1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
45 #include <linux/io.h>
46 #include <linux/irq.h>
47 #include <linux/clk.h>
48 #include <linux/platform_device.h>
49 #include <linux/phy.h>
50 #include <linux/fec.h>
51 #include <linux/of.h>
52 #include <linux/of_device.h>
53 #include <linux/of_gpio.h>
54 #include <linux/of_net.h>
55 #include <linux/regulator/consumer.h>
56 #include <linux/if_vlan.h>
57 
58 #include <asm/cacheflush.h>
59 
60 #include "fec.h"
61 
62 static void set_multicast_list(struct net_device *ndev);
63 
64 #if defined(CONFIG_ARM)
65 #define FEC_ALIGNMENT	0xf
66 #else
67 #define FEC_ALIGNMENT	0x3
68 #endif
69 
70 #define DRIVER_NAME	"fec"
71 
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE	(1 << 5)
74 #define FEC_ENET_RSEM_V	0x84
75 #define FEC_ENET_RSFL_V	16
76 #define FEC_ENET_RAEM_V	0x8
77 #define FEC_ENET_RAFL_V	0x8
78 #define FEC_ENET_OPD_V	0xFFF0
79 
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC		(1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET		(1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
92 /* Controller has hardware vlan support */
93 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
94 /* ENET IP errata ERR006358
95  *
96  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
97  * detected as not set during a prior frame transmission, then the
98  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
99  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
100  * frames not being transmitted until there is a 0-to-1 transition on
101  * ENET_TDAR[TDAR].
102  */
103 #define FEC_QUIRK_ERR006358            (1 << 7)
104 
105 static struct platform_device_id fec_devtype[] = {
106 	{
107 		/* keep it for coldfire */
108 		.name = DRIVER_NAME,
109 		.driver_data = 0,
110 	}, {
111 		.name = "imx25-fec",
112 		.driver_data = FEC_QUIRK_USE_GASKET,
113 	}, {
114 		.name = "imx27-fec",
115 		.driver_data = 0,
116 	}, {
117 		.name = "imx28-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
119 	}, {
120 		.name = "imx6q-fec",
121 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
124 	}, {
125 		.name = "mvf600-fec",
126 		.driver_data = FEC_QUIRK_ENET_MAC,
127 	}, {
128 		/* sentinel */
129 	}
130 };
131 MODULE_DEVICE_TABLE(platform, fec_devtype);
132 
133 enum imx_fec_type {
134 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
135 	IMX27_FEC,	/* runs on i.mx27/35/51 */
136 	IMX28_FEC,
137 	IMX6Q_FEC,
138 	MVF600_FEC,
139 };
140 
141 static const struct of_device_id fec_dt_ids[] = {
142 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
143 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
144 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
145 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
146 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
176 #error "FEC: descriptor ring size constants too large"
177 #endif
178 
179 /* Interrupt events/masks. */
180 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
181 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
182 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
183 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
184 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
185 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
186 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
187 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
188 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
189 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
190 
191 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
192 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
193 
194 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
195  */
196 #define PKT_MAXBUF_SIZE		1522
197 #define PKT_MINBUF_SIZE		64
198 #define PKT_MAXBLR_SIZE		1536
199 
200 /* FEC receive acceleration */
201 #define FEC_RACC_IPDIS		(1 << 1)
202 #define FEC_RACC_PRODIS		(1 << 2)
203 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
204 
205 /*
206  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
207  * size bits. Other FEC hardware does not, so we need to take that into
208  * account when setting it.
209  */
210 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
211     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
212 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
213 #else
214 #define	OPT_FRAME_SIZE	0
215 #endif
216 
217 /* FEC MII MMFR bits definition */
218 #define FEC_MMFR_ST		(1 << 30)
219 #define FEC_MMFR_OP_READ	(2 << 28)
220 #define FEC_MMFR_OP_WRITE	(1 << 28)
221 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
222 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
223 #define FEC_MMFR_TA		(2 << 16)
224 #define FEC_MMFR_DATA(v)	(v & 0xffff)
225 
226 #define FEC_MII_TIMEOUT		30000 /* us */
227 
228 /* Transmitter timeout */
229 #define TX_TIMEOUT (2 * HZ)
230 
231 #define FEC_PAUSE_FLAG_AUTONEG	0x1
232 #define FEC_PAUSE_FLAG_ENABLE	0x2
233 
234 static int mii_cnt;
235 
236 static inline
237 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
238 {
239 	struct bufdesc *new_bd = bdp + 1;
240 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
241 	struct bufdesc_ex *ex_base;
242 	struct bufdesc *base;
243 	int ring_size;
244 
245 	if (bdp >= fep->tx_bd_base) {
246 		base = fep->tx_bd_base;
247 		ring_size = fep->tx_ring_size;
248 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
249 	} else {
250 		base = fep->rx_bd_base;
251 		ring_size = fep->rx_ring_size;
252 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
253 	}
254 
255 	if (fep->bufdesc_ex)
256 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
257 			ex_base : ex_new_bd);
258 	else
259 		return (new_bd >= (base + ring_size)) ?
260 			base : new_bd;
261 }
262 
263 static inline
264 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
265 {
266 	struct bufdesc *new_bd = bdp - 1;
267 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
268 	struct bufdesc_ex *ex_base;
269 	struct bufdesc *base;
270 	int ring_size;
271 
272 	if (bdp >= fep->tx_bd_base) {
273 		base = fep->tx_bd_base;
274 		ring_size = fep->tx_ring_size;
275 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
276 	} else {
277 		base = fep->rx_bd_base;
278 		ring_size = fep->rx_ring_size;
279 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
280 	}
281 
282 	if (fep->bufdesc_ex)
283 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
284 			(ex_new_bd + ring_size) : ex_new_bd);
285 	else
286 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
287 }
288 
289 static void *swap_buffer(void *bufaddr, int len)
290 {
291 	int i;
292 	unsigned int *buf = bufaddr;
293 
294 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
295 		*buf = cpu_to_be32(*buf);
296 
297 	return bufaddr;
298 }
299 
300 static int
301 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
302 {
303 	/* Only run for packets requiring a checksum. */
304 	if (skb->ip_summed != CHECKSUM_PARTIAL)
305 		return 0;
306 
307 	if (unlikely(skb_cow_head(skb, 0)))
308 		return -1;
309 
310 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
311 
312 	return 0;
313 }
314 
315 static netdev_tx_t
316 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
317 {
318 	struct fec_enet_private *fep = netdev_priv(ndev);
319 	const struct platform_device_id *id_entry =
320 				platform_get_device_id(fep->pdev);
321 	struct bufdesc *bdp, *bdp_pre;
322 	void *bufaddr;
323 	unsigned short	status;
324 	unsigned int index;
325 
326 	/* Fill in a Tx ring entry */
327 	bdp = fep->cur_tx;
328 
329 	status = bdp->cbd_sc;
330 
331 	if (status & BD_ENET_TX_READY) {
332 		/* Ooops.  All transmit buffers are full.  Bail out.
333 		 * This should not happen, since ndev->tbusy should be set.
334 		 */
335 		netdev_err(ndev, "tx queue full!\n");
336 		return NETDEV_TX_BUSY;
337 	}
338 
339 	/* Protocol checksum off-load for TCP and UDP. */
340 	if (fec_enet_clear_csum(skb, ndev)) {
341 		kfree_skb(skb);
342 		return NETDEV_TX_OK;
343 	}
344 
345 	/* Clear all of the status flags */
346 	status &= ~BD_ENET_TX_STATS;
347 
348 	/* Set buffer length and buffer pointer */
349 	bufaddr = skb->data;
350 	bdp->cbd_datlen = skb->len;
351 
352 	/*
353 	 * On some FEC implementations data must be aligned on
354 	 * 4-byte boundaries. Use bounce buffers to copy data
355 	 * and get it aligned. Ugh.
356 	 */
357 	if (fep->bufdesc_ex)
358 		index = (struct bufdesc_ex *)bdp -
359 			(struct bufdesc_ex *)fep->tx_bd_base;
360 	else
361 		index = bdp - fep->tx_bd_base;
362 
363 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
364 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
365 		bufaddr = fep->tx_bounce[index];
366 	}
367 
368 	/*
369 	 * Some design made an incorrect assumption on endian mode of
370 	 * the system that it's running on. As the result, driver has to
371 	 * swap every frame going to and coming from the controller.
372 	 */
373 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
374 		swap_buffer(bufaddr, skb->len);
375 
376 	/* Save skb pointer */
377 	fep->tx_skbuff[index] = skb;
378 
379 	/* Push the data cache so the CPM does not get stale memory
380 	 * data.
381 	 */
382 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
383 			skb->len, DMA_TO_DEVICE);
384 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
385 		bdp->cbd_bufaddr = 0;
386 		fep->tx_skbuff[index] = NULL;
387 		dev_kfree_skb_any(skb);
388 		if (net_ratelimit())
389 			netdev_err(ndev, "Tx DMA memory map failed\n");
390 		return NETDEV_TX_OK;
391 	}
392 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
393 	 * it's the last BD of the frame, and to put the CRC on the end.
394 	 */
395 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
396 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
397 	bdp->cbd_sc = status;
398 
399 	if (fep->bufdesc_ex) {
400 
401 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
402 		ebdp->cbd_bdu = 0;
403 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
404 			fep->hwts_tx_en)) {
405 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
406 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
407 		} else {
408 			ebdp->cbd_esc = BD_ENET_TX_INT;
409 
410 			/* Enable protocol checksum flags
411 			 * We do not bother with the IP Checksum bits as they
412 			 * are done by the kernel
413 			 */
414 			if (skb->ip_summed == CHECKSUM_PARTIAL)
415 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
416 		}
417 	}
418 
419 	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
420 	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
421 	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
422 		fep->delay_work.trig_tx = true;
423 		schedule_delayed_work(&(fep->delay_work.delay_work),
424 					msecs_to_jiffies(1));
425 	}
426 
427 	/* If this was the last BD in the ring, start at the beginning again. */
428 	bdp = fec_enet_get_nextdesc(bdp, fep);
429 
430 	skb_tx_timestamp(skb);
431 
432 	fep->cur_tx = bdp;
433 
434 	if (fep->cur_tx == fep->dirty_tx)
435 		netif_stop_queue(ndev);
436 
437 	/* Trigger transmission start */
438 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
439 
440 	return NETDEV_TX_OK;
441 }
442 
443 /* Init RX & TX buffer descriptors
444  */
445 static void fec_enet_bd_init(struct net_device *dev)
446 {
447 	struct fec_enet_private *fep = netdev_priv(dev);
448 	struct bufdesc *bdp;
449 	unsigned int i;
450 
451 	/* Initialize the receive buffer descriptors. */
452 	bdp = fep->rx_bd_base;
453 	for (i = 0; i < fep->rx_ring_size; i++) {
454 
455 		/* Initialize the BD for every fragment in the page. */
456 		if (bdp->cbd_bufaddr)
457 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
458 		else
459 			bdp->cbd_sc = 0;
460 		bdp = fec_enet_get_nextdesc(bdp, fep);
461 	}
462 
463 	/* Set the last buffer to wrap */
464 	bdp = fec_enet_get_prevdesc(bdp, fep);
465 	bdp->cbd_sc |= BD_SC_WRAP;
466 
467 	fep->cur_rx = fep->rx_bd_base;
468 
469 	/* ...and the same for transmit */
470 	bdp = fep->tx_bd_base;
471 	fep->cur_tx = bdp;
472 	for (i = 0; i < fep->tx_ring_size; i++) {
473 
474 		/* Initialize the BD for every fragment in the page. */
475 		bdp->cbd_sc = 0;
476 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
477 			dev_kfree_skb_any(fep->tx_skbuff[i]);
478 			fep->tx_skbuff[i] = NULL;
479 		}
480 		bdp->cbd_bufaddr = 0;
481 		bdp = fec_enet_get_nextdesc(bdp, fep);
482 	}
483 
484 	/* Set the last buffer to wrap */
485 	bdp = fec_enet_get_prevdesc(bdp, fep);
486 	bdp->cbd_sc |= BD_SC_WRAP;
487 	fep->dirty_tx = bdp;
488 }
489 
490 /* This function is called to start or restart the FEC during a link
491  * change.  This only happens when switching between half and full
492  * duplex.
493  */
494 static void
495 fec_restart(struct net_device *ndev, int duplex)
496 {
497 	struct fec_enet_private *fep = netdev_priv(ndev);
498 	const struct platform_device_id *id_entry =
499 				platform_get_device_id(fep->pdev);
500 	int i;
501 	u32 val;
502 	u32 temp_mac[2];
503 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
504 	u32 ecntl = 0x2; /* ETHEREN */
505 
506 	if (netif_running(ndev)) {
507 		netif_device_detach(ndev);
508 		napi_disable(&fep->napi);
509 		netif_stop_queue(ndev);
510 		netif_tx_lock_bh(ndev);
511 	}
512 
513 	/* Whack a reset.  We should wait for this. */
514 	writel(1, fep->hwp + FEC_ECNTRL);
515 	udelay(10);
516 
517 	/*
518 	 * enet-mac reset will reset mac address registers too,
519 	 * so need to reconfigure it.
520 	 */
521 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
522 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
523 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
524 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
525 	}
526 
527 	/* Clear any outstanding interrupt. */
528 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
529 
530 	/* Setup multicast filter. */
531 	set_multicast_list(ndev);
532 #ifndef CONFIG_M5272
533 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
534 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
535 #endif
536 
537 	/* Set maximum receive buffer size. */
538 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
539 
540 	fec_enet_bd_init(ndev);
541 
542 	/* Set receive and transmit descriptor base. */
543 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
544 	if (fep->bufdesc_ex)
545 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
546 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
547 	else
548 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
549 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
550 
551 
552 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
553 		if (fep->tx_skbuff[i]) {
554 			dev_kfree_skb_any(fep->tx_skbuff[i]);
555 			fep->tx_skbuff[i] = NULL;
556 		}
557 	}
558 
559 	/* Enable MII mode */
560 	if (duplex) {
561 		/* FD enable */
562 		writel(0x04, fep->hwp + FEC_X_CNTRL);
563 	} else {
564 		/* No Rcv on Xmit */
565 		rcntl |= 0x02;
566 		writel(0x0, fep->hwp + FEC_X_CNTRL);
567 	}
568 
569 	fep->full_duplex = duplex;
570 
571 	/* Set MII speed */
572 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
573 
574 #if !defined(CONFIG_M5272)
575 	/* set RX checksum */
576 	val = readl(fep->hwp + FEC_RACC);
577 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
578 		val |= FEC_RACC_OPTIONS;
579 	else
580 		val &= ~FEC_RACC_OPTIONS;
581 	writel(val, fep->hwp + FEC_RACC);
582 #endif
583 
584 	/*
585 	 * The phy interface and speed need to get configured
586 	 * differently on enet-mac.
587 	 */
588 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
589 		/* Enable flow control and length check */
590 		rcntl |= 0x40000000 | 0x00000020;
591 
592 		/* RGMII, RMII or MII */
593 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
594 			rcntl |= (1 << 6);
595 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
596 			rcntl |= (1 << 8);
597 		else
598 			rcntl &= ~(1 << 8);
599 
600 		/* 1G, 100M or 10M */
601 		if (fep->phy_dev) {
602 			if (fep->phy_dev->speed == SPEED_1000)
603 				ecntl |= (1 << 5);
604 			else if (fep->phy_dev->speed == SPEED_100)
605 				rcntl &= ~(1 << 9);
606 			else
607 				rcntl |= (1 << 9);
608 		}
609 	} else {
610 #ifdef FEC_MIIGSK_ENR
611 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
612 			u32 cfgr;
613 			/* disable the gasket and wait */
614 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
615 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
616 				udelay(1);
617 
618 			/*
619 			 * configure the gasket:
620 			 *   RMII, 50 MHz, no loopback, no echo
621 			 *   MII, 25 MHz, no loopback, no echo
622 			 */
623 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
624 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
625 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
626 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
627 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
628 
629 			/* re-enable the gasket */
630 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
631 		}
632 #endif
633 	}
634 
635 #if !defined(CONFIG_M5272)
636 	/* enable pause frame*/
637 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
638 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
639 	     fep->phy_dev && fep->phy_dev->pause)) {
640 		rcntl |= FEC_ENET_FCE;
641 
642 		/* set FIFO threshold parameter to reduce overrun */
643 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
644 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
645 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
646 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
647 
648 		/* OPD */
649 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
650 	} else {
651 		rcntl &= ~FEC_ENET_FCE;
652 	}
653 #endif /* !defined(CONFIG_M5272) */
654 
655 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
656 
657 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
658 		/* enable ENET endian swap */
659 		ecntl |= (1 << 8);
660 		/* enable ENET store and forward mode */
661 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
662 	}
663 
664 	if (fep->bufdesc_ex)
665 		ecntl |= (1 << 4);
666 
667 #ifndef CONFIG_M5272
668 	/* Enable the MIB statistic event counters */
669 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
670 #endif
671 
672 	/* And last, enable the transmit and receive processing */
673 	writel(ecntl, fep->hwp + FEC_ECNTRL);
674 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
675 
676 	if (fep->bufdesc_ex)
677 		fec_ptp_start_cyclecounter(ndev);
678 
679 	/* Enable interrupts we wish to service */
680 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
681 
682 	if (netif_running(ndev)) {
683 		netif_tx_unlock_bh(ndev);
684 		netif_wake_queue(ndev);
685 		napi_enable(&fep->napi);
686 		netif_device_attach(ndev);
687 	}
688 }
689 
690 static void
691 fec_stop(struct net_device *ndev)
692 {
693 	struct fec_enet_private *fep = netdev_priv(ndev);
694 	const struct platform_device_id *id_entry =
695 				platform_get_device_id(fep->pdev);
696 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
697 
698 	/* We cannot expect a graceful transmit stop without link !!! */
699 	if (fep->link) {
700 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
701 		udelay(10);
702 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
703 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
704 	}
705 
706 	/* Whack a reset.  We should wait for this. */
707 	writel(1, fep->hwp + FEC_ECNTRL);
708 	udelay(10);
709 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
710 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
711 
712 	/* We have to keep ENET enabled to have MII interrupt stay working */
713 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
714 		writel(2, fep->hwp + FEC_ECNTRL);
715 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
716 	}
717 }
718 
719 
720 static void
721 fec_timeout(struct net_device *ndev)
722 {
723 	struct fec_enet_private *fep = netdev_priv(ndev);
724 
725 	ndev->stats.tx_errors++;
726 
727 	fep->delay_work.timeout = true;
728 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
729 }
730 
731 static void fec_enet_work(struct work_struct *work)
732 {
733 	struct fec_enet_private *fep =
734 		container_of(work,
735 			     struct fec_enet_private,
736 			     delay_work.delay_work.work);
737 
738 	if (fep->delay_work.timeout) {
739 		fep->delay_work.timeout = false;
740 		fec_restart(fep->netdev, fep->full_duplex);
741 		netif_wake_queue(fep->netdev);
742 	}
743 
744 	if (fep->delay_work.trig_tx) {
745 		fep->delay_work.trig_tx = false;
746 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
747 	}
748 }
749 
750 static void
751 fec_enet_tx(struct net_device *ndev)
752 {
753 	struct	fec_enet_private *fep;
754 	struct bufdesc *bdp;
755 	unsigned short status;
756 	struct	sk_buff	*skb;
757 	int	index = 0;
758 
759 	fep = netdev_priv(ndev);
760 	bdp = fep->dirty_tx;
761 
762 	/* get next bdp of dirty_tx */
763 	bdp = fec_enet_get_nextdesc(bdp, fep);
764 
765 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
766 
767 		/* current queue is empty */
768 		if (bdp == fep->cur_tx)
769 			break;
770 
771 		if (fep->bufdesc_ex)
772 			index = (struct bufdesc_ex *)bdp -
773 				(struct bufdesc_ex *)fep->tx_bd_base;
774 		else
775 			index = bdp - fep->tx_bd_base;
776 
777 		skb = fep->tx_skbuff[index];
778 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
779 				DMA_TO_DEVICE);
780 		bdp->cbd_bufaddr = 0;
781 
782 		/* Check for errors. */
783 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
784 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
785 				   BD_ENET_TX_CSL)) {
786 			ndev->stats.tx_errors++;
787 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
788 				ndev->stats.tx_heartbeat_errors++;
789 			if (status & BD_ENET_TX_LC)  /* Late collision */
790 				ndev->stats.tx_window_errors++;
791 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
792 				ndev->stats.tx_aborted_errors++;
793 			if (status & BD_ENET_TX_UN)  /* Underrun */
794 				ndev->stats.tx_fifo_errors++;
795 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
796 				ndev->stats.tx_carrier_errors++;
797 		} else {
798 			ndev->stats.tx_packets++;
799 			ndev->stats.tx_bytes += bdp->cbd_datlen;
800 		}
801 
802 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
803 			fep->bufdesc_ex) {
804 			struct skb_shared_hwtstamps shhwtstamps;
805 			unsigned long flags;
806 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
807 
808 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
809 			spin_lock_irqsave(&fep->tmreg_lock, flags);
810 			shhwtstamps.hwtstamp = ns_to_ktime(
811 				timecounter_cyc2time(&fep->tc, ebdp->ts));
812 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
813 			skb_tstamp_tx(skb, &shhwtstamps);
814 		}
815 
816 		if (status & BD_ENET_TX_READY)
817 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
818 
819 		/* Deferred means some collisions occurred during transmit,
820 		 * but we eventually sent the packet OK.
821 		 */
822 		if (status & BD_ENET_TX_DEF)
823 			ndev->stats.collisions++;
824 
825 		/* Free the sk buffer associated with this last transmit */
826 		dev_kfree_skb_any(skb);
827 		fep->tx_skbuff[index] = NULL;
828 
829 		fep->dirty_tx = bdp;
830 
831 		/* Update pointer to next buffer descriptor to be transmitted */
832 		bdp = fec_enet_get_nextdesc(bdp, fep);
833 
834 		/* Since we have freed up a buffer, the ring is no longer full
835 		 */
836 		if (fep->dirty_tx != fep->cur_tx) {
837 			if (netif_queue_stopped(ndev))
838 				netif_wake_queue(ndev);
839 		}
840 	}
841 	return;
842 }
843 
844 
845 /* During a receive, the cur_rx points to the current incoming buffer.
846  * When we update through the ring, if the next incoming buffer has
847  * not been given to the system, we just set the empty indicator,
848  * effectively tossing the packet.
849  */
850 static int
851 fec_enet_rx(struct net_device *ndev, int budget)
852 {
853 	struct fec_enet_private *fep = netdev_priv(ndev);
854 	const struct platform_device_id *id_entry =
855 				platform_get_device_id(fep->pdev);
856 	struct bufdesc *bdp;
857 	unsigned short status;
858 	struct	sk_buff	*skb;
859 	ushort	pkt_len;
860 	__u8 *data;
861 	int	pkt_received = 0;
862 	struct	bufdesc_ex *ebdp = NULL;
863 	bool	vlan_packet_rcvd = false;
864 	u16	vlan_tag;
865 	int	index = 0;
866 
867 #ifdef CONFIG_M532x
868 	flush_cache_all();
869 #endif
870 
871 	/* First, grab all of the stats for the incoming packet.
872 	 * These get messed up if we get called due to a busy condition.
873 	 */
874 	bdp = fep->cur_rx;
875 
876 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
877 
878 		if (pkt_received >= budget)
879 			break;
880 		pkt_received++;
881 
882 		/* Since we have allocated space to hold a complete frame,
883 		 * the last indicator should be set.
884 		 */
885 		if ((status & BD_ENET_RX_LAST) == 0)
886 			netdev_err(ndev, "rcv is not +last\n");
887 
888 		if (!fep->opened)
889 			goto rx_processing_done;
890 
891 		/* Check for errors. */
892 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
893 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
894 			ndev->stats.rx_errors++;
895 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
896 				/* Frame too long or too short. */
897 				ndev->stats.rx_length_errors++;
898 			}
899 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
900 				ndev->stats.rx_frame_errors++;
901 			if (status & BD_ENET_RX_CR)	/* CRC Error */
902 				ndev->stats.rx_crc_errors++;
903 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
904 				ndev->stats.rx_fifo_errors++;
905 		}
906 
907 		/* Report late collisions as a frame error.
908 		 * On this error, the BD is closed, but we don't know what we
909 		 * have in the buffer.  So, just drop this frame on the floor.
910 		 */
911 		if (status & BD_ENET_RX_CL) {
912 			ndev->stats.rx_errors++;
913 			ndev->stats.rx_frame_errors++;
914 			goto rx_processing_done;
915 		}
916 
917 		/* Process the incoming frame. */
918 		ndev->stats.rx_packets++;
919 		pkt_len = bdp->cbd_datlen;
920 		ndev->stats.rx_bytes += pkt_len;
921 
922 		if (fep->bufdesc_ex)
923 			index = (struct bufdesc_ex *)bdp -
924 				(struct bufdesc_ex *)fep->rx_bd_base;
925 		else
926 			index = bdp - fep->rx_bd_base;
927 		data = fep->rx_skbuff[index]->data;
928 		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
929 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
930 
931 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
932 			swap_buffer(data, pkt_len);
933 
934 		/* Extract the enhanced buffer descriptor */
935 		ebdp = NULL;
936 		if (fep->bufdesc_ex)
937 			ebdp = (struct bufdesc_ex *)bdp;
938 
939 		/* If this is a VLAN packet remove the VLAN Tag */
940 		vlan_packet_rcvd = false;
941 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
942 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
943 			/* Push and remove the vlan tag */
944 			struct vlan_hdr *vlan_header =
945 					(struct vlan_hdr *) (data + ETH_HLEN);
946 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
947 			pkt_len -= VLAN_HLEN;
948 
949 			vlan_packet_rcvd = true;
950 		}
951 
952 		/* This does 16 byte alignment, exactly what we need.
953 		 * The packet length includes FCS, but we don't want to
954 		 * include that when passing upstream as it messes up
955 		 * bridging applications.
956 		 */
957 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
958 
959 		if (unlikely(!skb)) {
960 			ndev->stats.rx_dropped++;
961 		} else {
962 			int payload_offset = (2 * ETH_ALEN);
963 			skb_reserve(skb, NET_IP_ALIGN);
964 			skb_put(skb, pkt_len - 4);	/* Make room */
965 
966 			/* Extract the frame data without the VLAN header. */
967 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
968 			if (vlan_packet_rcvd)
969 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
970 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
971 						       data + payload_offset,
972 						       pkt_len - 4 - (2 * ETH_ALEN));
973 
974 			skb->protocol = eth_type_trans(skb, ndev);
975 
976 			/* Get receive timestamp from the skb */
977 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
978 				struct skb_shared_hwtstamps *shhwtstamps =
979 							    skb_hwtstamps(skb);
980 				unsigned long flags;
981 
982 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
983 
984 				spin_lock_irqsave(&fep->tmreg_lock, flags);
985 				shhwtstamps->hwtstamp = ns_to_ktime(
986 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
987 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
988 			}
989 
990 			if (fep->bufdesc_ex &&
991 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
992 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
993 					/* don't check it */
994 					skb->ip_summed = CHECKSUM_UNNECESSARY;
995 				} else {
996 					skb_checksum_none_assert(skb);
997 				}
998 			}
999 
1000 			/* Handle received VLAN packets */
1001 			if (vlan_packet_rcvd)
1002 				__vlan_hwaccel_put_tag(skb,
1003 						       htons(ETH_P_8021Q),
1004 						       vlan_tag);
1005 
1006 			napi_gro_receive(&fep->napi, skb);
1007 		}
1008 
1009 		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1010 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1011 rx_processing_done:
1012 		/* Clear the status flags for this buffer */
1013 		status &= ~BD_ENET_RX_STATS;
1014 
1015 		/* Mark the buffer empty */
1016 		status |= BD_ENET_RX_EMPTY;
1017 		bdp->cbd_sc = status;
1018 
1019 		if (fep->bufdesc_ex) {
1020 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1021 
1022 			ebdp->cbd_esc = BD_ENET_RX_INT;
1023 			ebdp->cbd_prot = 0;
1024 			ebdp->cbd_bdu = 0;
1025 		}
1026 
1027 		/* Update BD pointer to next entry */
1028 		bdp = fec_enet_get_nextdesc(bdp, fep);
1029 
1030 		/* Doing this here will keep the FEC running while we process
1031 		 * incoming frames.  On a heavily loaded network, we should be
1032 		 * able to keep up at the expense of system resources.
1033 		 */
1034 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1035 	}
1036 	fep->cur_rx = bdp;
1037 
1038 	return pkt_received;
1039 }
1040 
1041 static irqreturn_t
1042 fec_enet_interrupt(int irq, void *dev_id)
1043 {
1044 	struct net_device *ndev = dev_id;
1045 	struct fec_enet_private *fep = netdev_priv(ndev);
1046 	uint int_events;
1047 	irqreturn_t ret = IRQ_NONE;
1048 
1049 	do {
1050 		int_events = readl(fep->hwp + FEC_IEVENT);
1051 		writel(int_events, fep->hwp + FEC_IEVENT);
1052 
1053 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1054 			ret = IRQ_HANDLED;
1055 
1056 			/* Disable the RX interrupt */
1057 			if (napi_schedule_prep(&fep->napi)) {
1058 				writel(FEC_RX_DISABLED_IMASK,
1059 					fep->hwp + FEC_IMASK);
1060 				__napi_schedule(&fep->napi);
1061 			}
1062 		}
1063 
1064 		if (int_events & FEC_ENET_MII) {
1065 			ret = IRQ_HANDLED;
1066 			complete(&fep->mdio_done);
1067 		}
1068 	} while (int_events);
1069 
1070 	return ret;
1071 }
1072 
1073 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1074 {
1075 	struct net_device *ndev = napi->dev;
1076 	int pkts = fec_enet_rx(ndev, budget);
1077 	struct fec_enet_private *fep = netdev_priv(ndev);
1078 
1079 	fec_enet_tx(ndev);
1080 
1081 	if (pkts < budget) {
1082 		napi_complete(napi);
1083 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1084 	}
1085 	return pkts;
1086 }
1087 
1088 /* ------------------------------------------------------------------------- */
1089 static void fec_get_mac(struct net_device *ndev)
1090 {
1091 	struct fec_enet_private *fep = netdev_priv(ndev);
1092 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1093 	unsigned char *iap, tmpaddr[ETH_ALEN];
1094 
1095 	/*
1096 	 * try to get mac address in following order:
1097 	 *
1098 	 * 1) module parameter via kernel command line in form
1099 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1100 	 */
1101 	iap = macaddr;
1102 
1103 	/*
1104 	 * 2) from device tree data
1105 	 */
1106 	if (!is_valid_ether_addr(iap)) {
1107 		struct device_node *np = fep->pdev->dev.of_node;
1108 		if (np) {
1109 			const char *mac = of_get_mac_address(np);
1110 			if (mac)
1111 				iap = (unsigned char *) mac;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * 3) from flash or fuse (via platform data)
1117 	 */
1118 	if (!is_valid_ether_addr(iap)) {
1119 #ifdef CONFIG_M5272
1120 		if (FEC_FLASHMAC)
1121 			iap = (unsigned char *)FEC_FLASHMAC;
1122 #else
1123 		if (pdata)
1124 			iap = (unsigned char *)&pdata->mac;
1125 #endif
1126 	}
1127 
1128 	/*
1129 	 * 4) FEC mac registers set by bootloader
1130 	 */
1131 	if (!is_valid_ether_addr(iap)) {
1132 		*((__be32 *) &tmpaddr[0]) =
1133 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1134 		*((__be16 *) &tmpaddr[4]) =
1135 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1136 		iap = &tmpaddr[0];
1137 	}
1138 
1139 	/*
1140 	 * 5) random mac address
1141 	 */
1142 	if (!is_valid_ether_addr(iap)) {
1143 		/* Report it and use a random ethernet address instead */
1144 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1145 		eth_hw_addr_random(ndev);
1146 		netdev_info(ndev, "Using random MAC address: %pM\n",
1147 			    ndev->dev_addr);
1148 		return;
1149 	}
1150 
1151 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1152 
1153 	/* Adjust MAC if using macaddr */
1154 	if (iap == macaddr)
1155 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1156 }
1157 
1158 /* ------------------------------------------------------------------------- */
1159 
1160 /*
1161  * Phy section
1162  */
1163 static void fec_enet_adjust_link(struct net_device *ndev)
1164 {
1165 	struct fec_enet_private *fep = netdev_priv(ndev);
1166 	struct phy_device *phy_dev = fep->phy_dev;
1167 	int status_change = 0;
1168 
1169 	/* Prevent a state halted on mii error */
1170 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1171 		phy_dev->state = PHY_RESUMING;
1172 		return;
1173 	}
1174 
1175 	if (phy_dev->link) {
1176 		if (!fep->link) {
1177 			fep->link = phy_dev->link;
1178 			status_change = 1;
1179 		}
1180 
1181 		if (fep->full_duplex != phy_dev->duplex)
1182 			status_change = 1;
1183 
1184 		if (phy_dev->speed != fep->speed) {
1185 			fep->speed = phy_dev->speed;
1186 			status_change = 1;
1187 		}
1188 
1189 		/* if any of the above changed restart the FEC */
1190 		if (status_change)
1191 			fec_restart(ndev, phy_dev->duplex);
1192 	} else {
1193 		if (fep->link) {
1194 			fec_stop(ndev);
1195 			fep->link = phy_dev->link;
1196 			status_change = 1;
1197 		}
1198 	}
1199 
1200 	if (status_change)
1201 		phy_print_status(phy_dev);
1202 }
1203 
1204 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1205 {
1206 	struct fec_enet_private *fep = bus->priv;
1207 	unsigned long time_left;
1208 
1209 	fep->mii_timeout = 0;
1210 	init_completion(&fep->mdio_done);
1211 
1212 	/* start a read op */
1213 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1214 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1215 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1216 
1217 	/* wait for end of transfer */
1218 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1219 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1220 	if (time_left == 0) {
1221 		fep->mii_timeout = 1;
1222 		netdev_err(fep->netdev, "MDIO read timeout\n");
1223 		return -ETIMEDOUT;
1224 	}
1225 
1226 	/* return value */
1227 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1228 }
1229 
1230 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1231 			   u16 value)
1232 {
1233 	struct fec_enet_private *fep = bus->priv;
1234 	unsigned long time_left;
1235 
1236 	fep->mii_timeout = 0;
1237 	init_completion(&fep->mdio_done);
1238 
1239 	/* start a write op */
1240 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1241 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1242 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1243 		fep->hwp + FEC_MII_DATA);
1244 
1245 	/* wait for end of transfer */
1246 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1247 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1248 	if (time_left == 0) {
1249 		fep->mii_timeout = 1;
1250 		netdev_err(fep->netdev, "MDIO write timeout\n");
1251 		return -ETIMEDOUT;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int fec_enet_mdio_reset(struct mii_bus *bus)
1258 {
1259 	return 0;
1260 }
1261 
1262 static int fec_enet_mii_probe(struct net_device *ndev)
1263 {
1264 	struct fec_enet_private *fep = netdev_priv(ndev);
1265 	const struct platform_device_id *id_entry =
1266 				platform_get_device_id(fep->pdev);
1267 	struct phy_device *phy_dev = NULL;
1268 	char mdio_bus_id[MII_BUS_ID_SIZE];
1269 	char phy_name[MII_BUS_ID_SIZE + 3];
1270 	int phy_id;
1271 	int dev_id = fep->dev_id;
1272 
1273 	fep->phy_dev = NULL;
1274 
1275 	/* check for attached phy */
1276 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1277 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1278 			continue;
1279 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1280 			continue;
1281 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1282 			continue;
1283 		if (dev_id--)
1284 			continue;
1285 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1286 		break;
1287 	}
1288 
1289 	if (phy_id >= PHY_MAX_ADDR) {
1290 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1291 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1292 		phy_id = 0;
1293 	}
1294 
1295 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1296 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1297 			      fep->phy_interface);
1298 	if (IS_ERR(phy_dev)) {
1299 		netdev_err(ndev, "could not attach to PHY\n");
1300 		return PTR_ERR(phy_dev);
1301 	}
1302 
1303 	/* mask with MAC supported features */
1304 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1305 		phy_dev->supported &= PHY_GBIT_FEATURES;
1306 #if !defined(CONFIG_M5272)
1307 		phy_dev->supported |= SUPPORTED_Pause;
1308 #endif
1309 	}
1310 	else
1311 		phy_dev->supported &= PHY_BASIC_FEATURES;
1312 
1313 	phy_dev->advertising = phy_dev->supported;
1314 
1315 	fep->phy_dev = phy_dev;
1316 	fep->link = 0;
1317 	fep->full_duplex = 0;
1318 
1319 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1320 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1321 		    fep->phy_dev->irq);
1322 
1323 	return 0;
1324 }
1325 
1326 static int fec_enet_mii_init(struct platform_device *pdev)
1327 {
1328 	static struct mii_bus *fec0_mii_bus;
1329 	struct net_device *ndev = platform_get_drvdata(pdev);
1330 	struct fec_enet_private *fep = netdev_priv(ndev);
1331 	const struct platform_device_id *id_entry =
1332 				platform_get_device_id(fep->pdev);
1333 	int err = -ENXIO, i;
1334 
1335 	/*
1336 	 * The dual fec interfaces are not equivalent with enet-mac.
1337 	 * Here are the differences:
1338 	 *
1339 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1340 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1341 	 *  - external phys can only be configured by fec0
1342 	 *
1343 	 * That is to say fec1 can not work independently. It only works
1344 	 * when fec0 is working. The reason behind this design is that the
1345 	 * second interface is added primarily for Switch mode.
1346 	 *
1347 	 * Because of the last point above, both phys are attached on fec0
1348 	 * mdio interface in board design, and need to be configured by
1349 	 * fec0 mii_bus.
1350 	 */
1351 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1352 		/* fec1 uses fec0 mii_bus */
1353 		if (mii_cnt && fec0_mii_bus) {
1354 			fep->mii_bus = fec0_mii_bus;
1355 			mii_cnt++;
1356 			return 0;
1357 		}
1358 		return -ENOENT;
1359 	}
1360 
1361 	fep->mii_timeout = 0;
1362 
1363 	/*
1364 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1365 	 *
1366 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1367 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1368 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1369 	 * document.
1370 	 */
1371 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1372 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1373 		fep->phy_speed--;
1374 	fep->phy_speed <<= 1;
1375 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1376 
1377 	fep->mii_bus = mdiobus_alloc();
1378 	if (fep->mii_bus == NULL) {
1379 		err = -ENOMEM;
1380 		goto err_out;
1381 	}
1382 
1383 	fep->mii_bus->name = "fec_enet_mii_bus";
1384 	fep->mii_bus->read = fec_enet_mdio_read;
1385 	fep->mii_bus->write = fec_enet_mdio_write;
1386 	fep->mii_bus->reset = fec_enet_mdio_reset;
1387 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1388 		pdev->name, fep->dev_id + 1);
1389 	fep->mii_bus->priv = fep;
1390 	fep->mii_bus->parent = &pdev->dev;
1391 
1392 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1393 	if (!fep->mii_bus->irq) {
1394 		err = -ENOMEM;
1395 		goto err_out_free_mdiobus;
1396 	}
1397 
1398 	for (i = 0; i < PHY_MAX_ADDR; i++)
1399 		fep->mii_bus->irq[i] = PHY_POLL;
1400 
1401 	if (mdiobus_register(fep->mii_bus))
1402 		goto err_out_free_mdio_irq;
1403 
1404 	mii_cnt++;
1405 
1406 	/* save fec0 mii_bus */
1407 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1408 		fec0_mii_bus = fep->mii_bus;
1409 
1410 	return 0;
1411 
1412 err_out_free_mdio_irq:
1413 	kfree(fep->mii_bus->irq);
1414 err_out_free_mdiobus:
1415 	mdiobus_free(fep->mii_bus);
1416 err_out:
1417 	return err;
1418 }
1419 
1420 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1421 {
1422 	if (--mii_cnt == 0) {
1423 		mdiobus_unregister(fep->mii_bus);
1424 		kfree(fep->mii_bus->irq);
1425 		mdiobus_free(fep->mii_bus);
1426 	}
1427 }
1428 
1429 static int fec_enet_get_settings(struct net_device *ndev,
1430 				  struct ethtool_cmd *cmd)
1431 {
1432 	struct fec_enet_private *fep = netdev_priv(ndev);
1433 	struct phy_device *phydev = fep->phy_dev;
1434 
1435 	if (!phydev)
1436 		return -ENODEV;
1437 
1438 	return phy_ethtool_gset(phydev, cmd);
1439 }
1440 
1441 static int fec_enet_set_settings(struct net_device *ndev,
1442 				 struct ethtool_cmd *cmd)
1443 {
1444 	struct fec_enet_private *fep = netdev_priv(ndev);
1445 	struct phy_device *phydev = fep->phy_dev;
1446 
1447 	if (!phydev)
1448 		return -ENODEV;
1449 
1450 	return phy_ethtool_sset(phydev, cmd);
1451 }
1452 
1453 static void fec_enet_get_drvinfo(struct net_device *ndev,
1454 				 struct ethtool_drvinfo *info)
1455 {
1456 	struct fec_enet_private *fep = netdev_priv(ndev);
1457 
1458 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1459 		sizeof(info->driver));
1460 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1461 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1462 }
1463 
1464 static int fec_enet_get_ts_info(struct net_device *ndev,
1465 				struct ethtool_ts_info *info)
1466 {
1467 	struct fec_enet_private *fep = netdev_priv(ndev);
1468 
1469 	if (fep->bufdesc_ex) {
1470 
1471 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1472 					SOF_TIMESTAMPING_RX_SOFTWARE |
1473 					SOF_TIMESTAMPING_SOFTWARE |
1474 					SOF_TIMESTAMPING_TX_HARDWARE |
1475 					SOF_TIMESTAMPING_RX_HARDWARE |
1476 					SOF_TIMESTAMPING_RAW_HARDWARE;
1477 		if (fep->ptp_clock)
1478 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1479 		else
1480 			info->phc_index = -1;
1481 
1482 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1483 				 (1 << HWTSTAMP_TX_ON);
1484 
1485 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1486 				   (1 << HWTSTAMP_FILTER_ALL);
1487 		return 0;
1488 	} else {
1489 		return ethtool_op_get_ts_info(ndev, info);
1490 	}
1491 }
1492 
1493 #if !defined(CONFIG_M5272)
1494 
1495 static void fec_enet_get_pauseparam(struct net_device *ndev,
1496 				    struct ethtool_pauseparam *pause)
1497 {
1498 	struct fec_enet_private *fep = netdev_priv(ndev);
1499 
1500 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1501 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1502 	pause->rx_pause = pause->tx_pause;
1503 }
1504 
1505 static int fec_enet_set_pauseparam(struct net_device *ndev,
1506 				   struct ethtool_pauseparam *pause)
1507 {
1508 	struct fec_enet_private *fep = netdev_priv(ndev);
1509 
1510 	if (pause->tx_pause != pause->rx_pause) {
1511 		netdev_info(ndev,
1512 			"hardware only support enable/disable both tx and rx");
1513 		return -EINVAL;
1514 	}
1515 
1516 	fep->pause_flag = 0;
1517 
1518 	/* tx pause must be same as rx pause */
1519 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1520 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1521 
1522 	if (pause->rx_pause || pause->autoneg) {
1523 		fep->phy_dev->supported |= ADVERTISED_Pause;
1524 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1525 	} else {
1526 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1527 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1528 	}
1529 
1530 	if (pause->autoneg) {
1531 		if (netif_running(ndev))
1532 			fec_stop(ndev);
1533 		phy_start_aneg(fep->phy_dev);
1534 	}
1535 	if (netif_running(ndev))
1536 		fec_restart(ndev, 0);
1537 
1538 	return 0;
1539 }
1540 
1541 static const struct fec_stat {
1542 	char name[ETH_GSTRING_LEN];
1543 	u16 offset;
1544 } fec_stats[] = {
1545 	/* RMON TX */
1546 	{ "tx_dropped", RMON_T_DROP },
1547 	{ "tx_packets", RMON_T_PACKETS },
1548 	{ "tx_broadcast", RMON_T_BC_PKT },
1549 	{ "tx_multicast", RMON_T_MC_PKT },
1550 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1551 	{ "tx_undersize", RMON_T_UNDERSIZE },
1552 	{ "tx_oversize", RMON_T_OVERSIZE },
1553 	{ "tx_fragment", RMON_T_FRAG },
1554 	{ "tx_jabber", RMON_T_JAB },
1555 	{ "tx_collision", RMON_T_COL },
1556 	{ "tx_64byte", RMON_T_P64 },
1557 	{ "tx_65to127byte", RMON_T_P65TO127 },
1558 	{ "tx_128to255byte", RMON_T_P128TO255 },
1559 	{ "tx_256to511byte", RMON_T_P256TO511 },
1560 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1561 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1562 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1563 	{ "tx_octets", RMON_T_OCTETS },
1564 
1565 	/* IEEE TX */
1566 	{ "IEEE_tx_drop", IEEE_T_DROP },
1567 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1568 	{ "IEEE_tx_1col", IEEE_T_1COL },
1569 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1570 	{ "IEEE_tx_def", IEEE_T_DEF },
1571 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1572 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1573 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1574 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1575 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1576 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1577 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1578 
1579 	/* RMON RX */
1580 	{ "rx_packets", RMON_R_PACKETS },
1581 	{ "rx_broadcast", RMON_R_BC_PKT },
1582 	{ "rx_multicast", RMON_R_MC_PKT },
1583 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1584 	{ "rx_undersize", RMON_R_UNDERSIZE },
1585 	{ "rx_oversize", RMON_R_OVERSIZE },
1586 	{ "rx_fragment", RMON_R_FRAG },
1587 	{ "rx_jabber", RMON_R_JAB },
1588 	{ "rx_64byte", RMON_R_P64 },
1589 	{ "rx_65to127byte", RMON_R_P65TO127 },
1590 	{ "rx_128to255byte", RMON_R_P128TO255 },
1591 	{ "rx_256to511byte", RMON_R_P256TO511 },
1592 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1593 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1594 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1595 	{ "rx_octets", RMON_R_OCTETS },
1596 
1597 	/* IEEE RX */
1598 	{ "IEEE_rx_drop", IEEE_R_DROP },
1599 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1600 	{ "IEEE_rx_crc", IEEE_R_CRC },
1601 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1602 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1603 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1604 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1605 };
1606 
1607 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1608 	struct ethtool_stats *stats, u64 *data)
1609 {
1610 	struct fec_enet_private *fep = netdev_priv(dev);
1611 	int i;
1612 
1613 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1614 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1615 }
1616 
1617 static void fec_enet_get_strings(struct net_device *netdev,
1618 	u32 stringset, u8 *data)
1619 {
1620 	int i;
1621 	switch (stringset) {
1622 	case ETH_SS_STATS:
1623 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1624 			memcpy(data + i * ETH_GSTRING_LEN,
1625 				fec_stats[i].name, ETH_GSTRING_LEN);
1626 		break;
1627 	}
1628 }
1629 
1630 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1631 {
1632 	switch (sset) {
1633 	case ETH_SS_STATS:
1634 		return ARRAY_SIZE(fec_stats);
1635 	default:
1636 		return -EOPNOTSUPP;
1637 	}
1638 }
1639 #endif /* !defined(CONFIG_M5272) */
1640 
1641 static int fec_enet_nway_reset(struct net_device *dev)
1642 {
1643 	struct fec_enet_private *fep = netdev_priv(dev);
1644 	struct phy_device *phydev = fep->phy_dev;
1645 
1646 	if (!phydev)
1647 		return -ENODEV;
1648 
1649 	return genphy_restart_aneg(phydev);
1650 }
1651 
1652 static const struct ethtool_ops fec_enet_ethtool_ops = {
1653 #if !defined(CONFIG_M5272)
1654 	.get_pauseparam		= fec_enet_get_pauseparam,
1655 	.set_pauseparam		= fec_enet_set_pauseparam,
1656 #endif
1657 	.get_settings		= fec_enet_get_settings,
1658 	.set_settings		= fec_enet_set_settings,
1659 	.get_drvinfo		= fec_enet_get_drvinfo,
1660 	.get_link		= ethtool_op_get_link,
1661 	.get_ts_info		= fec_enet_get_ts_info,
1662 	.nway_reset		= fec_enet_nway_reset,
1663 #ifndef CONFIG_M5272
1664 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1665 	.get_strings		= fec_enet_get_strings,
1666 	.get_sset_count		= fec_enet_get_sset_count,
1667 #endif
1668 };
1669 
1670 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1671 {
1672 	struct fec_enet_private *fep = netdev_priv(ndev);
1673 	struct phy_device *phydev = fep->phy_dev;
1674 
1675 	if (!netif_running(ndev))
1676 		return -EINVAL;
1677 
1678 	if (!phydev)
1679 		return -ENODEV;
1680 
1681 	if (fep->bufdesc_ex) {
1682 		if (cmd == SIOCSHWTSTAMP)
1683 			return fec_ptp_set(ndev, rq);
1684 		if (cmd == SIOCGHWTSTAMP)
1685 			return fec_ptp_get(ndev, rq);
1686 	}
1687 
1688 	return phy_mii_ioctl(phydev, rq, cmd);
1689 }
1690 
1691 static void fec_enet_free_buffers(struct net_device *ndev)
1692 {
1693 	struct fec_enet_private *fep = netdev_priv(ndev);
1694 	unsigned int i;
1695 	struct sk_buff *skb;
1696 	struct bufdesc	*bdp;
1697 
1698 	bdp = fep->rx_bd_base;
1699 	for (i = 0; i < fep->rx_ring_size; i++) {
1700 		skb = fep->rx_skbuff[i];
1701 
1702 		if (bdp->cbd_bufaddr)
1703 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1704 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1705 		if (skb)
1706 			dev_kfree_skb(skb);
1707 		bdp = fec_enet_get_nextdesc(bdp, fep);
1708 	}
1709 
1710 	bdp = fep->tx_bd_base;
1711 	for (i = 0; i < fep->tx_ring_size; i++)
1712 		kfree(fep->tx_bounce[i]);
1713 }
1714 
1715 static int fec_enet_alloc_buffers(struct net_device *ndev)
1716 {
1717 	struct fec_enet_private *fep = netdev_priv(ndev);
1718 	unsigned int i;
1719 	struct sk_buff *skb;
1720 	struct bufdesc	*bdp;
1721 
1722 	bdp = fep->rx_bd_base;
1723 	for (i = 0; i < fep->rx_ring_size; i++) {
1724 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1725 		if (!skb) {
1726 			fec_enet_free_buffers(ndev);
1727 			return -ENOMEM;
1728 		}
1729 		fep->rx_skbuff[i] = skb;
1730 
1731 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1732 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1733 		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1734 			fec_enet_free_buffers(ndev);
1735 			if (net_ratelimit())
1736 				netdev_err(ndev, "Rx DMA memory map failed\n");
1737 			return -ENOMEM;
1738 		}
1739 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1740 
1741 		if (fep->bufdesc_ex) {
1742 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1743 			ebdp->cbd_esc = BD_ENET_RX_INT;
1744 		}
1745 
1746 		bdp = fec_enet_get_nextdesc(bdp, fep);
1747 	}
1748 
1749 	/* Set the last buffer to wrap. */
1750 	bdp = fec_enet_get_prevdesc(bdp, fep);
1751 	bdp->cbd_sc |= BD_SC_WRAP;
1752 
1753 	bdp = fep->tx_bd_base;
1754 	for (i = 0; i < fep->tx_ring_size; i++) {
1755 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1756 
1757 		bdp->cbd_sc = 0;
1758 		bdp->cbd_bufaddr = 0;
1759 
1760 		if (fep->bufdesc_ex) {
1761 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1762 			ebdp->cbd_esc = BD_ENET_TX_INT;
1763 		}
1764 
1765 		bdp = fec_enet_get_nextdesc(bdp, fep);
1766 	}
1767 
1768 	/* Set the last buffer to wrap. */
1769 	bdp = fec_enet_get_prevdesc(bdp, fep);
1770 	bdp->cbd_sc |= BD_SC_WRAP;
1771 
1772 	return 0;
1773 }
1774 
1775 static int
1776 fec_enet_open(struct net_device *ndev)
1777 {
1778 	struct fec_enet_private *fep = netdev_priv(ndev);
1779 	int ret;
1780 
1781 	napi_enable(&fep->napi);
1782 
1783 	/* I should reset the ring buffers here, but I don't yet know
1784 	 * a simple way to do that.
1785 	 */
1786 
1787 	ret = fec_enet_alloc_buffers(ndev);
1788 	if (ret)
1789 		return ret;
1790 
1791 	/* Probe and connect to PHY when open the interface */
1792 	ret = fec_enet_mii_probe(ndev);
1793 	if (ret) {
1794 		fec_enet_free_buffers(ndev);
1795 		return ret;
1796 	}
1797 	phy_start(fep->phy_dev);
1798 	netif_start_queue(ndev);
1799 	fep->opened = 1;
1800 	return 0;
1801 }
1802 
1803 static int
1804 fec_enet_close(struct net_device *ndev)
1805 {
1806 	struct fec_enet_private *fep = netdev_priv(ndev);
1807 
1808 	/* Don't know what to do yet. */
1809 	napi_disable(&fep->napi);
1810 	fep->opened = 0;
1811 	netif_stop_queue(ndev);
1812 	fec_stop(ndev);
1813 
1814 	if (fep->phy_dev) {
1815 		phy_stop(fep->phy_dev);
1816 		phy_disconnect(fep->phy_dev);
1817 	}
1818 
1819 	fec_enet_free_buffers(ndev);
1820 
1821 	return 0;
1822 }
1823 
1824 /* Set or clear the multicast filter for this adaptor.
1825  * Skeleton taken from sunlance driver.
1826  * The CPM Ethernet implementation allows Multicast as well as individual
1827  * MAC address filtering.  Some of the drivers check to make sure it is
1828  * a group multicast address, and discard those that are not.  I guess I
1829  * will do the same for now, but just remove the test if you want
1830  * individual filtering as well (do the upper net layers want or support
1831  * this kind of feature?).
1832  */
1833 
1834 #define HASH_BITS	6		/* #bits in hash */
1835 #define CRC32_POLY	0xEDB88320
1836 
1837 static void set_multicast_list(struct net_device *ndev)
1838 {
1839 	struct fec_enet_private *fep = netdev_priv(ndev);
1840 	struct netdev_hw_addr *ha;
1841 	unsigned int i, bit, data, crc, tmp;
1842 	unsigned char hash;
1843 
1844 	if (ndev->flags & IFF_PROMISC) {
1845 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1846 		tmp |= 0x8;
1847 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1848 		return;
1849 	}
1850 
1851 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1852 	tmp &= ~0x8;
1853 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1854 
1855 	if (ndev->flags & IFF_ALLMULTI) {
1856 		/* Catch all multicast addresses, so set the
1857 		 * filter to all 1's
1858 		 */
1859 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1860 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1861 
1862 		return;
1863 	}
1864 
1865 	/* Clear filter and add the addresses in hash register
1866 	 */
1867 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1868 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1869 
1870 	netdev_for_each_mc_addr(ha, ndev) {
1871 		/* calculate crc32 value of mac address */
1872 		crc = 0xffffffff;
1873 
1874 		for (i = 0; i < ndev->addr_len; i++) {
1875 			data = ha->addr[i];
1876 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1877 				crc = (crc >> 1) ^
1878 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1879 			}
1880 		}
1881 
1882 		/* only upper 6 bits (HASH_BITS) are used
1883 		 * which point to specific bit in he hash registers
1884 		 */
1885 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1886 
1887 		if (hash > 31) {
1888 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1889 			tmp |= 1 << (hash - 32);
1890 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1891 		} else {
1892 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1893 			tmp |= 1 << hash;
1894 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1895 		}
1896 	}
1897 }
1898 
1899 /* Set a MAC change in hardware. */
1900 static int
1901 fec_set_mac_address(struct net_device *ndev, void *p)
1902 {
1903 	struct fec_enet_private *fep = netdev_priv(ndev);
1904 	struct sockaddr *addr = p;
1905 
1906 	if (!is_valid_ether_addr(addr->sa_data))
1907 		return -EADDRNOTAVAIL;
1908 
1909 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1910 
1911 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1912 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1913 		fep->hwp + FEC_ADDR_LOW);
1914 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1915 		fep->hwp + FEC_ADDR_HIGH);
1916 	return 0;
1917 }
1918 
1919 #ifdef CONFIG_NET_POLL_CONTROLLER
1920 /**
1921  * fec_poll_controller - FEC Poll controller function
1922  * @dev: The FEC network adapter
1923  *
1924  * Polled functionality used by netconsole and others in non interrupt mode
1925  *
1926  */
1927 static void fec_poll_controller(struct net_device *dev)
1928 {
1929 	int i;
1930 	struct fec_enet_private *fep = netdev_priv(dev);
1931 
1932 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1933 		if (fep->irq[i] > 0) {
1934 			disable_irq(fep->irq[i]);
1935 			fec_enet_interrupt(fep->irq[i], dev);
1936 			enable_irq(fep->irq[i]);
1937 		}
1938 	}
1939 }
1940 #endif
1941 
1942 static int fec_set_features(struct net_device *netdev,
1943 	netdev_features_t features)
1944 {
1945 	struct fec_enet_private *fep = netdev_priv(netdev);
1946 	netdev_features_t changed = features ^ netdev->features;
1947 
1948 	netdev->features = features;
1949 
1950 	/* Receive checksum has been changed */
1951 	if (changed & NETIF_F_RXCSUM) {
1952 		if (features & NETIF_F_RXCSUM)
1953 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1954 		else
1955 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1956 
1957 		if (netif_running(netdev)) {
1958 			fec_stop(netdev);
1959 			fec_restart(netdev, fep->phy_dev->duplex);
1960 			netif_wake_queue(netdev);
1961 		} else {
1962 			fec_restart(netdev, fep->phy_dev->duplex);
1963 		}
1964 	}
1965 
1966 	return 0;
1967 }
1968 
1969 static const struct net_device_ops fec_netdev_ops = {
1970 	.ndo_open		= fec_enet_open,
1971 	.ndo_stop		= fec_enet_close,
1972 	.ndo_start_xmit		= fec_enet_start_xmit,
1973 	.ndo_set_rx_mode	= set_multicast_list,
1974 	.ndo_change_mtu		= eth_change_mtu,
1975 	.ndo_validate_addr	= eth_validate_addr,
1976 	.ndo_tx_timeout		= fec_timeout,
1977 	.ndo_set_mac_address	= fec_set_mac_address,
1978 	.ndo_do_ioctl		= fec_enet_ioctl,
1979 #ifdef CONFIG_NET_POLL_CONTROLLER
1980 	.ndo_poll_controller	= fec_poll_controller,
1981 #endif
1982 	.ndo_set_features	= fec_set_features,
1983 };
1984 
1985  /*
1986   * XXX:  We need to clean up on failure exits here.
1987   *
1988   */
1989 static int fec_enet_init(struct net_device *ndev)
1990 {
1991 	struct fec_enet_private *fep = netdev_priv(ndev);
1992 	const struct platform_device_id *id_entry =
1993 				platform_get_device_id(fep->pdev);
1994 	struct bufdesc *cbd_base;
1995 
1996 	/* Allocate memory for buffer descriptors. */
1997 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1998 				      GFP_KERNEL);
1999 	if (!cbd_base)
2000 		return -ENOMEM;
2001 
2002 	memset(cbd_base, 0, PAGE_SIZE);
2003 
2004 	fep->netdev = ndev;
2005 
2006 	/* Get the Ethernet address */
2007 	fec_get_mac(ndev);
2008 
2009 	/* init the tx & rx ring size */
2010 	fep->tx_ring_size = TX_RING_SIZE;
2011 	fep->rx_ring_size = RX_RING_SIZE;
2012 
2013 	/* Set receive and transmit descriptor base. */
2014 	fep->rx_bd_base = cbd_base;
2015 	if (fep->bufdesc_ex)
2016 		fep->tx_bd_base = (struct bufdesc *)
2017 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2018 	else
2019 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2020 
2021 	/* The FEC Ethernet specific entries in the device structure */
2022 	ndev->watchdog_timeo = TX_TIMEOUT;
2023 	ndev->netdev_ops = &fec_netdev_ops;
2024 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2025 
2026 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2027 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2028 
2029 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2030 		/* enable hw VLAN support */
2031 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2032 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2033 	}
2034 
2035 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2036 		/* enable hw accelerator */
2037 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2038 				| NETIF_F_RXCSUM);
2039 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2040 				| NETIF_F_RXCSUM);
2041 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2042 	}
2043 
2044 	fec_restart(ndev, 0);
2045 
2046 	return 0;
2047 }
2048 
2049 #ifdef CONFIG_OF
2050 static void fec_reset_phy(struct platform_device *pdev)
2051 {
2052 	int err, phy_reset;
2053 	int msec = 1;
2054 	struct device_node *np = pdev->dev.of_node;
2055 
2056 	if (!np)
2057 		return;
2058 
2059 	of_property_read_u32(np, "phy-reset-duration", &msec);
2060 	/* A sane reset duration should not be longer than 1s */
2061 	if (msec > 1000)
2062 		msec = 1;
2063 
2064 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2065 	if (!gpio_is_valid(phy_reset))
2066 		return;
2067 
2068 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2069 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2070 	if (err) {
2071 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2072 		return;
2073 	}
2074 	msleep(msec);
2075 	gpio_set_value(phy_reset, 1);
2076 }
2077 #else /* CONFIG_OF */
2078 static void fec_reset_phy(struct platform_device *pdev)
2079 {
2080 	/*
2081 	 * In case of platform probe, the reset has been done
2082 	 * by machine code.
2083 	 */
2084 }
2085 #endif /* CONFIG_OF */
2086 
2087 static int
2088 fec_probe(struct platform_device *pdev)
2089 {
2090 	struct fec_enet_private *fep;
2091 	struct fec_platform_data *pdata;
2092 	struct net_device *ndev;
2093 	int i, irq, ret = 0;
2094 	struct resource *r;
2095 	const struct of_device_id *of_id;
2096 	static int dev_id;
2097 
2098 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2099 	if (of_id)
2100 		pdev->id_entry = of_id->data;
2101 
2102 	/* Init network device */
2103 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2104 	if (!ndev)
2105 		return -ENOMEM;
2106 
2107 	SET_NETDEV_DEV(ndev, &pdev->dev);
2108 
2109 	/* setup board info structure */
2110 	fep = netdev_priv(ndev);
2111 
2112 #if !defined(CONFIG_M5272)
2113 	/* default enable pause frame auto negotiation */
2114 	if (pdev->id_entry &&
2115 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2116 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2117 #endif
2118 
2119 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2120 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2121 	if (IS_ERR(fep->hwp)) {
2122 		ret = PTR_ERR(fep->hwp);
2123 		goto failed_ioremap;
2124 	}
2125 
2126 	fep->pdev = pdev;
2127 	fep->dev_id = dev_id++;
2128 
2129 	fep->bufdesc_ex = 0;
2130 
2131 	platform_set_drvdata(pdev, ndev);
2132 
2133 	ret = of_get_phy_mode(pdev->dev.of_node);
2134 	if (ret < 0) {
2135 		pdata = dev_get_platdata(&pdev->dev);
2136 		if (pdata)
2137 			fep->phy_interface = pdata->phy;
2138 		else
2139 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2140 	} else {
2141 		fep->phy_interface = ret;
2142 	}
2143 
2144 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2145 	if (IS_ERR(fep->clk_ipg)) {
2146 		ret = PTR_ERR(fep->clk_ipg);
2147 		goto failed_clk;
2148 	}
2149 
2150 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2151 	if (IS_ERR(fep->clk_ahb)) {
2152 		ret = PTR_ERR(fep->clk_ahb);
2153 		goto failed_clk;
2154 	}
2155 
2156 	/* enet_out is optional, depends on board */
2157 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2158 	if (IS_ERR(fep->clk_enet_out))
2159 		fep->clk_enet_out = NULL;
2160 
2161 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2162 	fep->bufdesc_ex =
2163 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2164 	if (IS_ERR(fep->clk_ptp)) {
2165 		fep->clk_ptp = NULL;
2166 		fep->bufdesc_ex = 0;
2167 	}
2168 
2169 	ret = clk_prepare_enable(fep->clk_ahb);
2170 	if (ret)
2171 		goto failed_clk;
2172 
2173 	ret = clk_prepare_enable(fep->clk_ipg);
2174 	if (ret)
2175 		goto failed_clk_ipg;
2176 
2177 	if (fep->clk_enet_out) {
2178 		ret = clk_prepare_enable(fep->clk_enet_out);
2179 		if (ret)
2180 			goto failed_clk_enet_out;
2181 	}
2182 
2183 	if (fep->clk_ptp) {
2184 		ret = clk_prepare_enable(fep->clk_ptp);
2185 		if (ret)
2186 			goto failed_clk_ptp;
2187 	}
2188 
2189 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2190 	if (!IS_ERR(fep->reg_phy)) {
2191 		ret = regulator_enable(fep->reg_phy);
2192 		if (ret) {
2193 			dev_err(&pdev->dev,
2194 				"Failed to enable phy regulator: %d\n", ret);
2195 			goto failed_regulator;
2196 		}
2197 	} else {
2198 		fep->reg_phy = NULL;
2199 	}
2200 
2201 	fec_reset_phy(pdev);
2202 
2203 	if (fep->bufdesc_ex)
2204 		fec_ptp_init(pdev);
2205 
2206 	ret = fec_enet_init(ndev);
2207 	if (ret)
2208 		goto failed_init;
2209 
2210 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2211 		irq = platform_get_irq(pdev, i);
2212 		if (irq < 0) {
2213 			if (i)
2214 				break;
2215 			ret = irq;
2216 			goto failed_irq;
2217 		}
2218 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2219 				       0, pdev->name, ndev);
2220 		if (ret)
2221 			goto failed_irq;
2222 	}
2223 
2224 	ret = fec_enet_mii_init(pdev);
2225 	if (ret)
2226 		goto failed_mii_init;
2227 
2228 	/* Carrier starts down, phylib will bring it up */
2229 	netif_carrier_off(ndev);
2230 
2231 	ret = register_netdev(ndev);
2232 	if (ret)
2233 		goto failed_register;
2234 
2235 	if (fep->bufdesc_ex && fep->ptp_clock)
2236 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2237 
2238 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2239 	return 0;
2240 
2241 failed_register:
2242 	fec_enet_mii_remove(fep);
2243 failed_mii_init:
2244 failed_irq:
2245 failed_init:
2246 	if (fep->reg_phy)
2247 		regulator_disable(fep->reg_phy);
2248 failed_regulator:
2249 	if (fep->clk_ptp)
2250 		clk_disable_unprepare(fep->clk_ptp);
2251 failed_clk_ptp:
2252 	if (fep->clk_enet_out)
2253 		clk_disable_unprepare(fep->clk_enet_out);
2254 failed_clk_enet_out:
2255 	clk_disable_unprepare(fep->clk_ipg);
2256 failed_clk_ipg:
2257 	clk_disable_unprepare(fep->clk_ahb);
2258 failed_clk:
2259 failed_ioremap:
2260 	free_netdev(ndev);
2261 
2262 	return ret;
2263 }
2264 
2265 static int
2266 fec_drv_remove(struct platform_device *pdev)
2267 {
2268 	struct net_device *ndev = platform_get_drvdata(pdev);
2269 	struct fec_enet_private *fep = netdev_priv(ndev);
2270 
2271 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2272 	unregister_netdev(ndev);
2273 	fec_enet_mii_remove(fep);
2274 	del_timer_sync(&fep->time_keep);
2275 	if (fep->reg_phy)
2276 		regulator_disable(fep->reg_phy);
2277 	if (fep->clk_ptp)
2278 		clk_disable_unprepare(fep->clk_ptp);
2279 	if (fep->ptp_clock)
2280 		ptp_clock_unregister(fep->ptp_clock);
2281 	if (fep->clk_enet_out)
2282 		clk_disable_unprepare(fep->clk_enet_out);
2283 	clk_disable_unprepare(fep->clk_ipg);
2284 	clk_disable_unprepare(fep->clk_ahb);
2285 	free_netdev(ndev);
2286 
2287 	return 0;
2288 }
2289 
2290 #ifdef CONFIG_PM_SLEEP
2291 static int
2292 fec_suspend(struct device *dev)
2293 {
2294 	struct net_device *ndev = dev_get_drvdata(dev);
2295 	struct fec_enet_private *fep = netdev_priv(ndev);
2296 
2297 	if (netif_running(ndev)) {
2298 		fec_stop(ndev);
2299 		netif_device_detach(ndev);
2300 	}
2301 	if (fep->clk_ptp)
2302 		clk_disable_unprepare(fep->clk_ptp);
2303 	if (fep->clk_enet_out)
2304 		clk_disable_unprepare(fep->clk_enet_out);
2305 	clk_disable_unprepare(fep->clk_ipg);
2306 	clk_disable_unprepare(fep->clk_ahb);
2307 
2308 	if (fep->reg_phy)
2309 		regulator_disable(fep->reg_phy);
2310 
2311 	return 0;
2312 }
2313 
2314 static int
2315 fec_resume(struct device *dev)
2316 {
2317 	struct net_device *ndev = dev_get_drvdata(dev);
2318 	struct fec_enet_private *fep = netdev_priv(ndev);
2319 	int ret;
2320 
2321 	if (fep->reg_phy) {
2322 		ret = regulator_enable(fep->reg_phy);
2323 		if (ret)
2324 			return ret;
2325 	}
2326 
2327 	ret = clk_prepare_enable(fep->clk_ahb);
2328 	if (ret)
2329 		goto failed_clk_ahb;
2330 
2331 	ret = clk_prepare_enable(fep->clk_ipg);
2332 	if (ret)
2333 		goto failed_clk_ipg;
2334 
2335 	if (fep->clk_enet_out) {
2336 		ret = clk_prepare_enable(fep->clk_enet_out);
2337 		if (ret)
2338 			goto failed_clk_enet_out;
2339 	}
2340 
2341 	if (fep->clk_ptp) {
2342 		ret = clk_prepare_enable(fep->clk_ptp);
2343 		if (ret)
2344 			goto failed_clk_ptp;
2345 	}
2346 
2347 	if (netif_running(ndev)) {
2348 		fec_restart(ndev, fep->full_duplex);
2349 		netif_device_attach(ndev);
2350 	}
2351 
2352 	return 0;
2353 
2354 failed_clk_ptp:
2355 	if (fep->clk_enet_out)
2356 		clk_disable_unprepare(fep->clk_enet_out);
2357 failed_clk_enet_out:
2358 	clk_disable_unprepare(fep->clk_ipg);
2359 failed_clk_ipg:
2360 	clk_disable_unprepare(fep->clk_ahb);
2361 failed_clk_ahb:
2362 	if (fep->reg_phy)
2363 		regulator_disable(fep->reg_phy);
2364 	return ret;
2365 }
2366 #endif /* CONFIG_PM_SLEEP */
2367 
2368 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2369 
2370 static struct platform_driver fec_driver = {
2371 	.driver	= {
2372 		.name	= DRIVER_NAME,
2373 		.owner	= THIS_MODULE,
2374 		.pm	= &fec_pm_ops,
2375 		.of_match_table = fec_dt_ids,
2376 	},
2377 	.id_table = fec_devtype,
2378 	.probe	= fec_probe,
2379 	.remove	= fec_drv_remove,
2380 };
2381 
2382 module_platform_driver(fec_driver);
2383 
2384 MODULE_ALIAS("platform:"DRIVER_NAME);
2385 MODULE_LICENSE("GPL");
2386