr_t addr;
563 
564 	status = fec16_to_cpu(bdp->cbd_sc);
565 	status &= ~BD_ENET_TX_STATS;
566 
567 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
568 
569 	if (((unsigned long) data) & fep->tx_align ||
570 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
571 		memcpy(txq->tx_bounce[index], data, size);
572 		data = txq->tx_bounce[index];
573 
574 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
575 			swap_buffer(data, size);
576 	}
577 
578 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
579 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
580 		dev_kfree_skb_any(skb);
581 		if (net_ratelimit())
582 			netdev_err(ndev, "Tx DMA memory map failed\n");
583 		return NETDEV_TX_BUSY;
584 	}
585 
586 	bdp->cbd_datlen = cpu_to_fec16(size);
587 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
588 
589 	if (fep->bufdesc_ex) {
590 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
591 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
592 		if (skb->ip_summed == CHECKSUM_PARTIAL)
593 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
594 		ebdp->cbd_bdu = 0;
595 		ebdp->cbd_esc = cpu_to_fec32(estatus);
596 	}
597 
598 	/* Handle the last BD specially */
599 	if (last_tcp)
600 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
601 	if (is_last) {
602 		status |= BD_ENET_TX_INTR;
603 		if (fep->bufdesc_ex)
604 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
605 	}
606 
607 	bdp->cbd_sc = cpu_to_fec16(status);
608 
609 	return 0;
610 }
611 
612 static int
613 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
614 			 struct sk_buff *skb, struct net_device *ndev,
615 			 struct bufdesc *bdp, int index)
616 {
617 	struct fec_enet_private *fep = netdev_priv(ndev);
618 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
619 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
620 	void *bufaddr;
621 	unsigned long dmabuf;
622 	unsigned short status;
623 	unsigned int estatus = 0;
624 
625 	status = fec16_to_cpu(bdp->cbd_sc);
626 	status &= ~BD_ENET_TX_STATS;
627 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
628 
629 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
630 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
631 	if (((unsigned long)bufaddr) & fep->tx_align ||
632 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
633 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
634 		bufaddr = txq->tx_bounce[index];
635 
636 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
637 			swap_buffer(bufaddr, hdr_len);
638 
639 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
640 					hdr_len, DMA_TO_DEVICE);
641 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
642 			dev_kfree_skb_any(skb);
643 			if (net_ratelimit())
644 				netdev_err(ndev, "Tx DMA memory map failed\n");
645 			return NETDEV_TX_BUSY;
646 		}
647 	}
648 
649 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
650 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
651 
652 	if (fep->bufdesc_ex) {
653 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
654 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
655 		if (skb->ip_summed == CHECKSUM_PARTIAL)
656 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
657 		ebdp->cbd_bdu = 0;
658 		ebdp->cbd_esc = cpu_to_fec32(estatus);
659 	}
660 
661 	bdp->cbd_sc = cpu_to_fec16(status);
662 
663 	return 0;
664 }
665 
666 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
667 				   struct sk_buff *skb,
668 				   struct net_device *ndev)
669 {
670 	struct fec_enet_private *fep = netdev_priv(ndev);
671 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 	int total_len, data_left;
673 	struct bufdesc *bdp = txq->bd.cur;
674 	struct tso_t tso;
675 	unsigned int index = 0;
676 	int ret;
677 
678 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
679 		dev_kfree_skb_any(skb);
680 		if (net_ratelimit())
681 			netdev_err(ndev, "NOT enough BD for TSO!\n");
682 		return NETDEV_TX_OK;
683 	}
684 
685 	/* Protocol checksum off-load for TCP and UDP. */
686 	if (fec_enet_clear_csum(skb, ndev)) {
687 		dev_kfree_skb_any(skb);
688 		return NETDEV_TX_OK;
689 	}
690 
691 	/* Initialize the TSO handler, and prepare the first payload */
692 	tso_start(skb, &tso);
693 
694 	total_len = skb->len - hdr_len;
695 	while (total_len > 0) {
696 		char *hdr;
697 
698 		index = fec_enet_get_bd_index(bdp, &txq->bd);
699 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
700 		total_len -= data_left;
701 
702 		/* prepare packet headers: MAC + IP + TCP */
703 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
704 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
705 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
706 		if (ret)
707 			goto err_release;
708 
709 		while (data_left > 0) {
710 			int size;
711 
712 			size = min_t(int, tso.size, data_left);
713 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
714 			index = fec_enet_get_bd_index(bdp, &txq->bd);
715 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
716 							bdp, index,
717 							tso.data, size,
718 							size == data_left,
719 							total_len == 0);
720 			if (ret)
721 				goto err_release;
722 
723 			data_left -= size;
724 			tso_build_data(skb, &tso, size);
725 		}
726 
727 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
728 	}
729 
730 	/* Save skb pointer */
731 	txq->tx_skbuff[index] = skb;
732 
733 	skb_tx_timestamp(skb);
734 	txq->bd.cur = bdp;
735 
736 	/* Trigger transmission start */
737 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
738 	    !readl(txq->bd.reg_desc_active) ||
739 	    !readl(txq->bd.reg_desc_active) ||
740 	    !readl(txq->bd.reg_desc_active) ||
741 	    !readl(txq->bd.reg_desc_active))
742 		writel(0, txq->bd.reg_desc_active);
743 
744 	return 0;
745 
746 err_release:
747 	/* TODO: Release all used data descriptors for TSO */
748 	return ret;
749 }
750 
751 static netdev_tx_t
752 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
753 {
754 	struct fec_enet_private *fep = netdev_priv(ndev);
755 	int entries_free;
756 	unsigned short queue;
757 	struct fec_enet_priv_tx_q *txq;
758 	struct netdev_queue *nq;
759 	int ret;
760 
761 	queue = skb_get_queue_mapping(skb);
762 	txq = fep->tx_queue[queue];
763 	nq = netdev_get_tx_queue(ndev, queue);
764 
765 	if (skb_is_gso(skb))
766 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
767 	else
768 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
769 	if (ret)
770 		return ret;
771 
772 	entries_free = fec_enet_get_free_txdesc_num(txq);
773 	if (entries_free <= txq->tx_stop_threshold)
774 		netif_tx_stop_queue(nq);
775 
776 	return NETDEV_TX_OK;
777 }
778 
779 /* Init RX & TX buffer descriptors
780  */
781 static void fec_enet_bd_init(struct net_device *dev)
782 {
783 	struct fec_enet_private *fep = netdev_priv(dev);
784 	struct fec_enet_priv_tx_q *txq;
785 	struct fec_enet_priv_rx_q *rxq;
786 	struct bufdesc *bdp;
787 	unsigned int i;
788 	unsigned int q;
789 
790 	for (q = 0; q < fep->num_rx_queues; q++) {
791 		/* Initialize the receive buffer descriptors. */
792 		rxq = fep->rx_queue[q];
793 		bdp = rxq->bd.base;
794 
795 		for (i = 0; i < rxq->bd.ring_size; i++) {
796 
797 			/* Initialize the BD for every fragment in the page. */
798 			if (bdp->cbd_bufaddr)
799 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
800 			else
801 				bdp->cbd_sc = cpu_to_fec16(0);
802 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
803 		}
804 
805 		/* Set the last buffer to wrap */
806 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
807 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
808 
809 		rxq->bd.cur = rxq->bd.base;
810 	}
811 
812 	for (q = 0; q < fep->num_tx_queues; q++) {
813 		/* ...and the same for transmit */
814 		txq = fep->tx_queue[q];
815 		bdp = txq->bd.base;
816 		txq->bd.cur = bdp;
817 
818 		for (i = 0; i < txq->bd.ring_size; i++) {
819 			/* Initialize the BD for every fragment in the page. */
820 			bdp->cbd_sc = cpu_to_fec16(0);
821 			if (txq->tx_skbuff[i]) {
822 				dev_kfree_skb_any(txq->tx_skbuff[i]);
823 				txq->tx_skbuff[i] = NULL;
824 			}
825 			bdp->cbd_bufaddr = cpu_to_fec32(0);
826 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
827 		}
828 
829 		/* Set the last buffer to wrap */
830 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
831 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
832 		txq->dirty_tx = bdp;
833 	}
834 }
835 
836 static void fec_enet_active_rxring(struct net_device *ndev)
837 {
838 	struct fec_enet_private *fep = netdev_priv(ndev);
839 	int i;
840 
841 	for (i = 0; i < fep->num_rx_queues; i++)
842 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
843 }
844 
845 static void fec_enet_enable_ring(struct net_device *ndev)
846 {
847 	struct fec_enet_private *fep = netdev_priv(ndev);
848 	struct fec_enet_priv_tx_q *txq;
849 	struct fec_enet_priv_rx_q *rxq;
850 	int i;
851 
852 	for (i = 0; i < fep->num_rx_queues; i++) {
853 		rxq = fep->rx_queue[i];
854 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
855 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
856 
857 		/* enable DMA1/2 */
858 		if (i)
859 			writel(RCMR_MATCHEN | RCMR_CMP(i),
860 			       fep->hwp + FEC_RCMR(i));
861 	}
862 
863 	for (i = 0; i < fep->num_tx_queues; i++) {
864 		txq = fep->tx_queue[i];
865 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
866 
867 		/* enable DMA1/2 */
868 		if (i)
869 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
870 			       fep->hwp + FEC_DMA_CFG(i));
871 	}
872 }
873 
874 static void fec_enet_reset_skb(struct net_device *ndev)
875 {
876 	struct fec_enet_private *fep = netdev_priv(ndev);
877 	struct fec_enet_priv_tx_q *txq;
878 	int i, j;
879 
880 	for (i = 0; i < fep->num_tx_queues; i++) {
881 		txq = fep->tx_queue[i];
882 
883 		for (j = 0; j < txq->bd.ring_size; j++) {
884 			if (txq->tx_skbuff[j]) {
885 				dev_kfree_skb_any(txq->tx_skbuff[j]);
886 				txq->tx_skbuff[j] = NULL;
887 			}
888 		}
889 	}
890 }
891 
892 /*
893  * This function is called to start or restart the FEC during a link
894  * change, transmit timeout, or to reconfigure the FEC.  The network
895  * packet processing for this device must be stopped before this call.
896  */
897 static void
898 fec_restart(struct net_device *ndev)
899 {
900 	struct fec_enet_private *fep = netdev_priv(ndev);
901 	u32 val;
902 	u32 temp_mac[2];
903 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
904 	u32 ecntl = 0x2; /* ETHEREN */
905 
906 	/* Whack a reset.  We should wait for this.
907 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
908 	 * instead of reset MAC itself.
909 	 */
910 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
911 		writel(0, fep->hwp + FEC_ECNTRL);
912 	} else {
913 		writel(1, fep->hwp + FEC_ECNTRL);
914 		udelay(10);
915 	}
916 
917 	/*
918 	 * enet-mac reset will reset mac address registers too,
919 	 * so need to reconfigure it.
920 	 */
921 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
922 	writel((__force u32)cpu_to_be32(temp_mac[0]),
923 	       fep->hwp + FEC_ADDR_LOW);
924 	writel((__force u32)cpu_to_be32(temp_mac[1]),
925 	       fep->hwp + FEC_ADDR_HIGH);
926 
927 	/* Clear any outstanding interrupt. */
928 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
929 
930 	fec_enet_bd_init(ndev);
931 
932 	fec_enet_enable_ring(ndev);
933 
934 	/* Reset tx SKB buffers. */
935 	fec_enet_reset_skb(ndev);
936 
937 	/* Enable MII mode */
938 	if (fep->full_duplex == DUPLEX_FULL) {
939 		/* FD enable */
940 		writel(0x04, fep->hwp + FEC_X_CNTRL);
941 	} else {
942 		/* No Rcv on Xmit */
943 		rcntl |= 0x02;
944 		writel(0x0, fep->hwp + FEC_X_CNTRL);
945 	}
946 
947 	/* Set MII speed */
948 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
949 
950 #if !defined(CONFIG_M5272)
951 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
952 		val = readl(fep->hwp + FEC_RACC);
953 		/* align IP header */
954 		val |= FEC_RACC_SHIFT16;
955 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
956 			/* set RX checksum */
957 			val |= FEC_RACC_OPTIONS;
958 		else
959 			val &= ~FEC_RACC_OPTIONS;
960 		writel(val, fep->hwp + FEC_RACC);
961 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
962 	}
963 #endif
964 
965 	/*
966 	 * The phy interface and speed need to get configured
967 	 * differently on enet-mac.
968 	 */
969 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
970 		/* Enable flow control and length check */
971 		rcntl |= 0x40000000 | 0x00000020;
972 
973 		/* RGMII, RMII or MII */
974 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
975 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
976 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
977 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
978 			rcntl |= (1 << 6);
979 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
980 			rcntl |= (1 << 8);
981 		else
982 			rcntl &= ~(1 << 8);
983 
984 		/* 1G, 100M or 10M */
985 		if (ndev->phydev) {
986 			if (ndev->phydev->speed == SPEED_1000)
987 				ecntl |= (1 << 5);
988 			else if (ndev->phydev->speed == SPEED_100)
989 				rcntl &= ~(1 << 9);
990 			else
991 				rcntl |= (1 << 9);
992 		}
993 	} else {
994 #ifdef FEC_MIIGSK_ENR
995 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
996 			u32 cfgr;
997 			/* disable the gasket and wait */
998 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
999 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1000 				udelay(1);
1001 
1002 			/*
1003 			 * configure the gasket:
1004 			 *   RMII, 50 MHz, no loopback, no echo
1005 			 *   MII, 25 MHz, no loopback, no echo
1006 			 */
1007 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1008 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1009 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1010 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1011 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1012 
1013 			/* re-enable the gasket */
1014 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1015 		}
1016 #endif
1017 	}
1018 
1019 #if !defined(CONFIG_M5272)
1020 	/* enable pause frame*/
1021 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1022 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1023 	     ndev->phydev && ndev->phydev->pause)) {
1024 		rcntl |= FEC_ENET_FCE;
1025 
1026 		/* set FIFO threshold parameter to reduce overrun */
1027 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1028 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1029 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1030 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1031 
1032 		/* OPD */
1033 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1034 	} else {
1035 		rcntl &= ~FEC_ENET_FCE;
1036 	}
1037 #endif /* !defined(CONFIG_M5272) */
1038 
1039 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1040 
1041 	/* Setup multicast filter. */
1042 	set_multicast_list(ndev);
1043 #ifndef CONFIG_M5272
1044 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1045 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1046 #endif
1047 
1048 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1049 		/* enable ENET endian swap */
1050 		ecntl |= (1 << 8);
1051 		/* enable ENET store and forward mode */
1052 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1053 	}
1054 
1055 	if (fep->bufdesc_ex)
1056 		ecntl |= (1 << 4);
1057 
1058 #ifndef CONFIG_M5272
1059 	/* Enable the MIB statistic event counters */
1060 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1061 #endif
1062 
1063 	/* And last, enable the transmit and receive processing */
1064 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1065 	fec_enet_active_rxring(ndev);
1066 
1067 	if (fep->bufdesc_ex)
1068 		fec_ptp_start_cyclecounter(ndev);
1069 
1070 	/* Enable interrupts we wish to service */
1071 	if (fep->link)
1072 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1073 	else
1074 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1075 
1076 	/* Init the interrupt coalescing */
1077 	fec_enet_itr_coal_init(ndev);
1078 
1079 }
1080 
1081 static void
1082 fec_stop(struct net_device *ndev)
1083 {
1084 	struct fec_enet_private *fep = netdev_priv(ndev);
1085 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1086 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1087 	u32 val;
1088 
1089 	/* We cannot expect a graceful transmit stop without link !!! */
1090 	if (fep->link) {
1091 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1092 		udelay(10);
1093 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1094 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1095 	}
1096 
1097 	/* Whack a reset.  We should wait for this.
1098 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1099 	 * instead of reset MAC itself.
1100 	 */
1101 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1102 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1103 			writel(0, fep->hwp + FEC_ECNTRL);
1104 		} else {
1105 			writel(1, fep->hwp + FEC_ECNTRL);
1106 			udelay(10);
1107 		}
1108 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1109 	} else {
1110 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1111 		val = readl(fep->hwp + FEC_ECNTRL);
1112 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1113 		writel(val, fep->hwp + FEC_ECNTRL);
1114 
1115 		if (pdata && pdata->sleep_mode_enable)
1116 			pdata->sleep_mode_enable(true);
1117 	}
1118 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1119 
1120 	/* We have to keep ENET enabled to have MII interrupt stay working */
1121 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1122 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1123 		writel(2, fep->hwp + FEC_ECNTRL);
1124 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1125 	}
1126 }
1127 
1128 
1129 static void
1130 fec_timeout(struct net_device *ndev)
1131 {
1132 	struct fec_enet_private *fep = netdev_priv(ndev);
1133 
1134 	fec_dump(ndev);
1135 
1136 	ndev->stats.tx_errors++;
1137 
1138 	schedule_work(&fep->tx_timeout_work);
1139 }
1140 
1141 static void fec_enet_timeout_work(struct work_struct *work)
1142 {
1143 	struct fec_enet_private *fep =
1144 		container_of(work, struct fec_enet_private, tx_timeout_work);
1145 	struct net_device *ndev = fep->netdev;
1146 
1147 	rtnl_lock();
1148 	if (netif_device_present(ndev) || netif_running(ndev)) {
1149 		napi_disable(&fep->napi);
1150 		netif_tx_lock_bh(ndev);
1151 		fec_restart(ndev);
1152 		netif_wake_queue(ndev);
1153 		netif_tx_unlock_bh(ndev);
1154 		napi_enable(&fep->napi);
1155 	}
1156 	rtnl_unlock();
1157 }
1158 
1159 static void
1160 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1161 	struct skb_shared_hwtstamps *hwtstamps)
1162 {
1163 	unsigned long flags;
1164 	u64 ns;
1165 
1166 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1167 	ns = timecounter_cyc2time(&fep->tc, ts);
1168 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1169 
1170 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1171 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1172 }
1173 
1174 static void
1175 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1176 {
1177 	struct	fec_enet_private *fep;
1178 	struct bufdesc *bdp;
1179 	unsigned short status;
1180 	struct	sk_buff	*skb;
1181 	struct fec_enet_priv_tx_q *txq;
1182 	struct netdev_queue *nq;
1183 	int	index = 0;
1184 	int	entries_free;
1185 
1186 	fep = netdev_priv(ndev);
1187 
1188 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1189 
1190 	txq = fep->tx_queue[queue_id];
1191 	/* get next bdp of dirty_tx */
1192 	nq = netdev_get_tx_queue(ndev, queue_id);
1193 	bdp = txq->dirty_tx;
1194 
1195 	/* get next bdp of dirty_tx */
1196 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1197 
1198 	while (bdp != READ_ONCE(txq->bd.cur)) {
1199 		/* Order the load of bd.cur and cbd_sc */
1200 		rmb();
1201 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1202 		if (status & BD_ENET_TX_READY)
1203 			break;
1204 
1205 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1206 
1207 		skb = txq->tx_skbuff[index];
1208 		txq->tx_skbuff[index] = NULL;
1209 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1210 			dma_unmap_single(&fep->pdev->dev,
1211 					 fec32_to_cpu(bdp->cbd_bufaddr),
1212 					 fec16_to_cpu(bdp->cbd_datlen),
1213 					 DMA_TO_DEVICE);
1214 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1215 		if (!skb)
1216 			goto skb_done;
1217 
1218 		/* Check for errors. */
1219 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1220 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1221 				   BD_ENET_TX_CSL)) {
1222 			ndev->stats.tx_errors++;
1223 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1224 				ndev->stats.tx_heartbeat_errors++;
1225 			if (status & BD_ENET_TX_LC)  /* Late collision */
1226 				ndev->stats.tx_window_errors++;
1227 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1228 				ndev->stats.tx_aborted_errors++;
1229 			if (status & BD_ENET_TX_UN)  /* Underrun */
1230 				ndev->stats.tx_fifo_errors++;
1231 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1232 				ndev->stats.tx_carrier_errors++;
1233 		} else {
1234 			ndev->stats.tx_packets++;
1235 			ndev->stats.tx_bytes += skb->len;
1236 		}
1237 
1238 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1239 			fep->bufdesc_ex) {
1240 			struct skb_shared_hwtstamps shhwtstamps;
1241 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1242 
1243 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1244 			skb_tstamp_tx(skb, &shhwtstamps);
1245 		}
1246 
1247 		/* Deferred means some collisions occurred during transmit,
1248 		 * but we eventually sent the packet OK.
1249 		 */
1250 		if (status & BD_ENET_TX_DEF)
1251 			ndev->stats.collisions++;
1252 
1253 		/* Free the sk buffer associated with this last transmit */
1254 		dev_kfree_skb_any(skb);
1255 skb_done:
1256 		/* Make sure the update to bdp and tx_skbuff are performed
1257 		 * before dirty_tx
1258 		 */
1259 		wmb();
1260 		txq->dirty_tx = bdp;
1261 
1262 		/* Update pointer to next buffer descriptor to be transmitted */
1263 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264 
1265 		/* Since we have freed up a buffer, the ring is no longer full
1266 		 */
1267 		if (netif_queue_stopped(ndev)) {
1268 			entries_free = fec_enet_get_free_txdesc_num(txq);
1269 			if (entries_free >= txq->tx_wake_threshold)
1270 				netif_tx_wake_queue(nq);
1271 		}
1272 	}
1273 
1274 	/* ERR006358: Keep the transmitter going */
1275 	if (bdp != txq->bd.cur &&
1276 	    readl(txq->bd.reg_desc_active) == 0)
1277 		writel(0, txq->bd.reg_desc_active);
1278 }
1279 
1280 static void
1281 fec_enet_tx(struct net_device *ndev)
1282 {
1283 	struct fec_enet_private *fep = netdev_priv(ndev);
1284 	u16 queue_id;
1285 	/* First process class A queue, then Class B and Best Effort queue */
1286 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1287 		clear_bit(queue_id, &fep->work_tx);
1288 		fec_enet_tx_queue(ndev, queue_id);
1289 	}
1290 	return;
1291 }
1292 
1293 static int
1294 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1295 {
1296 	struct  fec_enet_private *fep = netdev_priv(ndev);
1297 	int off;
1298 
1299 	off = ((unsigned long)skb->data) & fep->rx_align;
1300 	if (off)
1301 		skb_reserve(skb, fep->rx_align + 1 - off);
1302 
1303 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1304 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1305 		if (net_ratelimit())
1306 			netdev_err(ndev, "Rx DMA memory map failed\n");
1307 		return -ENOMEM;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1314 			       struct bufdesc *bdp, u32 length, bool swap)
1315 {
1316 	struct  fec_enet_private *fep = netdev_priv(ndev);
1317 	struct sk_buff *new_skb;
1318 
1319 	if (length > fep->rx_copybreak)
1320 		return false;
1321 
1322 	new_skb = netdev_alloc_skb(ndev, length);
1323 	if (!new_skb)
1324 		return false;
1325 
1326 	dma_sync_single_for_cpu(&fep->pdev->dev,
1327 				fec32_to_cpu(bdp->cbd_bufaddr),
1328 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1329 				DMA_FROM_DEVICE);
1330 	if (!swap)
1331 		memcpy(new_skb->data, (*skb)->data, length);
1332 	else
1333 		swap_buffer2(new_skb->data, (*skb)->data, length);
1334 	*skb = new_skb;
1335 
1336 	return true;
1337 }
1338 
1339 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1340  * When we update through the ring, if the next incoming buffer has
1341  * not been given to the system, we just set the empty indicator,
1342  * effectively tossing the packet.
1343  */
1344 static int
1345 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1346 {
1347 	struct fec_enet_private *fep = netdev_priv(ndev);
1348 	struct fec_enet_priv_rx_q *rxq;
1349 	struct bufdesc *bdp;
1350 	unsigned short status;
1351 	struct  sk_buff *skb_new = NULL;
1352 	struct  sk_buff *skb;
1353 	ushort	pkt_len;
1354 	__u8 *data;
1355 	int	pkt_received = 0;
1356 	struct	bufdesc_ex *ebdp = NULL;
1357 	bool	vlan_packet_rcvd = false;
1358 	u16	vlan_tag;
1359 	int	index = 0;
1360 	bool	is_copybreak;
1361 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1362 
1363 #ifdef CONFIG_M532x
1364 	flush_cache_all();
1365 #endif
1366 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1367 	rxq = fep->rx_queue[queue_id];
1368 
1369 	/* First, grab all of the stats for the incoming packet.
1370 	 * These get messed up if we get called due to a busy condition.
1371 	 */
1372 	bdp = rxq->bd.cur;
1373 
1374 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1375 
1376 		if (pkt_received >= budget)
1377 			break;
1378 		pkt_received++;
1379 
1380 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1381 
1382 		/* Check for errors. */
1383 		status ^= BD_ENET_RX_LAST;
1384 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1385 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1386 			   BD_ENET_RX_CL)) {
1387 			ndev->stats.rx_errors++;
1388 			if (status & BD_ENET_RX_OV) {
1389 				/* FIFO overrun */
1390 				ndev->stats.rx_fifo_errors++;
1391 				goto rx_processing_done;
1392 			}
1393 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1394 						| BD_ENET_RX_LAST)) {
1395 				/* Frame too long or too short. */
1396 				ndev->stats.rx_length_errors++;
1397 				if (status & BD_ENET_RX_LAST)
1398 					netdev_err(ndev, "rcv is not +last\n");
1399 			}
1400 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1401 				ndev->stats.rx_crc_errors++;
1402 			/* Report late collisions as a frame error. */
1403 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1404 				ndev->stats.rx_frame_errors++;
1405 			goto rx_processing_done;
1406 		}
1407 
1408 		/* Process the incoming frame. */
1409 		ndev->stats.rx_packets++;
1410 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1411 		ndev->stats.rx_bytes += pkt_len;
1412 
1413 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1414 		skb = rxq->rx_skbuff[index];
1415 
1416 		/* The packet length includes FCS, but we don't want to
1417 		 * include that when passing upstream as it messes up
1418 		 * bridging applications.
1419 		 */
1420 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1421 						  need_swap);
1422 		if (!is_copybreak) {
1423 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1424 			if (unlikely(!skb_new)) {
1425 				ndev->stats.rx_dropped++;
1426 				goto rx_processing_done;
1427 			}
1428 			dma_unmap_single(&fep->pdev->dev,
1429 					 fec32_to_cpu(bdp->cbd_bufaddr),
1430 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1431 					 DMA_FROM_DEVICE);
1432 		}
1433 
1434 		prefetch(skb->data - NET_IP_ALIGN);
1435 		skb_put(skb, pkt_len - 4);
1436 		data = skb->data;
1437 
1438 		if (!is_copybreak && need_swap)
1439 			swap_buffer(data, pkt_len);
1440 
1441 #if !defined(CONFIG_M5272)
1442 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1443 			data = skb_pull_inline(skb, 2);
1444 #endif
1445 
1446 		/* Extract the enhanced buffer descriptor */
1447 		ebdp = NULL;
1448 		if (fep->bufdesc_ex)
1449 			ebdp = (struct bufdesc_ex *)bdp;
1450 
1451 		/* If this is a VLAN packet remove the VLAN Tag */
1452 		vlan_packet_rcvd = false;
1453 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1454 		    fep->bufdesc_ex &&
1455 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1456 			/* Push and remove the vlan tag */
1457 			struct vlan_hdr *vlan_header =
1458 					(struct vlan_hdr *) (data + ETH_HLEN);
1459 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1460 
1461 			vlan_packet_rcvd = true;
1462 
1463 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1464 			skb_pull(skb, VLAN_HLEN);
1465 		}
1466 
1467 		skb->protocol = eth_type_trans(skb, ndev);
1468 
1469 		/* Get receive timestamp from the skb */
1470 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1471 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1472 					  skb_hwtstamps(skb));
1473 
1474 		if (fep->bufdesc_ex &&
1475 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1476 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1477 				/* don't check it */
1478 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1479 			} else {
1480 				skb_checksum_none_assert(skb);
1481 			}
1482 		}
1483 
1484 		/* Handle received VLAN packets */
1485 		if (vlan_packet_rcvd)
1486 			__vlan_hwaccel_put_tag(skb,
1487 					       htons(ETH_P_8021Q),
1488 					       vlan_tag);
1489 
1490 		napi_gro_receive(&fep->napi, skb);
1491 
1492 		if (is_copybreak) {
1493 			dma_sync_single_for_device(&fep->pdev->dev,
1494 						   fec32_to_cpu(bdp->cbd_bufaddr),
1495 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1496 						   DMA_FROM_DEVICE);
1497 		} else {
1498 			rxq->rx_skbuff[index] = skb_new;
1499 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1500 		}
1501 
1502 rx_processing_done:
1503 		/* Clear the status flags for this buffer */
1504 		status &= ~BD_ENET_RX_STATS;
1505 
1506 		/* Mark the buffer empty */
1507 		status |= BD_ENET_RX_EMPTY;
1508 
1509 		if (fep->bufdesc_ex) {
1510 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1511 
1512 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1513 			ebdp->cbd_prot = 0;
1514 			ebdp->cbd_bdu = 0;
1515 		}
1516 		/* Make sure the updates to rest of the descriptor are
1517 		 * performed before transferring ownership.
1518 		 */
1519 		wmb();
1520 		bdp->cbd_sc = cpu_to_fec16(status);
1521 
1522 		/* Update BD pointer to next entry */
1523 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1524 
1525 		/* Doing this here will keep the FEC running while we process
1526 		 * incoming frames.  On a heavily loaded network, we should be
1527 		 * able to keep up at the expense of system resources.
1528 		 */
1529 		writel(0, rxq->bd.reg_desc_active);
1530 	}
1531 	rxq->bd.cur = bdp;
1532 	return pkt_received;
1533 }
1534 
1535 static int
1536 fec_enet_rx(struct net_device *ndev, int budget)
1537 {
1538 	int     pkt_received = 0;
1539 	u16	queue_id;
1540 	struct fec_enet_private *fep = netdev_priv(ndev);
1541 
1542 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1543 		int ret;
1544 
1545 		ret = fec_enet_rx_queue(ndev,
1546 					budget - pkt_received, queue_id);
1547 
1548 		if (ret < budget - pkt_received)
1549 			clear_bit(queue_id, &fep->work_rx);
1550 
1551 		pkt_received += ret;
1552 	}
1553 	return pkt_received;
1554 }
1555 
1556 static bool
1557 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1558 {
1559 	if (int_events == 0)
1560 		return false;
1561 
1562 	if (int_events & FEC_ENET_RXF_0)
1563 		fep->work_rx |= (1 << 2);
1564 	if (int_events & FEC_ENET_RXF_1)
1565 		fep->work_rx |= (1 << 0);
1566 	if (int_events & FEC_ENET_RXF_2)
1567 		fep->work_rx |= (1 << 1);
1568 
1569 	if (int_events & FEC_ENET_TXF_0)
1570 		fep->work_tx |= (1 << 2);
1571 	if (int_events & FEC_ENET_TXF_1)
1572 		fep->work_tx |= (1 << 0);
1573 	if (int_events & FEC_ENET_TXF_2)
1574 		fep->work_tx |= (1 << 1);
1575 
1576 	return true;
1577 }
1578 
1579 static irqreturn_t
1580 fec_enet_interrupt(int irq, void *dev_id)
1581 {
1582 	struct net_device *ndev = dev_id;
1583 	struct fec_enet_private *fep = netdev_priv(ndev);
1584 	uint int_events;
1585 	irqreturn_t ret = IRQ_NONE;
1586 
1587 	int_events = readl(fep->hwp + FEC_IEVENT);
1588 	writel(int_events, fep->hwp + FEC_IEVENT);
1589 	fec_enet_collect_events(fep, int_events);
1590 
1591 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1592 		ret = IRQ_HANDLED;
1593 
1594 		if (napi_schedule_prep(&fep->napi)) {
1595 			/* Disable the NAPI interrupts */
1596 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1597 			__napi_schedule(&fep->napi);
1598 		}
1599 	}
1600 
1601 	if (int_events & FEC_ENET_MII) {
1602 		ret = IRQ_HANDLED;
1603 		complete(&fep->mdio_done);
1604 	}
1605 
1606 	if (fep->ptp_clock)
1607 		if (fec_ptp_check_pps_event(fep))
1608 			ret = IRQ_HANDLED;
1609 	return ret;
1610 }
1611 
1612 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1613 {
1614 	struct net_device *ndev = napi->dev;
1615 	struct fec_enet_private *fep = netdev_priv(ndev);
1616 	int pkts;
1617 
1618 	pkts = fec_enet_rx(ndev, budget);
1619 
1620 	fec_enet_tx(ndev);
1621 
1622 	if (pkts < budget) {
1623 		napi_complete_done(napi, pkts);
1624 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1625 	}
1626 	return pkts;
1627 }
1628 
1629 /* ------------------------------------------------------------------------- */
1630 static void fec_get_mac(struct net_device *ndev)
1631 {
1632 	struct fec_enet_private *fep = netdev_priv(ndev);
1633 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1634 	unsigned char *iap, tmpaddr[ETH_ALEN];
1635 
1636 	/*
1637 	 * try to get mac address in following order:
1638 	 *
1639 	 * 1) module parameter via kernel command line in form
1640 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1641 	 */
1642 	iap = macaddr;
1643 
1644 	/*
1645 	 * 2) from device tree data
1646 	 */
1647 	if (!is_valid_ether_addr(iap)) {
1648 		struct device_node *np = fep->pdev->dev.of_node;
1649 		if (np) {
1650 			const char *mac = of_get_mac_address(np);
1651 			if (mac)
1652 				iap = (unsigned char *) mac;
1653 		}
1654 	}
1655 
1656 	/*
1657 	 * 3) from flash or fuse (via platform data)
1658 	 */
1659 	if (!is_valid_ether_addr(iap)) {
1660 #ifdef CONFIG_M5272
1661 		if (FEC_FLASHMAC)
1662 			iap = (unsigned char *)FEC_FLASHMAC;
1663 #else
1664 		if (pdata)
1665 			iap = (unsigned char *)&pdata->mac;
1666 #endif
1667 	}
1668 
1669 	/*
1670 	 * 4) FEC mac registers set by bootloader
1671 	 */
1672 	if (!is_valid_ether_addr(iap)) {
1673 		*((__be32 *) &tmpaddr[0]) =
1674 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1675 		*((__be16 *) &tmpaddr[4]) =
1676 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1677 		iap = &tmpaddr[0];
1678 	}
1679 
1680 	/*
1681 	 * 5) random mac address
1682 	 */
1683 	if (!is_valid_ether_addr(iap)) {
1684 		/* Report it and use a random ethernet address instead */
1685 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1686 		eth_hw_addr_random(ndev);
1687 		netdev_info(ndev, "Using random MAC address: %pM\n",
1688 			    ndev->dev_addr);
1689 		return;
1690 	}
1691 
1692 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1693 
1694 	/* Adjust MAC if using macaddr */
1695 	if (iap == macaddr)
1696 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1697 }
1698 
1699 /* ------------------------------------------------------------------------- */
1700 
1701 /*
1702  * Phy section
1703  */
1704 static void fec_enet_adjust_link(struct net_device *ndev)
1705 {
1706 	struct fec_enet_private *fep = netdev_priv(ndev);
1707 	struct phy_device *phy_dev = ndev->phydev;
1708 	int status_change = 0;
1709 
1710 	/* Prevent a state halted on mii error */
1711 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1712 		phy_dev->state = PHY_RESUMING;
1713 		return;
1714 	}
1715 
1716 	/*
1717 	 * If the netdev is down, or is going down, we're not interested
1718 	 * in link state events, so just mark our idea of the link as down
1719 	 * and ignore the event.
1720 	 */
1721 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1722 		fep->link = 0;
1723 	} else if (phy_dev->link) {
1724 		if (!fep->link) {
1725 			fep->link = phy_dev->link;
1726 			status_change = 1;
1727 		}
1728 
1729 		if (fep->full_duplex != phy_dev->duplex) {
1730 			fep->full_duplex = phy_dev->duplex;
1731 			status_change = 1;
1732 		}
1733 
1734 		if (phy_dev->speed != fep->speed) {
1735 			fep->speed = phy_dev->speed;
1736 			status_change = 1;
1737 		}
1738 
1739 		/* if any of the above changed restart the FEC */
1740 		if (status_change) {
1741 			napi_disable(&fep->napi);
1742 			netif_tx_lock_bh(ndev);
1743 			fec_restart(ndev);
1744 			netif_wake_queue(ndev);
1745 			netif_tx_unlock_bh(ndev);
1746 			napi_enable(&fep->napi);
1747 		}
1748 	} else {
1749 		if (fep->link) {
1750 			napi_disable(&fep->napi);
1751 			netif_tx_lock_bh(ndev);
1752 			fec_stop(ndev);
1753 			netif_tx_unlock_bh(ndev);
1754 			napi_enable(&fep->napi);
1755 			fep->link = phy_dev->link;
1756 			status_change = 1;
1757 		}
1758 	}
1759 
1760 	if (status_change)
1761 		phy_print_status(phy_dev);
1762 }
1763 
1764 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1765 {
1766 	struct fec_enet_private *fep = bus->priv;
1767 	struct device *dev = &fep->pdev->dev;
1768 	unsigned long time_left;
1769 	int ret = 0;
1770 
1771 	ret = pm_runtime_get_sync(dev);
1772 	if (ret < 0)
1773 		return ret;
1774 
1775 	fep->mii_timeout = 0;
1776 	reinit_completion(&fep->mdio_done);
1777 
1778 	/* start a read op */
1779 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1780 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1781 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1782 
1783 	/* wait for end of transfer */
1784 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1785 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1786 	if (time_left == 0) {
1787 		fep->mii_timeout = 1;
1788 		netdev_err(fep->netdev, "MDIO read timeout\n");
1789 		ret = -ETIMEDOUT;
1790 		goto out;
1791 	}
1792 
1793 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1794 
1795 out:
1796 	pm_runtime_mark_last_busy(dev);
1797 	pm_runtime_put_autosuspend(dev);
1798 
1799 	return ret;
1800 }
1801 
1802 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1803 			   u16 value)
1804 {
1805 	struct fec_enet_private *fep = bus->priv;
1806 	struct device *dev = &fep->pdev->dev;
1807 	unsigned long time_left;
1808 	int ret;
1809 
1810 	ret = pm_runtime_get_sync(dev);
1811 	if (ret < 0)
1812 		return ret;
1813 	else
1814 		ret = 0;
1815 
1816 	fep->mii_timeout = 0;
1817 	reinit_completion(&fep->mdio_done);
1818 
1819 	/* start a write op */
1820 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1821 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1822 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1823 		fep->hwp + FEC_MII_DATA);
1824 
1825 	/* wait for end of transfer */
1826 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1827 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1828 	if (time_left == 0) {
1829 		fep->mii_timeout = 1;
1830 		netdev_err(fep->netdev, "MDIO write timeout\n");
1831 		ret  = -ETIMEDOUT;
1832 	}
1833 
1834 	pm_runtime_mark_last_busy(dev);
1835 	pm_runtime_put_autosuspend(dev);
1836 
1837 	return ret;
1838 }
1839 
1840 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1841 {
1842 	struct fec_enet_private *fep = netdev_priv(ndev);
1843 	int ret;
1844 
1845 	if (enable) {
1846 		ret = clk_prepare_enable(fep->clk_ahb);
1847 		if (ret)
1848 			return ret;
1849 
1850 		ret = clk_prepare_enable(fep->clk_enet_out);
1851 		if (ret)
1852 			goto failed_clk_enet_out;
1853 
1854 		if (fep->clk_ptp) {
1855 			mutex_lock(&fep->ptp_clk_mutex);
1856 			ret = clk_prepare_enable(fep->clk_ptp);
1857 			if (ret) {
1858 				mutex_unlock(&fep->ptp_clk_mutex);
1859 				goto failed_clk_ptp;
1860 			} else {
1861 				fep->ptp_clk_on = true;
1862 			}
1863 			mutex_unlock(&fep->ptp_clk_mutex);
1864 		}
1865 
1866 		ret = clk_prepare_enable(fep->clk_ref);
1867 		if (ret)
1868 			goto failed_clk_ref;
1869 	} else {
1870 		clk_disable_unprepare(fep->clk_ahb);
1871 		clk_disable_unprepare(fep->clk_enet_out);
1872 		if (fep->clk_ptp) {
1873 			mutex_lock(&fep->ptp_clk_mutex);
1874 			clk_disable_unprepare(fep->clk_ptp);
1875 			fep->ptp_clk_on = false;
1876 			mutex_unlock(&fep->ptp_clk_mutex);
1877 		}
1878 		clk_disable_unprepare(fep->clk_ref);
1879 	}
1880 
1881 	return 0;
1882 
1883 failed_clk_ref:
1884 	if (fep->clk_ref)
1885 		clk_disable_unprepare(fep->clk_ref);
1886 failed_clk_ptp:
1887 	if (fep->clk_enet_out)
1888 		clk_disable_unprepare(fep->clk_enet_out);
1889 failed_clk_enet_out:
1890 		clk_disable_unprepare(fep->clk_ahb);
1891 
1892 	return ret;
1893 }
1894 
1895 static int fec_enet_mii_probe(struct net_device *ndev)
1896 {
1897 	struct fec_enet_private *fep = netdev_priv(ndev);
1898 	struct phy_device *phy_dev = NULL;
1899 	char mdio_bus_id[MII_BUS_ID_SIZE];
1900 	char phy_name[MII_BUS_ID_SIZE + 3];
1901 	int phy_id;
1902 	int dev_id = fep->dev_id;
1903 
1904 	if (fep->phy_node) {
1905 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1906 					 &fec_enet_adjust_link, 0,
1907 					 fep->phy_interface);
1908 		if (!phy_dev) {
1909 			netdev_err(ndev, "Unable to connect to phy\n");
1910 			return -ENODEV;
1911 		}
1912 	} else {
1913 		/* check for attached phy */
1914 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1915 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1916 				continue;
1917 			if (dev_id--)
1918 				continue;
1919 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1920 			break;
1921 		}
1922 
1923 		if (phy_id >= PHY_MAX_ADDR) {
1924 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1925 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1926 			phy_id = 0;
1927 		}
1928 
1929 		snprintf(phy_name, sizeof(phy_name),
1930 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1931 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1932 				      fep->phy_interface);
1933 	}
1934 
1935 	if (IS_ERR(phy_dev)) {
1936 		netdev_err(ndev, "could not attach to PHY\n");
1937 		return PTR_ERR(phy_dev);
1938 	}
1939 
1940 	/* mask with MAC supported features */
1941 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1942 		phy_dev->supported &= PHY_GBIT_FEATURES;
1943 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1944 #if !defined(CONFIG_M5272)
1945 		phy_dev->supported |= SUPPORTED_Pause;
1946 #endif
1947 	}
1948 	else
1949 		phy_dev->supported &= PHY_BASIC_FEATURES;
1950 
1951 	phy_dev->advertising = phy_dev->supported;
1952 
1953 	fep->link = 0;
1954 	fep->full_duplex = 0;
1955 
1956 	phy_attached_info(phy_dev);
1957 
1958 	return 0;
1959 }
1960 
1961 static int fec_enet_mii_init(struct platform_device *pdev)
1962 {
1963 	static struct mii_bus *fec0_mii_bus;
1964 	struct net_device *ndev = platform_get_drvdata(pdev);
1965 	struct fec_enet_private *fep = netdev_priv(ndev);
1966 	struct device_node *node;
1967 	int err = -ENXIO;
1968 	u32 mii_speed, holdtime;
1969 
1970 	/*
1971 	 * The i.MX28 dual fec interfaces are not equal.
1972 	 * Here are the differences:
1973 	 *
1974 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1975 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1976 	 *  - external phys can only be configured by fec0
1977 	 *
1978 	 * That is to say fec1 can not work independently. It only works
1979 	 * when fec0 is working. The reason behind this design is that the
1980 	 * second interface is added primarily for Switch mode.
1981 	 *
1982 	 * Because of the last point above, both phys are attached on fec0
1983 	 * mdio interface in board design, and need to be configured by
1984 	 * fec0 mii_bus.
1985 	 */
1986 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1987 		/* fec1 uses fec0 mii_bus */
1988 		if (mii_cnt && fec0_mii_bus) {
1989 			fep->mii_bus = fec0_mii_bus;
1990 			mii_cnt++;
1991 			return 0;
1992 		}
1993 		return -ENOENT;
1994 	}
1995 
1996 	fep->mii_timeout = 0;
1997 
1998 	/*
1999 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2000 	 *
2001 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2002 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2003 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2004 	 * document.
2005 	 */
2006 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2007 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2008 		mii_speed--;
2009 	if (mii_speed > 63) {
2010 		dev_err(&pdev->dev,
2011 			"fec clock (%lu) too fast to get right mii speed\n",
2012 			clk_get_rate(fep->clk_ipg));
2013 		err = -EINVAL;
2014 		goto err_out;
2015 	}
2016 
2017 	/*
2018 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2019 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2020 	 * versions are RAZ there, so just ignore the difference and write the
2021 	 * register always.
2022 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2023 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2024 	 * output.
2025 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2026 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2027 	 * holdtime cannot result in a value greater than 3.
2028 	 */
2029 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2030 
2031 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2032 
2033 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2034 
2035 	fep->mii_bus = mdiobus_alloc();
2036 	if (fep->mii_bus == NULL) {
2037 		err = -ENOMEM;
2038 		goto err_out;
2039 	}
2040 
2041 	fep->mii_bus->name = "fec_enet_mii_bus";
2042 	fep->mii_bus->read = fec_enet_mdio_read;
2043 	fep->mii_bus->write = fec_enet_mdio_write;
2044 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2045 		pdev->name, fep->dev_id + 1);
2046 	fep->mii_bus->priv = fep;
2047 	fep->mii_bus->parent = &pdev->dev;
2048 
2049 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2050 	if (node) {
2051 		err = of_mdiobus_register(fep->mii_bus, node);
2052 		of_node_put(node);
2053 	} else {
2054 		err = mdiobus_register(fep->mii_bus);
2055 	}
2056 
2057 	if (err)
2058 		goto err_out_free_mdiobus;
2059 
2060 	mii_cnt++;
2061 
2062 	/* save fec0 mii_bus */
2063 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2064 		fec0_mii_bus = fep->mii_bus;
2065 
2066 	return 0;
2067 
2068 err_out_free_mdiobus:
2069 	mdiobus_free(fep->mii_bus);
2070 err_out:
2071 	return err;
2072 }
2073 
2074 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2075 {
2076 	if (--mii_cnt == 0) {
2077 		mdiobus_unregister(fep->mii_bus);
2078 		mdiobus_free(fep->mii_bus);
2079 	}
2080 }
2081 
2082 static void fec_enet_get_drvinfo(struct net_device *ndev,
2083 				 struct ethtool_drvinfo *info)
2084 {
2085 	struct fec_enet_private *fep = netdev_priv(ndev);
2086 
2087 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2088 		sizeof(info->driver));
2089 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2090 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2091 }
2092 
2093 static int fec_enet_get_regs_len(struct net_device *ndev)
2094 {
2095 	struct fec_enet_private *fep = netdev_priv(ndev);
2096 	struct resource *r;
2097 	int s = 0;
2098 
2099 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2100 	if (r)
2101 		s = resource_size(r);
2102 
2103 	return s;
2104 }
2105 
2106 /* List of registers that can be safety be read to dump them with ethtool */
2107 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2108 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2109 static u32 fec_enet_register_offset[] = {
2110 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2111 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2112 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2113 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2114 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2115 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2116 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2117 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2118 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2119 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2120 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2121 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2122 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2123 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2124 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2125 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2126 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2127 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2128 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2129 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2130 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2131 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2132 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2133 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2134 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2135 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2136 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2137 };
2138 #else
2139 static u32 fec_enet_register_offset[] = {
2140 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2141 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2142 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2143 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2144 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2145 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2146 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2147 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2148 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2149 };
2150 #endif
2151 
2152 static void fec_enet_get_regs(struct net_device *ndev,
2153 			      struct ethtool_regs *regs, void *regbuf)
2154 {
2155 	struct fec_enet_private *fep = netdev_priv(ndev);
2156 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2157 	u32 *buf = (u32 *)regbuf;
2158 	u32 i, off;
2159 
2160 	memset(buf, 0, regs->len);
2161 
2162 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2163 		off = fec_enet_register_offset[i] / 4;
2164 		buf[off] = readl(&theregs[off]);
2165 	}
2166 }
2167 
2168 static int fec_enet_get_ts_info(struct net_device *ndev,
2169 				struct ethtool_ts_info *info)
2170 {
2171 	struct fec_enet_private *fep = netdev_priv(ndev);
2172 
2173 	if (fep->bufdesc_ex) {
2174 
2175 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2176 					SOF_TIMESTAMPING_RX_SOFTWARE |
2177 					SOF_TIMESTAMPING_SOFTWARE |
2178 					SOF_TIMESTAMPING_TX_HARDWARE |
2179 					SOF_TIMESTAMPING_RX_HARDWARE |
2180 					SOF_TIMESTAMPING_RAW_HARDWARE;
2181 		if (fep->ptp_clock)
2182 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2183 		else
2184 			info->phc_index = -1;
2185 
2186 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2187 				 (1 << HWTSTAMP_TX_ON);
2188 
2189 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2190 				   (1 << HWTSTAMP_FILTER_ALL);
2191 		return 0;
2192 	} else {
2193 		return ethtool_op_get_ts_info(ndev, info);
2194 	}
2195 }
2196 
2197 #if !defined(CONFIG_M5272)
2198 
2199 static void fec_enet_get_pauseparam(struct net_device *ndev,
2200 				    struct ethtool_pauseparam *pause)
2201 {
2202 	struct fec_enet_private *fep = netdev_priv(ndev);
2203 
2204 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2205 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2206 	pause->rx_pause = pause->tx_pause;
2207 }
2208 
2209 static int fec_enet_set_pauseparam(struct net_device *ndev,
2210 				   struct ethtool_pauseparam *pause)
2211 {
2212 	struct fec_enet_private *fep = netdev_priv(ndev);
2213 
2214 	if (!ndev->phydev)
2215 		return -ENODEV;
2216 
2217 	if (pause->tx_pause != pause->rx_pause) {
2218 		netdev_info(ndev,
2219 			"hardware only support enable/disable both tx and rx");
2220 		return -EINVAL;
2221 	}
2222 
2223 	fep->pause_flag = 0;
2224 
2225 	/* tx pause must be same as rx pause */
2226 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2227 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2228 
2229 	if (pause->rx_pause || pause->autoneg) {
2230 		ndev->phydev->supported |= ADVERTISED_Pause;
2231 		ndev->phydev->advertising |= ADVERTISED_Pause;
2232 	} else {
2233 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2234 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2235 	}
2236 
2237 	if (pause->autoneg) {
2238 		if (netif_running(ndev))
2239 			fec_stop(ndev);
2240 		phy_start_aneg(ndev->phydev);
2241 	}
2242 	if (netif_running(ndev)) {
2243 		napi_disable(&fep->napi);
2244 		netif_tx_lock_bh(ndev);
2245 		fec_restart(ndev);
2246 		netif_wake_queue(ndev);
2247 		netif_tx_unlock_bh(ndev);
2248 		napi_enable(&fep->napi);
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static const struct fec_stat {
2255 	char name[ETH_GSTRING_LEN];
2256 	u16 offset;
2257 } fec_stats[] = {
2258 	/* RMON TX */
2259 	{ "tx_dropped", RMON_T_DROP },
2260 	{ "tx_packets", RMON_T_PACKETS },
2261 	{ "tx_broadcast", RMON_T_BC_PKT },
2262 	{ "tx_multicast", RMON_T_MC_PKT },
2263 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2264 	{ "tx_undersize", RMON_T_UNDERSIZE },
2265 	{ "tx_oversize", RMON_T_OVERSIZE },
2266 	{ "tx_fragment", RMON_T_FRAG },
2267 	{ "tx_jabber", RMON_T_JAB },
2268 	{ "tx_collision", RMON_T_COL },
2269 	{ "tx_64byte", RMON_T_P64 },
2270 	{ "tx_65to127byte", RMON_T_P65TO127 },
2271 	{ "tx_128to255byte", RMON_T_P128TO255 },
2272 	{ "tx_256to511byte", RMON_T_P256TO511 },
2273 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2274 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2275 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2276 	{ "tx_octets", RMON_T_OCTETS },
2277 
2278 	/* IEEE TX */
2279 	{ "IEEE_tx_drop", IEEE_T_DROP },
2280 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2281 	{ "IEEE_tx_1col", IEEE_T_1COL },
2282 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2283 	{ "IEEE_tx_def", IEEE_T_DEF },
2284 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2285 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2286 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2287 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2288 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2289 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2290 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2291 
2292 	/* RMON RX */
2293 	{ "rx_packets", RMON_R_PACKETS },
2294 	{ "rx_broadcast", RMON_R_BC_PKT },
2295 	{ "rx_multicast", RMON_R_MC_PKT },
2296 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2297 	{ "rx_undersize", RMON_R_UNDERSIZE },
2298 	{ "rx_oversize", RMON_R_OVERSIZE },
2299 	{ "rx_fragment", RMON_R_FRAG },
2300 	{ "rx_jabber", RMON_R_JAB },
2301 	{ "rx_64byte", RMON_R_P64 },
2302 	{ "rx_65to127byte", RMON_R_P65TO127 },
2303 	{ "rx_128to255byte", RMON_R_P128TO255 },
2304 	{ "rx_256to511byte", RMON_R_P256TO511 },
2305 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2306 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2307 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2308 	{ "rx_octets", RMON_R_OCTETS },
2309 
2310 	/* IEEE RX */
2311 	{ "IEEE_rx_drop", IEEE_R_DROP },
2312 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2313 	{ "IEEE_rx_crc", IEEE_R_CRC },
2314 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2315 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2316 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2317 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2318 };
2319 
2320 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2321 
2322 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2323 {
2324 	struct fec_enet_private *fep = netdev_priv(dev);
2325 	int i;
2326 
2327 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2328 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2329 }
2330 
2331 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2332 				       struct ethtool_stats *stats, u64 *data)
2333 {
2334 	struct fec_enet_private *fep = netdev_priv(dev);
2335 
2336 	if (netif_running(dev))
2337 		fec_enet_update_ethtool_stats(dev);
2338 
2339 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2340 }
2341 
2342 static void fec_enet_get_strings(struct net_device *netdev,
2343 	u32 stringset, u8 *data)
2344 {
2345 	int i;
2346 	switch (stringset) {
2347 	case ETH_SS_STATS:
2348 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2349 			memcpy(data + i * ETH_GSTRING_LEN,
2350 				fec_stats[i].name, ETH_GSTRING_LEN);
2351 		break;
2352 	}
2353 }
2354 
2355 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2356 {
2357 	switch (sset) {
2358 	case ETH_SS_STATS:
2359 		return ARRAY_SIZE(fec_stats);
2360 	default:
2361 		return -EOPNOTSUPP;
2362 	}
2363 }
2364 
2365 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2366 {
2367 	struct fec_enet_private *fep = netdev_priv(dev);
2368 	int i;
2369 
2370 	/* Disable MIB statistics counters */
2371 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2372 
2373 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2374 		writel(0, fep->hwp + fec_stats[i].offset);
2375 
2376 	/* Don't disable MIB statistics counters */
2377 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2378 }
2379 
2380 #else	/* !defined(CONFIG_M5272) */
2381 #define FEC_STATS_SIZE	0
2382 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2383 {
2384 }
2385 
2386 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2387 {
2388 }
2389 #endif /* !defined(CONFIG_M5272) */
2390 
2391 /* ITR clock source is enet system clock (clk_ahb).
2392  * TCTT unit is cycle_ns * 64 cycle
2393  * So, the ICTT value = X us / (cycle_ns * 64)
2394  */
2395 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2396 {
2397 	struct fec_enet_private *fep = netdev_priv(ndev);
2398 
2399 	return us * (fep->itr_clk_rate / 64000) / 1000;
2400 }
2401 
2402 /* Set threshold for interrupt coalescing */
2403 static void fec_enet_itr_coal_set(struct net_device *ndev)
2404 {
2405 	struct fec_enet_private *fep = netdev_priv(ndev);
2406 	int rx_itr, tx_itr;
2407 
2408 	/* Must be greater than zero to avoid unpredictable behavior */
2409 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2410 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2411 		return;
2412 
2413 	/* Select enet system clock as Interrupt Coalescing
2414 	 * timer Clock Source
2415 	 */
2416 	rx_itr = FEC_ITR_CLK_SEL;
2417 	tx_itr = FEC_ITR_CLK_SEL;
2418 
2419 	/* set ICFT and ICTT */
2420 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2421 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2422 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2423 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2424 
2425 	rx_itr |= FEC_ITR_EN;
2426 	tx_itr |= FEC_ITR_EN;
2427 
2428 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2429 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2430 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2431 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2432 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2433 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2434 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2435 	}
2436 }
2437 
2438 static int
2439 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2440 {
2441 	struct fec_enet_private *fep = netdev_priv(ndev);
2442 
2443 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2444 		return -EOPNOTSUPP;
2445 
2446 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2447 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2448 
2449 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2450 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2451 
2452 	return 0;
2453 }
2454 
2455 static int
2456 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2457 {
2458 	struct fec_enet_private *fep = netdev_priv(ndev);
2459 	unsigned int cycle;
2460 
2461 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2462 		return -EOPNOTSUPP;
2463 
2464 	if (ec->rx_max_coalesced_frames > 255) {
2465 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2466 		return -EINVAL;
2467 	}
2468 
2469 	if (ec->tx_max_coalesced_frames > 255) {
2470 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2471 		return -EINVAL;
2472 	}
2473 
2474 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2475 	if (cycle > 0xFFFF) {
2476 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2477 		return -EINVAL;
2478 	}
2479 
2480 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2481 	if (cycle > 0xFFFF) {
2482 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2483 		return -EINVAL;
2484 	}
2485 
2486 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2487 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2488 
2489 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2490 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2491 
2492 	fec_enet_itr_coal_set(ndev);
2493 
2494 	return 0;
2495 }
2496 
2497 static void fec_enet_itr_coal_init(struct net_device *ndev)
2498 {
2499 	struct ethtool_coalesce ec;
2500 
2501 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2502 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2503 
2504 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2505 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2506 
2507 	fec_enet_set_coalesce(ndev, &ec);
2508 }
2509 
2510 static int fec_enet_get_tunable(struct net_device *netdev,
2511 				const struct ethtool_tunable *tuna,
2512 				void *data)
2513 {
2514 	struct fec_enet_private *fep = netdev_priv(netdev);
2515 	int ret = 0;
2516 
2517 	switch (tuna->id) {
2518 	case ETHTOOL_RX_COPYBREAK:
2519 		*(u32 *)data = fep->rx_copybreak;
2520 		break;
2521 	default:
2522 		ret = -EINVAL;
2523 		break;
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 static int fec_enet_set_tunable(struct net_device *netdev,
2530 				const struct ethtool_tunable *tuna,
2531 				const void *data)
2532 {
2533 	struct fec_enet_private *fep = netdev_priv(netdev);
2534 	int ret = 0;
2535 
2536 	switch (tuna->id) {
2537 	case ETHTOOL_RX_COPYBREAK:
2538 		fep->rx_copybreak = *(u32 *)data;
2539 		break;
2540 	default:
2541 		ret = -EINVAL;
2542 		break;
2543 	}
2544 
2545 	return ret;
2546 }
2547 
2548 static void
2549 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2550 {
2551 	struct fec_enet_private *fep = netdev_priv(ndev);
2552 
2553 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2554 		wol->supported = WAKE_MAGIC;
2555 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2556 	} else {
2557 		wol->supported = wol->wolopts = 0;
2558 	}
2559 }
2560 
2561 static int
2562 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2563 {
2564 	struct fec_enet_private *fep = netdev_priv(ndev);
2565 
2566 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2567 		return -EINVAL;
2568 
2569 	if (wol->wolopts & ~WAKE_MAGIC)
2570 		return -EINVAL;
2571 
2572 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2573 	if (device_may_wakeup(&ndev->dev)) {
2574 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2575 		if (fep->irq[0] > 0)
2576 			enable_irq_wake(fep->irq[0]);
2577 	} else {
2578 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2579 		if (fep->irq[0] > 0)
2580 			disable_irq_wake(fep->irq[0]);
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 static const struct ethtool_ops fec_enet_ethtool_ops = {
2587 	.get_drvinfo		= fec_enet_get_drvinfo,
2588 	.get_regs_len		= fec_enet_get_regs_len,
2589 	.get_regs		= fec_enet_get_regs,
2590 	.nway_reset		= phy_ethtool_nway_reset,
2591 	.get_link		= ethtool_op_get_link,
2592 	.get_coalesce		= fec_enet_get_coalesce,
2593 	.set_coalesce		= fec_enet_set_coalesce,
2594 #ifndef CONFIG_M5272
2595 	.get_pauseparam		= fec_enet_get_pauseparam,
2596 	.set_pauseparam		= fec_enet_set_pauseparam,
2597 	.get_strings		= fec_enet_get_strings,
2598 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2599 	.get_sset_count		= fec_enet_get_sset_count,
2600 #endif
2601 	.get_ts_info		= fec_enet_get_ts_info,
2602 	.get_tunable		= fec_enet_get_tunable,
2603 	.set_tunable		= fec_enet_set_tunable,
2604 	.get_wol		= fec_enet_get_wol,
2605 	.set_wol		= fec_enet_set_wol,
2606 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2607 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2608 };
2609 
2610 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2611 {
2612 	struct fec_enet_private *fep = netdev_priv(ndev);
2613 	struct phy_device *phydev = ndev->phydev;
2614 
2615 	if (!netif_running(ndev))
2616 		return -EINVAL;
2617 
2618 	if (!phydev)
2619 		return -ENODEV;
2620 
2621 	if (fep->bufdesc_ex) {
2622 		if (cmd == SIOCSHWTSTAMP)
2623 			return fec_ptp_set(ndev, rq);
2624 		if (cmd == SIOCGHWTSTAMP)
2625 			return fec_ptp_get(ndev, rq);
2626 	}
2627 
2628 	return phy_mii_ioctl(phydev, rq, cmd);
2629 }
2630 
2631 static void fec_enet_free_buffers(struct net_device *ndev)
2632 {
2633 	struct fec_enet_private *fep = netdev_priv(ndev);
2634 	unsigned int i;
2635 	struct sk_buff *skb;
2636 	struct bufdesc	*bdp;
2637 	struct fec_enet_priv_tx_q *txq;
2638 	struct fec_enet_priv_rx_q *rxq;
2639 	unsigned int q;
2640 
2641 	for (q = 0; q < fep->num_rx_queues; q++) {
2642 		rxq = fep->rx_queue[q];
2643 		bdp = rxq->bd.base;
2644 		for (i = 0; i < rxq->bd.ring_size; i++) {
2645 			skb = rxq->rx_skbuff[i];
2646 			rxq->rx_skbuff[i] = NULL;
2647 			if (skb) {
2648 				dma_unmap_single(&fep->pdev->dev,
2649 						 fec32_to_cpu(bdp->cbd_bufaddr),
2650 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2651 						 DMA_FROM_DEVICE);
2652 				dev_kfree_skb(skb);
2653 			}
2654 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2655 		}
2656 	}
2657 
2658 	for (q = 0; q < fep->num_tx_queues; q++) {
2659 		txq = fep->tx_queue[q];
2660 		bdp = txq->bd.base;
2661 		for (i = 0; i < txq->bd.ring_size; i++) {
2662 			kfree(txq->tx_bounce[i]);
2663 			txq->tx_bounce[i] = NULL;
2664 			skb = txq->tx_skbuff[i];
2665 			txq->tx_skbuff[i] = NULL;
2666 			dev_kfree_skb(skb);
2667 		}
2668 	}
2669 }
2670 
2671 static void fec_enet_free_queue(struct net_device *ndev)
2672 {
2673 	struct fec_enet_private *fep = netdev_priv(ndev);
2674 	int i;
2675 	struct fec_enet_priv_tx_q *txq;
2676 
2677 	for (i = 0; i < fep->num_tx_queues; i++)
2678 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2679 			txq = fep->tx_queue[i];
2680 			dma_free_coherent(&fep->pdev->dev,
2681 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2682 					  txq->tso_hdrs,
2683 					  txq->tso_hdrs_dma);
2684 		}
2685 
2686 	for (i = 0; i < fep->num_rx_queues; i++)
2687 		kfree(fep->rx_queue[i]);
2688 	for (i = 0; i < fep->num_tx_queues; i++)
2689 		kfree(fep->tx_queue[i]);
2690 }
2691 
2692 static int fec_enet_alloc_queue(struct net_device *ndev)
2693 {
2694 	struct fec_enet_private *fep = netdev_priv(ndev);
2695 	int i;
2696 	int ret = 0;
2697 	struct fec_enet_priv_tx_q *txq;
2698 
2699 	for (i = 0; i < fep->num_tx_queues; i++) {
2700 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2701 		if (!txq) {
2702 			ret = -ENOMEM;
2703 			goto alloc_failed;
2704 		}
2705 
2706 		fep->tx_queue[i] = txq;
2707 		txq->bd.ring_size = TX_RING_SIZE;
2708 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2709 
2710 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2711 		txq->tx_wake_threshold =
2712 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2713 
2714 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2715 					txq->bd.ring_size * TSO_HEADER_SIZE,
2716 					&txq->tso_hdrs_dma,
2717 					GFP_KERNEL);
2718 		if (!txq->tso_hdrs) {
2719 			ret = -ENOMEM;
2720 			goto alloc_failed;
2721 		}
2722 	}
2723 
2724 	for (i = 0; i < fep->num_rx_queues; i++) {
2725 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2726 					   GFP_KERNEL);
2727 		if (!fep->rx_queue[i]) {
2728 			ret = -ENOMEM;
2729 			goto alloc_failed;
2730 		}
2731 
2732 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2733 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2734 	}
2735 	return ret;
2736 
2737 alloc_failed:
2738 	fec_enet_free_queue(ndev);
2739 	return ret;
2740 }
2741 
2742 static int
2743 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2744 {
2745 	struct fec_enet_private *fep = netdev_priv(ndev);
2746 	unsigned int i;
2747 	struct sk_buff *skb;
2748 	struct bufdesc	*bdp;
2749 	struct fec_enet_priv_rx_q *rxq;
2750 
2751 	rxq = fep->rx_queue[queue];
2752 	bdp = rxq->bd.base;
2753 	for (i = 0; i < rxq->bd.ring_size; i++) {
2754 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2755 		if (!skb)
2756 			goto err_alloc;
2757 
2758 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2759 			dev_kfree_skb(skb);
2760 			goto err_alloc;
2761 		}
2762 
2763 		rxq->rx_skbuff[i] = skb;
2764 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2765 
2766 		if (fep->bufdesc_ex) {
2767 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2768 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2769 		}
2770 
2771 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2772 	}
2773 
2774 	/* Set the last buffer to wrap. */
2775 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2776 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2777 	return 0;
2778 
2779  err_alloc:
2780 	fec_enet_free_buffers(ndev);
2781 	return -ENOMEM;
2782 }
2783 
2784 static int
2785 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2786 {
2787 	struct fec_enet_private *fep = netdev_priv(ndev);
2788 	unsigned int i;
2789 	struct bufdesc  *bdp;
2790 	struct fec_enet_priv_tx_q *txq;
2791 
2792 	txq = fep->tx_queue[queue];
2793 	bdp = txq->bd.base;
2794 	for (i = 0; i < txq->bd.ring_size; i++) {
2795 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2796 		if (!txq->tx_bounce[i])
2797 			goto err_alloc;
2798 
2799 		bdp->cbd_sc = cpu_to_fec16(0);
2800 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2801 
2802 		if (fep->bufdesc_ex) {
2803 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2804 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2805 		}
2806 
2807 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2808 	}
2809 
2810 	/* Set the last buffer to wrap. */
2811 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2812 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2813 
2814 	return 0;
2815 
2816  err_alloc:
2817 	fec_enet_free_buffers(ndev);
2818 	return -ENOMEM;
2819 }
2820 
2821 static int fec_enet_alloc_buffers(struct net_device *ndev)
2822 {
2823 	struct fec_enet_private *fep = netdev_priv(ndev);
2824 	unsigned int i;
2825 
2826 	for (i = 0; i < fep->num_rx_queues; i++)
2827 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2828 			return -ENOMEM;
2829 
2830 	for (i = 0; i < fep->num_tx_queues; i++)
2831 		if (fec_enet_alloc_txq_buffers(ndev, i))
2832 			return -ENOMEM;
2833 	return 0;
2834 }
2835 
2836 static int
2837 fec_enet_open(struct net_device *ndev)
2838 {
2839 	struct fec_enet_private *fep = netdev_priv(ndev);
2840 	int ret;
2841 
2842 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2843 	if (ret < 0)
2844 		return ret;
2845 
2846 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2847 	ret = fec_enet_clk_enable(ndev, true);
2848 	if (ret)
2849 		goto clk_enable;
2850 
2851 	/* I should reset the ring buffers here, but I don't yet know
2852 	 * a simple way to do that.
2853 	 */
2854 
2855 	ret = fec_enet_alloc_buffers(ndev);
2856 	if (ret)
2857 		goto err_enet_alloc;
2858 
2859 	/* Init MAC prior to mii bus probe */
2860 	fec_restart(ndev);
2861 
2862 	/* Probe and connect to PHY when open the interface */
2863 	ret = fec_enet_mii_probe(ndev);
2864 	if (ret)
2865 		goto err_enet_mii_probe;
2866 
2867 	if (fep->quirks & FEC_QUIRK_ERR006687)
2868 		imx6q_cpuidle_fec_irqs_used();
2869 
2870 	napi_enable(&fep->napi);
2871 	phy_start(ndev->phydev);
2872 	netif_tx_start_all_queues(ndev);
2873 
2874 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2875 				 FEC_WOL_FLAG_ENABLE);
2876 
2877 	return 0;
2878 
2879 err_enet_mii_probe:
2880 	fec_enet_free_buffers(ndev);
2881 err_enet_alloc:
2882 	fec_enet_clk_enable(ndev, false);
2883 clk_enable:
2884 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2885 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2886 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2887 	return ret;
2888 }
2889 
2890 static int
2891 fec_enet_close(struct net_device *ndev)
2892 {
2893 	struct fec_enet_private *fep = netdev_priv(ndev);
2894 
2895 	phy_stop(ndev->phydev);
2896 
2897 	if (netif_device_present(ndev)) {
2898 		napi_disable(&fep->napi);
2899 		netif_tx_disable(ndev);
2900 		fec_stop(ndev);
2901 	}
2902 
2903 	phy_disconnect(ndev->phydev);
2904 
2905 	if (fep->quirks & FEC_QUIRK_ERR006687)
2906 		imx6q_cpuidle_fec_irqs_unused();
2907 
2908 	fec_enet_update_ethtool_stats(ndev);
2909 
2910 	fec_enet_clk_enable(ndev, false);
2911 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2912 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2913 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2914 
2915 	fec_enet_free_buffers(ndev);
2916 
2917 	return 0;
2918 }
2919 
2920 /* Set or clear the multicast filter for this adaptor.
2921  * Skeleton taken from sunlance driver.
2922  * The CPM Ethernet implementation allows Multicast as well as individual
2923  * MAC address filtering.  Some of the drivers check to make sure it is
2924  * a group multicast address, and discard those that are not.  I guess I
2925  * will do the same for now, but just remove the test if you want
2926  * individual filtering as well (do the upper net layers want or support
2927  * this kind of feature?).
2928  */
2929 
2930 #define FEC_HASH_BITS	6		/* #bits in hash */
2931 #define CRC32_POLY	0xEDB88320
2932 
2933 static void set_multicast_list(struct net_device *ndev)
2934 {
2935 	struct fec_enet_private *fep = netdev_priv(ndev);
2936 	struct netdev_hw_addr *ha;
2937 	unsigned int i, bit, data, crc, tmp;
2938 	unsigned char hash;
2939 	unsigned int hash_high = 0, hash_low = 0;
2940 
2941 	if (ndev->flags & IFF_PROMISC) {
2942 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2943 		tmp |= 0x8;
2944 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2945 		return;
2946 	}
2947 
2948 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2949 	tmp &= ~0x8;
2950 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2951 
2952 	if (ndev->flags & IFF_ALLMULTI) {
2953 		/* Catch all multicast addresses, so set the
2954 		 * filter to all 1's
2955 		 */
2956 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2957 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2958 
2959 		return;
2960 	}
2961 
2962 	/* Add the addresses in hash register */
2963 	netdev_for_each_mc_addr(ha, ndev) {
2964 		/* calculate crc32 value of mac address */
2965 		crc = 0xffffffff;
2966 
2967 		for (i = 0; i < ndev->addr_len; i++) {
2968 			data = ha->addr[i];
2969 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2970 				crc = (crc >> 1) ^
2971 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2972 			}
2973 		}
2974 
2975 		/* only upper 6 bits (FEC_HASH_BITS) are used
2976 		 * which point to specific bit in the hash registers
2977 		 */
2978 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2979 
2980 		if (hash > 31)
2981 			hash_high |= 1 << (hash - 32);
2982 		else
2983 			hash_low |= 1 << hash;
2984 	}
2985 
2986 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2987 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2988 }
2989 
2990 /* Set a MAC change in hardware. */
2991 static int
2992 fec_set_mac_address(struct net_device *ndev, void *p)
2993 {
2994 	struct fec_enet_private *fep = netdev_priv(ndev);
2995 	struct sockaddr *addr = p;
2996 
2997 	if (addr) {
2998 		if (!is_valid_ether_addr(addr->sa_data))
2999 			return -EADDRNOTAVAIL;
3000 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3001 	}
3002 
3003 	/* Add netif status check here to avoid system hang in below case:
3004 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3005 	 * After ethx down, fec all clocks are gated off and then register
3006 	 * access causes system hang.
3007 	 */
3008 	if (!netif_running(ndev))
3009 		return 0;
3010 
3011 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3012 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3013 		fep->hwp + FEC_ADDR_LOW);
3014 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3015 		fep->hwp + FEC_ADDR_HIGH);
3016 	return 0;
3017 }
3018 
3019 #ifdef CONFIG_NET_POLL_CONTROLLER
3020 /**
3021  * fec_poll_controller - FEC Poll controller function
3022  * @dev: The FEC network adapter
3023  *
3024  * Polled functionality used by netconsole and others in non interrupt mode
3025  *
3026  */
3027 static void fec_poll_controller(struct net_device *dev)
3028 {
3029 	int i;
3030 	struct fec_enet_private *fep = netdev_priv(dev);
3031 
3032 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3033 		if (fep->irq[i] > 0) {
3034 			disable_irq(fep->irq[i]);
3035 			fec_enet_interrupt(fep->irq[i], dev);
3036 			enable_irq(fep->irq[i]);
3037 		}
3038 	}
3039 }
3040 #endif
3041 
3042 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3043 	netdev_features_t features)
3044 {
3045 	struct fec_enet_private *fep = netdev_priv(netdev);
3046 	netdev_features_t changed = features ^ netdev->features;
3047 
3048 	netdev->features = features;
3049 
3050 	/* Receive checksum has been changed */
3051 	if (changed & NETIF_F_RXCSUM) {
3052 		if (features & NETIF_F_RXCSUM)
3053 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3054 		else
3055 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3056 	}
3057 }
3058 
3059 static int fec_set_features(struct net_device *netdev,
3060 	netdev_features_t features)
3061 {
3062 	struct fec_enet_private *fep = netdev_priv(netdev);
3063 	netdev_features_t changed = features ^ netdev->features;
3064 
3065 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3066 		napi_disable(&fep->napi);
3067 		netif_tx_lock_bh(netdev);
3068 		fec_stop(netdev);
3069 		fec_enet_set_netdev_features(netdev, features);
3070 		fec_restart(netdev);
3071 		netif_tx_wake_all_queues(netdev);
3072 		netif_tx_unlock_bh(netdev);
3073 		napi_enable(&fep->napi);
3074 	} else {
3075 		fec_enet_set_netdev_features(netdev, features);
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 static const struct net_device_ops fec_netdev_ops = {
3082 	.ndo_open		= fec_enet_open,
3083 	.ndo_stop		= fec_enet_close,
3084 	.ndo_start_xmit		= fec_enet_start_xmit,
3085 	.ndo_set_rx_mode	= set_multicast_list,
3086 	.ndo_validate_addr	= eth_validate_addr,
3087 	.ndo_tx_timeout		= fec_timeout,
3088 	.ndo_set_mac_address	= fec_set_mac_address,
3089 	.ndo_do_ioctl		= fec_enet_ioctl,
3090 #ifdef CONFIG_NET_POLL_CONTROLLER
3091 	.ndo_poll_controller	= fec_poll_controller,
3092 #endif
3093 	.ndo_set_features	= fec_set_features,
3094 };
3095 
3096 static const unsigned short offset_des_active_rxq[] = {
3097 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3098 };
3099 
3100 static const unsigned short offset_des_active_txq[] = {
3101 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3102 };
3103 
3104  /*
3105   * XXX:  We need to clean up on failure exits here.
3106   *
3107   */
3108 static int fec_enet_init(struct net_device *ndev)
3109 {
3110 	struct fec_enet_private *fep = netdev_priv(ndev);
3111 	struct bufdesc *cbd_base;
3112 	dma_addr_t bd_dma;
3113 	int bd_size;
3114 	unsigned int i;
3115 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3116 			sizeof(struct bufdesc);
3117 	unsigned dsize_log2 = __fls(dsize);
3118 
3119 	WARN_ON(dsize != (1 << dsize_log2));
3120 #if defined(CONFIG_ARM)
3121 	fep->rx_align = 0xf;
3122 	fep->tx_align = 0xf;
3123 #else
3124 	fep->rx_align = 0x3;
3125 	fep->tx_align = 0x3;
3126 #endif
3127 
3128 	fec_enet_alloc_queue(ndev);
3129 
3130 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3131 
3132 	/* Allocate memory for buffer descriptors. */
3133 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3134 				       GFP_KERNEL);
3135 	if (!cbd_base) {
3136 		return -ENOMEM;
3137 	}
3138 
3139 	memset(cbd_base, 0, bd_size);
3140 
3141 	/* Get the Ethernet address */
3142 	fec_get_mac(ndev);
3143 	/* make sure MAC we just acquired is programmed into the hw */
3144 	fec_set_mac_address(ndev, NULL);
3145 
3146 	/* Set receive and transmit descriptor base. */
3147 	for (i = 0; i < fep->num_rx_queues; i++) {
3148 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3149 		unsigned size = dsize * rxq->bd.ring_size;
3150 
3151 		rxq->bd.qid = i;
3152 		rxq->bd.base = cbd_base;
3153 		rxq->bd.cur = cbd_base;
3154 		rxq->bd.dma = bd_dma;
3155 		rxq->bd.dsize = dsize;
3156 		rxq->bd.dsize_log2 = dsize_log2;
3157 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3158 		bd_dma += size;
3159 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3160 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3161 	}
3162 
3163 	for (i = 0; i < fep->num_tx_queues; i++) {
3164 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3165 		unsigned size = dsize * txq->bd.ring_size;
3166 
3167 		txq->bd.qid = i;
3168 		txq->bd.base = cbd_base;
3169 		txq->bd.cur = cbd_base;
3170 		txq->bd.dma = bd_dma;
3171 		txq->bd.dsize = dsize;
3172 		txq->bd.dsize_log2 = dsize_log2;
3173 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3174 		bd_dma += size;
3175 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3176 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3177 	}
3178 
3179 
3180 	/* The FEC Ethernet specific entries in the device structure */
3181 	ndev->watchdog_timeo = TX_TIMEOUT;
3182 	ndev->netdev_ops = &fec_netdev_ops;
3183 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3184 
3185 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3186 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3187 
3188 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3189 		/* enable hw VLAN support */
3190 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3191 
3192 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3193 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3194 
3195 		/* enable hw accelerator */
3196 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3197 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3198 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3199 	}
3200 
3201 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3202 		fep->tx_align = 0;
3203 		fep->rx_align = 0x3f;
3204 	}
3205 
3206 	ndev->hw_features = ndev->features;
3207 
3208 	fec_restart(ndev);
3209 
3210 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3211 		fec_enet_clear_ethtool_stats(ndev);
3212 	else
3213 		fec_enet_update_ethtool_stats(ndev);
3214 
3215 	return 0;
3216 }
3217 
3218 #ifdef CONFIG_OF
3219 static int fec_reset_phy(struct platform_device *pdev)
3220 {
3221 	int err, phy_reset;
3222 	bool active_high = false;
3223 	int msec = 1, phy_post_delay = 0;
3224 	struct device_node *np = pdev->dev.of_node;
3225 
3226 	if (!np)
3227 		return 0;
3228 
3229 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3230 	/* A sane reset duration should not be longer than 1s */
3231 	if (!err && msec > 1000)
3232 		msec = 1;
3233 
3234 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3235 	if (phy_reset == -EPROBE_DEFER)
3236 		return phy_reset;
3237 	else if (!gpio_is_valid(phy_reset))
3238 		return 0;
3239 
3240 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3241 	/* valid reset duration should be less than 1s */
3242 	if (!err && phy_post_delay > 1000)
3243 		return -EINVAL;
3244 
3245 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3246 
3247 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3248 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3249 			"phy-reset");
3250 	if (err) {
3251 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3252 		return err;
3253 	}
3254 
3255 	if (msec > 20)
3256 		msleep(msec);
3257 	else
3258 		usleep_range(msec * 1000, msec * 1000 + 1000);
3259 
3260 	gpio_set_value_cansleep(phy_reset, !active_high);
3261 
3262 	if (!phy_post_delay)
3263 		return 0;
3264 
3265 	if (phy_post_delay > 20)
3266 		msleep(phy_post_delay);
3267 	else
3268 		usleep_range(phy_post_delay * 1000,
3269 			     phy_post_delay * 1000 + 1000);
3270 
3271 	return 0;
3272 }
3273 #else /* CONFIG_OF */
3274 static int fec_reset_phy(struct platform_device *pdev)
3275 {
3276 	/*
3277 	 * In case of platform probe, the reset has been done
3278 	 * by machine code.
3279 	 */
3280 	return 0;
3281 }
3282 #endif /* CONFIG_OF */
3283 
3284 static void
3285 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3286 {
3287 	struct device_node *np = pdev->dev.of_node;
3288 
3289 	*num_tx = *num_rx = 1;
3290 
3291 	if (!np || !of_device_is_available(np))
3292 		return;
3293 
3294 	/* parse the num of tx and rx queues */
3295 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3296 
3297 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3298 
3299 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3300 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3301 			 *num_tx);
3302 		*num_tx = 1;
3303 		return;
3304 	}
3305 
3306 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3307 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3308 			 *num_rx);
3309 		*num_rx = 1;
3310 		return;
3311 	}
3312 
3313 }
3314 
3315 static int
3316 fec_probe(struct platform_device *pdev)
3317 {
3318 	struct fec_enet_private *fep;
3319 	struct fec_platform_data *pdata;
3320 	struct net_device *ndev;
3321 	int i, irq, ret = 0;
3322 	struct resource *r;
3323 	const struct of_device_id *of_id;
3324 	static int dev_id;
3325 	struct device_node *np = pdev->dev.of_node, *phy_node;
3326 	int num_tx_qs;
3327 	int num_rx_qs;
3328 
3329 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3330 
3331 	/* Init network device */
3332 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3333 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3334 	if (!ndev)
3335 		return -ENOMEM;
3336 
3337 	SET_NETDEV_DEV(ndev, &pdev->dev);
3338 
3339 	/* setup board info structure */
3340 	fep = netdev_priv(ndev);
3341 
3342 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3343 	if (of_id)
3344 		pdev->id_entry = of_id->data;
3345 	fep->quirks = pdev->id_entry->driver_data;
3346 
3347 	fep->netdev = ndev;
3348 	fep->num_rx_queues = num_rx_qs;
3349 	fep->num_tx_queues = num_tx_qs;
3350 
3351 #if !defined(CONFIG_M5272)
3352 	/* default enable pause frame auto negotiation */
3353 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3354 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3355 #endif
3356 
3357 	/* Select default pin state */
3358 	pinctrl_pm_select_default_state(&pdev->dev);
3359 
3360 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3361 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3362 	if (IS_ERR(fep->hwp)) {
3363 		ret = PTR_ERR(fep->hwp);
3364 		goto failed_ioremap;
3365 	}
3366 
3367 	fep->pdev = pdev;
3368 	fep->dev_id = dev_id++;
3369 
3370 	platform_set_drvdata(pdev, ndev);
3371 
3372 	if ((of_machine_is_compatible("fsl,imx6q") ||
3373 	     of_machine_is_compatible("fsl,imx6dl")) &&
3374 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3375 		fep->quirks |= FEC_QUIRK_ERR006687;
3376 
3377 	if (of_get_property(np, "fsl,magic-packet", NULL))
3378 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3379 
3380 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3381 	if (!phy_node && of_phy_is_fixed_link(np)) {
3382 		ret = of_phy_register_fixed_link(np);
3383 		if (ret < 0) {
3384 			dev_err(&pdev->dev,
3385 				"broken fixed-link specification\n");
3386 			goto failed_phy;
3387 		}
3388 		phy_node = of_node_get(np);
3389 	}
3390 	fep->phy_node = phy_node;
3391 
3392 	ret = of_get_phy_mode(pdev->dev.of_node);
3393 	if (ret < 0) {
3394 		pdata = dev_get_platdata(&pdev->dev);
3395 		if (pdata)
3396 			fep->phy_interface = pdata->phy;
3397 		else
3398 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3399 	} else {
3400 		fep->phy_interface = ret;
3401 	}
3402 
3403 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3404 	if (IS_ERR(fep->clk_ipg)) {
3405 		ret = PTR_ERR(fep->clk_ipg);
3406 		goto failed_clk;
3407 	}
3408 
3409 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3410 	if (IS_ERR(fep->clk_ahb)) {
3411 		ret = PTR_ERR(fep->clk_ahb);
3412 		goto failed_clk;
3413 	}
3414 
3415 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3416 
3417 	/* enet_out is optional, depends on board */
3418 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3419 	if (IS_ERR(fep->clk_enet_out))
3420 		fep->clk_enet_out = NULL;
3421 
3422 	fep->ptp_clk_on = false;
3423 	mutex_init(&fep->ptp_clk_mutex);
3424 
3425 	/* clk_ref is optional, depends on board */
3426 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3427 	if (IS_ERR(fep->clk_ref))
3428 		fep->clk_ref = NULL;
3429 
3430 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3431 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3432 	if (IS_ERR(fep->clk_ptp)) {
3433 		fep->clk_ptp = NULL;
3434 		fep->bufdesc_ex = false;
3435 	}
3436 
3437 	ret = fec_enet_clk_enable(ndev, true);
3438 	if (ret)
3439 		goto failed_clk;
3440 
3441 	ret = clk_prepare_enable(fep->clk_ipg);
3442 	if (ret)
3443 		goto failed_clk_ipg;
3444 
3445 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3446 	if (!IS_ERR(fep->reg_phy)) {
3447 		ret = regulator_enable(fep->reg_phy);
3448 		if (ret) {
3449 			dev_err(&pdev->dev,
3450 				"Failed to enable phy regulator: %d\n", ret);
3451 			clk_disable_unprepare(fep->clk_ipg);
3452 			goto failed_regulator;
3453 		}
3454 	} else {
3455 		fep->reg_phy = NULL;
3456 	}
3457 
3458 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3459 	pm_runtime_use_autosuspend(&pdev->dev);
3460 	pm_runtime_get_noresume(&pdev->dev);
3461 	pm_runtime_set_active(&pdev->dev);
3462 	pm_runtime_enable(&pdev->dev);
3463 
3464 	ret = fec_reset_phy(pdev);
3465 	if (ret)
3466 		goto failed_reset;
3467 
3468 	if (fep->bufdesc_ex)
3469 		fec_ptp_init(pdev);
3470 
3471 	ret = fec_enet_init(ndev);
3472 	if (ret)
3473 		goto failed_init;
3474 
3475 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3476 		irq = platform_get_irq(pdev, i);
3477 		if (irq < 0) {
3478 			if (i)
3479 				break;
3480 			ret = irq;
3481 			goto failed_irq;
3482 		}
3483 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3484 				       0, pdev->name, ndev);
3485 		if (ret)
3486 			goto failed_irq;
3487 
3488 		fep->irq[i] = irq;
3489 	}
3490 
3491 	init_completion(&fep->mdio_done);
3492 	ret = fec_enet_mii_init(pdev);
3493 	if (ret)
3494 		goto failed_mii_init;
3495 
3496 	/* Carrier starts down, phylib will bring it up */
3497 	netif_carrier_off(ndev);
3498 	fec_enet_clk_enable(ndev, false);
3499 	pinctrl_pm_select_sleep_state(&pdev->dev);
3500 
3501 	ret = register_netdev(ndev);
3502 	if (ret)
3503 		goto failed_register;
3504 
3505 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3506 			   FEC_WOL_HAS_MAGIC_PACKET);
3507 
3508 	if (fep->bufdesc_ex && fep->ptp_clock)
3509 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3510 
3511 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3512 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3513 
3514 	pm_runtime_mark_last_busy(&pdev->dev);
3515 	pm_runtime_put_autosuspend(&pdev->dev);
3516 
3517 	return 0;
3518 
3519 failed_register:
3520 	fec_enet_mii_remove(fep);
3521 failed_mii_init:
3522 failed_irq:
3523 failed_init:
3524 	fec_ptp_stop(pdev);
3525 	if (fep->reg_phy)
3526 		regulator_disable(fep->reg_phy);
3527 failed_reset:
3528 	pm_runtime_put(&pdev->dev);
3529 	pm_runtime_disable(&pdev->dev);
3530 failed_regulator:
3531 failed_clk_ipg:
3532 	fec_enet_clk_enable(ndev, false);
3533 failed_clk:
3534 	if (of_phy_is_fixed_link(np))
3535 		of_phy_deregister_fixed_link(np);
3536 failed_phy:
3537 	of_node_put(phy_node);
3538 failed_ioremap:
3539 	free_netdev(ndev);
3540 
3541 	return ret;
3542 }
3543 
3544 static int
3545 fec_drv_remove(struct platform_device *pdev)
3546 {
3547 	struct net_device *ndev = platform_get_drvdata(pdev);
3548 	struct fec_enet_private *fep = netdev_priv(ndev);
3549 	struct device_node *np = pdev->dev.of_node;
3550 
3551 	cancel_work_sync(&fep->tx_timeout_work);
3552 	fec_ptp_stop(pdev);
3553 	unregister_netdev(ndev);
3554 	fec_enet_mii_remove(fep);
3555 	if (fep->reg_phy)
3556 		regulator_disable(fep->reg_phy);
3557 	if (of_phy_is_fixed_link(np))
3558 		of_phy_deregister_fixed_link(np);
3559 	of_node_put(fep->phy_node);
3560 	free_netdev(ndev);
3561 
3562 	return 0;
3563 }
3564 
3565 static int __maybe_unused fec_suspend(struct device *dev)
3566 {
3567 	struct net_device *ndev = dev_get_drvdata(dev);
3568 	struct fec_enet_private *fep = netdev_priv(ndev);
3569 
3570 	rtnl_lock();
3571 	if (netif_running(ndev)) {
3572 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3573 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3574 		phy_stop(ndev->phydev);
3575 		napi_disable(&fep->napi);
3576 		netif_tx_lock_bh(ndev);
3577 		netif_device_detach(ndev);
3578 		netif_tx_unlock_bh(ndev);
3579 		fec_stop(ndev);
3580 		fec_enet_clk_enable(ndev, false);
3581 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3582 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3583 	}
3584 	rtnl_unlock();
3585 
3586 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3587 		regulator_disable(fep->reg_phy);
3588 
3589 	/* SOC supply clock to phy, when clock is disabled, phy link down
3590 	 * SOC control phy regulator, when regulator is disabled, phy link down
3591 	 */
3592 	if (fep->clk_enet_out || fep->reg_phy)
3593 		fep->link = 0;
3594 
3595 	return 0;
3596 }
3597 
3598 static int __maybe_unused fec_resume(struct device *dev)
3599 {
3600 	struct net_device *ndev = dev_get_drvdata(dev);
3601 	struct fec_enet_private *fep = netdev_priv(ndev);
3602 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3603 	int ret;
3604 	int val;
3605 
3606 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3607 		ret = regulator_enable(fep->reg_phy);
3608 		if (ret)
3609 			return ret;
3610 	}
3611 
3612 	rtnl_lock();
3613 	if (netif_running(ndev)) {
3614 		ret = fec_enet_clk_enable(ndev, true);
3615 		if (ret) {
3616 			rtnl_unlock();
3617 			goto failed_clk;
3618 		}
3619 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3620 			if (pdata && pdata->sleep_mode_enable)
3621 				pdata->sleep_mode_enable(false);
3622 			val = readl(fep->hwp + FEC_ECNTRL);
3623 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3624 			writel(val, fep->hwp + FEC_ECNTRL);
3625 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3626 		} else {
3627 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3628 		}
3629 		fec_restart(ndev);
3630 		netif_tx_lock_bh(ndev);
3631 		netif_device_attach(ndev);
3632 		netif_tx_unlock_bh(ndev);
3633 		napi_enable(&fep->napi);
3634 		phy_start(ndev->phydev);
3635 	}
3636 	rtnl_unlock();
3637 
3638 	return 0;
3639 
3640 failed_clk:
3641 	if (fep->reg_phy)
3642 		regulator_disable(fep->reg_phy);
3643 	return ret;
3644 }
3645 
3646 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3647 {
3648 	struct net_device *ndev = dev_get_drvdata(dev);
3649 	struct fec_enet_private *fep = netdev_priv(ndev);
3650 
3651 	clk_disable_unprepare(fep->clk_ipg);
3652 
3653 	return 0;
3654 }
3655 
3656 static int __maybe_unused fec_runtime_resume(struct device *dev)
3657 {
3658 	struct net_device *ndev = dev_get_drvdata(dev);
3659 	struct fec_enet_private *fep = netdev_priv(ndev);
3660 
3661 	return clk_prepare_enable(fep->clk_ipg);
3662 }
3663 
3664 static const struct dev_pm_ops fec_pm_ops = {
3665 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3666 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3667 };
3668 
3669 static struct platform_driver fec_driver = {
3670 	.driver	= {
3671 		.name	= DRIVER_NAME,
3672 		.pm	= &fec_pm_ops,
3673 		.of_match_table = fec_dt_ids,
3674 	},
3675 	.id_table = fec_devtype,
3676 	.probe	= fec_probe,
3677 	.remove	= fec_drv_remove,
3678 };
3679 
3680 module_platform_driver(fec_driver);
3681 
3682 MODULE_ALIAS("platform:"DRIVER_NAME);
3683 MODULE_LICENSE("GPL");
3684