xref: /openbmc/linux/drivers/net/ethernet/freescale/fec_main.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = 0,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE |
121 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
122 	}, {
123 		/* sentinel */
124 	}
125 };
126 MODULE_DEVICE_TABLE(platform, fec_devtype);
127 
128 enum imx_fec_type {
129 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
130 	IMX27_FEC,	/* runs on i.mx27/35/51 */
131 	IMX28_FEC,
132 	IMX6Q_FEC,
133 	MVF600_FEC,
134 	IMX6SX_FEC,
135 	IMX6UL_FEC,
136 };
137 
138 static const struct of_device_id fec_dt_ids[] = {
139 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
140 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
141 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
142 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
143 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
144 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
145 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
146 	{ /* sentinel */ }
147 };
148 MODULE_DEVICE_TABLE(of, fec_dt_ids);
149 
150 static unsigned char macaddr[ETH_ALEN];
151 module_param_array(macaddr, byte, NULL, 0);
152 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
153 
154 #if defined(CONFIG_M5272)
155 /*
156  * Some hardware gets it MAC address out of local flash memory.
157  * if this is non-zero then assume it is the address to get MAC from.
158  */
159 #if defined(CONFIG_NETtel)
160 #define	FEC_FLASHMAC	0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define	FEC_FLASHMAC	0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define	FEC_FLASHMAC	0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define	FEC_FLASHMAC	(0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC	0xffc0406b
169 #else
170 #define	FEC_FLASHMAC	0
171 #endif
172 #endif /* CONFIG_M5272 */
173 
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
175  */
176 #define PKT_MAXBUF_SIZE		1522
177 #define PKT_MINBUF_SIZE		64
178 #define PKT_MAXBLR_SIZE		1536
179 
180 /* FEC receive acceleration */
181 #define FEC_RACC_IPDIS		(1 << 1)
182 #define FEC_RACC_PRODIS		(1 << 2)
183 #define FEC_RACC_SHIFT16	BIT(7)
184 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
185 
186 /*
187  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
188  * size bits. Other FEC hardware does not, so we need to take that into
189  * account when setting it.
190  */
191 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
192     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
193 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
194 #else
195 #define	OPT_FRAME_SIZE	0
196 #endif
197 
198 /* FEC MII MMFR bits definition */
199 #define FEC_MMFR_ST		(1 << 30)
200 #define FEC_MMFR_OP_READ	(2 << 28)
201 #define FEC_MMFR_OP_WRITE	(1 << 28)
202 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
203 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
204 #define FEC_MMFR_TA		(2 << 16)
205 #define FEC_MMFR_DATA(v)	(v & 0xffff)
206 /* FEC ECR bits definition */
207 #define FEC_ECR_MAGICEN		(1 << 2)
208 #define FEC_ECR_SLEEP		(1 << 3)
209 
210 #define FEC_MII_TIMEOUT		30000 /* us */
211 
212 /* Transmitter timeout */
213 #define TX_TIMEOUT (2 * HZ)
214 
215 #define FEC_PAUSE_FLAG_AUTONEG	0x1
216 #define FEC_PAUSE_FLAG_ENABLE	0x2
217 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
218 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
219 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
220 
221 #define COPYBREAK_DEFAULT	256
222 
223 #define TSO_HEADER_SIZE		128
224 /* Max number of allowed TCP segments for software TSO */
225 #define FEC_MAX_TSO_SEGS	100
226 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
227 
228 #define IS_TSO_HEADER(txq, addr) \
229 	((addr >= txq->tso_hdrs_dma) && \
230 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
231 
232 static int mii_cnt;
233 
234 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
235 					     struct bufdesc_prop *bd)
236 {
237 	return (bdp >= bd->last) ? bd->base
238 			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
239 }
240 
241 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
242 					     struct bufdesc_prop *bd)
243 {
244 	return (bdp <= bd->base) ? bd->last
245 			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
246 }
247 
248 static int fec_enet_get_bd_index(struct bufdesc *bdp,
249 				 struct bufdesc_prop *bd)
250 {
251 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
252 }
253 
254 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
255 {
256 	int entries;
257 
258 	entries = (((const char *)txq->dirty_tx -
259 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
260 
261 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
262 }
263 
264 static void swap_buffer(void *bufaddr, int len)
265 {
266 	int i;
267 	unsigned int *buf = bufaddr;
268 
269 	for (i = 0; i < len; i += 4, buf++)
270 		swab32s(buf);
271 }
272 
273 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
274 {
275 	int i;
276 	unsigned int *src = src_buf;
277 	unsigned int *dst = dst_buf;
278 
279 	for (i = 0; i < len; i += 4, src++, dst++)
280 		*dst = swab32p(src);
281 }
282 
283 static void fec_dump(struct net_device *ndev)
284 {
285 	struct fec_enet_private *fep = netdev_priv(ndev);
286 	struct bufdesc *bdp;
287 	struct fec_enet_priv_tx_q *txq;
288 	int index = 0;
289 
290 	netdev_info(ndev, "TX ring dump\n");
291 	pr_info("Nr     SC     addr       len  SKB\n");
292 
293 	txq = fep->tx_queue[0];
294 	bdp = txq->bd.base;
295 
296 	do {
297 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
298 			index,
299 			bdp == txq->bd.cur ? 'S' : ' ',
300 			bdp == txq->dirty_tx ? 'H' : ' ',
301 			fec16_to_cpu(bdp->cbd_sc),
302 			fec32_to_cpu(bdp->cbd_bufaddr),
303 			fec16_to_cpu(bdp->cbd_datlen),
304 			txq->tx_skbuff[index]);
305 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
306 		index++;
307 	} while (bdp != txq->bd.base);
308 }
309 
310 static inline bool is_ipv4_pkt(struct sk_buff *skb)
311 {
312 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
313 }
314 
315 static int
316 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
317 {
318 	/* Only run for packets requiring a checksum. */
319 	if (skb->ip_summed != CHECKSUM_PARTIAL)
320 		return 0;
321 
322 	if (unlikely(skb_cow_head(skb, 0)))
323 		return -1;
324 
325 	if (is_ipv4_pkt(skb))
326 		ip_hdr(skb)->check = 0;
327 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
328 
329 	return 0;
330 }
331 
332 static struct bufdesc *
333 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
334 			     struct sk_buff *skb,
335 			     struct net_device *ndev)
336 {
337 	struct fec_enet_private *fep = netdev_priv(ndev);
338 	struct bufdesc *bdp = txq->bd.cur;
339 	struct bufdesc_ex *ebdp;
340 	int nr_frags = skb_shinfo(skb)->nr_frags;
341 	int frag, frag_len;
342 	unsigned short status;
343 	unsigned int estatus = 0;
344 	skb_frag_t *this_frag;
345 	unsigned int index;
346 	void *bufaddr;
347 	dma_addr_t addr;
348 	int i;
349 
350 	for (frag = 0; frag < nr_frags; frag++) {
351 		this_frag = &skb_shinfo(skb)->frags[frag];
352 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
353 		ebdp = (struct bufdesc_ex *)bdp;
354 
355 		status = fec16_to_cpu(bdp->cbd_sc);
356 		status &= ~BD_ENET_TX_STATS;
357 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
358 		frag_len = skb_shinfo(skb)->frags[frag].size;
359 
360 		/* Handle the last BD specially */
361 		if (frag == nr_frags - 1) {
362 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
363 			if (fep->bufdesc_ex) {
364 				estatus |= BD_ENET_TX_INT;
365 				if (unlikely(skb_shinfo(skb)->tx_flags &
366 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
367 					estatus |= BD_ENET_TX_TS;
368 			}
369 		}
370 
371 		if (fep->bufdesc_ex) {
372 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
373 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
374 			if (skb->ip_summed == CHECKSUM_PARTIAL)
375 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
376 			ebdp->cbd_bdu = 0;
377 			ebdp->cbd_esc = cpu_to_fec32(estatus);
378 		}
379 
380 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
381 
382 		index = fec_enet_get_bd_index(bdp, &txq->bd);
383 		if (((unsigned long) bufaddr) & fep->tx_align ||
384 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
385 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
386 			bufaddr = txq->tx_bounce[index];
387 
388 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
389 				swap_buffer(bufaddr, frag_len);
390 		}
391 
392 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
393 				      DMA_TO_DEVICE);
394 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
395 			if (net_ratelimit())
396 				netdev_err(ndev, "Tx DMA memory map failed\n");
397 			goto dma_mapping_error;
398 		}
399 
400 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
401 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
402 		/* Make sure the updates to rest of the descriptor are
403 		 * performed before transferring ownership.
404 		 */
405 		wmb();
406 		bdp->cbd_sc = cpu_to_fec16(status);
407 	}
408 
409 	return bdp;
410 dma_mapping_error:
411 	bdp = txq->bd.cur;
412 	for (i = 0; i < frag; i++) {
413 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
414 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
415 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
416 	}
417 	return ERR_PTR(-ENOMEM);
418 }
419 
420 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
421 				   struct sk_buff *skb, struct net_device *ndev)
422 {
423 	struct fec_enet_private *fep = netdev_priv(ndev);
424 	int nr_frags = skb_shinfo(skb)->nr_frags;
425 	struct bufdesc *bdp, *last_bdp;
426 	void *bufaddr;
427 	dma_addr_t addr;
428 	unsigned short status;
429 	unsigned short buflen;
430 	unsigned int estatus = 0;
431 	unsigned int index;
432 	int entries_free;
433 
434 	entries_free = fec_enet_get_free_txdesc_num(txq);
435 	if (entries_free < MAX_SKB_FRAGS + 1) {
436 		dev_kfree_skb_any(skb);
437 		if (net_ratelimit())
438 			netdev_err(ndev, "NOT enough BD for SG!\n");
439 		return NETDEV_TX_OK;
440 	}
441 
442 	/* Protocol checksum off-load for TCP and UDP. */
443 	if (fec_enet_clear_csum(skb, ndev)) {
444 		dev_kfree_skb_any(skb);
445 		return NETDEV_TX_OK;
446 	}
447 
448 	/* Fill in a Tx ring entry */
449 	bdp = txq->bd.cur;
450 	last_bdp = bdp;
451 	status = fec16_to_cpu(bdp->cbd_sc);
452 	status &= ~BD_ENET_TX_STATS;
453 
454 	/* Set buffer length and buffer pointer */
455 	bufaddr = skb->data;
456 	buflen = skb_headlen(skb);
457 
458 	index = fec_enet_get_bd_index(bdp, &txq->bd);
459 	if (((unsigned long) bufaddr) & fep->tx_align ||
460 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
461 		memcpy(txq->tx_bounce[index], skb->data, buflen);
462 		bufaddr = txq->tx_bounce[index];
463 
464 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
465 			swap_buffer(bufaddr, buflen);
466 	}
467 
468 	/* Push the data cache so the CPM does not get stale memory data. */
469 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
470 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
471 		dev_kfree_skb_any(skb);
472 		if (net_ratelimit())
473 			netdev_err(ndev, "Tx DMA memory map failed\n");
474 		return NETDEV_TX_OK;
475 	}
476 
477 	if (nr_frags) {
478 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
479 		if (IS_ERR(last_bdp)) {
480 			dma_unmap_single(&fep->pdev->dev, addr,
481 					 buflen, DMA_TO_DEVICE);
482 			dev_kfree_skb_any(skb);
483 			return NETDEV_TX_OK;
484 		}
485 	} else {
486 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
487 		if (fep->bufdesc_ex) {
488 			estatus = BD_ENET_TX_INT;
489 			if (unlikely(skb_shinfo(skb)->tx_flags &
490 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
491 				estatus |= BD_ENET_TX_TS;
492 		}
493 	}
494 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
495 	bdp->cbd_datlen = cpu_to_fec16(buflen);
496 
497 	if (fep->bufdesc_ex) {
498 
499 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
500 
501 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
502 			fep->hwts_tx_en))
503 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
504 
505 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
506 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
507 
508 		if (skb->ip_summed == CHECKSUM_PARTIAL)
509 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
510 
511 		ebdp->cbd_bdu = 0;
512 		ebdp->cbd_esc = cpu_to_fec32(estatus);
513 	}
514 
515 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
516 	/* Save skb pointer */
517 	txq->tx_skbuff[index] = skb;
518 
519 	/* Make sure the updates to rest of the descriptor are performed before
520 	 * transferring ownership.
521 	 */
522 	wmb();
523 
524 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
525 	 * it's the last BD of the frame, and to put the CRC on the end.
526 	 */
527 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
528 	bdp->cbd_sc = cpu_to_fec16(status);
529 
530 	/* If this was the last BD in the ring, start at the beginning again. */
531 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
532 
533 	skb_tx_timestamp(skb);
534 
535 	/* Make sure the update to bdp and tx_skbuff are performed before
536 	 * txq->bd.cur.
537 	 */
538 	wmb();
539 	txq->bd.cur = bdp;
540 
541 	/* Trigger transmission start */
542 	writel(0, txq->bd.reg_desc_active);
543 
544 	return 0;
545 }
546 
547 static int
548 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
549 			  struct net_device *ndev,
550 			  struct bufdesc *bdp, int index, char *data,
551 			  int size, bool last_tcp, bool is_last)
552 {
553 	struct fec_enet_private *fep = netdev_priv(ndev);
554 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
555 	unsigned short status;
556 	unsigned int estatus = 0;
557 	dma_addr_t addr;
558 
559 	status = fec16_to_cpu(bdp->cbd_sc);
560 	status &= ~BD_ENET_TX_STATS;
561 
562 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
563 
564 	if (((unsigned long) data) & fep->tx_align ||
565 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
566 		memcpy(txq->tx_bounce[index], data, size);
567 		data = txq->tx_bounce[index];
568 
569 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
570 			swap_buffer(data, size);
571 	}
572 
573 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
574 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
575 		dev_kfree_skb_any(skb);
576 		if (net_ratelimit())
577 			netdev_err(ndev, "Tx DMA memory map failed\n");
578 		return NETDEV_TX_BUSY;
579 	}
580 
581 	bdp->cbd_datlen = cpu_to_fec16(size);
582 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
583 
584 	if (fep->bufdesc_ex) {
585 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
586 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
587 		if (skb->ip_summed == CHECKSUM_PARTIAL)
588 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
589 		ebdp->cbd_bdu = 0;
590 		ebdp->cbd_esc = cpu_to_fec32(estatus);
591 	}
592 
593 	/* Handle the last BD specially */
594 	if (last_tcp)
595 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
596 	if (is_last) {
597 		status |= BD_ENET_TX_INTR;
598 		if (fep->bufdesc_ex)
599 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
600 	}
601 
602 	bdp->cbd_sc = cpu_to_fec16(status);
603 
604 	return 0;
605 }
606 
607 static int
608 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
609 			 struct sk_buff *skb, struct net_device *ndev,
610 			 struct bufdesc *bdp, int index)
611 {
612 	struct fec_enet_private *fep = netdev_priv(ndev);
613 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
614 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
615 	void *bufaddr;
616 	unsigned long dmabuf;
617 	unsigned short status;
618 	unsigned int estatus = 0;
619 
620 	status = fec16_to_cpu(bdp->cbd_sc);
621 	status &= ~BD_ENET_TX_STATS;
622 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
623 
624 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
625 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
626 	if (((unsigned long)bufaddr) & fep->tx_align ||
627 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
628 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
629 		bufaddr = txq->tx_bounce[index];
630 
631 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
632 			swap_buffer(bufaddr, hdr_len);
633 
634 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
635 					hdr_len, DMA_TO_DEVICE);
636 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
637 			dev_kfree_skb_any(skb);
638 			if (net_ratelimit())
639 				netdev_err(ndev, "Tx DMA memory map failed\n");
640 			return NETDEV_TX_BUSY;
641 		}
642 	}
643 
644 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
645 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
646 
647 	if (fep->bufdesc_ex) {
648 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
649 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
650 		if (skb->ip_summed == CHECKSUM_PARTIAL)
651 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
652 		ebdp->cbd_bdu = 0;
653 		ebdp->cbd_esc = cpu_to_fec32(estatus);
654 	}
655 
656 	bdp->cbd_sc = cpu_to_fec16(status);
657 
658 	return 0;
659 }
660 
661 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
662 				   struct sk_buff *skb,
663 				   struct net_device *ndev)
664 {
665 	struct fec_enet_private *fep = netdev_priv(ndev);
666 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
667 	int total_len, data_left;
668 	struct bufdesc *bdp = txq->bd.cur;
669 	struct tso_t tso;
670 	unsigned int index = 0;
671 	int ret;
672 
673 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
674 		dev_kfree_skb_any(skb);
675 		if (net_ratelimit())
676 			netdev_err(ndev, "NOT enough BD for TSO!\n");
677 		return NETDEV_TX_OK;
678 	}
679 
680 	/* Protocol checksum off-load for TCP and UDP. */
681 	if (fec_enet_clear_csum(skb, ndev)) {
682 		dev_kfree_skb_any(skb);
683 		return NETDEV_TX_OK;
684 	}
685 
686 	/* Initialize the TSO handler, and prepare the first payload */
687 	tso_start(skb, &tso);
688 
689 	total_len = skb->len - hdr_len;
690 	while (total_len > 0) {
691 		char *hdr;
692 
693 		index = fec_enet_get_bd_index(bdp, &txq->bd);
694 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
695 		total_len -= data_left;
696 
697 		/* prepare packet headers: MAC + IP + TCP */
698 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
699 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
700 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
701 		if (ret)
702 			goto err_release;
703 
704 		while (data_left > 0) {
705 			int size;
706 
707 			size = min_t(int, tso.size, data_left);
708 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
709 			index = fec_enet_get_bd_index(bdp, &txq->bd);
710 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
711 							bdp, index,
712 							tso.data, size,
713 							size == data_left,
714 							total_len == 0);
715 			if (ret)
716 				goto err_release;
717 
718 			data_left -= size;
719 			tso_build_data(skb, &tso, size);
720 		}
721 
722 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
723 	}
724 
725 	/* Save skb pointer */
726 	txq->tx_skbuff[index] = skb;
727 
728 	skb_tx_timestamp(skb);
729 	txq->bd.cur = bdp;
730 
731 	/* Trigger transmission start */
732 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
733 	    !readl(txq->bd.reg_desc_active) ||
734 	    !readl(txq->bd.reg_desc_active) ||
735 	    !readl(txq->bd.reg_desc_active) ||
736 	    !readl(txq->bd.reg_desc_active))
737 		writel(0, txq->bd.reg_desc_active);
738 
739 	return 0;
740 
741 err_release:
742 	/* TODO: Release all used data descriptors for TSO */
743 	return ret;
744 }
745 
746 static netdev_tx_t
747 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
748 {
749 	struct fec_enet_private *fep = netdev_priv(ndev);
750 	int entries_free;
751 	unsigned short queue;
752 	struct fec_enet_priv_tx_q *txq;
753 	struct netdev_queue *nq;
754 	int ret;
755 
756 	queue = skb_get_queue_mapping(skb);
757 	txq = fep->tx_queue[queue];
758 	nq = netdev_get_tx_queue(ndev, queue);
759 
760 	if (skb_is_gso(skb))
761 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
762 	else
763 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
764 	if (ret)
765 		return ret;
766 
767 	entries_free = fec_enet_get_free_txdesc_num(txq);
768 	if (entries_free <= txq->tx_stop_threshold)
769 		netif_tx_stop_queue(nq);
770 
771 	return NETDEV_TX_OK;
772 }
773 
774 /* Init RX & TX buffer descriptors
775  */
776 static void fec_enet_bd_init(struct net_device *dev)
777 {
778 	struct fec_enet_private *fep = netdev_priv(dev);
779 	struct fec_enet_priv_tx_q *txq;
780 	struct fec_enet_priv_rx_q *rxq;
781 	struct bufdesc *bdp;
782 	unsigned int i;
783 	unsigned int q;
784 
785 	for (q = 0; q < fep->num_rx_queues; q++) {
786 		/* Initialize the receive buffer descriptors. */
787 		rxq = fep->rx_queue[q];
788 		bdp = rxq->bd.base;
789 
790 		for (i = 0; i < rxq->bd.ring_size; i++) {
791 
792 			/* Initialize the BD for every fragment in the page. */
793 			if (bdp->cbd_bufaddr)
794 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
795 			else
796 				bdp->cbd_sc = cpu_to_fec16(0);
797 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
798 		}
799 
800 		/* Set the last buffer to wrap */
801 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
802 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
803 
804 		rxq->bd.cur = rxq->bd.base;
805 	}
806 
807 	for (q = 0; q < fep->num_tx_queues; q++) {
808 		/* ...and the same for transmit */
809 		txq = fep->tx_queue[q];
810 		bdp = txq->bd.base;
811 		txq->bd.cur = bdp;
812 
813 		for (i = 0; i < txq->bd.ring_size; i++) {
814 			/* Initialize the BD for every fragment in the page. */
815 			bdp->cbd_sc = cpu_to_fec16(0);
816 			if (txq->tx_skbuff[i]) {
817 				dev_kfree_skb_any(txq->tx_skbuff[i]);
818 				txq->tx_skbuff[i] = NULL;
819 			}
820 			bdp->cbd_bufaddr = cpu_to_fec32(0);
821 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
822 		}
823 
824 		/* Set the last buffer to wrap */
825 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
826 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
827 		txq->dirty_tx = bdp;
828 	}
829 }
830 
831 static void fec_enet_active_rxring(struct net_device *ndev)
832 {
833 	struct fec_enet_private *fep = netdev_priv(ndev);
834 	int i;
835 
836 	for (i = 0; i < fep->num_rx_queues; i++)
837 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
838 }
839 
840 static void fec_enet_enable_ring(struct net_device *ndev)
841 {
842 	struct fec_enet_private *fep = netdev_priv(ndev);
843 	struct fec_enet_priv_tx_q *txq;
844 	struct fec_enet_priv_rx_q *rxq;
845 	int i;
846 
847 	for (i = 0; i < fep->num_rx_queues; i++) {
848 		rxq = fep->rx_queue[i];
849 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
850 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
851 
852 		/* enable DMA1/2 */
853 		if (i)
854 			writel(RCMR_MATCHEN | RCMR_CMP(i),
855 			       fep->hwp + FEC_RCMR(i));
856 	}
857 
858 	for (i = 0; i < fep->num_tx_queues; i++) {
859 		txq = fep->tx_queue[i];
860 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
861 
862 		/* enable DMA1/2 */
863 		if (i)
864 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
865 			       fep->hwp + FEC_DMA_CFG(i));
866 	}
867 }
868 
869 static void fec_enet_reset_skb(struct net_device *ndev)
870 {
871 	struct fec_enet_private *fep = netdev_priv(ndev);
872 	struct fec_enet_priv_tx_q *txq;
873 	int i, j;
874 
875 	for (i = 0; i < fep->num_tx_queues; i++) {
876 		txq = fep->tx_queue[i];
877 
878 		for (j = 0; j < txq->bd.ring_size; j++) {
879 			if (txq->tx_skbuff[j]) {
880 				dev_kfree_skb_any(txq->tx_skbuff[j]);
881 				txq->tx_skbuff[j] = NULL;
882 			}
883 		}
884 	}
885 }
886 
887 /*
888  * This function is called to start or restart the FEC during a link
889  * change, transmit timeout, or to reconfigure the FEC.  The network
890  * packet processing for this device must be stopped before this call.
891  */
892 static void
893 fec_restart(struct net_device *ndev)
894 {
895 	struct fec_enet_private *fep = netdev_priv(ndev);
896 	u32 val;
897 	u32 temp_mac[2];
898 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
899 	u32 ecntl = 0x2; /* ETHEREN */
900 
901 	/* Whack a reset.  We should wait for this.
902 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
903 	 * instead of reset MAC itself.
904 	 */
905 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
906 		writel(0, fep->hwp + FEC_ECNTRL);
907 	} else {
908 		writel(1, fep->hwp + FEC_ECNTRL);
909 		udelay(10);
910 	}
911 
912 	/*
913 	 * enet-mac reset will reset mac address registers too,
914 	 * so need to reconfigure it.
915 	 */
916 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
917 	writel((__force u32)cpu_to_be32(temp_mac[0]),
918 	       fep->hwp + FEC_ADDR_LOW);
919 	writel((__force u32)cpu_to_be32(temp_mac[1]),
920 	       fep->hwp + FEC_ADDR_HIGH);
921 
922 	/* Clear any outstanding interrupt. */
923 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
924 
925 	fec_enet_bd_init(ndev);
926 
927 	fec_enet_enable_ring(ndev);
928 
929 	/* Reset tx SKB buffers. */
930 	fec_enet_reset_skb(ndev);
931 
932 	/* Enable MII mode */
933 	if (fep->full_duplex == DUPLEX_FULL) {
934 		/* FD enable */
935 		writel(0x04, fep->hwp + FEC_X_CNTRL);
936 	} else {
937 		/* No Rcv on Xmit */
938 		rcntl |= 0x02;
939 		writel(0x0, fep->hwp + FEC_X_CNTRL);
940 	}
941 
942 	/* Set MII speed */
943 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
944 
945 #if !defined(CONFIG_M5272)
946 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
947 		val = readl(fep->hwp + FEC_RACC);
948 		/* align IP header */
949 		val |= FEC_RACC_SHIFT16;
950 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
951 			/* set RX checksum */
952 			val |= FEC_RACC_OPTIONS;
953 		else
954 			val &= ~FEC_RACC_OPTIONS;
955 		writel(val, fep->hwp + FEC_RACC);
956 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
957 	}
958 #endif
959 
960 	/*
961 	 * The phy interface and speed need to get configured
962 	 * differently on enet-mac.
963 	 */
964 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
965 		/* Enable flow control and length check */
966 		rcntl |= 0x40000000 | 0x00000020;
967 
968 		/* RGMII, RMII or MII */
969 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
970 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
971 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
972 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
973 			rcntl |= (1 << 6);
974 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
975 			rcntl |= (1 << 8);
976 		else
977 			rcntl &= ~(1 << 8);
978 
979 		/* 1G, 100M or 10M */
980 		if (ndev->phydev) {
981 			if (ndev->phydev->speed == SPEED_1000)
982 				ecntl |= (1 << 5);
983 			else if (ndev->phydev->speed == SPEED_100)
984 				rcntl &= ~(1 << 9);
985 			else
986 				rcntl |= (1 << 9);
987 		}
988 	} else {
989 #ifdef FEC_MIIGSK_ENR
990 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
991 			u32 cfgr;
992 			/* disable the gasket and wait */
993 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
994 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
995 				udelay(1);
996 
997 			/*
998 			 * configure the gasket:
999 			 *   RMII, 50 MHz, no loopback, no echo
1000 			 *   MII, 25 MHz, no loopback, no echo
1001 			 */
1002 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1004 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1005 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1006 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1007 
1008 			/* re-enable the gasket */
1009 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1010 		}
1011 #endif
1012 	}
1013 
1014 #if !defined(CONFIG_M5272)
1015 	/* enable pause frame*/
1016 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1017 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1018 	     ndev->phydev && ndev->phydev->pause)) {
1019 		rcntl |= FEC_ENET_FCE;
1020 
1021 		/* set FIFO threshold parameter to reduce overrun */
1022 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1023 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1024 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1025 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1026 
1027 		/* OPD */
1028 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1029 	} else {
1030 		rcntl &= ~FEC_ENET_FCE;
1031 	}
1032 #endif /* !defined(CONFIG_M5272) */
1033 
1034 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1035 
1036 	/* Setup multicast filter. */
1037 	set_multicast_list(ndev);
1038 #ifndef CONFIG_M5272
1039 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1040 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1041 #endif
1042 
1043 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1044 		/* enable ENET endian swap */
1045 		ecntl |= (1 << 8);
1046 		/* enable ENET store and forward mode */
1047 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1048 	}
1049 
1050 	if (fep->bufdesc_ex)
1051 		ecntl |= (1 << 4);
1052 
1053 #ifndef CONFIG_M5272
1054 	/* Enable the MIB statistic event counters */
1055 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1056 #endif
1057 
1058 	/* And last, enable the transmit and receive processing */
1059 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1060 	fec_enet_active_rxring(ndev);
1061 
1062 	if (fep->bufdesc_ex)
1063 		fec_ptp_start_cyclecounter(ndev);
1064 
1065 	/* Enable interrupts we wish to service */
1066 	if (fep->link)
1067 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1068 	else
1069 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1070 
1071 	/* Init the interrupt coalescing */
1072 	fec_enet_itr_coal_init(ndev);
1073 
1074 }
1075 
1076 static void
1077 fec_stop(struct net_device *ndev)
1078 {
1079 	struct fec_enet_private *fep = netdev_priv(ndev);
1080 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1081 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1082 	u32 val;
1083 
1084 	/* We cannot expect a graceful transmit stop without link !!! */
1085 	if (fep->link) {
1086 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1087 		udelay(10);
1088 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1089 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1090 	}
1091 
1092 	/* Whack a reset.  We should wait for this.
1093 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1094 	 * instead of reset MAC itself.
1095 	 */
1096 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1097 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1098 			writel(0, fep->hwp + FEC_ECNTRL);
1099 		} else {
1100 			writel(1, fep->hwp + FEC_ECNTRL);
1101 			udelay(10);
1102 		}
1103 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1104 	} else {
1105 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1106 		val = readl(fep->hwp + FEC_ECNTRL);
1107 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1108 		writel(val, fep->hwp + FEC_ECNTRL);
1109 
1110 		if (pdata && pdata->sleep_mode_enable)
1111 			pdata->sleep_mode_enable(true);
1112 	}
1113 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1114 
1115 	/* We have to keep ENET enabled to have MII interrupt stay working */
1116 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1117 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1118 		writel(2, fep->hwp + FEC_ECNTRL);
1119 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1120 	}
1121 }
1122 
1123 
1124 static void
1125 fec_timeout(struct net_device *ndev)
1126 {
1127 	struct fec_enet_private *fep = netdev_priv(ndev);
1128 
1129 	fec_dump(ndev);
1130 
1131 	ndev->stats.tx_errors++;
1132 
1133 	schedule_work(&fep->tx_timeout_work);
1134 }
1135 
1136 static void fec_enet_timeout_work(struct work_struct *work)
1137 {
1138 	struct fec_enet_private *fep =
1139 		container_of(work, struct fec_enet_private, tx_timeout_work);
1140 	struct net_device *ndev = fep->netdev;
1141 
1142 	rtnl_lock();
1143 	if (netif_device_present(ndev) || netif_running(ndev)) {
1144 		napi_disable(&fep->napi);
1145 		netif_tx_lock_bh(ndev);
1146 		fec_restart(ndev);
1147 		netif_wake_queue(ndev);
1148 		netif_tx_unlock_bh(ndev);
1149 		napi_enable(&fep->napi);
1150 	}
1151 	rtnl_unlock();
1152 }
1153 
1154 static void
1155 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1156 	struct skb_shared_hwtstamps *hwtstamps)
1157 {
1158 	unsigned long flags;
1159 	u64 ns;
1160 
1161 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1162 	ns = timecounter_cyc2time(&fep->tc, ts);
1163 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1164 
1165 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1166 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1167 }
1168 
1169 static void
1170 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1171 {
1172 	struct	fec_enet_private *fep;
1173 	struct bufdesc *bdp;
1174 	unsigned short status;
1175 	struct	sk_buff	*skb;
1176 	struct fec_enet_priv_tx_q *txq;
1177 	struct netdev_queue *nq;
1178 	int	index = 0;
1179 	int	entries_free;
1180 
1181 	fep = netdev_priv(ndev);
1182 
1183 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1184 
1185 	txq = fep->tx_queue[queue_id];
1186 	/* get next bdp of dirty_tx */
1187 	nq = netdev_get_tx_queue(ndev, queue_id);
1188 	bdp = txq->dirty_tx;
1189 
1190 	/* get next bdp of dirty_tx */
1191 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1192 
1193 	while (bdp != READ_ONCE(txq->bd.cur)) {
1194 		/* Order the load of bd.cur and cbd_sc */
1195 		rmb();
1196 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1197 		if (status & BD_ENET_TX_READY)
1198 			break;
1199 
1200 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1201 
1202 		skb = txq->tx_skbuff[index];
1203 		txq->tx_skbuff[index] = NULL;
1204 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1205 			dma_unmap_single(&fep->pdev->dev,
1206 					 fec32_to_cpu(bdp->cbd_bufaddr),
1207 					 fec16_to_cpu(bdp->cbd_datlen),
1208 					 DMA_TO_DEVICE);
1209 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1210 		if (!skb)
1211 			goto skb_done;
1212 
1213 		/* Check for errors. */
1214 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1215 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1216 				   BD_ENET_TX_CSL)) {
1217 			ndev->stats.tx_errors++;
1218 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1219 				ndev->stats.tx_heartbeat_errors++;
1220 			if (status & BD_ENET_TX_LC)  /* Late collision */
1221 				ndev->stats.tx_window_errors++;
1222 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1223 				ndev->stats.tx_aborted_errors++;
1224 			if (status & BD_ENET_TX_UN)  /* Underrun */
1225 				ndev->stats.tx_fifo_errors++;
1226 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1227 				ndev->stats.tx_carrier_errors++;
1228 		} else {
1229 			ndev->stats.tx_packets++;
1230 			ndev->stats.tx_bytes += skb->len;
1231 		}
1232 
1233 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1234 			fep->bufdesc_ex) {
1235 			struct skb_shared_hwtstamps shhwtstamps;
1236 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1237 
1238 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1239 			skb_tstamp_tx(skb, &shhwtstamps);
1240 		}
1241 
1242 		/* Deferred means some collisions occurred during transmit,
1243 		 * but we eventually sent the packet OK.
1244 		 */
1245 		if (status & BD_ENET_TX_DEF)
1246 			ndev->stats.collisions++;
1247 
1248 		/* Free the sk buffer associated with this last transmit */
1249 		dev_kfree_skb_any(skb);
1250 skb_done:
1251 		/* Make sure the update to bdp and tx_skbuff are performed
1252 		 * before dirty_tx
1253 		 */
1254 		wmb();
1255 		txq->dirty_tx = bdp;
1256 
1257 		/* Update pointer to next buffer descriptor to be transmitted */
1258 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1259 
1260 		/* Since we have freed up a buffer, the ring is no longer full
1261 		 */
1262 		if (netif_queue_stopped(ndev)) {
1263 			entries_free = fec_enet_get_free_txdesc_num(txq);
1264 			if (entries_free >= txq->tx_wake_threshold)
1265 				netif_tx_wake_queue(nq);
1266 		}
1267 	}
1268 
1269 	/* ERR006538: Keep the transmitter going */
1270 	if (bdp != txq->bd.cur &&
1271 	    readl(txq->bd.reg_desc_active) == 0)
1272 		writel(0, txq->bd.reg_desc_active);
1273 }
1274 
1275 static void
1276 fec_enet_tx(struct net_device *ndev)
1277 {
1278 	struct fec_enet_private *fep = netdev_priv(ndev);
1279 	u16 queue_id;
1280 	/* First process class A queue, then Class B and Best Effort queue */
1281 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1282 		clear_bit(queue_id, &fep->work_tx);
1283 		fec_enet_tx_queue(ndev, queue_id);
1284 	}
1285 	return;
1286 }
1287 
1288 static int
1289 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1290 {
1291 	struct  fec_enet_private *fep = netdev_priv(ndev);
1292 	int off;
1293 
1294 	off = ((unsigned long)skb->data) & fep->rx_align;
1295 	if (off)
1296 		skb_reserve(skb, fep->rx_align + 1 - off);
1297 
1298 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1299 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1300 		if (net_ratelimit())
1301 			netdev_err(ndev, "Rx DMA memory map failed\n");
1302 		return -ENOMEM;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1309 			       struct bufdesc *bdp, u32 length, bool swap)
1310 {
1311 	struct  fec_enet_private *fep = netdev_priv(ndev);
1312 	struct sk_buff *new_skb;
1313 
1314 	if (length > fep->rx_copybreak)
1315 		return false;
1316 
1317 	new_skb = netdev_alloc_skb(ndev, length);
1318 	if (!new_skb)
1319 		return false;
1320 
1321 	dma_sync_single_for_cpu(&fep->pdev->dev,
1322 				fec32_to_cpu(bdp->cbd_bufaddr),
1323 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1324 				DMA_FROM_DEVICE);
1325 	if (!swap)
1326 		memcpy(new_skb->data, (*skb)->data, length);
1327 	else
1328 		swap_buffer2(new_skb->data, (*skb)->data, length);
1329 	*skb = new_skb;
1330 
1331 	return true;
1332 }
1333 
1334 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1335  * When we update through the ring, if the next incoming buffer has
1336  * not been given to the system, we just set the empty indicator,
1337  * effectively tossing the packet.
1338  */
1339 static int
1340 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1341 {
1342 	struct fec_enet_private *fep = netdev_priv(ndev);
1343 	struct fec_enet_priv_rx_q *rxq;
1344 	struct bufdesc *bdp;
1345 	unsigned short status;
1346 	struct  sk_buff *skb_new = NULL;
1347 	struct  sk_buff *skb;
1348 	ushort	pkt_len;
1349 	__u8 *data;
1350 	int	pkt_received = 0;
1351 	struct	bufdesc_ex *ebdp = NULL;
1352 	bool	vlan_packet_rcvd = false;
1353 	u16	vlan_tag;
1354 	int	index = 0;
1355 	bool	is_copybreak;
1356 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1357 
1358 #ifdef CONFIG_M532x
1359 	flush_cache_all();
1360 #endif
1361 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1362 	rxq = fep->rx_queue[queue_id];
1363 
1364 	/* First, grab all of the stats for the incoming packet.
1365 	 * These get messed up if we get called due to a busy condition.
1366 	 */
1367 	bdp = rxq->bd.cur;
1368 
1369 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1370 
1371 		if (pkt_received >= budget)
1372 			break;
1373 		pkt_received++;
1374 
1375 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1376 
1377 		/* Check for errors. */
1378 		status ^= BD_ENET_RX_LAST;
1379 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1380 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1381 			   BD_ENET_RX_CL)) {
1382 			ndev->stats.rx_errors++;
1383 			if (status & BD_ENET_RX_OV) {
1384 				/* FIFO overrun */
1385 				ndev->stats.rx_fifo_errors++;
1386 				goto rx_processing_done;
1387 			}
1388 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1389 						| BD_ENET_RX_LAST)) {
1390 				/* Frame too long or too short. */
1391 				ndev->stats.rx_length_errors++;
1392 				if (status & BD_ENET_RX_LAST)
1393 					netdev_err(ndev, "rcv is not +last\n");
1394 			}
1395 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1396 				ndev->stats.rx_crc_errors++;
1397 			/* Report late collisions as a frame error. */
1398 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1399 				ndev->stats.rx_frame_errors++;
1400 			goto rx_processing_done;
1401 		}
1402 
1403 		/* Process the incoming frame. */
1404 		ndev->stats.rx_packets++;
1405 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1406 		ndev->stats.rx_bytes += pkt_len;
1407 
1408 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1409 		skb = rxq->rx_skbuff[index];
1410 
1411 		/* The packet length includes FCS, but we don't want to
1412 		 * include that when passing upstream as it messes up
1413 		 * bridging applications.
1414 		 */
1415 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1416 						  need_swap);
1417 		if (!is_copybreak) {
1418 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1419 			if (unlikely(!skb_new)) {
1420 				ndev->stats.rx_dropped++;
1421 				goto rx_processing_done;
1422 			}
1423 			dma_unmap_single(&fep->pdev->dev,
1424 					 fec32_to_cpu(bdp->cbd_bufaddr),
1425 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1426 					 DMA_FROM_DEVICE);
1427 		}
1428 
1429 		prefetch(skb->data - NET_IP_ALIGN);
1430 		skb_put(skb, pkt_len - 4);
1431 		data = skb->data;
1432 
1433 		if (!is_copybreak && need_swap)
1434 			swap_buffer(data, pkt_len);
1435 
1436 #if !defined(CONFIG_M5272)
1437 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1438 			data = skb_pull_inline(skb, 2);
1439 #endif
1440 
1441 		/* Extract the enhanced buffer descriptor */
1442 		ebdp = NULL;
1443 		if (fep->bufdesc_ex)
1444 			ebdp = (struct bufdesc_ex *)bdp;
1445 
1446 		/* If this is a VLAN packet remove the VLAN Tag */
1447 		vlan_packet_rcvd = false;
1448 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1449 		    fep->bufdesc_ex &&
1450 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1451 			/* Push and remove the vlan tag */
1452 			struct vlan_hdr *vlan_header =
1453 					(struct vlan_hdr *) (data + ETH_HLEN);
1454 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1455 
1456 			vlan_packet_rcvd = true;
1457 
1458 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1459 			skb_pull(skb, VLAN_HLEN);
1460 		}
1461 
1462 		skb->protocol = eth_type_trans(skb, ndev);
1463 
1464 		/* Get receive timestamp from the skb */
1465 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1466 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1467 					  skb_hwtstamps(skb));
1468 
1469 		if (fep->bufdesc_ex &&
1470 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1471 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1472 				/* don't check it */
1473 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1474 			} else {
1475 				skb_checksum_none_assert(skb);
1476 			}
1477 		}
1478 
1479 		/* Handle received VLAN packets */
1480 		if (vlan_packet_rcvd)
1481 			__vlan_hwaccel_put_tag(skb,
1482 					       htons(ETH_P_8021Q),
1483 					       vlan_tag);
1484 
1485 		napi_gro_receive(&fep->napi, skb);
1486 
1487 		if (is_copybreak) {
1488 			dma_sync_single_for_device(&fep->pdev->dev,
1489 						   fec32_to_cpu(bdp->cbd_bufaddr),
1490 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1491 						   DMA_FROM_DEVICE);
1492 		} else {
1493 			rxq->rx_skbuff[index] = skb_new;
1494 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1495 		}
1496 
1497 rx_processing_done:
1498 		/* Clear the status flags for this buffer */
1499 		status &= ~BD_ENET_RX_STATS;
1500 
1501 		/* Mark the buffer empty */
1502 		status |= BD_ENET_RX_EMPTY;
1503 
1504 		if (fep->bufdesc_ex) {
1505 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1506 
1507 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1508 			ebdp->cbd_prot = 0;
1509 			ebdp->cbd_bdu = 0;
1510 		}
1511 		/* Make sure the updates to rest of the descriptor are
1512 		 * performed before transferring ownership.
1513 		 */
1514 		wmb();
1515 		bdp->cbd_sc = cpu_to_fec16(status);
1516 
1517 		/* Update BD pointer to next entry */
1518 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1519 
1520 		/* Doing this here will keep the FEC running while we process
1521 		 * incoming frames.  On a heavily loaded network, we should be
1522 		 * able to keep up at the expense of system resources.
1523 		 */
1524 		writel(0, rxq->bd.reg_desc_active);
1525 	}
1526 	rxq->bd.cur = bdp;
1527 	return pkt_received;
1528 }
1529 
1530 static int
1531 fec_enet_rx(struct net_device *ndev, int budget)
1532 {
1533 	int     pkt_received = 0;
1534 	u16	queue_id;
1535 	struct fec_enet_private *fep = netdev_priv(ndev);
1536 
1537 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1538 		int ret;
1539 
1540 		ret = fec_enet_rx_queue(ndev,
1541 					budget - pkt_received, queue_id);
1542 
1543 		if (ret < budget - pkt_received)
1544 			clear_bit(queue_id, &fep->work_rx);
1545 
1546 		pkt_received += ret;
1547 	}
1548 	return pkt_received;
1549 }
1550 
1551 static bool
1552 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1553 {
1554 	if (int_events == 0)
1555 		return false;
1556 
1557 	if (int_events & FEC_ENET_RXF)
1558 		fep->work_rx |= (1 << 2);
1559 	if (int_events & FEC_ENET_RXF_1)
1560 		fep->work_rx |= (1 << 0);
1561 	if (int_events & FEC_ENET_RXF_2)
1562 		fep->work_rx |= (1 << 1);
1563 
1564 	if (int_events & FEC_ENET_TXF)
1565 		fep->work_tx |= (1 << 2);
1566 	if (int_events & FEC_ENET_TXF_1)
1567 		fep->work_tx |= (1 << 0);
1568 	if (int_events & FEC_ENET_TXF_2)
1569 		fep->work_tx |= (1 << 1);
1570 
1571 	return true;
1572 }
1573 
1574 static irqreturn_t
1575 fec_enet_interrupt(int irq, void *dev_id)
1576 {
1577 	struct net_device *ndev = dev_id;
1578 	struct fec_enet_private *fep = netdev_priv(ndev);
1579 	uint int_events;
1580 	irqreturn_t ret = IRQ_NONE;
1581 
1582 	int_events = readl(fep->hwp + FEC_IEVENT);
1583 	writel(int_events, fep->hwp + FEC_IEVENT);
1584 	fec_enet_collect_events(fep, int_events);
1585 
1586 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1587 		ret = IRQ_HANDLED;
1588 
1589 		if (napi_schedule_prep(&fep->napi)) {
1590 			/* Disable the NAPI interrupts */
1591 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1592 			__napi_schedule(&fep->napi);
1593 		}
1594 	}
1595 
1596 	if (int_events & FEC_ENET_MII) {
1597 		ret = IRQ_HANDLED;
1598 		complete(&fep->mdio_done);
1599 	}
1600 
1601 	if (fep->ptp_clock)
1602 		fec_ptp_check_pps_event(fep);
1603 
1604 	return ret;
1605 }
1606 
1607 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1608 {
1609 	struct net_device *ndev = napi->dev;
1610 	struct fec_enet_private *fep = netdev_priv(ndev);
1611 	int pkts;
1612 
1613 	pkts = fec_enet_rx(ndev, budget);
1614 
1615 	fec_enet_tx(ndev);
1616 
1617 	if (pkts < budget) {
1618 		napi_complete_done(napi, pkts);
1619 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1620 	}
1621 	return pkts;
1622 }
1623 
1624 /* ------------------------------------------------------------------------- */
1625 static void fec_get_mac(struct net_device *ndev)
1626 {
1627 	struct fec_enet_private *fep = netdev_priv(ndev);
1628 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1629 	unsigned char *iap, tmpaddr[ETH_ALEN];
1630 
1631 	/*
1632 	 * try to get mac address in following order:
1633 	 *
1634 	 * 1) module parameter via kernel command line in form
1635 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1636 	 */
1637 	iap = macaddr;
1638 
1639 	/*
1640 	 * 2) from device tree data
1641 	 */
1642 	if (!is_valid_ether_addr(iap)) {
1643 		struct device_node *np = fep->pdev->dev.of_node;
1644 		if (np) {
1645 			const char *mac = of_get_mac_address(np);
1646 			if (mac)
1647 				iap = (unsigned char *) mac;
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * 3) from flash or fuse (via platform data)
1653 	 */
1654 	if (!is_valid_ether_addr(iap)) {
1655 #ifdef CONFIG_M5272
1656 		if (FEC_FLASHMAC)
1657 			iap = (unsigned char *)FEC_FLASHMAC;
1658 #else
1659 		if (pdata)
1660 			iap = (unsigned char *)&pdata->mac;
1661 #endif
1662 	}
1663 
1664 	/*
1665 	 * 4) FEC mac registers set by bootloader
1666 	 */
1667 	if (!is_valid_ether_addr(iap)) {
1668 		*((__be32 *) &tmpaddr[0]) =
1669 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1670 		*((__be16 *) &tmpaddr[4]) =
1671 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1672 		iap = &tmpaddr[0];
1673 	}
1674 
1675 	/*
1676 	 * 5) random mac address
1677 	 */
1678 	if (!is_valid_ether_addr(iap)) {
1679 		/* Report it and use a random ethernet address instead */
1680 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1681 		eth_hw_addr_random(ndev);
1682 		netdev_info(ndev, "Using random MAC address: %pM\n",
1683 			    ndev->dev_addr);
1684 		return;
1685 	}
1686 
1687 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1688 
1689 	/* Adjust MAC if using macaddr */
1690 	if (iap == macaddr)
1691 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1692 }
1693 
1694 /* ------------------------------------------------------------------------- */
1695 
1696 /*
1697  * Phy section
1698  */
1699 static void fec_enet_adjust_link(struct net_device *ndev)
1700 {
1701 	struct fec_enet_private *fep = netdev_priv(ndev);
1702 	struct phy_device *phy_dev = ndev->phydev;
1703 	int status_change = 0;
1704 
1705 	/* Prevent a state halted on mii error */
1706 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1707 		phy_dev->state = PHY_RESUMING;
1708 		return;
1709 	}
1710 
1711 	/*
1712 	 * If the netdev is down, or is going down, we're not interested
1713 	 * in link state events, so just mark our idea of the link as down
1714 	 * and ignore the event.
1715 	 */
1716 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1717 		fep->link = 0;
1718 	} else if (phy_dev->link) {
1719 		if (!fep->link) {
1720 			fep->link = phy_dev->link;
1721 			status_change = 1;
1722 		}
1723 
1724 		if (fep->full_duplex != phy_dev->duplex) {
1725 			fep->full_duplex = phy_dev->duplex;
1726 			status_change = 1;
1727 		}
1728 
1729 		if (phy_dev->speed != fep->speed) {
1730 			fep->speed = phy_dev->speed;
1731 			status_change = 1;
1732 		}
1733 
1734 		/* if any of the above changed restart the FEC */
1735 		if (status_change) {
1736 			napi_disable(&fep->napi);
1737 			netif_tx_lock_bh(ndev);
1738 			fec_restart(ndev);
1739 			netif_wake_queue(ndev);
1740 			netif_tx_unlock_bh(ndev);
1741 			napi_enable(&fep->napi);
1742 		}
1743 	} else {
1744 		if (fep->link) {
1745 			napi_disable(&fep->napi);
1746 			netif_tx_lock_bh(ndev);
1747 			fec_stop(ndev);
1748 			netif_tx_unlock_bh(ndev);
1749 			napi_enable(&fep->napi);
1750 			fep->link = phy_dev->link;
1751 			status_change = 1;
1752 		}
1753 	}
1754 
1755 	if (status_change)
1756 		phy_print_status(phy_dev);
1757 }
1758 
1759 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1760 {
1761 	struct fec_enet_private *fep = bus->priv;
1762 	struct device *dev = &fep->pdev->dev;
1763 	unsigned long time_left;
1764 	int ret = 0;
1765 
1766 	ret = pm_runtime_get_sync(dev);
1767 	if (ret < 0)
1768 		return ret;
1769 
1770 	fep->mii_timeout = 0;
1771 	reinit_completion(&fep->mdio_done);
1772 
1773 	/* start a read op */
1774 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1775 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1776 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1777 
1778 	/* wait for end of transfer */
1779 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1780 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1781 	if (time_left == 0) {
1782 		fep->mii_timeout = 1;
1783 		netdev_err(fep->netdev, "MDIO read timeout\n");
1784 		ret = -ETIMEDOUT;
1785 		goto out;
1786 	}
1787 
1788 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1789 
1790 out:
1791 	pm_runtime_mark_last_busy(dev);
1792 	pm_runtime_put_autosuspend(dev);
1793 
1794 	return ret;
1795 }
1796 
1797 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1798 			   u16 value)
1799 {
1800 	struct fec_enet_private *fep = bus->priv;
1801 	struct device *dev = &fep->pdev->dev;
1802 	unsigned long time_left;
1803 	int ret;
1804 
1805 	ret = pm_runtime_get_sync(dev);
1806 	if (ret < 0)
1807 		return ret;
1808 	else
1809 		ret = 0;
1810 
1811 	fep->mii_timeout = 0;
1812 	reinit_completion(&fep->mdio_done);
1813 
1814 	/* start a write op */
1815 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1816 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1817 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1818 		fep->hwp + FEC_MII_DATA);
1819 
1820 	/* wait for end of transfer */
1821 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1822 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1823 	if (time_left == 0) {
1824 		fep->mii_timeout = 1;
1825 		netdev_err(fep->netdev, "MDIO write timeout\n");
1826 		ret  = -ETIMEDOUT;
1827 	}
1828 
1829 	pm_runtime_mark_last_busy(dev);
1830 	pm_runtime_put_autosuspend(dev);
1831 
1832 	return ret;
1833 }
1834 
1835 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1836 {
1837 	struct fec_enet_private *fep = netdev_priv(ndev);
1838 	int ret;
1839 
1840 	if (enable) {
1841 		ret = clk_prepare_enable(fep->clk_ahb);
1842 		if (ret)
1843 			return ret;
1844 
1845 		ret = clk_prepare_enable(fep->clk_enet_out);
1846 		if (ret)
1847 			goto failed_clk_enet_out;
1848 
1849 		if (fep->clk_ptp) {
1850 			mutex_lock(&fep->ptp_clk_mutex);
1851 			ret = clk_prepare_enable(fep->clk_ptp);
1852 			if (ret) {
1853 				mutex_unlock(&fep->ptp_clk_mutex);
1854 				goto failed_clk_ptp;
1855 			} else {
1856 				fep->ptp_clk_on = true;
1857 			}
1858 			mutex_unlock(&fep->ptp_clk_mutex);
1859 		}
1860 
1861 		ret = clk_prepare_enable(fep->clk_ref);
1862 		if (ret)
1863 			goto failed_clk_ref;
1864 	} else {
1865 		clk_disable_unprepare(fep->clk_ahb);
1866 		clk_disable_unprepare(fep->clk_enet_out);
1867 		if (fep->clk_ptp) {
1868 			mutex_lock(&fep->ptp_clk_mutex);
1869 			clk_disable_unprepare(fep->clk_ptp);
1870 			fep->ptp_clk_on = false;
1871 			mutex_unlock(&fep->ptp_clk_mutex);
1872 		}
1873 		clk_disable_unprepare(fep->clk_ref);
1874 	}
1875 
1876 	return 0;
1877 
1878 failed_clk_ref:
1879 	if (fep->clk_ref)
1880 		clk_disable_unprepare(fep->clk_ref);
1881 failed_clk_ptp:
1882 	if (fep->clk_enet_out)
1883 		clk_disable_unprepare(fep->clk_enet_out);
1884 failed_clk_enet_out:
1885 		clk_disable_unprepare(fep->clk_ahb);
1886 
1887 	return ret;
1888 }
1889 
1890 static int fec_enet_mii_probe(struct net_device *ndev)
1891 {
1892 	struct fec_enet_private *fep = netdev_priv(ndev);
1893 	struct phy_device *phy_dev = NULL;
1894 	char mdio_bus_id[MII_BUS_ID_SIZE];
1895 	char phy_name[MII_BUS_ID_SIZE + 3];
1896 	int phy_id;
1897 	int dev_id = fep->dev_id;
1898 
1899 	if (fep->phy_node) {
1900 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1901 					 &fec_enet_adjust_link, 0,
1902 					 fep->phy_interface);
1903 		if (!phy_dev)
1904 			return -ENODEV;
1905 	} else {
1906 		/* check for attached phy */
1907 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1908 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1909 				continue;
1910 			if (dev_id--)
1911 				continue;
1912 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1913 			break;
1914 		}
1915 
1916 		if (phy_id >= PHY_MAX_ADDR) {
1917 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1918 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1919 			phy_id = 0;
1920 		}
1921 
1922 		snprintf(phy_name, sizeof(phy_name),
1923 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1924 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1925 				      fep->phy_interface);
1926 	}
1927 
1928 	if (IS_ERR(phy_dev)) {
1929 		netdev_err(ndev, "could not attach to PHY\n");
1930 		return PTR_ERR(phy_dev);
1931 	}
1932 
1933 	/* mask with MAC supported features */
1934 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1935 		phy_dev->supported &= PHY_GBIT_FEATURES;
1936 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1937 #if !defined(CONFIG_M5272)
1938 		phy_dev->supported |= SUPPORTED_Pause;
1939 #endif
1940 	}
1941 	else
1942 		phy_dev->supported &= PHY_BASIC_FEATURES;
1943 
1944 	phy_dev->advertising = phy_dev->supported;
1945 
1946 	fep->link = 0;
1947 	fep->full_duplex = 0;
1948 
1949 	phy_attached_info(phy_dev);
1950 
1951 	return 0;
1952 }
1953 
1954 static int fec_enet_mii_init(struct platform_device *pdev)
1955 {
1956 	static struct mii_bus *fec0_mii_bus;
1957 	struct net_device *ndev = platform_get_drvdata(pdev);
1958 	struct fec_enet_private *fep = netdev_priv(ndev);
1959 	struct device_node *node;
1960 	int err = -ENXIO;
1961 	u32 mii_speed, holdtime;
1962 
1963 	/*
1964 	 * The i.MX28 dual fec interfaces are not equal.
1965 	 * Here are the differences:
1966 	 *
1967 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1968 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1969 	 *  - external phys can only be configured by fec0
1970 	 *
1971 	 * That is to say fec1 can not work independently. It only works
1972 	 * when fec0 is working. The reason behind this design is that the
1973 	 * second interface is added primarily for Switch mode.
1974 	 *
1975 	 * Because of the last point above, both phys are attached on fec0
1976 	 * mdio interface in board design, and need to be configured by
1977 	 * fec0 mii_bus.
1978 	 */
1979 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1980 		/* fec1 uses fec0 mii_bus */
1981 		if (mii_cnt && fec0_mii_bus) {
1982 			fep->mii_bus = fec0_mii_bus;
1983 			mii_cnt++;
1984 			return 0;
1985 		}
1986 		return -ENOENT;
1987 	}
1988 
1989 	fep->mii_timeout = 0;
1990 
1991 	/*
1992 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1993 	 *
1994 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1995 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1996 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1997 	 * document.
1998 	 */
1999 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2000 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2001 		mii_speed--;
2002 	if (mii_speed > 63) {
2003 		dev_err(&pdev->dev,
2004 			"fec clock (%lu) to fast to get right mii speed\n",
2005 			clk_get_rate(fep->clk_ipg));
2006 		err = -EINVAL;
2007 		goto err_out;
2008 	}
2009 
2010 	/*
2011 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2012 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2013 	 * versions are RAZ there, so just ignore the difference and write the
2014 	 * register always.
2015 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2016 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2017 	 * output.
2018 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2019 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2020 	 * holdtime cannot result in a value greater than 3.
2021 	 */
2022 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2023 
2024 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2025 
2026 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2027 
2028 	fep->mii_bus = mdiobus_alloc();
2029 	if (fep->mii_bus == NULL) {
2030 		err = -ENOMEM;
2031 		goto err_out;
2032 	}
2033 
2034 	fep->mii_bus->name = "fec_enet_mii_bus";
2035 	fep->mii_bus->read = fec_enet_mdio_read;
2036 	fep->mii_bus->write = fec_enet_mdio_write;
2037 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2038 		pdev->name, fep->dev_id + 1);
2039 	fep->mii_bus->priv = fep;
2040 	fep->mii_bus->parent = &pdev->dev;
2041 
2042 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2043 	if (node) {
2044 		err = of_mdiobus_register(fep->mii_bus, node);
2045 		of_node_put(node);
2046 	} else {
2047 		err = mdiobus_register(fep->mii_bus);
2048 	}
2049 
2050 	if (err)
2051 		goto err_out_free_mdiobus;
2052 
2053 	mii_cnt++;
2054 
2055 	/* save fec0 mii_bus */
2056 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2057 		fec0_mii_bus = fep->mii_bus;
2058 
2059 	return 0;
2060 
2061 err_out_free_mdiobus:
2062 	mdiobus_free(fep->mii_bus);
2063 err_out:
2064 	return err;
2065 }
2066 
2067 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2068 {
2069 	if (--mii_cnt == 0) {
2070 		mdiobus_unregister(fep->mii_bus);
2071 		mdiobus_free(fep->mii_bus);
2072 	}
2073 }
2074 
2075 static void fec_enet_get_drvinfo(struct net_device *ndev,
2076 				 struct ethtool_drvinfo *info)
2077 {
2078 	struct fec_enet_private *fep = netdev_priv(ndev);
2079 
2080 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2081 		sizeof(info->driver));
2082 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2083 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2084 }
2085 
2086 static int fec_enet_get_regs_len(struct net_device *ndev)
2087 {
2088 	struct fec_enet_private *fep = netdev_priv(ndev);
2089 	struct resource *r;
2090 	int s = 0;
2091 
2092 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2093 	if (r)
2094 		s = resource_size(r);
2095 
2096 	return s;
2097 }
2098 
2099 /* List of registers that can be safety be read to dump them with ethtool */
2100 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2101 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2102 static u32 fec_enet_register_offset[] = {
2103 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2104 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2105 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2106 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2107 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2108 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2109 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2110 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2111 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2112 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2113 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2114 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2115 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2116 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2117 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2118 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2119 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2120 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2121 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2122 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2123 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2124 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2125 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2126 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2127 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2128 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2129 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2130 };
2131 #else
2132 static u32 fec_enet_register_offset[] = {
2133 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2134 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2135 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2136 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2137 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2138 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2139 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2140 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2141 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2142 };
2143 #endif
2144 
2145 static void fec_enet_get_regs(struct net_device *ndev,
2146 			      struct ethtool_regs *regs, void *regbuf)
2147 {
2148 	struct fec_enet_private *fep = netdev_priv(ndev);
2149 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2150 	u32 *buf = (u32 *)regbuf;
2151 	u32 i, off;
2152 
2153 	memset(buf, 0, regs->len);
2154 
2155 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2156 		off = fec_enet_register_offset[i] / 4;
2157 		buf[off] = readl(&theregs[off]);
2158 	}
2159 }
2160 
2161 static int fec_enet_get_ts_info(struct net_device *ndev,
2162 				struct ethtool_ts_info *info)
2163 {
2164 	struct fec_enet_private *fep = netdev_priv(ndev);
2165 
2166 	if (fep->bufdesc_ex) {
2167 
2168 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2169 					SOF_TIMESTAMPING_RX_SOFTWARE |
2170 					SOF_TIMESTAMPING_SOFTWARE |
2171 					SOF_TIMESTAMPING_TX_HARDWARE |
2172 					SOF_TIMESTAMPING_RX_HARDWARE |
2173 					SOF_TIMESTAMPING_RAW_HARDWARE;
2174 		if (fep->ptp_clock)
2175 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2176 		else
2177 			info->phc_index = -1;
2178 
2179 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2180 				 (1 << HWTSTAMP_TX_ON);
2181 
2182 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2183 				   (1 << HWTSTAMP_FILTER_ALL);
2184 		return 0;
2185 	} else {
2186 		return ethtool_op_get_ts_info(ndev, info);
2187 	}
2188 }
2189 
2190 #if !defined(CONFIG_M5272)
2191 
2192 static void fec_enet_get_pauseparam(struct net_device *ndev,
2193 				    struct ethtool_pauseparam *pause)
2194 {
2195 	struct fec_enet_private *fep = netdev_priv(ndev);
2196 
2197 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2198 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2199 	pause->rx_pause = pause->tx_pause;
2200 }
2201 
2202 static int fec_enet_set_pauseparam(struct net_device *ndev,
2203 				   struct ethtool_pauseparam *pause)
2204 {
2205 	struct fec_enet_private *fep = netdev_priv(ndev);
2206 
2207 	if (!ndev->phydev)
2208 		return -ENODEV;
2209 
2210 	if (pause->tx_pause != pause->rx_pause) {
2211 		netdev_info(ndev,
2212 			"hardware only support enable/disable both tx and rx");
2213 		return -EINVAL;
2214 	}
2215 
2216 	fep->pause_flag = 0;
2217 
2218 	/* tx pause must be same as rx pause */
2219 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2220 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2221 
2222 	if (pause->rx_pause || pause->autoneg) {
2223 		ndev->phydev->supported |= ADVERTISED_Pause;
2224 		ndev->phydev->advertising |= ADVERTISED_Pause;
2225 	} else {
2226 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2227 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2228 	}
2229 
2230 	if (pause->autoneg) {
2231 		if (netif_running(ndev))
2232 			fec_stop(ndev);
2233 		phy_start_aneg(ndev->phydev);
2234 	}
2235 	if (netif_running(ndev)) {
2236 		napi_disable(&fep->napi);
2237 		netif_tx_lock_bh(ndev);
2238 		fec_restart(ndev);
2239 		netif_wake_queue(ndev);
2240 		netif_tx_unlock_bh(ndev);
2241 		napi_enable(&fep->napi);
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static const struct fec_stat {
2248 	char name[ETH_GSTRING_LEN];
2249 	u16 offset;
2250 } fec_stats[] = {
2251 	/* RMON TX */
2252 	{ "tx_dropped", RMON_T_DROP },
2253 	{ "tx_packets", RMON_T_PACKETS },
2254 	{ "tx_broadcast", RMON_T_BC_PKT },
2255 	{ "tx_multicast", RMON_T_MC_PKT },
2256 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2257 	{ "tx_undersize", RMON_T_UNDERSIZE },
2258 	{ "tx_oversize", RMON_T_OVERSIZE },
2259 	{ "tx_fragment", RMON_T_FRAG },
2260 	{ "tx_jabber", RMON_T_JAB },
2261 	{ "tx_collision", RMON_T_COL },
2262 	{ "tx_64byte", RMON_T_P64 },
2263 	{ "tx_65to127byte", RMON_T_P65TO127 },
2264 	{ "tx_128to255byte", RMON_T_P128TO255 },
2265 	{ "tx_256to511byte", RMON_T_P256TO511 },
2266 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2267 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2268 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2269 	{ "tx_octets", RMON_T_OCTETS },
2270 
2271 	/* IEEE TX */
2272 	{ "IEEE_tx_drop", IEEE_T_DROP },
2273 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2274 	{ "IEEE_tx_1col", IEEE_T_1COL },
2275 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2276 	{ "IEEE_tx_def", IEEE_T_DEF },
2277 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2278 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2279 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2280 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2281 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2282 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2283 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2284 
2285 	/* RMON RX */
2286 	{ "rx_packets", RMON_R_PACKETS },
2287 	{ "rx_broadcast", RMON_R_BC_PKT },
2288 	{ "rx_multicast", RMON_R_MC_PKT },
2289 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2290 	{ "rx_undersize", RMON_R_UNDERSIZE },
2291 	{ "rx_oversize", RMON_R_OVERSIZE },
2292 	{ "rx_fragment", RMON_R_FRAG },
2293 	{ "rx_jabber", RMON_R_JAB },
2294 	{ "rx_64byte", RMON_R_P64 },
2295 	{ "rx_65to127byte", RMON_R_P65TO127 },
2296 	{ "rx_128to255byte", RMON_R_P128TO255 },
2297 	{ "rx_256to511byte", RMON_R_P256TO511 },
2298 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2299 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2300 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2301 	{ "rx_octets", RMON_R_OCTETS },
2302 
2303 	/* IEEE RX */
2304 	{ "IEEE_rx_drop", IEEE_R_DROP },
2305 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2306 	{ "IEEE_rx_crc", IEEE_R_CRC },
2307 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2308 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2309 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2310 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2311 };
2312 
2313 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2314 
2315 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2316 {
2317 	struct fec_enet_private *fep = netdev_priv(dev);
2318 	int i;
2319 
2320 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2321 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2322 }
2323 
2324 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2325 				       struct ethtool_stats *stats, u64 *data)
2326 {
2327 	struct fec_enet_private *fep = netdev_priv(dev);
2328 
2329 	if (netif_running(dev))
2330 		fec_enet_update_ethtool_stats(dev);
2331 
2332 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2333 }
2334 
2335 static void fec_enet_get_strings(struct net_device *netdev,
2336 	u32 stringset, u8 *data)
2337 {
2338 	int i;
2339 	switch (stringset) {
2340 	case ETH_SS_STATS:
2341 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2342 			memcpy(data + i * ETH_GSTRING_LEN,
2343 				fec_stats[i].name, ETH_GSTRING_LEN);
2344 		break;
2345 	}
2346 }
2347 
2348 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2349 {
2350 	switch (sset) {
2351 	case ETH_SS_STATS:
2352 		return ARRAY_SIZE(fec_stats);
2353 	default:
2354 		return -EOPNOTSUPP;
2355 	}
2356 }
2357 
2358 #else	/* !defined(CONFIG_M5272) */
2359 #define FEC_STATS_SIZE	0
2360 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2361 {
2362 }
2363 #endif /* !defined(CONFIG_M5272) */
2364 
2365 /* ITR clock source is enet system clock (clk_ahb).
2366  * TCTT unit is cycle_ns * 64 cycle
2367  * So, the ICTT value = X us / (cycle_ns * 64)
2368  */
2369 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2370 {
2371 	struct fec_enet_private *fep = netdev_priv(ndev);
2372 
2373 	return us * (fep->itr_clk_rate / 64000) / 1000;
2374 }
2375 
2376 /* Set threshold for interrupt coalescing */
2377 static void fec_enet_itr_coal_set(struct net_device *ndev)
2378 {
2379 	struct fec_enet_private *fep = netdev_priv(ndev);
2380 	int rx_itr, tx_itr;
2381 
2382 	/* Must be greater than zero to avoid unpredictable behavior */
2383 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2384 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2385 		return;
2386 
2387 	/* Select enet system clock as Interrupt Coalescing
2388 	 * timer Clock Source
2389 	 */
2390 	rx_itr = FEC_ITR_CLK_SEL;
2391 	tx_itr = FEC_ITR_CLK_SEL;
2392 
2393 	/* set ICFT and ICTT */
2394 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2395 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2396 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2397 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2398 
2399 	rx_itr |= FEC_ITR_EN;
2400 	tx_itr |= FEC_ITR_EN;
2401 
2402 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2403 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2404 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2405 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2406 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2407 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2408 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2409 	}
2410 }
2411 
2412 static int
2413 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2414 {
2415 	struct fec_enet_private *fep = netdev_priv(ndev);
2416 
2417 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2418 		return -EOPNOTSUPP;
2419 
2420 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2421 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2422 
2423 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2424 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2425 
2426 	return 0;
2427 }
2428 
2429 static int
2430 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2431 {
2432 	struct fec_enet_private *fep = netdev_priv(ndev);
2433 	unsigned int cycle;
2434 
2435 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2436 		return -EOPNOTSUPP;
2437 
2438 	if (ec->rx_max_coalesced_frames > 255) {
2439 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2440 		return -EINVAL;
2441 	}
2442 
2443 	if (ec->tx_max_coalesced_frames > 255) {
2444 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2445 		return -EINVAL;
2446 	}
2447 
2448 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2449 	if (cycle > 0xFFFF) {
2450 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2451 		return -EINVAL;
2452 	}
2453 
2454 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2455 	if (cycle > 0xFFFF) {
2456 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2457 		return -EINVAL;
2458 	}
2459 
2460 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2461 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2462 
2463 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2464 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2465 
2466 	fec_enet_itr_coal_set(ndev);
2467 
2468 	return 0;
2469 }
2470 
2471 static void fec_enet_itr_coal_init(struct net_device *ndev)
2472 {
2473 	struct ethtool_coalesce ec;
2474 
2475 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2476 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2477 
2478 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2479 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2480 
2481 	fec_enet_set_coalesce(ndev, &ec);
2482 }
2483 
2484 static int fec_enet_get_tunable(struct net_device *netdev,
2485 				const struct ethtool_tunable *tuna,
2486 				void *data)
2487 {
2488 	struct fec_enet_private *fep = netdev_priv(netdev);
2489 	int ret = 0;
2490 
2491 	switch (tuna->id) {
2492 	case ETHTOOL_RX_COPYBREAK:
2493 		*(u32 *)data = fep->rx_copybreak;
2494 		break;
2495 	default:
2496 		ret = -EINVAL;
2497 		break;
2498 	}
2499 
2500 	return ret;
2501 }
2502 
2503 static int fec_enet_set_tunable(struct net_device *netdev,
2504 				const struct ethtool_tunable *tuna,
2505 				const void *data)
2506 {
2507 	struct fec_enet_private *fep = netdev_priv(netdev);
2508 	int ret = 0;
2509 
2510 	switch (tuna->id) {
2511 	case ETHTOOL_RX_COPYBREAK:
2512 		fep->rx_copybreak = *(u32 *)data;
2513 		break;
2514 	default:
2515 		ret = -EINVAL;
2516 		break;
2517 	}
2518 
2519 	return ret;
2520 }
2521 
2522 static void
2523 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2524 {
2525 	struct fec_enet_private *fep = netdev_priv(ndev);
2526 
2527 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2528 		wol->supported = WAKE_MAGIC;
2529 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2530 	} else {
2531 		wol->supported = wol->wolopts = 0;
2532 	}
2533 }
2534 
2535 static int
2536 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2537 {
2538 	struct fec_enet_private *fep = netdev_priv(ndev);
2539 
2540 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2541 		return -EINVAL;
2542 
2543 	if (wol->wolopts & ~WAKE_MAGIC)
2544 		return -EINVAL;
2545 
2546 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2547 	if (device_may_wakeup(&ndev->dev)) {
2548 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2549 		if (fep->irq[0] > 0)
2550 			enable_irq_wake(fep->irq[0]);
2551 	} else {
2552 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2553 		if (fep->irq[0] > 0)
2554 			disable_irq_wake(fep->irq[0]);
2555 	}
2556 
2557 	return 0;
2558 }
2559 
2560 static const struct ethtool_ops fec_enet_ethtool_ops = {
2561 	.get_drvinfo		= fec_enet_get_drvinfo,
2562 	.get_regs_len		= fec_enet_get_regs_len,
2563 	.get_regs		= fec_enet_get_regs,
2564 	.nway_reset		= phy_ethtool_nway_reset,
2565 	.get_link		= ethtool_op_get_link,
2566 	.get_coalesce		= fec_enet_get_coalesce,
2567 	.set_coalesce		= fec_enet_set_coalesce,
2568 #ifndef CONFIG_M5272
2569 	.get_pauseparam		= fec_enet_get_pauseparam,
2570 	.set_pauseparam		= fec_enet_set_pauseparam,
2571 	.get_strings		= fec_enet_get_strings,
2572 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2573 	.get_sset_count		= fec_enet_get_sset_count,
2574 #endif
2575 	.get_ts_info		= fec_enet_get_ts_info,
2576 	.get_tunable		= fec_enet_get_tunable,
2577 	.set_tunable		= fec_enet_set_tunable,
2578 	.get_wol		= fec_enet_get_wol,
2579 	.set_wol		= fec_enet_set_wol,
2580 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2581 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2582 };
2583 
2584 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2585 {
2586 	struct fec_enet_private *fep = netdev_priv(ndev);
2587 	struct phy_device *phydev = ndev->phydev;
2588 
2589 	if (!netif_running(ndev))
2590 		return -EINVAL;
2591 
2592 	if (!phydev)
2593 		return -ENODEV;
2594 
2595 	if (fep->bufdesc_ex) {
2596 		if (cmd == SIOCSHWTSTAMP)
2597 			return fec_ptp_set(ndev, rq);
2598 		if (cmd == SIOCGHWTSTAMP)
2599 			return fec_ptp_get(ndev, rq);
2600 	}
2601 
2602 	return phy_mii_ioctl(phydev, rq, cmd);
2603 }
2604 
2605 static void fec_enet_free_buffers(struct net_device *ndev)
2606 {
2607 	struct fec_enet_private *fep = netdev_priv(ndev);
2608 	unsigned int i;
2609 	struct sk_buff *skb;
2610 	struct bufdesc	*bdp;
2611 	struct fec_enet_priv_tx_q *txq;
2612 	struct fec_enet_priv_rx_q *rxq;
2613 	unsigned int q;
2614 
2615 	for (q = 0; q < fep->num_rx_queues; q++) {
2616 		rxq = fep->rx_queue[q];
2617 		bdp = rxq->bd.base;
2618 		for (i = 0; i < rxq->bd.ring_size; i++) {
2619 			skb = rxq->rx_skbuff[i];
2620 			rxq->rx_skbuff[i] = NULL;
2621 			if (skb) {
2622 				dma_unmap_single(&fep->pdev->dev,
2623 						 fec32_to_cpu(bdp->cbd_bufaddr),
2624 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2625 						 DMA_FROM_DEVICE);
2626 				dev_kfree_skb(skb);
2627 			}
2628 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2629 		}
2630 	}
2631 
2632 	for (q = 0; q < fep->num_tx_queues; q++) {
2633 		txq = fep->tx_queue[q];
2634 		bdp = txq->bd.base;
2635 		for (i = 0; i < txq->bd.ring_size; i++) {
2636 			kfree(txq->tx_bounce[i]);
2637 			txq->tx_bounce[i] = NULL;
2638 			skb = txq->tx_skbuff[i];
2639 			txq->tx_skbuff[i] = NULL;
2640 			dev_kfree_skb(skb);
2641 		}
2642 	}
2643 }
2644 
2645 static void fec_enet_free_queue(struct net_device *ndev)
2646 {
2647 	struct fec_enet_private *fep = netdev_priv(ndev);
2648 	int i;
2649 	struct fec_enet_priv_tx_q *txq;
2650 
2651 	for (i = 0; i < fep->num_tx_queues; i++)
2652 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2653 			txq = fep->tx_queue[i];
2654 			dma_free_coherent(NULL,
2655 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2656 					  txq->tso_hdrs,
2657 					  txq->tso_hdrs_dma);
2658 		}
2659 
2660 	for (i = 0; i < fep->num_rx_queues; i++)
2661 		kfree(fep->rx_queue[i]);
2662 	for (i = 0; i < fep->num_tx_queues; i++)
2663 		kfree(fep->tx_queue[i]);
2664 }
2665 
2666 static int fec_enet_alloc_queue(struct net_device *ndev)
2667 {
2668 	struct fec_enet_private *fep = netdev_priv(ndev);
2669 	int i;
2670 	int ret = 0;
2671 	struct fec_enet_priv_tx_q *txq;
2672 
2673 	for (i = 0; i < fep->num_tx_queues; i++) {
2674 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2675 		if (!txq) {
2676 			ret = -ENOMEM;
2677 			goto alloc_failed;
2678 		}
2679 
2680 		fep->tx_queue[i] = txq;
2681 		txq->bd.ring_size = TX_RING_SIZE;
2682 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2683 
2684 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2685 		txq->tx_wake_threshold =
2686 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2687 
2688 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2689 					txq->bd.ring_size * TSO_HEADER_SIZE,
2690 					&txq->tso_hdrs_dma,
2691 					GFP_KERNEL);
2692 		if (!txq->tso_hdrs) {
2693 			ret = -ENOMEM;
2694 			goto alloc_failed;
2695 		}
2696 	}
2697 
2698 	for (i = 0; i < fep->num_rx_queues; i++) {
2699 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2700 					   GFP_KERNEL);
2701 		if (!fep->rx_queue[i]) {
2702 			ret = -ENOMEM;
2703 			goto alloc_failed;
2704 		}
2705 
2706 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2707 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2708 	}
2709 	return ret;
2710 
2711 alloc_failed:
2712 	fec_enet_free_queue(ndev);
2713 	return ret;
2714 }
2715 
2716 static int
2717 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2718 {
2719 	struct fec_enet_private *fep = netdev_priv(ndev);
2720 	unsigned int i;
2721 	struct sk_buff *skb;
2722 	struct bufdesc	*bdp;
2723 	struct fec_enet_priv_rx_q *rxq;
2724 
2725 	rxq = fep->rx_queue[queue];
2726 	bdp = rxq->bd.base;
2727 	for (i = 0; i < rxq->bd.ring_size; i++) {
2728 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2729 		if (!skb)
2730 			goto err_alloc;
2731 
2732 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2733 			dev_kfree_skb(skb);
2734 			goto err_alloc;
2735 		}
2736 
2737 		rxq->rx_skbuff[i] = skb;
2738 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2739 
2740 		if (fep->bufdesc_ex) {
2741 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2742 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2743 		}
2744 
2745 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2746 	}
2747 
2748 	/* Set the last buffer to wrap. */
2749 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2750 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2751 	return 0;
2752 
2753  err_alloc:
2754 	fec_enet_free_buffers(ndev);
2755 	return -ENOMEM;
2756 }
2757 
2758 static int
2759 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2760 {
2761 	struct fec_enet_private *fep = netdev_priv(ndev);
2762 	unsigned int i;
2763 	struct bufdesc  *bdp;
2764 	struct fec_enet_priv_tx_q *txq;
2765 
2766 	txq = fep->tx_queue[queue];
2767 	bdp = txq->bd.base;
2768 	for (i = 0; i < txq->bd.ring_size; i++) {
2769 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2770 		if (!txq->tx_bounce[i])
2771 			goto err_alloc;
2772 
2773 		bdp->cbd_sc = cpu_to_fec16(0);
2774 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2775 
2776 		if (fep->bufdesc_ex) {
2777 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2778 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2779 		}
2780 
2781 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2782 	}
2783 
2784 	/* Set the last buffer to wrap. */
2785 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2786 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2787 
2788 	return 0;
2789 
2790  err_alloc:
2791 	fec_enet_free_buffers(ndev);
2792 	return -ENOMEM;
2793 }
2794 
2795 static int fec_enet_alloc_buffers(struct net_device *ndev)
2796 {
2797 	struct fec_enet_private *fep = netdev_priv(ndev);
2798 	unsigned int i;
2799 
2800 	for (i = 0; i < fep->num_rx_queues; i++)
2801 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2802 			return -ENOMEM;
2803 
2804 	for (i = 0; i < fep->num_tx_queues; i++)
2805 		if (fec_enet_alloc_txq_buffers(ndev, i))
2806 			return -ENOMEM;
2807 	return 0;
2808 }
2809 
2810 static int
2811 fec_enet_open(struct net_device *ndev)
2812 {
2813 	struct fec_enet_private *fep = netdev_priv(ndev);
2814 	int ret;
2815 
2816 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2817 	if (ret < 0)
2818 		return ret;
2819 
2820 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2821 	ret = fec_enet_clk_enable(ndev, true);
2822 	if (ret)
2823 		goto clk_enable;
2824 
2825 	/* I should reset the ring buffers here, but I don't yet know
2826 	 * a simple way to do that.
2827 	 */
2828 
2829 	ret = fec_enet_alloc_buffers(ndev);
2830 	if (ret)
2831 		goto err_enet_alloc;
2832 
2833 	/* Init MAC prior to mii bus probe */
2834 	fec_restart(ndev);
2835 
2836 	/* Probe and connect to PHY when open the interface */
2837 	ret = fec_enet_mii_probe(ndev);
2838 	if (ret)
2839 		goto err_enet_mii_probe;
2840 
2841 	if (fep->quirks & FEC_QUIRK_ERR006687)
2842 		imx6q_cpuidle_fec_irqs_used();
2843 
2844 	napi_enable(&fep->napi);
2845 	phy_start(ndev->phydev);
2846 	netif_tx_start_all_queues(ndev);
2847 
2848 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2849 				 FEC_WOL_FLAG_ENABLE);
2850 
2851 	return 0;
2852 
2853 err_enet_mii_probe:
2854 	fec_enet_free_buffers(ndev);
2855 err_enet_alloc:
2856 	fec_enet_clk_enable(ndev, false);
2857 clk_enable:
2858 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2859 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2860 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2861 	return ret;
2862 }
2863 
2864 static int
2865 fec_enet_close(struct net_device *ndev)
2866 {
2867 	struct fec_enet_private *fep = netdev_priv(ndev);
2868 
2869 	phy_stop(ndev->phydev);
2870 
2871 	if (netif_device_present(ndev)) {
2872 		napi_disable(&fep->napi);
2873 		netif_tx_disable(ndev);
2874 		fec_stop(ndev);
2875 	}
2876 
2877 	phy_disconnect(ndev->phydev);
2878 
2879 	if (fep->quirks & FEC_QUIRK_ERR006687)
2880 		imx6q_cpuidle_fec_irqs_unused();
2881 
2882 	fec_enet_update_ethtool_stats(ndev);
2883 
2884 	fec_enet_clk_enable(ndev, false);
2885 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2886 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2887 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2888 
2889 	fec_enet_free_buffers(ndev);
2890 
2891 	return 0;
2892 }
2893 
2894 /* Set or clear the multicast filter for this adaptor.
2895  * Skeleton taken from sunlance driver.
2896  * The CPM Ethernet implementation allows Multicast as well as individual
2897  * MAC address filtering.  Some of the drivers check to make sure it is
2898  * a group multicast address, and discard those that are not.  I guess I
2899  * will do the same for now, but just remove the test if you want
2900  * individual filtering as well (do the upper net layers want or support
2901  * this kind of feature?).
2902  */
2903 
2904 #define FEC_HASH_BITS	6		/* #bits in hash */
2905 #define CRC32_POLY	0xEDB88320
2906 
2907 static void set_multicast_list(struct net_device *ndev)
2908 {
2909 	struct fec_enet_private *fep = netdev_priv(ndev);
2910 	struct netdev_hw_addr *ha;
2911 	unsigned int i, bit, data, crc, tmp;
2912 	unsigned char hash;
2913 	unsigned int hash_high = 0, hash_low = 0;
2914 
2915 	if (ndev->flags & IFF_PROMISC) {
2916 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2917 		tmp |= 0x8;
2918 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2919 		return;
2920 	}
2921 
2922 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2923 	tmp &= ~0x8;
2924 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2925 
2926 	if (ndev->flags & IFF_ALLMULTI) {
2927 		/* Catch all multicast addresses, so set the
2928 		 * filter to all 1's
2929 		 */
2930 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2931 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2932 
2933 		return;
2934 	}
2935 
2936 	/* Add the addresses in hash register */
2937 	netdev_for_each_mc_addr(ha, ndev) {
2938 		/* calculate crc32 value of mac address */
2939 		crc = 0xffffffff;
2940 
2941 		for (i = 0; i < ndev->addr_len; i++) {
2942 			data = ha->addr[i];
2943 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2944 				crc = (crc >> 1) ^
2945 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2946 			}
2947 		}
2948 
2949 		/* only upper 6 bits (FEC_HASH_BITS) are used
2950 		 * which point to specific bit in he hash registers
2951 		 */
2952 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2953 
2954 		if (hash > 31)
2955 			hash_high |= 1 << (hash - 32);
2956 		else
2957 			hash_low |= 1 << hash;
2958 	}
2959 
2960 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2961 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2962 }
2963 
2964 /* Set a MAC change in hardware. */
2965 static int
2966 fec_set_mac_address(struct net_device *ndev, void *p)
2967 {
2968 	struct fec_enet_private *fep = netdev_priv(ndev);
2969 	struct sockaddr *addr = p;
2970 
2971 	if (addr) {
2972 		if (!is_valid_ether_addr(addr->sa_data))
2973 			return -EADDRNOTAVAIL;
2974 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2975 	}
2976 
2977 	/* Add netif status check here to avoid system hang in below case:
2978 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2979 	 * After ethx down, fec all clocks are gated off and then register
2980 	 * access causes system hang.
2981 	 */
2982 	if (!netif_running(ndev))
2983 		return 0;
2984 
2985 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2986 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2987 		fep->hwp + FEC_ADDR_LOW);
2988 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2989 		fep->hwp + FEC_ADDR_HIGH);
2990 	return 0;
2991 }
2992 
2993 #ifdef CONFIG_NET_POLL_CONTROLLER
2994 /**
2995  * fec_poll_controller - FEC Poll controller function
2996  * @dev: The FEC network adapter
2997  *
2998  * Polled functionality used by netconsole and others in non interrupt mode
2999  *
3000  */
3001 static void fec_poll_controller(struct net_device *dev)
3002 {
3003 	int i;
3004 	struct fec_enet_private *fep = netdev_priv(dev);
3005 
3006 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3007 		if (fep->irq[i] > 0) {
3008 			disable_irq(fep->irq[i]);
3009 			fec_enet_interrupt(fep->irq[i], dev);
3010 			enable_irq(fep->irq[i]);
3011 		}
3012 	}
3013 }
3014 #endif
3015 
3016 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3017 	netdev_features_t features)
3018 {
3019 	struct fec_enet_private *fep = netdev_priv(netdev);
3020 	netdev_features_t changed = features ^ netdev->features;
3021 
3022 	netdev->features = features;
3023 
3024 	/* Receive checksum has been changed */
3025 	if (changed & NETIF_F_RXCSUM) {
3026 		if (features & NETIF_F_RXCSUM)
3027 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3028 		else
3029 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3030 	}
3031 }
3032 
3033 static int fec_set_features(struct net_device *netdev,
3034 	netdev_features_t features)
3035 {
3036 	struct fec_enet_private *fep = netdev_priv(netdev);
3037 	netdev_features_t changed = features ^ netdev->features;
3038 
3039 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3040 		napi_disable(&fep->napi);
3041 		netif_tx_lock_bh(netdev);
3042 		fec_stop(netdev);
3043 		fec_enet_set_netdev_features(netdev, features);
3044 		fec_restart(netdev);
3045 		netif_tx_wake_all_queues(netdev);
3046 		netif_tx_unlock_bh(netdev);
3047 		napi_enable(&fep->napi);
3048 	} else {
3049 		fec_enet_set_netdev_features(netdev, features);
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 static const struct net_device_ops fec_netdev_ops = {
3056 	.ndo_open		= fec_enet_open,
3057 	.ndo_stop		= fec_enet_close,
3058 	.ndo_start_xmit		= fec_enet_start_xmit,
3059 	.ndo_set_rx_mode	= set_multicast_list,
3060 	.ndo_validate_addr	= eth_validate_addr,
3061 	.ndo_tx_timeout		= fec_timeout,
3062 	.ndo_set_mac_address	= fec_set_mac_address,
3063 	.ndo_do_ioctl		= fec_enet_ioctl,
3064 #ifdef CONFIG_NET_POLL_CONTROLLER
3065 	.ndo_poll_controller	= fec_poll_controller,
3066 #endif
3067 	.ndo_set_features	= fec_set_features,
3068 };
3069 
3070 static const unsigned short offset_des_active_rxq[] = {
3071 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3072 };
3073 
3074 static const unsigned short offset_des_active_txq[] = {
3075 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3076 };
3077 
3078  /*
3079   * XXX:  We need to clean up on failure exits here.
3080   *
3081   */
3082 static int fec_enet_init(struct net_device *ndev)
3083 {
3084 	struct fec_enet_private *fep = netdev_priv(ndev);
3085 	struct bufdesc *cbd_base;
3086 	dma_addr_t bd_dma;
3087 	int bd_size;
3088 	unsigned int i;
3089 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3090 			sizeof(struct bufdesc);
3091 	unsigned dsize_log2 = __fls(dsize);
3092 
3093 	WARN_ON(dsize != (1 << dsize_log2));
3094 #if defined(CONFIG_ARM)
3095 	fep->rx_align = 0xf;
3096 	fep->tx_align = 0xf;
3097 #else
3098 	fep->rx_align = 0x3;
3099 	fep->tx_align = 0x3;
3100 #endif
3101 
3102 	fec_enet_alloc_queue(ndev);
3103 
3104 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3105 
3106 	/* Allocate memory for buffer descriptors. */
3107 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3108 				       GFP_KERNEL);
3109 	if (!cbd_base) {
3110 		return -ENOMEM;
3111 	}
3112 
3113 	memset(cbd_base, 0, bd_size);
3114 
3115 	/* Get the Ethernet address */
3116 	fec_get_mac(ndev);
3117 	/* make sure MAC we just acquired is programmed into the hw */
3118 	fec_set_mac_address(ndev, NULL);
3119 
3120 	/* Set receive and transmit descriptor base. */
3121 	for (i = 0; i < fep->num_rx_queues; i++) {
3122 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3123 		unsigned size = dsize * rxq->bd.ring_size;
3124 
3125 		rxq->bd.qid = i;
3126 		rxq->bd.base = cbd_base;
3127 		rxq->bd.cur = cbd_base;
3128 		rxq->bd.dma = bd_dma;
3129 		rxq->bd.dsize = dsize;
3130 		rxq->bd.dsize_log2 = dsize_log2;
3131 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3132 		bd_dma += size;
3133 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3134 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3135 	}
3136 
3137 	for (i = 0; i < fep->num_tx_queues; i++) {
3138 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3139 		unsigned size = dsize * txq->bd.ring_size;
3140 
3141 		txq->bd.qid = i;
3142 		txq->bd.base = cbd_base;
3143 		txq->bd.cur = cbd_base;
3144 		txq->bd.dma = bd_dma;
3145 		txq->bd.dsize = dsize;
3146 		txq->bd.dsize_log2 = dsize_log2;
3147 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3148 		bd_dma += size;
3149 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3150 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3151 	}
3152 
3153 
3154 	/* The FEC Ethernet specific entries in the device structure */
3155 	ndev->watchdog_timeo = TX_TIMEOUT;
3156 	ndev->netdev_ops = &fec_netdev_ops;
3157 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3158 
3159 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3160 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3161 
3162 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3163 		/* enable hw VLAN support */
3164 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3165 
3166 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3167 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3168 
3169 		/* enable hw accelerator */
3170 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3171 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3172 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3173 	}
3174 
3175 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3176 		fep->tx_align = 0;
3177 		fep->rx_align = 0x3f;
3178 	}
3179 
3180 	ndev->hw_features = ndev->features;
3181 
3182 	fec_restart(ndev);
3183 
3184 	fec_enet_update_ethtool_stats(ndev);
3185 
3186 	return 0;
3187 }
3188 
3189 #ifdef CONFIG_OF
3190 static void fec_reset_phy(struct platform_device *pdev)
3191 {
3192 	int err, phy_reset;
3193 	bool active_high = false;
3194 	int msec = 1;
3195 	struct device_node *np = pdev->dev.of_node;
3196 
3197 	if (!np)
3198 		return;
3199 
3200 	of_property_read_u32(np, "phy-reset-duration", &msec);
3201 	/* A sane reset duration should not be longer than 1s */
3202 	if (msec > 1000)
3203 		msec = 1;
3204 
3205 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3206 	if (!gpio_is_valid(phy_reset))
3207 		return;
3208 
3209 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3210 
3211 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3212 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3213 			"phy-reset");
3214 	if (err) {
3215 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3216 		return;
3217 	}
3218 
3219 	if (msec > 20)
3220 		msleep(msec);
3221 	else
3222 		usleep_range(msec * 1000, msec * 1000 + 1000);
3223 
3224 	gpio_set_value_cansleep(phy_reset, !active_high);
3225 }
3226 #else /* CONFIG_OF */
3227 static void fec_reset_phy(struct platform_device *pdev)
3228 {
3229 	/*
3230 	 * In case of platform probe, the reset has been done
3231 	 * by machine code.
3232 	 */
3233 }
3234 #endif /* CONFIG_OF */
3235 
3236 static void
3237 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3238 {
3239 	struct device_node *np = pdev->dev.of_node;
3240 
3241 	*num_tx = *num_rx = 1;
3242 
3243 	if (!np || !of_device_is_available(np))
3244 		return;
3245 
3246 	/* parse the num of tx and rx queues */
3247 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3248 
3249 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3250 
3251 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3252 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3253 			 *num_tx);
3254 		*num_tx = 1;
3255 		return;
3256 	}
3257 
3258 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3259 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3260 			 *num_rx);
3261 		*num_rx = 1;
3262 		return;
3263 	}
3264 
3265 }
3266 
3267 static int
3268 fec_probe(struct platform_device *pdev)
3269 {
3270 	struct fec_enet_private *fep;
3271 	struct fec_platform_data *pdata;
3272 	struct net_device *ndev;
3273 	int i, irq, ret = 0;
3274 	struct resource *r;
3275 	const struct of_device_id *of_id;
3276 	static int dev_id;
3277 	struct device_node *np = pdev->dev.of_node, *phy_node;
3278 	int num_tx_qs;
3279 	int num_rx_qs;
3280 
3281 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3282 
3283 	/* Init network device */
3284 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3285 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3286 	if (!ndev)
3287 		return -ENOMEM;
3288 
3289 	SET_NETDEV_DEV(ndev, &pdev->dev);
3290 
3291 	/* setup board info structure */
3292 	fep = netdev_priv(ndev);
3293 
3294 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3295 	if (of_id)
3296 		pdev->id_entry = of_id->data;
3297 	fep->quirks = pdev->id_entry->driver_data;
3298 
3299 	fep->netdev = ndev;
3300 	fep->num_rx_queues = num_rx_qs;
3301 	fep->num_tx_queues = num_tx_qs;
3302 
3303 #if !defined(CONFIG_M5272)
3304 	/* default enable pause frame auto negotiation */
3305 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3306 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3307 #endif
3308 
3309 	/* Select default pin state */
3310 	pinctrl_pm_select_default_state(&pdev->dev);
3311 
3312 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3313 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3314 	if (IS_ERR(fep->hwp)) {
3315 		ret = PTR_ERR(fep->hwp);
3316 		goto failed_ioremap;
3317 	}
3318 
3319 	fep->pdev = pdev;
3320 	fep->dev_id = dev_id++;
3321 
3322 	platform_set_drvdata(pdev, ndev);
3323 
3324 	if ((of_machine_is_compatible("fsl,imx6q") ||
3325 	     of_machine_is_compatible("fsl,imx6dl")) &&
3326 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3327 		fep->quirks |= FEC_QUIRK_ERR006687;
3328 
3329 	if (of_get_property(np, "fsl,magic-packet", NULL))
3330 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3331 
3332 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3333 	if (!phy_node && of_phy_is_fixed_link(np)) {
3334 		ret = of_phy_register_fixed_link(np);
3335 		if (ret < 0) {
3336 			dev_err(&pdev->dev,
3337 				"broken fixed-link specification\n");
3338 			goto failed_phy;
3339 		}
3340 		phy_node = of_node_get(np);
3341 	}
3342 	fep->phy_node = phy_node;
3343 
3344 	ret = of_get_phy_mode(pdev->dev.of_node);
3345 	if (ret < 0) {
3346 		pdata = dev_get_platdata(&pdev->dev);
3347 		if (pdata)
3348 			fep->phy_interface = pdata->phy;
3349 		else
3350 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3351 	} else {
3352 		fep->phy_interface = ret;
3353 	}
3354 
3355 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3356 	if (IS_ERR(fep->clk_ipg)) {
3357 		ret = PTR_ERR(fep->clk_ipg);
3358 		goto failed_clk;
3359 	}
3360 
3361 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3362 	if (IS_ERR(fep->clk_ahb)) {
3363 		ret = PTR_ERR(fep->clk_ahb);
3364 		goto failed_clk;
3365 	}
3366 
3367 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3368 
3369 	/* enet_out is optional, depends on board */
3370 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3371 	if (IS_ERR(fep->clk_enet_out))
3372 		fep->clk_enet_out = NULL;
3373 
3374 	fep->ptp_clk_on = false;
3375 	mutex_init(&fep->ptp_clk_mutex);
3376 
3377 	/* clk_ref is optional, depends on board */
3378 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3379 	if (IS_ERR(fep->clk_ref))
3380 		fep->clk_ref = NULL;
3381 
3382 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3383 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3384 	if (IS_ERR(fep->clk_ptp)) {
3385 		fep->clk_ptp = NULL;
3386 		fep->bufdesc_ex = false;
3387 	}
3388 
3389 	ret = fec_enet_clk_enable(ndev, true);
3390 	if (ret)
3391 		goto failed_clk;
3392 
3393 	ret = clk_prepare_enable(fep->clk_ipg);
3394 	if (ret)
3395 		goto failed_clk_ipg;
3396 
3397 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3398 	if (!IS_ERR(fep->reg_phy)) {
3399 		ret = regulator_enable(fep->reg_phy);
3400 		if (ret) {
3401 			dev_err(&pdev->dev,
3402 				"Failed to enable phy regulator: %d\n", ret);
3403 			goto failed_regulator;
3404 		}
3405 	} else {
3406 		fep->reg_phy = NULL;
3407 	}
3408 
3409 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3410 	pm_runtime_use_autosuspend(&pdev->dev);
3411 	pm_runtime_get_noresume(&pdev->dev);
3412 	pm_runtime_set_active(&pdev->dev);
3413 	pm_runtime_enable(&pdev->dev);
3414 
3415 	fec_reset_phy(pdev);
3416 
3417 	if (fep->bufdesc_ex)
3418 		fec_ptp_init(pdev);
3419 
3420 	ret = fec_enet_init(ndev);
3421 	if (ret)
3422 		goto failed_init;
3423 
3424 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3425 		irq = platform_get_irq(pdev, i);
3426 		if (irq < 0) {
3427 			if (i)
3428 				break;
3429 			ret = irq;
3430 			goto failed_irq;
3431 		}
3432 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3433 				       0, pdev->name, ndev);
3434 		if (ret)
3435 			goto failed_irq;
3436 
3437 		fep->irq[i] = irq;
3438 	}
3439 
3440 	init_completion(&fep->mdio_done);
3441 	ret = fec_enet_mii_init(pdev);
3442 	if (ret)
3443 		goto failed_mii_init;
3444 
3445 	/* Carrier starts down, phylib will bring it up */
3446 	netif_carrier_off(ndev);
3447 	fec_enet_clk_enable(ndev, false);
3448 	pinctrl_pm_select_sleep_state(&pdev->dev);
3449 
3450 	ret = register_netdev(ndev);
3451 	if (ret)
3452 		goto failed_register;
3453 
3454 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3455 			   FEC_WOL_HAS_MAGIC_PACKET);
3456 
3457 	if (fep->bufdesc_ex && fep->ptp_clock)
3458 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3459 
3460 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3461 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3462 
3463 	pm_runtime_mark_last_busy(&pdev->dev);
3464 	pm_runtime_put_autosuspend(&pdev->dev);
3465 
3466 	return 0;
3467 
3468 failed_register:
3469 	fec_enet_mii_remove(fep);
3470 failed_mii_init:
3471 failed_irq:
3472 failed_init:
3473 	fec_ptp_stop(pdev);
3474 	if (fep->reg_phy)
3475 		regulator_disable(fep->reg_phy);
3476 failed_regulator:
3477 	clk_disable_unprepare(fep->clk_ipg);
3478 failed_clk_ipg:
3479 	fec_enet_clk_enable(ndev, false);
3480 failed_clk:
3481 	if (of_phy_is_fixed_link(np))
3482 		of_phy_deregister_fixed_link(np);
3483 failed_phy:
3484 	of_node_put(phy_node);
3485 failed_ioremap:
3486 	free_netdev(ndev);
3487 
3488 	return ret;
3489 }
3490 
3491 static int
3492 fec_drv_remove(struct platform_device *pdev)
3493 {
3494 	struct net_device *ndev = platform_get_drvdata(pdev);
3495 	struct fec_enet_private *fep = netdev_priv(ndev);
3496 	struct device_node *np = pdev->dev.of_node;
3497 
3498 	cancel_work_sync(&fep->tx_timeout_work);
3499 	fec_ptp_stop(pdev);
3500 	unregister_netdev(ndev);
3501 	fec_enet_mii_remove(fep);
3502 	if (fep->reg_phy)
3503 		regulator_disable(fep->reg_phy);
3504 	if (of_phy_is_fixed_link(np))
3505 		of_phy_deregister_fixed_link(np);
3506 	of_node_put(fep->phy_node);
3507 	free_netdev(ndev);
3508 
3509 	return 0;
3510 }
3511 
3512 static int __maybe_unused fec_suspend(struct device *dev)
3513 {
3514 	struct net_device *ndev = dev_get_drvdata(dev);
3515 	struct fec_enet_private *fep = netdev_priv(ndev);
3516 
3517 	rtnl_lock();
3518 	if (netif_running(ndev)) {
3519 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3520 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3521 		phy_stop(ndev->phydev);
3522 		napi_disable(&fep->napi);
3523 		netif_tx_lock_bh(ndev);
3524 		netif_device_detach(ndev);
3525 		netif_tx_unlock_bh(ndev);
3526 		fec_stop(ndev);
3527 		fec_enet_clk_enable(ndev, false);
3528 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3529 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3530 	}
3531 	rtnl_unlock();
3532 
3533 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3534 		regulator_disable(fep->reg_phy);
3535 
3536 	/* SOC supply clock to phy, when clock is disabled, phy link down
3537 	 * SOC control phy regulator, when regulator is disabled, phy link down
3538 	 */
3539 	if (fep->clk_enet_out || fep->reg_phy)
3540 		fep->link = 0;
3541 
3542 	return 0;
3543 }
3544 
3545 static int __maybe_unused fec_resume(struct device *dev)
3546 {
3547 	struct net_device *ndev = dev_get_drvdata(dev);
3548 	struct fec_enet_private *fep = netdev_priv(ndev);
3549 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3550 	int ret;
3551 	int val;
3552 
3553 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3554 		ret = regulator_enable(fep->reg_phy);
3555 		if (ret)
3556 			return ret;
3557 	}
3558 
3559 	rtnl_lock();
3560 	if (netif_running(ndev)) {
3561 		ret = fec_enet_clk_enable(ndev, true);
3562 		if (ret) {
3563 			rtnl_unlock();
3564 			goto failed_clk;
3565 		}
3566 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3567 			if (pdata && pdata->sleep_mode_enable)
3568 				pdata->sleep_mode_enable(false);
3569 			val = readl(fep->hwp + FEC_ECNTRL);
3570 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3571 			writel(val, fep->hwp + FEC_ECNTRL);
3572 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3573 		} else {
3574 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3575 		}
3576 		fec_restart(ndev);
3577 		netif_tx_lock_bh(ndev);
3578 		netif_device_attach(ndev);
3579 		netif_tx_unlock_bh(ndev);
3580 		napi_enable(&fep->napi);
3581 		phy_start(ndev->phydev);
3582 	}
3583 	rtnl_unlock();
3584 
3585 	return 0;
3586 
3587 failed_clk:
3588 	if (fep->reg_phy)
3589 		regulator_disable(fep->reg_phy);
3590 	return ret;
3591 }
3592 
3593 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3594 {
3595 	struct net_device *ndev = dev_get_drvdata(dev);
3596 	struct fec_enet_private *fep = netdev_priv(ndev);
3597 
3598 	clk_disable_unprepare(fep->clk_ipg);
3599 
3600 	return 0;
3601 }
3602 
3603 static int __maybe_unused fec_runtime_resume(struct device *dev)
3604 {
3605 	struct net_device *ndev = dev_get_drvdata(dev);
3606 	struct fec_enet_private *fep = netdev_priv(ndev);
3607 
3608 	return clk_prepare_enable(fep->clk_ipg);
3609 }
3610 
3611 static const struct dev_pm_ops fec_pm_ops = {
3612 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3613 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3614 };
3615 
3616 static struct platform_driver fec_driver = {
3617 	.driver	= {
3618 		.name	= DRIVER_NAME,
3619 		.pm	= &fec_pm_ops,
3620 		.of_match_table = fec_dt_ids,
3621 	},
3622 	.id_table = fec_devtype,
3623 	.probe	= fec_probe,
3624 	.remove	= fec_drv_remove,
3625 };
3626 
3627 module_platform_driver(fec_driver);
3628 
3629 MODULE_ALIAS("platform:"DRIVER_NAME);
3630 MODULE_LICENSE("GPL");
3631