1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = FEC_QUIRK_MIB_CLEAR,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 				FEC_QUIRK_HAS_COALESCE,
123 	}, {
124 		/* sentinel */
125 	}
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128 
129 enum imx_fec_type {
130 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
131 	IMX27_FEC,	/* runs on i.mx27/35/51 */
132 	IMX28_FEC,
133 	IMX6Q_FEC,
134 	MVF600_FEC,
135 	IMX6SX_FEC,
136 	IMX6UL_FEC,
137 };
138 
139 static const struct of_device_id fec_dt_ids[] = {
140 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176  */
177 #define PKT_MAXBUF_SIZE		1522
178 #define PKT_MINBUF_SIZE		64
179 #define PKT_MAXBLR_SIZE		1536
180 
181 /* FEC receive acceleration */
182 #define FEC_RACC_IPDIS		(1 << 1)
183 #define FEC_RACC_PRODIS		(1 << 2)
184 #define FEC_RACC_SHIFT16	BIT(7)
185 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
186 
187 /* MIB Control Register */
188 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
189 
190 /*
191  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
192  * size bits. Other FEC hardware does not, so we need to take that into
193  * account when setting it.
194  */
195 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
196     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
197 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
198 #else
199 #define	OPT_FRAME_SIZE	0
200 #endif
201 
202 /* FEC MII MMFR bits definition */
203 #define FEC_MMFR_ST		(1 << 30)
204 #define FEC_MMFR_OP_READ	(2 << 28)
205 #define FEC_MMFR_OP_WRITE	(1 << 28)
206 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
207 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
208 #define FEC_MMFR_TA		(2 << 16)
209 #define FEC_MMFR_DATA(v)	(v & 0xffff)
210 /* FEC ECR bits definition */
211 #define FEC_ECR_MAGICEN		(1 << 2)
212 #define FEC_ECR_SLEEP		(1 << 3)
213 
214 #define FEC_MII_TIMEOUT		30000 /* us */
215 
216 /* Transmitter timeout */
217 #define TX_TIMEOUT (2 * HZ)
218 
219 #define FEC_PAUSE_FLAG_AUTONEG	0x1
220 #define FEC_PAUSE_FLAG_ENABLE	0x2
221 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
222 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
223 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
224 
225 #define COPYBREAK_DEFAULT	256
226 
227 #define TSO_HEADER_SIZE		128
228 /* Max number of allowed TCP segments for software TSO */
229 #define FEC_MAX_TSO_SEGS	100
230 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
231 
232 #define IS_TSO_HEADER(txq, addr) \
233 	((addr >= txq->tso_hdrs_dma) && \
234 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
235 
236 static int mii_cnt;
237 
238 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
239 					     struct bufdesc_prop *bd)
240 {
241 	return (bdp >= bd->last) ? bd->base
242 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
243 }
244 
245 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
246 					     struct bufdesc_prop *bd)
247 {
248 	return (bdp <= bd->base) ? bd->last
249 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
250 }
251 
252 static int fec_enet_get_bd_index(struct bufdesc *bdp,
253 				 struct bufdesc_prop *bd)
254 {
255 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
256 }
257 
258 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
259 {
260 	int entries;
261 
262 	entries = (((const char *)txq->dirty_tx -
263 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
264 
265 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
266 }
267 
268 static void swap_buffer(void *bufaddr, int len)
269 {
270 	int i;
271 	unsigned int *buf = bufaddr;
272 
273 	for (i = 0; i < len; i += 4, buf++)
274 		swab32s(buf);
275 }
276 
277 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
278 {
279 	int i;
280 	unsigned int *src = src_buf;
281 	unsigned int *dst = dst_buf;
282 
283 	for (i = 0; i < len; i += 4, src++, dst++)
284 		*dst = swab32p(src);
285 }
286 
287 static void fec_dump(struct net_device *ndev)
288 {
289 	struct fec_enet_private *fep = netdev_priv(ndev);
290 	struct bufdesc *bdp;
291 	struct fec_enet_priv_tx_q *txq;
292 	int index = 0;
293 
294 	netdev_info(ndev, "TX ring dump\n");
295 	pr_info("Nr     SC     addr       len  SKB\n");
296 
297 	txq = fep->tx_queue[0];
298 	bdp = txq->bd.base;
299 
300 	do {
301 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
302 			index,
303 			bdp == txq->bd.cur ? 'S' : ' ',
304 			bdp == txq->dirty_tx ? 'H' : ' ',
305 			fec16_to_cpu(bdp->cbd_sc),
306 			fec32_to_cpu(bdp->cbd_bufaddr),
307 			fec16_to_cpu(bdp->cbd_datlen),
308 			txq->tx_skbuff[index]);
309 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
310 		index++;
311 	} while (bdp != txq->bd.base);
312 }
313 
314 static inline bool is_ipv4_pkt(struct sk_buff *skb)
315 {
316 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
317 }
318 
319 static int
320 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
321 {
322 	/* Only run for packets requiring a checksum. */
323 	if (skb->ip_summed != CHECKSUM_PARTIAL)
324 		return 0;
325 
326 	if (unlikely(skb_cow_head(skb, 0)))
327 		return -1;
328 
329 	if (is_ipv4_pkt(skb))
330 		ip_hdr(skb)->check = 0;
331 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
332 
333 	return 0;
334 }
335 
336 static struct bufdesc *
337 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
338 			     struct sk_buff *skb,
339 			     struct net_device *ndev)
340 {
341 	struct fec_enet_private *fep = netdev_priv(ndev);
342 	struct bufdesc *bdp = txq->bd.cur;
343 	struct bufdesc_ex *ebdp;
344 	int nr_frags = skb_shinfo(skb)->nr_frags;
345 	int frag, frag_len;
346 	unsigned short status;
347 	unsigned int estatus = 0;
348 	skb_frag_t *this_frag;
349 	unsigned int index;
350 	void *bufaddr;
351 	dma_addr_t addr;
352 	int i;
353 
354 	for (frag = 0; frag < nr_frags; frag++) {
355 		this_frag = &skb_shinfo(skb)->frags[frag];
356 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
357 		ebdp = (struct bufdesc_ex *)bdp;
358 
359 		status = fec16_to_cpu(bdp->cbd_sc);
360 		status &= ~BD_ENET_TX_STATS;
361 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
362 		frag_len = skb_shinfo(skb)->frags[frag].size;
363 
364 		/* Handle the last BD specially */
365 		if (frag == nr_frags - 1) {
366 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
367 			if (fep->bufdesc_ex) {
368 				estatus |= BD_ENET_TX_INT;
369 				if (unlikely(skb_shinfo(skb)->tx_flags &
370 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
371 					estatus |= BD_ENET_TX_TS;
372 			}
373 		}
374 
375 		if (fep->bufdesc_ex) {
376 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
377 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
378 			if (skb->ip_summed == CHECKSUM_PARTIAL)
379 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
380 			ebdp->cbd_bdu = 0;
381 			ebdp->cbd_esc = cpu_to_fec32(estatus);
382 		}
383 
384 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
385 
386 		index = fec_enet_get_bd_index(bdp, &txq->bd);
387 		if (((unsigned long) bufaddr) & fep->tx_align ||
388 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
389 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
390 			bufaddr = txq->tx_bounce[index];
391 
392 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
393 				swap_buffer(bufaddr, frag_len);
394 		}
395 
396 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
397 				      DMA_TO_DEVICE);
398 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
399 			if (net_ratelimit())
400 				netdev_err(ndev, "Tx DMA memory map failed\n");
401 			goto dma_mapping_error;
402 		}
403 
404 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
405 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
406 		/* Make sure the updates to rest of the descriptor are
407 		 * performed before transferring ownership.
408 		 */
409 		wmb();
410 		bdp->cbd_sc = cpu_to_fec16(status);
411 	}
412 
413 	return bdp;
414 dma_mapping_error:
415 	bdp = txq->bd.cur;
416 	for (i = 0; i < frag; i++) {
417 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
418 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
419 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
420 	}
421 	return ERR_PTR(-ENOMEM);
422 }
423 
424 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
425 				   struct sk_buff *skb, struct net_device *ndev)
426 {
427 	struct fec_enet_private *fep = netdev_priv(ndev);
428 	int nr_frags = skb_shinfo(skb)->nr_frags;
429 	struct bufdesc *bdp, *last_bdp;
430 	void *bufaddr;
431 	dma_addr_t addr;
432 	unsigned short status;
433 	unsigned short buflen;
434 	unsigned int estatus = 0;
435 	unsigned int index;
436 	int entries_free;
437 
438 	entries_free = fec_enet_get_free_txdesc_num(txq);
439 	if (entries_free < MAX_SKB_FRAGS + 1) {
440 		dev_kfree_skb_any(skb);
441 		if (net_ratelimit())
442 			netdev_err(ndev, "NOT enough BD for SG!\n");
443 		return NETDEV_TX_OK;
444 	}
445 
446 	/* Protocol checksum off-load for TCP and UDP. */
447 	if (fec_enet_clear_csum(skb, ndev)) {
448 		dev_kfree_skb_any(skb);
449 		return NETDEV_TX_OK;
450 	}
451 
452 	/* Fill in a Tx ring entry */
453 	bdp = txq->bd.cur;
454 	last_bdp = bdp;
455 	status = fec16_to_cpu(bdp->cbd_sc);
456 	status &= ~BD_ENET_TX_STATS;
457 
458 	/* Set buffer length and buffer pointer */
459 	bufaddr = skb->data;
460 	buflen = skb_headlen(skb);
461 
462 	index = fec_enet_get_bd_index(bdp, &txq->bd);
463 	if (((unsigned long) bufaddr) & fep->tx_align ||
464 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
465 		memcpy(txq->tx_bounce[index], skb->data, buflen);
466 		bufaddr = txq->tx_bounce[index];
467 
468 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
469 			swap_buffer(bufaddr, buflen);
470 	}
471 
472 	/* Push the data cache so the CPM does not get stale memory data. */
473 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
474 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
475 		dev_kfree_skb_any(skb);
476 		if (net_ratelimit())
477 			netdev_err(ndev, "Tx DMA memory map failed\n");
478 		return NETDEV_TX_OK;
479 	}
480 
481 	if (nr_frags) {
482 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
483 		if (IS_ERR(last_bdp)) {
484 			dma_unmap_single(&fep->pdev->dev, addr,
485 					 buflen, DMA_TO_DEVICE);
486 			dev_kfree_skb_any(skb);
487 			return NETDEV_TX_OK;
488 		}
489 	} else {
490 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
491 		if (fep->bufdesc_ex) {
492 			estatus = BD_ENET_TX_INT;
493 			if (unlikely(skb_shinfo(skb)->tx_flags &
494 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
495 				estatus |= BD_ENET_TX_TS;
496 		}
497 	}
498 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
499 	bdp->cbd_datlen = cpu_to_fec16(buflen);
500 
501 	if (fep->bufdesc_ex) {
502 
503 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
504 
505 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
506 			fep->hwts_tx_en))
507 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
508 
509 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
510 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
511 
512 		if (skb->ip_summed == CHECKSUM_PARTIAL)
513 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
514 
515 		ebdp->cbd_bdu = 0;
516 		ebdp->cbd_esc = cpu_to_fec32(estatus);
517 	}
518 
519 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
520 	/* Save skb pointer */
521 	txq->tx_skbuff[index] = skb;
522 
523 	/* Make sure the updates to rest of the descriptor are performed before
524 	 * transferring ownership.
525 	 */
526 	wmb();
527 
528 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
529 	 * it's the last BD of the frame, and to put the CRC on the end.
530 	 */
531 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
532 	bdp->cbd_sc = cpu_to_fec16(status);
533 
534 	/* If this was the last BD in the ring, start at the beginning again. */
535 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
536 
537 	skb_tx_timestamp(skb);
538 
539 	/* Make sure the update to bdp and tx_skbuff are performed before
540 	 * txq->bd.cur.
541 	 */
542 	wmb();
543 	txq->bd.cur = bdp;
544 
545 	/* Trigger transmission start */
546 	writel(0, txq->bd.reg_desc_active);
547 
548 	return 0;
549 }
550 
551 static int
552 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
553 			  struct net_device *ndev,
554 			  struct bufdesc *bdp, int index, char *data,
555 			  int size, bool last_tcp, bool is_last)
556 {
557 	struct fec_enet_private *fep = netdev_priv(ndev);
558 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
559 	unsigned short status;
560 	unsigned int estatus = 0;
561 	dma_addr_t addr;
562 
563 	status = fec16_to_cpu(bdp->cbd_sc);
564 	status &= ~BD_ENET_TX_STATS;
565 
566 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
567 
568 	if (((unsigned long) data) & fep->tx_align ||
569 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
570 		memcpy(txq->tx_bounce[index], data, size);
571 		data = txq->tx_bounce[index];
572 
573 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
574 			swap_buffer(data, size);
575 	}
576 
577 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
578 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
579 		dev_kfree_skb_any(skb);
580 		if (net_ratelimit())
581 			netdev_err(ndev, "Tx DMA memory map failed\n");
582 		return NETDEV_TX_BUSY;
583 	}
584 
585 	bdp->cbd_datlen = cpu_to_fec16(size);
586 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
587 
588 	if (fep->bufdesc_ex) {
589 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
590 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
591 		if (skb->ip_summed == CHECKSUM_PARTIAL)
592 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
593 		ebdp->cbd_bdu = 0;
594 		ebdp->cbd_esc = cpu_to_fec32(estatus);
595 	}
596 
597 	/* Handle the last BD specially */
598 	if (last_tcp)
599 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
600 	if (is_last) {
601 		status |= BD_ENET_TX_INTR;
602 		if (fep->bufdesc_ex)
603 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
604 	}
605 
606 	bdp->cbd_sc = cpu_to_fec16(status);
607 
608 	return 0;
609 }
610 
611 static int
612 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
613 			 struct sk_buff *skb, struct net_device *ndev,
614 			 struct bufdesc *bdp, int index)
615 {
616 	struct fec_enet_private *fep = netdev_priv(ndev);
617 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
618 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
619 	void *bufaddr;
620 	unsigned long dmabuf;
621 	unsigned short status;
622 	unsigned int estatus = 0;
623 
624 	status = fec16_to_cpu(bdp->cbd_sc);
625 	status &= ~BD_ENET_TX_STATS;
626 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
627 
628 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
629 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
630 	if (((unsigned long)bufaddr) & fep->tx_align ||
631 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
632 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
633 		bufaddr = txq->tx_bounce[index];
634 
635 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
636 			swap_buffer(bufaddr, hdr_len);
637 
638 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
639 					hdr_len, DMA_TO_DEVICE);
640 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
641 			dev_kfree_skb_any(skb);
642 			if (net_ratelimit())
643 				netdev_err(ndev, "Tx DMA memory map failed\n");
644 			return NETDEV_TX_BUSY;
645 		}
646 	}
647 
648 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
649 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
650 
651 	if (fep->bufdesc_ex) {
652 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
653 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
654 		if (skb->ip_summed == CHECKSUM_PARTIAL)
655 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
656 		ebdp->cbd_bdu = 0;
657 		ebdp->cbd_esc = cpu_to_fec32(estatus);
658 	}
659 
660 	bdp->cbd_sc = cpu_to_fec16(status);
661 
662 	return 0;
663 }
664 
665 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
666 				   struct sk_buff *skb,
667 				   struct net_device *ndev)
668 {
669 	struct fec_enet_private *fep = netdev_priv(ndev);
670 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
671 	int total_len, data_left;
672 	struct bufdesc *bdp = txq->bd.cur;
673 	struct tso_t tso;
674 	unsigned int index = 0;
675 	int ret;
676 
677 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
678 		dev_kfree_skb_any(skb);
679 		if (net_ratelimit())
680 			netdev_err(ndev, "NOT enough BD for TSO!\n");
681 		return NETDEV_TX_OK;
682 	}
683 
684 	/* Protocol checksum off-load for TCP and UDP. */
685 	if (fec_enet_clear_csum(skb, ndev)) {
686 		dev_kfree_skb_any(skb);
687 		return NETDEV_TX_OK;
688 	}
689 
690 	/* Initialize the TSO handler, and prepare the first payload */
691 	tso_start(skb, &tso);
692 
693 	total_len = skb->len - hdr_len;
694 	while (total_len > 0) {
695 		char *hdr;
696 
697 		index = fec_enet_get_bd_index(bdp, &txq->bd);
698 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
699 		total_len -= data_left;
700 
701 		/* prepare packet headers: MAC + IP + TCP */
702 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
703 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
704 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
705 		if (ret)
706 			goto err_release;
707 
708 		while (data_left > 0) {
709 			int size;
710 
711 			size = min_t(int, tso.size, data_left);
712 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
713 			index = fec_enet_get_bd_index(bdp, &txq->bd);
714 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
715 							bdp, index,
716 							tso.data, size,
717 							size == data_left,
718 							total_len == 0);
719 			if (ret)
720 				goto err_release;
721 
722 			data_left -= size;
723 			tso_build_data(skb, &tso, size);
724 		}
725 
726 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
727 	}
728 
729 	/* Save skb pointer */
730 	txq->tx_skbuff[index] = skb;
731 
732 	skb_tx_timestamp(skb);
733 	txq->bd.cur = bdp;
734 
735 	/* Trigger transmission start */
736 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
737 	    !readl(txq->bd.reg_desc_active) ||
738 	    !readl(txq->bd.reg_desc_active) ||
739 	    !readl(txq->bd.reg_desc_active) ||
740 	    !readl(txq->bd.reg_desc_active))
741 		writel(0, txq->bd.reg_desc_active);
742 
743 	return 0;
744 
745 err_release:
746 	/* TODO: Release all used data descriptors for TSO */
747 	return ret;
748 }
749 
750 static netdev_tx_t
751 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
752 {
753 	struct fec_enet_private *fep = netdev_priv(ndev);
754 	int entries_free;
755 	unsigned short queue;
756 	struct fec_enet_priv_tx_q *txq;
757 	struct netdev_queue *nq;
758 	int ret;
759 
760 	queue = skb_get_queue_mapping(skb);
761 	txq = fep->tx_queue[queue];
762 	nq = netdev_get_tx_queue(ndev, queue);
763 
764 	if (skb_is_gso(skb))
765 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
766 	else
767 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
768 	if (ret)
769 		return ret;
770 
771 	entries_free = fec_enet_get_free_txdesc_num(txq);
772 	if (entries_free <= txq->tx_stop_threshold)
773 		netif_tx_stop_queue(nq);
774 
775 	return NETDEV_TX_OK;
776 }
777 
778 /* Init RX & TX buffer descriptors
779  */
780 static void fec_enet_bd_init(struct net_device *dev)
781 {
782 	struct fec_enet_private *fep = netdev_priv(dev);
783 	struct fec_enet_priv_tx_q *txq;
784 	struct fec_enet_priv_rx_q *rxq;
785 	struct bufdesc *bdp;
786 	unsigned int i;
787 	unsigned int q;
788 
789 	for (q = 0; q < fep->num_rx_queues; q++) {
790 		/* Initialize the receive buffer descriptors. */
791 		rxq = fep->rx_queue[q];
792 		bdp = rxq->bd.base;
793 
794 		for (i = 0; i < rxq->bd.ring_size; i++) {
795 
796 			/* Initialize the BD for every fragment in the page. */
797 			if (bdp->cbd_bufaddr)
798 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
799 			else
800 				bdp->cbd_sc = cpu_to_fec16(0);
801 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
802 		}
803 
804 		/* Set the last buffer to wrap */
805 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
806 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
807 
808 		rxq->bd.cur = rxq->bd.base;
809 	}
810 
811 	for (q = 0; q < fep->num_tx_queues; q++) {
812 		/* ...and the same for transmit */
813 		txq = fep->tx_queue[q];
814 		bdp = txq->bd.base;
815 		txq->bd.cur = bdp;
816 
817 		for (i = 0; i < txq->bd.ring_size; i++) {
818 			/* Initialize the BD for every fragment in the page. */
819 			bdp->cbd_sc = cpu_to_fec16(0);
820 			if (txq->tx_skbuff[i]) {
821 				dev_kfree_skb_any(txq->tx_skbuff[i]);
822 				txq->tx_skbuff[i] = NULL;
823 			}
824 			bdp->cbd_bufaddr = cpu_to_fec32(0);
825 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
826 		}
827 
828 		/* Set the last buffer to wrap */
829 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
830 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
831 		txq->dirty_tx = bdp;
832 	}
833 }
834 
835 static void fec_enet_active_rxring(struct net_device *ndev)
836 {
837 	struct fec_enet_private *fep = netdev_priv(ndev);
838 	int i;
839 
840 	for (i = 0; i < fep->num_rx_queues; i++)
841 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
842 }
843 
844 static void fec_enet_enable_ring(struct net_device *ndev)
845 {
846 	struct fec_enet_private *fep = netdev_priv(ndev);
847 	struct fec_enet_priv_tx_q *txq;
848 	struct fec_enet_priv_rx_q *rxq;
849 	int i;
850 
851 	for (i = 0; i < fep->num_rx_queues; i++) {
852 		rxq = fep->rx_queue[i];
853 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
854 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
855 
856 		/* enable DMA1/2 */
857 		if (i)
858 			writel(RCMR_MATCHEN | RCMR_CMP(i),
859 			       fep->hwp + FEC_RCMR(i));
860 	}
861 
862 	for (i = 0; i < fep->num_tx_queues; i++) {
863 		txq = fep->tx_queue[i];
864 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
865 
866 		/* enable DMA1/2 */
867 		if (i)
868 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
869 			       fep->hwp + FEC_DMA_CFG(i));
870 	}
871 }
872 
873 static void fec_enet_reset_skb(struct net_device *ndev)
874 {
875 	struct fec_enet_private *fep = netdev_priv(ndev);
876 	struct fec_enet_priv_tx_q *txq;
877 	int i, j;
878 
879 	for (i = 0; i < fep->num_tx_queues; i++) {
880 		txq = fep->tx_queue[i];
881 
882 		for (j = 0; j < txq->bd.ring_size; j++) {
883 			if (txq->tx_skbuff[j]) {
884 				dev_kfree_skb_any(txq->tx_skbuff[j]);
885 				txq->tx_skbuff[j] = NULL;
886 			}
887 		}
888 	}
889 }
890 
891 /*
892  * This function is called to start or restart the FEC during a link
893  * change, transmit timeout, or to reconfigure the FEC.  The network
894  * packet processing for this device must be stopped before this call.
895  */
896 static void
897 fec_restart(struct net_device *ndev)
898 {
899 	struct fec_enet_private *fep = netdev_priv(ndev);
900 	u32 val;
901 	u32 temp_mac[2];
902 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
903 	u32 ecntl = 0x2; /* ETHEREN */
904 
905 	/* Whack a reset.  We should wait for this.
906 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
907 	 * instead of reset MAC itself.
908 	 */
909 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
910 		writel(0, fep->hwp + FEC_ECNTRL);
911 	} else {
912 		writel(1, fep->hwp + FEC_ECNTRL);
913 		udelay(10);
914 	}
915 
916 	/*
917 	 * enet-mac reset will reset mac address registers too,
918 	 * so need to reconfigure it.
919 	 */
920 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
921 	writel((__force u32)cpu_to_be32(temp_mac[0]),
922 	       fep->hwp + FEC_ADDR_LOW);
923 	writel((__force u32)cpu_to_be32(temp_mac[1]),
924 	       fep->hwp + FEC_ADDR_HIGH);
925 
926 	/* Clear any outstanding interrupt. */
927 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
928 
929 	fec_enet_bd_init(ndev);
930 
931 	fec_enet_enable_ring(ndev);
932 
933 	/* Reset tx SKB buffers. */
934 	fec_enet_reset_skb(ndev);
935 
936 	/* Enable MII mode */
937 	if (fep->full_duplex == DUPLEX_FULL) {
938 		/* FD enable */
939 		writel(0x04, fep->hwp + FEC_X_CNTRL);
940 	} else {
941 		/* No Rcv on Xmit */
942 		rcntl |= 0x02;
943 		writel(0x0, fep->hwp + FEC_X_CNTRL);
944 	}
945 
946 	/* Set MII speed */
947 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
948 
949 #if !defined(CONFIG_M5272)
950 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
951 		val = readl(fep->hwp + FEC_RACC);
952 		/* align IP header */
953 		val |= FEC_RACC_SHIFT16;
954 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
955 			/* set RX checksum */
956 			val |= FEC_RACC_OPTIONS;
957 		else
958 			val &= ~FEC_RACC_OPTIONS;
959 		writel(val, fep->hwp + FEC_RACC);
960 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
961 	}
962 #endif
963 
964 	/*
965 	 * The phy interface and speed need to get configured
966 	 * differently on enet-mac.
967 	 */
968 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
969 		/* Enable flow control and length check */
970 		rcntl |= 0x40000000 | 0x00000020;
971 
972 		/* RGMII, RMII or MII */
973 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
974 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
975 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
976 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
977 			rcntl |= (1 << 6);
978 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
979 			rcntl |= (1 << 8);
980 		else
981 			rcntl &= ~(1 << 8);
982 
983 		/* 1G, 100M or 10M */
984 		if (ndev->phydev) {
985 			if (ndev->phydev->speed == SPEED_1000)
986 				ecntl |= (1 << 5);
987 			else if (ndev->phydev->speed == SPEED_100)
988 				rcntl &= ~(1 << 9);
989 			else
990 				rcntl |= (1 << 9);
991 		}
992 	} else {
993 #ifdef FEC_MIIGSK_ENR
994 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
995 			u32 cfgr;
996 			/* disable the gasket and wait */
997 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
998 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
999 				udelay(1);
1000 
1001 			/*
1002 			 * configure the gasket:
1003 			 *   RMII, 50 MHz, no loopback, no echo
1004 			 *   MII, 25 MHz, no loopback, no echo
1005 			 */
1006 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1007 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1008 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1009 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1010 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1011 
1012 			/* re-enable the gasket */
1013 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1014 		}
1015 #endif
1016 	}
1017 
1018 #if !defined(CONFIG_M5272)
1019 	/* enable pause frame*/
1020 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1021 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1022 	     ndev->phydev && ndev->phydev->pause)) {
1023 		rcntl |= FEC_ENET_FCE;
1024 
1025 		/* set FIFO threshold parameter to reduce overrun */
1026 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1027 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1028 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1029 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1030 
1031 		/* OPD */
1032 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1033 	} else {
1034 		rcntl &= ~FEC_ENET_FCE;
1035 	}
1036 #endif /* !defined(CONFIG_M5272) */
1037 
1038 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1039 
1040 	/* Setup multicast filter. */
1041 	set_multicast_list(ndev);
1042 #ifndef CONFIG_M5272
1043 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1044 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1045 #endif
1046 
1047 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1048 		/* enable ENET endian swap */
1049 		ecntl |= (1 << 8);
1050 		/* enable ENET store and forward mode */
1051 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1052 	}
1053 
1054 	if (fep->bufdesc_ex)
1055 		ecntl |= (1 << 4);
1056 
1057 #ifndef CONFIG_M5272
1058 	/* Enable the MIB statistic event counters */
1059 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1060 #endif
1061 
1062 	/* And last, enable the transmit and receive processing */
1063 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1064 	fec_enet_active_rxring(ndev);
1065 
1066 	if (fep->bufdesc_ex)
1067 		fec_ptp_start_cyclecounter(ndev);
1068 
1069 	/* Enable interrupts we wish to service */
1070 	if (fep->link)
1071 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1072 	else
1073 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1074 
1075 	/* Init the interrupt coalescing */
1076 	fec_enet_itr_coal_init(ndev);
1077 
1078 }
1079 
1080 static void
1081 fec_stop(struct net_device *ndev)
1082 {
1083 	struct fec_enet_private *fep = netdev_priv(ndev);
1084 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1085 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1086 	u32 val;
1087 
1088 	/* We cannot expect a graceful transmit stop without link !!! */
1089 	if (fep->link) {
1090 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1091 		udelay(10);
1092 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1093 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1094 	}
1095 
1096 	/* Whack a reset.  We should wait for this.
1097 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1098 	 * instead of reset MAC itself.
1099 	 */
1100 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1101 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1102 			writel(0, fep->hwp + FEC_ECNTRL);
1103 		} else {
1104 			writel(1, fep->hwp + FEC_ECNTRL);
1105 			udelay(10);
1106 		}
1107 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1108 	} else {
1109 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1110 		val = readl(fep->hwp + FEC_ECNTRL);
1111 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1112 		writel(val, fep->hwp + FEC_ECNTRL);
1113 
1114 		if (pdata && pdata->sleep_mode_enable)
1115 			pdata->sleep_mode_enable(true);
1116 	}
1117 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1118 
1119 	/* We have to keep ENET enabled to have MII interrupt stay working */
1120 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1121 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1122 		writel(2, fep->hwp + FEC_ECNTRL);
1123 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1124 	}
1125 }
1126 
1127 
1128 static void
1129 fec_timeout(struct net_device *ndev)
1130 {
1131 	struct fec_enet_private *fep = netdev_priv(ndev);
1132 
1133 	fec_dump(ndev);
1134 
1135 	ndev->stats.tx_errors++;
1136 
1137 	schedule_work(&fep->tx_timeout_work);
1138 }
1139 
1140 static void fec_enet_timeout_work(struct work_struct *work)
1141 {
1142 	struct fec_enet_private *fep =
1143 		container_of(work, struct fec_enet_private, tx_timeout_work);
1144 	struct net_device *ndev = fep->netdev;
1145 
1146 	rtnl_lock();
1147 	if (netif_device_present(ndev) || netif_running(ndev)) {
1148 		napi_disable(&fep->napi);
1149 		netif_tx_lock_bh(ndev);
1150 		fec_restart(ndev);
1151 		netif_wake_queue(ndev);
1152 		netif_tx_unlock_bh(ndev);
1153 		napi_enable(&fep->napi);
1154 	}
1155 	rtnl_unlock();
1156 }
1157 
1158 static void
1159 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1160 	struct skb_shared_hwtstamps *hwtstamps)
1161 {
1162 	unsigned long flags;
1163 	u64 ns;
1164 
1165 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1166 	ns = timecounter_cyc2time(&fep->tc, ts);
1167 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1168 
1169 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1170 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1171 }
1172 
1173 static void
1174 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1175 {
1176 	struct	fec_enet_private *fep;
1177 	struct bufdesc *bdp;
1178 	unsigned short status;
1179 	struct	sk_buff	*skb;
1180 	struct fec_enet_priv_tx_q *txq;
1181 	struct netdev_queue *nq;
1182 	int	index = 0;
1183 	int	entries_free;
1184 
1185 	fep = netdev_priv(ndev);
1186 
1187 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1188 
1189 	txq = fep->tx_queue[queue_id];
1190 	/* get next bdp of dirty_tx */
1191 	nq = netdev_get_tx_queue(ndev, queue_id);
1192 	bdp = txq->dirty_tx;
1193 
1194 	/* get next bdp of dirty_tx */
1195 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1196 
1197 	while (bdp != READ_ONCE(txq->bd.cur)) {
1198 		/* Order the load of bd.cur and cbd_sc */
1199 		rmb();
1200 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1201 		if (status & BD_ENET_TX_READY)
1202 			break;
1203 
1204 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1205 
1206 		skb = txq->tx_skbuff[index];
1207 		txq->tx_skbuff[index] = NULL;
1208 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1209 			dma_unmap_single(&fep->pdev->dev,
1210 					 fec32_to_cpu(bdp->cbd_bufaddr),
1211 					 fec16_to_cpu(bdp->cbd_datlen),
1212 					 DMA_TO_DEVICE);
1213 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1214 		if (!skb)
1215 			goto skb_done;
1216 
1217 		/* Check for errors. */
1218 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1219 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1220 				   BD_ENET_TX_CSL)) {
1221 			ndev->stats.tx_errors++;
1222 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1223 				ndev->stats.tx_heartbeat_errors++;
1224 			if (status & BD_ENET_TX_LC)  /* Late collision */
1225 				ndev->stats.tx_window_errors++;
1226 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1227 				ndev->stats.tx_aborted_errors++;
1228 			if (status & BD_ENET_TX_UN)  /* Underrun */
1229 				ndev->stats.tx_fifo_errors++;
1230 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1231 				ndev->stats.tx_carrier_errors++;
1232 		} else {
1233 			ndev->stats.tx_packets++;
1234 			ndev->stats.tx_bytes += skb->len;
1235 		}
1236 
1237 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1238 			fep->bufdesc_ex) {
1239 			struct skb_shared_hwtstamps shhwtstamps;
1240 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1241 
1242 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1243 			skb_tstamp_tx(skb, &shhwtstamps);
1244 		}
1245 
1246 		/* Deferred means some collisions occurred during transmit,
1247 		 * but we eventually sent the packet OK.
1248 		 */
1249 		if (status & BD_ENET_TX_DEF)
1250 			ndev->stats.collisions++;
1251 
1252 		/* Free the sk buffer associated with this last transmit */
1253 		dev_kfree_skb_any(skb);
1254 skb_done:
1255 		/* Make sure the update to bdp and tx_skbuff are performed
1256 		 * before dirty_tx
1257 		 */
1258 		wmb();
1259 		txq->dirty_tx = bdp;
1260 
1261 		/* Update pointer to next buffer descriptor to be transmitted */
1262 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1263 
1264 		/* Since we have freed up a buffer, the ring is no longer full
1265 		 */
1266 		if (netif_queue_stopped(ndev)) {
1267 			entries_free = fec_enet_get_free_txdesc_num(txq);
1268 			if (entries_free >= txq->tx_wake_threshold)
1269 				netif_tx_wake_queue(nq);
1270 		}
1271 	}
1272 
1273 	/* ERR006358: Keep the transmitter going */
1274 	if (bdp != txq->bd.cur &&
1275 	    readl(txq->bd.reg_desc_active) == 0)
1276 		writel(0, txq->bd.reg_desc_active);
1277 }
1278 
1279 static void
1280 fec_enet_tx(struct net_device *ndev)
1281 {
1282 	struct fec_enet_private *fep = netdev_priv(ndev);
1283 	u16 queue_id;
1284 	/* First process class A queue, then Class B and Best Effort queue */
1285 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1286 		clear_bit(queue_id, &fep->work_tx);
1287 		fec_enet_tx_queue(ndev, queue_id);
1288 	}
1289 	return;
1290 }
1291 
1292 static int
1293 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1294 {
1295 	struct  fec_enet_private *fep = netdev_priv(ndev);
1296 	int off;
1297 
1298 	off = ((unsigned long)skb->data) & fep->rx_align;
1299 	if (off)
1300 		skb_reserve(skb, fep->rx_align + 1 - off);
1301 
1302 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1303 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1304 		if (net_ratelimit())
1305 			netdev_err(ndev, "Rx DMA memory map failed\n");
1306 		return -ENOMEM;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1313 			       struct bufdesc *bdp, u32 length, bool swap)
1314 {
1315 	struct  fec_enet_private *fep = netdev_priv(ndev);
1316 	struct sk_buff *new_skb;
1317 
1318 	if (length > fep->rx_copybreak)
1319 		return false;
1320 
1321 	new_skb = netdev_alloc_skb(ndev, length);
1322 	if (!new_skb)
1323 		return false;
1324 
1325 	dma_sync_single_for_cpu(&fep->pdev->dev,
1326 				fec32_to_cpu(bdp->cbd_bufaddr),
1327 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1328 				DMA_FROM_DEVICE);
1329 	if (!swap)
1330 		memcpy(new_skb->data, (*skb)->data, length);
1331 	else
1332 		swap_buffer2(new_skb->data, (*skb)->data, length);
1333 	*skb = new_skb;
1334 
1335 	return true;
1336 }
1337 
1338 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1339  * When we update through the ring, if the next incoming buffer has
1340  * not been given to the system, we just set the empty indicator,
1341  * effectively tossing the packet.
1342  */
1343 static int
1344 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1345 {
1346 	struct fec_enet_private *fep = netdev_priv(ndev);
1347 	struct fec_enet_priv_rx_q *rxq;
1348 	struct bufdesc *bdp;
1349 	unsigned short status;
1350 	struct  sk_buff *skb_new = NULL;
1351 	struct  sk_buff *skb;
1352 	ushort	pkt_len;
1353 	__u8 *data;
1354 	int	pkt_received = 0;
1355 	struct	bufdesc_ex *ebdp = NULL;
1356 	bool	vlan_packet_rcvd = false;
1357 	u16	vlan_tag;
1358 	int	index = 0;
1359 	bool	is_copybreak;
1360 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1361 
1362 #ifdef CONFIG_M532x
1363 	flush_cache_all();
1364 #endif
1365 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1366 	rxq = fep->rx_queue[queue_id];
1367 
1368 	/* First, grab all of the stats for the incoming packet.
1369 	 * These get messed up if we get called due to a busy condition.
1370 	 */
1371 	bdp = rxq->bd.cur;
1372 
1373 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1374 
1375 		if (pkt_received >= budget)
1376 			break;
1377 		pkt_received++;
1378 
1379 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1380 
1381 		/* Check for errors. */
1382 		status ^= BD_ENET_RX_LAST;
1383 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1384 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1385 			   BD_ENET_RX_CL)) {
1386 			ndev->stats.rx_errors++;
1387 			if (status & BD_ENET_RX_OV) {
1388 				/* FIFO overrun */
1389 				ndev->stats.rx_fifo_errors++;
1390 				goto rx_processing_done;
1391 			}
1392 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1393 						| BD_ENET_RX_LAST)) {
1394 				/* Frame too long or too short. */
1395 				ndev->stats.rx_length_errors++;
1396 				if (status & BD_ENET_RX_LAST)
1397 					netdev_err(ndev, "rcv is not +last\n");
1398 			}
1399 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1400 				ndev->stats.rx_crc_errors++;
1401 			/* Report late collisions as a frame error. */
1402 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1403 				ndev->stats.rx_frame_errors++;
1404 			goto rx_processing_done;
1405 		}
1406 
1407 		/* Process the incoming frame. */
1408 		ndev->stats.rx_packets++;
1409 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1410 		ndev->stats.rx_bytes += pkt_len;
1411 
1412 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1413 		skb = rxq->rx_skbuff[index];
1414 
1415 		/* The packet length includes FCS, but we don't want to
1416 		 * include that when passing upstream as it messes up
1417 		 * bridging applications.
1418 		 */
1419 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1420 						  need_swap);
1421 		if (!is_copybreak) {
1422 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1423 			if (unlikely(!skb_new)) {
1424 				ndev->stats.rx_dropped++;
1425 				goto rx_processing_done;
1426 			}
1427 			dma_unmap_single(&fep->pdev->dev,
1428 					 fec32_to_cpu(bdp->cbd_bufaddr),
1429 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1430 					 DMA_FROM_DEVICE);
1431 		}
1432 
1433 		prefetch(skb->data - NET_IP_ALIGN);
1434 		skb_put(skb, pkt_len - 4);
1435 		data = skb->data;
1436 
1437 		if (!is_copybreak && need_swap)
1438 			swap_buffer(data, pkt_len);
1439 
1440 #if !defined(CONFIG_M5272)
1441 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1442 			data = skb_pull_inline(skb, 2);
1443 #endif
1444 
1445 		/* Extract the enhanced buffer descriptor */
1446 		ebdp = NULL;
1447 		if (fep->bufdesc_ex)
1448 			ebdp = (struct bufdesc_ex *)bdp;
1449 
1450 		/* If this is a VLAN packet remove the VLAN Tag */
1451 		vlan_packet_rcvd = false;
1452 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1453 		    fep->bufdesc_ex &&
1454 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1455 			/* Push and remove the vlan tag */
1456 			struct vlan_hdr *vlan_header =
1457 					(struct vlan_hdr *) (data + ETH_HLEN);
1458 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1459 
1460 			vlan_packet_rcvd = true;
1461 
1462 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1463 			skb_pull(skb, VLAN_HLEN);
1464 		}
1465 
1466 		skb->protocol = eth_type_trans(skb, ndev);
1467 
1468 		/* Get receive timestamp from the skb */
1469 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1470 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1471 					  skb_hwtstamps(skb));
1472 
1473 		if (fep->bufdesc_ex &&
1474 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1475 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1476 				/* don't check it */
1477 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1478 			} else {
1479 				skb_checksum_none_assert(skb);
1480 			}
1481 		}
1482 
1483 		/* Handle received VLAN packets */
1484 		if (vlan_packet_rcvd)
1485 			__vlan_hwaccel_put_tag(skb,
1486 					       htons(ETH_P_8021Q),
1487 					       vlan_tag);
1488 
1489 		napi_gro_receive(&fep->napi, skb);
1490 
1491 		if (is_copybreak) {
1492 			dma_sync_single_for_device(&fep->pdev->dev,
1493 						   fec32_to_cpu(bdp->cbd_bufaddr),
1494 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1495 						   DMA_FROM_DEVICE);
1496 		} else {
1497 			rxq->rx_skbuff[index] = skb_new;
1498 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1499 		}
1500 
1501 rx_processing_done:
1502 		/* Clear the status flags for this buffer */
1503 		status &= ~BD_ENET_RX_STATS;
1504 
1505 		/* Mark the buffer empty */
1506 		status |= BD_ENET_RX_EMPTY;
1507 
1508 		if (fep->bufdesc_ex) {
1509 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1510 
1511 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1512 			ebdp->cbd_prot = 0;
1513 			ebdp->cbd_bdu = 0;
1514 		}
1515 		/* Make sure the updates to rest of the descriptor are
1516 		 * performed before transferring ownership.
1517 		 */
1518 		wmb();
1519 		bdp->cbd_sc = cpu_to_fec16(status);
1520 
1521 		/* Update BD pointer to next entry */
1522 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1523 
1524 		/* Doing this here will keep the FEC running while we process
1525 		 * incoming frames.  On a heavily loaded network, we should be
1526 		 * able to keep up at the expense of system resources.
1527 		 */
1528 		writel(0, rxq->bd.reg_desc_active);
1529 	}
1530 	rxq->bd.cur = bdp;
1531 	return pkt_received;
1532 }
1533 
1534 static int
1535 fec_enet_rx(struct net_device *ndev, int budget)
1536 {
1537 	int     pkt_received = 0;
1538 	u16	queue_id;
1539 	struct fec_enet_private *fep = netdev_priv(ndev);
1540 
1541 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1542 		int ret;
1543 
1544 		ret = fec_enet_rx_queue(ndev,
1545 					budget - pkt_received, queue_id);
1546 
1547 		if (ret < budget - pkt_received)
1548 			clear_bit(queue_id, &fep->work_rx);
1549 
1550 		pkt_received += ret;
1551 	}
1552 	return pkt_received;
1553 }
1554 
1555 static bool
1556 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1557 {
1558 	if (int_events == 0)
1559 		return false;
1560 
1561 	if (int_events & FEC_ENET_RXF)
1562 		fep->work_rx |= (1 << 2);
1563 	if (int_events & FEC_ENET_RXF_1)
1564 		fep->work_rx |= (1 << 0);
1565 	if (int_events & FEC_ENET_RXF_2)
1566 		fep->work_rx |= (1 << 1);
1567 
1568 	if (int_events & FEC_ENET_TXF)
1569 		fep->work_tx |= (1 << 2);
1570 	if (int_events & FEC_ENET_TXF_1)
1571 		fep->work_tx |= (1 << 0);
1572 	if (int_events & FEC_ENET_TXF_2)
1573 		fep->work_tx |= (1 << 1);
1574 
1575 	return true;
1576 }
1577 
1578 static irqreturn_t
1579 fec_enet_interrupt(int irq, void *dev_id)
1580 {
1581 	struct net_device *ndev = dev_id;
1582 	struct fec_enet_private *fep = netdev_priv(ndev);
1583 	uint int_events;
1584 	irqreturn_t ret = IRQ_NONE;
1585 
1586 	int_events = readl(fep->hwp + FEC_IEVENT);
1587 	writel(int_events, fep->hwp + FEC_IEVENT);
1588 	fec_enet_collect_events(fep, int_events);
1589 
1590 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1591 		ret = IRQ_HANDLED;
1592 
1593 		if (napi_schedule_prep(&fep->napi)) {
1594 			/* Disable the NAPI interrupts */
1595 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1596 			__napi_schedule(&fep->napi);
1597 		}
1598 	}
1599 
1600 	if (int_events & FEC_ENET_MII) {
1601 		ret = IRQ_HANDLED;
1602 		complete(&fep->mdio_done);
1603 	}
1604 
1605 	if (fep->ptp_clock)
1606 		fec_ptp_check_pps_event(fep);
1607 
1608 	return ret;
1609 }
1610 
1611 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1612 {
1613 	struct net_device *ndev = napi->dev;
1614 	struct fec_enet_private *fep = netdev_priv(ndev);
1615 	int pkts;
1616 
1617 	pkts = fec_enet_rx(ndev, budget);
1618 
1619 	fec_enet_tx(ndev);
1620 
1621 	if (pkts < budget) {
1622 		napi_complete_done(napi, pkts);
1623 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1624 	}
1625 	return pkts;
1626 }
1627 
1628 /* ------------------------------------------------------------------------- */
1629 static void fec_get_mac(struct net_device *ndev)
1630 {
1631 	struct fec_enet_private *fep = netdev_priv(ndev);
1632 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1633 	unsigned char *iap, tmpaddr[ETH_ALEN];
1634 
1635 	/*
1636 	 * try to get mac address in following order:
1637 	 *
1638 	 * 1) module parameter via kernel command line in form
1639 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1640 	 */
1641 	iap = macaddr;
1642 
1643 	/*
1644 	 * 2) from device tree data
1645 	 */
1646 	if (!is_valid_ether_addr(iap)) {
1647 		struct device_node *np = fep->pdev->dev.of_node;
1648 		if (np) {
1649 			const char *mac = of_get_mac_address(np);
1650 			if (mac)
1651 				iap = (unsigned char *) mac;
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * 3) from flash or fuse (via platform data)
1657 	 */
1658 	if (!is_valid_ether_addr(iap)) {
1659 #ifdef CONFIG_M5272
1660 		if (FEC_FLASHMAC)
1661 			iap = (unsigned char *)FEC_FLASHMAC;
1662 #else
1663 		if (pdata)
1664 			iap = (unsigned char *)&pdata->mac;
1665 #endif
1666 	}
1667 
1668 	/*
1669 	 * 4) FEC mac registers set by bootloader
1670 	 */
1671 	if (!is_valid_ether_addr(iap)) {
1672 		*((__be32 *) &tmpaddr[0]) =
1673 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1674 		*((__be16 *) &tmpaddr[4]) =
1675 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1676 		iap = &tmpaddr[0];
1677 	}
1678 
1679 	/*
1680 	 * 5) random mac address
1681 	 */
1682 	if (!is_valid_ether_addr(iap)) {
1683 		/* Report it and use a random ethernet address instead */
1684 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1685 		eth_hw_addr_random(ndev);
1686 		netdev_info(ndev, "Using random MAC address: %pM\n",
1687 			    ndev->dev_addr);
1688 		return;
1689 	}
1690 
1691 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1692 
1693 	/* Adjust MAC if using macaddr */
1694 	if (iap == macaddr)
1695 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1696 }
1697 
1698 /* ------------------------------------------------------------------------- */
1699 
1700 /*
1701  * Phy section
1702  */
1703 static void fec_enet_adjust_link(struct net_device *ndev)
1704 {
1705 	struct fec_enet_private *fep = netdev_priv(ndev);
1706 	struct phy_device *phy_dev = ndev->phydev;
1707 	int status_change = 0;
1708 
1709 	/* Prevent a state halted on mii error */
1710 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1711 		phy_dev->state = PHY_RESUMING;
1712 		return;
1713 	}
1714 
1715 	/*
1716 	 * If the netdev is down, or is going down, we're not interested
1717 	 * in link state events, so just mark our idea of the link as down
1718 	 * and ignore the event.
1719 	 */
1720 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1721 		fep->link = 0;
1722 	} else if (phy_dev->link) {
1723 		if (!fep->link) {
1724 			fep->link = phy_dev->link;
1725 			status_change = 1;
1726 		}
1727 
1728 		if (fep->full_duplex != phy_dev->duplex) {
1729 			fep->full_duplex = phy_dev->duplex;
1730 			status_change = 1;
1731 		}
1732 
1733 		if (phy_dev->speed != fep->speed) {
1734 			fep->speed = phy_dev->speed;
1735 			status_change = 1;
1736 		}
1737 
1738 		/* if any of the above changed restart the FEC */
1739 		if (status_change) {
1740 			napi_disable(&fep->napi);
1741 			netif_tx_lock_bh(ndev);
1742 			fec_restart(ndev);
1743 			netif_wake_queue(ndev);
1744 			netif_tx_unlock_bh(ndev);
1745 			napi_enable(&fep->napi);
1746 		}
1747 	} else {
1748 		if (fep->link) {
1749 			napi_disable(&fep->napi);
1750 			netif_tx_lock_bh(ndev);
1751 			fec_stop(ndev);
1752 			netif_tx_unlock_bh(ndev);
1753 			napi_enable(&fep->napi);
1754 			fep->link = phy_dev->link;
1755 			status_change = 1;
1756 		}
1757 	}
1758 
1759 	if (status_change)
1760 		phy_print_status(phy_dev);
1761 }
1762 
1763 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1764 {
1765 	struct fec_enet_private *fep = bus->priv;
1766 	struct device *dev = &fep->pdev->dev;
1767 	unsigned long time_left;
1768 	int ret = 0;
1769 
1770 	ret = pm_runtime_get_sync(dev);
1771 	if (ret < 0)
1772 		return ret;
1773 
1774 	fep->mii_timeout = 0;
1775 	reinit_completion(&fep->mdio_done);
1776 
1777 	/* start a read op */
1778 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1779 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1780 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1781 
1782 	/* wait for end of transfer */
1783 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1784 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1785 	if (time_left == 0) {
1786 		fep->mii_timeout = 1;
1787 		netdev_err(fep->netdev, "MDIO read timeout\n");
1788 		ret = -ETIMEDOUT;
1789 		goto out;
1790 	}
1791 
1792 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1793 
1794 out:
1795 	pm_runtime_mark_last_busy(dev);
1796 	pm_runtime_put_autosuspend(dev);
1797 
1798 	return ret;
1799 }
1800 
1801 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1802 			   u16 value)
1803 {
1804 	struct fec_enet_private *fep = bus->priv;
1805 	struct device *dev = &fep->pdev->dev;
1806 	unsigned long time_left;
1807 	int ret;
1808 
1809 	ret = pm_runtime_get_sync(dev);
1810 	if (ret < 0)
1811 		return ret;
1812 	else
1813 		ret = 0;
1814 
1815 	fep->mii_timeout = 0;
1816 	reinit_completion(&fep->mdio_done);
1817 
1818 	/* start a write op */
1819 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1820 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1821 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1822 		fep->hwp + FEC_MII_DATA);
1823 
1824 	/* wait for end of transfer */
1825 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1826 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1827 	if (time_left == 0) {
1828 		fep->mii_timeout = 1;
1829 		netdev_err(fep->netdev, "MDIO write timeout\n");
1830 		ret  = -ETIMEDOUT;
1831 	}
1832 
1833 	pm_runtime_mark_last_busy(dev);
1834 	pm_runtime_put_autosuspend(dev);
1835 
1836 	return ret;
1837 }
1838 
1839 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1840 {
1841 	struct fec_enet_private *fep = netdev_priv(ndev);
1842 	int ret;
1843 
1844 	if (enable) {
1845 		ret = clk_prepare_enable(fep->clk_ahb);
1846 		if (ret)
1847 			return ret;
1848 
1849 		ret = clk_prepare_enable(fep->clk_enet_out);
1850 		if (ret)
1851 			goto failed_clk_enet_out;
1852 
1853 		if (fep->clk_ptp) {
1854 			mutex_lock(&fep->ptp_clk_mutex);
1855 			ret = clk_prepare_enable(fep->clk_ptp);
1856 			if (ret) {
1857 				mutex_unlock(&fep->ptp_clk_mutex);
1858 				goto failed_clk_ptp;
1859 			} else {
1860 				fep->ptp_clk_on = true;
1861 			}
1862 			mutex_unlock(&fep->ptp_clk_mutex);
1863 		}
1864 
1865 		ret = clk_prepare_enable(fep->clk_ref);
1866 		if (ret)
1867 			goto failed_clk_ref;
1868 	} else {
1869 		clk_disable_unprepare(fep->clk_ahb);
1870 		clk_disable_unprepare(fep->clk_enet_out);
1871 		if (fep->clk_ptp) {
1872 			mutex_lock(&fep->ptp_clk_mutex);
1873 			clk_disable_unprepare(fep->clk_ptp);
1874 			fep->ptp_clk_on = false;
1875 			mutex_unlock(&fep->ptp_clk_mutex);
1876 		}
1877 		clk_disable_unprepare(fep->clk_ref);
1878 	}
1879 
1880 	return 0;
1881 
1882 failed_clk_ref:
1883 	if (fep->clk_ref)
1884 		clk_disable_unprepare(fep->clk_ref);
1885 failed_clk_ptp:
1886 	if (fep->clk_enet_out)
1887 		clk_disable_unprepare(fep->clk_enet_out);
1888 failed_clk_enet_out:
1889 		clk_disable_unprepare(fep->clk_ahb);
1890 
1891 	return ret;
1892 }
1893 
1894 static int fec_enet_mii_probe(struct net_device *ndev)
1895 {
1896 	struct fec_enet_private *fep = netdev_priv(ndev);
1897 	struct phy_device *phy_dev = NULL;
1898 	char mdio_bus_id[MII_BUS_ID_SIZE];
1899 	char phy_name[MII_BUS_ID_SIZE + 3];
1900 	int phy_id;
1901 	int dev_id = fep->dev_id;
1902 
1903 	if (fep->phy_node) {
1904 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1905 					 &fec_enet_adjust_link, 0,
1906 					 fep->phy_interface);
1907 		if (!phy_dev)
1908 			return -ENODEV;
1909 	} else {
1910 		/* check for attached phy */
1911 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1912 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1913 				continue;
1914 			if (dev_id--)
1915 				continue;
1916 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1917 			break;
1918 		}
1919 
1920 		if (phy_id >= PHY_MAX_ADDR) {
1921 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1922 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1923 			phy_id = 0;
1924 		}
1925 
1926 		snprintf(phy_name, sizeof(phy_name),
1927 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1928 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1929 				      fep->phy_interface);
1930 	}
1931 
1932 	if (IS_ERR(phy_dev)) {
1933 		netdev_err(ndev, "could not attach to PHY\n");
1934 		return PTR_ERR(phy_dev);
1935 	}
1936 
1937 	/* mask with MAC supported features */
1938 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1939 		phy_dev->supported &= PHY_GBIT_FEATURES;
1940 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1941 #if !defined(CONFIG_M5272)
1942 		phy_dev->supported |= SUPPORTED_Pause;
1943 #endif
1944 	}
1945 	else
1946 		phy_dev->supported &= PHY_BASIC_FEATURES;
1947 
1948 	phy_dev->advertising = phy_dev->supported;
1949 
1950 	fep->link = 0;
1951 	fep->full_duplex = 0;
1952 
1953 	phy_attached_info(phy_dev);
1954 
1955 	return 0;
1956 }
1957 
1958 static int fec_enet_mii_init(struct platform_device *pdev)
1959 {
1960 	static struct mii_bus *fec0_mii_bus;
1961 	struct net_device *ndev = platform_get_drvdata(pdev);
1962 	struct fec_enet_private *fep = netdev_priv(ndev);
1963 	struct device_node *node;
1964 	int err = -ENXIO;
1965 	u32 mii_speed, holdtime;
1966 
1967 	/*
1968 	 * The i.MX28 dual fec interfaces are not equal.
1969 	 * Here are the differences:
1970 	 *
1971 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1972 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1973 	 *  - external phys can only be configured by fec0
1974 	 *
1975 	 * That is to say fec1 can not work independently. It only works
1976 	 * when fec0 is working. The reason behind this design is that the
1977 	 * second interface is added primarily for Switch mode.
1978 	 *
1979 	 * Because of the last point above, both phys are attached on fec0
1980 	 * mdio interface in board design, and need to be configured by
1981 	 * fec0 mii_bus.
1982 	 */
1983 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1984 		/* fec1 uses fec0 mii_bus */
1985 		if (mii_cnt && fec0_mii_bus) {
1986 			fep->mii_bus = fec0_mii_bus;
1987 			mii_cnt++;
1988 			return 0;
1989 		}
1990 		return -ENOENT;
1991 	}
1992 
1993 	fep->mii_timeout = 0;
1994 
1995 	/*
1996 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1997 	 *
1998 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1999 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2000 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2001 	 * document.
2002 	 */
2003 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2004 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2005 		mii_speed--;
2006 	if (mii_speed > 63) {
2007 		dev_err(&pdev->dev,
2008 			"fec clock (%lu) too fast to get right mii speed\n",
2009 			clk_get_rate(fep->clk_ipg));
2010 		err = -EINVAL;
2011 		goto err_out;
2012 	}
2013 
2014 	/*
2015 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2016 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2017 	 * versions are RAZ there, so just ignore the difference and write the
2018 	 * register always.
2019 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2020 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2021 	 * output.
2022 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2023 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2024 	 * holdtime cannot result in a value greater than 3.
2025 	 */
2026 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2027 
2028 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2029 
2030 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2031 
2032 	fep->mii_bus = mdiobus_alloc();
2033 	if (fep->mii_bus == NULL) {
2034 		err = -ENOMEM;
2035 		goto err_out;
2036 	}
2037 
2038 	fep->mii_bus->name = "fec_enet_mii_bus";
2039 	fep->mii_bus->read = fec_enet_mdio_read;
2040 	fep->mii_bus->write = fec_enet_mdio_write;
2041 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2042 		pdev->name, fep->dev_id + 1);
2043 	fep->mii_bus->priv = fep;
2044 	fep->mii_bus->parent = &pdev->dev;
2045 
2046 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2047 	if (node) {
2048 		err = of_mdiobus_register(fep->mii_bus, node);
2049 		of_node_put(node);
2050 	} else {
2051 		err = mdiobus_register(fep->mii_bus);
2052 	}
2053 
2054 	if (err)
2055 		goto err_out_free_mdiobus;
2056 
2057 	mii_cnt++;
2058 
2059 	/* save fec0 mii_bus */
2060 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2061 		fec0_mii_bus = fep->mii_bus;
2062 
2063 	return 0;
2064 
2065 err_out_free_mdiobus:
2066 	mdiobus_free(fep->mii_bus);
2067 err_out:
2068 	return err;
2069 }
2070 
2071 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2072 {
2073 	if (--mii_cnt == 0) {
2074 		mdiobus_unregister(fep->mii_bus);
2075 		mdiobus_free(fep->mii_bus);
2076 	}
2077 }
2078 
2079 static void fec_enet_get_drvinfo(struct net_device *ndev,
2080 				 struct ethtool_drvinfo *info)
2081 {
2082 	struct fec_enet_private *fep = netdev_priv(ndev);
2083 
2084 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2085 		sizeof(info->driver));
2086 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2087 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2088 }
2089 
2090 static int fec_enet_get_regs_len(struct net_device *ndev)
2091 {
2092 	struct fec_enet_private *fep = netdev_priv(ndev);
2093 	struct resource *r;
2094 	int s = 0;
2095 
2096 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2097 	if (r)
2098 		s = resource_size(r);
2099 
2100 	return s;
2101 }
2102 
2103 /* List of registers that can be safety be read to dump them with ethtool */
2104 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2105 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2106 static u32 fec_enet_register_offset[] = {
2107 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2108 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2109 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2110 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2111 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2112 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2113 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2114 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2115 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2116 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2117 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2118 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2119 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2120 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2121 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2122 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2123 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2124 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2125 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2126 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2127 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2128 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2129 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2130 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2131 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2132 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2133 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2134 };
2135 #else
2136 static u32 fec_enet_register_offset[] = {
2137 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2138 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2139 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2140 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2141 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2142 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2143 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2144 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2145 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2146 };
2147 #endif
2148 
2149 static void fec_enet_get_regs(struct net_device *ndev,
2150 			      struct ethtool_regs *regs, void *regbuf)
2151 {
2152 	struct fec_enet_private *fep = netdev_priv(ndev);
2153 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2154 	u32 *buf = (u32 *)regbuf;
2155 	u32 i, off;
2156 
2157 	memset(buf, 0, regs->len);
2158 
2159 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2160 		off = fec_enet_register_offset[i] / 4;
2161 		buf[off] = readl(&theregs[off]);
2162 	}
2163 }
2164 
2165 static int fec_enet_get_ts_info(struct net_device *ndev,
2166 				struct ethtool_ts_info *info)
2167 {
2168 	struct fec_enet_private *fep = netdev_priv(ndev);
2169 
2170 	if (fep->bufdesc_ex) {
2171 
2172 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2173 					SOF_TIMESTAMPING_RX_SOFTWARE |
2174 					SOF_TIMESTAMPING_SOFTWARE |
2175 					SOF_TIMESTAMPING_TX_HARDWARE |
2176 					SOF_TIMESTAMPING_RX_HARDWARE |
2177 					SOF_TIMESTAMPING_RAW_HARDWARE;
2178 		if (fep->ptp_clock)
2179 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2180 		else
2181 			info->phc_index = -1;
2182 
2183 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2184 				 (1 << HWTSTAMP_TX_ON);
2185 
2186 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2187 				   (1 << HWTSTAMP_FILTER_ALL);
2188 		return 0;
2189 	} else {
2190 		return ethtool_op_get_ts_info(ndev, info);
2191 	}
2192 }
2193 
2194 #if !defined(CONFIG_M5272)
2195 
2196 static void fec_enet_get_pauseparam(struct net_device *ndev,
2197 				    struct ethtool_pauseparam *pause)
2198 {
2199 	struct fec_enet_private *fep = netdev_priv(ndev);
2200 
2201 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2202 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2203 	pause->rx_pause = pause->tx_pause;
2204 }
2205 
2206 static int fec_enet_set_pauseparam(struct net_device *ndev,
2207 				   struct ethtool_pauseparam *pause)
2208 {
2209 	struct fec_enet_private *fep = netdev_priv(ndev);
2210 
2211 	if (!ndev->phydev)
2212 		return -ENODEV;
2213 
2214 	if (pause->tx_pause != pause->rx_pause) {
2215 		netdev_info(ndev,
2216 			"hardware only support enable/disable both tx and rx");
2217 		return -EINVAL;
2218 	}
2219 
2220 	fep->pause_flag = 0;
2221 
2222 	/* tx pause must be same as rx pause */
2223 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2224 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2225 
2226 	if (pause->rx_pause || pause->autoneg) {
2227 		ndev->phydev->supported |= ADVERTISED_Pause;
2228 		ndev->phydev->advertising |= ADVERTISED_Pause;
2229 	} else {
2230 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2231 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2232 	}
2233 
2234 	if (pause->autoneg) {
2235 		if (netif_running(ndev))
2236 			fec_stop(ndev);
2237 		phy_start_aneg(ndev->phydev);
2238 	}
2239 	if (netif_running(ndev)) {
2240 		napi_disable(&fep->napi);
2241 		netif_tx_lock_bh(ndev);
2242 		fec_restart(ndev);
2243 		netif_wake_queue(ndev);
2244 		netif_tx_unlock_bh(ndev);
2245 		napi_enable(&fep->napi);
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 static const struct fec_stat {
2252 	char name[ETH_GSTRING_LEN];
2253 	u16 offset;
2254 } fec_stats[] = {
2255 	/* RMON TX */
2256 	{ "tx_dropped", RMON_T_DROP },
2257 	{ "tx_packets", RMON_T_PACKETS },
2258 	{ "tx_broadcast", RMON_T_BC_PKT },
2259 	{ "tx_multicast", RMON_T_MC_PKT },
2260 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2261 	{ "tx_undersize", RMON_T_UNDERSIZE },
2262 	{ "tx_oversize", RMON_T_OVERSIZE },
2263 	{ "tx_fragment", RMON_T_FRAG },
2264 	{ "tx_jabber", RMON_T_JAB },
2265 	{ "tx_collision", RMON_T_COL },
2266 	{ "tx_64byte", RMON_T_P64 },
2267 	{ "tx_65to127byte", RMON_T_P65TO127 },
2268 	{ "tx_128to255byte", RMON_T_P128TO255 },
2269 	{ "tx_256to511byte", RMON_T_P256TO511 },
2270 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2271 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2272 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2273 	{ "tx_octets", RMON_T_OCTETS },
2274 
2275 	/* IEEE TX */
2276 	{ "IEEE_tx_drop", IEEE_T_DROP },
2277 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2278 	{ "IEEE_tx_1col", IEEE_T_1COL },
2279 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2280 	{ "IEEE_tx_def", IEEE_T_DEF },
2281 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2282 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2283 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2284 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2285 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2286 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2287 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2288 
2289 	/* RMON RX */
2290 	{ "rx_packets", RMON_R_PACKETS },
2291 	{ "rx_broadcast", RMON_R_BC_PKT },
2292 	{ "rx_multicast", RMON_R_MC_PKT },
2293 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2294 	{ "rx_undersize", RMON_R_UNDERSIZE },
2295 	{ "rx_oversize", RMON_R_OVERSIZE },
2296 	{ "rx_fragment", RMON_R_FRAG },
2297 	{ "rx_jabber", RMON_R_JAB },
2298 	{ "rx_64byte", RMON_R_P64 },
2299 	{ "rx_65to127byte", RMON_R_P65TO127 },
2300 	{ "rx_128to255byte", RMON_R_P128TO255 },
2301 	{ "rx_256to511byte", RMON_R_P256TO511 },
2302 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2303 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2304 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2305 	{ "rx_octets", RMON_R_OCTETS },
2306 
2307 	/* IEEE RX */
2308 	{ "IEEE_rx_drop", IEEE_R_DROP },
2309 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2310 	{ "IEEE_rx_crc", IEEE_R_CRC },
2311 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2312 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2313 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2314 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2315 };
2316 
2317 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2318 
2319 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2320 {
2321 	struct fec_enet_private *fep = netdev_priv(dev);
2322 	int i;
2323 
2324 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2325 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2326 }
2327 
2328 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2329 				       struct ethtool_stats *stats, u64 *data)
2330 {
2331 	struct fec_enet_private *fep = netdev_priv(dev);
2332 
2333 	if (netif_running(dev))
2334 		fec_enet_update_ethtool_stats(dev);
2335 
2336 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2337 }
2338 
2339 static void fec_enet_get_strings(struct net_device *netdev,
2340 	u32 stringset, u8 *data)
2341 {
2342 	int i;
2343 	switch (stringset) {
2344 	case ETH_SS_STATS:
2345 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2346 			memcpy(data + i * ETH_GSTRING_LEN,
2347 				fec_stats[i].name, ETH_GSTRING_LEN);
2348 		break;
2349 	}
2350 }
2351 
2352 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2353 {
2354 	switch (sset) {
2355 	case ETH_SS_STATS:
2356 		return ARRAY_SIZE(fec_stats);
2357 	default:
2358 		return -EOPNOTSUPP;
2359 	}
2360 }
2361 
2362 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2363 {
2364 	struct fec_enet_private *fep = netdev_priv(dev);
2365 	int i;
2366 
2367 	/* Disable MIB statistics counters */
2368 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2369 
2370 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2371 		writel(0, fep->hwp + fec_stats[i].offset);
2372 
2373 	/* Don't disable MIB statistics counters */
2374 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2375 }
2376 
2377 #else	/* !defined(CONFIG_M5272) */
2378 #define FEC_STATS_SIZE	0
2379 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2380 {
2381 }
2382 
2383 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2384 {
2385 }
2386 #endif /* !defined(CONFIG_M5272) */
2387 
2388 /* ITR clock source is enet system clock (clk_ahb).
2389  * TCTT unit is cycle_ns * 64 cycle
2390  * So, the ICTT value = X us / (cycle_ns * 64)
2391  */
2392 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2393 {
2394 	struct fec_enet_private *fep = netdev_priv(ndev);
2395 
2396 	return us * (fep->itr_clk_rate / 64000) / 1000;
2397 }
2398 
2399 /* Set threshold for interrupt coalescing */
2400 static void fec_enet_itr_coal_set(struct net_device *ndev)
2401 {
2402 	struct fec_enet_private *fep = netdev_priv(ndev);
2403 	int rx_itr, tx_itr;
2404 
2405 	/* Must be greater than zero to avoid unpredictable behavior */
2406 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2407 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2408 		return;
2409 
2410 	/* Select enet system clock as Interrupt Coalescing
2411 	 * timer Clock Source
2412 	 */
2413 	rx_itr = FEC_ITR_CLK_SEL;
2414 	tx_itr = FEC_ITR_CLK_SEL;
2415 
2416 	/* set ICFT and ICTT */
2417 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2418 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2419 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2420 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2421 
2422 	rx_itr |= FEC_ITR_EN;
2423 	tx_itr |= FEC_ITR_EN;
2424 
2425 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2426 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2427 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2428 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2429 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2430 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2431 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2432 	}
2433 }
2434 
2435 static int
2436 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2437 {
2438 	struct fec_enet_private *fep = netdev_priv(ndev);
2439 
2440 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2441 		return -EOPNOTSUPP;
2442 
2443 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2444 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2445 
2446 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2447 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2448 
2449 	return 0;
2450 }
2451 
2452 static int
2453 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2454 {
2455 	struct fec_enet_private *fep = netdev_priv(ndev);
2456 	unsigned int cycle;
2457 
2458 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2459 		return -EOPNOTSUPP;
2460 
2461 	if (ec->rx_max_coalesced_frames > 255) {
2462 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2463 		return -EINVAL;
2464 	}
2465 
2466 	if (ec->tx_max_coalesced_frames > 255) {
2467 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2468 		return -EINVAL;
2469 	}
2470 
2471 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2472 	if (cycle > 0xFFFF) {
2473 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2474 		return -EINVAL;
2475 	}
2476 
2477 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2478 	if (cycle > 0xFFFF) {
2479 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2480 		return -EINVAL;
2481 	}
2482 
2483 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2484 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2485 
2486 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2487 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2488 
2489 	fec_enet_itr_coal_set(ndev);
2490 
2491 	return 0;
2492 }
2493 
2494 static void fec_enet_itr_coal_init(struct net_device *ndev)
2495 {
2496 	struct ethtool_coalesce ec;
2497 
2498 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2499 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2500 
2501 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2502 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2503 
2504 	fec_enet_set_coalesce(ndev, &ec);
2505 }
2506 
2507 static int fec_enet_get_tunable(struct net_device *netdev,
2508 				const struct ethtool_tunable *tuna,
2509 				void *data)
2510 {
2511 	struct fec_enet_private *fep = netdev_priv(netdev);
2512 	int ret = 0;
2513 
2514 	switch (tuna->id) {
2515 	case ETHTOOL_RX_COPYBREAK:
2516 		*(u32 *)data = fep->rx_copybreak;
2517 		break;
2518 	default:
2519 		ret = -EINVAL;
2520 		break;
2521 	}
2522 
2523 	return ret;
2524 }
2525 
2526 static int fec_enet_set_tunable(struct net_device *netdev,
2527 				const struct ethtool_tunable *tuna,
2528 				const void *data)
2529 {
2530 	struct fec_enet_private *fep = netdev_priv(netdev);
2531 	int ret = 0;
2532 
2533 	switch (tuna->id) {
2534 	case ETHTOOL_RX_COPYBREAK:
2535 		fep->rx_copybreak = *(u32 *)data;
2536 		break;
2537 	default:
2538 		ret = -EINVAL;
2539 		break;
2540 	}
2541 
2542 	return ret;
2543 }
2544 
2545 static void
2546 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2547 {
2548 	struct fec_enet_private *fep = netdev_priv(ndev);
2549 
2550 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2551 		wol->supported = WAKE_MAGIC;
2552 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2553 	} else {
2554 		wol->supported = wol->wolopts = 0;
2555 	}
2556 }
2557 
2558 static int
2559 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2560 {
2561 	struct fec_enet_private *fep = netdev_priv(ndev);
2562 
2563 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2564 		return -EINVAL;
2565 
2566 	if (wol->wolopts & ~WAKE_MAGIC)
2567 		return -EINVAL;
2568 
2569 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2570 	if (device_may_wakeup(&ndev->dev)) {
2571 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2572 		if (fep->irq[0] > 0)
2573 			enable_irq_wake(fep->irq[0]);
2574 	} else {
2575 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2576 		if (fep->irq[0] > 0)
2577 			disable_irq_wake(fep->irq[0]);
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static const struct ethtool_ops fec_enet_ethtool_ops = {
2584 	.get_drvinfo		= fec_enet_get_drvinfo,
2585 	.get_regs_len		= fec_enet_get_regs_len,
2586 	.get_regs		= fec_enet_get_regs,
2587 	.nway_reset		= phy_ethtool_nway_reset,
2588 	.get_link		= ethtool_op_get_link,
2589 	.get_coalesce		= fec_enet_get_coalesce,
2590 	.set_coalesce		= fec_enet_set_coalesce,
2591 #ifndef CONFIG_M5272
2592 	.get_pauseparam		= fec_enet_get_pauseparam,
2593 	.set_pauseparam		= fec_enet_set_pauseparam,
2594 	.get_strings		= fec_enet_get_strings,
2595 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2596 	.get_sset_count		= fec_enet_get_sset_count,
2597 #endif
2598 	.get_ts_info		= fec_enet_get_ts_info,
2599 	.get_tunable		= fec_enet_get_tunable,
2600 	.set_tunable		= fec_enet_set_tunable,
2601 	.get_wol		= fec_enet_get_wol,
2602 	.set_wol		= fec_enet_set_wol,
2603 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2604 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2605 };
2606 
2607 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2608 {
2609 	struct fec_enet_private *fep = netdev_priv(ndev);
2610 	struct phy_device *phydev = ndev->phydev;
2611 
2612 	if (!netif_running(ndev))
2613 		return -EINVAL;
2614 
2615 	if (!phydev)
2616 		return -ENODEV;
2617 
2618 	if (fep->bufdesc_ex) {
2619 		if (cmd == SIOCSHWTSTAMP)
2620 			return fec_ptp_set(ndev, rq);
2621 		if (cmd == SIOCGHWTSTAMP)
2622 			return fec_ptp_get(ndev, rq);
2623 	}
2624 
2625 	return phy_mii_ioctl(phydev, rq, cmd);
2626 }
2627 
2628 static void fec_enet_free_buffers(struct net_device *ndev)
2629 {
2630 	struct fec_enet_private *fep = netdev_priv(ndev);
2631 	unsigned int i;
2632 	struct sk_buff *skb;
2633 	struct bufdesc	*bdp;
2634 	struct fec_enet_priv_tx_q *txq;
2635 	struct fec_enet_priv_rx_q *rxq;
2636 	unsigned int q;
2637 
2638 	for (q = 0; q < fep->num_rx_queues; q++) {
2639 		rxq = fep->rx_queue[q];
2640 		bdp = rxq->bd.base;
2641 		for (i = 0; i < rxq->bd.ring_size; i++) {
2642 			skb = rxq->rx_skbuff[i];
2643 			rxq->rx_skbuff[i] = NULL;
2644 			if (skb) {
2645 				dma_unmap_single(&fep->pdev->dev,
2646 						 fec32_to_cpu(bdp->cbd_bufaddr),
2647 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2648 						 DMA_FROM_DEVICE);
2649 				dev_kfree_skb(skb);
2650 			}
2651 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2652 		}
2653 	}
2654 
2655 	for (q = 0; q < fep->num_tx_queues; q++) {
2656 		txq = fep->tx_queue[q];
2657 		bdp = txq->bd.base;
2658 		for (i = 0; i < txq->bd.ring_size; i++) {
2659 			kfree(txq->tx_bounce[i]);
2660 			txq->tx_bounce[i] = NULL;
2661 			skb = txq->tx_skbuff[i];
2662 			txq->tx_skbuff[i] = NULL;
2663 			dev_kfree_skb(skb);
2664 		}
2665 	}
2666 }
2667 
2668 static void fec_enet_free_queue(struct net_device *ndev)
2669 {
2670 	struct fec_enet_private *fep = netdev_priv(ndev);
2671 	int i;
2672 	struct fec_enet_priv_tx_q *txq;
2673 
2674 	for (i = 0; i < fep->num_tx_queues; i++)
2675 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2676 			txq = fep->tx_queue[i];
2677 			dma_free_coherent(&fep->pdev->dev,
2678 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2679 					  txq->tso_hdrs,
2680 					  txq->tso_hdrs_dma);
2681 		}
2682 
2683 	for (i = 0; i < fep->num_rx_queues; i++)
2684 		kfree(fep->rx_queue[i]);
2685 	for (i = 0; i < fep->num_tx_queues; i++)
2686 		kfree(fep->tx_queue[i]);
2687 }
2688 
2689 static int fec_enet_alloc_queue(struct net_device *ndev)
2690 {
2691 	struct fec_enet_private *fep = netdev_priv(ndev);
2692 	int i;
2693 	int ret = 0;
2694 	struct fec_enet_priv_tx_q *txq;
2695 
2696 	for (i = 0; i < fep->num_tx_queues; i++) {
2697 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2698 		if (!txq) {
2699 			ret = -ENOMEM;
2700 			goto alloc_failed;
2701 		}
2702 
2703 		fep->tx_queue[i] = txq;
2704 		txq->bd.ring_size = TX_RING_SIZE;
2705 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2706 
2707 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2708 		txq->tx_wake_threshold =
2709 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2710 
2711 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2712 					txq->bd.ring_size * TSO_HEADER_SIZE,
2713 					&txq->tso_hdrs_dma,
2714 					GFP_KERNEL);
2715 		if (!txq->tso_hdrs) {
2716 			ret = -ENOMEM;
2717 			goto alloc_failed;
2718 		}
2719 	}
2720 
2721 	for (i = 0; i < fep->num_rx_queues; i++) {
2722 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2723 					   GFP_KERNEL);
2724 		if (!fep->rx_queue[i]) {
2725 			ret = -ENOMEM;
2726 			goto alloc_failed;
2727 		}
2728 
2729 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2730 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2731 	}
2732 	return ret;
2733 
2734 alloc_failed:
2735 	fec_enet_free_queue(ndev);
2736 	return ret;
2737 }
2738 
2739 static int
2740 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2741 {
2742 	struct fec_enet_private *fep = netdev_priv(ndev);
2743 	unsigned int i;
2744 	struct sk_buff *skb;
2745 	struct bufdesc	*bdp;
2746 	struct fec_enet_priv_rx_q *rxq;
2747 
2748 	rxq = fep->rx_queue[queue];
2749 	bdp = rxq->bd.base;
2750 	for (i = 0; i < rxq->bd.ring_size; i++) {
2751 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2752 		if (!skb)
2753 			goto err_alloc;
2754 
2755 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2756 			dev_kfree_skb(skb);
2757 			goto err_alloc;
2758 		}
2759 
2760 		rxq->rx_skbuff[i] = skb;
2761 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2762 
2763 		if (fep->bufdesc_ex) {
2764 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2765 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2766 		}
2767 
2768 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2769 	}
2770 
2771 	/* Set the last buffer to wrap. */
2772 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2773 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2774 	return 0;
2775 
2776  err_alloc:
2777 	fec_enet_free_buffers(ndev);
2778 	return -ENOMEM;
2779 }
2780 
2781 static int
2782 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2783 {
2784 	struct fec_enet_private *fep = netdev_priv(ndev);
2785 	unsigned int i;
2786 	struct bufdesc  *bdp;
2787 	struct fec_enet_priv_tx_q *txq;
2788 
2789 	txq = fep->tx_queue[queue];
2790 	bdp = txq->bd.base;
2791 	for (i = 0; i < txq->bd.ring_size; i++) {
2792 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2793 		if (!txq->tx_bounce[i])
2794 			goto err_alloc;
2795 
2796 		bdp->cbd_sc = cpu_to_fec16(0);
2797 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2798 
2799 		if (fep->bufdesc_ex) {
2800 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2801 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2802 		}
2803 
2804 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2805 	}
2806 
2807 	/* Set the last buffer to wrap. */
2808 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2809 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2810 
2811 	return 0;
2812 
2813  err_alloc:
2814 	fec_enet_free_buffers(ndev);
2815 	return -ENOMEM;
2816 }
2817 
2818 static int fec_enet_alloc_buffers(struct net_device *ndev)
2819 {
2820 	struct fec_enet_private *fep = netdev_priv(ndev);
2821 	unsigned int i;
2822 
2823 	for (i = 0; i < fep->num_rx_queues; i++)
2824 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2825 			return -ENOMEM;
2826 
2827 	for (i = 0; i < fep->num_tx_queues; i++)
2828 		if (fec_enet_alloc_txq_buffers(ndev, i))
2829 			return -ENOMEM;
2830 	return 0;
2831 }
2832 
2833 static int
2834 fec_enet_open(struct net_device *ndev)
2835 {
2836 	struct fec_enet_private *fep = netdev_priv(ndev);
2837 	int ret;
2838 
2839 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2840 	if (ret < 0)
2841 		return ret;
2842 
2843 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2844 	ret = fec_enet_clk_enable(ndev, true);
2845 	if (ret)
2846 		goto clk_enable;
2847 
2848 	/* I should reset the ring buffers here, but I don't yet know
2849 	 * a simple way to do that.
2850 	 */
2851 
2852 	ret = fec_enet_alloc_buffers(ndev);
2853 	if (ret)
2854 		goto err_enet_alloc;
2855 
2856 	/* Init MAC prior to mii bus probe */
2857 	fec_restart(ndev);
2858 
2859 	/* Probe and connect to PHY when open the interface */
2860 	ret = fec_enet_mii_probe(ndev);
2861 	if (ret)
2862 		goto err_enet_mii_probe;
2863 
2864 	if (fep->quirks & FEC_QUIRK_ERR006687)
2865 		imx6q_cpuidle_fec_irqs_used();
2866 
2867 	napi_enable(&fep->napi);
2868 	phy_start(ndev->phydev);
2869 	netif_tx_start_all_queues(ndev);
2870 
2871 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2872 				 FEC_WOL_FLAG_ENABLE);
2873 
2874 	return 0;
2875 
2876 err_enet_mii_probe:
2877 	fec_enet_free_buffers(ndev);
2878 err_enet_alloc:
2879 	fec_enet_clk_enable(ndev, false);
2880 clk_enable:
2881 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2882 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2883 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2884 	return ret;
2885 }
2886 
2887 static int
2888 fec_enet_close(struct net_device *ndev)
2889 {
2890 	struct fec_enet_private *fep = netdev_priv(ndev);
2891 
2892 	phy_stop(ndev->phydev);
2893 
2894 	if (netif_device_present(ndev)) {
2895 		napi_disable(&fep->napi);
2896 		netif_tx_disable(ndev);
2897 		fec_stop(ndev);
2898 	}
2899 
2900 	phy_disconnect(ndev->phydev);
2901 
2902 	if (fep->quirks & FEC_QUIRK_ERR006687)
2903 		imx6q_cpuidle_fec_irqs_unused();
2904 
2905 	fec_enet_update_ethtool_stats(ndev);
2906 
2907 	fec_enet_clk_enable(ndev, false);
2908 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2909 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2910 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2911 
2912 	fec_enet_free_buffers(ndev);
2913 
2914 	return 0;
2915 }
2916 
2917 /* Set or clear the multicast filter for this adaptor.
2918  * Skeleton taken from sunlance driver.
2919  * The CPM Ethernet implementation allows Multicast as well as individual
2920  * MAC address filtering.  Some of the drivers check to make sure it is
2921  * a group multicast address, and discard those that are not.  I guess I
2922  * will do the same for now, but just remove the test if you want
2923  * individual filtering as well (do the upper net layers want or support
2924  * this kind of feature?).
2925  */
2926 
2927 #define FEC_HASH_BITS	6		/* #bits in hash */
2928 #define CRC32_POLY	0xEDB88320
2929 
2930 static void set_multicast_list(struct net_device *ndev)
2931 {
2932 	struct fec_enet_private *fep = netdev_priv(ndev);
2933 	struct netdev_hw_addr *ha;
2934 	unsigned int i, bit, data, crc, tmp;
2935 	unsigned char hash;
2936 	unsigned int hash_high = 0, hash_low = 0;
2937 
2938 	if (ndev->flags & IFF_PROMISC) {
2939 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2940 		tmp |= 0x8;
2941 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2942 		return;
2943 	}
2944 
2945 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2946 	tmp &= ~0x8;
2947 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2948 
2949 	if (ndev->flags & IFF_ALLMULTI) {
2950 		/* Catch all multicast addresses, so set the
2951 		 * filter to all 1's
2952 		 */
2953 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2954 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2955 
2956 		return;
2957 	}
2958 
2959 	/* Add the addresses in hash register */
2960 	netdev_for_each_mc_addr(ha, ndev) {
2961 		/* calculate crc32 value of mac address */
2962 		crc = 0xffffffff;
2963 
2964 		for (i = 0; i < ndev->addr_len; i++) {
2965 			data = ha->addr[i];
2966 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2967 				crc = (crc >> 1) ^
2968 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2969 			}
2970 		}
2971 
2972 		/* only upper 6 bits (FEC_HASH_BITS) are used
2973 		 * which point to specific bit in the hash registers
2974 		 */
2975 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2976 
2977 		if (hash > 31)
2978 			hash_high |= 1 << (hash - 32);
2979 		else
2980 			hash_low |= 1 << hash;
2981 	}
2982 
2983 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2984 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2985 }
2986 
2987 /* Set a MAC change in hardware. */
2988 static int
2989 fec_set_mac_address(struct net_device *ndev, void *p)
2990 {
2991 	struct fec_enet_private *fep = netdev_priv(ndev);
2992 	struct sockaddr *addr = p;
2993 
2994 	if (addr) {
2995 		if (!is_valid_ether_addr(addr->sa_data))
2996 			return -EADDRNOTAVAIL;
2997 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2998 	}
2999 
3000 	/* Add netif status check here to avoid system hang in below case:
3001 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3002 	 * After ethx down, fec all clocks are gated off and then register
3003 	 * access causes system hang.
3004 	 */
3005 	if (!netif_running(ndev))
3006 		return 0;
3007 
3008 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3009 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3010 		fep->hwp + FEC_ADDR_LOW);
3011 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3012 		fep->hwp + FEC_ADDR_HIGH);
3013 	return 0;
3014 }
3015 
3016 #ifdef CONFIG_NET_POLL_CONTROLLER
3017 /**
3018  * fec_poll_controller - FEC Poll controller function
3019  * @dev: The FEC network adapter
3020  *
3021  * Polled functionality used by netconsole and others in non interrupt mode
3022  *
3023  */
3024 static void fec_poll_controller(struct net_device *dev)
3025 {
3026 	int i;
3027 	struct fec_enet_private *fep = netdev_priv(dev);
3028 
3029 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3030 		if (fep->irq[i] > 0) {
3031 			disable_irq(fep->irq[i]);
3032 			fec_enet_interrupt(fep->irq[i], dev);
3033 			enable_irq(fep->irq[i]);
3034 		}
3035 	}
3036 }
3037 #endif
3038 
3039 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3040 	netdev_features_t features)
3041 {
3042 	struct fec_enet_private *fep = netdev_priv(netdev);
3043 	netdev_features_t changed = features ^ netdev->features;
3044 
3045 	netdev->features = features;
3046 
3047 	/* Receive checksum has been changed */
3048 	if (changed & NETIF_F_RXCSUM) {
3049 		if (features & NETIF_F_RXCSUM)
3050 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3051 		else
3052 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3053 	}
3054 }
3055 
3056 static int fec_set_features(struct net_device *netdev,
3057 	netdev_features_t features)
3058 {
3059 	struct fec_enet_private *fep = netdev_priv(netdev);
3060 	netdev_features_t changed = features ^ netdev->features;
3061 
3062 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3063 		napi_disable(&fep->napi);
3064 		netif_tx_lock_bh(netdev);
3065 		fec_stop(netdev);
3066 		fec_enet_set_netdev_features(netdev, features);
3067 		fec_restart(netdev);
3068 		netif_tx_wake_all_queues(netdev);
3069 		netif_tx_unlock_bh(netdev);
3070 		napi_enable(&fep->napi);
3071 	} else {
3072 		fec_enet_set_netdev_features(netdev, features);
3073 	}
3074 
3075 	return 0;
3076 }
3077 
3078 static const struct net_device_ops fec_netdev_ops = {
3079 	.ndo_open		= fec_enet_open,
3080 	.ndo_stop		= fec_enet_close,
3081 	.ndo_start_xmit		= fec_enet_start_xmit,
3082 	.ndo_set_rx_mode	= set_multicast_list,
3083 	.ndo_validate_addr	= eth_validate_addr,
3084 	.ndo_tx_timeout		= fec_timeout,
3085 	.ndo_set_mac_address	= fec_set_mac_address,
3086 	.ndo_do_ioctl		= fec_enet_ioctl,
3087 #ifdef CONFIG_NET_POLL_CONTROLLER
3088 	.ndo_poll_controller	= fec_poll_controller,
3089 #endif
3090 	.ndo_set_features	= fec_set_features,
3091 };
3092 
3093 static const unsigned short offset_des_active_rxq[] = {
3094 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3095 };
3096 
3097 static const unsigned short offset_des_active_txq[] = {
3098 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3099 };
3100 
3101  /*
3102   * XXX:  We need to clean up on failure exits here.
3103   *
3104   */
3105 static int fec_enet_init(struct net_device *ndev)
3106 {
3107 	struct fec_enet_private *fep = netdev_priv(ndev);
3108 	struct bufdesc *cbd_base;
3109 	dma_addr_t bd_dma;
3110 	int bd_size;
3111 	unsigned int i;
3112 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3113 			sizeof(struct bufdesc);
3114 	unsigned dsize_log2 = __fls(dsize);
3115 
3116 	WARN_ON(dsize != (1 << dsize_log2));
3117 #if defined(CONFIG_ARM)
3118 	fep->rx_align = 0xf;
3119 	fep->tx_align = 0xf;
3120 #else
3121 	fep->rx_align = 0x3;
3122 	fep->tx_align = 0x3;
3123 #endif
3124 
3125 	fec_enet_alloc_queue(ndev);
3126 
3127 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3128 
3129 	/* Allocate memory for buffer descriptors. */
3130 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3131 				       GFP_KERNEL);
3132 	if (!cbd_base) {
3133 		return -ENOMEM;
3134 	}
3135 
3136 	memset(cbd_base, 0, bd_size);
3137 
3138 	/* Get the Ethernet address */
3139 	fec_get_mac(ndev);
3140 	/* make sure MAC we just acquired is programmed into the hw */
3141 	fec_set_mac_address(ndev, NULL);
3142 
3143 	/* Set receive and transmit descriptor base. */
3144 	for (i = 0; i < fep->num_rx_queues; i++) {
3145 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3146 		unsigned size = dsize * rxq->bd.ring_size;
3147 
3148 		rxq->bd.qid = i;
3149 		rxq->bd.base = cbd_base;
3150 		rxq->bd.cur = cbd_base;
3151 		rxq->bd.dma = bd_dma;
3152 		rxq->bd.dsize = dsize;
3153 		rxq->bd.dsize_log2 = dsize_log2;
3154 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3155 		bd_dma += size;
3156 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3157 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3158 	}
3159 
3160 	for (i = 0; i < fep->num_tx_queues; i++) {
3161 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3162 		unsigned size = dsize * txq->bd.ring_size;
3163 
3164 		txq->bd.qid = i;
3165 		txq->bd.base = cbd_base;
3166 		txq->bd.cur = cbd_base;
3167 		txq->bd.dma = bd_dma;
3168 		txq->bd.dsize = dsize;
3169 		txq->bd.dsize_log2 = dsize_log2;
3170 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3171 		bd_dma += size;
3172 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3173 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3174 	}
3175 
3176 
3177 	/* The FEC Ethernet specific entries in the device structure */
3178 	ndev->watchdog_timeo = TX_TIMEOUT;
3179 	ndev->netdev_ops = &fec_netdev_ops;
3180 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3181 
3182 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3183 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3184 
3185 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3186 		/* enable hw VLAN support */
3187 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3188 
3189 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3190 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3191 
3192 		/* enable hw accelerator */
3193 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3194 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3195 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3196 	}
3197 
3198 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3199 		fep->tx_align = 0;
3200 		fep->rx_align = 0x3f;
3201 	}
3202 
3203 	ndev->hw_features = ndev->features;
3204 
3205 	fec_restart(ndev);
3206 
3207 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3208 		fec_enet_clear_ethtool_stats(ndev);
3209 	else
3210 		fec_enet_update_ethtool_stats(ndev);
3211 
3212 	return 0;
3213 }
3214 
3215 #ifdef CONFIG_OF
3216 static int fec_reset_phy(struct platform_device *pdev)
3217 {
3218 	int err, phy_reset;
3219 	bool active_high = false;
3220 	int msec = 1, phy_post_delay = 0;
3221 	struct device_node *np = pdev->dev.of_node;
3222 
3223 	if (!np)
3224 		return 0;
3225 
3226 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3227 	/* A sane reset duration should not be longer than 1s */
3228 	if (!err && msec > 1000)
3229 		msec = 1;
3230 
3231 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3232 	if (phy_reset == -EPROBE_DEFER)
3233 		return phy_reset;
3234 	else if (!gpio_is_valid(phy_reset))
3235 		return 0;
3236 
3237 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3238 	/* valid reset duration should be less than 1s */
3239 	if (!err && phy_post_delay > 1000)
3240 		return -EINVAL;
3241 
3242 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3243 
3244 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3245 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3246 			"phy-reset");
3247 	if (err) {
3248 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3249 		return err;
3250 	}
3251 
3252 	if (msec > 20)
3253 		msleep(msec);
3254 	else
3255 		usleep_range(msec * 1000, msec * 1000 + 1000);
3256 
3257 	gpio_set_value_cansleep(phy_reset, !active_high);
3258 
3259 	if (!phy_post_delay)
3260 		return 0;
3261 
3262 	if (phy_post_delay > 20)
3263 		msleep(phy_post_delay);
3264 	else
3265 		usleep_range(phy_post_delay * 1000,
3266 			     phy_post_delay * 1000 + 1000);
3267 
3268 	return 0;
3269 }
3270 #else /* CONFIG_OF */
3271 static int fec_reset_phy(struct platform_device *pdev)
3272 {
3273 	/*
3274 	 * In case of platform probe, the reset has been done
3275 	 * by machine code.
3276 	 */
3277 	return 0;
3278 }
3279 #endif /* CONFIG_OF */
3280 
3281 static void
3282 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3283 {
3284 	struct device_node *np = pdev->dev.of_node;
3285 
3286 	*num_tx = *num_rx = 1;
3287 
3288 	if (!np || !of_device_is_available(np))
3289 		return;
3290 
3291 	/* parse the num of tx and rx queues */
3292 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3293 
3294 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3295 
3296 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3297 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3298 			 *num_tx);
3299 		*num_tx = 1;
3300 		return;
3301 	}
3302 
3303 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3304 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3305 			 *num_rx);
3306 		*num_rx = 1;
3307 		return;
3308 	}
3309 
3310 }
3311 
3312 static int
3313 fec_probe(struct platform_device *pdev)
3314 {
3315 	struct fec_enet_private *fep;
3316 	struct fec_platform_data *pdata;
3317 	struct net_device *ndev;
3318 	int i, irq, ret = 0;
3319 	struct resource *r;
3320 	const struct of_device_id *of_id;
3321 	static int dev_id;
3322 	struct device_node *np = pdev->dev.of_node, *phy_node;
3323 	int num_tx_qs;
3324 	int num_rx_qs;
3325 
3326 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3327 
3328 	/* Init network device */
3329 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3330 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3331 	if (!ndev)
3332 		return -ENOMEM;
3333 
3334 	SET_NETDEV_DEV(ndev, &pdev->dev);
3335 
3336 	/* setup board info structure */
3337 	fep = netdev_priv(ndev);
3338 
3339 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3340 	if (of_id)
3341 		pdev->id_entry = of_id->data;
3342 	fep->quirks = pdev->id_entry->driver_data;
3343 
3344 	fep->netdev = ndev;
3345 	fep->num_rx_queues = num_rx_qs;
3346 	fep->num_tx_queues = num_tx_qs;
3347 
3348 #if !defined(CONFIG_M5272)
3349 	/* default enable pause frame auto negotiation */
3350 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3351 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3352 #endif
3353 
3354 	/* Select default pin state */
3355 	pinctrl_pm_select_default_state(&pdev->dev);
3356 
3357 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3358 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3359 	if (IS_ERR(fep->hwp)) {
3360 		ret = PTR_ERR(fep->hwp);
3361 		goto failed_ioremap;
3362 	}
3363 
3364 	fep->pdev = pdev;
3365 	fep->dev_id = dev_id++;
3366 
3367 	platform_set_drvdata(pdev, ndev);
3368 
3369 	if ((of_machine_is_compatible("fsl,imx6q") ||
3370 	     of_machine_is_compatible("fsl,imx6dl")) &&
3371 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3372 		fep->quirks |= FEC_QUIRK_ERR006687;
3373 
3374 	if (of_get_property(np, "fsl,magic-packet", NULL))
3375 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3376 
3377 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3378 	if (!phy_node && of_phy_is_fixed_link(np)) {
3379 		ret = of_phy_register_fixed_link(np);
3380 		if (ret < 0) {
3381 			dev_err(&pdev->dev,
3382 				"broken fixed-link specification\n");
3383 			goto failed_phy;
3384 		}
3385 		phy_node = of_node_get(np);
3386 	}
3387 	fep->phy_node = phy_node;
3388 
3389 	ret = of_get_phy_mode(pdev->dev.of_node);
3390 	if (ret < 0) {
3391 		pdata = dev_get_platdata(&pdev->dev);
3392 		if (pdata)
3393 			fep->phy_interface = pdata->phy;
3394 		else
3395 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3396 	} else {
3397 		fep->phy_interface = ret;
3398 	}
3399 
3400 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3401 	if (IS_ERR(fep->clk_ipg)) {
3402 		ret = PTR_ERR(fep->clk_ipg);
3403 		goto failed_clk;
3404 	}
3405 
3406 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3407 	if (IS_ERR(fep->clk_ahb)) {
3408 		ret = PTR_ERR(fep->clk_ahb);
3409 		goto failed_clk;
3410 	}
3411 
3412 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3413 
3414 	/* enet_out is optional, depends on board */
3415 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3416 	if (IS_ERR(fep->clk_enet_out))
3417 		fep->clk_enet_out = NULL;
3418 
3419 	fep->ptp_clk_on = false;
3420 	mutex_init(&fep->ptp_clk_mutex);
3421 
3422 	/* clk_ref is optional, depends on board */
3423 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3424 	if (IS_ERR(fep->clk_ref))
3425 		fep->clk_ref = NULL;
3426 
3427 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3428 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3429 	if (IS_ERR(fep->clk_ptp)) {
3430 		fep->clk_ptp = NULL;
3431 		fep->bufdesc_ex = false;
3432 	}
3433 
3434 	ret = fec_enet_clk_enable(ndev, true);
3435 	if (ret)
3436 		goto failed_clk;
3437 
3438 	ret = clk_prepare_enable(fep->clk_ipg);
3439 	if (ret)
3440 		goto failed_clk_ipg;
3441 
3442 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3443 	if (!IS_ERR(fep->reg_phy)) {
3444 		ret = regulator_enable(fep->reg_phy);
3445 		if (ret) {
3446 			dev_err(&pdev->dev,
3447 				"Failed to enable phy regulator: %d\n", ret);
3448 			clk_disable_unprepare(fep->clk_ipg);
3449 			goto failed_regulator;
3450 		}
3451 	} else {
3452 		fep->reg_phy = NULL;
3453 	}
3454 
3455 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3456 	pm_runtime_use_autosuspend(&pdev->dev);
3457 	pm_runtime_get_noresume(&pdev->dev);
3458 	pm_runtime_set_active(&pdev->dev);
3459 	pm_runtime_enable(&pdev->dev);
3460 
3461 	ret = fec_reset_phy(pdev);
3462 	if (ret)
3463 		goto failed_reset;
3464 
3465 	if (fep->bufdesc_ex)
3466 		fec_ptp_init(pdev);
3467 
3468 	ret = fec_enet_init(ndev);
3469 	if (ret)
3470 		goto failed_init;
3471 
3472 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3473 		irq = platform_get_irq(pdev, i);
3474 		if (irq < 0) {
3475 			if (i)
3476 				break;
3477 			ret = irq;
3478 			goto failed_irq;
3479 		}
3480 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3481 				       0, pdev->name, ndev);
3482 		if (ret)
3483 			goto failed_irq;
3484 
3485 		fep->irq[i] = irq;
3486 	}
3487 
3488 	init_completion(&fep->mdio_done);
3489 	ret = fec_enet_mii_init(pdev);
3490 	if (ret)
3491 		goto failed_mii_init;
3492 
3493 	/* Carrier starts down, phylib will bring it up */
3494 	netif_carrier_off(ndev);
3495 	fec_enet_clk_enable(ndev, false);
3496 	pinctrl_pm_select_sleep_state(&pdev->dev);
3497 
3498 	ret = register_netdev(ndev);
3499 	if (ret)
3500 		goto failed_register;
3501 
3502 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3503 			   FEC_WOL_HAS_MAGIC_PACKET);
3504 
3505 	if (fep->bufdesc_ex && fep->ptp_clock)
3506 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3507 
3508 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3509 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3510 
3511 	pm_runtime_mark_last_busy(&pdev->dev);
3512 	pm_runtime_put_autosuspend(&pdev->dev);
3513 
3514 	return 0;
3515 
3516 failed_register:
3517 	fec_enet_mii_remove(fep);
3518 failed_mii_init:
3519 failed_irq:
3520 failed_init:
3521 	fec_ptp_stop(pdev);
3522 	if (fep->reg_phy)
3523 		regulator_disable(fep->reg_phy);
3524 failed_reset:
3525 	pm_runtime_put(&pdev->dev);
3526 	pm_runtime_disable(&pdev->dev);
3527 failed_regulator:
3528 failed_clk_ipg:
3529 	fec_enet_clk_enable(ndev, false);
3530 failed_clk:
3531 	if (of_phy_is_fixed_link(np))
3532 		of_phy_deregister_fixed_link(np);
3533 failed_phy:
3534 	of_node_put(phy_node);
3535 failed_ioremap:
3536 	free_netdev(ndev);
3537 
3538 	return ret;
3539 }
3540 
3541 static int
3542 fec_drv_remove(struct platform_device *pdev)
3543 {
3544 	struct net_device *ndev = platform_get_drvdata(pdev);
3545 	struct fec_enet_private *fep = netdev_priv(ndev);
3546 	struct device_node *np = pdev->dev.of_node;
3547 
3548 	cancel_work_sync(&fep->tx_timeout_work);
3549 	fec_ptp_stop(pdev);
3550 	unregister_netdev(ndev);
3551 	fec_enet_mii_remove(fep);
3552 	if (fep->reg_phy)
3553 		regulator_disable(fep->reg_phy);
3554 	if (of_phy_is_fixed_link(np))
3555 		of_phy_deregister_fixed_link(np);
3556 	of_node_put(fep->phy_node);
3557 	free_netdev(ndev);
3558 
3559 	return 0;
3560 }
3561 
3562 static int __maybe_unused fec_suspend(struct device *dev)
3563 {
3564 	struct net_device *ndev = dev_get_drvdata(dev);
3565 	struct fec_enet_private *fep = netdev_priv(ndev);
3566 
3567 	rtnl_lock();
3568 	if (netif_running(ndev)) {
3569 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3570 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3571 		phy_stop(ndev->phydev);
3572 		napi_disable(&fep->napi);
3573 		netif_tx_lock_bh(ndev);
3574 		netif_device_detach(ndev);
3575 		netif_tx_unlock_bh(ndev);
3576 		fec_stop(ndev);
3577 		fec_enet_clk_enable(ndev, false);
3578 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3579 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3580 	}
3581 	rtnl_unlock();
3582 
3583 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3584 		regulator_disable(fep->reg_phy);
3585 
3586 	/* SOC supply clock to phy, when clock is disabled, phy link down
3587 	 * SOC control phy regulator, when regulator is disabled, phy link down
3588 	 */
3589 	if (fep->clk_enet_out || fep->reg_phy)
3590 		fep->link = 0;
3591 
3592 	return 0;
3593 }
3594 
3595 static int __maybe_unused fec_resume(struct device *dev)
3596 {
3597 	struct net_device *ndev = dev_get_drvdata(dev);
3598 	struct fec_enet_private *fep = netdev_priv(ndev);
3599 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3600 	int ret;
3601 	int val;
3602 
3603 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3604 		ret = regulator_enable(fep->reg_phy);
3605 		if (ret)
3606 			return ret;
3607 	}
3608 
3609 	rtnl_lock();
3610 	if (netif_running(ndev)) {
3611 		ret = fec_enet_clk_enable(ndev, true);
3612 		if (ret) {
3613 			rtnl_unlock();
3614 			goto failed_clk;
3615 		}
3616 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3617 			if (pdata && pdata->sleep_mode_enable)
3618 				pdata->sleep_mode_enable(false);
3619 			val = readl(fep->hwp + FEC_ECNTRL);
3620 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3621 			writel(val, fep->hwp + FEC_ECNTRL);
3622 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3623 		} else {
3624 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3625 		}
3626 		fec_restart(ndev);
3627 		netif_tx_lock_bh(ndev);
3628 		netif_device_attach(ndev);
3629 		netif_tx_unlock_bh(ndev);
3630 		napi_enable(&fep->napi);
3631 		phy_start(ndev->phydev);
3632 	}
3633 	rtnl_unlock();
3634 
3635 	return 0;
3636 
3637 failed_clk:
3638 	if (fep->reg_phy)
3639 		regulator_disable(fep->reg_phy);
3640 	return ret;
3641 }
3642 
3643 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3644 {
3645 	struct net_device *ndev = dev_get_drvdata(dev);
3646 	struct fec_enet_private *fep = netdev_priv(ndev);
3647 
3648 	clk_disable_unprepare(fep->clk_ipg);
3649 
3650 	return 0;
3651 }
3652 
3653 static int __maybe_unused fec_runtime_resume(struct device *dev)
3654 {
3655 	struct net_device *ndev = dev_get_drvdata(dev);
3656 	struct fec_enet_private *fep = netdev_priv(ndev);
3657 
3658 	return clk_prepare_enable(fep->clk_ipg);
3659 }
3660 
3661 static const struct dev_pm_ops fec_pm_ops = {
3662 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3663 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3664 };
3665 
3666 static struct platform_driver fec_driver = {
3667 	.driver	= {
3668 		.name	= DRIVER_NAME,
3669 		.pm	= &fec_pm_ops,
3670 		.of_match_table = fec_dt_ids,
3671 	},
3672 	.id_table = fec_devtype,
3673 	.probe	= fec_probe,
3674 	.remove	= fec_drv_remove,
3675 };
3676 
3677 module_platform_driver(fec_driver);
3678 
3679 MODULE_ALIAS("platform:"DRIVER_NAME);
3680 MODULE_LICENSE("GPL");
3681