1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
95 	}, {
96 		.name = "imx6q-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
98 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
99 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
100 	}, {
101 		.name = "mvf600-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC,
103 	}, {
104 		.name = "imx6sx-fec",
105 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
106 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
107 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
108 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
109 	}, {
110 		/* sentinel */
111 	}
112 };
113 MODULE_DEVICE_TABLE(platform, fec_devtype);
114 
115 enum imx_fec_type {
116 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
117 	IMX27_FEC,	/* runs on i.mx27/35/51 */
118 	IMX28_FEC,
119 	IMX6Q_FEC,
120 	MVF600_FEC,
121 	IMX6SX_FEC,
122 };
123 
124 static const struct of_device_id fec_dt_ids[] = {
125 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
126 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
127 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
128 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
129 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
130 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
131 	{ /* sentinel */ }
132 };
133 MODULE_DEVICE_TABLE(of, fec_dt_ids);
134 
135 static unsigned char macaddr[ETH_ALEN];
136 module_param_array(macaddr, byte, NULL, 0);
137 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
138 
139 #if defined(CONFIG_M5272)
140 /*
141  * Some hardware gets it MAC address out of local flash memory.
142  * if this is non-zero then assume it is the address to get MAC from.
143  */
144 #if defined(CONFIG_NETtel)
145 #define	FEC_FLASHMAC	0xf0006006
146 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
147 #define	FEC_FLASHMAC	0xf0006000
148 #elif defined(CONFIG_CANCam)
149 #define	FEC_FLASHMAC	0xf0020000
150 #elif defined (CONFIG_M5272C3)
151 #define	FEC_FLASHMAC	(0xffe04000 + 4)
152 #elif defined(CONFIG_MOD5272)
153 #define FEC_FLASHMAC	0xffc0406b
154 #else
155 #define	FEC_FLASHMAC	0
156 #endif
157 #endif /* CONFIG_M5272 */
158 
159 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
160  */
161 #define PKT_MAXBUF_SIZE		1522
162 #define PKT_MINBUF_SIZE		64
163 #define PKT_MAXBLR_SIZE		1536
164 
165 /* FEC receive acceleration */
166 #define FEC_RACC_IPDIS		(1 << 1)
167 #define FEC_RACC_PRODIS		(1 << 2)
168 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
169 
170 /*
171  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172  * size bits. Other FEC hardware does not, so we need to take that into
173  * account when setting it.
174  */
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
177 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
178 #else
179 #define	OPT_FRAME_SIZE	0
180 #endif
181 
182 /* FEC MII MMFR bits definition */
183 #define FEC_MMFR_ST		(1 << 30)
184 #define FEC_MMFR_OP_READ	(2 << 28)
185 #define FEC_MMFR_OP_WRITE	(1 << 28)
186 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
187 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
188 #define FEC_MMFR_TA		(2 << 16)
189 #define FEC_MMFR_DATA(v)	(v & 0xffff)
190 
191 #define FEC_MII_TIMEOUT		30000 /* us */
192 
193 /* Transmitter timeout */
194 #define TX_TIMEOUT (2 * HZ)
195 
196 #define FEC_PAUSE_FLAG_AUTONEG	0x1
197 #define FEC_PAUSE_FLAG_ENABLE	0x2
198 
199 #define COPYBREAK_DEFAULT	256
200 
201 #define TSO_HEADER_SIZE		128
202 /* Max number of allowed TCP segments for software TSO */
203 #define FEC_MAX_TSO_SEGS	100
204 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
205 
206 #define IS_TSO_HEADER(txq, addr) \
207 	((addr >= txq->tso_hdrs_dma) && \
208 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
209 
210 static int mii_cnt;
211 
212 static inline
213 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
214 				      struct fec_enet_private *fep,
215 				      int queue_id)
216 {
217 	struct bufdesc *new_bd = bdp + 1;
218 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
219 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
220 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
221 	struct bufdesc_ex *ex_base;
222 	struct bufdesc *base;
223 	int ring_size;
224 
225 	if (bdp >= txq->tx_bd_base) {
226 		base = txq->tx_bd_base;
227 		ring_size = txq->tx_ring_size;
228 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
229 	} else {
230 		base = rxq->rx_bd_base;
231 		ring_size = rxq->rx_ring_size;
232 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
233 	}
234 
235 	if (fep->bufdesc_ex)
236 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
237 			ex_base : ex_new_bd);
238 	else
239 		return (new_bd >= (base + ring_size)) ?
240 			base : new_bd;
241 }
242 
243 static inline
244 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
245 				      struct fec_enet_private *fep,
246 				      int queue_id)
247 {
248 	struct bufdesc *new_bd = bdp - 1;
249 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
250 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
251 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
252 	struct bufdesc_ex *ex_base;
253 	struct bufdesc *base;
254 	int ring_size;
255 
256 	if (bdp >= txq->tx_bd_base) {
257 		base = txq->tx_bd_base;
258 		ring_size = txq->tx_ring_size;
259 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
260 	} else {
261 		base = rxq->rx_bd_base;
262 		ring_size = rxq->rx_ring_size;
263 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
264 	}
265 
266 	if (fep->bufdesc_ex)
267 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
268 			(ex_new_bd + ring_size) : ex_new_bd);
269 	else
270 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
271 }
272 
273 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
274 				struct fec_enet_private *fep)
275 {
276 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
277 }
278 
279 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
280 					struct fec_enet_priv_tx_q *txq)
281 {
282 	int entries;
283 
284 	entries = ((const char *)txq->dirty_tx -
285 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
286 
287 	return entries > 0 ? entries : entries + txq->tx_ring_size;
288 }
289 
290 static void *swap_buffer(void *bufaddr, int len)
291 {
292 	int i;
293 	unsigned int *buf = bufaddr;
294 
295 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
296 		*buf = cpu_to_be32(*buf);
297 
298 	return bufaddr;
299 }
300 
301 static void fec_dump(struct net_device *ndev)
302 {
303 	struct fec_enet_private *fep = netdev_priv(ndev);
304 	struct bufdesc *bdp;
305 	struct fec_enet_priv_tx_q *txq;
306 	int index = 0;
307 
308 	netdev_info(ndev, "TX ring dump\n");
309 	pr_info("Nr     SC     addr       len  SKB\n");
310 
311 	txq = fep->tx_queue[0];
312 	bdp = txq->tx_bd_base;
313 
314 	do {
315 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
316 			index,
317 			bdp == txq->cur_tx ? 'S' : ' ',
318 			bdp == txq->dirty_tx ? 'H' : ' ',
319 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
320 			txq->tx_skbuff[index]);
321 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
322 		index++;
323 	} while (bdp != txq->tx_bd_base);
324 }
325 
326 static inline bool is_ipv4_pkt(struct sk_buff *skb)
327 {
328 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
329 }
330 
331 static int
332 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
333 {
334 	/* Only run for packets requiring a checksum. */
335 	if (skb->ip_summed != CHECKSUM_PARTIAL)
336 		return 0;
337 
338 	if (unlikely(skb_cow_head(skb, 0)))
339 		return -1;
340 
341 	if (is_ipv4_pkt(skb))
342 		ip_hdr(skb)->check = 0;
343 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
344 
345 	return 0;
346 }
347 
348 static int
349 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
350 			     struct sk_buff *skb,
351 			     struct net_device *ndev)
352 {
353 	struct fec_enet_private *fep = netdev_priv(ndev);
354 	const struct platform_device_id *id_entry =
355 				platform_get_device_id(fep->pdev);
356 	struct bufdesc *bdp = txq->cur_tx;
357 	struct bufdesc_ex *ebdp;
358 	int nr_frags = skb_shinfo(skb)->nr_frags;
359 	unsigned short queue = skb_get_queue_mapping(skb);
360 	int frag, frag_len;
361 	unsigned short status;
362 	unsigned int estatus = 0;
363 	skb_frag_t *this_frag;
364 	unsigned int index;
365 	void *bufaddr;
366 	dma_addr_t addr;
367 	int i;
368 
369 	for (frag = 0; frag < nr_frags; frag++) {
370 		this_frag = &skb_shinfo(skb)->frags[frag];
371 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
372 		ebdp = (struct bufdesc_ex *)bdp;
373 
374 		status = bdp->cbd_sc;
375 		status &= ~BD_ENET_TX_STATS;
376 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
377 		frag_len = skb_shinfo(skb)->frags[frag].size;
378 
379 		/* Handle the last BD specially */
380 		if (frag == nr_frags - 1) {
381 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
382 			if (fep->bufdesc_ex) {
383 				estatus |= BD_ENET_TX_INT;
384 				if (unlikely(skb_shinfo(skb)->tx_flags &
385 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
386 					estatus |= BD_ENET_TX_TS;
387 			}
388 		}
389 
390 		if (fep->bufdesc_ex) {
391 			if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
392 				estatus |= FEC_TX_BD_FTYPE(queue);
393 			if (skb->ip_summed == CHECKSUM_PARTIAL)
394 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
395 			ebdp->cbd_bdu = 0;
396 			ebdp->cbd_esc = estatus;
397 		}
398 
399 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
400 
401 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
402 		if (((unsigned long) bufaddr) & fep->tx_align ||
403 			id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
404 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
405 			bufaddr = txq->tx_bounce[index];
406 
407 			if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
408 				swap_buffer(bufaddr, frag_len);
409 		}
410 
411 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
412 				      DMA_TO_DEVICE);
413 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
414 			dev_kfree_skb_any(skb);
415 			if (net_ratelimit())
416 				netdev_err(ndev, "Tx DMA memory map failed\n");
417 			goto dma_mapping_error;
418 		}
419 
420 		bdp->cbd_bufaddr = addr;
421 		bdp->cbd_datlen = frag_len;
422 		bdp->cbd_sc = status;
423 	}
424 
425 	txq->cur_tx = bdp;
426 
427 	return 0;
428 
429 dma_mapping_error:
430 	bdp = txq->cur_tx;
431 	for (i = 0; i < frag; i++) {
432 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
433 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
434 				bdp->cbd_datlen, DMA_TO_DEVICE);
435 	}
436 	return NETDEV_TX_OK;
437 }
438 
439 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
440 				   struct sk_buff *skb, struct net_device *ndev)
441 {
442 	struct fec_enet_private *fep = netdev_priv(ndev);
443 	const struct platform_device_id *id_entry =
444 				platform_get_device_id(fep->pdev);
445 	int nr_frags = skb_shinfo(skb)->nr_frags;
446 	struct bufdesc *bdp, *last_bdp;
447 	void *bufaddr;
448 	dma_addr_t addr;
449 	unsigned short status;
450 	unsigned short buflen;
451 	unsigned short queue;
452 	unsigned int estatus = 0;
453 	unsigned int index;
454 	int entries_free;
455 	int ret;
456 
457 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
458 	if (entries_free < MAX_SKB_FRAGS + 1) {
459 		dev_kfree_skb_any(skb);
460 		if (net_ratelimit())
461 			netdev_err(ndev, "NOT enough BD for SG!\n");
462 		return NETDEV_TX_OK;
463 	}
464 
465 	/* Protocol checksum off-load for TCP and UDP. */
466 	if (fec_enet_clear_csum(skb, ndev)) {
467 		dev_kfree_skb_any(skb);
468 		return NETDEV_TX_OK;
469 	}
470 
471 	/* Fill in a Tx ring entry */
472 	bdp = txq->cur_tx;
473 	status = bdp->cbd_sc;
474 	status &= ~BD_ENET_TX_STATS;
475 
476 	/* Set buffer length and buffer pointer */
477 	bufaddr = skb->data;
478 	buflen = skb_headlen(skb);
479 
480 	queue = skb_get_queue_mapping(skb);
481 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
482 	if (((unsigned long) bufaddr) & fep->tx_align ||
483 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
484 		memcpy(txq->tx_bounce[index], skb->data, buflen);
485 		bufaddr = txq->tx_bounce[index];
486 
487 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
488 			swap_buffer(bufaddr, buflen);
489 	}
490 
491 	/* Push the data cache so the CPM does not get stale memory data. */
492 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
493 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
494 		dev_kfree_skb_any(skb);
495 		if (net_ratelimit())
496 			netdev_err(ndev, "Tx DMA memory map failed\n");
497 		return NETDEV_TX_OK;
498 	}
499 
500 	if (nr_frags) {
501 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
502 		if (ret)
503 			return ret;
504 	} else {
505 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
506 		if (fep->bufdesc_ex) {
507 			estatus = BD_ENET_TX_INT;
508 			if (unlikely(skb_shinfo(skb)->tx_flags &
509 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
510 				estatus |= BD_ENET_TX_TS;
511 		}
512 	}
513 
514 	if (fep->bufdesc_ex) {
515 
516 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
517 
518 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
519 			fep->hwts_tx_en))
520 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
521 
522 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
523 			estatus |= FEC_TX_BD_FTYPE(queue);
524 
525 		if (skb->ip_summed == CHECKSUM_PARTIAL)
526 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
527 
528 		ebdp->cbd_bdu = 0;
529 		ebdp->cbd_esc = estatus;
530 	}
531 
532 	last_bdp = txq->cur_tx;
533 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
534 	/* Save skb pointer */
535 	txq->tx_skbuff[index] = skb;
536 
537 	bdp->cbd_datlen = buflen;
538 	bdp->cbd_bufaddr = addr;
539 
540 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
541 	 * it's the last BD of the frame, and to put the CRC on the end.
542 	 */
543 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
544 	bdp->cbd_sc = status;
545 
546 	/* If this was the last BD in the ring, start at the beginning again. */
547 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
548 
549 	skb_tx_timestamp(skb);
550 
551 	txq->cur_tx = bdp;
552 
553 	/* Trigger transmission start */
554 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
555 
556 	return 0;
557 }
558 
559 static int
560 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
561 			  struct net_device *ndev,
562 			  struct bufdesc *bdp, int index, char *data,
563 			  int size, bool last_tcp, bool is_last)
564 {
565 	struct fec_enet_private *fep = netdev_priv(ndev);
566 	const struct platform_device_id *id_entry =
567 				platform_get_device_id(fep->pdev);
568 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
569 	unsigned short queue = skb_get_queue_mapping(skb);
570 	unsigned short status;
571 	unsigned int estatus = 0;
572 	dma_addr_t addr;
573 
574 	status = bdp->cbd_sc;
575 	status &= ~BD_ENET_TX_STATS;
576 
577 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
578 
579 	if (((unsigned long) data) & fep->tx_align ||
580 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
581 		memcpy(txq->tx_bounce[index], data, size);
582 		data = txq->tx_bounce[index];
583 
584 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
585 			swap_buffer(data, size);
586 	}
587 
588 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
589 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
590 		dev_kfree_skb_any(skb);
591 		if (net_ratelimit())
592 			netdev_err(ndev, "Tx DMA memory map failed\n");
593 		return NETDEV_TX_BUSY;
594 	}
595 
596 	bdp->cbd_datlen = size;
597 	bdp->cbd_bufaddr = addr;
598 
599 	if (fep->bufdesc_ex) {
600 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
601 			estatus |= FEC_TX_BD_FTYPE(queue);
602 		if (skb->ip_summed == CHECKSUM_PARTIAL)
603 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
604 		ebdp->cbd_bdu = 0;
605 		ebdp->cbd_esc = estatus;
606 	}
607 
608 	/* Handle the last BD specially */
609 	if (last_tcp)
610 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
611 	if (is_last) {
612 		status |= BD_ENET_TX_INTR;
613 		if (fep->bufdesc_ex)
614 			ebdp->cbd_esc |= BD_ENET_TX_INT;
615 	}
616 
617 	bdp->cbd_sc = status;
618 
619 	return 0;
620 }
621 
622 static int
623 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
624 			 struct sk_buff *skb, struct net_device *ndev,
625 			 struct bufdesc *bdp, int index)
626 {
627 	struct fec_enet_private *fep = netdev_priv(ndev);
628 	const struct platform_device_id *id_entry =
629 				platform_get_device_id(fep->pdev);
630 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
631 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
632 	unsigned short queue = skb_get_queue_mapping(skb);
633 	void *bufaddr;
634 	unsigned long dmabuf;
635 	unsigned short status;
636 	unsigned int estatus = 0;
637 
638 	status = bdp->cbd_sc;
639 	status &= ~BD_ENET_TX_STATS;
640 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
641 
642 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
643 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
644 	if (((unsigned long)bufaddr) & fep->tx_align ||
645 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
646 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
647 		bufaddr = txq->tx_bounce[index];
648 
649 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
650 			swap_buffer(bufaddr, hdr_len);
651 
652 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
653 					hdr_len, DMA_TO_DEVICE);
654 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
655 			dev_kfree_skb_any(skb);
656 			if (net_ratelimit())
657 				netdev_err(ndev, "Tx DMA memory map failed\n");
658 			return NETDEV_TX_BUSY;
659 		}
660 	}
661 
662 	bdp->cbd_bufaddr = dmabuf;
663 	bdp->cbd_datlen = hdr_len;
664 
665 	if (fep->bufdesc_ex) {
666 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
667 			estatus |= FEC_TX_BD_FTYPE(queue);
668 		if (skb->ip_summed == CHECKSUM_PARTIAL)
669 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 		ebdp->cbd_bdu = 0;
671 		ebdp->cbd_esc = estatus;
672 	}
673 
674 	bdp->cbd_sc = status;
675 
676 	return 0;
677 }
678 
679 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
680 				   struct sk_buff *skb,
681 				   struct net_device *ndev)
682 {
683 	struct fec_enet_private *fep = netdev_priv(ndev);
684 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
685 	int total_len, data_left;
686 	struct bufdesc *bdp = txq->cur_tx;
687 	unsigned short queue = skb_get_queue_mapping(skb);
688 	struct tso_t tso;
689 	unsigned int index = 0;
690 	int ret;
691 	const struct platform_device_id *id_entry =
692 				platform_get_device_id(fep->pdev);
693 
694 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
695 		dev_kfree_skb_any(skb);
696 		if (net_ratelimit())
697 			netdev_err(ndev, "NOT enough BD for TSO!\n");
698 		return NETDEV_TX_OK;
699 	}
700 
701 	/* Protocol checksum off-load for TCP and UDP. */
702 	if (fec_enet_clear_csum(skb, ndev)) {
703 		dev_kfree_skb_any(skb);
704 		return NETDEV_TX_OK;
705 	}
706 
707 	/* Initialize the TSO handler, and prepare the first payload */
708 	tso_start(skb, &tso);
709 
710 	total_len = skb->len - hdr_len;
711 	while (total_len > 0) {
712 		char *hdr;
713 
714 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
715 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
716 		total_len -= data_left;
717 
718 		/* prepare packet headers: MAC + IP + TCP */
719 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
720 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
721 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
722 		if (ret)
723 			goto err_release;
724 
725 		while (data_left > 0) {
726 			int size;
727 
728 			size = min_t(int, tso.size, data_left);
729 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
730 			index = fec_enet_get_bd_index(txq->tx_bd_base,
731 						      bdp, fep);
732 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
733 							bdp, index,
734 							tso.data, size,
735 							size == data_left,
736 							total_len == 0);
737 			if (ret)
738 				goto err_release;
739 
740 			data_left -= size;
741 			tso_build_data(skb, &tso, size);
742 		}
743 
744 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
745 	}
746 
747 	/* Save skb pointer */
748 	txq->tx_skbuff[index] = skb;
749 
750 	skb_tx_timestamp(skb);
751 	txq->cur_tx = bdp;
752 
753 	/* Trigger transmission start */
754 	if (!(id_entry->driver_data & FEC_QUIRK_ERR007885) ||
755 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
756 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
757 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
758 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
759 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
760 
761 	return 0;
762 
763 err_release:
764 	/* TODO: Release all used data descriptors for TSO */
765 	return ret;
766 }
767 
768 static netdev_tx_t
769 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
770 {
771 	struct fec_enet_private *fep = netdev_priv(ndev);
772 	int entries_free;
773 	unsigned short queue;
774 	struct fec_enet_priv_tx_q *txq;
775 	struct netdev_queue *nq;
776 	int ret;
777 
778 	queue = skb_get_queue_mapping(skb);
779 	txq = fep->tx_queue[queue];
780 	nq = netdev_get_tx_queue(ndev, queue);
781 
782 	if (skb_is_gso(skb))
783 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
784 	else
785 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
786 	if (ret)
787 		return ret;
788 
789 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
790 	if (entries_free <= txq->tx_stop_threshold)
791 		netif_tx_stop_queue(nq);
792 
793 	return NETDEV_TX_OK;
794 }
795 
796 /* Init RX & TX buffer descriptors
797  */
798 static void fec_enet_bd_init(struct net_device *dev)
799 {
800 	struct fec_enet_private *fep = netdev_priv(dev);
801 	struct fec_enet_priv_tx_q *txq;
802 	struct fec_enet_priv_rx_q *rxq;
803 	struct bufdesc *bdp;
804 	unsigned int i;
805 	unsigned int q;
806 
807 	for (q = 0; q < fep->num_rx_queues; q++) {
808 		/* Initialize the receive buffer descriptors. */
809 		rxq = fep->rx_queue[q];
810 		bdp = rxq->rx_bd_base;
811 
812 		for (i = 0; i < rxq->rx_ring_size; i++) {
813 
814 			/* Initialize the BD for every fragment in the page. */
815 			if (bdp->cbd_bufaddr)
816 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
817 			else
818 				bdp->cbd_sc = 0;
819 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
820 		}
821 
822 		/* Set the last buffer to wrap */
823 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
824 		bdp->cbd_sc |= BD_SC_WRAP;
825 
826 		rxq->cur_rx = rxq->rx_bd_base;
827 	}
828 
829 	for (q = 0; q < fep->num_tx_queues; q++) {
830 		/* ...and the same for transmit */
831 		txq = fep->tx_queue[q];
832 		bdp = txq->tx_bd_base;
833 		txq->cur_tx = bdp;
834 
835 		for (i = 0; i < txq->tx_ring_size; i++) {
836 			/* Initialize the BD for every fragment in the page. */
837 			bdp->cbd_sc = 0;
838 			if (txq->tx_skbuff[i]) {
839 				dev_kfree_skb_any(txq->tx_skbuff[i]);
840 				txq->tx_skbuff[i] = NULL;
841 			}
842 			bdp->cbd_bufaddr = 0;
843 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
844 		}
845 
846 		/* Set the last buffer to wrap */
847 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
848 		bdp->cbd_sc |= BD_SC_WRAP;
849 		txq->dirty_tx = bdp;
850 	}
851 }
852 
853 static void fec_enet_active_rxring(struct net_device *ndev)
854 {
855 	struct fec_enet_private *fep = netdev_priv(ndev);
856 	int i;
857 
858 	for (i = 0; i < fep->num_rx_queues; i++)
859 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
860 }
861 
862 static void fec_enet_enable_ring(struct net_device *ndev)
863 {
864 	struct fec_enet_private *fep = netdev_priv(ndev);
865 	struct fec_enet_priv_tx_q *txq;
866 	struct fec_enet_priv_rx_q *rxq;
867 	int i;
868 
869 	for (i = 0; i < fep->num_rx_queues; i++) {
870 		rxq = fep->rx_queue[i];
871 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
872 
873 		/* enable DMA1/2 */
874 		if (i)
875 			writel(RCMR_MATCHEN | RCMR_CMP(i),
876 			       fep->hwp + FEC_RCMR(i));
877 	}
878 
879 	for (i = 0; i < fep->num_tx_queues; i++) {
880 		txq = fep->tx_queue[i];
881 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
886 			       fep->hwp + FEC_DMA_CFG(i));
887 	}
888 }
889 
890 static void fec_enet_reset_skb(struct net_device *ndev)
891 {
892 	struct fec_enet_private *fep = netdev_priv(ndev);
893 	struct fec_enet_priv_tx_q *txq;
894 	int i, j;
895 
896 	for (i = 0; i < fep->num_tx_queues; i++) {
897 		txq = fep->tx_queue[i];
898 
899 		for (j = 0; j < txq->tx_ring_size; j++) {
900 			if (txq->tx_skbuff[j]) {
901 				dev_kfree_skb_any(txq->tx_skbuff[j]);
902 				txq->tx_skbuff[j] = NULL;
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * This function is called to start or restart the FEC during a link
910  * change, transmit timeout, or to reconfigure the FEC.  The network
911  * packet processing for this device must be stopped before this call.
912  */
913 static void
914 fec_restart(struct net_device *ndev)
915 {
916 	struct fec_enet_private *fep = netdev_priv(ndev);
917 	const struct platform_device_id *id_entry =
918 				platform_get_device_id(fep->pdev);
919 	u32 val;
920 	u32 temp_mac[2];
921 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
922 	u32 ecntl = 0x2; /* ETHEREN */
923 
924 	/* Whack a reset.  We should wait for this.
925 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
926 	 * instead of reset MAC itself.
927 	 */
928 	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
929 		writel(0, fep->hwp + FEC_ECNTRL);
930 	} else {
931 		writel(1, fep->hwp + FEC_ECNTRL);
932 		udelay(10);
933 	}
934 
935 	/*
936 	 * enet-mac reset will reset mac address registers too,
937 	 * so need to reconfigure it.
938 	 */
939 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
940 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
941 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
942 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
943 	}
944 
945 	/* Clear any outstanding interrupt. */
946 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
947 
948 	/* Set maximum receive buffer size. */
949 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
950 
951 	fec_enet_bd_init(ndev);
952 
953 	fec_enet_enable_ring(ndev);
954 
955 	/* Reset tx SKB buffers. */
956 	fec_enet_reset_skb(ndev);
957 
958 	/* Enable MII mode */
959 	if (fep->full_duplex == DUPLEX_FULL) {
960 		/* FD enable */
961 		writel(0x04, fep->hwp + FEC_X_CNTRL);
962 	} else {
963 		/* No Rcv on Xmit */
964 		rcntl |= 0x02;
965 		writel(0x0, fep->hwp + FEC_X_CNTRL);
966 	}
967 
968 	/* Set MII speed */
969 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
970 
971 #if !defined(CONFIG_M5272)
972 	/* set RX checksum */
973 	val = readl(fep->hwp + FEC_RACC);
974 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
975 		val |= FEC_RACC_OPTIONS;
976 	else
977 		val &= ~FEC_RACC_OPTIONS;
978 	writel(val, fep->hwp + FEC_RACC);
979 #endif
980 
981 	/*
982 	 * The phy interface and speed need to get configured
983 	 * differently on enet-mac.
984 	 */
985 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
986 		/* Enable flow control and length check */
987 		rcntl |= 0x40000000 | 0x00000020;
988 
989 		/* RGMII, RMII or MII */
990 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
991 			rcntl |= (1 << 6);
992 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
993 			rcntl |= (1 << 8);
994 		else
995 			rcntl &= ~(1 << 8);
996 
997 		/* 1G, 100M or 10M */
998 		if (fep->phy_dev) {
999 			if (fep->phy_dev->speed == SPEED_1000)
1000 				ecntl |= (1 << 5);
1001 			else if (fep->phy_dev->speed == SPEED_100)
1002 				rcntl &= ~(1 << 9);
1003 			else
1004 				rcntl |= (1 << 9);
1005 		}
1006 	} else {
1007 #ifdef FEC_MIIGSK_ENR
1008 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
1009 			u32 cfgr;
1010 			/* disable the gasket and wait */
1011 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1012 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1013 				udelay(1);
1014 
1015 			/*
1016 			 * configure the gasket:
1017 			 *   RMII, 50 MHz, no loopback, no echo
1018 			 *   MII, 25 MHz, no loopback, no echo
1019 			 */
1020 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1021 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1022 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1023 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1024 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1025 
1026 			/* re-enable the gasket */
1027 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1028 		}
1029 #endif
1030 	}
1031 
1032 #if !defined(CONFIG_M5272)
1033 	/* enable pause frame*/
1034 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1035 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1036 	     fep->phy_dev && fep->phy_dev->pause)) {
1037 		rcntl |= FEC_ENET_FCE;
1038 
1039 		/* set FIFO threshold parameter to reduce overrun */
1040 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1041 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1042 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1043 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1044 
1045 		/* OPD */
1046 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1047 	} else {
1048 		rcntl &= ~FEC_ENET_FCE;
1049 	}
1050 #endif /* !defined(CONFIG_M5272) */
1051 
1052 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1053 
1054 	/* Setup multicast filter. */
1055 	set_multicast_list(ndev);
1056 #ifndef CONFIG_M5272
1057 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1058 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1059 #endif
1060 
1061 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1062 		/* enable ENET endian swap */
1063 		ecntl |= (1 << 8);
1064 		/* enable ENET store and forward mode */
1065 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1066 	}
1067 
1068 	if (fep->bufdesc_ex)
1069 		ecntl |= (1 << 4);
1070 
1071 #ifndef CONFIG_M5272
1072 	/* Enable the MIB statistic event counters */
1073 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1074 #endif
1075 
1076 	/* And last, enable the transmit and receive processing */
1077 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1078 	fec_enet_active_rxring(ndev);
1079 
1080 	if (fep->bufdesc_ex)
1081 		fec_ptp_start_cyclecounter(ndev);
1082 
1083 	/* Enable interrupts we wish to service */
1084 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085 
1086 	/* Init the interrupt coalescing */
1087 	fec_enet_itr_coal_init(ndev);
1088 
1089 }
1090 
1091 static void
1092 fec_stop(struct net_device *ndev)
1093 {
1094 	struct fec_enet_private *fep = netdev_priv(ndev);
1095 	const struct platform_device_id *id_entry =
1096 				platform_get_device_id(fep->pdev);
1097 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1098 
1099 	/* We cannot expect a graceful transmit stop without link !!! */
1100 	if (fep->link) {
1101 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1102 		udelay(10);
1103 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1104 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1105 	}
1106 
1107 	/* Whack a reset.  We should wait for this.
1108 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1109 	 * instead of reset MAC itself.
1110 	 */
1111 	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
1112 		writel(0, fep->hwp + FEC_ECNTRL);
1113 	} else {
1114 		writel(1, fep->hwp + FEC_ECNTRL);
1115 		udelay(10);
1116 	}
1117 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1118 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1119 
1120 	/* We have to keep ENET enabled to have MII interrupt stay working */
1121 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1122 		writel(2, fep->hwp + FEC_ECNTRL);
1123 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1124 	}
1125 }
1126 
1127 
1128 static void
1129 fec_timeout(struct net_device *ndev)
1130 {
1131 	struct fec_enet_private *fep = netdev_priv(ndev);
1132 
1133 	fec_dump(ndev);
1134 
1135 	ndev->stats.tx_errors++;
1136 
1137 	schedule_work(&fep->tx_timeout_work);
1138 }
1139 
1140 static void fec_enet_timeout_work(struct work_struct *work)
1141 {
1142 	struct fec_enet_private *fep =
1143 		container_of(work, struct fec_enet_private, tx_timeout_work);
1144 	struct net_device *ndev = fep->netdev;
1145 
1146 	rtnl_lock();
1147 	if (netif_device_present(ndev) || netif_running(ndev)) {
1148 		napi_disable(&fep->napi);
1149 		netif_tx_lock_bh(ndev);
1150 		fec_restart(ndev);
1151 		netif_wake_queue(ndev);
1152 		netif_tx_unlock_bh(ndev);
1153 		napi_enable(&fep->napi);
1154 	}
1155 	rtnl_unlock();
1156 }
1157 
1158 static void
1159 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1160 	struct skb_shared_hwtstamps *hwtstamps)
1161 {
1162 	unsigned long flags;
1163 	u64 ns;
1164 
1165 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1166 	ns = timecounter_cyc2time(&fep->tc, ts);
1167 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1168 
1169 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1170 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1171 }
1172 
1173 static void
1174 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1175 {
1176 	struct	fec_enet_private *fep;
1177 	struct bufdesc *bdp;
1178 	unsigned short status;
1179 	struct	sk_buff	*skb;
1180 	struct fec_enet_priv_tx_q *txq;
1181 	struct netdev_queue *nq;
1182 	int	index = 0;
1183 	int	entries_free;
1184 
1185 	fep = netdev_priv(ndev);
1186 
1187 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1188 
1189 	txq = fep->tx_queue[queue_id];
1190 	/* get next bdp of dirty_tx */
1191 	nq = netdev_get_tx_queue(ndev, queue_id);
1192 	bdp = txq->dirty_tx;
1193 
1194 	/* get next bdp of dirty_tx */
1195 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1196 
1197 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1198 
1199 		/* current queue is empty */
1200 		if (bdp == txq->cur_tx)
1201 			break;
1202 
1203 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1204 
1205 		skb = txq->tx_skbuff[index];
1206 		txq->tx_skbuff[index] = NULL;
1207 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1208 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1209 					bdp->cbd_datlen, DMA_TO_DEVICE);
1210 		bdp->cbd_bufaddr = 0;
1211 		if (!skb) {
1212 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1213 			continue;
1214 		}
1215 
1216 		/* Check for errors. */
1217 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1218 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1219 				   BD_ENET_TX_CSL)) {
1220 			ndev->stats.tx_errors++;
1221 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1222 				ndev->stats.tx_heartbeat_errors++;
1223 			if (status & BD_ENET_TX_LC)  /* Late collision */
1224 				ndev->stats.tx_window_errors++;
1225 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1226 				ndev->stats.tx_aborted_errors++;
1227 			if (status & BD_ENET_TX_UN)  /* Underrun */
1228 				ndev->stats.tx_fifo_errors++;
1229 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1230 				ndev->stats.tx_carrier_errors++;
1231 		} else {
1232 			ndev->stats.tx_packets++;
1233 			ndev->stats.tx_bytes += skb->len;
1234 		}
1235 
1236 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1237 			fep->bufdesc_ex) {
1238 			struct skb_shared_hwtstamps shhwtstamps;
1239 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1240 
1241 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1242 			skb_tstamp_tx(skb, &shhwtstamps);
1243 		}
1244 
1245 		/* Deferred means some collisions occurred during transmit,
1246 		 * but we eventually sent the packet OK.
1247 		 */
1248 		if (status & BD_ENET_TX_DEF)
1249 			ndev->stats.collisions++;
1250 
1251 		/* Free the sk buffer associated with this last transmit */
1252 		dev_kfree_skb_any(skb);
1253 
1254 		txq->dirty_tx = bdp;
1255 
1256 		/* Update pointer to next buffer descriptor to be transmitted */
1257 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1258 
1259 		/* Since we have freed up a buffer, the ring is no longer full
1260 		 */
1261 		if (netif_queue_stopped(ndev)) {
1262 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1263 			if (entries_free >= txq->tx_wake_threshold)
1264 				netif_tx_wake_queue(nq);
1265 		}
1266 	}
1267 
1268 	/* ERR006538: Keep the transmitter going */
1269 	if (bdp != txq->cur_tx &&
1270 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1271 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1272 }
1273 
1274 static void
1275 fec_enet_tx(struct net_device *ndev)
1276 {
1277 	struct fec_enet_private *fep = netdev_priv(ndev);
1278 	u16 queue_id;
1279 	/* First process class A queue, then Class B and Best Effort queue */
1280 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1281 		clear_bit(queue_id, &fep->work_tx);
1282 		fec_enet_tx_queue(ndev, queue_id);
1283 	}
1284 	return;
1285 }
1286 
1287 static int
1288 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1289 {
1290 	struct  fec_enet_private *fep = netdev_priv(ndev);
1291 	int off;
1292 
1293 	off = ((unsigned long)skb->data) & fep->rx_align;
1294 	if (off)
1295 		skb_reserve(skb, fep->rx_align + 1 - off);
1296 
1297 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1298 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1299 					  DMA_FROM_DEVICE);
1300 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1301 		if (net_ratelimit())
1302 			netdev_err(ndev, "Rx DMA memory map failed\n");
1303 		return -ENOMEM;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1310 			       struct bufdesc *bdp, u32 length)
1311 {
1312 	struct  fec_enet_private *fep = netdev_priv(ndev);
1313 	struct sk_buff *new_skb;
1314 
1315 	if (length > fep->rx_copybreak)
1316 		return false;
1317 
1318 	new_skb = netdev_alloc_skb(ndev, length);
1319 	if (!new_skb)
1320 		return false;
1321 
1322 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1323 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1324 				DMA_FROM_DEVICE);
1325 	memcpy(new_skb->data, (*skb)->data, length);
1326 	*skb = new_skb;
1327 
1328 	return true;
1329 }
1330 
1331 /* During a receive, the cur_rx points to the current incoming buffer.
1332  * When we update through the ring, if the next incoming buffer has
1333  * not been given to the system, we just set the empty indicator,
1334  * effectively tossing the packet.
1335  */
1336 static int
1337 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1338 {
1339 	struct fec_enet_private *fep = netdev_priv(ndev);
1340 	const struct platform_device_id *id_entry =
1341 				platform_get_device_id(fep->pdev);
1342 	struct fec_enet_priv_rx_q *rxq;
1343 	struct bufdesc *bdp;
1344 	unsigned short status;
1345 	struct  sk_buff *skb_new = NULL;
1346 	struct  sk_buff *skb;
1347 	ushort	pkt_len;
1348 	__u8 *data;
1349 	int	pkt_received = 0;
1350 	struct	bufdesc_ex *ebdp = NULL;
1351 	bool	vlan_packet_rcvd = false;
1352 	u16	vlan_tag;
1353 	int	index = 0;
1354 	bool	is_copybreak;
1355 
1356 #ifdef CONFIG_M532x
1357 	flush_cache_all();
1358 #endif
1359 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1360 	rxq = fep->rx_queue[queue_id];
1361 
1362 	/* First, grab all of the stats for the incoming packet.
1363 	 * These get messed up if we get called due to a busy condition.
1364 	 */
1365 	bdp = rxq->cur_rx;
1366 
1367 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1368 
1369 		if (pkt_received >= budget)
1370 			break;
1371 		pkt_received++;
1372 
1373 		/* Since we have allocated space to hold a complete frame,
1374 		 * the last indicator should be set.
1375 		 */
1376 		if ((status & BD_ENET_RX_LAST) == 0)
1377 			netdev_err(ndev, "rcv is not +last\n");
1378 
1379 
1380 		/* Check for errors. */
1381 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1382 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1383 			ndev->stats.rx_errors++;
1384 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1385 				/* Frame too long or too short. */
1386 				ndev->stats.rx_length_errors++;
1387 			}
1388 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1389 				ndev->stats.rx_frame_errors++;
1390 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1391 				ndev->stats.rx_crc_errors++;
1392 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1393 				ndev->stats.rx_fifo_errors++;
1394 		}
1395 
1396 		/* Report late collisions as a frame error.
1397 		 * On this error, the BD is closed, but we don't know what we
1398 		 * have in the buffer.  So, just drop this frame on the floor.
1399 		 */
1400 		if (status & BD_ENET_RX_CL) {
1401 			ndev->stats.rx_errors++;
1402 			ndev->stats.rx_frame_errors++;
1403 			goto rx_processing_done;
1404 		}
1405 
1406 		/* Process the incoming frame. */
1407 		ndev->stats.rx_packets++;
1408 		pkt_len = bdp->cbd_datlen;
1409 		ndev->stats.rx_bytes += pkt_len;
1410 
1411 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1412 		skb = rxq->rx_skbuff[index];
1413 
1414 		/* The packet length includes FCS, but we don't want to
1415 		 * include that when passing upstream as it messes up
1416 		 * bridging applications.
1417 		 */
1418 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4);
1419 		if (!is_copybreak) {
1420 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1421 			if (unlikely(!skb_new)) {
1422 				ndev->stats.rx_dropped++;
1423 				goto rx_processing_done;
1424 			}
1425 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1426 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1427 					 DMA_FROM_DEVICE);
1428 		}
1429 
1430 		prefetch(skb->data - NET_IP_ALIGN);
1431 		skb_put(skb, pkt_len - 4);
1432 		data = skb->data;
1433 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1434 			swap_buffer(data, pkt_len);
1435 
1436 		/* Extract the enhanced buffer descriptor */
1437 		ebdp = NULL;
1438 		if (fep->bufdesc_ex)
1439 			ebdp = (struct bufdesc_ex *)bdp;
1440 
1441 		/* If this is a VLAN packet remove the VLAN Tag */
1442 		vlan_packet_rcvd = false;
1443 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1444 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1445 			/* Push and remove the vlan tag */
1446 			struct vlan_hdr *vlan_header =
1447 					(struct vlan_hdr *) (data + ETH_HLEN);
1448 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1449 
1450 			vlan_packet_rcvd = true;
1451 
1452 			skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1453 						       data, (2 * ETH_ALEN));
1454 			skb_pull(skb, VLAN_HLEN);
1455 		}
1456 
1457 		skb->protocol = eth_type_trans(skb, ndev);
1458 
1459 		/* Get receive timestamp from the skb */
1460 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1461 			fec_enet_hwtstamp(fep, ebdp->ts,
1462 					  skb_hwtstamps(skb));
1463 
1464 		if (fep->bufdesc_ex &&
1465 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1466 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1467 				/* don't check it */
1468 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1469 			} else {
1470 				skb_checksum_none_assert(skb);
1471 			}
1472 		}
1473 
1474 		/* Handle received VLAN packets */
1475 		if (vlan_packet_rcvd)
1476 			__vlan_hwaccel_put_tag(skb,
1477 					       htons(ETH_P_8021Q),
1478 					       vlan_tag);
1479 
1480 		napi_gro_receive(&fep->napi, skb);
1481 
1482 		if (is_copybreak) {
1483 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1484 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1485 						   DMA_FROM_DEVICE);
1486 		} else {
1487 			rxq->rx_skbuff[index] = skb_new;
1488 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1489 		}
1490 
1491 rx_processing_done:
1492 		/* Clear the status flags for this buffer */
1493 		status &= ~BD_ENET_RX_STATS;
1494 
1495 		/* Mark the buffer empty */
1496 		status |= BD_ENET_RX_EMPTY;
1497 		bdp->cbd_sc = status;
1498 
1499 		if (fep->bufdesc_ex) {
1500 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1501 
1502 			ebdp->cbd_esc = BD_ENET_RX_INT;
1503 			ebdp->cbd_prot = 0;
1504 			ebdp->cbd_bdu = 0;
1505 		}
1506 
1507 		/* Update BD pointer to next entry */
1508 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1509 
1510 		/* Doing this here will keep the FEC running while we process
1511 		 * incoming frames.  On a heavily loaded network, we should be
1512 		 * able to keep up at the expense of system resources.
1513 		 */
1514 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1515 	}
1516 	rxq->cur_rx = bdp;
1517 	return pkt_received;
1518 }
1519 
1520 static int
1521 fec_enet_rx(struct net_device *ndev, int budget)
1522 {
1523 	int     pkt_received = 0;
1524 	u16	queue_id;
1525 	struct fec_enet_private *fep = netdev_priv(ndev);
1526 
1527 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1528 		clear_bit(queue_id, &fep->work_rx);
1529 		pkt_received += fec_enet_rx_queue(ndev,
1530 					budget - pkt_received, queue_id);
1531 	}
1532 	return pkt_received;
1533 }
1534 
1535 static bool
1536 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1537 {
1538 	if (int_events == 0)
1539 		return false;
1540 
1541 	if (int_events & FEC_ENET_RXF)
1542 		fep->work_rx |= (1 << 2);
1543 	if (int_events & FEC_ENET_RXF_1)
1544 		fep->work_rx |= (1 << 0);
1545 	if (int_events & FEC_ENET_RXF_2)
1546 		fep->work_rx |= (1 << 1);
1547 
1548 	if (int_events & FEC_ENET_TXF)
1549 		fep->work_tx |= (1 << 2);
1550 	if (int_events & FEC_ENET_TXF_1)
1551 		fep->work_tx |= (1 << 0);
1552 	if (int_events & FEC_ENET_TXF_2)
1553 		fep->work_tx |= (1 << 1);
1554 
1555 	return true;
1556 }
1557 
1558 static irqreturn_t
1559 fec_enet_interrupt(int irq, void *dev_id)
1560 {
1561 	struct net_device *ndev = dev_id;
1562 	struct fec_enet_private *fep = netdev_priv(ndev);
1563 	const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1564 	uint int_events;
1565 	irqreturn_t ret = IRQ_NONE;
1566 
1567 	int_events = readl(fep->hwp + FEC_IEVENT);
1568 	writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1569 	fec_enet_collect_events(fep, int_events);
1570 
1571 	if (int_events & napi_mask) {
1572 		ret = IRQ_HANDLED;
1573 
1574 		/* Disable the NAPI interrupts */
1575 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1576 		napi_schedule(&fep->napi);
1577 	}
1578 
1579 	if (int_events & FEC_ENET_MII) {
1580 		ret = IRQ_HANDLED;
1581 		complete(&fep->mdio_done);
1582 	}
1583 
1584 	fec_ptp_check_pps_event(fep);
1585 
1586 	return ret;
1587 }
1588 
1589 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1590 {
1591 	struct net_device *ndev = napi->dev;
1592 	struct fec_enet_private *fep = netdev_priv(ndev);
1593 	int pkts;
1594 
1595 	/*
1596 	 * Clear any pending transmit or receive interrupts before
1597 	 * processing the rings to avoid racing with the hardware.
1598 	 */
1599 	writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1600 
1601 	pkts = fec_enet_rx(ndev, budget);
1602 
1603 	fec_enet_tx(ndev);
1604 
1605 	if (pkts < budget) {
1606 		napi_complete(napi);
1607 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1608 	}
1609 	return pkts;
1610 }
1611 
1612 /* ------------------------------------------------------------------------- */
1613 static void fec_get_mac(struct net_device *ndev)
1614 {
1615 	struct fec_enet_private *fep = netdev_priv(ndev);
1616 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1617 	unsigned char *iap, tmpaddr[ETH_ALEN];
1618 
1619 	/*
1620 	 * try to get mac address in following order:
1621 	 *
1622 	 * 1) module parameter via kernel command line in form
1623 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1624 	 */
1625 	iap = macaddr;
1626 
1627 	/*
1628 	 * 2) from device tree data
1629 	 */
1630 	if (!is_valid_ether_addr(iap)) {
1631 		struct device_node *np = fep->pdev->dev.of_node;
1632 		if (np) {
1633 			const char *mac = of_get_mac_address(np);
1634 			if (mac)
1635 				iap = (unsigned char *) mac;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * 3) from flash or fuse (via platform data)
1641 	 */
1642 	if (!is_valid_ether_addr(iap)) {
1643 #ifdef CONFIG_M5272
1644 		if (FEC_FLASHMAC)
1645 			iap = (unsigned char *)FEC_FLASHMAC;
1646 #else
1647 		if (pdata)
1648 			iap = (unsigned char *)&pdata->mac;
1649 #endif
1650 	}
1651 
1652 	/*
1653 	 * 4) FEC mac registers set by bootloader
1654 	 */
1655 	if (!is_valid_ether_addr(iap)) {
1656 		*((__be32 *) &tmpaddr[0]) =
1657 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1658 		*((__be16 *) &tmpaddr[4]) =
1659 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1660 		iap = &tmpaddr[0];
1661 	}
1662 
1663 	/*
1664 	 * 5) random mac address
1665 	 */
1666 	if (!is_valid_ether_addr(iap)) {
1667 		/* Report it and use a random ethernet address instead */
1668 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1669 		eth_hw_addr_random(ndev);
1670 		netdev_info(ndev, "Using random MAC address: %pM\n",
1671 			    ndev->dev_addr);
1672 		return;
1673 	}
1674 
1675 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1676 
1677 	/* Adjust MAC if using macaddr */
1678 	if (iap == macaddr)
1679 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1680 }
1681 
1682 /* ------------------------------------------------------------------------- */
1683 
1684 /*
1685  * Phy section
1686  */
1687 static void fec_enet_adjust_link(struct net_device *ndev)
1688 {
1689 	struct fec_enet_private *fep = netdev_priv(ndev);
1690 	struct phy_device *phy_dev = fep->phy_dev;
1691 	int status_change = 0;
1692 
1693 	/* Prevent a state halted on mii error */
1694 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1695 		phy_dev->state = PHY_RESUMING;
1696 		return;
1697 	}
1698 
1699 	/*
1700 	 * If the netdev is down, or is going down, we're not interested
1701 	 * in link state events, so just mark our idea of the link as down
1702 	 * and ignore the event.
1703 	 */
1704 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1705 		fep->link = 0;
1706 	} else if (phy_dev->link) {
1707 		if (!fep->link) {
1708 			fep->link = phy_dev->link;
1709 			status_change = 1;
1710 		}
1711 
1712 		if (fep->full_duplex != phy_dev->duplex) {
1713 			fep->full_duplex = phy_dev->duplex;
1714 			status_change = 1;
1715 		}
1716 
1717 		if (phy_dev->speed != fep->speed) {
1718 			fep->speed = phy_dev->speed;
1719 			status_change = 1;
1720 		}
1721 
1722 		/* if any of the above changed restart the FEC */
1723 		if (status_change) {
1724 			napi_disable(&fep->napi);
1725 			netif_tx_lock_bh(ndev);
1726 			fec_restart(ndev);
1727 			netif_wake_queue(ndev);
1728 			netif_tx_unlock_bh(ndev);
1729 			napi_enable(&fep->napi);
1730 		}
1731 	} else {
1732 		if (fep->link) {
1733 			napi_disable(&fep->napi);
1734 			netif_tx_lock_bh(ndev);
1735 			fec_stop(ndev);
1736 			netif_tx_unlock_bh(ndev);
1737 			napi_enable(&fep->napi);
1738 			fep->link = phy_dev->link;
1739 			status_change = 1;
1740 		}
1741 	}
1742 
1743 	if (status_change)
1744 		phy_print_status(phy_dev);
1745 }
1746 
1747 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1748 {
1749 	struct fec_enet_private *fep = bus->priv;
1750 	unsigned long time_left;
1751 
1752 	fep->mii_timeout = 0;
1753 	init_completion(&fep->mdio_done);
1754 
1755 	/* start a read op */
1756 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1757 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1758 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1759 
1760 	/* wait for end of transfer */
1761 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1762 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1763 	if (time_left == 0) {
1764 		fep->mii_timeout = 1;
1765 		netdev_err(fep->netdev, "MDIO read timeout\n");
1766 		return -ETIMEDOUT;
1767 	}
1768 
1769 	/* return value */
1770 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1771 }
1772 
1773 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1774 			   u16 value)
1775 {
1776 	struct fec_enet_private *fep = bus->priv;
1777 	unsigned long time_left;
1778 
1779 	fep->mii_timeout = 0;
1780 	init_completion(&fep->mdio_done);
1781 
1782 	/* start a write op */
1783 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1784 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1785 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1786 		fep->hwp + FEC_MII_DATA);
1787 
1788 	/* wait for end of transfer */
1789 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1790 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1791 	if (time_left == 0) {
1792 		fep->mii_timeout = 1;
1793 		netdev_err(fep->netdev, "MDIO write timeout\n");
1794 		return -ETIMEDOUT;
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1801 {
1802 	struct fec_enet_private *fep = netdev_priv(ndev);
1803 	int ret;
1804 
1805 	if (enable) {
1806 		ret = clk_prepare_enable(fep->clk_ahb);
1807 		if (ret)
1808 			return ret;
1809 		ret = clk_prepare_enable(fep->clk_ipg);
1810 		if (ret)
1811 			goto failed_clk_ipg;
1812 		if (fep->clk_enet_out) {
1813 			ret = clk_prepare_enable(fep->clk_enet_out);
1814 			if (ret)
1815 				goto failed_clk_enet_out;
1816 		}
1817 		if (fep->clk_ptp) {
1818 			mutex_lock(&fep->ptp_clk_mutex);
1819 			ret = clk_prepare_enable(fep->clk_ptp);
1820 			if (ret) {
1821 				mutex_unlock(&fep->ptp_clk_mutex);
1822 				goto failed_clk_ptp;
1823 			} else {
1824 				fep->ptp_clk_on = true;
1825 			}
1826 			mutex_unlock(&fep->ptp_clk_mutex);
1827 		}
1828 		if (fep->clk_ref) {
1829 			ret = clk_prepare_enable(fep->clk_ref);
1830 			if (ret)
1831 				goto failed_clk_ref;
1832 		}
1833 	} else {
1834 		clk_disable_unprepare(fep->clk_ahb);
1835 		clk_disable_unprepare(fep->clk_ipg);
1836 		if (fep->clk_enet_out)
1837 			clk_disable_unprepare(fep->clk_enet_out);
1838 		if (fep->clk_ptp) {
1839 			mutex_lock(&fep->ptp_clk_mutex);
1840 			clk_disable_unprepare(fep->clk_ptp);
1841 			fep->ptp_clk_on = false;
1842 			mutex_unlock(&fep->ptp_clk_mutex);
1843 		}
1844 		if (fep->clk_ref)
1845 			clk_disable_unprepare(fep->clk_ref);
1846 	}
1847 
1848 	return 0;
1849 
1850 failed_clk_ref:
1851 	if (fep->clk_ref)
1852 		clk_disable_unprepare(fep->clk_ref);
1853 failed_clk_ptp:
1854 	if (fep->clk_enet_out)
1855 		clk_disable_unprepare(fep->clk_enet_out);
1856 failed_clk_enet_out:
1857 		clk_disable_unprepare(fep->clk_ipg);
1858 failed_clk_ipg:
1859 		clk_disable_unprepare(fep->clk_ahb);
1860 
1861 	return ret;
1862 }
1863 
1864 static int fec_enet_mii_probe(struct net_device *ndev)
1865 {
1866 	struct fec_enet_private *fep = netdev_priv(ndev);
1867 	const struct platform_device_id *id_entry =
1868 				platform_get_device_id(fep->pdev);
1869 	struct phy_device *phy_dev = NULL;
1870 	char mdio_bus_id[MII_BUS_ID_SIZE];
1871 	char phy_name[MII_BUS_ID_SIZE + 3];
1872 	int phy_id;
1873 	int dev_id = fep->dev_id;
1874 
1875 	fep->phy_dev = NULL;
1876 
1877 	if (fep->phy_node) {
1878 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1879 					 &fec_enet_adjust_link, 0,
1880 					 fep->phy_interface);
1881 	} else {
1882 		/* check for attached phy */
1883 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1884 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1885 				continue;
1886 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1887 				continue;
1888 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1889 				continue;
1890 			if (dev_id--)
1891 				continue;
1892 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1893 			break;
1894 		}
1895 
1896 		if (phy_id >= PHY_MAX_ADDR) {
1897 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1898 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1899 			phy_id = 0;
1900 		}
1901 
1902 		snprintf(phy_name, sizeof(phy_name),
1903 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1904 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1905 				      fep->phy_interface);
1906 	}
1907 
1908 	if (IS_ERR(phy_dev)) {
1909 		netdev_err(ndev, "could not attach to PHY\n");
1910 		return PTR_ERR(phy_dev);
1911 	}
1912 
1913 	/* mask with MAC supported features */
1914 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1915 		phy_dev->supported &= PHY_GBIT_FEATURES;
1916 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1917 #if !defined(CONFIG_M5272)
1918 		phy_dev->supported |= SUPPORTED_Pause;
1919 #endif
1920 	}
1921 	else
1922 		phy_dev->supported &= PHY_BASIC_FEATURES;
1923 
1924 	phy_dev->advertising = phy_dev->supported;
1925 
1926 	fep->phy_dev = phy_dev;
1927 	fep->link = 0;
1928 	fep->full_duplex = 0;
1929 
1930 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1931 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1932 		    fep->phy_dev->irq);
1933 
1934 	return 0;
1935 }
1936 
1937 static int fec_enet_mii_init(struct platform_device *pdev)
1938 {
1939 	static struct mii_bus *fec0_mii_bus;
1940 	struct net_device *ndev = platform_get_drvdata(pdev);
1941 	struct fec_enet_private *fep = netdev_priv(ndev);
1942 	const struct platform_device_id *id_entry =
1943 				platform_get_device_id(fep->pdev);
1944 	struct device_node *node;
1945 	int err = -ENXIO, i;
1946 
1947 	/*
1948 	 * The dual fec interfaces are not equivalent with enet-mac.
1949 	 * Here are the differences:
1950 	 *
1951 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1952 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1953 	 *  - external phys can only be configured by fec0
1954 	 *
1955 	 * That is to say fec1 can not work independently. It only works
1956 	 * when fec0 is working. The reason behind this design is that the
1957 	 * second interface is added primarily for Switch mode.
1958 	 *
1959 	 * Because of the last point above, both phys are attached on fec0
1960 	 * mdio interface in board design, and need to be configured by
1961 	 * fec0 mii_bus.
1962 	 */
1963 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1964 		/* fec1 uses fec0 mii_bus */
1965 		if (mii_cnt && fec0_mii_bus) {
1966 			fep->mii_bus = fec0_mii_bus;
1967 			mii_cnt++;
1968 			return 0;
1969 		}
1970 		return -ENOENT;
1971 	}
1972 
1973 	fep->mii_timeout = 0;
1974 
1975 	/*
1976 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1977 	 *
1978 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1979 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1980 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1981 	 * document.
1982 	 */
1983 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1984 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1985 		fep->phy_speed--;
1986 	fep->phy_speed <<= 1;
1987 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1988 
1989 	fep->mii_bus = mdiobus_alloc();
1990 	if (fep->mii_bus == NULL) {
1991 		err = -ENOMEM;
1992 		goto err_out;
1993 	}
1994 
1995 	fep->mii_bus->name = "fec_enet_mii_bus";
1996 	fep->mii_bus->read = fec_enet_mdio_read;
1997 	fep->mii_bus->write = fec_enet_mdio_write;
1998 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1999 		pdev->name, fep->dev_id + 1);
2000 	fep->mii_bus->priv = fep;
2001 	fep->mii_bus->parent = &pdev->dev;
2002 
2003 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2004 	if (!fep->mii_bus->irq) {
2005 		err = -ENOMEM;
2006 		goto err_out_free_mdiobus;
2007 	}
2008 
2009 	for (i = 0; i < PHY_MAX_ADDR; i++)
2010 		fep->mii_bus->irq[i] = PHY_POLL;
2011 
2012 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2013 	if (node) {
2014 		err = of_mdiobus_register(fep->mii_bus, node);
2015 		of_node_put(node);
2016 	} else {
2017 		err = mdiobus_register(fep->mii_bus);
2018 	}
2019 
2020 	if (err)
2021 		goto err_out_free_mdio_irq;
2022 
2023 	mii_cnt++;
2024 
2025 	/* save fec0 mii_bus */
2026 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2027 		fec0_mii_bus = fep->mii_bus;
2028 
2029 	return 0;
2030 
2031 err_out_free_mdio_irq:
2032 	kfree(fep->mii_bus->irq);
2033 err_out_free_mdiobus:
2034 	mdiobus_free(fep->mii_bus);
2035 err_out:
2036 	return err;
2037 }
2038 
2039 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2040 {
2041 	if (--mii_cnt == 0) {
2042 		mdiobus_unregister(fep->mii_bus);
2043 		kfree(fep->mii_bus->irq);
2044 		mdiobus_free(fep->mii_bus);
2045 	}
2046 }
2047 
2048 static int fec_enet_get_settings(struct net_device *ndev,
2049 				  struct ethtool_cmd *cmd)
2050 {
2051 	struct fec_enet_private *fep = netdev_priv(ndev);
2052 	struct phy_device *phydev = fep->phy_dev;
2053 
2054 	if (!phydev)
2055 		return -ENODEV;
2056 
2057 	return phy_ethtool_gset(phydev, cmd);
2058 }
2059 
2060 static int fec_enet_set_settings(struct net_device *ndev,
2061 				 struct ethtool_cmd *cmd)
2062 {
2063 	struct fec_enet_private *fep = netdev_priv(ndev);
2064 	struct phy_device *phydev = fep->phy_dev;
2065 
2066 	if (!phydev)
2067 		return -ENODEV;
2068 
2069 	return phy_ethtool_sset(phydev, cmd);
2070 }
2071 
2072 static void fec_enet_get_drvinfo(struct net_device *ndev,
2073 				 struct ethtool_drvinfo *info)
2074 {
2075 	struct fec_enet_private *fep = netdev_priv(ndev);
2076 
2077 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2078 		sizeof(info->driver));
2079 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2080 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2081 }
2082 
2083 static int fec_enet_get_ts_info(struct net_device *ndev,
2084 				struct ethtool_ts_info *info)
2085 {
2086 	struct fec_enet_private *fep = netdev_priv(ndev);
2087 
2088 	if (fep->bufdesc_ex) {
2089 
2090 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2091 					SOF_TIMESTAMPING_RX_SOFTWARE |
2092 					SOF_TIMESTAMPING_SOFTWARE |
2093 					SOF_TIMESTAMPING_TX_HARDWARE |
2094 					SOF_TIMESTAMPING_RX_HARDWARE |
2095 					SOF_TIMESTAMPING_RAW_HARDWARE;
2096 		if (fep->ptp_clock)
2097 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2098 		else
2099 			info->phc_index = -1;
2100 
2101 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2102 				 (1 << HWTSTAMP_TX_ON);
2103 
2104 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2105 				   (1 << HWTSTAMP_FILTER_ALL);
2106 		return 0;
2107 	} else {
2108 		return ethtool_op_get_ts_info(ndev, info);
2109 	}
2110 }
2111 
2112 #if !defined(CONFIG_M5272)
2113 
2114 static void fec_enet_get_pauseparam(struct net_device *ndev,
2115 				    struct ethtool_pauseparam *pause)
2116 {
2117 	struct fec_enet_private *fep = netdev_priv(ndev);
2118 
2119 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2120 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2121 	pause->rx_pause = pause->tx_pause;
2122 }
2123 
2124 static int fec_enet_set_pauseparam(struct net_device *ndev,
2125 				   struct ethtool_pauseparam *pause)
2126 {
2127 	struct fec_enet_private *fep = netdev_priv(ndev);
2128 
2129 	if (!fep->phy_dev)
2130 		return -ENODEV;
2131 
2132 	if (pause->tx_pause != pause->rx_pause) {
2133 		netdev_info(ndev,
2134 			"hardware only support enable/disable both tx and rx");
2135 		return -EINVAL;
2136 	}
2137 
2138 	fep->pause_flag = 0;
2139 
2140 	/* tx pause must be same as rx pause */
2141 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2142 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2143 
2144 	if (pause->rx_pause || pause->autoneg) {
2145 		fep->phy_dev->supported |= ADVERTISED_Pause;
2146 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2147 	} else {
2148 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2149 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2150 	}
2151 
2152 	if (pause->autoneg) {
2153 		if (netif_running(ndev))
2154 			fec_stop(ndev);
2155 		phy_start_aneg(fep->phy_dev);
2156 	}
2157 	if (netif_running(ndev)) {
2158 		napi_disable(&fep->napi);
2159 		netif_tx_lock_bh(ndev);
2160 		fec_restart(ndev);
2161 		netif_wake_queue(ndev);
2162 		netif_tx_unlock_bh(ndev);
2163 		napi_enable(&fep->napi);
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static const struct fec_stat {
2170 	char name[ETH_GSTRING_LEN];
2171 	u16 offset;
2172 } fec_stats[] = {
2173 	/* RMON TX */
2174 	{ "tx_dropped", RMON_T_DROP },
2175 	{ "tx_packets", RMON_T_PACKETS },
2176 	{ "tx_broadcast", RMON_T_BC_PKT },
2177 	{ "tx_multicast", RMON_T_MC_PKT },
2178 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2179 	{ "tx_undersize", RMON_T_UNDERSIZE },
2180 	{ "tx_oversize", RMON_T_OVERSIZE },
2181 	{ "tx_fragment", RMON_T_FRAG },
2182 	{ "tx_jabber", RMON_T_JAB },
2183 	{ "tx_collision", RMON_T_COL },
2184 	{ "tx_64byte", RMON_T_P64 },
2185 	{ "tx_65to127byte", RMON_T_P65TO127 },
2186 	{ "tx_128to255byte", RMON_T_P128TO255 },
2187 	{ "tx_256to511byte", RMON_T_P256TO511 },
2188 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2189 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2190 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2191 	{ "tx_octets", RMON_T_OCTETS },
2192 
2193 	/* IEEE TX */
2194 	{ "IEEE_tx_drop", IEEE_T_DROP },
2195 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2196 	{ "IEEE_tx_1col", IEEE_T_1COL },
2197 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2198 	{ "IEEE_tx_def", IEEE_T_DEF },
2199 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2200 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2201 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2202 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2203 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2204 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2205 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2206 
2207 	/* RMON RX */
2208 	{ "rx_packets", RMON_R_PACKETS },
2209 	{ "rx_broadcast", RMON_R_BC_PKT },
2210 	{ "rx_multicast", RMON_R_MC_PKT },
2211 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2212 	{ "rx_undersize", RMON_R_UNDERSIZE },
2213 	{ "rx_oversize", RMON_R_OVERSIZE },
2214 	{ "rx_fragment", RMON_R_FRAG },
2215 	{ "rx_jabber", RMON_R_JAB },
2216 	{ "rx_64byte", RMON_R_P64 },
2217 	{ "rx_65to127byte", RMON_R_P65TO127 },
2218 	{ "rx_128to255byte", RMON_R_P128TO255 },
2219 	{ "rx_256to511byte", RMON_R_P256TO511 },
2220 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2221 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2222 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2223 	{ "rx_octets", RMON_R_OCTETS },
2224 
2225 	/* IEEE RX */
2226 	{ "IEEE_rx_drop", IEEE_R_DROP },
2227 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2228 	{ "IEEE_rx_crc", IEEE_R_CRC },
2229 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2230 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2231 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2232 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2233 };
2234 
2235 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2236 	struct ethtool_stats *stats, u64 *data)
2237 {
2238 	struct fec_enet_private *fep = netdev_priv(dev);
2239 	int i;
2240 
2241 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2242 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2243 }
2244 
2245 static void fec_enet_get_strings(struct net_device *netdev,
2246 	u32 stringset, u8 *data)
2247 {
2248 	int i;
2249 	switch (stringset) {
2250 	case ETH_SS_STATS:
2251 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2252 			memcpy(data + i * ETH_GSTRING_LEN,
2253 				fec_stats[i].name, ETH_GSTRING_LEN);
2254 		break;
2255 	}
2256 }
2257 
2258 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2259 {
2260 	switch (sset) {
2261 	case ETH_SS_STATS:
2262 		return ARRAY_SIZE(fec_stats);
2263 	default:
2264 		return -EOPNOTSUPP;
2265 	}
2266 }
2267 #endif /* !defined(CONFIG_M5272) */
2268 
2269 static int fec_enet_nway_reset(struct net_device *dev)
2270 {
2271 	struct fec_enet_private *fep = netdev_priv(dev);
2272 	struct phy_device *phydev = fep->phy_dev;
2273 
2274 	if (!phydev)
2275 		return -ENODEV;
2276 
2277 	return genphy_restart_aneg(phydev);
2278 }
2279 
2280 /* ITR clock source is enet system clock (clk_ahb).
2281  * TCTT unit is cycle_ns * 64 cycle
2282  * So, the ICTT value = X us / (cycle_ns * 64)
2283  */
2284 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2285 {
2286 	struct fec_enet_private *fep = netdev_priv(ndev);
2287 
2288 	return us * (fep->itr_clk_rate / 64000) / 1000;
2289 }
2290 
2291 /* Set threshold for interrupt coalescing */
2292 static void fec_enet_itr_coal_set(struct net_device *ndev)
2293 {
2294 	struct fec_enet_private *fep = netdev_priv(ndev);
2295 	const struct platform_device_id *id_entry =
2296 				platform_get_device_id(fep->pdev);
2297 	int rx_itr, tx_itr;
2298 
2299 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2300 		return;
2301 
2302 	/* Must be greater than zero to avoid unpredictable behavior */
2303 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2304 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2305 		return;
2306 
2307 	/* Select enet system clock as Interrupt Coalescing
2308 	 * timer Clock Source
2309 	 */
2310 	rx_itr = FEC_ITR_CLK_SEL;
2311 	tx_itr = FEC_ITR_CLK_SEL;
2312 
2313 	/* set ICFT and ICTT */
2314 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2315 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2316 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2317 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2318 
2319 	rx_itr |= FEC_ITR_EN;
2320 	tx_itr |= FEC_ITR_EN;
2321 
2322 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2323 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2324 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2325 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2326 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2327 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2328 }
2329 
2330 static int
2331 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2332 {
2333 	struct fec_enet_private *fep = netdev_priv(ndev);
2334 	const struct platform_device_id *id_entry =
2335 				platform_get_device_id(fep->pdev);
2336 
2337 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2338 		return -EOPNOTSUPP;
2339 
2340 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2341 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2342 
2343 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2344 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2345 
2346 	return 0;
2347 }
2348 
2349 static int
2350 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2351 {
2352 	struct fec_enet_private *fep = netdev_priv(ndev);
2353 	const struct platform_device_id *id_entry =
2354 				platform_get_device_id(fep->pdev);
2355 
2356 	unsigned int cycle;
2357 
2358 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2359 		return -EOPNOTSUPP;
2360 
2361 	if (ec->rx_max_coalesced_frames > 255) {
2362 		pr_err("Rx coalesced frames exceed hardware limiation");
2363 		return -EINVAL;
2364 	}
2365 
2366 	if (ec->tx_max_coalesced_frames > 255) {
2367 		pr_err("Tx coalesced frame exceed hardware limiation");
2368 		return -EINVAL;
2369 	}
2370 
2371 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2372 	if (cycle > 0xFFFF) {
2373 		pr_err("Rx coalesed usec exceeed hardware limiation");
2374 		return -EINVAL;
2375 	}
2376 
2377 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2378 	if (cycle > 0xFFFF) {
2379 		pr_err("Rx coalesed usec exceeed hardware limiation");
2380 		return -EINVAL;
2381 	}
2382 
2383 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2384 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2385 
2386 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2387 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2388 
2389 	fec_enet_itr_coal_set(ndev);
2390 
2391 	return 0;
2392 }
2393 
2394 static void fec_enet_itr_coal_init(struct net_device *ndev)
2395 {
2396 	struct ethtool_coalesce ec;
2397 
2398 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2399 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2400 
2401 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2402 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2403 
2404 	fec_enet_set_coalesce(ndev, &ec);
2405 }
2406 
2407 static int fec_enet_get_tunable(struct net_device *netdev,
2408 				const struct ethtool_tunable *tuna,
2409 				void *data)
2410 {
2411 	struct fec_enet_private *fep = netdev_priv(netdev);
2412 	int ret = 0;
2413 
2414 	switch (tuna->id) {
2415 	case ETHTOOL_RX_COPYBREAK:
2416 		*(u32 *)data = fep->rx_copybreak;
2417 		break;
2418 	default:
2419 		ret = -EINVAL;
2420 		break;
2421 	}
2422 
2423 	return ret;
2424 }
2425 
2426 static int fec_enet_set_tunable(struct net_device *netdev,
2427 				const struct ethtool_tunable *tuna,
2428 				const void *data)
2429 {
2430 	struct fec_enet_private *fep = netdev_priv(netdev);
2431 	int ret = 0;
2432 
2433 	switch (tuna->id) {
2434 	case ETHTOOL_RX_COPYBREAK:
2435 		fep->rx_copybreak = *(u32 *)data;
2436 		break;
2437 	default:
2438 		ret = -EINVAL;
2439 		break;
2440 	}
2441 
2442 	return ret;
2443 }
2444 
2445 static const struct ethtool_ops fec_enet_ethtool_ops = {
2446 	.get_settings		= fec_enet_get_settings,
2447 	.set_settings		= fec_enet_set_settings,
2448 	.get_drvinfo		= fec_enet_get_drvinfo,
2449 	.nway_reset		= fec_enet_nway_reset,
2450 	.get_link		= ethtool_op_get_link,
2451 	.get_coalesce		= fec_enet_get_coalesce,
2452 	.set_coalesce		= fec_enet_set_coalesce,
2453 #ifndef CONFIG_M5272
2454 	.get_pauseparam		= fec_enet_get_pauseparam,
2455 	.set_pauseparam		= fec_enet_set_pauseparam,
2456 	.get_strings		= fec_enet_get_strings,
2457 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2458 	.get_sset_count		= fec_enet_get_sset_count,
2459 #endif
2460 	.get_ts_info		= fec_enet_get_ts_info,
2461 	.get_tunable		= fec_enet_get_tunable,
2462 	.set_tunable		= fec_enet_set_tunable,
2463 };
2464 
2465 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2466 {
2467 	struct fec_enet_private *fep = netdev_priv(ndev);
2468 	struct phy_device *phydev = fep->phy_dev;
2469 
2470 	if (!netif_running(ndev))
2471 		return -EINVAL;
2472 
2473 	if (!phydev)
2474 		return -ENODEV;
2475 
2476 	if (fep->bufdesc_ex) {
2477 		if (cmd == SIOCSHWTSTAMP)
2478 			return fec_ptp_set(ndev, rq);
2479 		if (cmd == SIOCGHWTSTAMP)
2480 			return fec_ptp_get(ndev, rq);
2481 	}
2482 
2483 	return phy_mii_ioctl(phydev, rq, cmd);
2484 }
2485 
2486 static void fec_enet_free_buffers(struct net_device *ndev)
2487 {
2488 	struct fec_enet_private *fep = netdev_priv(ndev);
2489 	unsigned int i;
2490 	struct sk_buff *skb;
2491 	struct bufdesc	*bdp;
2492 	struct fec_enet_priv_tx_q *txq;
2493 	struct fec_enet_priv_rx_q *rxq;
2494 	unsigned int q;
2495 
2496 	for (q = 0; q < fep->num_rx_queues; q++) {
2497 		rxq = fep->rx_queue[q];
2498 		bdp = rxq->rx_bd_base;
2499 		for (i = 0; i < rxq->rx_ring_size; i++) {
2500 			skb = rxq->rx_skbuff[i];
2501 			rxq->rx_skbuff[i] = NULL;
2502 			if (skb) {
2503 				dma_unmap_single(&fep->pdev->dev,
2504 						 bdp->cbd_bufaddr,
2505 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2506 						 DMA_FROM_DEVICE);
2507 				dev_kfree_skb(skb);
2508 			}
2509 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2510 		}
2511 	}
2512 
2513 	for (q = 0; q < fep->num_tx_queues; q++) {
2514 		txq = fep->tx_queue[q];
2515 		bdp = txq->tx_bd_base;
2516 		for (i = 0; i < txq->tx_ring_size; i++) {
2517 			kfree(txq->tx_bounce[i]);
2518 			txq->tx_bounce[i] = NULL;
2519 			skb = txq->tx_skbuff[i];
2520 			txq->tx_skbuff[i] = NULL;
2521 			dev_kfree_skb(skb);
2522 		}
2523 	}
2524 }
2525 
2526 static void fec_enet_free_queue(struct net_device *ndev)
2527 {
2528 	struct fec_enet_private *fep = netdev_priv(ndev);
2529 	int i;
2530 	struct fec_enet_priv_tx_q *txq;
2531 
2532 	for (i = 0; i < fep->num_tx_queues; i++)
2533 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2534 			txq = fep->tx_queue[i];
2535 			dma_free_coherent(NULL,
2536 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2537 					  txq->tso_hdrs,
2538 					  txq->tso_hdrs_dma);
2539 		}
2540 
2541 	for (i = 0; i < fep->num_rx_queues; i++)
2542 		if (fep->rx_queue[i])
2543 			kfree(fep->rx_queue[i]);
2544 
2545 	for (i = 0; i < fep->num_tx_queues; i++)
2546 		if (fep->tx_queue[i])
2547 			kfree(fep->tx_queue[i]);
2548 }
2549 
2550 static int fec_enet_alloc_queue(struct net_device *ndev)
2551 {
2552 	struct fec_enet_private *fep = netdev_priv(ndev);
2553 	int i;
2554 	int ret = 0;
2555 	struct fec_enet_priv_tx_q *txq;
2556 
2557 	for (i = 0; i < fep->num_tx_queues; i++) {
2558 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2559 		if (!txq) {
2560 			ret = -ENOMEM;
2561 			goto alloc_failed;
2562 		}
2563 
2564 		fep->tx_queue[i] = txq;
2565 		txq->tx_ring_size = TX_RING_SIZE;
2566 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2567 
2568 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2569 		txq->tx_wake_threshold =
2570 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2571 
2572 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2573 					txq->tx_ring_size * TSO_HEADER_SIZE,
2574 					&txq->tso_hdrs_dma,
2575 					GFP_KERNEL);
2576 		if (!txq->tso_hdrs) {
2577 			ret = -ENOMEM;
2578 			goto alloc_failed;
2579 		}
2580 	}
2581 
2582 	for (i = 0; i < fep->num_rx_queues; i++) {
2583 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2584 					   GFP_KERNEL);
2585 		if (!fep->rx_queue[i]) {
2586 			ret = -ENOMEM;
2587 			goto alloc_failed;
2588 		}
2589 
2590 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2591 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2592 	}
2593 	return ret;
2594 
2595 alloc_failed:
2596 	fec_enet_free_queue(ndev);
2597 	return ret;
2598 }
2599 
2600 static int
2601 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2602 {
2603 	struct fec_enet_private *fep = netdev_priv(ndev);
2604 	unsigned int i;
2605 	struct sk_buff *skb;
2606 	struct bufdesc	*bdp;
2607 	struct fec_enet_priv_rx_q *rxq;
2608 
2609 	rxq = fep->rx_queue[queue];
2610 	bdp = rxq->rx_bd_base;
2611 	for (i = 0; i < rxq->rx_ring_size; i++) {
2612 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2613 		if (!skb)
2614 			goto err_alloc;
2615 
2616 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2617 			dev_kfree_skb(skb);
2618 			goto err_alloc;
2619 		}
2620 
2621 		rxq->rx_skbuff[i] = skb;
2622 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2623 
2624 		if (fep->bufdesc_ex) {
2625 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2626 			ebdp->cbd_esc = BD_ENET_RX_INT;
2627 		}
2628 
2629 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2630 	}
2631 
2632 	/* Set the last buffer to wrap. */
2633 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2634 	bdp->cbd_sc |= BD_SC_WRAP;
2635 	return 0;
2636 
2637  err_alloc:
2638 	fec_enet_free_buffers(ndev);
2639 	return -ENOMEM;
2640 }
2641 
2642 static int
2643 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2644 {
2645 	struct fec_enet_private *fep = netdev_priv(ndev);
2646 	unsigned int i;
2647 	struct bufdesc  *bdp;
2648 	struct fec_enet_priv_tx_q *txq;
2649 
2650 	txq = fep->tx_queue[queue];
2651 	bdp = txq->tx_bd_base;
2652 	for (i = 0; i < txq->tx_ring_size; i++) {
2653 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2654 		if (!txq->tx_bounce[i])
2655 			goto err_alloc;
2656 
2657 		bdp->cbd_sc = 0;
2658 		bdp->cbd_bufaddr = 0;
2659 
2660 		if (fep->bufdesc_ex) {
2661 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2662 			ebdp->cbd_esc = BD_ENET_TX_INT;
2663 		}
2664 
2665 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2666 	}
2667 
2668 	/* Set the last buffer to wrap. */
2669 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2670 	bdp->cbd_sc |= BD_SC_WRAP;
2671 
2672 	return 0;
2673 
2674  err_alloc:
2675 	fec_enet_free_buffers(ndev);
2676 	return -ENOMEM;
2677 }
2678 
2679 static int fec_enet_alloc_buffers(struct net_device *ndev)
2680 {
2681 	struct fec_enet_private *fep = netdev_priv(ndev);
2682 	unsigned int i;
2683 
2684 	for (i = 0; i < fep->num_rx_queues; i++)
2685 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2686 			return -ENOMEM;
2687 
2688 	for (i = 0; i < fep->num_tx_queues; i++)
2689 		if (fec_enet_alloc_txq_buffers(ndev, i))
2690 			return -ENOMEM;
2691 	return 0;
2692 }
2693 
2694 static int
2695 fec_enet_open(struct net_device *ndev)
2696 {
2697 	struct fec_enet_private *fep = netdev_priv(ndev);
2698 	int ret;
2699 
2700 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2701 	ret = fec_enet_clk_enable(ndev, true);
2702 	if (ret)
2703 		return ret;
2704 
2705 	/* I should reset the ring buffers here, but I don't yet know
2706 	 * a simple way to do that.
2707 	 */
2708 
2709 	ret = fec_enet_alloc_buffers(ndev);
2710 	if (ret)
2711 		goto err_enet_alloc;
2712 
2713 	/* Probe and connect to PHY when open the interface */
2714 	ret = fec_enet_mii_probe(ndev);
2715 	if (ret)
2716 		goto err_enet_mii_probe;
2717 
2718 	fec_restart(ndev);
2719 	napi_enable(&fep->napi);
2720 	phy_start(fep->phy_dev);
2721 	netif_tx_start_all_queues(ndev);
2722 
2723 	return 0;
2724 
2725 err_enet_mii_probe:
2726 	fec_enet_free_buffers(ndev);
2727 err_enet_alloc:
2728 	fec_enet_clk_enable(ndev, false);
2729 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2730 	return ret;
2731 }
2732 
2733 static int
2734 fec_enet_close(struct net_device *ndev)
2735 {
2736 	struct fec_enet_private *fep = netdev_priv(ndev);
2737 
2738 	phy_stop(fep->phy_dev);
2739 
2740 	if (netif_device_present(ndev)) {
2741 		napi_disable(&fep->napi);
2742 		netif_tx_disable(ndev);
2743 		fec_stop(ndev);
2744 	}
2745 
2746 	phy_disconnect(fep->phy_dev);
2747 	fep->phy_dev = NULL;
2748 
2749 	fec_enet_clk_enable(ndev, false);
2750 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2751 	fec_enet_free_buffers(ndev);
2752 
2753 	return 0;
2754 }
2755 
2756 /* Set or clear the multicast filter for this adaptor.
2757  * Skeleton taken from sunlance driver.
2758  * The CPM Ethernet implementation allows Multicast as well as individual
2759  * MAC address filtering.  Some of the drivers check to make sure it is
2760  * a group multicast address, and discard those that are not.  I guess I
2761  * will do the same for now, but just remove the test if you want
2762  * individual filtering as well (do the upper net layers want or support
2763  * this kind of feature?).
2764  */
2765 
2766 #define HASH_BITS	6		/* #bits in hash */
2767 #define CRC32_POLY	0xEDB88320
2768 
2769 static void set_multicast_list(struct net_device *ndev)
2770 {
2771 	struct fec_enet_private *fep = netdev_priv(ndev);
2772 	struct netdev_hw_addr *ha;
2773 	unsigned int i, bit, data, crc, tmp;
2774 	unsigned char hash;
2775 
2776 	if (ndev->flags & IFF_PROMISC) {
2777 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2778 		tmp |= 0x8;
2779 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2780 		return;
2781 	}
2782 
2783 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2784 	tmp &= ~0x8;
2785 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2786 
2787 	if (ndev->flags & IFF_ALLMULTI) {
2788 		/* Catch all multicast addresses, so set the
2789 		 * filter to all 1's
2790 		 */
2791 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2792 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2793 
2794 		return;
2795 	}
2796 
2797 	/* Clear filter and add the addresses in hash register
2798 	 */
2799 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2800 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2801 
2802 	netdev_for_each_mc_addr(ha, ndev) {
2803 		/* calculate crc32 value of mac address */
2804 		crc = 0xffffffff;
2805 
2806 		for (i = 0; i < ndev->addr_len; i++) {
2807 			data = ha->addr[i];
2808 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2809 				crc = (crc >> 1) ^
2810 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2811 			}
2812 		}
2813 
2814 		/* only upper 6 bits (HASH_BITS) are used
2815 		 * which point to specific bit in he hash registers
2816 		 */
2817 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2818 
2819 		if (hash > 31) {
2820 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2821 			tmp |= 1 << (hash - 32);
2822 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2823 		} else {
2824 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2825 			tmp |= 1 << hash;
2826 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2827 		}
2828 	}
2829 }
2830 
2831 /* Set a MAC change in hardware. */
2832 static int
2833 fec_set_mac_address(struct net_device *ndev, void *p)
2834 {
2835 	struct fec_enet_private *fep = netdev_priv(ndev);
2836 	struct sockaddr *addr = p;
2837 
2838 	if (addr) {
2839 		if (!is_valid_ether_addr(addr->sa_data))
2840 			return -EADDRNOTAVAIL;
2841 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2842 	}
2843 
2844 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2845 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2846 		fep->hwp + FEC_ADDR_LOW);
2847 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2848 		fep->hwp + FEC_ADDR_HIGH);
2849 	return 0;
2850 }
2851 
2852 #ifdef CONFIG_NET_POLL_CONTROLLER
2853 /**
2854  * fec_poll_controller - FEC Poll controller function
2855  * @dev: The FEC network adapter
2856  *
2857  * Polled functionality used by netconsole and others in non interrupt mode
2858  *
2859  */
2860 static void fec_poll_controller(struct net_device *dev)
2861 {
2862 	int i;
2863 	struct fec_enet_private *fep = netdev_priv(dev);
2864 
2865 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2866 		if (fep->irq[i] > 0) {
2867 			disable_irq(fep->irq[i]);
2868 			fec_enet_interrupt(fep->irq[i], dev);
2869 			enable_irq(fep->irq[i]);
2870 		}
2871 	}
2872 }
2873 #endif
2874 
2875 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2876 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2877 	netdev_features_t features)
2878 {
2879 	struct fec_enet_private *fep = netdev_priv(netdev);
2880 	netdev_features_t changed = features ^ netdev->features;
2881 
2882 	netdev->features = features;
2883 
2884 	/* Receive checksum has been changed */
2885 	if (changed & NETIF_F_RXCSUM) {
2886 		if (features & NETIF_F_RXCSUM)
2887 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2888 		else
2889 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2890 	}
2891 }
2892 
2893 static int fec_set_features(struct net_device *netdev,
2894 	netdev_features_t features)
2895 {
2896 	struct fec_enet_private *fep = netdev_priv(netdev);
2897 	netdev_features_t changed = features ^ netdev->features;
2898 
2899 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2900 		napi_disable(&fep->napi);
2901 		netif_tx_lock_bh(netdev);
2902 		fec_stop(netdev);
2903 		fec_enet_set_netdev_features(netdev, features);
2904 		fec_restart(netdev);
2905 		netif_tx_wake_all_queues(netdev);
2906 		netif_tx_unlock_bh(netdev);
2907 		napi_enable(&fep->napi);
2908 	} else {
2909 		fec_enet_set_netdev_features(netdev, features);
2910 	}
2911 
2912 	return 0;
2913 }
2914 
2915 static const struct net_device_ops fec_netdev_ops = {
2916 	.ndo_open		= fec_enet_open,
2917 	.ndo_stop		= fec_enet_close,
2918 	.ndo_start_xmit		= fec_enet_start_xmit,
2919 	.ndo_set_rx_mode	= set_multicast_list,
2920 	.ndo_change_mtu		= eth_change_mtu,
2921 	.ndo_validate_addr	= eth_validate_addr,
2922 	.ndo_tx_timeout		= fec_timeout,
2923 	.ndo_set_mac_address	= fec_set_mac_address,
2924 	.ndo_do_ioctl		= fec_enet_ioctl,
2925 #ifdef CONFIG_NET_POLL_CONTROLLER
2926 	.ndo_poll_controller	= fec_poll_controller,
2927 #endif
2928 	.ndo_set_features	= fec_set_features,
2929 };
2930 
2931  /*
2932   * XXX:  We need to clean up on failure exits here.
2933   *
2934   */
2935 static int fec_enet_init(struct net_device *ndev)
2936 {
2937 	struct fec_enet_private *fep = netdev_priv(ndev);
2938 	const struct platform_device_id *id_entry =
2939 				platform_get_device_id(fep->pdev);
2940 	struct fec_enet_priv_tx_q *txq;
2941 	struct fec_enet_priv_rx_q *rxq;
2942 	struct bufdesc *cbd_base;
2943 	dma_addr_t bd_dma;
2944 	int bd_size;
2945 	unsigned int i;
2946 
2947 #if defined(CONFIG_ARM)
2948 	fep->rx_align = 0xf;
2949 	fep->tx_align = 0xf;
2950 #else
2951 	fep->rx_align = 0x3;
2952 	fep->tx_align = 0x3;
2953 #endif
2954 
2955 	fec_enet_alloc_queue(ndev);
2956 
2957 	if (fep->bufdesc_ex)
2958 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2959 	else
2960 		fep->bufdesc_size = sizeof(struct bufdesc);
2961 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2962 			fep->bufdesc_size;
2963 
2964 	/* Allocate memory for buffer descriptors. */
2965 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2966 				      GFP_KERNEL);
2967 	if (!cbd_base) {
2968 		return -ENOMEM;
2969 	}
2970 
2971 	memset(cbd_base, 0, bd_size);
2972 
2973 	/* Get the Ethernet address */
2974 	fec_get_mac(ndev);
2975 	/* make sure MAC we just acquired is programmed into the hw */
2976 	fec_set_mac_address(ndev, NULL);
2977 
2978 	/* Set receive and transmit descriptor base. */
2979 	for (i = 0; i < fep->num_rx_queues; i++) {
2980 		rxq = fep->rx_queue[i];
2981 		rxq->index = i;
2982 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2983 		rxq->bd_dma = bd_dma;
2984 		if (fep->bufdesc_ex) {
2985 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
2986 			cbd_base = (struct bufdesc *)
2987 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
2988 		} else {
2989 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
2990 			cbd_base += rxq->rx_ring_size;
2991 		}
2992 	}
2993 
2994 	for (i = 0; i < fep->num_tx_queues; i++) {
2995 		txq = fep->tx_queue[i];
2996 		txq->index = i;
2997 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
2998 		txq->bd_dma = bd_dma;
2999 		if (fep->bufdesc_ex) {
3000 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3001 			cbd_base = (struct bufdesc *)
3002 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3003 		} else {
3004 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3005 			cbd_base += txq->tx_ring_size;
3006 		}
3007 	}
3008 
3009 
3010 	/* The FEC Ethernet specific entries in the device structure */
3011 	ndev->watchdog_timeo = TX_TIMEOUT;
3012 	ndev->netdev_ops = &fec_netdev_ops;
3013 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3014 
3015 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3016 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3017 
3018 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
3019 		/* enable hw VLAN support */
3020 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3021 
3022 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
3023 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3024 
3025 		/* enable hw accelerator */
3026 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3027 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3028 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3029 	}
3030 
3031 	if (id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
3032 		fep->tx_align = 0;
3033 		fep->rx_align = 0x3f;
3034 	}
3035 
3036 	ndev->hw_features = ndev->features;
3037 
3038 	fec_restart(ndev);
3039 
3040 	return 0;
3041 }
3042 
3043 #ifdef CONFIG_OF
3044 static void fec_reset_phy(struct platform_device *pdev)
3045 {
3046 	int err, phy_reset;
3047 	int msec = 1;
3048 	struct device_node *np = pdev->dev.of_node;
3049 
3050 	if (!np)
3051 		return;
3052 
3053 	of_property_read_u32(np, "phy-reset-duration", &msec);
3054 	/* A sane reset duration should not be longer than 1s */
3055 	if (msec > 1000)
3056 		msec = 1;
3057 
3058 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3059 	if (!gpio_is_valid(phy_reset))
3060 		return;
3061 
3062 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3063 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3064 	if (err) {
3065 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3066 		return;
3067 	}
3068 	msleep(msec);
3069 	gpio_set_value(phy_reset, 1);
3070 }
3071 #else /* CONFIG_OF */
3072 static void fec_reset_phy(struct platform_device *pdev)
3073 {
3074 	/*
3075 	 * In case of platform probe, the reset has been done
3076 	 * by machine code.
3077 	 */
3078 }
3079 #endif /* CONFIG_OF */
3080 
3081 static void
3082 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3083 {
3084 	struct device_node *np = pdev->dev.of_node;
3085 	int err;
3086 
3087 	*num_tx = *num_rx = 1;
3088 
3089 	if (!np || !of_device_is_available(np))
3090 		return;
3091 
3092 	/* parse the num of tx and rx queues */
3093 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3094 	if (err)
3095 		*num_tx = 1;
3096 
3097 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3098 	if (err)
3099 		*num_rx = 1;
3100 
3101 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3102 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3103 			 *num_tx);
3104 		*num_tx = 1;
3105 		return;
3106 	}
3107 
3108 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3109 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3110 			 *num_rx);
3111 		*num_rx = 1;
3112 		return;
3113 	}
3114 
3115 }
3116 
3117 static int
3118 fec_probe(struct platform_device *pdev)
3119 {
3120 	struct fec_enet_private *fep;
3121 	struct fec_platform_data *pdata;
3122 	struct net_device *ndev;
3123 	int i, irq, ret = 0;
3124 	struct resource *r;
3125 	const struct of_device_id *of_id;
3126 	static int dev_id;
3127 	struct device_node *np = pdev->dev.of_node, *phy_node;
3128 	int num_tx_qs;
3129 	int num_rx_qs;
3130 
3131 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3132 	if (of_id)
3133 		pdev->id_entry = of_id->data;
3134 
3135 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3136 
3137 	/* Init network device */
3138 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3139 				  num_tx_qs, num_rx_qs);
3140 	if (!ndev)
3141 		return -ENOMEM;
3142 
3143 	SET_NETDEV_DEV(ndev, &pdev->dev);
3144 
3145 	/* setup board info structure */
3146 	fep = netdev_priv(ndev);
3147 
3148 	fep->num_rx_queues = num_rx_qs;
3149 	fep->num_tx_queues = num_tx_qs;
3150 
3151 #if !defined(CONFIG_M5272)
3152 	/* default enable pause frame auto negotiation */
3153 	if (pdev->id_entry &&
3154 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
3155 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3156 #endif
3157 
3158 	/* Select default pin state */
3159 	pinctrl_pm_select_default_state(&pdev->dev);
3160 
3161 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3162 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3163 	if (IS_ERR(fep->hwp)) {
3164 		ret = PTR_ERR(fep->hwp);
3165 		goto failed_ioremap;
3166 	}
3167 
3168 	fep->pdev = pdev;
3169 	fep->dev_id = dev_id++;
3170 
3171 	fep->bufdesc_ex = 0;
3172 
3173 	platform_set_drvdata(pdev, ndev);
3174 
3175 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3176 	if (!phy_node && of_phy_is_fixed_link(np)) {
3177 		ret = of_phy_register_fixed_link(np);
3178 		if (ret < 0) {
3179 			dev_err(&pdev->dev,
3180 				"broken fixed-link specification\n");
3181 			goto failed_phy;
3182 		}
3183 		phy_node = of_node_get(np);
3184 	}
3185 	fep->phy_node = phy_node;
3186 
3187 	ret = of_get_phy_mode(pdev->dev.of_node);
3188 	if (ret < 0) {
3189 		pdata = dev_get_platdata(&pdev->dev);
3190 		if (pdata)
3191 			fep->phy_interface = pdata->phy;
3192 		else
3193 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3194 	} else {
3195 		fep->phy_interface = ret;
3196 	}
3197 
3198 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3199 	if (IS_ERR(fep->clk_ipg)) {
3200 		ret = PTR_ERR(fep->clk_ipg);
3201 		goto failed_clk;
3202 	}
3203 
3204 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3205 	if (IS_ERR(fep->clk_ahb)) {
3206 		ret = PTR_ERR(fep->clk_ahb);
3207 		goto failed_clk;
3208 	}
3209 
3210 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3211 
3212 	/* enet_out is optional, depends on board */
3213 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3214 	if (IS_ERR(fep->clk_enet_out))
3215 		fep->clk_enet_out = NULL;
3216 
3217 	fep->ptp_clk_on = false;
3218 	mutex_init(&fep->ptp_clk_mutex);
3219 
3220 	/* clk_ref is optional, depends on board */
3221 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3222 	if (IS_ERR(fep->clk_ref))
3223 		fep->clk_ref = NULL;
3224 
3225 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3226 	fep->bufdesc_ex =
3227 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
3228 	if (IS_ERR(fep->clk_ptp)) {
3229 		fep->clk_ptp = NULL;
3230 		fep->bufdesc_ex = 0;
3231 	}
3232 
3233 	ret = fec_enet_clk_enable(ndev, true);
3234 	if (ret)
3235 		goto failed_clk;
3236 
3237 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3238 	if (!IS_ERR(fep->reg_phy)) {
3239 		ret = regulator_enable(fep->reg_phy);
3240 		if (ret) {
3241 			dev_err(&pdev->dev,
3242 				"Failed to enable phy regulator: %d\n", ret);
3243 			goto failed_regulator;
3244 		}
3245 	} else {
3246 		fep->reg_phy = NULL;
3247 	}
3248 
3249 	fec_reset_phy(pdev);
3250 
3251 	if (fep->bufdesc_ex)
3252 		fec_ptp_init(pdev);
3253 
3254 	ret = fec_enet_init(ndev);
3255 	if (ret)
3256 		goto failed_init;
3257 
3258 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3259 		irq = platform_get_irq(pdev, i);
3260 		if (irq < 0) {
3261 			if (i)
3262 				break;
3263 			ret = irq;
3264 			goto failed_irq;
3265 		}
3266 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3267 				       0, pdev->name, ndev);
3268 		if (ret)
3269 			goto failed_irq;
3270 	}
3271 
3272 	init_completion(&fep->mdio_done);
3273 	ret = fec_enet_mii_init(pdev);
3274 	if (ret)
3275 		goto failed_mii_init;
3276 
3277 	/* Carrier starts down, phylib will bring it up */
3278 	netif_carrier_off(ndev);
3279 	fec_enet_clk_enable(ndev, false);
3280 	pinctrl_pm_select_sleep_state(&pdev->dev);
3281 
3282 	ret = register_netdev(ndev);
3283 	if (ret)
3284 		goto failed_register;
3285 
3286 	if (fep->bufdesc_ex && fep->ptp_clock)
3287 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3288 
3289 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3290 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3291 	return 0;
3292 
3293 failed_register:
3294 	fec_enet_mii_remove(fep);
3295 failed_mii_init:
3296 failed_irq:
3297 failed_init:
3298 	if (fep->reg_phy)
3299 		regulator_disable(fep->reg_phy);
3300 failed_regulator:
3301 	fec_enet_clk_enable(ndev, false);
3302 failed_clk:
3303 failed_phy:
3304 	of_node_put(phy_node);
3305 failed_ioremap:
3306 	free_netdev(ndev);
3307 
3308 	return ret;
3309 }
3310 
3311 static int
3312 fec_drv_remove(struct platform_device *pdev)
3313 {
3314 	struct net_device *ndev = platform_get_drvdata(pdev);
3315 	struct fec_enet_private *fep = netdev_priv(ndev);
3316 
3317 	cancel_delayed_work_sync(&fep->time_keep);
3318 	cancel_work_sync(&fep->tx_timeout_work);
3319 	unregister_netdev(ndev);
3320 	fec_enet_mii_remove(fep);
3321 	if (fep->reg_phy)
3322 		regulator_disable(fep->reg_phy);
3323 	if (fep->ptp_clock)
3324 		ptp_clock_unregister(fep->ptp_clock);
3325 	fec_enet_clk_enable(ndev, false);
3326 	of_node_put(fep->phy_node);
3327 	free_netdev(ndev);
3328 
3329 	return 0;
3330 }
3331 
3332 static int __maybe_unused fec_suspend(struct device *dev)
3333 {
3334 	struct net_device *ndev = dev_get_drvdata(dev);
3335 	struct fec_enet_private *fep = netdev_priv(ndev);
3336 
3337 	rtnl_lock();
3338 	if (netif_running(ndev)) {
3339 		phy_stop(fep->phy_dev);
3340 		napi_disable(&fep->napi);
3341 		netif_tx_lock_bh(ndev);
3342 		netif_device_detach(ndev);
3343 		netif_tx_unlock_bh(ndev);
3344 		fec_stop(ndev);
3345 	}
3346 	rtnl_unlock();
3347 
3348 	fec_enet_clk_enable(ndev, false);
3349 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3350 
3351 	if (fep->reg_phy)
3352 		regulator_disable(fep->reg_phy);
3353 
3354 	return 0;
3355 }
3356 
3357 static int __maybe_unused fec_resume(struct device *dev)
3358 {
3359 	struct net_device *ndev = dev_get_drvdata(dev);
3360 	struct fec_enet_private *fep = netdev_priv(ndev);
3361 	int ret;
3362 
3363 	if (fep->reg_phy) {
3364 		ret = regulator_enable(fep->reg_phy);
3365 		if (ret)
3366 			return ret;
3367 	}
3368 
3369 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3370 	ret = fec_enet_clk_enable(ndev, true);
3371 	if (ret)
3372 		goto failed_clk;
3373 
3374 	rtnl_lock();
3375 	if (netif_running(ndev)) {
3376 		fec_restart(ndev);
3377 		netif_tx_lock_bh(ndev);
3378 		netif_device_attach(ndev);
3379 		netif_tx_unlock_bh(ndev);
3380 		napi_enable(&fep->napi);
3381 		phy_start(fep->phy_dev);
3382 	}
3383 	rtnl_unlock();
3384 
3385 	return 0;
3386 
3387 failed_clk:
3388 	if (fep->reg_phy)
3389 		regulator_disable(fep->reg_phy);
3390 	return ret;
3391 }
3392 
3393 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3394 
3395 static struct platform_driver fec_driver = {
3396 	.driver	= {
3397 		.name	= DRIVER_NAME,
3398 		.owner	= THIS_MODULE,
3399 		.pm	= &fec_pm_ops,
3400 		.of_match_table = fec_dt_ids,
3401 	},
3402 	.id_table = fec_devtype,
3403 	.probe	= fec_probe,
3404 	.remove	= fec_drv_remove,
3405 };
3406 
3407 module_platform_driver(fec_driver);
3408 
3409 MODULE_ALIAS("platform:"DRIVER_NAME);
3410 MODULE_LICENSE("GPL");
3411