1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 static void set_multicast_list(struct net_device *ndev);
64 
65 #if defined(CONFIG_ARM)
66 #define FEC_ALIGNMENT	0xf
67 #else
68 #define FEC_ALIGNMENT	0x3
69 #endif
70 
71 #define DRIVER_NAME	"fec"
72 #define FEC_NAPI_WEIGHT	64
73 
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE	(1 << 5)
76 #define FEC_ENET_RSEM_V	0x84
77 #define FEC_ENET_RSFL_V	16
78 #define FEC_ENET_RAEM_V	0x8
79 #define FEC_ENET_RAFL_V	0x8
80 #define FEC_ENET_OPD_V	0xFFF0
81 
82 /* Controller is ENET-MAC */
83 #define FEC_QUIRK_ENET_MAC		(1 << 0)
84 /* Controller needs driver to swap frame */
85 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
86 /* Controller uses gasket */
87 #define FEC_QUIRK_USE_GASKET		(1 << 2)
88 /* Controller has GBIT support */
89 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
90 /* Controller has extend desc buffer */
91 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
92 /* Controller has hardware checksum support */
93 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
94 /* Controller has hardware vlan support */
95 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
96 
97 static struct platform_device_id fec_devtype[] = {
98 	{
99 		/* keep it for coldfire */
100 		.name = DRIVER_NAME,
101 		.driver_data = 0,
102 	}, {
103 		.name = "imx25-fec",
104 		.driver_data = FEC_QUIRK_USE_GASKET,
105 	}, {
106 		.name = "imx27-fec",
107 		.driver_data = 0,
108 	}, {
109 		.name = "imx28-fec",
110 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
111 	}, {
112 		.name = "imx6q-fec",
113 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
114 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
115 				FEC_QUIRK_HAS_VLAN,
116 	}, {
117 		.name = "mvf600-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC,
119 	}, {
120 		/* sentinel */
121 	}
122 };
123 MODULE_DEVICE_TABLE(platform, fec_devtype);
124 
125 enum imx_fec_type {
126 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
127 	IMX27_FEC,	/* runs on i.mx27/35/51 */
128 	IMX28_FEC,
129 	IMX6Q_FEC,
130 	MVF600_FEC,
131 };
132 
133 static const struct of_device_id fec_dt_ids[] = {
134 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
135 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
136 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
137 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
138 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
139 	{ /* sentinel */ }
140 };
141 MODULE_DEVICE_TABLE(of, fec_dt_ids);
142 
143 static unsigned char macaddr[ETH_ALEN];
144 module_param_array(macaddr, byte, NULL, 0);
145 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
146 
147 #if defined(CONFIG_M5272)
148 /*
149  * Some hardware gets it MAC address out of local flash memory.
150  * if this is non-zero then assume it is the address to get MAC from.
151  */
152 #if defined(CONFIG_NETtel)
153 #define	FEC_FLASHMAC	0xf0006006
154 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
155 #define	FEC_FLASHMAC	0xf0006000
156 #elif defined(CONFIG_CANCam)
157 #define	FEC_FLASHMAC	0xf0020000
158 #elif defined (CONFIG_M5272C3)
159 #define	FEC_FLASHMAC	(0xffe04000 + 4)
160 #elif defined(CONFIG_MOD5272)
161 #define FEC_FLASHMAC	0xffc0406b
162 #else
163 #define	FEC_FLASHMAC	0
164 #endif
165 #endif /* CONFIG_M5272 */
166 
167 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
168 #error "FEC: descriptor ring size constants too large"
169 #endif
170 
171 /* Interrupt events/masks. */
172 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
173 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
174 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
175 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
176 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
177 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
178 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
179 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
180 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
181 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
182 
183 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
184 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
185 
186 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
187  */
188 #define PKT_MAXBUF_SIZE		1522
189 #define PKT_MINBUF_SIZE		64
190 #define PKT_MAXBLR_SIZE		1536
191 
192 /* FEC receive acceleration */
193 #define FEC_RACC_IPDIS		(1 << 1)
194 #define FEC_RACC_PRODIS		(1 << 2)
195 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
196 
197 /*
198  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
199  * size bits. Other FEC hardware does not, so we need to take that into
200  * account when setting it.
201  */
202 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
203     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
204 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
205 #else
206 #define	OPT_FRAME_SIZE	0
207 #endif
208 
209 /* FEC MII MMFR bits definition */
210 #define FEC_MMFR_ST		(1 << 30)
211 #define FEC_MMFR_OP_READ	(2 << 28)
212 #define FEC_MMFR_OP_WRITE	(1 << 28)
213 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
214 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
215 #define FEC_MMFR_TA		(2 << 16)
216 #define FEC_MMFR_DATA(v)	(v & 0xffff)
217 
218 #define FEC_MII_TIMEOUT		30000 /* us */
219 
220 /* Transmitter timeout */
221 #define TX_TIMEOUT (2 * HZ)
222 
223 #define FEC_PAUSE_FLAG_AUTONEG	0x1
224 #define FEC_PAUSE_FLAG_ENABLE	0x2
225 
226 static int mii_cnt;
227 
228 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, int is_ex)
229 {
230 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
231 	if (is_ex)
232 		return (struct bufdesc *)(ex + 1);
233 	else
234 		return bdp + 1;
235 }
236 
237 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, int is_ex)
238 {
239 	struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
240 	if (is_ex)
241 		return (struct bufdesc *)(ex - 1);
242 	else
243 		return bdp - 1;
244 }
245 
246 static void *swap_buffer(void *bufaddr, int len)
247 {
248 	int i;
249 	unsigned int *buf = bufaddr;
250 
251 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
252 		*buf = cpu_to_be32(*buf);
253 
254 	return bufaddr;
255 }
256 
257 static int
258 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
259 {
260 	/* Only run for packets requiring a checksum. */
261 	if (skb->ip_summed != CHECKSUM_PARTIAL)
262 		return 0;
263 
264 	if (unlikely(skb_cow_head(skb, 0)))
265 		return -1;
266 
267 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
268 
269 	return 0;
270 }
271 
272 static netdev_tx_t
273 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
274 {
275 	struct fec_enet_private *fep = netdev_priv(ndev);
276 	const struct platform_device_id *id_entry =
277 				platform_get_device_id(fep->pdev);
278 	struct bufdesc *bdp;
279 	void *bufaddr;
280 	unsigned short	status;
281 	unsigned int index;
282 
283 	if (!fep->link) {
284 		/* Link is down or auto-negotiation is in progress. */
285 		return NETDEV_TX_BUSY;
286 	}
287 
288 	/* Fill in a Tx ring entry */
289 	bdp = fep->cur_tx;
290 
291 	status = bdp->cbd_sc;
292 
293 	if (status & BD_ENET_TX_READY) {
294 		/* Ooops.  All transmit buffers are full.  Bail out.
295 		 * This should not happen, since ndev->tbusy should be set.
296 		 */
297 		netdev_err(ndev, "tx queue full!\n");
298 		return NETDEV_TX_BUSY;
299 	}
300 
301 	/* Protocol checksum off-load for TCP and UDP. */
302 	if (fec_enet_clear_csum(skb, ndev)) {
303 		kfree_skb(skb);
304 		return NETDEV_TX_OK;
305 	}
306 
307 	/* Clear all of the status flags */
308 	status &= ~BD_ENET_TX_STATS;
309 
310 	/* Set buffer length and buffer pointer */
311 	bufaddr = skb->data;
312 	bdp->cbd_datlen = skb->len;
313 
314 	/*
315 	 * On some FEC implementations data must be aligned on
316 	 * 4-byte boundaries. Use bounce buffers to copy data
317 	 * and get it aligned. Ugh.
318 	 */
319 	if (fep->bufdesc_ex)
320 		index = (struct bufdesc_ex *)bdp -
321 			(struct bufdesc_ex *)fep->tx_bd_base;
322 	else
323 		index = bdp - fep->tx_bd_base;
324 
325 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
326 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
327 		bufaddr = fep->tx_bounce[index];
328 	}
329 
330 	/*
331 	 * Some design made an incorrect assumption on endian mode of
332 	 * the system that it's running on. As the result, driver has to
333 	 * swap every frame going to and coming from the controller.
334 	 */
335 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
336 		swap_buffer(bufaddr, skb->len);
337 
338 	/* Save skb pointer */
339 	fep->tx_skbuff[index] = skb;
340 
341 	/* Push the data cache so the CPM does not get stale memory
342 	 * data.
343 	 */
344 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
345 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
346 
347 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
348 	 * it's the last BD of the frame, and to put the CRC on the end.
349 	 */
350 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
351 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
352 	bdp->cbd_sc = status;
353 
354 	if (fep->bufdesc_ex) {
355 
356 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
357 		ebdp->cbd_bdu = 0;
358 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
359 			fep->hwts_tx_en)) {
360 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
361 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
362 		} else {
363 			ebdp->cbd_esc = BD_ENET_TX_INT;
364 
365 			/* Enable protocol checksum flags
366 			 * We do not bother with the IP Checksum bits as they
367 			 * are done by the kernel
368 			 */
369 			if (skb->ip_summed == CHECKSUM_PARTIAL)
370 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
371 		}
372 	}
373 	/* If this was the last BD in the ring, start at the beginning again. */
374 	if (status & BD_ENET_TX_WRAP)
375 		bdp = fep->tx_bd_base;
376 	else
377 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
378 
379 	fep->cur_tx = bdp;
380 
381 	if (fep->cur_tx == fep->dirty_tx)
382 		netif_stop_queue(ndev);
383 
384 	/* Trigger transmission start */
385 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
386 
387 	skb_tx_timestamp(skb);
388 
389 	return NETDEV_TX_OK;
390 }
391 
392 /* Init RX & TX buffer descriptors
393  */
394 static void fec_enet_bd_init(struct net_device *dev)
395 {
396 	struct fec_enet_private *fep = netdev_priv(dev);
397 	struct bufdesc *bdp;
398 	unsigned int i;
399 
400 	/* Initialize the receive buffer descriptors. */
401 	bdp = fep->rx_bd_base;
402 	for (i = 0; i < RX_RING_SIZE; i++) {
403 
404 		/* Initialize the BD for every fragment in the page. */
405 		if (bdp->cbd_bufaddr)
406 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
407 		else
408 			bdp->cbd_sc = 0;
409 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
410 	}
411 
412 	/* Set the last buffer to wrap */
413 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
414 	bdp->cbd_sc |= BD_SC_WRAP;
415 
416 	fep->cur_rx = fep->rx_bd_base;
417 
418 	/* ...and the same for transmit */
419 	bdp = fep->tx_bd_base;
420 	fep->cur_tx = bdp;
421 	for (i = 0; i < TX_RING_SIZE; i++) {
422 
423 		/* Initialize the BD for every fragment in the page. */
424 		bdp->cbd_sc = 0;
425 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
426 			dev_kfree_skb_any(fep->tx_skbuff[i]);
427 			fep->tx_skbuff[i] = NULL;
428 		}
429 		bdp->cbd_bufaddr = 0;
430 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
431 	}
432 
433 	/* Set the last buffer to wrap */
434 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
435 	bdp->cbd_sc |= BD_SC_WRAP;
436 	fep->dirty_tx = bdp;
437 }
438 
439 /* This function is called to start or restart the FEC during a link
440  * change.  This only happens when switching between half and full
441  * duplex.
442  */
443 static void
444 fec_restart(struct net_device *ndev, int duplex)
445 {
446 	struct fec_enet_private *fep = netdev_priv(ndev);
447 	const struct platform_device_id *id_entry =
448 				platform_get_device_id(fep->pdev);
449 	int i;
450 	u32 val;
451 	u32 temp_mac[2];
452 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
453 	u32 ecntl = 0x2; /* ETHEREN */
454 
455 	if (netif_running(ndev)) {
456 		netif_device_detach(ndev);
457 		napi_disable(&fep->napi);
458 		netif_stop_queue(ndev);
459 		netif_tx_lock_bh(ndev);
460 	}
461 
462 	/* Whack a reset.  We should wait for this. */
463 	writel(1, fep->hwp + FEC_ECNTRL);
464 	udelay(10);
465 
466 	/*
467 	 * enet-mac reset will reset mac address registers too,
468 	 * so need to reconfigure it.
469 	 */
470 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
471 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
472 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
473 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
474 	}
475 
476 	/* Clear any outstanding interrupt. */
477 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
478 
479 	/* Setup multicast filter. */
480 	set_multicast_list(ndev);
481 #ifndef CONFIG_M5272
482 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
483 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
484 #endif
485 
486 	/* Set maximum receive buffer size. */
487 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
488 
489 	fec_enet_bd_init(ndev);
490 
491 	/* Set receive and transmit descriptor base. */
492 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
493 	if (fep->bufdesc_ex)
494 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
495 			* RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
496 	else
497 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
498 			* RX_RING_SIZE,	fep->hwp + FEC_X_DES_START);
499 
500 
501 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
502 		if (fep->tx_skbuff[i]) {
503 			dev_kfree_skb_any(fep->tx_skbuff[i]);
504 			fep->tx_skbuff[i] = NULL;
505 		}
506 	}
507 
508 	/* Enable MII mode */
509 	if (duplex) {
510 		/* FD enable */
511 		writel(0x04, fep->hwp + FEC_X_CNTRL);
512 	} else {
513 		/* No Rcv on Xmit */
514 		rcntl |= 0x02;
515 		writel(0x0, fep->hwp + FEC_X_CNTRL);
516 	}
517 
518 	fep->full_duplex = duplex;
519 
520 	/* Set MII speed */
521 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
522 
523 #if !defined(CONFIG_M5272)
524 	/* set RX checksum */
525 	val = readl(fep->hwp + FEC_RACC);
526 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
527 		val |= FEC_RACC_OPTIONS;
528 	else
529 		val &= ~FEC_RACC_OPTIONS;
530 	writel(val, fep->hwp + FEC_RACC);
531 #endif
532 
533 	/*
534 	 * The phy interface and speed need to get configured
535 	 * differently on enet-mac.
536 	 */
537 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
538 		/* Enable flow control and length check */
539 		rcntl |= 0x40000000 | 0x00000020;
540 
541 		/* RGMII, RMII or MII */
542 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
543 			rcntl |= (1 << 6);
544 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
545 			rcntl |= (1 << 8);
546 		else
547 			rcntl &= ~(1 << 8);
548 
549 		/* 1G, 100M or 10M */
550 		if (fep->phy_dev) {
551 			if (fep->phy_dev->speed == SPEED_1000)
552 				ecntl |= (1 << 5);
553 			else if (fep->phy_dev->speed == SPEED_100)
554 				rcntl &= ~(1 << 9);
555 			else
556 				rcntl |= (1 << 9);
557 		}
558 	} else {
559 #ifdef FEC_MIIGSK_ENR
560 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
561 			u32 cfgr;
562 			/* disable the gasket and wait */
563 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
564 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
565 				udelay(1);
566 
567 			/*
568 			 * configure the gasket:
569 			 *   RMII, 50 MHz, no loopback, no echo
570 			 *   MII, 25 MHz, no loopback, no echo
571 			 */
572 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
573 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
574 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
575 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
576 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
577 
578 			/* re-enable the gasket */
579 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
580 		}
581 #endif
582 	}
583 
584 #if !defined(CONFIG_M5272)
585 	/* enable pause frame*/
586 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
587 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
588 	     fep->phy_dev && fep->phy_dev->pause)) {
589 		rcntl |= FEC_ENET_FCE;
590 
591 		/* set FIFO threshold parameter to reduce overrun */
592 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
593 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
594 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
595 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
596 
597 		/* OPD */
598 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
599 	} else {
600 		rcntl &= ~FEC_ENET_FCE;
601 	}
602 #endif /* !defined(CONFIG_M5272) */
603 
604 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
605 
606 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
607 		/* enable ENET endian swap */
608 		ecntl |= (1 << 8);
609 		/* enable ENET store and forward mode */
610 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
611 	}
612 
613 	if (fep->bufdesc_ex)
614 		ecntl |= (1 << 4);
615 
616 #ifndef CONFIG_M5272
617 	/* Enable the MIB statistic event counters */
618 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
619 #endif
620 
621 	/* And last, enable the transmit and receive processing */
622 	writel(ecntl, fep->hwp + FEC_ECNTRL);
623 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
624 
625 	if (fep->bufdesc_ex)
626 		fec_ptp_start_cyclecounter(ndev);
627 
628 	/* Enable interrupts we wish to service */
629 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
630 
631 	if (netif_running(ndev)) {
632 		netif_tx_unlock_bh(ndev);
633 		netif_wake_queue(ndev);
634 		napi_enable(&fep->napi);
635 		netif_device_attach(ndev);
636 	}
637 }
638 
639 static void
640 fec_stop(struct net_device *ndev)
641 {
642 	struct fec_enet_private *fep = netdev_priv(ndev);
643 	const struct platform_device_id *id_entry =
644 				platform_get_device_id(fep->pdev);
645 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
646 
647 	/* We cannot expect a graceful transmit stop without link !!! */
648 	if (fep->link) {
649 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
650 		udelay(10);
651 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
652 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
653 	}
654 
655 	/* Whack a reset.  We should wait for this. */
656 	writel(1, fep->hwp + FEC_ECNTRL);
657 	udelay(10);
658 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
659 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
660 
661 	/* We have to keep ENET enabled to have MII interrupt stay working */
662 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
663 		writel(2, fep->hwp + FEC_ECNTRL);
664 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
665 	}
666 }
667 
668 
669 static void
670 fec_timeout(struct net_device *ndev)
671 {
672 	struct fec_enet_private *fep = netdev_priv(ndev);
673 
674 	ndev->stats.tx_errors++;
675 
676 	fep->delay_work.timeout = true;
677 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
678 }
679 
680 static void fec_enet_work(struct work_struct *work)
681 {
682 	struct fec_enet_private *fep =
683 		container_of(work,
684 			     struct fec_enet_private,
685 			     delay_work.delay_work.work);
686 
687 	if (fep->delay_work.timeout) {
688 		fep->delay_work.timeout = false;
689 		fec_restart(fep->netdev, fep->full_duplex);
690 		netif_wake_queue(fep->netdev);
691 	}
692 }
693 
694 static void
695 fec_enet_tx(struct net_device *ndev)
696 {
697 	struct	fec_enet_private *fep;
698 	struct bufdesc *bdp;
699 	unsigned short status;
700 	struct	sk_buff	*skb;
701 	int	index = 0;
702 
703 	fep = netdev_priv(ndev);
704 	bdp = fep->dirty_tx;
705 
706 	/* get next bdp of dirty_tx */
707 	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
708 		bdp = fep->tx_bd_base;
709 	else
710 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
711 
712 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
713 
714 		/* current queue is empty */
715 		if (bdp == fep->cur_tx)
716 			break;
717 
718 		if (fep->bufdesc_ex)
719 			index = (struct bufdesc_ex *)bdp -
720 				(struct bufdesc_ex *)fep->tx_bd_base;
721 		else
722 			index = bdp - fep->tx_bd_base;
723 
724 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
725 				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
726 		bdp->cbd_bufaddr = 0;
727 
728 		skb = fep->tx_skbuff[index];
729 
730 		/* Check for errors. */
731 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
732 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
733 				   BD_ENET_TX_CSL)) {
734 			ndev->stats.tx_errors++;
735 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
736 				ndev->stats.tx_heartbeat_errors++;
737 			if (status & BD_ENET_TX_LC)  /* Late collision */
738 				ndev->stats.tx_window_errors++;
739 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
740 				ndev->stats.tx_aborted_errors++;
741 			if (status & BD_ENET_TX_UN)  /* Underrun */
742 				ndev->stats.tx_fifo_errors++;
743 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
744 				ndev->stats.tx_carrier_errors++;
745 		} else {
746 			ndev->stats.tx_packets++;
747 			ndev->stats.tx_bytes += bdp->cbd_datlen;
748 		}
749 
750 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
751 			fep->bufdesc_ex) {
752 			struct skb_shared_hwtstamps shhwtstamps;
753 			unsigned long flags;
754 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
755 
756 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
757 			spin_lock_irqsave(&fep->tmreg_lock, flags);
758 			shhwtstamps.hwtstamp = ns_to_ktime(
759 				timecounter_cyc2time(&fep->tc, ebdp->ts));
760 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
761 			skb_tstamp_tx(skb, &shhwtstamps);
762 		}
763 
764 		if (status & BD_ENET_TX_READY)
765 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
766 
767 		/* Deferred means some collisions occurred during transmit,
768 		 * but we eventually sent the packet OK.
769 		 */
770 		if (status & BD_ENET_TX_DEF)
771 			ndev->stats.collisions++;
772 
773 		/* Free the sk buffer associated with this last transmit */
774 		dev_kfree_skb_any(skb);
775 		fep->tx_skbuff[index] = NULL;
776 
777 		fep->dirty_tx = bdp;
778 
779 		/* Update pointer to next buffer descriptor to be transmitted */
780 		if (status & BD_ENET_TX_WRAP)
781 			bdp = fep->tx_bd_base;
782 		else
783 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
784 
785 		/* Since we have freed up a buffer, the ring is no longer full
786 		 */
787 		if (fep->dirty_tx != fep->cur_tx) {
788 			if (netif_queue_stopped(ndev))
789 				netif_wake_queue(ndev);
790 		}
791 	}
792 	return;
793 }
794 
795 
796 /* During a receive, the cur_rx points to the current incoming buffer.
797  * When we update through the ring, if the next incoming buffer has
798  * not been given to the system, we just set the empty indicator,
799  * effectively tossing the packet.
800  */
801 static int
802 fec_enet_rx(struct net_device *ndev, int budget)
803 {
804 	struct fec_enet_private *fep = netdev_priv(ndev);
805 	const struct platform_device_id *id_entry =
806 				platform_get_device_id(fep->pdev);
807 	struct bufdesc *bdp;
808 	unsigned short status;
809 	struct	sk_buff	*skb;
810 	ushort	pkt_len;
811 	__u8 *data;
812 	int	pkt_received = 0;
813 	struct	bufdesc_ex *ebdp = NULL;
814 	bool	vlan_packet_rcvd = false;
815 	u16	vlan_tag;
816 
817 #ifdef CONFIG_M532x
818 	flush_cache_all();
819 #endif
820 
821 	/* First, grab all of the stats for the incoming packet.
822 	 * These get messed up if we get called due to a busy condition.
823 	 */
824 	bdp = fep->cur_rx;
825 
826 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
827 
828 		if (pkt_received >= budget)
829 			break;
830 		pkt_received++;
831 
832 		/* Since we have allocated space to hold a complete frame,
833 		 * the last indicator should be set.
834 		 */
835 		if ((status & BD_ENET_RX_LAST) == 0)
836 			netdev_err(ndev, "rcv is not +last\n");
837 
838 		if (!fep->opened)
839 			goto rx_processing_done;
840 
841 		/* Check for errors. */
842 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
843 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
844 			ndev->stats.rx_errors++;
845 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
846 				/* Frame too long or too short. */
847 				ndev->stats.rx_length_errors++;
848 			}
849 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
850 				ndev->stats.rx_frame_errors++;
851 			if (status & BD_ENET_RX_CR)	/* CRC Error */
852 				ndev->stats.rx_crc_errors++;
853 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
854 				ndev->stats.rx_fifo_errors++;
855 		}
856 
857 		/* Report late collisions as a frame error.
858 		 * On this error, the BD is closed, but we don't know what we
859 		 * have in the buffer.  So, just drop this frame on the floor.
860 		 */
861 		if (status & BD_ENET_RX_CL) {
862 			ndev->stats.rx_errors++;
863 			ndev->stats.rx_frame_errors++;
864 			goto rx_processing_done;
865 		}
866 
867 		/* Process the incoming frame. */
868 		ndev->stats.rx_packets++;
869 		pkt_len = bdp->cbd_datlen;
870 		ndev->stats.rx_bytes += pkt_len;
871 		data = (__u8*)__va(bdp->cbd_bufaddr);
872 
873 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
874 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
875 
876 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
877 			swap_buffer(data, pkt_len);
878 
879 		/* Extract the enhanced buffer descriptor */
880 		ebdp = NULL;
881 		if (fep->bufdesc_ex)
882 			ebdp = (struct bufdesc_ex *)bdp;
883 
884 		/* If this is a VLAN packet remove the VLAN Tag */
885 		vlan_packet_rcvd = false;
886 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
887 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
888 			/* Push and remove the vlan tag */
889 			struct vlan_hdr *vlan_header =
890 					(struct vlan_hdr *) (data + ETH_HLEN);
891 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
892 			pkt_len -= VLAN_HLEN;
893 
894 			vlan_packet_rcvd = true;
895 		}
896 
897 		/* This does 16 byte alignment, exactly what we need.
898 		 * The packet length includes FCS, but we don't want to
899 		 * include that when passing upstream as it messes up
900 		 * bridging applications.
901 		 */
902 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
903 
904 		if (unlikely(!skb)) {
905 			ndev->stats.rx_dropped++;
906 		} else {
907 			int payload_offset = (2 * ETH_ALEN);
908 			skb_reserve(skb, NET_IP_ALIGN);
909 			skb_put(skb, pkt_len - 4);	/* Make room */
910 
911 			/* Extract the frame data without the VLAN header. */
912 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
913 			if (vlan_packet_rcvd)
914 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
915 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
916 						       data + payload_offset,
917 						       pkt_len - 4 - (2 * ETH_ALEN));
918 
919 			skb->protocol = eth_type_trans(skb, ndev);
920 
921 			/* Get receive timestamp from the skb */
922 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
923 				struct skb_shared_hwtstamps *shhwtstamps =
924 							    skb_hwtstamps(skb);
925 				unsigned long flags;
926 
927 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
928 
929 				spin_lock_irqsave(&fep->tmreg_lock, flags);
930 				shhwtstamps->hwtstamp = ns_to_ktime(
931 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
932 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
933 			}
934 
935 			if (fep->bufdesc_ex &&
936 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
937 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
938 					/* don't check it */
939 					skb->ip_summed = CHECKSUM_UNNECESSARY;
940 				} else {
941 					skb_checksum_none_assert(skb);
942 				}
943 			}
944 
945 			/* Handle received VLAN packets */
946 			if (vlan_packet_rcvd)
947 				__vlan_hwaccel_put_tag(skb,
948 						       htons(ETH_P_8021Q),
949 						       vlan_tag);
950 
951 			if (!skb_defer_rx_timestamp(skb))
952 				napi_gro_receive(&fep->napi, skb);
953 		}
954 
955 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
956 				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
957 rx_processing_done:
958 		/* Clear the status flags for this buffer */
959 		status &= ~BD_ENET_RX_STATS;
960 
961 		/* Mark the buffer empty */
962 		status |= BD_ENET_RX_EMPTY;
963 		bdp->cbd_sc = status;
964 
965 		if (fep->bufdesc_ex) {
966 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
967 
968 			ebdp->cbd_esc = BD_ENET_RX_INT;
969 			ebdp->cbd_prot = 0;
970 			ebdp->cbd_bdu = 0;
971 		}
972 
973 		/* Update BD pointer to next entry */
974 		if (status & BD_ENET_RX_WRAP)
975 			bdp = fep->rx_bd_base;
976 		else
977 			bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
978 		/* Doing this here will keep the FEC running while we process
979 		 * incoming frames.  On a heavily loaded network, we should be
980 		 * able to keep up at the expense of system resources.
981 		 */
982 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
983 	}
984 	fep->cur_rx = bdp;
985 
986 	return pkt_received;
987 }
988 
989 static irqreturn_t
990 fec_enet_interrupt(int irq, void *dev_id)
991 {
992 	struct net_device *ndev = dev_id;
993 	struct fec_enet_private *fep = netdev_priv(ndev);
994 	uint int_events;
995 	irqreturn_t ret = IRQ_NONE;
996 
997 	do {
998 		int_events = readl(fep->hwp + FEC_IEVENT);
999 		writel(int_events, fep->hwp + FEC_IEVENT);
1000 
1001 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1002 			ret = IRQ_HANDLED;
1003 
1004 			/* Disable the RX interrupt */
1005 			if (napi_schedule_prep(&fep->napi)) {
1006 				writel(FEC_RX_DISABLED_IMASK,
1007 					fep->hwp + FEC_IMASK);
1008 				__napi_schedule(&fep->napi);
1009 			}
1010 		}
1011 
1012 		if (int_events & FEC_ENET_MII) {
1013 			ret = IRQ_HANDLED;
1014 			complete(&fep->mdio_done);
1015 		}
1016 	} while (int_events);
1017 
1018 	return ret;
1019 }
1020 
1021 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1022 {
1023 	struct net_device *ndev = napi->dev;
1024 	int pkts = fec_enet_rx(ndev, budget);
1025 	struct fec_enet_private *fep = netdev_priv(ndev);
1026 
1027 	fec_enet_tx(ndev);
1028 
1029 	if (pkts < budget) {
1030 		napi_complete(napi);
1031 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1032 	}
1033 	return pkts;
1034 }
1035 
1036 /* ------------------------------------------------------------------------- */
1037 static void fec_get_mac(struct net_device *ndev)
1038 {
1039 	struct fec_enet_private *fep = netdev_priv(ndev);
1040 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1041 	unsigned char *iap, tmpaddr[ETH_ALEN];
1042 
1043 	/*
1044 	 * try to get mac address in following order:
1045 	 *
1046 	 * 1) module parameter via kernel command line in form
1047 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1048 	 */
1049 	iap = macaddr;
1050 
1051 	/*
1052 	 * 2) from device tree data
1053 	 */
1054 	if (!is_valid_ether_addr(iap)) {
1055 		struct device_node *np = fep->pdev->dev.of_node;
1056 		if (np) {
1057 			const char *mac = of_get_mac_address(np);
1058 			if (mac)
1059 				iap = (unsigned char *) mac;
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * 3) from flash or fuse (via platform data)
1065 	 */
1066 	if (!is_valid_ether_addr(iap)) {
1067 #ifdef CONFIG_M5272
1068 		if (FEC_FLASHMAC)
1069 			iap = (unsigned char *)FEC_FLASHMAC;
1070 #else
1071 		if (pdata)
1072 			iap = (unsigned char *)&pdata->mac;
1073 #endif
1074 	}
1075 
1076 	/*
1077 	 * 4) FEC mac registers set by bootloader
1078 	 */
1079 	if (!is_valid_ether_addr(iap)) {
1080 		*((unsigned long *) &tmpaddr[0]) =
1081 			be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
1082 		*((unsigned short *) &tmpaddr[4]) =
1083 			be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1084 		iap = &tmpaddr[0];
1085 	}
1086 
1087 	/*
1088 	 * 5) random mac address
1089 	 */
1090 	if (!is_valid_ether_addr(iap)) {
1091 		/* Report it and use a random ethernet address instead */
1092 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1093 		eth_hw_addr_random(ndev);
1094 		netdev_info(ndev, "Using random MAC address: %pM\n",
1095 			    ndev->dev_addr);
1096 		return;
1097 	}
1098 
1099 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1100 
1101 	/* Adjust MAC if using macaddr */
1102 	if (iap == macaddr)
1103 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1104 }
1105 
1106 /* ------------------------------------------------------------------------- */
1107 
1108 /*
1109  * Phy section
1110  */
1111 static void fec_enet_adjust_link(struct net_device *ndev)
1112 {
1113 	struct fec_enet_private *fep = netdev_priv(ndev);
1114 	struct phy_device *phy_dev = fep->phy_dev;
1115 	int status_change = 0;
1116 
1117 	/* Prevent a state halted on mii error */
1118 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1119 		phy_dev->state = PHY_RESUMING;
1120 		return;
1121 	}
1122 
1123 	if (phy_dev->link) {
1124 		if (!fep->link) {
1125 			fep->link = phy_dev->link;
1126 			status_change = 1;
1127 		}
1128 
1129 		if (fep->full_duplex != phy_dev->duplex)
1130 			status_change = 1;
1131 
1132 		if (phy_dev->speed != fep->speed) {
1133 			fep->speed = phy_dev->speed;
1134 			status_change = 1;
1135 		}
1136 
1137 		/* if any of the above changed restart the FEC */
1138 		if (status_change)
1139 			fec_restart(ndev, phy_dev->duplex);
1140 	} else {
1141 		if (fep->link) {
1142 			fec_stop(ndev);
1143 			fep->link = phy_dev->link;
1144 			status_change = 1;
1145 		}
1146 	}
1147 
1148 	if (status_change)
1149 		phy_print_status(phy_dev);
1150 }
1151 
1152 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1153 {
1154 	struct fec_enet_private *fep = bus->priv;
1155 	unsigned long time_left;
1156 
1157 	fep->mii_timeout = 0;
1158 	init_completion(&fep->mdio_done);
1159 
1160 	/* start a read op */
1161 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1162 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1163 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1164 
1165 	/* wait for end of transfer */
1166 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1167 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1168 	if (time_left == 0) {
1169 		fep->mii_timeout = 1;
1170 		netdev_err(fep->netdev, "MDIO read timeout\n");
1171 		return -ETIMEDOUT;
1172 	}
1173 
1174 	/* return value */
1175 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1176 }
1177 
1178 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1179 			   u16 value)
1180 {
1181 	struct fec_enet_private *fep = bus->priv;
1182 	unsigned long time_left;
1183 
1184 	fep->mii_timeout = 0;
1185 	init_completion(&fep->mdio_done);
1186 
1187 	/* start a write op */
1188 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1189 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1190 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1191 		fep->hwp + FEC_MII_DATA);
1192 
1193 	/* wait for end of transfer */
1194 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1195 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1196 	if (time_left == 0) {
1197 		fep->mii_timeout = 1;
1198 		netdev_err(fep->netdev, "MDIO write timeout\n");
1199 		return -ETIMEDOUT;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int fec_enet_mdio_reset(struct mii_bus *bus)
1206 {
1207 	return 0;
1208 }
1209 
1210 static int fec_enet_mii_probe(struct net_device *ndev)
1211 {
1212 	struct fec_enet_private *fep = netdev_priv(ndev);
1213 	const struct platform_device_id *id_entry =
1214 				platform_get_device_id(fep->pdev);
1215 	struct phy_device *phy_dev = NULL;
1216 	char mdio_bus_id[MII_BUS_ID_SIZE];
1217 	char phy_name[MII_BUS_ID_SIZE + 3];
1218 	int phy_id;
1219 	int dev_id = fep->dev_id;
1220 
1221 	fep->phy_dev = NULL;
1222 
1223 	/* check for attached phy */
1224 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1225 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1226 			continue;
1227 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1228 			continue;
1229 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1230 			continue;
1231 		if (dev_id--)
1232 			continue;
1233 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1234 		break;
1235 	}
1236 
1237 	if (phy_id >= PHY_MAX_ADDR) {
1238 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1239 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1240 		phy_id = 0;
1241 	}
1242 
1243 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1244 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1245 			      fep->phy_interface);
1246 	if (IS_ERR(phy_dev)) {
1247 		netdev_err(ndev, "could not attach to PHY\n");
1248 		return PTR_ERR(phy_dev);
1249 	}
1250 
1251 	/* mask with MAC supported features */
1252 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1253 		phy_dev->supported &= PHY_GBIT_FEATURES;
1254 #if !defined(CONFIG_M5272)
1255 		phy_dev->supported |= SUPPORTED_Pause;
1256 #endif
1257 	}
1258 	else
1259 		phy_dev->supported &= PHY_BASIC_FEATURES;
1260 
1261 	phy_dev->advertising = phy_dev->supported;
1262 
1263 	fep->phy_dev = phy_dev;
1264 	fep->link = 0;
1265 	fep->full_duplex = 0;
1266 
1267 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1268 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1269 		    fep->phy_dev->irq);
1270 
1271 	return 0;
1272 }
1273 
1274 static int fec_enet_mii_init(struct platform_device *pdev)
1275 {
1276 	static struct mii_bus *fec0_mii_bus;
1277 	struct net_device *ndev = platform_get_drvdata(pdev);
1278 	struct fec_enet_private *fep = netdev_priv(ndev);
1279 	const struct platform_device_id *id_entry =
1280 				platform_get_device_id(fep->pdev);
1281 	int err = -ENXIO, i;
1282 
1283 	/*
1284 	 * The dual fec interfaces are not equivalent with enet-mac.
1285 	 * Here are the differences:
1286 	 *
1287 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1288 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1289 	 *  - external phys can only be configured by fec0
1290 	 *
1291 	 * That is to say fec1 can not work independently. It only works
1292 	 * when fec0 is working. The reason behind this design is that the
1293 	 * second interface is added primarily for Switch mode.
1294 	 *
1295 	 * Because of the last point above, both phys are attached on fec0
1296 	 * mdio interface in board design, and need to be configured by
1297 	 * fec0 mii_bus.
1298 	 */
1299 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1300 		/* fec1 uses fec0 mii_bus */
1301 		if (mii_cnt && fec0_mii_bus) {
1302 			fep->mii_bus = fec0_mii_bus;
1303 			mii_cnt++;
1304 			return 0;
1305 		}
1306 		return -ENOENT;
1307 	}
1308 
1309 	fep->mii_timeout = 0;
1310 
1311 	/*
1312 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1313 	 *
1314 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1315 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1316 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1317 	 * document.
1318 	 */
1319 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1320 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1321 		fep->phy_speed--;
1322 	fep->phy_speed <<= 1;
1323 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1324 
1325 	fep->mii_bus = mdiobus_alloc();
1326 	if (fep->mii_bus == NULL) {
1327 		err = -ENOMEM;
1328 		goto err_out;
1329 	}
1330 
1331 	fep->mii_bus->name = "fec_enet_mii_bus";
1332 	fep->mii_bus->read = fec_enet_mdio_read;
1333 	fep->mii_bus->write = fec_enet_mdio_write;
1334 	fep->mii_bus->reset = fec_enet_mdio_reset;
1335 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1336 		pdev->name, fep->dev_id + 1);
1337 	fep->mii_bus->priv = fep;
1338 	fep->mii_bus->parent = &pdev->dev;
1339 
1340 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1341 	if (!fep->mii_bus->irq) {
1342 		err = -ENOMEM;
1343 		goto err_out_free_mdiobus;
1344 	}
1345 
1346 	for (i = 0; i < PHY_MAX_ADDR; i++)
1347 		fep->mii_bus->irq[i] = PHY_POLL;
1348 
1349 	if (mdiobus_register(fep->mii_bus))
1350 		goto err_out_free_mdio_irq;
1351 
1352 	mii_cnt++;
1353 
1354 	/* save fec0 mii_bus */
1355 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1356 		fec0_mii_bus = fep->mii_bus;
1357 
1358 	return 0;
1359 
1360 err_out_free_mdio_irq:
1361 	kfree(fep->mii_bus->irq);
1362 err_out_free_mdiobus:
1363 	mdiobus_free(fep->mii_bus);
1364 err_out:
1365 	return err;
1366 }
1367 
1368 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1369 {
1370 	if (--mii_cnt == 0) {
1371 		mdiobus_unregister(fep->mii_bus);
1372 		kfree(fep->mii_bus->irq);
1373 		mdiobus_free(fep->mii_bus);
1374 	}
1375 }
1376 
1377 static int fec_enet_get_settings(struct net_device *ndev,
1378 				  struct ethtool_cmd *cmd)
1379 {
1380 	struct fec_enet_private *fep = netdev_priv(ndev);
1381 	struct phy_device *phydev = fep->phy_dev;
1382 
1383 	if (!phydev)
1384 		return -ENODEV;
1385 
1386 	return phy_ethtool_gset(phydev, cmd);
1387 }
1388 
1389 static int fec_enet_set_settings(struct net_device *ndev,
1390 				 struct ethtool_cmd *cmd)
1391 {
1392 	struct fec_enet_private *fep = netdev_priv(ndev);
1393 	struct phy_device *phydev = fep->phy_dev;
1394 
1395 	if (!phydev)
1396 		return -ENODEV;
1397 
1398 	return phy_ethtool_sset(phydev, cmd);
1399 }
1400 
1401 static void fec_enet_get_drvinfo(struct net_device *ndev,
1402 				 struct ethtool_drvinfo *info)
1403 {
1404 	struct fec_enet_private *fep = netdev_priv(ndev);
1405 
1406 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1407 		sizeof(info->driver));
1408 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1409 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1410 }
1411 
1412 static int fec_enet_get_ts_info(struct net_device *ndev,
1413 				struct ethtool_ts_info *info)
1414 {
1415 	struct fec_enet_private *fep = netdev_priv(ndev);
1416 
1417 	if (fep->bufdesc_ex) {
1418 
1419 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1420 					SOF_TIMESTAMPING_RX_SOFTWARE |
1421 					SOF_TIMESTAMPING_SOFTWARE |
1422 					SOF_TIMESTAMPING_TX_HARDWARE |
1423 					SOF_TIMESTAMPING_RX_HARDWARE |
1424 					SOF_TIMESTAMPING_RAW_HARDWARE;
1425 		if (fep->ptp_clock)
1426 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1427 		else
1428 			info->phc_index = -1;
1429 
1430 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1431 				 (1 << HWTSTAMP_TX_ON);
1432 
1433 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1434 				   (1 << HWTSTAMP_FILTER_ALL);
1435 		return 0;
1436 	} else {
1437 		return ethtool_op_get_ts_info(ndev, info);
1438 	}
1439 }
1440 
1441 #if !defined(CONFIG_M5272)
1442 
1443 static void fec_enet_get_pauseparam(struct net_device *ndev,
1444 				    struct ethtool_pauseparam *pause)
1445 {
1446 	struct fec_enet_private *fep = netdev_priv(ndev);
1447 
1448 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1449 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1450 	pause->rx_pause = pause->tx_pause;
1451 }
1452 
1453 static int fec_enet_set_pauseparam(struct net_device *ndev,
1454 				   struct ethtool_pauseparam *pause)
1455 {
1456 	struct fec_enet_private *fep = netdev_priv(ndev);
1457 
1458 	if (pause->tx_pause != pause->rx_pause) {
1459 		netdev_info(ndev,
1460 			"hardware only support enable/disable both tx and rx");
1461 		return -EINVAL;
1462 	}
1463 
1464 	fep->pause_flag = 0;
1465 
1466 	/* tx pause must be same as rx pause */
1467 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1468 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1469 
1470 	if (pause->rx_pause || pause->autoneg) {
1471 		fep->phy_dev->supported |= ADVERTISED_Pause;
1472 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1473 	} else {
1474 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1475 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1476 	}
1477 
1478 	if (pause->autoneg) {
1479 		if (netif_running(ndev))
1480 			fec_stop(ndev);
1481 		phy_start_aneg(fep->phy_dev);
1482 	}
1483 	if (netif_running(ndev))
1484 		fec_restart(ndev, 0);
1485 
1486 	return 0;
1487 }
1488 
1489 static const struct fec_stat {
1490 	char name[ETH_GSTRING_LEN];
1491 	u16 offset;
1492 } fec_stats[] = {
1493 	/* RMON TX */
1494 	{ "tx_dropped", RMON_T_DROP },
1495 	{ "tx_packets", RMON_T_PACKETS },
1496 	{ "tx_broadcast", RMON_T_BC_PKT },
1497 	{ "tx_multicast", RMON_T_MC_PKT },
1498 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1499 	{ "tx_undersize", RMON_T_UNDERSIZE },
1500 	{ "tx_oversize", RMON_T_OVERSIZE },
1501 	{ "tx_fragment", RMON_T_FRAG },
1502 	{ "tx_jabber", RMON_T_JAB },
1503 	{ "tx_collision", RMON_T_COL },
1504 	{ "tx_64byte", RMON_T_P64 },
1505 	{ "tx_65to127byte", RMON_T_P65TO127 },
1506 	{ "tx_128to255byte", RMON_T_P128TO255 },
1507 	{ "tx_256to511byte", RMON_T_P256TO511 },
1508 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1509 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1510 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1511 	{ "tx_octets", RMON_T_OCTETS },
1512 
1513 	/* IEEE TX */
1514 	{ "IEEE_tx_drop", IEEE_T_DROP },
1515 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1516 	{ "IEEE_tx_1col", IEEE_T_1COL },
1517 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1518 	{ "IEEE_tx_def", IEEE_T_DEF },
1519 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1520 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1521 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1522 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1523 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1524 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1525 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1526 
1527 	/* RMON RX */
1528 	{ "rx_packets", RMON_R_PACKETS },
1529 	{ "rx_broadcast", RMON_R_BC_PKT },
1530 	{ "rx_multicast", RMON_R_MC_PKT },
1531 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1532 	{ "rx_undersize", RMON_R_UNDERSIZE },
1533 	{ "rx_oversize", RMON_R_OVERSIZE },
1534 	{ "rx_fragment", RMON_R_FRAG },
1535 	{ "rx_jabber", RMON_R_JAB },
1536 	{ "rx_64byte", RMON_R_P64 },
1537 	{ "rx_65to127byte", RMON_R_P65TO127 },
1538 	{ "rx_128to255byte", RMON_R_P128TO255 },
1539 	{ "rx_256to511byte", RMON_R_P256TO511 },
1540 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1541 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1542 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1543 	{ "rx_octets", RMON_R_OCTETS },
1544 
1545 	/* IEEE RX */
1546 	{ "IEEE_rx_drop", IEEE_R_DROP },
1547 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1548 	{ "IEEE_rx_crc", IEEE_R_CRC },
1549 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1550 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1551 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1552 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1553 };
1554 
1555 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1556 	struct ethtool_stats *stats, u64 *data)
1557 {
1558 	struct fec_enet_private *fep = netdev_priv(dev);
1559 	int i;
1560 
1561 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1562 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1563 }
1564 
1565 static void fec_enet_get_strings(struct net_device *netdev,
1566 	u32 stringset, u8 *data)
1567 {
1568 	int i;
1569 	switch (stringset) {
1570 	case ETH_SS_STATS:
1571 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1572 			memcpy(data + i * ETH_GSTRING_LEN,
1573 				fec_stats[i].name, ETH_GSTRING_LEN);
1574 		break;
1575 	}
1576 }
1577 
1578 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1579 {
1580 	switch (sset) {
1581 	case ETH_SS_STATS:
1582 		return ARRAY_SIZE(fec_stats);
1583 	default:
1584 		return -EOPNOTSUPP;
1585 	}
1586 }
1587 #endif /* !defined(CONFIG_M5272) */
1588 
1589 static int fec_enet_nway_reset(struct net_device *dev)
1590 {
1591 	struct fec_enet_private *fep = netdev_priv(dev);
1592 	struct phy_device *phydev = fep->phy_dev;
1593 
1594 	if (!phydev)
1595 		return -ENODEV;
1596 
1597 	return genphy_restart_aneg(phydev);
1598 }
1599 
1600 static const struct ethtool_ops fec_enet_ethtool_ops = {
1601 #if !defined(CONFIG_M5272)
1602 	.get_pauseparam		= fec_enet_get_pauseparam,
1603 	.set_pauseparam		= fec_enet_set_pauseparam,
1604 #endif
1605 	.get_settings		= fec_enet_get_settings,
1606 	.set_settings		= fec_enet_set_settings,
1607 	.get_drvinfo		= fec_enet_get_drvinfo,
1608 	.get_link		= ethtool_op_get_link,
1609 	.get_ts_info		= fec_enet_get_ts_info,
1610 	.nway_reset		= fec_enet_nway_reset,
1611 #ifndef CONFIG_M5272
1612 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1613 	.get_strings		= fec_enet_get_strings,
1614 	.get_sset_count		= fec_enet_get_sset_count,
1615 #endif
1616 };
1617 
1618 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1619 {
1620 	struct fec_enet_private *fep = netdev_priv(ndev);
1621 	struct phy_device *phydev = fep->phy_dev;
1622 
1623 	if (!netif_running(ndev))
1624 		return -EINVAL;
1625 
1626 	if (!phydev)
1627 		return -ENODEV;
1628 
1629 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1630 		return fec_ptp_ioctl(ndev, rq, cmd);
1631 
1632 	return phy_mii_ioctl(phydev, rq, cmd);
1633 }
1634 
1635 static void fec_enet_free_buffers(struct net_device *ndev)
1636 {
1637 	struct fec_enet_private *fep = netdev_priv(ndev);
1638 	unsigned int i;
1639 	struct sk_buff *skb;
1640 	struct bufdesc	*bdp;
1641 
1642 	bdp = fep->rx_bd_base;
1643 	for (i = 0; i < RX_RING_SIZE; i++) {
1644 		skb = fep->rx_skbuff[i];
1645 
1646 		if (bdp->cbd_bufaddr)
1647 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1648 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1649 		if (skb)
1650 			dev_kfree_skb(skb);
1651 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1652 	}
1653 
1654 	bdp = fep->tx_bd_base;
1655 	for (i = 0; i < TX_RING_SIZE; i++)
1656 		kfree(fep->tx_bounce[i]);
1657 }
1658 
1659 static int fec_enet_alloc_buffers(struct net_device *ndev)
1660 {
1661 	struct fec_enet_private *fep = netdev_priv(ndev);
1662 	unsigned int i;
1663 	struct sk_buff *skb;
1664 	struct bufdesc	*bdp;
1665 
1666 	bdp = fep->rx_bd_base;
1667 	for (i = 0; i < RX_RING_SIZE; i++) {
1668 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1669 		if (!skb) {
1670 			fec_enet_free_buffers(ndev);
1671 			return -ENOMEM;
1672 		}
1673 		fep->rx_skbuff[i] = skb;
1674 
1675 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1676 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1677 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1678 
1679 		if (fep->bufdesc_ex) {
1680 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1681 			ebdp->cbd_esc = BD_ENET_RX_INT;
1682 		}
1683 
1684 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1685 	}
1686 
1687 	/* Set the last buffer to wrap. */
1688 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1689 	bdp->cbd_sc |= BD_SC_WRAP;
1690 
1691 	bdp = fep->tx_bd_base;
1692 	for (i = 0; i < TX_RING_SIZE; i++) {
1693 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1694 
1695 		bdp->cbd_sc = 0;
1696 		bdp->cbd_bufaddr = 0;
1697 
1698 		if (fep->bufdesc_ex) {
1699 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1700 			ebdp->cbd_esc = BD_ENET_TX_INT;
1701 		}
1702 
1703 		bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1704 	}
1705 
1706 	/* Set the last buffer to wrap. */
1707 	bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1708 	bdp->cbd_sc |= BD_SC_WRAP;
1709 
1710 	return 0;
1711 }
1712 
1713 static int
1714 fec_enet_open(struct net_device *ndev)
1715 {
1716 	struct fec_enet_private *fep = netdev_priv(ndev);
1717 	int ret;
1718 
1719 	napi_enable(&fep->napi);
1720 
1721 	/* I should reset the ring buffers here, but I don't yet know
1722 	 * a simple way to do that.
1723 	 */
1724 
1725 	ret = fec_enet_alloc_buffers(ndev);
1726 	if (ret)
1727 		return ret;
1728 
1729 	/* Probe and connect to PHY when open the interface */
1730 	ret = fec_enet_mii_probe(ndev);
1731 	if (ret) {
1732 		fec_enet_free_buffers(ndev);
1733 		return ret;
1734 	}
1735 	phy_start(fep->phy_dev);
1736 	netif_start_queue(ndev);
1737 	fep->opened = 1;
1738 	return 0;
1739 }
1740 
1741 static int
1742 fec_enet_close(struct net_device *ndev)
1743 {
1744 	struct fec_enet_private *fep = netdev_priv(ndev);
1745 
1746 	/* Don't know what to do yet. */
1747 	napi_disable(&fep->napi);
1748 	fep->opened = 0;
1749 	netif_stop_queue(ndev);
1750 	fec_stop(ndev);
1751 
1752 	if (fep->phy_dev) {
1753 		phy_stop(fep->phy_dev);
1754 		phy_disconnect(fep->phy_dev);
1755 	}
1756 
1757 	fec_enet_free_buffers(ndev);
1758 
1759 	return 0;
1760 }
1761 
1762 /* Set or clear the multicast filter for this adaptor.
1763  * Skeleton taken from sunlance driver.
1764  * The CPM Ethernet implementation allows Multicast as well as individual
1765  * MAC address filtering.  Some of the drivers check to make sure it is
1766  * a group multicast address, and discard those that are not.  I guess I
1767  * will do the same for now, but just remove the test if you want
1768  * individual filtering as well (do the upper net layers want or support
1769  * this kind of feature?).
1770  */
1771 
1772 #define HASH_BITS	6		/* #bits in hash */
1773 #define CRC32_POLY	0xEDB88320
1774 
1775 static void set_multicast_list(struct net_device *ndev)
1776 {
1777 	struct fec_enet_private *fep = netdev_priv(ndev);
1778 	struct netdev_hw_addr *ha;
1779 	unsigned int i, bit, data, crc, tmp;
1780 	unsigned char hash;
1781 
1782 	if (ndev->flags & IFF_PROMISC) {
1783 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1784 		tmp |= 0x8;
1785 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1786 		return;
1787 	}
1788 
1789 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1790 	tmp &= ~0x8;
1791 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1792 
1793 	if (ndev->flags & IFF_ALLMULTI) {
1794 		/* Catch all multicast addresses, so set the
1795 		 * filter to all 1's
1796 		 */
1797 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1798 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1799 
1800 		return;
1801 	}
1802 
1803 	/* Clear filter and add the addresses in hash register
1804 	 */
1805 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1806 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1807 
1808 	netdev_for_each_mc_addr(ha, ndev) {
1809 		/* calculate crc32 value of mac address */
1810 		crc = 0xffffffff;
1811 
1812 		for (i = 0; i < ndev->addr_len; i++) {
1813 			data = ha->addr[i];
1814 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1815 				crc = (crc >> 1) ^
1816 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1817 			}
1818 		}
1819 
1820 		/* only upper 6 bits (HASH_BITS) are used
1821 		 * which point to specific bit in he hash registers
1822 		 */
1823 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1824 
1825 		if (hash > 31) {
1826 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1827 			tmp |= 1 << (hash - 32);
1828 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1829 		} else {
1830 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1831 			tmp |= 1 << hash;
1832 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1833 		}
1834 	}
1835 }
1836 
1837 /* Set a MAC change in hardware. */
1838 static int
1839 fec_set_mac_address(struct net_device *ndev, void *p)
1840 {
1841 	struct fec_enet_private *fep = netdev_priv(ndev);
1842 	struct sockaddr *addr = p;
1843 
1844 	if (!is_valid_ether_addr(addr->sa_data))
1845 		return -EADDRNOTAVAIL;
1846 
1847 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1848 
1849 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1850 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1851 		fep->hwp + FEC_ADDR_LOW);
1852 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1853 		fep->hwp + FEC_ADDR_HIGH);
1854 	return 0;
1855 }
1856 
1857 #ifdef CONFIG_NET_POLL_CONTROLLER
1858 /**
1859  * fec_poll_controller - FEC Poll controller function
1860  * @dev: The FEC network adapter
1861  *
1862  * Polled functionality used by netconsole and others in non interrupt mode
1863  *
1864  */
1865 static void fec_poll_controller(struct net_device *dev)
1866 {
1867 	int i;
1868 	struct fec_enet_private *fep = netdev_priv(dev);
1869 
1870 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1871 		if (fep->irq[i] > 0) {
1872 			disable_irq(fep->irq[i]);
1873 			fec_enet_interrupt(fep->irq[i], dev);
1874 			enable_irq(fep->irq[i]);
1875 		}
1876 	}
1877 }
1878 #endif
1879 
1880 static int fec_set_features(struct net_device *netdev,
1881 	netdev_features_t features)
1882 {
1883 	struct fec_enet_private *fep = netdev_priv(netdev);
1884 	netdev_features_t changed = features ^ netdev->features;
1885 
1886 	netdev->features = features;
1887 
1888 	/* Receive checksum has been changed */
1889 	if (changed & NETIF_F_RXCSUM) {
1890 		if (features & NETIF_F_RXCSUM)
1891 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1892 		else
1893 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1894 
1895 		if (netif_running(netdev)) {
1896 			fec_stop(netdev);
1897 			fec_restart(netdev, fep->phy_dev->duplex);
1898 			netif_wake_queue(netdev);
1899 		} else {
1900 			fec_restart(netdev, fep->phy_dev->duplex);
1901 		}
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 static const struct net_device_ops fec_netdev_ops = {
1908 	.ndo_open		= fec_enet_open,
1909 	.ndo_stop		= fec_enet_close,
1910 	.ndo_start_xmit		= fec_enet_start_xmit,
1911 	.ndo_set_rx_mode	= set_multicast_list,
1912 	.ndo_change_mtu		= eth_change_mtu,
1913 	.ndo_validate_addr	= eth_validate_addr,
1914 	.ndo_tx_timeout		= fec_timeout,
1915 	.ndo_set_mac_address	= fec_set_mac_address,
1916 	.ndo_do_ioctl		= fec_enet_ioctl,
1917 #ifdef CONFIG_NET_POLL_CONTROLLER
1918 	.ndo_poll_controller	= fec_poll_controller,
1919 #endif
1920 	.ndo_set_features	= fec_set_features,
1921 };
1922 
1923  /*
1924   * XXX:  We need to clean up on failure exits here.
1925   *
1926   */
1927 static int fec_enet_init(struct net_device *ndev)
1928 {
1929 	struct fec_enet_private *fep = netdev_priv(ndev);
1930 	const struct platform_device_id *id_entry =
1931 				platform_get_device_id(fep->pdev);
1932 	struct bufdesc *cbd_base;
1933 
1934 	/* Allocate memory for buffer descriptors. */
1935 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1936 				      GFP_KERNEL);
1937 	if (!cbd_base)
1938 		return -ENOMEM;
1939 
1940 	memset(cbd_base, 0, PAGE_SIZE);
1941 
1942 	fep->netdev = ndev;
1943 
1944 	/* Get the Ethernet address */
1945 	fec_get_mac(ndev);
1946 
1947 	/* Set receive and transmit descriptor base. */
1948 	fep->rx_bd_base = cbd_base;
1949 	if (fep->bufdesc_ex)
1950 		fep->tx_bd_base = (struct bufdesc *)
1951 			(((struct bufdesc_ex *)cbd_base) + RX_RING_SIZE);
1952 	else
1953 		fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1954 
1955 	/* The FEC Ethernet specific entries in the device structure */
1956 	ndev->watchdog_timeo = TX_TIMEOUT;
1957 	ndev->netdev_ops = &fec_netdev_ops;
1958 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
1959 
1960 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
1961 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, FEC_NAPI_WEIGHT);
1962 
1963 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
1964 		/* enable hw VLAN support */
1965 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1966 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
1967 	}
1968 
1969 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
1970 		/* enable hw accelerator */
1971 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1972 				| NETIF_F_RXCSUM);
1973 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1974 				| NETIF_F_RXCSUM);
1975 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1976 	}
1977 
1978 	fec_restart(ndev, 0);
1979 
1980 	return 0;
1981 }
1982 
1983 #ifdef CONFIG_OF
1984 static void fec_reset_phy(struct platform_device *pdev)
1985 {
1986 	int err, phy_reset;
1987 	int msec = 1;
1988 	struct device_node *np = pdev->dev.of_node;
1989 
1990 	if (!np)
1991 		return;
1992 
1993 	of_property_read_u32(np, "phy-reset-duration", &msec);
1994 	/* A sane reset duration should not be longer than 1s */
1995 	if (msec > 1000)
1996 		msec = 1;
1997 
1998 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1999 	if (!gpio_is_valid(phy_reset))
2000 		return;
2001 
2002 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2003 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2004 	if (err) {
2005 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2006 		return;
2007 	}
2008 	msleep(msec);
2009 	gpio_set_value(phy_reset, 1);
2010 }
2011 #else /* CONFIG_OF */
2012 static void fec_reset_phy(struct platform_device *pdev)
2013 {
2014 	/*
2015 	 * In case of platform probe, the reset has been done
2016 	 * by machine code.
2017 	 */
2018 }
2019 #endif /* CONFIG_OF */
2020 
2021 static int
2022 fec_probe(struct platform_device *pdev)
2023 {
2024 	struct fec_enet_private *fep;
2025 	struct fec_platform_data *pdata;
2026 	struct net_device *ndev;
2027 	int i, irq, ret = 0;
2028 	struct resource *r;
2029 	const struct of_device_id *of_id;
2030 	static int dev_id;
2031 
2032 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2033 	if (of_id)
2034 		pdev->id_entry = of_id->data;
2035 
2036 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2037 	if (!r)
2038 		return -ENXIO;
2039 
2040 	/* Init network device */
2041 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2042 	if (!ndev)
2043 		return -ENOMEM;
2044 
2045 	SET_NETDEV_DEV(ndev, &pdev->dev);
2046 
2047 	/* setup board info structure */
2048 	fep = netdev_priv(ndev);
2049 
2050 #if !defined(CONFIG_M5272)
2051 	/* default enable pause frame auto negotiation */
2052 	if (pdev->id_entry &&
2053 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2054 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2055 #endif
2056 
2057 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2058 	if (IS_ERR(fep->hwp)) {
2059 		ret = PTR_ERR(fep->hwp);
2060 		goto failed_ioremap;
2061 	}
2062 
2063 	fep->pdev = pdev;
2064 	fep->dev_id = dev_id++;
2065 
2066 	fep->bufdesc_ex = 0;
2067 
2068 	platform_set_drvdata(pdev, ndev);
2069 
2070 	ret = of_get_phy_mode(pdev->dev.of_node);
2071 	if (ret < 0) {
2072 		pdata = pdev->dev.platform_data;
2073 		if (pdata)
2074 			fep->phy_interface = pdata->phy;
2075 		else
2076 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2077 	} else {
2078 		fep->phy_interface = ret;
2079 	}
2080 
2081 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2082 	if (IS_ERR(fep->clk_ipg)) {
2083 		ret = PTR_ERR(fep->clk_ipg);
2084 		goto failed_clk;
2085 	}
2086 
2087 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2088 	if (IS_ERR(fep->clk_ahb)) {
2089 		ret = PTR_ERR(fep->clk_ahb);
2090 		goto failed_clk;
2091 	}
2092 
2093 	/* enet_out is optional, depends on board */
2094 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2095 	if (IS_ERR(fep->clk_enet_out))
2096 		fep->clk_enet_out = NULL;
2097 
2098 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2099 	fep->bufdesc_ex =
2100 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2101 	if (IS_ERR(fep->clk_ptp)) {
2102 		fep->clk_ptp = NULL;
2103 		fep->bufdesc_ex = 0;
2104 	}
2105 
2106 	clk_prepare_enable(fep->clk_ahb);
2107 	clk_prepare_enable(fep->clk_ipg);
2108 	clk_prepare_enable(fep->clk_enet_out);
2109 	clk_prepare_enable(fep->clk_ptp);
2110 
2111 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2112 	if (!IS_ERR(fep->reg_phy)) {
2113 		ret = regulator_enable(fep->reg_phy);
2114 		if (ret) {
2115 			dev_err(&pdev->dev,
2116 				"Failed to enable phy regulator: %d\n", ret);
2117 			goto failed_regulator;
2118 		}
2119 	} else {
2120 		fep->reg_phy = NULL;
2121 	}
2122 
2123 	fec_reset_phy(pdev);
2124 
2125 	if (fep->bufdesc_ex)
2126 		fec_ptp_init(pdev);
2127 
2128 	ret = fec_enet_init(ndev);
2129 	if (ret)
2130 		goto failed_init;
2131 
2132 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2133 		irq = platform_get_irq(pdev, i);
2134 		if (irq < 0) {
2135 			if (i)
2136 				break;
2137 			ret = irq;
2138 			goto failed_irq;
2139 		}
2140 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
2141 		if (ret) {
2142 			while (--i >= 0) {
2143 				irq = platform_get_irq(pdev, i);
2144 				free_irq(irq, ndev);
2145 			}
2146 			goto failed_irq;
2147 		}
2148 	}
2149 
2150 	ret = fec_enet_mii_init(pdev);
2151 	if (ret)
2152 		goto failed_mii_init;
2153 
2154 	/* Carrier starts down, phylib will bring it up */
2155 	netif_carrier_off(ndev);
2156 
2157 	ret = register_netdev(ndev);
2158 	if (ret)
2159 		goto failed_register;
2160 
2161 	if (fep->bufdesc_ex && fep->ptp_clock)
2162 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2163 
2164 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2165 	return 0;
2166 
2167 failed_register:
2168 	fec_enet_mii_remove(fep);
2169 failed_mii_init:
2170 failed_irq:
2171 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2172 		irq = platform_get_irq(pdev, i);
2173 		if (irq > 0)
2174 			free_irq(irq, ndev);
2175 	}
2176 failed_init:
2177 	if (fep->reg_phy)
2178 		regulator_disable(fep->reg_phy);
2179 failed_regulator:
2180 	clk_disable_unprepare(fep->clk_ahb);
2181 	clk_disable_unprepare(fep->clk_ipg);
2182 	clk_disable_unprepare(fep->clk_enet_out);
2183 	clk_disable_unprepare(fep->clk_ptp);
2184 failed_clk:
2185 failed_ioremap:
2186 	free_netdev(ndev);
2187 
2188 	return ret;
2189 }
2190 
2191 static int
2192 fec_drv_remove(struct platform_device *pdev)
2193 {
2194 	struct net_device *ndev = platform_get_drvdata(pdev);
2195 	struct fec_enet_private *fep = netdev_priv(ndev);
2196 	int i;
2197 
2198 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2199 	unregister_netdev(ndev);
2200 	fec_enet_mii_remove(fep);
2201 	del_timer_sync(&fep->time_keep);
2202 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2203 		int irq = platform_get_irq(pdev, i);
2204 		if (irq > 0)
2205 			free_irq(irq, ndev);
2206 	}
2207 	if (fep->reg_phy)
2208 		regulator_disable(fep->reg_phy);
2209 	clk_disable_unprepare(fep->clk_ptp);
2210 	if (fep->ptp_clock)
2211 		ptp_clock_unregister(fep->ptp_clock);
2212 	clk_disable_unprepare(fep->clk_enet_out);
2213 	clk_disable_unprepare(fep->clk_ahb);
2214 	clk_disable_unprepare(fep->clk_ipg);
2215 	free_netdev(ndev);
2216 
2217 	return 0;
2218 }
2219 
2220 #ifdef CONFIG_PM_SLEEP
2221 static int
2222 fec_suspend(struct device *dev)
2223 {
2224 	struct net_device *ndev = dev_get_drvdata(dev);
2225 	struct fec_enet_private *fep = netdev_priv(ndev);
2226 
2227 	if (netif_running(ndev)) {
2228 		fec_stop(ndev);
2229 		netif_device_detach(ndev);
2230 	}
2231 	clk_disable_unprepare(fep->clk_enet_out);
2232 	clk_disable_unprepare(fep->clk_ahb);
2233 	clk_disable_unprepare(fep->clk_ipg);
2234 
2235 	if (fep->reg_phy)
2236 		regulator_disable(fep->reg_phy);
2237 
2238 	return 0;
2239 }
2240 
2241 static int
2242 fec_resume(struct device *dev)
2243 {
2244 	struct net_device *ndev = dev_get_drvdata(dev);
2245 	struct fec_enet_private *fep = netdev_priv(ndev);
2246 	int ret;
2247 
2248 	if (fep->reg_phy) {
2249 		ret = regulator_enable(fep->reg_phy);
2250 		if (ret)
2251 			return ret;
2252 	}
2253 
2254 	clk_prepare_enable(fep->clk_enet_out);
2255 	clk_prepare_enable(fep->clk_ahb);
2256 	clk_prepare_enable(fep->clk_ipg);
2257 	if (netif_running(ndev)) {
2258 		fec_restart(ndev, fep->full_duplex);
2259 		netif_device_attach(ndev);
2260 	}
2261 
2262 	return 0;
2263 }
2264 #endif /* CONFIG_PM_SLEEP */
2265 
2266 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2267 
2268 static struct platform_driver fec_driver = {
2269 	.driver	= {
2270 		.name	= DRIVER_NAME,
2271 		.owner	= THIS_MODULE,
2272 		.pm	= &fec_pm_ops,
2273 		.of_match_table = fec_dt_ids,
2274 	},
2275 	.id_table = fec_devtype,
2276 	.probe	= fec_probe,
2277 	.remove	= fec_drv_remove,
2278 };
2279 
2280 module_platform_driver(fec_driver);
2281 
2282 MODULE_LICENSE("GPL");
2283