1 /* 2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 4 * 5 * Right now, I am very wasteful with the buffers. I allocate memory 6 * pages and then divide them into 2K frame buffers. This way I know I 7 * have buffers large enough to hold one frame within one buffer descriptor. 8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 9 * will be much more memory efficient and will easily handle lots of 10 * small packets. 11 * 12 * Much better multiple PHY support by Magnus Damm. 13 * Copyright (c) 2000 Ericsson Radio Systems AB. 14 * 15 * Support for FEC controller of ColdFire processors. 16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 17 * 18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 19 * Copyright (c) 2004-2006 Macq Electronique SA. 20 * 21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/string.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/ptrace.h> 29 #include <linux/errno.h> 30 #include <linux/ioport.h> 31 #include <linux/slab.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/in.h> 38 #include <linux/ip.h> 39 #include <net/ip.h> 40 #include <net/tso.h> 41 #include <linux/tcp.h> 42 #include <linux/udp.h> 43 #include <linux/icmp.h> 44 #include <linux/spinlock.h> 45 #include <linux/workqueue.h> 46 #include <linux/bitops.h> 47 #include <linux/io.h> 48 #include <linux/irq.h> 49 #include <linux/clk.h> 50 #include <linux/platform_device.h> 51 #include <linux/mdio.h> 52 #include <linux/phy.h> 53 #include <linux/fec.h> 54 #include <linux/of.h> 55 #include <linux/of_device.h> 56 #include <linux/of_gpio.h> 57 #include <linux/of_mdio.h> 58 #include <linux/of_net.h> 59 #include <linux/regulator/consumer.h> 60 #include <linux/if_vlan.h> 61 #include <linux/pinctrl/consumer.h> 62 #include <linux/prefetch.h> 63 #include <soc/imx/cpuidle.h> 64 65 #include <asm/cacheflush.h> 66 67 #include "fec.h" 68 69 static void set_multicast_list(struct net_device *ndev); 70 static void fec_enet_itr_coal_init(struct net_device *ndev); 71 72 #define DRIVER_NAME "fec" 73 74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) 75 76 /* Pause frame feild and FIFO threshold */ 77 #define FEC_ENET_FCE (1 << 5) 78 #define FEC_ENET_RSEM_V 0x84 79 #define FEC_ENET_RSFL_V 16 80 #define FEC_ENET_RAEM_V 0x8 81 #define FEC_ENET_RAFL_V 0x8 82 #define FEC_ENET_OPD_V 0xFFF0 83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 84 85 static struct platform_device_id fec_devtype[] = { 86 { 87 /* keep it for coldfire */ 88 .name = DRIVER_NAME, 89 .driver_data = 0, 90 }, { 91 .name = "imx25-fec", 92 .driver_data = FEC_QUIRK_USE_GASKET, 93 }, { 94 .name = "imx27-fec", 95 .driver_data = 0, 96 }, { 97 .name = "imx28-fec", 98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 99 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC, 100 }, { 101 .name = "imx6q-fec", 102 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 103 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 104 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 105 FEC_QUIRK_HAS_RACC, 106 }, { 107 .name = "mvf600-fec", 108 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 109 }, { 110 .name = "imx6sx-fec", 111 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 114 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 115 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 116 }, { 117 .name = "imx6ul-fec", 118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE | 121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 122 }, { 123 /* sentinel */ 124 } 125 }; 126 MODULE_DEVICE_TABLE(platform, fec_devtype); 127 128 enum imx_fec_type { 129 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 130 IMX27_FEC, /* runs on i.mx27/35/51 */ 131 IMX28_FEC, 132 IMX6Q_FEC, 133 MVF600_FEC, 134 IMX6SX_FEC, 135 IMX6UL_FEC, 136 }; 137 138 static const struct of_device_id fec_dt_ids[] = { 139 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 140 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 141 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 142 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 143 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 144 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 145 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 146 { /* sentinel */ } 147 }; 148 MODULE_DEVICE_TABLE(of, fec_dt_ids); 149 150 static unsigned char macaddr[ETH_ALEN]; 151 module_param_array(macaddr, byte, NULL, 0); 152 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 153 154 #if defined(CONFIG_M5272) 155 /* 156 * Some hardware gets it MAC address out of local flash memory. 157 * if this is non-zero then assume it is the address to get MAC from. 158 */ 159 #if defined(CONFIG_NETtel) 160 #define FEC_FLASHMAC 0xf0006006 161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 162 #define FEC_FLASHMAC 0xf0006000 163 #elif defined(CONFIG_CANCam) 164 #define FEC_FLASHMAC 0xf0020000 165 #elif defined (CONFIG_M5272C3) 166 #define FEC_FLASHMAC (0xffe04000 + 4) 167 #elif defined(CONFIG_MOD5272) 168 #define FEC_FLASHMAC 0xffc0406b 169 #else 170 #define FEC_FLASHMAC 0 171 #endif 172 #endif /* CONFIG_M5272 */ 173 174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 175 */ 176 #define PKT_MAXBUF_SIZE 1522 177 #define PKT_MINBUF_SIZE 64 178 #define PKT_MAXBLR_SIZE 1536 179 180 /* FEC receive acceleration */ 181 #define FEC_RACC_IPDIS (1 << 1) 182 #define FEC_RACC_PRODIS (1 << 2) 183 #define FEC_RACC_SHIFT16 BIT(7) 184 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 185 186 /* 187 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 188 * size bits. Other FEC hardware does not, so we need to take that into 189 * account when setting it. 190 */ 191 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 192 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) 193 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 194 #else 195 #define OPT_FRAME_SIZE 0 196 #endif 197 198 /* FEC MII MMFR bits definition */ 199 #define FEC_MMFR_ST (1 << 30) 200 #define FEC_MMFR_OP_READ (2 << 28) 201 #define FEC_MMFR_OP_WRITE (1 << 28) 202 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 203 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 204 #define FEC_MMFR_TA (2 << 16) 205 #define FEC_MMFR_DATA(v) (v & 0xffff) 206 /* FEC ECR bits definition */ 207 #define FEC_ECR_MAGICEN (1 << 2) 208 #define FEC_ECR_SLEEP (1 << 3) 209 210 #define FEC_MII_TIMEOUT 30000 /* us */ 211 212 /* Transmitter timeout */ 213 #define TX_TIMEOUT (2 * HZ) 214 215 #define FEC_PAUSE_FLAG_AUTONEG 0x1 216 #define FEC_PAUSE_FLAG_ENABLE 0x2 217 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 218 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 219 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 220 221 #define COPYBREAK_DEFAULT 256 222 223 #define TSO_HEADER_SIZE 128 224 /* Max number of allowed TCP segments for software TSO */ 225 #define FEC_MAX_TSO_SEGS 100 226 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 227 228 #define IS_TSO_HEADER(txq, addr) \ 229 ((addr >= txq->tso_hdrs_dma) && \ 230 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 231 232 static int mii_cnt; 233 234 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 235 struct bufdesc_prop *bd) 236 { 237 return (bdp >= bd->last) ? bd->base 238 : (struct bufdesc *)(((unsigned)bdp) + bd->dsize); 239 } 240 241 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 242 struct bufdesc_prop *bd) 243 { 244 return (bdp <= bd->base) ? bd->last 245 : (struct bufdesc *)(((unsigned)bdp) - bd->dsize); 246 } 247 248 static int fec_enet_get_bd_index(struct bufdesc *bdp, 249 struct bufdesc_prop *bd) 250 { 251 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 252 } 253 254 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 255 { 256 int entries; 257 258 entries = (((const char *)txq->dirty_tx - 259 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 260 261 return entries >= 0 ? entries : entries + txq->bd.ring_size; 262 } 263 264 static void swap_buffer(void *bufaddr, int len) 265 { 266 int i; 267 unsigned int *buf = bufaddr; 268 269 for (i = 0; i < len; i += 4, buf++) 270 swab32s(buf); 271 } 272 273 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 274 { 275 int i; 276 unsigned int *src = src_buf; 277 unsigned int *dst = dst_buf; 278 279 for (i = 0; i < len; i += 4, src++, dst++) 280 *dst = swab32p(src); 281 } 282 283 static void fec_dump(struct net_device *ndev) 284 { 285 struct fec_enet_private *fep = netdev_priv(ndev); 286 struct bufdesc *bdp; 287 struct fec_enet_priv_tx_q *txq; 288 int index = 0; 289 290 netdev_info(ndev, "TX ring dump\n"); 291 pr_info("Nr SC addr len SKB\n"); 292 293 txq = fep->tx_queue[0]; 294 bdp = txq->bd.base; 295 296 do { 297 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 298 index, 299 bdp == txq->bd.cur ? 'S' : ' ', 300 bdp == txq->dirty_tx ? 'H' : ' ', 301 fec16_to_cpu(bdp->cbd_sc), 302 fec32_to_cpu(bdp->cbd_bufaddr), 303 fec16_to_cpu(bdp->cbd_datlen), 304 txq->tx_skbuff[index]); 305 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 306 index++; 307 } while (bdp != txq->bd.base); 308 } 309 310 static inline bool is_ipv4_pkt(struct sk_buff *skb) 311 { 312 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 313 } 314 315 static int 316 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 317 { 318 /* Only run for packets requiring a checksum. */ 319 if (skb->ip_summed != CHECKSUM_PARTIAL) 320 return 0; 321 322 if (unlikely(skb_cow_head(skb, 0))) 323 return -1; 324 325 if (is_ipv4_pkt(skb)) 326 ip_hdr(skb)->check = 0; 327 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 328 329 return 0; 330 } 331 332 static struct bufdesc * 333 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 334 struct sk_buff *skb, 335 struct net_device *ndev) 336 { 337 struct fec_enet_private *fep = netdev_priv(ndev); 338 struct bufdesc *bdp = txq->bd.cur; 339 struct bufdesc_ex *ebdp; 340 int nr_frags = skb_shinfo(skb)->nr_frags; 341 int frag, frag_len; 342 unsigned short status; 343 unsigned int estatus = 0; 344 skb_frag_t *this_frag; 345 unsigned int index; 346 void *bufaddr; 347 dma_addr_t addr; 348 int i; 349 350 for (frag = 0; frag < nr_frags; frag++) { 351 this_frag = &skb_shinfo(skb)->frags[frag]; 352 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 353 ebdp = (struct bufdesc_ex *)bdp; 354 355 status = fec16_to_cpu(bdp->cbd_sc); 356 status &= ~BD_ENET_TX_STATS; 357 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 358 frag_len = skb_shinfo(skb)->frags[frag].size; 359 360 /* Handle the last BD specially */ 361 if (frag == nr_frags - 1) { 362 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 363 if (fep->bufdesc_ex) { 364 estatus |= BD_ENET_TX_INT; 365 if (unlikely(skb_shinfo(skb)->tx_flags & 366 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 367 estatus |= BD_ENET_TX_TS; 368 } 369 } 370 371 if (fep->bufdesc_ex) { 372 if (fep->quirks & FEC_QUIRK_HAS_AVB) 373 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 374 if (skb->ip_summed == CHECKSUM_PARTIAL) 375 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 376 ebdp->cbd_bdu = 0; 377 ebdp->cbd_esc = cpu_to_fec32(estatus); 378 } 379 380 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset; 381 382 index = fec_enet_get_bd_index(bdp, &txq->bd); 383 if (((unsigned long) bufaddr) & fep->tx_align || 384 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 385 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 386 bufaddr = txq->tx_bounce[index]; 387 388 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 389 swap_buffer(bufaddr, frag_len); 390 } 391 392 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 393 DMA_TO_DEVICE); 394 if (dma_mapping_error(&fep->pdev->dev, addr)) { 395 if (net_ratelimit()) 396 netdev_err(ndev, "Tx DMA memory map failed\n"); 397 goto dma_mapping_error; 398 } 399 400 bdp->cbd_bufaddr = cpu_to_fec32(addr); 401 bdp->cbd_datlen = cpu_to_fec16(frag_len); 402 /* Make sure the updates to rest of the descriptor are 403 * performed before transferring ownership. 404 */ 405 wmb(); 406 bdp->cbd_sc = cpu_to_fec16(status); 407 } 408 409 return bdp; 410 dma_mapping_error: 411 bdp = txq->bd.cur; 412 for (i = 0; i < frag; i++) { 413 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 414 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 415 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 416 } 417 return ERR_PTR(-ENOMEM); 418 } 419 420 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 421 struct sk_buff *skb, struct net_device *ndev) 422 { 423 struct fec_enet_private *fep = netdev_priv(ndev); 424 int nr_frags = skb_shinfo(skb)->nr_frags; 425 struct bufdesc *bdp, *last_bdp; 426 void *bufaddr; 427 dma_addr_t addr; 428 unsigned short status; 429 unsigned short buflen; 430 unsigned int estatus = 0; 431 unsigned int index; 432 int entries_free; 433 434 entries_free = fec_enet_get_free_txdesc_num(txq); 435 if (entries_free < MAX_SKB_FRAGS + 1) { 436 dev_kfree_skb_any(skb); 437 if (net_ratelimit()) 438 netdev_err(ndev, "NOT enough BD for SG!\n"); 439 return NETDEV_TX_OK; 440 } 441 442 /* Protocol checksum off-load for TCP and UDP. */ 443 if (fec_enet_clear_csum(skb, ndev)) { 444 dev_kfree_skb_any(skb); 445 return NETDEV_TX_OK; 446 } 447 448 /* Fill in a Tx ring entry */ 449 bdp = txq->bd.cur; 450 last_bdp = bdp; 451 status = fec16_to_cpu(bdp->cbd_sc); 452 status &= ~BD_ENET_TX_STATS; 453 454 /* Set buffer length and buffer pointer */ 455 bufaddr = skb->data; 456 buflen = skb_headlen(skb); 457 458 index = fec_enet_get_bd_index(bdp, &txq->bd); 459 if (((unsigned long) bufaddr) & fep->tx_align || 460 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 461 memcpy(txq->tx_bounce[index], skb->data, buflen); 462 bufaddr = txq->tx_bounce[index]; 463 464 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 465 swap_buffer(bufaddr, buflen); 466 } 467 468 /* Push the data cache so the CPM does not get stale memory data. */ 469 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 470 if (dma_mapping_error(&fep->pdev->dev, addr)) { 471 dev_kfree_skb_any(skb); 472 if (net_ratelimit()) 473 netdev_err(ndev, "Tx DMA memory map failed\n"); 474 return NETDEV_TX_OK; 475 } 476 477 if (nr_frags) { 478 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 479 if (IS_ERR(last_bdp)) { 480 dma_unmap_single(&fep->pdev->dev, addr, 481 buflen, DMA_TO_DEVICE); 482 dev_kfree_skb_any(skb); 483 return NETDEV_TX_OK; 484 } 485 } else { 486 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 487 if (fep->bufdesc_ex) { 488 estatus = BD_ENET_TX_INT; 489 if (unlikely(skb_shinfo(skb)->tx_flags & 490 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 491 estatus |= BD_ENET_TX_TS; 492 } 493 } 494 bdp->cbd_bufaddr = cpu_to_fec32(addr); 495 bdp->cbd_datlen = cpu_to_fec16(buflen); 496 497 if (fep->bufdesc_ex) { 498 499 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 500 501 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 502 fep->hwts_tx_en)) 503 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 504 505 if (fep->quirks & FEC_QUIRK_HAS_AVB) 506 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 507 508 if (skb->ip_summed == CHECKSUM_PARTIAL) 509 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 510 511 ebdp->cbd_bdu = 0; 512 ebdp->cbd_esc = cpu_to_fec32(estatus); 513 } 514 515 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 516 /* Save skb pointer */ 517 txq->tx_skbuff[index] = skb; 518 519 /* Make sure the updates to rest of the descriptor are performed before 520 * transferring ownership. 521 */ 522 wmb(); 523 524 /* Send it on its way. Tell FEC it's ready, interrupt when done, 525 * it's the last BD of the frame, and to put the CRC on the end. 526 */ 527 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 528 bdp->cbd_sc = cpu_to_fec16(status); 529 530 /* If this was the last BD in the ring, start at the beginning again. */ 531 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 532 533 skb_tx_timestamp(skb); 534 535 /* Make sure the update to bdp and tx_skbuff are performed before 536 * txq->bd.cur. 537 */ 538 wmb(); 539 txq->bd.cur = bdp; 540 541 /* Trigger transmission start */ 542 writel(0, txq->bd.reg_desc_active); 543 544 return 0; 545 } 546 547 static int 548 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 549 struct net_device *ndev, 550 struct bufdesc *bdp, int index, char *data, 551 int size, bool last_tcp, bool is_last) 552 { 553 struct fec_enet_private *fep = netdev_priv(ndev); 554 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 555 unsigned short status; 556 unsigned int estatus = 0; 557 dma_addr_t addr; 558 559 status = fec16_to_cpu(bdp->cbd_sc); 560 status &= ~BD_ENET_TX_STATS; 561 562 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 563 564 if (((unsigned long) data) & fep->tx_align || 565 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 566 memcpy(txq->tx_bounce[index], data, size); 567 data = txq->tx_bounce[index]; 568 569 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 570 swap_buffer(data, size); 571 } 572 573 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 574 if (dma_mapping_error(&fep->pdev->dev, addr)) { 575 dev_kfree_skb_any(skb); 576 if (net_ratelimit()) 577 netdev_err(ndev, "Tx DMA memory map failed\n"); 578 return NETDEV_TX_BUSY; 579 } 580 581 bdp->cbd_datlen = cpu_to_fec16(size); 582 bdp->cbd_bufaddr = cpu_to_fec32(addr); 583 584 if (fep->bufdesc_ex) { 585 if (fep->quirks & FEC_QUIRK_HAS_AVB) 586 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 587 if (skb->ip_summed == CHECKSUM_PARTIAL) 588 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 589 ebdp->cbd_bdu = 0; 590 ebdp->cbd_esc = cpu_to_fec32(estatus); 591 } 592 593 /* Handle the last BD specially */ 594 if (last_tcp) 595 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 596 if (is_last) { 597 status |= BD_ENET_TX_INTR; 598 if (fep->bufdesc_ex) 599 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 600 } 601 602 bdp->cbd_sc = cpu_to_fec16(status); 603 604 return 0; 605 } 606 607 static int 608 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 609 struct sk_buff *skb, struct net_device *ndev, 610 struct bufdesc *bdp, int index) 611 { 612 struct fec_enet_private *fep = netdev_priv(ndev); 613 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 614 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 615 void *bufaddr; 616 unsigned long dmabuf; 617 unsigned short status; 618 unsigned int estatus = 0; 619 620 status = fec16_to_cpu(bdp->cbd_sc); 621 status &= ~BD_ENET_TX_STATS; 622 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 623 624 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 625 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 626 if (((unsigned long)bufaddr) & fep->tx_align || 627 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 628 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 629 bufaddr = txq->tx_bounce[index]; 630 631 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 632 swap_buffer(bufaddr, hdr_len); 633 634 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 635 hdr_len, DMA_TO_DEVICE); 636 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 637 dev_kfree_skb_any(skb); 638 if (net_ratelimit()) 639 netdev_err(ndev, "Tx DMA memory map failed\n"); 640 return NETDEV_TX_BUSY; 641 } 642 } 643 644 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 645 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 646 647 if (fep->bufdesc_ex) { 648 if (fep->quirks & FEC_QUIRK_HAS_AVB) 649 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 650 if (skb->ip_summed == CHECKSUM_PARTIAL) 651 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 652 ebdp->cbd_bdu = 0; 653 ebdp->cbd_esc = cpu_to_fec32(estatus); 654 } 655 656 bdp->cbd_sc = cpu_to_fec16(status); 657 658 return 0; 659 } 660 661 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 662 struct sk_buff *skb, 663 struct net_device *ndev) 664 { 665 struct fec_enet_private *fep = netdev_priv(ndev); 666 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 667 int total_len, data_left; 668 struct bufdesc *bdp = txq->bd.cur; 669 struct tso_t tso; 670 unsigned int index = 0; 671 int ret; 672 673 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 674 dev_kfree_skb_any(skb); 675 if (net_ratelimit()) 676 netdev_err(ndev, "NOT enough BD for TSO!\n"); 677 return NETDEV_TX_OK; 678 } 679 680 /* Protocol checksum off-load for TCP and UDP. */ 681 if (fec_enet_clear_csum(skb, ndev)) { 682 dev_kfree_skb_any(skb); 683 return NETDEV_TX_OK; 684 } 685 686 /* Initialize the TSO handler, and prepare the first payload */ 687 tso_start(skb, &tso); 688 689 total_len = skb->len - hdr_len; 690 while (total_len > 0) { 691 char *hdr; 692 693 index = fec_enet_get_bd_index(bdp, &txq->bd); 694 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 695 total_len -= data_left; 696 697 /* prepare packet headers: MAC + IP + TCP */ 698 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 699 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 700 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 701 if (ret) 702 goto err_release; 703 704 while (data_left > 0) { 705 int size; 706 707 size = min_t(int, tso.size, data_left); 708 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 709 index = fec_enet_get_bd_index(bdp, &txq->bd); 710 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 711 bdp, index, 712 tso.data, size, 713 size == data_left, 714 total_len == 0); 715 if (ret) 716 goto err_release; 717 718 data_left -= size; 719 tso_build_data(skb, &tso, size); 720 } 721 722 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 723 } 724 725 /* Save skb pointer */ 726 txq->tx_skbuff[index] = skb; 727 728 skb_tx_timestamp(skb); 729 txq->bd.cur = bdp; 730 731 /* Trigger transmission start */ 732 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 733 !readl(txq->bd.reg_desc_active) || 734 !readl(txq->bd.reg_desc_active) || 735 !readl(txq->bd.reg_desc_active) || 736 !readl(txq->bd.reg_desc_active)) 737 writel(0, txq->bd.reg_desc_active); 738 739 return 0; 740 741 err_release: 742 /* TODO: Release all used data descriptors for TSO */ 743 return ret; 744 } 745 746 static netdev_tx_t 747 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 748 { 749 struct fec_enet_private *fep = netdev_priv(ndev); 750 int entries_free; 751 unsigned short queue; 752 struct fec_enet_priv_tx_q *txq; 753 struct netdev_queue *nq; 754 int ret; 755 756 queue = skb_get_queue_mapping(skb); 757 txq = fep->tx_queue[queue]; 758 nq = netdev_get_tx_queue(ndev, queue); 759 760 if (skb_is_gso(skb)) 761 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 762 else 763 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 764 if (ret) 765 return ret; 766 767 entries_free = fec_enet_get_free_txdesc_num(txq); 768 if (entries_free <= txq->tx_stop_threshold) 769 netif_tx_stop_queue(nq); 770 771 return NETDEV_TX_OK; 772 } 773 774 /* Init RX & TX buffer descriptors 775 */ 776 static void fec_enet_bd_init(struct net_device *dev) 777 { 778 struct fec_enet_private *fep = netdev_priv(dev); 779 struct fec_enet_priv_tx_q *txq; 780 struct fec_enet_priv_rx_q *rxq; 781 struct bufdesc *bdp; 782 unsigned int i; 783 unsigned int q; 784 785 for (q = 0; q < fep->num_rx_queues; q++) { 786 /* Initialize the receive buffer descriptors. */ 787 rxq = fep->rx_queue[q]; 788 bdp = rxq->bd.base; 789 790 for (i = 0; i < rxq->bd.ring_size; i++) { 791 792 /* Initialize the BD for every fragment in the page. */ 793 if (bdp->cbd_bufaddr) 794 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 795 else 796 bdp->cbd_sc = cpu_to_fec16(0); 797 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 798 } 799 800 /* Set the last buffer to wrap */ 801 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 802 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 803 804 rxq->bd.cur = rxq->bd.base; 805 } 806 807 for (q = 0; q < fep->num_tx_queues; q++) { 808 /* ...and the same for transmit */ 809 txq = fep->tx_queue[q]; 810 bdp = txq->bd.base; 811 txq->bd.cur = bdp; 812 813 for (i = 0; i < txq->bd.ring_size; i++) { 814 /* Initialize the BD for every fragment in the page. */ 815 bdp->cbd_sc = cpu_to_fec16(0); 816 if (txq->tx_skbuff[i]) { 817 dev_kfree_skb_any(txq->tx_skbuff[i]); 818 txq->tx_skbuff[i] = NULL; 819 } 820 bdp->cbd_bufaddr = cpu_to_fec32(0); 821 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 822 } 823 824 /* Set the last buffer to wrap */ 825 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 826 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 827 txq->dirty_tx = bdp; 828 } 829 } 830 831 static void fec_enet_active_rxring(struct net_device *ndev) 832 { 833 struct fec_enet_private *fep = netdev_priv(ndev); 834 int i; 835 836 for (i = 0; i < fep->num_rx_queues; i++) 837 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 838 } 839 840 static void fec_enet_enable_ring(struct net_device *ndev) 841 { 842 struct fec_enet_private *fep = netdev_priv(ndev); 843 struct fec_enet_priv_tx_q *txq; 844 struct fec_enet_priv_rx_q *rxq; 845 int i; 846 847 for (i = 0; i < fep->num_rx_queues; i++) { 848 rxq = fep->rx_queue[i]; 849 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 850 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 851 852 /* enable DMA1/2 */ 853 if (i) 854 writel(RCMR_MATCHEN | RCMR_CMP(i), 855 fep->hwp + FEC_RCMR(i)); 856 } 857 858 for (i = 0; i < fep->num_tx_queues; i++) { 859 txq = fep->tx_queue[i]; 860 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 861 862 /* enable DMA1/2 */ 863 if (i) 864 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 865 fep->hwp + FEC_DMA_CFG(i)); 866 } 867 } 868 869 static void fec_enet_reset_skb(struct net_device *ndev) 870 { 871 struct fec_enet_private *fep = netdev_priv(ndev); 872 struct fec_enet_priv_tx_q *txq; 873 int i, j; 874 875 for (i = 0; i < fep->num_tx_queues; i++) { 876 txq = fep->tx_queue[i]; 877 878 for (j = 0; j < txq->bd.ring_size; j++) { 879 if (txq->tx_skbuff[j]) { 880 dev_kfree_skb_any(txq->tx_skbuff[j]); 881 txq->tx_skbuff[j] = NULL; 882 } 883 } 884 } 885 } 886 887 /* 888 * This function is called to start or restart the FEC during a link 889 * change, transmit timeout, or to reconfigure the FEC. The network 890 * packet processing for this device must be stopped before this call. 891 */ 892 static void 893 fec_restart(struct net_device *ndev) 894 { 895 struct fec_enet_private *fep = netdev_priv(ndev); 896 u32 val; 897 u32 temp_mac[2]; 898 u32 rcntl = OPT_FRAME_SIZE | 0x04; 899 u32 ecntl = 0x2; /* ETHEREN */ 900 901 /* Whack a reset. We should wait for this. 902 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 903 * instead of reset MAC itself. 904 */ 905 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 906 writel(0, fep->hwp + FEC_ECNTRL); 907 } else { 908 writel(1, fep->hwp + FEC_ECNTRL); 909 udelay(10); 910 } 911 912 /* 913 * enet-mac reset will reset mac address registers too, 914 * so need to reconfigure it. 915 */ 916 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 917 writel((__force u32)cpu_to_be32(temp_mac[0]), 918 fep->hwp + FEC_ADDR_LOW); 919 writel((__force u32)cpu_to_be32(temp_mac[1]), 920 fep->hwp + FEC_ADDR_HIGH); 921 922 /* Clear any outstanding interrupt. */ 923 writel(0xffffffff, fep->hwp + FEC_IEVENT); 924 925 fec_enet_bd_init(ndev); 926 927 fec_enet_enable_ring(ndev); 928 929 /* Reset tx SKB buffers. */ 930 fec_enet_reset_skb(ndev); 931 932 /* Enable MII mode */ 933 if (fep->full_duplex == DUPLEX_FULL) { 934 /* FD enable */ 935 writel(0x04, fep->hwp + FEC_X_CNTRL); 936 } else { 937 /* No Rcv on Xmit */ 938 rcntl |= 0x02; 939 writel(0x0, fep->hwp + FEC_X_CNTRL); 940 } 941 942 /* Set MII speed */ 943 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 944 945 #if !defined(CONFIG_M5272) 946 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 947 val = readl(fep->hwp + FEC_RACC); 948 /* align IP header */ 949 val |= FEC_RACC_SHIFT16; 950 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 951 /* set RX checksum */ 952 val |= FEC_RACC_OPTIONS; 953 else 954 val &= ~FEC_RACC_OPTIONS; 955 writel(val, fep->hwp + FEC_RACC); 956 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 957 } 958 #endif 959 960 /* 961 * The phy interface and speed need to get configured 962 * differently on enet-mac. 963 */ 964 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 965 /* Enable flow control and length check */ 966 rcntl |= 0x40000000 | 0x00000020; 967 968 /* RGMII, RMII or MII */ 969 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 970 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 971 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 972 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 973 rcntl |= (1 << 6); 974 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 975 rcntl |= (1 << 8); 976 else 977 rcntl &= ~(1 << 8); 978 979 /* 1G, 100M or 10M */ 980 if (ndev->phydev) { 981 if (ndev->phydev->speed == SPEED_1000) 982 ecntl |= (1 << 5); 983 else if (ndev->phydev->speed == SPEED_100) 984 rcntl &= ~(1 << 9); 985 else 986 rcntl |= (1 << 9); 987 } 988 } else { 989 #ifdef FEC_MIIGSK_ENR 990 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 991 u32 cfgr; 992 /* disable the gasket and wait */ 993 writel(0, fep->hwp + FEC_MIIGSK_ENR); 994 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 995 udelay(1); 996 997 /* 998 * configure the gasket: 999 * RMII, 50 MHz, no loopback, no echo 1000 * MII, 25 MHz, no loopback, no echo 1001 */ 1002 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1003 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1004 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1005 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1006 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1007 1008 /* re-enable the gasket */ 1009 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1010 } 1011 #endif 1012 } 1013 1014 #if !defined(CONFIG_M5272) 1015 /* enable pause frame*/ 1016 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1017 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1018 ndev->phydev && ndev->phydev->pause)) { 1019 rcntl |= FEC_ENET_FCE; 1020 1021 /* set FIFO threshold parameter to reduce overrun */ 1022 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1023 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1024 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1025 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1026 1027 /* OPD */ 1028 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1029 } else { 1030 rcntl &= ~FEC_ENET_FCE; 1031 } 1032 #endif /* !defined(CONFIG_M5272) */ 1033 1034 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1035 1036 /* Setup multicast filter. */ 1037 set_multicast_list(ndev); 1038 #ifndef CONFIG_M5272 1039 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1040 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1041 #endif 1042 1043 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1044 /* enable ENET endian swap */ 1045 ecntl |= (1 << 8); 1046 /* enable ENET store and forward mode */ 1047 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1048 } 1049 1050 if (fep->bufdesc_ex) 1051 ecntl |= (1 << 4); 1052 1053 #ifndef CONFIG_M5272 1054 /* Enable the MIB statistic event counters */ 1055 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1056 #endif 1057 1058 /* And last, enable the transmit and receive processing */ 1059 writel(ecntl, fep->hwp + FEC_ECNTRL); 1060 fec_enet_active_rxring(ndev); 1061 1062 if (fep->bufdesc_ex) 1063 fec_ptp_start_cyclecounter(ndev); 1064 1065 /* Enable interrupts we wish to service */ 1066 if (fep->link) 1067 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1068 else 1069 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); 1070 1071 /* Init the interrupt coalescing */ 1072 fec_enet_itr_coal_init(ndev); 1073 1074 } 1075 1076 static void 1077 fec_stop(struct net_device *ndev) 1078 { 1079 struct fec_enet_private *fep = netdev_priv(ndev); 1080 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1081 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1082 u32 val; 1083 1084 /* We cannot expect a graceful transmit stop without link !!! */ 1085 if (fep->link) { 1086 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1087 udelay(10); 1088 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1089 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1090 } 1091 1092 /* Whack a reset. We should wait for this. 1093 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1094 * instead of reset MAC itself. 1095 */ 1096 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1097 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1098 writel(0, fep->hwp + FEC_ECNTRL); 1099 } else { 1100 writel(1, fep->hwp + FEC_ECNTRL); 1101 udelay(10); 1102 } 1103 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1104 } else { 1105 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1106 val = readl(fep->hwp + FEC_ECNTRL); 1107 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1108 writel(val, fep->hwp + FEC_ECNTRL); 1109 1110 if (pdata && pdata->sleep_mode_enable) 1111 pdata->sleep_mode_enable(true); 1112 } 1113 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1114 1115 /* We have to keep ENET enabled to have MII interrupt stay working */ 1116 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1117 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1118 writel(2, fep->hwp + FEC_ECNTRL); 1119 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1120 } 1121 } 1122 1123 1124 static void 1125 fec_timeout(struct net_device *ndev) 1126 { 1127 struct fec_enet_private *fep = netdev_priv(ndev); 1128 1129 fec_dump(ndev); 1130 1131 ndev->stats.tx_errors++; 1132 1133 schedule_work(&fep->tx_timeout_work); 1134 } 1135 1136 static void fec_enet_timeout_work(struct work_struct *work) 1137 { 1138 struct fec_enet_private *fep = 1139 container_of(work, struct fec_enet_private, tx_timeout_work); 1140 struct net_device *ndev = fep->netdev; 1141 1142 rtnl_lock(); 1143 if (netif_device_present(ndev) || netif_running(ndev)) { 1144 napi_disable(&fep->napi); 1145 netif_tx_lock_bh(ndev); 1146 fec_restart(ndev); 1147 netif_wake_queue(ndev); 1148 netif_tx_unlock_bh(ndev); 1149 napi_enable(&fep->napi); 1150 } 1151 rtnl_unlock(); 1152 } 1153 1154 static void 1155 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1156 struct skb_shared_hwtstamps *hwtstamps) 1157 { 1158 unsigned long flags; 1159 u64 ns; 1160 1161 spin_lock_irqsave(&fep->tmreg_lock, flags); 1162 ns = timecounter_cyc2time(&fep->tc, ts); 1163 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1164 1165 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1166 hwtstamps->hwtstamp = ns_to_ktime(ns); 1167 } 1168 1169 static void 1170 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1171 { 1172 struct fec_enet_private *fep; 1173 struct bufdesc *bdp; 1174 unsigned short status; 1175 struct sk_buff *skb; 1176 struct fec_enet_priv_tx_q *txq; 1177 struct netdev_queue *nq; 1178 int index = 0; 1179 int entries_free; 1180 1181 fep = netdev_priv(ndev); 1182 1183 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1184 1185 txq = fep->tx_queue[queue_id]; 1186 /* get next bdp of dirty_tx */ 1187 nq = netdev_get_tx_queue(ndev, queue_id); 1188 bdp = txq->dirty_tx; 1189 1190 /* get next bdp of dirty_tx */ 1191 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1192 1193 while (bdp != READ_ONCE(txq->bd.cur)) { 1194 /* Order the load of bd.cur and cbd_sc */ 1195 rmb(); 1196 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1197 if (status & BD_ENET_TX_READY) 1198 break; 1199 1200 index = fec_enet_get_bd_index(bdp, &txq->bd); 1201 1202 skb = txq->tx_skbuff[index]; 1203 txq->tx_skbuff[index] = NULL; 1204 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1205 dma_unmap_single(&fep->pdev->dev, 1206 fec32_to_cpu(bdp->cbd_bufaddr), 1207 fec16_to_cpu(bdp->cbd_datlen), 1208 DMA_TO_DEVICE); 1209 bdp->cbd_bufaddr = cpu_to_fec32(0); 1210 if (!skb) 1211 goto skb_done; 1212 1213 /* Check for errors. */ 1214 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1215 BD_ENET_TX_RL | BD_ENET_TX_UN | 1216 BD_ENET_TX_CSL)) { 1217 ndev->stats.tx_errors++; 1218 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1219 ndev->stats.tx_heartbeat_errors++; 1220 if (status & BD_ENET_TX_LC) /* Late collision */ 1221 ndev->stats.tx_window_errors++; 1222 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1223 ndev->stats.tx_aborted_errors++; 1224 if (status & BD_ENET_TX_UN) /* Underrun */ 1225 ndev->stats.tx_fifo_errors++; 1226 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1227 ndev->stats.tx_carrier_errors++; 1228 } else { 1229 ndev->stats.tx_packets++; 1230 ndev->stats.tx_bytes += skb->len; 1231 } 1232 1233 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && 1234 fep->bufdesc_ex) { 1235 struct skb_shared_hwtstamps shhwtstamps; 1236 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1237 1238 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1239 skb_tstamp_tx(skb, &shhwtstamps); 1240 } 1241 1242 /* Deferred means some collisions occurred during transmit, 1243 * but we eventually sent the packet OK. 1244 */ 1245 if (status & BD_ENET_TX_DEF) 1246 ndev->stats.collisions++; 1247 1248 /* Free the sk buffer associated with this last transmit */ 1249 dev_kfree_skb_any(skb); 1250 skb_done: 1251 /* Make sure the update to bdp and tx_skbuff are performed 1252 * before dirty_tx 1253 */ 1254 wmb(); 1255 txq->dirty_tx = bdp; 1256 1257 /* Update pointer to next buffer descriptor to be transmitted */ 1258 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1259 1260 /* Since we have freed up a buffer, the ring is no longer full 1261 */ 1262 if (netif_queue_stopped(ndev)) { 1263 entries_free = fec_enet_get_free_txdesc_num(txq); 1264 if (entries_free >= txq->tx_wake_threshold) 1265 netif_tx_wake_queue(nq); 1266 } 1267 } 1268 1269 /* ERR006538: Keep the transmitter going */ 1270 if (bdp != txq->bd.cur && 1271 readl(txq->bd.reg_desc_active) == 0) 1272 writel(0, txq->bd.reg_desc_active); 1273 } 1274 1275 static void 1276 fec_enet_tx(struct net_device *ndev) 1277 { 1278 struct fec_enet_private *fep = netdev_priv(ndev); 1279 u16 queue_id; 1280 /* First process class A queue, then Class B and Best Effort queue */ 1281 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { 1282 clear_bit(queue_id, &fep->work_tx); 1283 fec_enet_tx_queue(ndev, queue_id); 1284 } 1285 return; 1286 } 1287 1288 static int 1289 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1290 { 1291 struct fec_enet_private *fep = netdev_priv(ndev); 1292 int off; 1293 1294 off = ((unsigned long)skb->data) & fep->rx_align; 1295 if (off) 1296 skb_reserve(skb, fep->rx_align + 1 - off); 1297 1298 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1299 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1300 if (net_ratelimit()) 1301 netdev_err(ndev, "Rx DMA memory map failed\n"); 1302 return -ENOMEM; 1303 } 1304 1305 return 0; 1306 } 1307 1308 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1309 struct bufdesc *bdp, u32 length, bool swap) 1310 { 1311 struct fec_enet_private *fep = netdev_priv(ndev); 1312 struct sk_buff *new_skb; 1313 1314 if (length > fep->rx_copybreak) 1315 return false; 1316 1317 new_skb = netdev_alloc_skb(ndev, length); 1318 if (!new_skb) 1319 return false; 1320 1321 dma_sync_single_for_cpu(&fep->pdev->dev, 1322 fec32_to_cpu(bdp->cbd_bufaddr), 1323 FEC_ENET_RX_FRSIZE - fep->rx_align, 1324 DMA_FROM_DEVICE); 1325 if (!swap) 1326 memcpy(new_skb->data, (*skb)->data, length); 1327 else 1328 swap_buffer2(new_skb->data, (*skb)->data, length); 1329 *skb = new_skb; 1330 1331 return true; 1332 } 1333 1334 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1335 * When we update through the ring, if the next incoming buffer has 1336 * not been given to the system, we just set the empty indicator, 1337 * effectively tossing the packet. 1338 */ 1339 static int 1340 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1341 { 1342 struct fec_enet_private *fep = netdev_priv(ndev); 1343 struct fec_enet_priv_rx_q *rxq; 1344 struct bufdesc *bdp; 1345 unsigned short status; 1346 struct sk_buff *skb_new = NULL; 1347 struct sk_buff *skb; 1348 ushort pkt_len; 1349 __u8 *data; 1350 int pkt_received = 0; 1351 struct bufdesc_ex *ebdp = NULL; 1352 bool vlan_packet_rcvd = false; 1353 u16 vlan_tag; 1354 int index = 0; 1355 bool is_copybreak; 1356 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1357 1358 #ifdef CONFIG_M532x 1359 flush_cache_all(); 1360 #endif 1361 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1362 rxq = fep->rx_queue[queue_id]; 1363 1364 /* First, grab all of the stats for the incoming packet. 1365 * These get messed up if we get called due to a busy condition. 1366 */ 1367 bdp = rxq->bd.cur; 1368 1369 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1370 1371 if (pkt_received >= budget) 1372 break; 1373 pkt_received++; 1374 1375 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1376 1377 /* Check for errors. */ 1378 status ^= BD_ENET_RX_LAST; 1379 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1380 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1381 BD_ENET_RX_CL)) { 1382 ndev->stats.rx_errors++; 1383 if (status & BD_ENET_RX_OV) { 1384 /* FIFO overrun */ 1385 ndev->stats.rx_fifo_errors++; 1386 goto rx_processing_done; 1387 } 1388 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1389 | BD_ENET_RX_LAST)) { 1390 /* Frame too long or too short. */ 1391 ndev->stats.rx_length_errors++; 1392 if (status & BD_ENET_RX_LAST) 1393 netdev_err(ndev, "rcv is not +last\n"); 1394 } 1395 if (status & BD_ENET_RX_CR) /* CRC Error */ 1396 ndev->stats.rx_crc_errors++; 1397 /* Report late collisions as a frame error. */ 1398 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1399 ndev->stats.rx_frame_errors++; 1400 goto rx_processing_done; 1401 } 1402 1403 /* Process the incoming frame. */ 1404 ndev->stats.rx_packets++; 1405 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1406 ndev->stats.rx_bytes += pkt_len; 1407 1408 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1409 skb = rxq->rx_skbuff[index]; 1410 1411 /* The packet length includes FCS, but we don't want to 1412 * include that when passing upstream as it messes up 1413 * bridging applications. 1414 */ 1415 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1416 need_swap); 1417 if (!is_copybreak) { 1418 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1419 if (unlikely(!skb_new)) { 1420 ndev->stats.rx_dropped++; 1421 goto rx_processing_done; 1422 } 1423 dma_unmap_single(&fep->pdev->dev, 1424 fec32_to_cpu(bdp->cbd_bufaddr), 1425 FEC_ENET_RX_FRSIZE - fep->rx_align, 1426 DMA_FROM_DEVICE); 1427 } 1428 1429 prefetch(skb->data - NET_IP_ALIGN); 1430 skb_put(skb, pkt_len - 4); 1431 data = skb->data; 1432 1433 if (!is_copybreak && need_swap) 1434 swap_buffer(data, pkt_len); 1435 1436 #if !defined(CONFIG_M5272) 1437 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1438 data = skb_pull_inline(skb, 2); 1439 #endif 1440 1441 /* Extract the enhanced buffer descriptor */ 1442 ebdp = NULL; 1443 if (fep->bufdesc_ex) 1444 ebdp = (struct bufdesc_ex *)bdp; 1445 1446 /* If this is a VLAN packet remove the VLAN Tag */ 1447 vlan_packet_rcvd = false; 1448 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1449 fep->bufdesc_ex && 1450 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1451 /* Push and remove the vlan tag */ 1452 struct vlan_hdr *vlan_header = 1453 (struct vlan_hdr *) (data + ETH_HLEN); 1454 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1455 1456 vlan_packet_rcvd = true; 1457 1458 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1459 skb_pull(skb, VLAN_HLEN); 1460 } 1461 1462 skb->protocol = eth_type_trans(skb, ndev); 1463 1464 /* Get receive timestamp from the skb */ 1465 if (fep->hwts_rx_en && fep->bufdesc_ex) 1466 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1467 skb_hwtstamps(skb)); 1468 1469 if (fep->bufdesc_ex && 1470 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1471 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1472 /* don't check it */ 1473 skb->ip_summed = CHECKSUM_UNNECESSARY; 1474 } else { 1475 skb_checksum_none_assert(skb); 1476 } 1477 } 1478 1479 /* Handle received VLAN packets */ 1480 if (vlan_packet_rcvd) 1481 __vlan_hwaccel_put_tag(skb, 1482 htons(ETH_P_8021Q), 1483 vlan_tag); 1484 1485 napi_gro_receive(&fep->napi, skb); 1486 1487 if (is_copybreak) { 1488 dma_sync_single_for_device(&fep->pdev->dev, 1489 fec32_to_cpu(bdp->cbd_bufaddr), 1490 FEC_ENET_RX_FRSIZE - fep->rx_align, 1491 DMA_FROM_DEVICE); 1492 } else { 1493 rxq->rx_skbuff[index] = skb_new; 1494 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1495 } 1496 1497 rx_processing_done: 1498 /* Clear the status flags for this buffer */ 1499 status &= ~BD_ENET_RX_STATS; 1500 1501 /* Mark the buffer empty */ 1502 status |= BD_ENET_RX_EMPTY; 1503 1504 if (fep->bufdesc_ex) { 1505 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1506 1507 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1508 ebdp->cbd_prot = 0; 1509 ebdp->cbd_bdu = 0; 1510 } 1511 /* Make sure the updates to rest of the descriptor are 1512 * performed before transferring ownership. 1513 */ 1514 wmb(); 1515 bdp->cbd_sc = cpu_to_fec16(status); 1516 1517 /* Update BD pointer to next entry */ 1518 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1519 1520 /* Doing this here will keep the FEC running while we process 1521 * incoming frames. On a heavily loaded network, we should be 1522 * able to keep up at the expense of system resources. 1523 */ 1524 writel(0, rxq->bd.reg_desc_active); 1525 } 1526 rxq->bd.cur = bdp; 1527 return pkt_received; 1528 } 1529 1530 static int 1531 fec_enet_rx(struct net_device *ndev, int budget) 1532 { 1533 int pkt_received = 0; 1534 u16 queue_id; 1535 struct fec_enet_private *fep = netdev_priv(ndev); 1536 1537 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { 1538 int ret; 1539 1540 ret = fec_enet_rx_queue(ndev, 1541 budget - pkt_received, queue_id); 1542 1543 if (ret < budget - pkt_received) 1544 clear_bit(queue_id, &fep->work_rx); 1545 1546 pkt_received += ret; 1547 } 1548 return pkt_received; 1549 } 1550 1551 static bool 1552 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) 1553 { 1554 if (int_events == 0) 1555 return false; 1556 1557 if (int_events & FEC_ENET_RXF) 1558 fep->work_rx |= (1 << 2); 1559 if (int_events & FEC_ENET_RXF_1) 1560 fep->work_rx |= (1 << 0); 1561 if (int_events & FEC_ENET_RXF_2) 1562 fep->work_rx |= (1 << 1); 1563 1564 if (int_events & FEC_ENET_TXF) 1565 fep->work_tx |= (1 << 2); 1566 if (int_events & FEC_ENET_TXF_1) 1567 fep->work_tx |= (1 << 0); 1568 if (int_events & FEC_ENET_TXF_2) 1569 fep->work_tx |= (1 << 1); 1570 1571 return true; 1572 } 1573 1574 static irqreturn_t 1575 fec_enet_interrupt(int irq, void *dev_id) 1576 { 1577 struct net_device *ndev = dev_id; 1578 struct fec_enet_private *fep = netdev_priv(ndev); 1579 uint int_events; 1580 irqreturn_t ret = IRQ_NONE; 1581 1582 int_events = readl(fep->hwp + FEC_IEVENT); 1583 writel(int_events, fep->hwp + FEC_IEVENT); 1584 fec_enet_collect_events(fep, int_events); 1585 1586 if ((fep->work_tx || fep->work_rx) && fep->link) { 1587 ret = IRQ_HANDLED; 1588 1589 if (napi_schedule_prep(&fep->napi)) { 1590 /* Disable the NAPI interrupts */ 1591 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK); 1592 __napi_schedule(&fep->napi); 1593 } 1594 } 1595 1596 if (int_events & FEC_ENET_MII) { 1597 ret = IRQ_HANDLED; 1598 complete(&fep->mdio_done); 1599 } 1600 1601 if (fep->ptp_clock) 1602 fec_ptp_check_pps_event(fep); 1603 1604 return ret; 1605 } 1606 1607 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1608 { 1609 struct net_device *ndev = napi->dev; 1610 struct fec_enet_private *fep = netdev_priv(ndev); 1611 int pkts; 1612 1613 pkts = fec_enet_rx(ndev, budget); 1614 1615 fec_enet_tx(ndev); 1616 1617 if (pkts < budget) { 1618 napi_complete_done(napi, pkts); 1619 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1620 } 1621 return pkts; 1622 } 1623 1624 /* ------------------------------------------------------------------------- */ 1625 static void fec_get_mac(struct net_device *ndev) 1626 { 1627 struct fec_enet_private *fep = netdev_priv(ndev); 1628 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1629 unsigned char *iap, tmpaddr[ETH_ALEN]; 1630 1631 /* 1632 * try to get mac address in following order: 1633 * 1634 * 1) module parameter via kernel command line in form 1635 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1636 */ 1637 iap = macaddr; 1638 1639 /* 1640 * 2) from device tree data 1641 */ 1642 if (!is_valid_ether_addr(iap)) { 1643 struct device_node *np = fep->pdev->dev.of_node; 1644 if (np) { 1645 const char *mac = of_get_mac_address(np); 1646 if (mac) 1647 iap = (unsigned char *) mac; 1648 } 1649 } 1650 1651 /* 1652 * 3) from flash or fuse (via platform data) 1653 */ 1654 if (!is_valid_ether_addr(iap)) { 1655 #ifdef CONFIG_M5272 1656 if (FEC_FLASHMAC) 1657 iap = (unsigned char *)FEC_FLASHMAC; 1658 #else 1659 if (pdata) 1660 iap = (unsigned char *)&pdata->mac; 1661 #endif 1662 } 1663 1664 /* 1665 * 4) FEC mac registers set by bootloader 1666 */ 1667 if (!is_valid_ether_addr(iap)) { 1668 *((__be32 *) &tmpaddr[0]) = 1669 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1670 *((__be16 *) &tmpaddr[4]) = 1671 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1672 iap = &tmpaddr[0]; 1673 } 1674 1675 /* 1676 * 5) random mac address 1677 */ 1678 if (!is_valid_ether_addr(iap)) { 1679 /* Report it and use a random ethernet address instead */ 1680 netdev_err(ndev, "Invalid MAC address: %pM\n", iap); 1681 eth_hw_addr_random(ndev); 1682 netdev_info(ndev, "Using random MAC address: %pM\n", 1683 ndev->dev_addr); 1684 return; 1685 } 1686 1687 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1688 1689 /* Adjust MAC if using macaddr */ 1690 if (iap == macaddr) 1691 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1692 } 1693 1694 /* ------------------------------------------------------------------------- */ 1695 1696 /* 1697 * Phy section 1698 */ 1699 static void fec_enet_adjust_link(struct net_device *ndev) 1700 { 1701 struct fec_enet_private *fep = netdev_priv(ndev); 1702 struct phy_device *phy_dev = ndev->phydev; 1703 int status_change = 0; 1704 1705 /* Prevent a state halted on mii error */ 1706 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { 1707 phy_dev->state = PHY_RESUMING; 1708 return; 1709 } 1710 1711 /* 1712 * If the netdev is down, or is going down, we're not interested 1713 * in link state events, so just mark our idea of the link as down 1714 * and ignore the event. 1715 */ 1716 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1717 fep->link = 0; 1718 } else if (phy_dev->link) { 1719 if (!fep->link) { 1720 fep->link = phy_dev->link; 1721 status_change = 1; 1722 } 1723 1724 if (fep->full_duplex != phy_dev->duplex) { 1725 fep->full_duplex = phy_dev->duplex; 1726 status_change = 1; 1727 } 1728 1729 if (phy_dev->speed != fep->speed) { 1730 fep->speed = phy_dev->speed; 1731 status_change = 1; 1732 } 1733 1734 /* if any of the above changed restart the FEC */ 1735 if (status_change) { 1736 napi_disable(&fep->napi); 1737 netif_tx_lock_bh(ndev); 1738 fec_restart(ndev); 1739 netif_wake_queue(ndev); 1740 netif_tx_unlock_bh(ndev); 1741 napi_enable(&fep->napi); 1742 } 1743 } else { 1744 if (fep->link) { 1745 napi_disable(&fep->napi); 1746 netif_tx_lock_bh(ndev); 1747 fec_stop(ndev); 1748 netif_tx_unlock_bh(ndev); 1749 napi_enable(&fep->napi); 1750 fep->link = phy_dev->link; 1751 status_change = 1; 1752 } 1753 } 1754 1755 if (status_change) 1756 phy_print_status(phy_dev); 1757 } 1758 1759 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1760 { 1761 struct fec_enet_private *fep = bus->priv; 1762 struct device *dev = &fep->pdev->dev; 1763 unsigned long time_left; 1764 int ret = 0; 1765 1766 ret = pm_runtime_get_sync(dev); 1767 if (ret < 0) 1768 return ret; 1769 1770 fep->mii_timeout = 0; 1771 reinit_completion(&fep->mdio_done); 1772 1773 /* start a read op */ 1774 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | 1775 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1776 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1777 1778 /* wait for end of transfer */ 1779 time_left = wait_for_completion_timeout(&fep->mdio_done, 1780 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1781 if (time_left == 0) { 1782 fep->mii_timeout = 1; 1783 netdev_err(fep->netdev, "MDIO read timeout\n"); 1784 ret = -ETIMEDOUT; 1785 goto out; 1786 } 1787 1788 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1789 1790 out: 1791 pm_runtime_mark_last_busy(dev); 1792 pm_runtime_put_autosuspend(dev); 1793 1794 return ret; 1795 } 1796 1797 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1798 u16 value) 1799 { 1800 struct fec_enet_private *fep = bus->priv; 1801 struct device *dev = &fep->pdev->dev; 1802 unsigned long time_left; 1803 int ret; 1804 1805 ret = pm_runtime_get_sync(dev); 1806 if (ret < 0) 1807 return ret; 1808 else 1809 ret = 0; 1810 1811 fep->mii_timeout = 0; 1812 reinit_completion(&fep->mdio_done); 1813 1814 /* start a write op */ 1815 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | 1816 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1817 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1818 fep->hwp + FEC_MII_DATA); 1819 1820 /* wait for end of transfer */ 1821 time_left = wait_for_completion_timeout(&fep->mdio_done, 1822 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1823 if (time_left == 0) { 1824 fep->mii_timeout = 1; 1825 netdev_err(fep->netdev, "MDIO write timeout\n"); 1826 ret = -ETIMEDOUT; 1827 } 1828 1829 pm_runtime_mark_last_busy(dev); 1830 pm_runtime_put_autosuspend(dev); 1831 1832 return ret; 1833 } 1834 1835 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1836 { 1837 struct fec_enet_private *fep = netdev_priv(ndev); 1838 int ret; 1839 1840 if (enable) { 1841 ret = clk_prepare_enable(fep->clk_ahb); 1842 if (ret) 1843 return ret; 1844 1845 ret = clk_prepare_enable(fep->clk_enet_out); 1846 if (ret) 1847 goto failed_clk_enet_out; 1848 1849 if (fep->clk_ptp) { 1850 mutex_lock(&fep->ptp_clk_mutex); 1851 ret = clk_prepare_enable(fep->clk_ptp); 1852 if (ret) { 1853 mutex_unlock(&fep->ptp_clk_mutex); 1854 goto failed_clk_ptp; 1855 } else { 1856 fep->ptp_clk_on = true; 1857 } 1858 mutex_unlock(&fep->ptp_clk_mutex); 1859 } 1860 1861 ret = clk_prepare_enable(fep->clk_ref); 1862 if (ret) 1863 goto failed_clk_ref; 1864 } else { 1865 clk_disable_unprepare(fep->clk_ahb); 1866 clk_disable_unprepare(fep->clk_enet_out); 1867 if (fep->clk_ptp) { 1868 mutex_lock(&fep->ptp_clk_mutex); 1869 clk_disable_unprepare(fep->clk_ptp); 1870 fep->ptp_clk_on = false; 1871 mutex_unlock(&fep->ptp_clk_mutex); 1872 } 1873 clk_disable_unprepare(fep->clk_ref); 1874 } 1875 1876 return 0; 1877 1878 failed_clk_ref: 1879 if (fep->clk_ref) 1880 clk_disable_unprepare(fep->clk_ref); 1881 failed_clk_ptp: 1882 if (fep->clk_enet_out) 1883 clk_disable_unprepare(fep->clk_enet_out); 1884 failed_clk_enet_out: 1885 clk_disable_unprepare(fep->clk_ahb); 1886 1887 return ret; 1888 } 1889 1890 static int fec_enet_mii_probe(struct net_device *ndev) 1891 { 1892 struct fec_enet_private *fep = netdev_priv(ndev); 1893 struct phy_device *phy_dev = NULL; 1894 char mdio_bus_id[MII_BUS_ID_SIZE]; 1895 char phy_name[MII_BUS_ID_SIZE + 3]; 1896 int phy_id; 1897 int dev_id = fep->dev_id; 1898 1899 if (fep->phy_node) { 1900 phy_dev = of_phy_connect(ndev, fep->phy_node, 1901 &fec_enet_adjust_link, 0, 1902 fep->phy_interface); 1903 if (!phy_dev) 1904 return -ENODEV; 1905 } else { 1906 /* check for attached phy */ 1907 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 1908 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 1909 continue; 1910 if (dev_id--) 1911 continue; 1912 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 1913 break; 1914 } 1915 1916 if (phy_id >= PHY_MAX_ADDR) { 1917 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 1918 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 1919 phy_id = 0; 1920 } 1921 1922 snprintf(phy_name, sizeof(phy_name), 1923 PHY_ID_FMT, mdio_bus_id, phy_id); 1924 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 1925 fep->phy_interface); 1926 } 1927 1928 if (IS_ERR(phy_dev)) { 1929 netdev_err(ndev, "could not attach to PHY\n"); 1930 return PTR_ERR(phy_dev); 1931 } 1932 1933 /* mask with MAC supported features */ 1934 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 1935 phy_dev->supported &= PHY_GBIT_FEATURES; 1936 phy_dev->supported &= ~SUPPORTED_1000baseT_Half; 1937 #if !defined(CONFIG_M5272) 1938 phy_dev->supported |= SUPPORTED_Pause; 1939 #endif 1940 } 1941 else 1942 phy_dev->supported &= PHY_BASIC_FEATURES; 1943 1944 phy_dev->advertising = phy_dev->supported; 1945 1946 fep->link = 0; 1947 fep->full_duplex = 0; 1948 1949 phy_attached_info(phy_dev); 1950 1951 return 0; 1952 } 1953 1954 static int fec_enet_mii_init(struct platform_device *pdev) 1955 { 1956 static struct mii_bus *fec0_mii_bus; 1957 struct net_device *ndev = platform_get_drvdata(pdev); 1958 struct fec_enet_private *fep = netdev_priv(ndev); 1959 struct device_node *node; 1960 int err = -ENXIO; 1961 u32 mii_speed, holdtime; 1962 1963 /* 1964 * The i.MX28 dual fec interfaces are not equal. 1965 * Here are the differences: 1966 * 1967 * - fec0 supports MII & RMII modes while fec1 only supports RMII 1968 * - fec0 acts as the 1588 time master while fec1 is slave 1969 * - external phys can only be configured by fec0 1970 * 1971 * That is to say fec1 can not work independently. It only works 1972 * when fec0 is working. The reason behind this design is that the 1973 * second interface is added primarily for Switch mode. 1974 * 1975 * Because of the last point above, both phys are attached on fec0 1976 * mdio interface in board design, and need to be configured by 1977 * fec0 mii_bus. 1978 */ 1979 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 1980 /* fec1 uses fec0 mii_bus */ 1981 if (mii_cnt && fec0_mii_bus) { 1982 fep->mii_bus = fec0_mii_bus; 1983 mii_cnt++; 1984 return 0; 1985 } 1986 return -ENOENT; 1987 } 1988 1989 fep->mii_timeout = 0; 1990 1991 /* 1992 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) 1993 * 1994 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 1995 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 1996 * Reference Manual has an error on this, and gets fixed on i.MX6Q 1997 * document. 1998 */ 1999 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); 2000 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2001 mii_speed--; 2002 if (mii_speed > 63) { 2003 dev_err(&pdev->dev, 2004 "fec clock (%lu) to fast to get right mii speed\n", 2005 clk_get_rate(fep->clk_ipg)); 2006 err = -EINVAL; 2007 goto err_out; 2008 } 2009 2010 /* 2011 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2012 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2013 * versions are RAZ there, so just ignore the difference and write the 2014 * register always. 2015 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2016 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2017 * output. 2018 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2019 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2020 * holdtime cannot result in a value greater than 3. 2021 */ 2022 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2023 2024 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2025 2026 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2027 2028 fep->mii_bus = mdiobus_alloc(); 2029 if (fep->mii_bus == NULL) { 2030 err = -ENOMEM; 2031 goto err_out; 2032 } 2033 2034 fep->mii_bus->name = "fec_enet_mii_bus"; 2035 fep->mii_bus->read = fec_enet_mdio_read; 2036 fep->mii_bus->write = fec_enet_mdio_write; 2037 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2038 pdev->name, fep->dev_id + 1); 2039 fep->mii_bus->priv = fep; 2040 fep->mii_bus->parent = &pdev->dev; 2041 2042 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2043 if (node) { 2044 err = of_mdiobus_register(fep->mii_bus, node); 2045 of_node_put(node); 2046 } else { 2047 err = mdiobus_register(fep->mii_bus); 2048 } 2049 2050 if (err) 2051 goto err_out_free_mdiobus; 2052 2053 mii_cnt++; 2054 2055 /* save fec0 mii_bus */ 2056 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2057 fec0_mii_bus = fep->mii_bus; 2058 2059 return 0; 2060 2061 err_out_free_mdiobus: 2062 mdiobus_free(fep->mii_bus); 2063 err_out: 2064 return err; 2065 } 2066 2067 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2068 { 2069 if (--mii_cnt == 0) { 2070 mdiobus_unregister(fep->mii_bus); 2071 mdiobus_free(fep->mii_bus); 2072 } 2073 } 2074 2075 static void fec_enet_get_drvinfo(struct net_device *ndev, 2076 struct ethtool_drvinfo *info) 2077 { 2078 struct fec_enet_private *fep = netdev_priv(ndev); 2079 2080 strlcpy(info->driver, fep->pdev->dev.driver->name, 2081 sizeof(info->driver)); 2082 strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); 2083 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2084 } 2085 2086 static int fec_enet_get_regs_len(struct net_device *ndev) 2087 { 2088 struct fec_enet_private *fep = netdev_priv(ndev); 2089 struct resource *r; 2090 int s = 0; 2091 2092 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2093 if (r) 2094 s = resource_size(r); 2095 2096 return s; 2097 } 2098 2099 /* List of registers that can be safety be read to dump them with ethtool */ 2100 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2101 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) 2102 static u32 fec_enet_register_offset[] = { 2103 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2104 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2105 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2106 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2107 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2108 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2109 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2110 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2111 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2112 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2113 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2114 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2115 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2116 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2117 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2118 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2119 RMON_T_P_GTE2048, RMON_T_OCTETS, 2120 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2121 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2122 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2123 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2124 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2125 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2126 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2127 RMON_R_P_GTE2048, RMON_R_OCTETS, 2128 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2129 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2130 }; 2131 #else 2132 static u32 fec_enet_register_offset[] = { 2133 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2134 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2135 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2136 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2137 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2138 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2139 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2140 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2141 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2142 }; 2143 #endif 2144 2145 static void fec_enet_get_regs(struct net_device *ndev, 2146 struct ethtool_regs *regs, void *regbuf) 2147 { 2148 struct fec_enet_private *fep = netdev_priv(ndev); 2149 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2150 u32 *buf = (u32 *)regbuf; 2151 u32 i, off; 2152 2153 memset(buf, 0, regs->len); 2154 2155 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2156 off = fec_enet_register_offset[i] / 4; 2157 buf[off] = readl(&theregs[off]); 2158 } 2159 } 2160 2161 static int fec_enet_get_ts_info(struct net_device *ndev, 2162 struct ethtool_ts_info *info) 2163 { 2164 struct fec_enet_private *fep = netdev_priv(ndev); 2165 2166 if (fep->bufdesc_ex) { 2167 2168 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2169 SOF_TIMESTAMPING_RX_SOFTWARE | 2170 SOF_TIMESTAMPING_SOFTWARE | 2171 SOF_TIMESTAMPING_TX_HARDWARE | 2172 SOF_TIMESTAMPING_RX_HARDWARE | 2173 SOF_TIMESTAMPING_RAW_HARDWARE; 2174 if (fep->ptp_clock) 2175 info->phc_index = ptp_clock_index(fep->ptp_clock); 2176 else 2177 info->phc_index = -1; 2178 2179 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2180 (1 << HWTSTAMP_TX_ON); 2181 2182 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2183 (1 << HWTSTAMP_FILTER_ALL); 2184 return 0; 2185 } else { 2186 return ethtool_op_get_ts_info(ndev, info); 2187 } 2188 } 2189 2190 #if !defined(CONFIG_M5272) 2191 2192 static void fec_enet_get_pauseparam(struct net_device *ndev, 2193 struct ethtool_pauseparam *pause) 2194 { 2195 struct fec_enet_private *fep = netdev_priv(ndev); 2196 2197 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2198 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2199 pause->rx_pause = pause->tx_pause; 2200 } 2201 2202 static int fec_enet_set_pauseparam(struct net_device *ndev, 2203 struct ethtool_pauseparam *pause) 2204 { 2205 struct fec_enet_private *fep = netdev_priv(ndev); 2206 2207 if (!ndev->phydev) 2208 return -ENODEV; 2209 2210 if (pause->tx_pause != pause->rx_pause) { 2211 netdev_info(ndev, 2212 "hardware only support enable/disable both tx and rx"); 2213 return -EINVAL; 2214 } 2215 2216 fep->pause_flag = 0; 2217 2218 /* tx pause must be same as rx pause */ 2219 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2220 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2221 2222 if (pause->rx_pause || pause->autoneg) { 2223 ndev->phydev->supported |= ADVERTISED_Pause; 2224 ndev->phydev->advertising |= ADVERTISED_Pause; 2225 } else { 2226 ndev->phydev->supported &= ~ADVERTISED_Pause; 2227 ndev->phydev->advertising &= ~ADVERTISED_Pause; 2228 } 2229 2230 if (pause->autoneg) { 2231 if (netif_running(ndev)) 2232 fec_stop(ndev); 2233 phy_start_aneg(ndev->phydev); 2234 } 2235 if (netif_running(ndev)) { 2236 napi_disable(&fep->napi); 2237 netif_tx_lock_bh(ndev); 2238 fec_restart(ndev); 2239 netif_wake_queue(ndev); 2240 netif_tx_unlock_bh(ndev); 2241 napi_enable(&fep->napi); 2242 } 2243 2244 return 0; 2245 } 2246 2247 static const struct fec_stat { 2248 char name[ETH_GSTRING_LEN]; 2249 u16 offset; 2250 } fec_stats[] = { 2251 /* RMON TX */ 2252 { "tx_dropped", RMON_T_DROP }, 2253 { "tx_packets", RMON_T_PACKETS }, 2254 { "tx_broadcast", RMON_T_BC_PKT }, 2255 { "tx_multicast", RMON_T_MC_PKT }, 2256 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2257 { "tx_undersize", RMON_T_UNDERSIZE }, 2258 { "tx_oversize", RMON_T_OVERSIZE }, 2259 { "tx_fragment", RMON_T_FRAG }, 2260 { "tx_jabber", RMON_T_JAB }, 2261 { "tx_collision", RMON_T_COL }, 2262 { "tx_64byte", RMON_T_P64 }, 2263 { "tx_65to127byte", RMON_T_P65TO127 }, 2264 { "tx_128to255byte", RMON_T_P128TO255 }, 2265 { "tx_256to511byte", RMON_T_P256TO511 }, 2266 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2267 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2268 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2269 { "tx_octets", RMON_T_OCTETS }, 2270 2271 /* IEEE TX */ 2272 { "IEEE_tx_drop", IEEE_T_DROP }, 2273 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2274 { "IEEE_tx_1col", IEEE_T_1COL }, 2275 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2276 { "IEEE_tx_def", IEEE_T_DEF }, 2277 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2278 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2279 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2280 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2281 { "IEEE_tx_sqe", IEEE_T_SQE }, 2282 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2283 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2284 2285 /* RMON RX */ 2286 { "rx_packets", RMON_R_PACKETS }, 2287 { "rx_broadcast", RMON_R_BC_PKT }, 2288 { "rx_multicast", RMON_R_MC_PKT }, 2289 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2290 { "rx_undersize", RMON_R_UNDERSIZE }, 2291 { "rx_oversize", RMON_R_OVERSIZE }, 2292 { "rx_fragment", RMON_R_FRAG }, 2293 { "rx_jabber", RMON_R_JAB }, 2294 { "rx_64byte", RMON_R_P64 }, 2295 { "rx_65to127byte", RMON_R_P65TO127 }, 2296 { "rx_128to255byte", RMON_R_P128TO255 }, 2297 { "rx_256to511byte", RMON_R_P256TO511 }, 2298 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2299 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2300 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2301 { "rx_octets", RMON_R_OCTETS }, 2302 2303 /* IEEE RX */ 2304 { "IEEE_rx_drop", IEEE_R_DROP }, 2305 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2306 { "IEEE_rx_crc", IEEE_R_CRC }, 2307 { "IEEE_rx_align", IEEE_R_ALIGN }, 2308 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2309 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2310 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2311 }; 2312 2313 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2314 2315 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2316 { 2317 struct fec_enet_private *fep = netdev_priv(dev); 2318 int i; 2319 2320 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2321 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2322 } 2323 2324 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2325 struct ethtool_stats *stats, u64 *data) 2326 { 2327 struct fec_enet_private *fep = netdev_priv(dev); 2328 2329 if (netif_running(dev)) 2330 fec_enet_update_ethtool_stats(dev); 2331 2332 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2333 } 2334 2335 static void fec_enet_get_strings(struct net_device *netdev, 2336 u32 stringset, u8 *data) 2337 { 2338 int i; 2339 switch (stringset) { 2340 case ETH_SS_STATS: 2341 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2342 memcpy(data + i * ETH_GSTRING_LEN, 2343 fec_stats[i].name, ETH_GSTRING_LEN); 2344 break; 2345 } 2346 } 2347 2348 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2349 { 2350 switch (sset) { 2351 case ETH_SS_STATS: 2352 return ARRAY_SIZE(fec_stats); 2353 default: 2354 return -EOPNOTSUPP; 2355 } 2356 } 2357 2358 #else /* !defined(CONFIG_M5272) */ 2359 #define FEC_STATS_SIZE 0 2360 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2361 { 2362 } 2363 #endif /* !defined(CONFIG_M5272) */ 2364 2365 /* ITR clock source is enet system clock (clk_ahb). 2366 * TCTT unit is cycle_ns * 64 cycle 2367 * So, the ICTT value = X us / (cycle_ns * 64) 2368 */ 2369 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2370 { 2371 struct fec_enet_private *fep = netdev_priv(ndev); 2372 2373 return us * (fep->itr_clk_rate / 64000) / 1000; 2374 } 2375 2376 /* Set threshold for interrupt coalescing */ 2377 static void fec_enet_itr_coal_set(struct net_device *ndev) 2378 { 2379 struct fec_enet_private *fep = netdev_priv(ndev); 2380 int rx_itr, tx_itr; 2381 2382 /* Must be greater than zero to avoid unpredictable behavior */ 2383 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2384 !fep->tx_time_itr || !fep->tx_pkts_itr) 2385 return; 2386 2387 /* Select enet system clock as Interrupt Coalescing 2388 * timer Clock Source 2389 */ 2390 rx_itr = FEC_ITR_CLK_SEL; 2391 tx_itr = FEC_ITR_CLK_SEL; 2392 2393 /* set ICFT and ICTT */ 2394 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2395 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2396 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2397 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2398 2399 rx_itr |= FEC_ITR_EN; 2400 tx_itr |= FEC_ITR_EN; 2401 2402 writel(tx_itr, fep->hwp + FEC_TXIC0); 2403 writel(rx_itr, fep->hwp + FEC_RXIC0); 2404 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2405 writel(tx_itr, fep->hwp + FEC_TXIC1); 2406 writel(rx_itr, fep->hwp + FEC_RXIC1); 2407 writel(tx_itr, fep->hwp + FEC_TXIC2); 2408 writel(rx_itr, fep->hwp + FEC_RXIC2); 2409 } 2410 } 2411 2412 static int 2413 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2414 { 2415 struct fec_enet_private *fep = netdev_priv(ndev); 2416 2417 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2418 return -EOPNOTSUPP; 2419 2420 ec->rx_coalesce_usecs = fep->rx_time_itr; 2421 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2422 2423 ec->tx_coalesce_usecs = fep->tx_time_itr; 2424 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2425 2426 return 0; 2427 } 2428 2429 static int 2430 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2431 { 2432 struct fec_enet_private *fep = netdev_priv(ndev); 2433 unsigned int cycle; 2434 2435 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2436 return -EOPNOTSUPP; 2437 2438 if (ec->rx_max_coalesced_frames > 255) { 2439 pr_err("Rx coalesced frames exceed hardware limitation\n"); 2440 return -EINVAL; 2441 } 2442 2443 if (ec->tx_max_coalesced_frames > 255) { 2444 pr_err("Tx coalesced frame exceed hardware limitation\n"); 2445 return -EINVAL; 2446 } 2447 2448 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr); 2449 if (cycle > 0xFFFF) { 2450 pr_err("Rx coalesced usec exceed hardware limitation\n"); 2451 return -EINVAL; 2452 } 2453 2454 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr); 2455 if (cycle > 0xFFFF) { 2456 pr_err("Rx coalesced usec exceed hardware limitation\n"); 2457 return -EINVAL; 2458 } 2459 2460 fep->rx_time_itr = ec->rx_coalesce_usecs; 2461 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2462 2463 fep->tx_time_itr = ec->tx_coalesce_usecs; 2464 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2465 2466 fec_enet_itr_coal_set(ndev); 2467 2468 return 0; 2469 } 2470 2471 static void fec_enet_itr_coal_init(struct net_device *ndev) 2472 { 2473 struct ethtool_coalesce ec; 2474 2475 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2476 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2477 2478 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2479 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2480 2481 fec_enet_set_coalesce(ndev, &ec); 2482 } 2483 2484 static int fec_enet_get_tunable(struct net_device *netdev, 2485 const struct ethtool_tunable *tuna, 2486 void *data) 2487 { 2488 struct fec_enet_private *fep = netdev_priv(netdev); 2489 int ret = 0; 2490 2491 switch (tuna->id) { 2492 case ETHTOOL_RX_COPYBREAK: 2493 *(u32 *)data = fep->rx_copybreak; 2494 break; 2495 default: 2496 ret = -EINVAL; 2497 break; 2498 } 2499 2500 return ret; 2501 } 2502 2503 static int fec_enet_set_tunable(struct net_device *netdev, 2504 const struct ethtool_tunable *tuna, 2505 const void *data) 2506 { 2507 struct fec_enet_private *fep = netdev_priv(netdev); 2508 int ret = 0; 2509 2510 switch (tuna->id) { 2511 case ETHTOOL_RX_COPYBREAK: 2512 fep->rx_copybreak = *(u32 *)data; 2513 break; 2514 default: 2515 ret = -EINVAL; 2516 break; 2517 } 2518 2519 return ret; 2520 } 2521 2522 static void 2523 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2524 { 2525 struct fec_enet_private *fep = netdev_priv(ndev); 2526 2527 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2528 wol->supported = WAKE_MAGIC; 2529 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2530 } else { 2531 wol->supported = wol->wolopts = 0; 2532 } 2533 } 2534 2535 static int 2536 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2537 { 2538 struct fec_enet_private *fep = netdev_priv(ndev); 2539 2540 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2541 return -EINVAL; 2542 2543 if (wol->wolopts & ~WAKE_MAGIC) 2544 return -EINVAL; 2545 2546 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2547 if (device_may_wakeup(&ndev->dev)) { 2548 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2549 if (fep->irq[0] > 0) 2550 enable_irq_wake(fep->irq[0]); 2551 } else { 2552 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2553 if (fep->irq[0] > 0) 2554 disable_irq_wake(fep->irq[0]); 2555 } 2556 2557 return 0; 2558 } 2559 2560 static const struct ethtool_ops fec_enet_ethtool_ops = { 2561 .get_drvinfo = fec_enet_get_drvinfo, 2562 .get_regs_len = fec_enet_get_regs_len, 2563 .get_regs = fec_enet_get_regs, 2564 .nway_reset = phy_ethtool_nway_reset, 2565 .get_link = ethtool_op_get_link, 2566 .get_coalesce = fec_enet_get_coalesce, 2567 .set_coalesce = fec_enet_set_coalesce, 2568 #ifndef CONFIG_M5272 2569 .get_pauseparam = fec_enet_get_pauseparam, 2570 .set_pauseparam = fec_enet_set_pauseparam, 2571 .get_strings = fec_enet_get_strings, 2572 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2573 .get_sset_count = fec_enet_get_sset_count, 2574 #endif 2575 .get_ts_info = fec_enet_get_ts_info, 2576 .get_tunable = fec_enet_get_tunable, 2577 .set_tunable = fec_enet_set_tunable, 2578 .get_wol = fec_enet_get_wol, 2579 .set_wol = fec_enet_set_wol, 2580 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2581 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2582 }; 2583 2584 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2585 { 2586 struct fec_enet_private *fep = netdev_priv(ndev); 2587 struct phy_device *phydev = ndev->phydev; 2588 2589 if (!netif_running(ndev)) 2590 return -EINVAL; 2591 2592 if (!phydev) 2593 return -ENODEV; 2594 2595 if (fep->bufdesc_ex) { 2596 if (cmd == SIOCSHWTSTAMP) 2597 return fec_ptp_set(ndev, rq); 2598 if (cmd == SIOCGHWTSTAMP) 2599 return fec_ptp_get(ndev, rq); 2600 } 2601 2602 return phy_mii_ioctl(phydev, rq, cmd); 2603 } 2604 2605 static void fec_enet_free_buffers(struct net_device *ndev) 2606 { 2607 struct fec_enet_private *fep = netdev_priv(ndev); 2608 unsigned int i; 2609 struct sk_buff *skb; 2610 struct bufdesc *bdp; 2611 struct fec_enet_priv_tx_q *txq; 2612 struct fec_enet_priv_rx_q *rxq; 2613 unsigned int q; 2614 2615 for (q = 0; q < fep->num_rx_queues; q++) { 2616 rxq = fep->rx_queue[q]; 2617 bdp = rxq->bd.base; 2618 for (i = 0; i < rxq->bd.ring_size; i++) { 2619 skb = rxq->rx_skbuff[i]; 2620 rxq->rx_skbuff[i] = NULL; 2621 if (skb) { 2622 dma_unmap_single(&fep->pdev->dev, 2623 fec32_to_cpu(bdp->cbd_bufaddr), 2624 FEC_ENET_RX_FRSIZE - fep->rx_align, 2625 DMA_FROM_DEVICE); 2626 dev_kfree_skb(skb); 2627 } 2628 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2629 } 2630 } 2631 2632 for (q = 0; q < fep->num_tx_queues; q++) { 2633 txq = fep->tx_queue[q]; 2634 bdp = txq->bd.base; 2635 for (i = 0; i < txq->bd.ring_size; i++) { 2636 kfree(txq->tx_bounce[i]); 2637 txq->tx_bounce[i] = NULL; 2638 skb = txq->tx_skbuff[i]; 2639 txq->tx_skbuff[i] = NULL; 2640 dev_kfree_skb(skb); 2641 } 2642 } 2643 } 2644 2645 static void fec_enet_free_queue(struct net_device *ndev) 2646 { 2647 struct fec_enet_private *fep = netdev_priv(ndev); 2648 int i; 2649 struct fec_enet_priv_tx_q *txq; 2650 2651 for (i = 0; i < fep->num_tx_queues; i++) 2652 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2653 txq = fep->tx_queue[i]; 2654 dma_free_coherent(NULL, 2655 txq->bd.ring_size * TSO_HEADER_SIZE, 2656 txq->tso_hdrs, 2657 txq->tso_hdrs_dma); 2658 } 2659 2660 for (i = 0; i < fep->num_rx_queues; i++) 2661 kfree(fep->rx_queue[i]); 2662 for (i = 0; i < fep->num_tx_queues; i++) 2663 kfree(fep->tx_queue[i]); 2664 } 2665 2666 static int fec_enet_alloc_queue(struct net_device *ndev) 2667 { 2668 struct fec_enet_private *fep = netdev_priv(ndev); 2669 int i; 2670 int ret = 0; 2671 struct fec_enet_priv_tx_q *txq; 2672 2673 for (i = 0; i < fep->num_tx_queues; i++) { 2674 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2675 if (!txq) { 2676 ret = -ENOMEM; 2677 goto alloc_failed; 2678 } 2679 2680 fep->tx_queue[i] = txq; 2681 txq->bd.ring_size = TX_RING_SIZE; 2682 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2683 2684 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2685 txq->tx_wake_threshold = 2686 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2687 2688 txq->tso_hdrs = dma_alloc_coherent(NULL, 2689 txq->bd.ring_size * TSO_HEADER_SIZE, 2690 &txq->tso_hdrs_dma, 2691 GFP_KERNEL); 2692 if (!txq->tso_hdrs) { 2693 ret = -ENOMEM; 2694 goto alloc_failed; 2695 } 2696 } 2697 2698 for (i = 0; i < fep->num_rx_queues; i++) { 2699 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2700 GFP_KERNEL); 2701 if (!fep->rx_queue[i]) { 2702 ret = -ENOMEM; 2703 goto alloc_failed; 2704 } 2705 2706 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2707 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2708 } 2709 return ret; 2710 2711 alloc_failed: 2712 fec_enet_free_queue(ndev); 2713 return ret; 2714 } 2715 2716 static int 2717 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2718 { 2719 struct fec_enet_private *fep = netdev_priv(ndev); 2720 unsigned int i; 2721 struct sk_buff *skb; 2722 struct bufdesc *bdp; 2723 struct fec_enet_priv_rx_q *rxq; 2724 2725 rxq = fep->rx_queue[queue]; 2726 bdp = rxq->bd.base; 2727 for (i = 0; i < rxq->bd.ring_size; i++) { 2728 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2729 if (!skb) 2730 goto err_alloc; 2731 2732 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2733 dev_kfree_skb(skb); 2734 goto err_alloc; 2735 } 2736 2737 rxq->rx_skbuff[i] = skb; 2738 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2739 2740 if (fep->bufdesc_ex) { 2741 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2742 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2743 } 2744 2745 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2746 } 2747 2748 /* Set the last buffer to wrap. */ 2749 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2750 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2751 return 0; 2752 2753 err_alloc: 2754 fec_enet_free_buffers(ndev); 2755 return -ENOMEM; 2756 } 2757 2758 static int 2759 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2760 { 2761 struct fec_enet_private *fep = netdev_priv(ndev); 2762 unsigned int i; 2763 struct bufdesc *bdp; 2764 struct fec_enet_priv_tx_q *txq; 2765 2766 txq = fep->tx_queue[queue]; 2767 bdp = txq->bd.base; 2768 for (i = 0; i < txq->bd.ring_size; i++) { 2769 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2770 if (!txq->tx_bounce[i]) 2771 goto err_alloc; 2772 2773 bdp->cbd_sc = cpu_to_fec16(0); 2774 bdp->cbd_bufaddr = cpu_to_fec32(0); 2775 2776 if (fep->bufdesc_ex) { 2777 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2778 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2779 } 2780 2781 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2782 } 2783 2784 /* Set the last buffer to wrap. */ 2785 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2786 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2787 2788 return 0; 2789 2790 err_alloc: 2791 fec_enet_free_buffers(ndev); 2792 return -ENOMEM; 2793 } 2794 2795 static int fec_enet_alloc_buffers(struct net_device *ndev) 2796 { 2797 struct fec_enet_private *fep = netdev_priv(ndev); 2798 unsigned int i; 2799 2800 for (i = 0; i < fep->num_rx_queues; i++) 2801 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2802 return -ENOMEM; 2803 2804 for (i = 0; i < fep->num_tx_queues; i++) 2805 if (fec_enet_alloc_txq_buffers(ndev, i)) 2806 return -ENOMEM; 2807 return 0; 2808 } 2809 2810 static int 2811 fec_enet_open(struct net_device *ndev) 2812 { 2813 struct fec_enet_private *fep = netdev_priv(ndev); 2814 int ret; 2815 2816 ret = pm_runtime_get_sync(&fep->pdev->dev); 2817 if (ret < 0) 2818 return ret; 2819 2820 pinctrl_pm_select_default_state(&fep->pdev->dev); 2821 ret = fec_enet_clk_enable(ndev, true); 2822 if (ret) 2823 goto clk_enable; 2824 2825 /* I should reset the ring buffers here, but I don't yet know 2826 * a simple way to do that. 2827 */ 2828 2829 ret = fec_enet_alloc_buffers(ndev); 2830 if (ret) 2831 goto err_enet_alloc; 2832 2833 /* Init MAC prior to mii bus probe */ 2834 fec_restart(ndev); 2835 2836 /* Probe and connect to PHY when open the interface */ 2837 ret = fec_enet_mii_probe(ndev); 2838 if (ret) 2839 goto err_enet_mii_probe; 2840 2841 if (fep->quirks & FEC_QUIRK_ERR006687) 2842 imx6q_cpuidle_fec_irqs_used(); 2843 2844 napi_enable(&fep->napi); 2845 phy_start(ndev->phydev); 2846 netif_tx_start_all_queues(ndev); 2847 2848 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 2849 FEC_WOL_FLAG_ENABLE); 2850 2851 return 0; 2852 2853 err_enet_mii_probe: 2854 fec_enet_free_buffers(ndev); 2855 err_enet_alloc: 2856 fec_enet_clk_enable(ndev, false); 2857 clk_enable: 2858 pm_runtime_mark_last_busy(&fep->pdev->dev); 2859 pm_runtime_put_autosuspend(&fep->pdev->dev); 2860 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2861 return ret; 2862 } 2863 2864 static int 2865 fec_enet_close(struct net_device *ndev) 2866 { 2867 struct fec_enet_private *fep = netdev_priv(ndev); 2868 2869 phy_stop(ndev->phydev); 2870 2871 if (netif_device_present(ndev)) { 2872 napi_disable(&fep->napi); 2873 netif_tx_disable(ndev); 2874 fec_stop(ndev); 2875 } 2876 2877 phy_disconnect(ndev->phydev); 2878 2879 if (fep->quirks & FEC_QUIRK_ERR006687) 2880 imx6q_cpuidle_fec_irqs_unused(); 2881 2882 fec_enet_update_ethtool_stats(ndev); 2883 2884 fec_enet_clk_enable(ndev, false); 2885 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2886 pm_runtime_mark_last_busy(&fep->pdev->dev); 2887 pm_runtime_put_autosuspend(&fep->pdev->dev); 2888 2889 fec_enet_free_buffers(ndev); 2890 2891 return 0; 2892 } 2893 2894 /* Set or clear the multicast filter for this adaptor. 2895 * Skeleton taken from sunlance driver. 2896 * The CPM Ethernet implementation allows Multicast as well as individual 2897 * MAC address filtering. Some of the drivers check to make sure it is 2898 * a group multicast address, and discard those that are not. I guess I 2899 * will do the same for now, but just remove the test if you want 2900 * individual filtering as well (do the upper net layers want or support 2901 * this kind of feature?). 2902 */ 2903 2904 #define FEC_HASH_BITS 6 /* #bits in hash */ 2905 #define CRC32_POLY 0xEDB88320 2906 2907 static void set_multicast_list(struct net_device *ndev) 2908 { 2909 struct fec_enet_private *fep = netdev_priv(ndev); 2910 struct netdev_hw_addr *ha; 2911 unsigned int i, bit, data, crc, tmp; 2912 unsigned char hash; 2913 unsigned int hash_high = 0, hash_low = 0; 2914 2915 if (ndev->flags & IFF_PROMISC) { 2916 tmp = readl(fep->hwp + FEC_R_CNTRL); 2917 tmp |= 0x8; 2918 writel(tmp, fep->hwp + FEC_R_CNTRL); 2919 return; 2920 } 2921 2922 tmp = readl(fep->hwp + FEC_R_CNTRL); 2923 tmp &= ~0x8; 2924 writel(tmp, fep->hwp + FEC_R_CNTRL); 2925 2926 if (ndev->flags & IFF_ALLMULTI) { 2927 /* Catch all multicast addresses, so set the 2928 * filter to all 1's 2929 */ 2930 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2931 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2932 2933 return; 2934 } 2935 2936 /* Add the addresses in hash register */ 2937 netdev_for_each_mc_addr(ha, ndev) { 2938 /* calculate crc32 value of mac address */ 2939 crc = 0xffffffff; 2940 2941 for (i = 0; i < ndev->addr_len; i++) { 2942 data = ha->addr[i]; 2943 for (bit = 0; bit < 8; bit++, data >>= 1) { 2944 crc = (crc >> 1) ^ 2945 (((crc ^ data) & 1) ? CRC32_POLY : 0); 2946 } 2947 } 2948 2949 /* only upper 6 bits (FEC_HASH_BITS) are used 2950 * which point to specific bit in he hash registers 2951 */ 2952 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 2953 2954 if (hash > 31) 2955 hash_high |= 1 << (hash - 32); 2956 else 2957 hash_low |= 1 << hash; 2958 } 2959 2960 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2961 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2962 } 2963 2964 /* Set a MAC change in hardware. */ 2965 static int 2966 fec_set_mac_address(struct net_device *ndev, void *p) 2967 { 2968 struct fec_enet_private *fep = netdev_priv(ndev); 2969 struct sockaddr *addr = p; 2970 2971 if (addr) { 2972 if (!is_valid_ether_addr(addr->sa_data)) 2973 return -EADDRNOTAVAIL; 2974 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 2975 } 2976 2977 /* Add netif status check here to avoid system hang in below case: 2978 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 2979 * After ethx down, fec all clocks are gated off and then register 2980 * access causes system hang. 2981 */ 2982 if (!netif_running(ndev)) 2983 return 0; 2984 2985 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 2986 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 2987 fep->hwp + FEC_ADDR_LOW); 2988 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 2989 fep->hwp + FEC_ADDR_HIGH); 2990 return 0; 2991 } 2992 2993 #ifdef CONFIG_NET_POLL_CONTROLLER 2994 /** 2995 * fec_poll_controller - FEC Poll controller function 2996 * @dev: The FEC network adapter 2997 * 2998 * Polled functionality used by netconsole and others in non interrupt mode 2999 * 3000 */ 3001 static void fec_poll_controller(struct net_device *dev) 3002 { 3003 int i; 3004 struct fec_enet_private *fep = netdev_priv(dev); 3005 3006 for (i = 0; i < FEC_IRQ_NUM; i++) { 3007 if (fep->irq[i] > 0) { 3008 disable_irq(fep->irq[i]); 3009 fec_enet_interrupt(fep->irq[i], dev); 3010 enable_irq(fep->irq[i]); 3011 } 3012 } 3013 } 3014 #endif 3015 3016 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3017 netdev_features_t features) 3018 { 3019 struct fec_enet_private *fep = netdev_priv(netdev); 3020 netdev_features_t changed = features ^ netdev->features; 3021 3022 netdev->features = features; 3023 3024 /* Receive checksum has been changed */ 3025 if (changed & NETIF_F_RXCSUM) { 3026 if (features & NETIF_F_RXCSUM) 3027 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3028 else 3029 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3030 } 3031 } 3032 3033 static int fec_set_features(struct net_device *netdev, 3034 netdev_features_t features) 3035 { 3036 struct fec_enet_private *fep = netdev_priv(netdev); 3037 netdev_features_t changed = features ^ netdev->features; 3038 3039 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3040 napi_disable(&fep->napi); 3041 netif_tx_lock_bh(netdev); 3042 fec_stop(netdev); 3043 fec_enet_set_netdev_features(netdev, features); 3044 fec_restart(netdev); 3045 netif_tx_wake_all_queues(netdev); 3046 netif_tx_unlock_bh(netdev); 3047 napi_enable(&fep->napi); 3048 } else { 3049 fec_enet_set_netdev_features(netdev, features); 3050 } 3051 3052 return 0; 3053 } 3054 3055 static const struct net_device_ops fec_netdev_ops = { 3056 .ndo_open = fec_enet_open, 3057 .ndo_stop = fec_enet_close, 3058 .ndo_start_xmit = fec_enet_start_xmit, 3059 .ndo_set_rx_mode = set_multicast_list, 3060 .ndo_validate_addr = eth_validate_addr, 3061 .ndo_tx_timeout = fec_timeout, 3062 .ndo_set_mac_address = fec_set_mac_address, 3063 .ndo_do_ioctl = fec_enet_ioctl, 3064 #ifdef CONFIG_NET_POLL_CONTROLLER 3065 .ndo_poll_controller = fec_poll_controller, 3066 #endif 3067 .ndo_set_features = fec_set_features, 3068 }; 3069 3070 static const unsigned short offset_des_active_rxq[] = { 3071 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3072 }; 3073 3074 static const unsigned short offset_des_active_txq[] = { 3075 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3076 }; 3077 3078 /* 3079 * XXX: We need to clean up on failure exits here. 3080 * 3081 */ 3082 static int fec_enet_init(struct net_device *ndev) 3083 { 3084 struct fec_enet_private *fep = netdev_priv(ndev); 3085 struct bufdesc *cbd_base; 3086 dma_addr_t bd_dma; 3087 int bd_size; 3088 unsigned int i; 3089 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3090 sizeof(struct bufdesc); 3091 unsigned dsize_log2 = __fls(dsize); 3092 3093 WARN_ON(dsize != (1 << dsize_log2)); 3094 #if defined(CONFIG_ARM) 3095 fep->rx_align = 0xf; 3096 fep->tx_align = 0xf; 3097 #else 3098 fep->rx_align = 0x3; 3099 fep->tx_align = 0x3; 3100 #endif 3101 3102 fec_enet_alloc_queue(ndev); 3103 3104 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3105 3106 /* Allocate memory for buffer descriptors. */ 3107 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3108 GFP_KERNEL); 3109 if (!cbd_base) { 3110 return -ENOMEM; 3111 } 3112 3113 memset(cbd_base, 0, bd_size); 3114 3115 /* Get the Ethernet address */ 3116 fec_get_mac(ndev); 3117 /* make sure MAC we just acquired is programmed into the hw */ 3118 fec_set_mac_address(ndev, NULL); 3119 3120 /* Set receive and transmit descriptor base. */ 3121 for (i = 0; i < fep->num_rx_queues; i++) { 3122 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3123 unsigned size = dsize * rxq->bd.ring_size; 3124 3125 rxq->bd.qid = i; 3126 rxq->bd.base = cbd_base; 3127 rxq->bd.cur = cbd_base; 3128 rxq->bd.dma = bd_dma; 3129 rxq->bd.dsize = dsize; 3130 rxq->bd.dsize_log2 = dsize_log2; 3131 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3132 bd_dma += size; 3133 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3134 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3135 } 3136 3137 for (i = 0; i < fep->num_tx_queues; i++) { 3138 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3139 unsigned size = dsize * txq->bd.ring_size; 3140 3141 txq->bd.qid = i; 3142 txq->bd.base = cbd_base; 3143 txq->bd.cur = cbd_base; 3144 txq->bd.dma = bd_dma; 3145 txq->bd.dsize = dsize; 3146 txq->bd.dsize_log2 = dsize_log2; 3147 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3148 bd_dma += size; 3149 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3150 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3151 } 3152 3153 3154 /* The FEC Ethernet specific entries in the device structure */ 3155 ndev->watchdog_timeo = TX_TIMEOUT; 3156 ndev->netdev_ops = &fec_netdev_ops; 3157 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3158 3159 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3160 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3161 3162 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3163 /* enable hw VLAN support */ 3164 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3165 3166 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3167 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3168 3169 /* enable hw accelerator */ 3170 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3171 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3172 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3173 } 3174 3175 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3176 fep->tx_align = 0; 3177 fep->rx_align = 0x3f; 3178 } 3179 3180 ndev->hw_features = ndev->features; 3181 3182 fec_restart(ndev); 3183 3184 fec_enet_update_ethtool_stats(ndev); 3185 3186 return 0; 3187 } 3188 3189 #ifdef CONFIG_OF 3190 static void fec_reset_phy(struct platform_device *pdev) 3191 { 3192 int err, phy_reset; 3193 bool active_high = false; 3194 int msec = 1; 3195 struct device_node *np = pdev->dev.of_node; 3196 3197 if (!np) 3198 return; 3199 3200 of_property_read_u32(np, "phy-reset-duration", &msec); 3201 /* A sane reset duration should not be longer than 1s */ 3202 if (msec > 1000) 3203 msec = 1; 3204 3205 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3206 if (!gpio_is_valid(phy_reset)) 3207 return; 3208 3209 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3210 3211 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3212 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3213 "phy-reset"); 3214 if (err) { 3215 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3216 return; 3217 } 3218 3219 if (msec > 20) 3220 msleep(msec); 3221 else 3222 usleep_range(msec * 1000, msec * 1000 + 1000); 3223 3224 gpio_set_value_cansleep(phy_reset, !active_high); 3225 } 3226 #else /* CONFIG_OF */ 3227 static void fec_reset_phy(struct platform_device *pdev) 3228 { 3229 /* 3230 * In case of platform probe, the reset has been done 3231 * by machine code. 3232 */ 3233 } 3234 #endif /* CONFIG_OF */ 3235 3236 static void 3237 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3238 { 3239 struct device_node *np = pdev->dev.of_node; 3240 3241 *num_tx = *num_rx = 1; 3242 3243 if (!np || !of_device_is_available(np)) 3244 return; 3245 3246 /* parse the num of tx and rx queues */ 3247 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3248 3249 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3250 3251 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3252 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3253 *num_tx); 3254 *num_tx = 1; 3255 return; 3256 } 3257 3258 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3259 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3260 *num_rx); 3261 *num_rx = 1; 3262 return; 3263 } 3264 3265 } 3266 3267 static int 3268 fec_probe(struct platform_device *pdev) 3269 { 3270 struct fec_enet_private *fep; 3271 struct fec_platform_data *pdata; 3272 struct net_device *ndev; 3273 int i, irq, ret = 0; 3274 struct resource *r; 3275 const struct of_device_id *of_id; 3276 static int dev_id; 3277 struct device_node *np = pdev->dev.of_node, *phy_node; 3278 int num_tx_qs; 3279 int num_rx_qs; 3280 3281 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3282 3283 /* Init network device */ 3284 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3285 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3286 if (!ndev) 3287 return -ENOMEM; 3288 3289 SET_NETDEV_DEV(ndev, &pdev->dev); 3290 3291 /* setup board info structure */ 3292 fep = netdev_priv(ndev); 3293 3294 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3295 if (of_id) 3296 pdev->id_entry = of_id->data; 3297 fep->quirks = pdev->id_entry->driver_data; 3298 3299 fep->netdev = ndev; 3300 fep->num_rx_queues = num_rx_qs; 3301 fep->num_tx_queues = num_tx_qs; 3302 3303 #if !defined(CONFIG_M5272) 3304 /* default enable pause frame auto negotiation */ 3305 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3306 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3307 #endif 3308 3309 /* Select default pin state */ 3310 pinctrl_pm_select_default_state(&pdev->dev); 3311 3312 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3313 fep->hwp = devm_ioremap_resource(&pdev->dev, r); 3314 if (IS_ERR(fep->hwp)) { 3315 ret = PTR_ERR(fep->hwp); 3316 goto failed_ioremap; 3317 } 3318 3319 fep->pdev = pdev; 3320 fep->dev_id = dev_id++; 3321 3322 platform_set_drvdata(pdev, ndev); 3323 3324 if ((of_machine_is_compatible("fsl,imx6q") || 3325 of_machine_is_compatible("fsl,imx6dl")) && 3326 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3327 fep->quirks |= FEC_QUIRK_ERR006687; 3328 3329 if (of_get_property(np, "fsl,magic-packet", NULL)) 3330 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3331 3332 phy_node = of_parse_phandle(np, "phy-handle", 0); 3333 if (!phy_node && of_phy_is_fixed_link(np)) { 3334 ret = of_phy_register_fixed_link(np); 3335 if (ret < 0) { 3336 dev_err(&pdev->dev, 3337 "broken fixed-link specification\n"); 3338 goto failed_phy; 3339 } 3340 phy_node = of_node_get(np); 3341 } 3342 fep->phy_node = phy_node; 3343 3344 ret = of_get_phy_mode(pdev->dev.of_node); 3345 if (ret < 0) { 3346 pdata = dev_get_platdata(&pdev->dev); 3347 if (pdata) 3348 fep->phy_interface = pdata->phy; 3349 else 3350 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3351 } else { 3352 fep->phy_interface = ret; 3353 } 3354 3355 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3356 if (IS_ERR(fep->clk_ipg)) { 3357 ret = PTR_ERR(fep->clk_ipg); 3358 goto failed_clk; 3359 } 3360 3361 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3362 if (IS_ERR(fep->clk_ahb)) { 3363 ret = PTR_ERR(fep->clk_ahb); 3364 goto failed_clk; 3365 } 3366 3367 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3368 3369 /* enet_out is optional, depends on board */ 3370 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3371 if (IS_ERR(fep->clk_enet_out)) 3372 fep->clk_enet_out = NULL; 3373 3374 fep->ptp_clk_on = false; 3375 mutex_init(&fep->ptp_clk_mutex); 3376 3377 /* clk_ref is optional, depends on board */ 3378 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3379 if (IS_ERR(fep->clk_ref)) 3380 fep->clk_ref = NULL; 3381 3382 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3383 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3384 if (IS_ERR(fep->clk_ptp)) { 3385 fep->clk_ptp = NULL; 3386 fep->bufdesc_ex = false; 3387 } 3388 3389 ret = fec_enet_clk_enable(ndev, true); 3390 if (ret) 3391 goto failed_clk; 3392 3393 ret = clk_prepare_enable(fep->clk_ipg); 3394 if (ret) 3395 goto failed_clk_ipg; 3396 3397 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy"); 3398 if (!IS_ERR(fep->reg_phy)) { 3399 ret = regulator_enable(fep->reg_phy); 3400 if (ret) { 3401 dev_err(&pdev->dev, 3402 "Failed to enable phy regulator: %d\n", ret); 3403 goto failed_regulator; 3404 } 3405 } else { 3406 fep->reg_phy = NULL; 3407 } 3408 3409 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3410 pm_runtime_use_autosuspend(&pdev->dev); 3411 pm_runtime_get_noresume(&pdev->dev); 3412 pm_runtime_set_active(&pdev->dev); 3413 pm_runtime_enable(&pdev->dev); 3414 3415 fec_reset_phy(pdev); 3416 3417 if (fep->bufdesc_ex) 3418 fec_ptp_init(pdev); 3419 3420 ret = fec_enet_init(ndev); 3421 if (ret) 3422 goto failed_init; 3423 3424 for (i = 0; i < FEC_IRQ_NUM; i++) { 3425 irq = platform_get_irq(pdev, i); 3426 if (irq < 0) { 3427 if (i) 3428 break; 3429 ret = irq; 3430 goto failed_irq; 3431 } 3432 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3433 0, pdev->name, ndev); 3434 if (ret) 3435 goto failed_irq; 3436 3437 fep->irq[i] = irq; 3438 } 3439 3440 init_completion(&fep->mdio_done); 3441 ret = fec_enet_mii_init(pdev); 3442 if (ret) 3443 goto failed_mii_init; 3444 3445 /* Carrier starts down, phylib will bring it up */ 3446 netif_carrier_off(ndev); 3447 fec_enet_clk_enable(ndev, false); 3448 pinctrl_pm_select_sleep_state(&pdev->dev); 3449 3450 ret = register_netdev(ndev); 3451 if (ret) 3452 goto failed_register; 3453 3454 device_init_wakeup(&ndev->dev, fep->wol_flag & 3455 FEC_WOL_HAS_MAGIC_PACKET); 3456 3457 if (fep->bufdesc_ex && fep->ptp_clock) 3458 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3459 3460 fep->rx_copybreak = COPYBREAK_DEFAULT; 3461 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3462 3463 pm_runtime_mark_last_busy(&pdev->dev); 3464 pm_runtime_put_autosuspend(&pdev->dev); 3465 3466 return 0; 3467 3468 failed_register: 3469 fec_enet_mii_remove(fep); 3470 failed_mii_init: 3471 failed_irq: 3472 failed_init: 3473 fec_ptp_stop(pdev); 3474 if (fep->reg_phy) 3475 regulator_disable(fep->reg_phy); 3476 failed_regulator: 3477 clk_disable_unprepare(fep->clk_ipg); 3478 failed_clk_ipg: 3479 fec_enet_clk_enable(ndev, false); 3480 failed_clk: 3481 if (of_phy_is_fixed_link(np)) 3482 of_phy_deregister_fixed_link(np); 3483 failed_phy: 3484 of_node_put(phy_node); 3485 failed_ioremap: 3486 free_netdev(ndev); 3487 3488 return ret; 3489 } 3490 3491 static int 3492 fec_drv_remove(struct platform_device *pdev) 3493 { 3494 struct net_device *ndev = platform_get_drvdata(pdev); 3495 struct fec_enet_private *fep = netdev_priv(ndev); 3496 struct device_node *np = pdev->dev.of_node; 3497 3498 cancel_work_sync(&fep->tx_timeout_work); 3499 fec_ptp_stop(pdev); 3500 unregister_netdev(ndev); 3501 fec_enet_mii_remove(fep); 3502 if (fep->reg_phy) 3503 regulator_disable(fep->reg_phy); 3504 if (of_phy_is_fixed_link(np)) 3505 of_phy_deregister_fixed_link(np); 3506 of_node_put(fep->phy_node); 3507 free_netdev(ndev); 3508 3509 return 0; 3510 } 3511 3512 static int __maybe_unused fec_suspend(struct device *dev) 3513 { 3514 struct net_device *ndev = dev_get_drvdata(dev); 3515 struct fec_enet_private *fep = netdev_priv(ndev); 3516 3517 rtnl_lock(); 3518 if (netif_running(ndev)) { 3519 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3520 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3521 phy_stop(ndev->phydev); 3522 napi_disable(&fep->napi); 3523 netif_tx_lock_bh(ndev); 3524 netif_device_detach(ndev); 3525 netif_tx_unlock_bh(ndev); 3526 fec_stop(ndev); 3527 fec_enet_clk_enable(ndev, false); 3528 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3529 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3530 } 3531 rtnl_unlock(); 3532 3533 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3534 regulator_disable(fep->reg_phy); 3535 3536 /* SOC supply clock to phy, when clock is disabled, phy link down 3537 * SOC control phy regulator, when regulator is disabled, phy link down 3538 */ 3539 if (fep->clk_enet_out || fep->reg_phy) 3540 fep->link = 0; 3541 3542 return 0; 3543 } 3544 3545 static int __maybe_unused fec_resume(struct device *dev) 3546 { 3547 struct net_device *ndev = dev_get_drvdata(dev); 3548 struct fec_enet_private *fep = netdev_priv(ndev); 3549 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 3550 int ret; 3551 int val; 3552 3553 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3554 ret = regulator_enable(fep->reg_phy); 3555 if (ret) 3556 return ret; 3557 } 3558 3559 rtnl_lock(); 3560 if (netif_running(ndev)) { 3561 ret = fec_enet_clk_enable(ndev, true); 3562 if (ret) { 3563 rtnl_unlock(); 3564 goto failed_clk; 3565 } 3566 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3567 if (pdata && pdata->sleep_mode_enable) 3568 pdata->sleep_mode_enable(false); 3569 val = readl(fep->hwp + FEC_ECNTRL); 3570 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3571 writel(val, fep->hwp + FEC_ECNTRL); 3572 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3573 } else { 3574 pinctrl_pm_select_default_state(&fep->pdev->dev); 3575 } 3576 fec_restart(ndev); 3577 netif_tx_lock_bh(ndev); 3578 netif_device_attach(ndev); 3579 netif_tx_unlock_bh(ndev); 3580 napi_enable(&fep->napi); 3581 phy_start(ndev->phydev); 3582 } 3583 rtnl_unlock(); 3584 3585 return 0; 3586 3587 failed_clk: 3588 if (fep->reg_phy) 3589 regulator_disable(fep->reg_phy); 3590 return ret; 3591 } 3592 3593 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3594 { 3595 struct net_device *ndev = dev_get_drvdata(dev); 3596 struct fec_enet_private *fep = netdev_priv(ndev); 3597 3598 clk_disable_unprepare(fep->clk_ipg); 3599 3600 return 0; 3601 } 3602 3603 static int __maybe_unused fec_runtime_resume(struct device *dev) 3604 { 3605 struct net_device *ndev = dev_get_drvdata(dev); 3606 struct fec_enet_private *fep = netdev_priv(ndev); 3607 3608 return clk_prepare_enable(fep->clk_ipg); 3609 } 3610 3611 static const struct dev_pm_ops fec_pm_ops = { 3612 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3613 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3614 }; 3615 3616 static struct platform_driver fec_driver = { 3617 .driver = { 3618 .name = DRIVER_NAME, 3619 .pm = &fec_pm_ops, 3620 .of_match_table = fec_dt_ids, 3621 }, 3622 .id_table = fec_devtype, 3623 .probe = fec_probe, 3624 .remove = fec_drv_remove, 3625 }; 3626 3627 module_platform_driver(fec_driver); 3628 3629 MODULE_ALIAS("platform:"DRIVER_NAME); 3630 MODULE_LICENSE("GPL"); 3631