1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 static void set_multicast_list(struct net_device *ndev);
64 
65 #if defined(CONFIG_ARM)
66 #define FEC_ALIGNMENT	0xf
67 #else
68 #define FEC_ALIGNMENT	0x3
69 #endif
70 
71 #define DRIVER_NAME	"fec"
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 /* Controller is ENET-MAC */
82 #define FEC_QUIRK_ENET_MAC		(1 << 0)
83 /* Controller needs driver to swap frame */
84 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
85 /* Controller uses gasket */
86 #define FEC_QUIRK_USE_GASKET		(1 << 2)
87 /* Controller has GBIT support */
88 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
89 /* Controller has extend desc buffer */
90 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
91 /* Controller has hardware checksum support */
92 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
93 /* Controller has hardware vlan support */
94 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
95 /* ENET IP errata ERR006358
96  *
97  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
98  * detected as not set during a prior frame transmission, then the
99  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
100  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
101  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
102  * detected as not set during a prior frame transmission, then the
103  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
104  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
105  * frames not being transmitted until there is a 0-to-1 transition on
106  * ENET_TDAR[TDAR].
107  */
108 #define FEC_QUIRK_ERR006358            (1 << 7)
109 
110 static struct platform_device_id fec_devtype[] = {
111 	{
112 		/* keep it for coldfire */
113 		.name = DRIVER_NAME,
114 		.driver_data = 0,
115 	}, {
116 		.name = "imx25-fec",
117 		.driver_data = FEC_QUIRK_USE_GASKET,
118 	}, {
119 		.name = "imx27-fec",
120 		.driver_data = 0,
121 	}, {
122 		.name = "imx28-fec",
123 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
124 	}, {
125 		.name = "imx6q-fec",
126 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
127 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
128 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
129 	}, {
130 		.name = "mvf600-fec",
131 		.driver_data = FEC_QUIRK_ENET_MAC,
132 	}, {
133 		/* sentinel */
134 	}
135 };
136 MODULE_DEVICE_TABLE(platform, fec_devtype);
137 
138 enum imx_fec_type {
139 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
140 	IMX27_FEC,	/* runs on i.mx27/35/51 */
141 	IMX28_FEC,
142 	IMX6Q_FEC,
143 	MVF600_FEC,
144 };
145 
146 static const struct of_device_id fec_dt_ids[] = {
147 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
148 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
149 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
150 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
151 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
152 	{ /* sentinel */ }
153 };
154 MODULE_DEVICE_TABLE(of, fec_dt_ids);
155 
156 static unsigned char macaddr[ETH_ALEN];
157 module_param_array(macaddr, byte, NULL, 0);
158 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
159 
160 #if defined(CONFIG_M5272)
161 /*
162  * Some hardware gets it MAC address out of local flash memory.
163  * if this is non-zero then assume it is the address to get MAC from.
164  */
165 #if defined(CONFIG_NETtel)
166 #define	FEC_FLASHMAC	0xf0006006
167 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
168 #define	FEC_FLASHMAC	0xf0006000
169 #elif defined(CONFIG_CANCam)
170 #define	FEC_FLASHMAC	0xf0020000
171 #elif defined (CONFIG_M5272C3)
172 #define	FEC_FLASHMAC	(0xffe04000 + 4)
173 #elif defined(CONFIG_MOD5272)
174 #define FEC_FLASHMAC	0xffc0406b
175 #else
176 #define	FEC_FLASHMAC	0
177 #endif
178 #endif /* CONFIG_M5272 */
179 
180 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
181 #error "FEC: descriptor ring size constants too large"
182 #endif
183 
184 /* Interrupt events/masks. */
185 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
186 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
187 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
188 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
189 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
190 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
191 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
192 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
193 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
194 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
195 
196 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
197 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
198 
199 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
200  */
201 #define PKT_MAXBUF_SIZE		1522
202 #define PKT_MINBUF_SIZE		64
203 #define PKT_MAXBLR_SIZE		1536
204 
205 /* FEC receive acceleration */
206 #define FEC_RACC_IPDIS		(1 << 1)
207 #define FEC_RACC_PRODIS		(1 << 2)
208 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
209 
210 /*
211  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
212  * size bits. Other FEC hardware does not, so we need to take that into
213  * account when setting it.
214  */
215 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
216     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
217 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
218 #else
219 #define	OPT_FRAME_SIZE	0
220 #endif
221 
222 /* FEC MII MMFR bits definition */
223 #define FEC_MMFR_ST		(1 << 30)
224 #define FEC_MMFR_OP_READ	(2 << 28)
225 #define FEC_MMFR_OP_WRITE	(1 << 28)
226 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
227 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
228 #define FEC_MMFR_TA		(2 << 16)
229 #define FEC_MMFR_DATA(v)	(v & 0xffff)
230 
231 #define FEC_MII_TIMEOUT		30000 /* us */
232 
233 /* Transmitter timeout */
234 #define TX_TIMEOUT (2 * HZ)
235 
236 #define FEC_PAUSE_FLAG_AUTONEG	0x1
237 #define FEC_PAUSE_FLAG_ENABLE	0x2
238 
239 static int mii_cnt;
240 
241 static inline
242 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
243 {
244 	struct bufdesc *new_bd = bdp + 1;
245 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
246 	struct bufdesc_ex *ex_base;
247 	struct bufdesc *base;
248 	int ring_size;
249 
250 	if (bdp >= fep->tx_bd_base) {
251 		base = fep->tx_bd_base;
252 		ring_size = fep->tx_ring_size;
253 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
254 	} else {
255 		base = fep->rx_bd_base;
256 		ring_size = fep->rx_ring_size;
257 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
258 	}
259 
260 	if (fep->bufdesc_ex)
261 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
262 			ex_base : ex_new_bd);
263 	else
264 		return (new_bd >= (base + ring_size)) ?
265 			base : new_bd;
266 }
267 
268 static inline
269 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
270 {
271 	struct bufdesc *new_bd = bdp - 1;
272 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
273 	struct bufdesc_ex *ex_base;
274 	struct bufdesc *base;
275 	int ring_size;
276 
277 	if (bdp >= fep->tx_bd_base) {
278 		base = fep->tx_bd_base;
279 		ring_size = fep->tx_ring_size;
280 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
281 	} else {
282 		base = fep->rx_bd_base;
283 		ring_size = fep->rx_ring_size;
284 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
285 	}
286 
287 	if (fep->bufdesc_ex)
288 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
289 			(ex_new_bd + ring_size) : ex_new_bd);
290 	else
291 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
292 }
293 
294 static void *swap_buffer(void *bufaddr, int len)
295 {
296 	int i;
297 	unsigned int *buf = bufaddr;
298 
299 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
300 		*buf = cpu_to_be32(*buf);
301 
302 	return bufaddr;
303 }
304 
305 static int
306 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
307 {
308 	/* Only run for packets requiring a checksum. */
309 	if (skb->ip_summed != CHECKSUM_PARTIAL)
310 		return 0;
311 
312 	if (unlikely(skb_cow_head(skb, 0)))
313 		return -1;
314 
315 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
316 
317 	return 0;
318 }
319 
320 static netdev_tx_t
321 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
322 {
323 	struct fec_enet_private *fep = netdev_priv(ndev);
324 	const struct platform_device_id *id_entry =
325 				platform_get_device_id(fep->pdev);
326 	struct bufdesc *bdp, *bdp_pre;
327 	void *bufaddr;
328 	unsigned short	status;
329 	unsigned int index;
330 
331 	/* Fill in a Tx ring entry */
332 	bdp = fep->cur_tx;
333 
334 	status = bdp->cbd_sc;
335 
336 	if (status & BD_ENET_TX_READY) {
337 		/* Ooops.  All transmit buffers are full.  Bail out.
338 		 * This should not happen, since ndev->tbusy should be set.
339 		 */
340 		netdev_err(ndev, "tx queue full!\n");
341 		return NETDEV_TX_BUSY;
342 	}
343 
344 	/* Protocol checksum off-load for TCP and UDP. */
345 	if (fec_enet_clear_csum(skb, ndev)) {
346 		kfree_skb(skb);
347 		return NETDEV_TX_OK;
348 	}
349 
350 	/* Clear all of the status flags */
351 	status &= ~BD_ENET_TX_STATS;
352 
353 	/* Set buffer length and buffer pointer */
354 	bufaddr = skb->data;
355 	bdp->cbd_datlen = skb->len;
356 
357 	/*
358 	 * On some FEC implementations data must be aligned on
359 	 * 4-byte boundaries. Use bounce buffers to copy data
360 	 * and get it aligned. Ugh.
361 	 */
362 	if (fep->bufdesc_ex)
363 		index = (struct bufdesc_ex *)bdp -
364 			(struct bufdesc_ex *)fep->tx_bd_base;
365 	else
366 		index = bdp - fep->tx_bd_base;
367 
368 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
369 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
370 		bufaddr = fep->tx_bounce[index];
371 	}
372 
373 	/*
374 	 * Some design made an incorrect assumption on endian mode of
375 	 * the system that it's running on. As the result, driver has to
376 	 * swap every frame going to and coming from the controller.
377 	 */
378 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
379 		swap_buffer(bufaddr, skb->len);
380 
381 	/* Save skb pointer */
382 	fep->tx_skbuff[index] = skb;
383 
384 	/* Push the data cache so the CPM does not get stale memory
385 	 * data.
386 	 */
387 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
388 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
389 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
390 		bdp->cbd_bufaddr = 0;
391 		fep->tx_skbuff[index] = NULL;
392 		dev_kfree_skb_any(skb);
393 		if (net_ratelimit())
394 			netdev_err(ndev, "Tx DMA memory map failed\n");
395 		return NETDEV_TX_OK;
396 	}
397 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
398 	 * it's the last BD of the frame, and to put the CRC on the end.
399 	 */
400 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
401 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
402 	bdp->cbd_sc = status;
403 
404 	if (fep->bufdesc_ex) {
405 
406 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
407 		ebdp->cbd_bdu = 0;
408 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
409 			fep->hwts_tx_en)) {
410 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
411 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
412 		} else {
413 			ebdp->cbd_esc = BD_ENET_TX_INT;
414 
415 			/* Enable protocol checksum flags
416 			 * We do not bother with the IP Checksum bits as they
417 			 * are done by the kernel
418 			 */
419 			if (skb->ip_summed == CHECKSUM_PARTIAL)
420 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
421 		}
422 	}
423 
424 	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
425 	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
426 	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
427 		fep->delay_work.trig_tx = true;
428 		schedule_delayed_work(&(fep->delay_work.delay_work),
429 					msecs_to_jiffies(1));
430 	}
431 
432 	/* If this was the last BD in the ring, start at the beginning again. */
433 	bdp = fec_enet_get_nextdesc(bdp, fep);
434 
435 	fep->cur_tx = bdp;
436 
437 	if (fep->cur_tx == fep->dirty_tx)
438 		netif_stop_queue(ndev);
439 
440 	/* Trigger transmission start */
441 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
442 
443 	skb_tx_timestamp(skb);
444 
445 	return NETDEV_TX_OK;
446 }
447 
448 /* Init RX & TX buffer descriptors
449  */
450 static void fec_enet_bd_init(struct net_device *dev)
451 {
452 	struct fec_enet_private *fep = netdev_priv(dev);
453 	struct bufdesc *bdp;
454 	unsigned int i;
455 
456 	/* Initialize the receive buffer descriptors. */
457 	bdp = fep->rx_bd_base;
458 	for (i = 0; i < fep->rx_ring_size; i++) {
459 
460 		/* Initialize the BD for every fragment in the page. */
461 		if (bdp->cbd_bufaddr)
462 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
463 		else
464 			bdp->cbd_sc = 0;
465 		bdp = fec_enet_get_nextdesc(bdp, fep);
466 	}
467 
468 	/* Set the last buffer to wrap */
469 	bdp = fec_enet_get_prevdesc(bdp, fep);
470 	bdp->cbd_sc |= BD_SC_WRAP;
471 
472 	fep->cur_rx = fep->rx_bd_base;
473 
474 	/* ...and the same for transmit */
475 	bdp = fep->tx_bd_base;
476 	fep->cur_tx = bdp;
477 	for (i = 0; i < fep->tx_ring_size; i++) {
478 
479 		/* Initialize the BD for every fragment in the page. */
480 		bdp->cbd_sc = 0;
481 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
482 			dev_kfree_skb_any(fep->tx_skbuff[i]);
483 			fep->tx_skbuff[i] = NULL;
484 		}
485 		bdp->cbd_bufaddr = 0;
486 		bdp = fec_enet_get_nextdesc(bdp, fep);
487 	}
488 
489 	/* Set the last buffer to wrap */
490 	bdp = fec_enet_get_prevdesc(bdp, fep);
491 	bdp->cbd_sc |= BD_SC_WRAP;
492 	fep->dirty_tx = bdp;
493 }
494 
495 /* This function is called to start or restart the FEC during a link
496  * change.  This only happens when switching between half and full
497  * duplex.
498  */
499 static void
500 fec_restart(struct net_device *ndev, int duplex)
501 {
502 	struct fec_enet_private *fep = netdev_priv(ndev);
503 	const struct platform_device_id *id_entry =
504 				platform_get_device_id(fep->pdev);
505 	int i;
506 	u32 val;
507 	u32 temp_mac[2];
508 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
509 	u32 ecntl = 0x2; /* ETHEREN */
510 
511 	if (netif_running(ndev)) {
512 		netif_device_detach(ndev);
513 		napi_disable(&fep->napi);
514 		netif_stop_queue(ndev);
515 		netif_tx_lock_bh(ndev);
516 	}
517 
518 	/* Whack a reset.  We should wait for this. */
519 	writel(1, fep->hwp + FEC_ECNTRL);
520 	udelay(10);
521 
522 	/*
523 	 * enet-mac reset will reset mac address registers too,
524 	 * so need to reconfigure it.
525 	 */
526 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
527 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
528 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
529 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
530 	}
531 
532 	/* Clear any outstanding interrupt. */
533 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
534 
535 	/* Setup multicast filter. */
536 	set_multicast_list(ndev);
537 #ifndef CONFIG_M5272
538 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
539 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
540 #endif
541 
542 	/* Set maximum receive buffer size. */
543 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
544 
545 	fec_enet_bd_init(ndev);
546 
547 	/* Set receive and transmit descriptor base. */
548 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
549 	if (fep->bufdesc_ex)
550 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
551 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
552 	else
553 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
554 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
555 
556 
557 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
558 		if (fep->tx_skbuff[i]) {
559 			dev_kfree_skb_any(fep->tx_skbuff[i]);
560 			fep->tx_skbuff[i] = NULL;
561 		}
562 	}
563 
564 	/* Enable MII mode */
565 	if (duplex) {
566 		/* FD enable */
567 		writel(0x04, fep->hwp + FEC_X_CNTRL);
568 	} else {
569 		/* No Rcv on Xmit */
570 		rcntl |= 0x02;
571 		writel(0x0, fep->hwp + FEC_X_CNTRL);
572 	}
573 
574 	fep->full_duplex = duplex;
575 
576 	/* Set MII speed */
577 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
578 
579 #if !defined(CONFIG_M5272)
580 	/* set RX checksum */
581 	val = readl(fep->hwp + FEC_RACC);
582 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
583 		val |= FEC_RACC_OPTIONS;
584 	else
585 		val &= ~FEC_RACC_OPTIONS;
586 	writel(val, fep->hwp + FEC_RACC);
587 #endif
588 
589 	/*
590 	 * The phy interface and speed need to get configured
591 	 * differently on enet-mac.
592 	 */
593 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
594 		/* Enable flow control and length check */
595 		rcntl |= 0x40000000 | 0x00000020;
596 
597 		/* RGMII, RMII or MII */
598 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
599 			rcntl |= (1 << 6);
600 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
601 			rcntl |= (1 << 8);
602 		else
603 			rcntl &= ~(1 << 8);
604 
605 		/* 1G, 100M or 10M */
606 		if (fep->phy_dev) {
607 			if (fep->phy_dev->speed == SPEED_1000)
608 				ecntl |= (1 << 5);
609 			else if (fep->phy_dev->speed == SPEED_100)
610 				rcntl &= ~(1 << 9);
611 			else
612 				rcntl |= (1 << 9);
613 		}
614 	} else {
615 #ifdef FEC_MIIGSK_ENR
616 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
617 			u32 cfgr;
618 			/* disable the gasket and wait */
619 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
620 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
621 				udelay(1);
622 
623 			/*
624 			 * configure the gasket:
625 			 *   RMII, 50 MHz, no loopback, no echo
626 			 *   MII, 25 MHz, no loopback, no echo
627 			 */
628 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
629 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
630 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
631 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
632 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
633 
634 			/* re-enable the gasket */
635 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
636 		}
637 #endif
638 	}
639 
640 #if !defined(CONFIG_M5272)
641 	/* enable pause frame*/
642 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
643 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
644 	     fep->phy_dev && fep->phy_dev->pause)) {
645 		rcntl |= FEC_ENET_FCE;
646 
647 		/* set FIFO threshold parameter to reduce overrun */
648 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
649 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
650 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
651 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
652 
653 		/* OPD */
654 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
655 	} else {
656 		rcntl &= ~FEC_ENET_FCE;
657 	}
658 #endif /* !defined(CONFIG_M5272) */
659 
660 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
661 
662 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
663 		/* enable ENET endian swap */
664 		ecntl |= (1 << 8);
665 		/* enable ENET store and forward mode */
666 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
667 	}
668 
669 	if (fep->bufdesc_ex)
670 		ecntl |= (1 << 4);
671 
672 #ifndef CONFIG_M5272
673 	/* Enable the MIB statistic event counters */
674 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
675 #endif
676 
677 	/* And last, enable the transmit and receive processing */
678 	writel(ecntl, fep->hwp + FEC_ECNTRL);
679 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
680 
681 	if (fep->bufdesc_ex)
682 		fec_ptp_start_cyclecounter(ndev);
683 
684 	/* Enable interrupts we wish to service */
685 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
686 
687 	if (netif_running(ndev)) {
688 		netif_tx_unlock_bh(ndev);
689 		netif_wake_queue(ndev);
690 		napi_enable(&fep->napi);
691 		netif_device_attach(ndev);
692 	}
693 }
694 
695 static void
696 fec_stop(struct net_device *ndev)
697 {
698 	struct fec_enet_private *fep = netdev_priv(ndev);
699 	const struct platform_device_id *id_entry =
700 				platform_get_device_id(fep->pdev);
701 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
702 
703 	/* We cannot expect a graceful transmit stop without link !!! */
704 	if (fep->link) {
705 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
706 		udelay(10);
707 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
708 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
709 	}
710 
711 	/* Whack a reset.  We should wait for this. */
712 	writel(1, fep->hwp + FEC_ECNTRL);
713 	udelay(10);
714 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
715 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
716 
717 	/* We have to keep ENET enabled to have MII interrupt stay working */
718 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
719 		writel(2, fep->hwp + FEC_ECNTRL);
720 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
721 	}
722 }
723 
724 
725 static void
726 fec_timeout(struct net_device *ndev)
727 {
728 	struct fec_enet_private *fep = netdev_priv(ndev);
729 
730 	ndev->stats.tx_errors++;
731 
732 	fep->delay_work.timeout = true;
733 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
734 }
735 
736 static void fec_enet_work(struct work_struct *work)
737 {
738 	struct fec_enet_private *fep =
739 		container_of(work,
740 			     struct fec_enet_private,
741 			     delay_work.delay_work.work);
742 
743 	if (fep->delay_work.timeout) {
744 		fep->delay_work.timeout = false;
745 		fec_restart(fep->netdev, fep->full_duplex);
746 		netif_wake_queue(fep->netdev);
747 	}
748 
749 	if (fep->delay_work.trig_tx) {
750 		fep->delay_work.trig_tx = false;
751 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
752 	}
753 }
754 
755 static void
756 fec_enet_tx(struct net_device *ndev)
757 {
758 	struct	fec_enet_private *fep;
759 	struct bufdesc *bdp;
760 	unsigned short status;
761 	struct	sk_buff	*skb;
762 	int	index = 0;
763 
764 	fep = netdev_priv(ndev);
765 	bdp = fep->dirty_tx;
766 
767 	/* get next bdp of dirty_tx */
768 	bdp = fec_enet_get_nextdesc(bdp, fep);
769 
770 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
771 
772 		/* current queue is empty */
773 		if (bdp == fep->cur_tx)
774 			break;
775 
776 		if (fep->bufdesc_ex)
777 			index = (struct bufdesc_ex *)bdp -
778 				(struct bufdesc_ex *)fep->tx_bd_base;
779 		else
780 			index = bdp - fep->tx_bd_base;
781 
782 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
783 				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
784 		bdp->cbd_bufaddr = 0;
785 
786 		skb = fep->tx_skbuff[index];
787 
788 		/* Check for errors. */
789 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
790 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
791 				   BD_ENET_TX_CSL)) {
792 			ndev->stats.tx_errors++;
793 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
794 				ndev->stats.tx_heartbeat_errors++;
795 			if (status & BD_ENET_TX_LC)  /* Late collision */
796 				ndev->stats.tx_window_errors++;
797 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
798 				ndev->stats.tx_aborted_errors++;
799 			if (status & BD_ENET_TX_UN)  /* Underrun */
800 				ndev->stats.tx_fifo_errors++;
801 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
802 				ndev->stats.tx_carrier_errors++;
803 		} else {
804 			ndev->stats.tx_packets++;
805 			ndev->stats.tx_bytes += bdp->cbd_datlen;
806 		}
807 
808 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
809 			fep->bufdesc_ex) {
810 			struct skb_shared_hwtstamps shhwtstamps;
811 			unsigned long flags;
812 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
813 
814 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
815 			spin_lock_irqsave(&fep->tmreg_lock, flags);
816 			shhwtstamps.hwtstamp = ns_to_ktime(
817 				timecounter_cyc2time(&fep->tc, ebdp->ts));
818 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
819 			skb_tstamp_tx(skb, &shhwtstamps);
820 		}
821 
822 		if (status & BD_ENET_TX_READY)
823 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
824 
825 		/* Deferred means some collisions occurred during transmit,
826 		 * but we eventually sent the packet OK.
827 		 */
828 		if (status & BD_ENET_TX_DEF)
829 			ndev->stats.collisions++;
830 
831 		/* Free the sk buffer associated with this last transmit */
832 		dev_kfree_skb_any(skb);
833 		fep->tx_skbuff[index] = NULL;
834 
835 		fep->dirty_tx = bdp;
836 
837 		/* Update pointer to next buffer descriptor to be transmitted */
838 		bdp = fec_enet_get_nextdesc(bdp, fep);
839 
840 		/* Since we have freed up a buffer, the ring is no longer full
841 		 */
842 		if (fep->dirty_tx != fep->cur_tx) {
843 			if (netif_queue_stopped(ndev))
844 				netif_wake_queue(ndev);
845 		}
846 	}
847 	return;
848 }
849 
850 
851 /* During a receive, the cur_rx points to the current incoming buffer.
852  * When we update through the ring, if the next incoming buffer has
853  * not been given to the system, we just set the empty indicator,
854  * effectively tossing the packet.
855  */
856 static int
857 fec_enet_rx(struct net_device *ndev, int budget)
858 {
859 	struct fec_enet_private *fep = netdev_priv(ndev);
860 	const struct platform_device_id *id_entry =
861 				platform_get_device_id(fep->pdev);
862 	struct bufdesc *bdp;
863 	unsigned short status;
864 	struct	sk_buff	*skb;
865 	ushort	pkt_len;
866 	__u8 *data;
867 	int	pkt_received = 0;
868 	struct	bufdesc_ex *ebdp = NULL;
869 	bool	vlan_packet_rcvd = false;
870 	u16	vlan_tag;
871 	int	index = 0;
872 
873 #ifdef CONFIG_M532x
874 	flush_cache_all();
875 #endif
876 
877 	/* First, grab all of the stats for the incoming packet.
878 	 * These get messed up if we get called due to a busy condition.
879 	 */
880 	bdp = fep->cur_rx;
881 
882 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
883 
884 		if (pkt_received >= budget)
885 			break;
886 		pkt_received++;
887 
888 		/* Since we have allocated space to hold a complete frame,
889 		 * the last indicator should be set.
890 		 */
891 		if ((status & BD_ENET_RX_LAST) == 0)
892 			netdev_err(ndev, "rcv is not +last\n");
893 
894 		if (!fep->opened)
895 			goto rx_processing_done;
896 
897 		/* Check for errors. */
898 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
899 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
900 			ndev->stats.rx_errors++;
901 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
902 				/* Frame too long or too short. */
903 				ndev->stats.rx_length_errors++;
904 			}
905 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
906 				ndev->stats.rx_frame_errors++;
907 			if (status & BD_ENET_RX_CR)	/* CRC Error */
908 				ndev->stats.rx_crc_errors++;
909 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
910 				ndev->stats.rx_fifo_errors++;
911 		}
912 
913 		/* Report late collisions as a frame error.
914 		 * On this error, the BD is closed, but we don't know what we
915 		 * have in the buffer.  So, just drop this frame on the floor.
916 		 */
917 		if (status & BD_ENET_RX_CL) {
918 			ndev->stats.rx_errors++;
919 			ndev->stats.rx_frame_errors++;
920 			goto rx_processing_done;
921 		}
922 
923 		/* Process the incoming frame. */
924 		ndev->stats.rx_packets++;
925 		pkt_len = bdp->cbd_datlen;
926 		ndev->stats.rx_bytes += pkt_len;
927 
928 		if (fep->bufdesc_ex)
929 			index = (struct bufdesc_ex *)bdp -
930 				(struct bufdesc_ex *)fep->rx_bd_base;
931 		else
932 			index = bdp - fep->rx_bd_base;
933 		data = fep->rx_skbuff[index]->data;
934 		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
935 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
936 
937 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
938 			swap_buffer(data, pkt_len);
939 
940 		/* Extract the enhanced buffer descriptor */
941 		ebdp = NULL;
942 		if (fep->bufdesc_ex)
943 			ebdp = (struct bufdesc_ex *)bdp;
944 
945 		/* If this is a VLAN packet remove the VLAN Tag */
946 		vlan_packet_rcvd = false;
947 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
948 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
949 			/* Push and remove the vlan tag */
950 			struct vlan_hdr *vlan_header =
951 					(struct vlan_hdr *) (data + ETH_HLEN);
952 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
953 			pkt_len -= VLAN_HLEN;
954 
955 			vlan_packet_rcvd = true;
956 		}
957 
958 		/* This does 16 byte alignment, exactly what we need.
959 		 * The packet length includes FCS, but we don't want to
960 		 * include that when passing upstream as it messes up
961 		 * bridging applications.
962 		 */
963 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
964 
965 		if (unlikely(!skb)) {
966 			ndev->stats.rx_dropped++;
967 		} else {
968 			int payload_offset = (2 * ETH_ALEN);
969 			skb_reserve(skb, NET_IP_ALIGN);
970 			skb_put(skb, pkt_len - 4);	/* Make room */
971 
972 			/* Extract the frame data without the VLAN header. */
973 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
974 			if (vlan_packet_rcvd)
975 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
976 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
977 						       data + payload_offset,
978 						       pkt_len - 4 - (2 * ETH_ALEN));
979 
980 			skb->protocol = eth_type_trans(skb, ndev);
981 
982 			/* Get receive timestamp from the skb */
983 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
984 				struct skb_shared_hwtstamps *shhwtstamps =
985 							    skb_hwtstamps(skb);
986 				unsigned long flags;
987 
988 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
989 
990 				spin_lock_irqsave(&fep->tmreg_lock, flags);
991 				shhwtstamps->hwtstamp = ns_to_ktime(
992 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
993 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
994 			}
995 
996 			if (fep->bufdesc_ex &&
997 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
998 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
999 					/* don't check it */
1000 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1001 				} else {
1002 					skb_checksum_none_assert(skb);
1003 				}
1004 			}
1005 
1006 			/* Handle received VLAN packets */
1007 			if (vlan_packet_rcvd)
1008 				__vlan_hwaccel_put_tag(skb,
1009 						       htons(ETH_P_8021Q),
1010 						       vlan_tag);
1011 
1012 			napi_gro_receive(&fep->napi, skb);
1013 		}
1014 
1015 		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1016 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1017 rx_processing_done:
1018 		/* Clear the status flags for this buffer */
1019 		status &= ~BD_ENET_RX_STATS;
1020 
1021 		/* Mark the buffer empty */
1022 		status |= BD_ENET_RX_EMPTY;
1023 		bdp->cbd_sc = status;
1024 
1025 		if (fep->bufdesc_ex) {
1026 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1027 
1028 			ebdp->cbd_esc = BD_ENET_RX_INT;
1029 			ebdp->cbd_prot = 0;
1030 			ebdp->cbd_bdu = 0;
1031 		}
1032 
1033 		/* Update BD pointer to next entry */
1034 		bdp = fec_enet_get_nextdesc(bdp, fep);
1035 
1036 		/* Doing this here will keep the FEC running while we process
1037 		 * incoming frames.  On a heavily loaded network, we should be
1038 		 * able to keep up at the expense of system resources.
1039 		 */
1040 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1041 	}
1042 	fep->cur_rx = bdp;
1043 
1044 	return pkt_received;
1045 }
1046 
1047 static irqreturn_t
1048 fec_enet_interrupt(int irq, void *dev_id)
1049 {
1050 	struct net_device *ndev = dev_id;
1051 	struct fec_enet_private *fep = netdev_priv(ndev);
1052 	uint int_events;
1053 	irqreturn_t ret = IRQ_NONE;
1054 
1055 	do {
1056 		int_events = readl(fep->hwp + FEC_IEVENT);
1057 		writel(int_events, fep->hwp + FEC_IEVENT);
1058 
1059 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1060 			ret = IRQ_HANDLED;
1061 
1062 			/* Disable the RX interrupt */
1063 			if (napi_schedule_prep(&fep->napi)) {
1064 				writel(FEC_RX_DISABLED_IMASK,
1065 					fep->hwp + FEC_IMASK);
1066 				__napi_schedule(&fep->napi);
1067 			}
1068 		}
1069 
1070 		if (int_events & FEC_ENET_MII) {
1071 			ret = IRQ_HANDLED;
1072 			complete(&fep->mdio_done);
1073 		}
1074 	} while (int_events);
1075 
1076 	return ret;
1077 }
1078 
1079 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1080 {
1081 	struct net_device *ndev = napi->dev;
1082 	int pkts = fec_enet_rx(ndev, budget);
1083 	struct fec_enet_private *fep = netdev_priv(ndev);
1084 
1085 	fec_enet_tx(ndev);
1086 
1087 	if (pkts < budget) {
1088 		napi_complete(napi);
1089 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1090 	}
1091 	return pkts;
1092 }
1093 
1094 /* ------------------------------------------------------------------------- */
1095 static void fec_get_mac(struct net_device *ndev)
1096 {
1097 	struct fec_enet_private *fep = netdev_priv(ndev);
1098 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1099 	unsigned char *iap, tmpaddr[ETH_ALEN];
1100 
1101 	/*
1102 	 * try to get mac address in following order:
1103 	 *
1104 	 * 1) module parameter via kernel command line in form
1105 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1106 	 */
1107 	iap = macaddr;
1108 
1109 	/*
1110 	 * 2) from device tree data
1111 	 */
1112 	if (!is_valid_ether_addr(iap)) {
1113 		struct device_node *np = fep->pdev->dev.of_node;
1114 		if (np) {
1115 			const char *mac = of_get_mac_address(np);
1116 			if (mac)
1117 				iap = (unsigned char *) mac;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * 3) from flash or fuse (via platform data)
1123 	 */
1124 	if (!is_valid_ether_addr(iap)) {
1125 #ifdef CONFIG_M5272
1126 		if (FEC_FLASHMAC)
1127 			iap = (unsigned char *)FEC_FLASHMAC;
1128 #else
1129 		if (pdata)
1130 			iap = (unsigned char *)&pdata->mac;
1131 #endif
1132 	}
1133 
1134 	/*
1135 	 * 4) FEC mac registers set by bootloader
1136 	 */
1137 	if (!is_valid_ether_addr(iap)) {
1138 		*((__be32 *) &tmpaddr[0]) =
1139 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1140 		*((__be16 *) &tmpaddr[4]) =
1141 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1142 		iap = &tmpaddr[0];
1143 	}
1144 
1145 	/*
1146 	 * 5) random mac address
1147 	 */
1148 	if (!is_valid_ether_addr(iap)) {
1149 		/* Report it and use a random ethernet address instead */
1150 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1151 		eth_hw_addr_random(ndev);
1152 		netdev_info(ndev, "Using random MAC address: %pM\n",
1153 			    ndev->dev_addr);
1154 		return;
1155 	}
1156 
1157 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1158 
1159 	/* Adjust MAC if using macaddr */
1160 	if (iap == macaddr)
1161 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1162 }
1163 
1164 /* ------------------------------------------------------------------------- */
1165 
1166 /*
1167  * Phy section
1168  */
1169 static void fec_enet_adjust_link(struct net_device *ndev)
1170 {
1171 	struct fec_enet_private *fep = netdev_priv(ndev);
1172 	struct phy_device *phy_dev = fep->phy_dev;
1173 	int status_change = 0;
1174 
1175 	/* Prevent a state halted on mii error */
1176 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1177 		phy_dev->state = PHY_RESUMING;
1178 		return;
1179 	}
1180 
1181 	if (phy_dev->link) {
1182 		if (!fep->link) {
1183 			fep->link = phy_dev->link;
1184 			status_change = 1;
1185 		}
1186 
1187 		if (fep->full_duplex != phy_dev->duplex)
1188 			status_change = 1;
1189 
1190 		if (phy_dev->speed != fep->speed) {
1191 			fep->speed = phy_dev->speed;
1192 			status_change = 1;
1193 		}
1194 
1195 		/* if any of the above changed restart the FEC */
1196 		if (status_change)
1197 			fec_restart(ndev, phy_dev->duplex);
1198 	} else {
1199 		if (fep->link) {
1200 			fec_stop(ndev);
1201 			fep->link = phy_dev->link;
1202 			status_change = 1;
1203 		}
1204 	}
1205 
1206 	if (status_change)
1207 		phy_print_status(phy_dev);
1208 }
1209 
1210 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1211 {
1212 	struct fec_enet_private *fep = bus->priv;
1213 	unsigned long time_left;
1214 
1215 	fep->mii_timeout = 0;
1216 	init_completion(&fep->mdio_done);
1217 
1218 	/* start a read op */
1219 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1220 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1221 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1222 
1223 	/* wait for end of transfer */
1224 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1225 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1226 	if (time_left == 0) {
1227 		fep->mii_timeout = 1;
1228 		netdev_err(fep->netdev, "MDIO read timeout\n");
1229 		return -ETIMEDOUT;
1230 	}
1231 
1232 	/* return value */
1233 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1234 }
1235 
1236 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1237 			   u16 value)
1238 {
1239 	struct fec_enet_private *fep = bus->priv;
1240 	unsigned long time_left;
1241 
1242 	fep->mii_timeout = 0;
1243 	init_completion(&fep->mdio_done);
1244 
1245 	/* start a write op */
1246 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1247 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1248 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1249 		fep->hwp + FEC_MII_DATA);
1250 
1251 	/* wait for end of transfer */
1252 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1253 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1254 	if (time_left == 0) {
1255 		fep->mii_timeout = 1;
1256 		netdev_err(fep->netdev, "MDIO write timeout\n");
1257 		return -ETIMEDOUT;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 static int fec_enet_mdio_reset(struct mii_bus *bus)
1264 {
1265 	return 0;
1266 }
1267 
1268 static int fec_enet_mii_probe(struct net_device *ndev)
1269 {
1270 	struct fec_enet_private *fep = netdev_priv(ndev);
1271 	const struct platform_device_id *id_entry =
1272 				platform_get_device_id(fep->pdev);
1273 	struct phy_device *phy_dev = NULL;
1274 	char mdio_bus_id[MII_BUS_ID_SIZE];
1275 	char phy_name[MII_BUS_ID_SIZE + 3];
1276 	int phy_id;
1277 	int dev_id = fep->dev_id;
1278 
1279 	fep->phy_dev = NULL;
1280 
1281 	/* check for attached phy */
1282 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1283 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1284 			continue;
1285 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1286 			continue;
1287 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1288 			continue;
1289 		if (dev_id--)
1290 			continue;
1291 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1292 		break;
1293 	}
1294 
1295 	if (phy_id >= PHY_MAX_ADDR) {
1296 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1297 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1298 		phy_id = 0;
1299 	}
1300 
1301 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1302 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1303 			      fep->phy_interface);
1304 	if (IS_ERR(phy_dev)) {
1305 		netdev_err(ndev, "could not attach to PHY\n");
1306 		return PTR_ERR(phy_dev);
1307 	}
1308 
1309 	/* mask with MAC supported features */
1310 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1311 		phy_dev->supported &= PHY_GBIT_FEATURES;
1312 #if !defined(CONFIG_M5272)
1313 		phy_dev->supported |= SUPPORTED_Pause;
1314 #endif
1315 	}
1316 	else
1317 		phy_dev->supported &= PHY_BASIC_FEATURES;
1318 
1319 	phy_dev->advertising = phy_dev->supported;
1320 
1321 	fep->phy_dev = phy_dev;
1322 	fep->link = 0;
1323 	fep->full_duplex = 0;
1324 
1325 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1326 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1327 		    fep->phy_dev->irq);
1328 
1329 	return 0;
1330 }
1331 
1332 static int fec_enet_mii_init(struct platform_device *pdev)
1333 {
1334 	static struct mii_bus *fec0_mii_bus;
1335 	struct net_device *ndev = platform_get_drvdata(pdev);
1336 	struct fec_enet_private *fep = netdev_priv(ndev);
1337 	const struct platform_device_id *id_entry =
1338 				platform_get_device_id(fep->pdev);
1339 	int err = -ENXIO, i;
1340 
1341 	/*
1342 	 * The dual fec interfaces are not equivalent with enet-mac.
1343 	 * Here are the differences:
1344 	 *
1345 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1346 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1347 	 *  - external phys can only be configured by fec0
1348 	 *
1349 	 * That is to say fec1 can not work independently. It only works
1350 	 * when fec0 is working. The reason behind this design is that the
1351 	 * second interface is added primarily for Switch mode.
1352 	 *
1353 	 * Because of the last point above, both phys are attached on fec0
1354 	 * mdio interface in board design, and need to be configured by
1355 	 * fec0 mii_bus.
1356 	 */
1357 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1358 		/* fec1 uses fec0 mii_bus */
1359 		if (mii_cnt && fec0_mii_bus) {
1360 			fep->mii_bus = fec0_mii_bus;
1361 			mii_cnt++;
1362 			return 0;
1363 		}
1364 		return -ENOENT;
1365 	}
1366 
1367 	fep->mii_timeout = 0;
1368 
1369 	/*
1370 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1371 	 *
1372 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1373 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1374 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1375 	 * document.
1376 	 */
1377 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1378 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1379 		fep->phy_speed--;
1380 	fep->phy_speed <<= 1;
1381 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1382 
1383 	fep->mii_bus = mdiobus_alloc();
1384 	if (fep->mii_bus == NULL) {
1385 		err = -ENOMEM;
1386 		goto err_out;
1387 	}
1388 
1389 	fep->mii_bus->name = "fec_enet_mii_bus";
1390 	fep->mii_bus->read = fec_enet_mdio_read;
1391 	fep->mii_bus->write = fec_enet_mdio_write;
1392 	fep->mii_bus->reset = fec_enet_mdio_reset;
1393 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1394 		pdev->name, fep->dev_id + 1);
1395 	fep->mii_bus->priv = fep;
1396 	fep->mii_bus->parent = &pdev->dev;
1397 
1398 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1399 	if (!fep->mii_bus->irq) {
1400 		err = -ENOMEM;
1401 		goto err_out_free_mdiobus;
1402 	}
1403 
1404 	for (i = 0; i < PHY_MAX_ADDR; i++)
1405 		fep->mii_bus->irq[i] = PHY_POLL;
1406 
1407 	if (mdiobus_register(fep->mii_bus))
1408 		goto err_out_free_mdio_irq;
1409 
1410 	mii_cnt++;
1411 
1412 	/* save fec0 mii_bus */
1413 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1414 		fec0_mii_bus = fep->mii_bus;
1415 
1416 	return 0;
1417 
1418 err_out_free_mdio_irq:
1419 	kfree(fep->mii_bus->irq);
1420 err_out_free_mdiobus:
1421 	mdiobus_free(fep->mii_bus);
1422 err_out:
1423 	return err;
1424 }
1425 
1426 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1427 {
1428 	if (--mii_cnt == 0) {
1429 		mdiobus_unregister(fep->mii_bus);
1430 		kfree(fep->mii_bus->irq);
1431 		mdiobus_free(fep->mii_bus);
1432 	}
1433 }
1434 
1435 static int fec_enet_get_settings(struct net_device *ndev,
1436 				  struct ethtool_cmd *cmd)
1437 {
1438 	struct fec_enet_private *fep = netdev_priv(ndev);
1439 	struct phy_device *phydev = fep->phy_dev;
1440 
1441 	if (!phydev)
1442 		return -ENODEV;
1443 
1444 	return phy_ethtool_gset(phydev, cmd);
1445 }
1446 
1447 static int fec_enet_set_settings(struct net_device *ndev,
1448 				 struct ethtool_cmd *cmd)
1449 {
1450 	struct fec_enet_private *fep = netdev_priv(ndev);
1451 	struct phy_device *phydev = fep->phy_dev;
1452 
1453 	if (!phydev)
1454 		return -ENODEV;
1455 
1456 	return phy_ethtool_sset(phydev, cmd);
1457 }
1458 
1459 static void fec_enet_get_drvinfo(struct net_device *ndev,
1460 				 struct ethtool_drvinfo *info)
1461 {
1462 	struct fec_enet_private *fep = netdev_priv(ndev);
1463 
1464 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1465 		sizeof(info->driver));
1466 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1467 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1468 }
1469 
1470 static int fec_enet_get_ts_info(struct net_device *ndev,
1471 				struct ethtool_ts_info *info)
1472 {
1473 	struct fec_enet_private *fep = netdev_priv(ndev);
1474 
1475 	if (fep->bufdesc_ex) {
1476 
1477 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1478 					SOF_TIMESTAMPING_RX_SOFTWARE |
1479 					SOF_TIMESTAMPING_SOFTWARE |
1480 					SOF_TIMESTAMPING_TX_HARDWARE |
1481 					SOF_TIMESTAMPING_RX_HARDWARE |
1482 					SOF_TIMESTAMPING_RAW_HARDWARE;
1483 		if (fep->ptp_clock)
1484 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1485 		else
1486 			info->phc_index = -1;
1487 
1488 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1489 				 (1 << HWTSTAMP_TX_ON);
1490 
1491 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1492 				   (1 << HWTSTAMP_FILTER_ALL);
1493 		return 0;
1494 	} else {
1495 		return ethtool_op_get_ts_info(ndev, info);
1496 	}
1497 }
1498 
1499 #if !defined(CONFIG_M5272)
1500 
1501 static void fec_enet_get_pauseparam(struct net_device *ndev,
1502 				    struct ethtool_pauseparam *pause)
1503 {
1504 	struct fec_enet_private *fep = netdev_priv(ndev);
1505 
1506 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1507 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1508 	pause->rx_pause = pause->tx_pause;
1509 }
1510 
1511 static int fec_enet_set_pauseparam(struct net_device *ndev,
1512 				   struct ethtool_pauseparam *pause)
1513 {
1514 	struct fec_enet_private *fep = netdev_priv(ndev);
1515 
1516 	if (pause->tx_pause != pause->rx_pause) {
1517 		netdev_info(ndev,
1518 			"hardware only support enable/disable both tx and rx");
1519 		return -EINVAL;
1520 	}
1521 
1522 	fep->pause_flag = 0;
1523 
1524 	/* tx pause must be same as rx pause */
1525 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1526 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1527 
1528 	if (pause->rx_pause || pause->autoneg) {
1529 		fep->phy_dev->supported |= ADVERTISED_Pause;
1530 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1531 	} else {
1532 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1533 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1534 	}
1535 
1536 	if (pause->autoneg) {
1537 		if (netif_running(ndev))
1538 			fec_stop(ndev);
1539 		phy_start_aneg(fep->phy_dev);
1540 	}
1541 	if (netif_running(ndev))
1542 		fec_restart(ndev, 0);
1543 
1544 	return 0;
1545 }
1546 
1547 static const struct fec_stat {
1548 	char name[ETH_GSTRING_LEN];
1549 	u16 offset;
1550 } fec_stats[] = {
1551 	/* RMON TX */
1552 	{ "tx_dropped", RMON_T_DROP },
1553 	{ "tx_packets", RMON_T_PACKETS },
1554 	{ "tx_broadcast", RMON_T_BC_PKT },
1555 	{ "tx_multicast", RMON_T_MC_PKT },
1556 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1557 	{ "tx_undersize", RMON_T_UNDERSIZE },
1558 	{ "tx_oversize", RMON_T_OVERSIZE },
1559 	{ "tx_fragment", RMON_T_FRAG },
1560 	{ "tx_jabber", RMON_T_JAB },
1561 	{ "tx_collision", RMON_T_COL },
1562 	{ "tx_64byte", RMON_T_P64 },
1563 	{ "tx_65to127byte", RMON_T_P65TO127 },
1564 	{ "tx_128to255byte", RMON_T_P128TO255 },
1565 	{ "tx_256to511byte", RMON_T_P256TO511 },
1566 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1567 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1568 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1569 	{ "tx_octets", RMON_T_OCTETS },
1570 
1571 	/* IEEE TX */
1572 	{ "IEEE_tx_drop", IEEE_T_DROP },
1573 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1574 	{ "IEEE_tx_1col", IEEE_T_1COL },
1575 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1576 	{ "IEEE_tx_def", IEEE_T_DEF },
1577 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1578 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1579 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1580 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1581 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1582 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1583 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1584 
1585 	/* RMON RX */
1586 	{ "rx_packets", RMON_R_PACKETS },
1587 	{ "rx_broadcast", RMON_R_BC_PKT },
1588 	{ "rx_multicast", RMON_R_MC_PKT },
1589 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1590 	{ "rx_undersize", RMON_R_UNDERSIZE },
1591 	{ "rx_oversize", RMON_R_OVERSIZE },
1592 	{ "rx_fragment", RMON_R_FRAG },
1593 	{ "rx_jabber", RMON_R_JAB },
1594 	{ "rx_64byte", RMON_R_P64 },
1595 	{ "rx_65to127byte", RMON_R_P65TO127 },
1596 	{ "rx_128to255byte", RMON_R_P128TO255 },
1597 	{ "rx_256to511byte", RMON_R_P256TO511 },
1598 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1599 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1600 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1601 	{ "rx_octets", RMON_R_OCTETS },
1602 
1603 	/* IEEE RX */
1604 	{ "IEEE_rx_drop", IEEE_R_DROP },
1605 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1606 	{ "IEEE_rx_crc", IEEE_R_CRC },
1607 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1608 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1609 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1610 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1611 };
1612 
1613 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1614 	struct ethtool_stats *stats, u64 *data)
1615 {
1616 	struct fec_enet_private *fep = netdev_priv(dev);
1617 	int i;
1618 
1619 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1620 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1621 }
1622 
1623 static void fec_enet_get_strings(struct net_device *netdev,
1624 	u32 stringset, u8 *data)
1625 {
1626 	int i;
1627 	switch (stringset) {
1628 	case ETH_SS_STATS:
1629 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1630 			memcpy(data + i * ETH_GSTRING_LEN,
1631 				fec_stats[i].name, ETH_GSTRING_LEN);
1632 		break;
1633 	}
1634 }
1635 
1636 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1637 {
1638 	switch (sset) {
1639 	case ETH_SS_STATS:
1640 		return ARRAY_SIZE(fec_stats);
1641 	default:
1642 		return -EOPNOTSUPP;
1643 	}
1644 }
1645 #endif /* !defined(CONFIG_M5272) */
1646 
1647 static int fec_enet_nway_reset(struct net_device *dev)
1648 {
1649 	struct fec_enet_private *fep = netdev_priv(dev);
1650 	struct phy_device *phydev = fep->phy_dev;
1651 
1652 	if (!phydev)
1653 		return -ENODEV;
1654 
1655 	return genphy_restart_aneg(phydev);
1656 }
1657 
1658 static const struct ethtool_ops fec_enet_ethtool_ops = {
1659 #if !defined(CONFIG_M5272)
1660 	.get_pauseparam		= fec_enet_get_pauseparam,
1661 	.set_pauseparam		= fec_enet_set_pauseparam,
1662 #endif
1663 	.get_settings		= fec_enet_get_settings,
1664 	.set_settings		= fec_enet_set_settings,
1665 	.get_drvinfo		= fec_enet_get_drvinfo,
1666 	.get_link		= ethtool_op_get_link,
1667 	.get_ts_info		= fec_enet_get_ts_info,
1668 	.nway_reset		= fec_enet_nway_reset,
1669 #ifndef CONFIG_M5272
1670 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1671 	.get_strings		= fec_enet_get_strings,
1672 	.get_sset_count		= fec_enet_get_sset_count,
1673 #endif
1674 };
1675 
1676 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1677 {
1678 	struct fec_enet_private *fep = netdev_priv(ndev);
1679 	struct phy_device *phydev = fep->phy_dev;
1680 
1681 	if (!netif_running(ndev))
1682 		return -EINVAL;
1683 
1684 	if (!phydev)
1685 		return -ENODEV;
1686 
1687 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1688 		return fec_ptp_ioctl(ndev, rq, cmd);
1689 
1690 	return phy_mii_ioctl(phydev, rq, cmd);
1691 }
1692 
1693 static void fec_enet_free_buffers(struct net_device *ndev)
1694 {
1695 	struct fec_enet_private *fep = netdev_priv(ndev);
1696 	unsigned int i;
1697 	struct sk_buff *skb;
1698 	struct bufdesc	*bdp;
1699 
1700 	bdp = fep->rx_bd_base;
1701 	for (i = 0; i < fep->rx_ring_size; i++) {
1702 		skb = fep->rx_skbuff[i];
1703 
1704 		if (bdp->cbd_bufaddr)
1705 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1706 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1707 		if (skb)
1708 			dev_kfree_skb(skb);
1709 		bdp = fec_enet_get_nextdesc(bdp, fep);
1710 	}
1711 
1712 	bdp = fep->tx_bd_base;
1713 	for (i = 0; i < fep->tx_ring_size; i++)
1714 		kfree(fep->tx_bounce[i]);
1715 }
1716 
1717 static int fec_enet_alloc_buffers(struct net_device *ndev)
1718 {
1719 	struct fec_enet_private *fep = netdev_priv(ndev);
1720 	unsigned int i;
1721 	struct sk_buff *skb;
1722 	struct bufdesc	*bdp;
1723 
1724 	bdp = fep->rx_bd_base;
1725 	for (i = 0; i < fep->rx_ring_size; i++) {
1726 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1727 		if (!skb) {
1728 			fec_enet_free_buffers(ndev);
1729 			return -ENOMEM;
1730 		}
1731 		fep->rx_skbuff[i] = skb;
1732 
1733 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1734 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1735 		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1736 			fec_enet_free_buffers(ndev);
1737 			if (net_ratelimit())
1738 				netdev_err(ndev, "Rx DMA memory map failed\n");
1739 			return -ENOMEM;
1740 		}
1741 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1742 
1743 		if (fep->bufdesc_ex) {
1744 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1745 			ebdp->cbd_esc = BD_ENET_RX_INT;
1746 		}
1747 
1748 		bdp = fec_enet_get_nextdesc(bdp, fep);
1749 	}
1750 
1751 	/* Set the last buffer to wrap. */
1752 	bdp = fec_enet_get_prevdesc(bdp, fep);
1753 	bdp->cbd_sc |= BD_SC_WRAP;
1754 
1755 	bdp = fep->tx_bd_base;
1756 	for (i = 0; i < fep->tx_ring_size; i++) {
1757 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1758 
1759 		bdp->cbd_sc = 0;
1760 		bdp->cbd_bufaddr = 0;
1761 
1762 		if (fep->bufdesc_ex) {
1763 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1764 			ebdp->cbd_esc = BD_ENET_TX_INT;
1765 		}
1766 
1767 		bdp = fec_enet_get_nextdesc(bdp, fep);
1768 	}
1769 
1770 	/* Set the last buffer to wrap. */
1771 	bdp = fec_enet_get_prevdesc(bdp, fep);
1772 	bdp->cbd_sc |= BD_SC_WRAP;
1773 
1774 	return 0;
1775 }
1776 
1777 static int
1778 fec_enet_open(struct net_device *ndev)
1779 {
1780 	struct fec_enet_private *fep = netdev_priv(ndev);
1781 	int ret;
1782 
1783 	napi_enable(&fep->napi);
1784 
1785 	/* I should reset the ring buffers here, but I don't yet know
1786 	 * a simple way to do that.
1787 	 */
1788 
1789 	ret = fec_enet_alloc_buffers(ndev);
1790 	if (ret)
1791 		return ret;
1792 
1793 	/* Probe and connect to PHY when open the interface */
1794 	ret = fec_enet_mii_probe(ndev);
1795 	if (ret) {
1796 		fec_enet_free_buffers(ndev);
1797 		return ret;
1798 	}
1799 	phy_start(fep->phy_dev);
1800 	netif_start_queue(ndev);
1801 	fep->opened = 1;
1802 	return 0;
1803 }
1804 
1805 static int
1806 fec_enet_close(struct net_device *ndev)
1807 {
1808 	struct fec_enet_private *fep = netdev_priv(ndev);
1809 
1810 	/* Don't know what to do yet. */
1811 	napi_disable(&fep->napi);
1812 	fep->opened = 0;
1813 	netif_stop_queue(ndev);
1814 	fec_stop(ndev);
1815 
1816 	if (fep->phy_dev) {
1817 		phy_stop(fep->phy_dev);
1818 		phy_disconnect(fep->phy_dev);
1819 	}
1820 
1821 	fec_enet_free_buffers(ndev);
1822 
1823 	return 0;
1824 }
1825 
1826 /* Set or clear the multicast filter for this adaptor.
1827  * Skeleton taken from sunlance driver.
1828  * The CPM Ethernet implementation allows Multicast as well as individual
1829  * MAC address filtering.  Some of the drivers check to make sure it is
1830  * a group multicast address, and discard those that are not.  I guess I
1831  * will do the same for now, but just remove the test if you want
1832  * individual filtering as well (do the upper net layers want or support
1833  * this kind of feature?).
1834  */
1835 
1836 #define HASH_BITS	6		/* #bits in hash */
1837 #define CRC32_POLY	0xEDB88320
1838 
1839 static void set_multicast_list(struct net_device *ndev)
1840 {
1841 	struct fec_enet_private *fep = netdev_priv(ndev);
1842 	struct netdev_hw_addr *ha;
1843 	unsigned int i, bit, data, crc, tmp;
1844 	unsigned char hash;
1845 
1846 	if (ndev->flags & IFF_PROMISC) {
1847 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1848 		tmp |= 0x8;
1849 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1850 		return;
1851 	}
1852 
1853 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1854 	tmp &= ~0x8;
1855 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1856 
1857 	if (ndev->flags & IFF_ALLMULTI) {
1858 		/* Catch all multicast addresses, so set the
1859 		 * filter to all 1's
1860 		 */
1861 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1862 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1863 
1864 		return;
1865 	}
1866 
1867 	/* Clear filter and add the addresses in hash register
1868 	 */
1869 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1870 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1871 
1872 	netdev_for_each_mc_addr(ha, ndev) {
1873 		/* calculate crc32 value of mac address */
1874 		crc = 0xffffffff;
1875 
1876 		for (i = 0; i < ndev->addr_len; i++) {
1877 			data = ha->addr[i];
1878 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1879 				crc = (crc >> 1) ^
1880 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1881 			}
1882 		}
1883 
1884 		/* only upper 6 bits (HASH_BITS) are used
1885 		 * which point to specific bit in he hash registers
1886 		 */
1887 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1888 
1889 		if (hash > 31) {
1890 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1891 			tmp |= 1 << (hash - 32);
1892 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1893 		} else {
1894 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1895 			tmp |= 1 << hash;
1896 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1897 		}
1898 	}
1899 }
1900 
1901 /* Set a MAC change in hardware. */
1902 static int
1903 fec_set_mac_address(struct net_device *ndev, void *p)
1904 {
1905 	struct fec_enet_private *fep = netdev_priv(ndev);
1906 	struct sockaddr *addr = p;
1907 
1908 	if (!is_valid_ether_addr(addr->sa_data))
1909 		return -EADDRNOTAVAIL;
1910 
1911 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1912 
1913 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1914 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1915 		fep->hwp + FEC_ADDR_LOW);
1916 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1917 		fep->hwp + FEC_ADDR_HIGH);
1918 	return 0;
1919 }
1920 
1921 #ifdef CONFIG_NET_POLL_CONTROLLER
1922 /**
1923  * fec_poll_controller - FEC Poll controller function
1924  * @dev: The FEC network adapter
1925  *
1926  * Polled functionality used by netconsole and others in non interrupt mode
1927  *
1928  */
1929 static void fec_poll_controller(struct net_device *dev)
1930 {
1931 	int i;
1932 	struct fec_enet_private *fep = netdev_priv(dev);
1933 
1934 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1935 		if (fep->irq[i] > 0) {
1936 			disable_irq(fep->irq[i]);
1937 			fec_enet_interrupt(fep->irq[i], dev);
1938 			enable_irq(fep->irq[i]);
1939 		}
1940 	}
1941 }
1942 #endif
1943 
1944 static int fec_set_features(struct net_device *netdev,
1945 	netdev_features_t features)
1946 {
1947 	struct fec_enet_private *fep = netdev_priv(netdev);
1948 	netdev_features_t changed = features ^ netdev->features;
1949 
1950 	netdev->features = features;
1951 
1952 	/* Receive checksum has been changed */
1953 	if (changed & NETIF_F_RXCSUM) {
1954 		if (features & NETIF_F_RXCSUM)
1955 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1956 		else
1957 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1958 
1959 		if (netif_running(netdev)) {
1960 			fec_stop(netdev);
1961 			fec_restart(netdev, fep->phy_dev->duplex);
1962 			netif_wake_queue(netdev);
1963 		} else {
1964 			fec_restart(netdev, fep->phy_dev->duplex);
1965 		}
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 static const struct net_device_ops fec_netdev_ops = {
1972 	.ndo_open		= fec_enet_open,
1973 	.ndo_stop		= fec_enet_close,
1974 	.ndo_start_xmit		= fec_enet_start_xmit,
1975 	.ndo_set_rx_mode	= set_multicast_list,
1976 	.ndo_change_mtu		= eth_change_mtu,
1977 	.ndo_validate_addr	= eth_validate_addr,
1978 	.ndo_tx_timeout		= fec_timeout,
1979 	.ndo_set_mac_address	= fec_set_mac_address,
1980 	.ndo_do_ioctl		= fec_enet_ioctl,
1981 #ifdef CONFIG_NET_POLL_CONTROLLER
1982 	.ndo_poll_controller	= fec_poll_controller,
1983 #endif
1984 	.ndo_set_features	= fec_set_features,
1985 };
1986 
1987  /*
1988   * XXX:  We need to clean up on failure exits here.
1989   *
1990   */
1991 static int fec_enet_init(struct net_device *ndev)
1992 {
1993 	struct fec_enet_private *fep = netdev_priv(ndev);
1994 	const struct platform_device_id *id_entry =
1995 				platform_get_device_id(fep->pdev);
1996 	struct bufdesc *cbd_base;
1997 
1998 	/* Allocate memory for buffer descriptors. */
1999 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
2000 				      GFP_KERNEL);
2001 	if (!cbd_base)
2002 		return -ENOMEM;
2003 
2004 	memset(cbd_base, 0, PAGE_SIZE);
2005 
2006 	fep->netdev = ndev;
2007 
2008 	/* Get the Ethernet address */
2009 	fec_get_mac(ndev);
2010 
2011 	/* init the tx & rx ring size */
2012 	fep->tx_ring_size = TX_RING_SIZE;
2013 	fep->rx_ring_size = RX_RING_SIZE;
2014 
2015 	/* Set receive and transmit descriptor base. */
2016 	fep->rx_bd_base = cbd_base;
2017 	if (fep->bufdesc_ex)
2018 		fep->tx_bd_base = (struct bufdesc *)
2019 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2020 	else
2021 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2022 
2023 	/* The FEC Ethernet specific entries in the device structure */
2024 	ndev->watchdog_timeo = TX_TIMEOUT;
2025 	ndev->netdev_ops = &fec_netdev_ops;
2026 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2027 
2028 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2029 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2030 
2031 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2032 		/* enable hw VLAN support */
2033 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2034 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2035 	}
2036 
2037 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2038 		/* enable hw accelerator */
2039 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2040 				| NETIF_F_RXCSUM);
2041 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2042 				| NETIF_F_RXCSUM);
2043 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2044 	}
2045 
2046 	fec_restart(ndev, 0);
2047 
2048 	return 0;
2049 }
2050 
2051 #ifdef CONFIG_OF
2052 static void fec_reset_phy(struct platform_device *pdev)
2053 {
2054 	int err, phy_reset;
2055 	int msec = 1;
2056 	struct device_node *np = pdev->dev.of_node;
2057 
2058 	if (!np)
2059 		return;
2060 
2061 	of_property_read_u32(np, "phy-reset-duration", &msec);
2062 	/* A sane reset duration should not be longer than 1s */
2063 	if (msec > 1000)
2064 		msec = 1;
2065 
2066 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2067 	if (!gpio_is_valid(phy_reset))
2068 		return;
2069 
2070 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2071 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2072 	if (err) {
2073 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2074 		return;
2075 	}
2076 	msleep(msec);
2077 	gpio_set_value(phy_reset, 1);
2078 }
2079 #else /* CONFIG_OF */
2080 static void fec_reset_phy(struct platform_device *pdev)
2081 {
2082 	/*
2083 	 * In case of platform probe, the reset has been done
2084 	 * by machine code.
2085 	 */
2086 }
2087 #endif /* CONFIG_OF */
2088 
2089 static int
2090 fec_probe(struct platform_device *pdev)
2091 {
2092 	struct fec_enet_private *fep;
2093 	struct fec_platform_data *pdata;
2094 	struct net_device *ndev;
2095 	int i, irq, ret = 0;
2096 	struct resource *r;
2097 	const struct of_device_id *of_id;
2098 	static int dev_id;
2099 
2100 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2101 	if (of_id)
2102 		pdev->id_entry = of_id->data;
2103 
2104 	/* Init network device */
2105 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2106 	if (!ndev)
2107 		return -ENOMEM;
2108 
2109 	SET_NETDEV_DEV(ndev, &pdev->dev);
2110 
2111 	/* setup board info structure */
2112 	fep = netdev_priv(ndev);
2113 
2114 #if !defined(CONFIG_M5272)
2115 	/* default enable pause frame auto negotiation */
2116 	if (pdev->id_entry &&
2117 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2118 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2119 #endif
2120 
2121 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2122 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2123 	if (IS_ERR(fep->hwp)) {
2124 		ret = PTR_ERR(fep->hwp);
2125 		goto failed_ioremap;
2126 	}
2127 
2128 	fep->pdev = pdev;
2129 	fep->dev_id = dev_id++;
2130 
2131 	fep->bufdesc_ex = 0;
2132 
2133 	platform_set_drvdata(pdev, ndev);
2134 
2135 	ret = of_get_phy_mode(pdev->dev.of_node);
2136 	if (ret < 0) {
2137 		pdata = dev_get_platdata(&pdev->dev);
2138 		if (pdata)
2139 			fep->phy_interface = pdata->phy;
2140 		else
2141 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2142 	} else {
2143 		fep->phy_interface = ret;
2144 	}
2145 
2146 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2147 	if (IS_ERR(fep->clk_ipg)) {
2148 		ret = PTR_ERR(fep->clk_ipg);
2149 		goto failed_clk;
2150 	}
2151 
2152 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2153 	if (IS_ERR(fep->clk_ahb)) {
2154 		ret = PTR_ERR(fep->clk_ahb);
2155 		goto failed_clk;
2156 	}
2157 
2158 	/* enet_out is optional, depends on board */
2159 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2160 	if (IS_ERR(fep->clk_enet_out))
2161 		fep->clk_enet_out = NULL;
2162 
2163 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2164 	fep->bufdesc_ex =
2165 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2166 	if (IS_ERR(fep->clk_ptp)) {
2167 		fep->clk_ptp = NULL;
2168 		fep->bufdesc_ex = 0;
2169 	}
2170 
2171 	ret = clk_prepare_enable(fep->clk_ahb);
2172 	if (ret)
2173 		goto failed_clk;
2174 
2175 	ret = clk_prepare_enable(fep->clk_ipg);
2176 	if (ret)
2177 		goto failed_clk_ipg;
2178 
2179 	if (fep->clk_enet_out) {
2180 		ret = clk_prepare_enable(fep->clk_enet_out);
2181 		if (ret)
2182 			goto failed_clk_enet_out;
2183 	}
2184 
2185 	if (fep->clk_ptp) {
2186 		ret = clk_prepare_enable(fep->clk_ptp);
2187 		if (ret)
2188 			goto failed_clk_ptp;
2189 	}
2190 
2191 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2192 	if (!IS_ERR(fep->reg_phy)) {
2193 		ret = regulator_enable(fep->reg_phy);
2194 		if (ret) {
2195 			dev_err(&pdev->dev,
2196 				"Failed to enable phy regulator: %d\n", ret);
2197 			goto failed_regulator;
2198 		}
2199 	} else {
2200 		fep->reg_phy = NULL;
2201 	}
2202 
2203 	fec_reset_phy(pdev);
2204 
2205 	if (fep->bufdesc_ex)
2206 		fec_ptp_init(pdev);
2207 
2208 	ret = fec_enet_init(ndev);
2209 	if (ret)
2210 		goto failed_init;
2211 
2212 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2213 		irq = platform_get_irq(pdev, i);
2214 		if (irq < 0) {
2215 			if (i)
2216 				break;
2217 			ret = irq;
2218 			goto failed_irq;
2219 		}
2220 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2221 				       0, pdev->name, ndev);
2222 		if (ret)
2223 			goto failed_irq;
2224 	}
2225 
2226 	ret = fec_enet_mii_init(pdev);
2227 	if (ret)
2228 		goto failed_mii_init;
2229 
2230 	/* Carrier starts down, phylib will bring it up */
2231 	netif_carrier_off(ndev);
2232 
2233 	ret = register_netdev(ndev);
2234 	if (ret)
2235 		goto failed_register;
2236 
2237 	if (fep->bufdesc_ex && fep->ptp_clock)
2238 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2239 
2240 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2241 	return 0;
2242 
2243 failed_register:
2244 	fec_enet_mii_remove(fep);
2245 failed_mii_init:
2246 failed_irq:
2247 failed_init:
2248 	if (fep->reg_phy)
2249 		regulator_disable(fep->reg_phy);
2250 failed_regulator:
2251 	if (fep->clk_ptp)
2252 		clk_disable_unprepare(fep->clk_ptp);
2253 failed_clk_ptp:
2254 	if (fep->clk_enet_out)
2255 		clk_disable_unprepare(fep->clk_enet_out);
2256 failed_clk_enet_out:
2257 	clk_disable_unprepare(fep->clk_ipg);
2258 failed_clk_ipg:
2259 	clk_disable_unprepare(fep->clk_ahb);
2260 failed_clk:
2261 failed_ioremap:
2262 	free_netdev(ndev);
2263 
2264 	return ret;
2265 }
2266 
2267 static int
2268 fec_drv_remove(struct platform_device *pdev)
2269 {
2270 	struct net_device *ndev = platform_get_drvdata(pdev);
2271 	struct fec_enet_private *fep = netdev_priv(ndev);
2272 
2273 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2274 	unregister_netdev(ndev);
2275 	fec_enet_mii_remove(fep);
2276 	del_timer_sync(&fep->time_keep);
2277 	if (fep->reg_phy)
2278 		regulator_disable(fep->reg_phy);
2279 	if (fep->clk_ptp)
2280 		clk_disable_unprepare(fep->clk_ptp);
2281 	if (fep->ptp_clock)
2282 		ptp_clock_unregister(fep->ptp_clock);
2283 	if (fep->clk_enet_out)
2284 		clk_disable_unprepare(fep->clk_enet_out);
2285 	clk_disable_unprepare(fep->clk_ipg);
2286 	clk_disable_unprepare(fep->clk_ahb);
2287 	free_netdev(ndev);
2288 
2289 	return 0;
2290 }
2291 
2292 #ifdef CONFIG_PM_SLEEP
2293 static int
2294 fec_suspend(struct device *dev)
2295 {
2296 	struct net_device *ndev = dev_get_drvdata(dev);
2297 	struct fec_enet_private *fep = netdev_priv(ndev);
2298 
2299 	if (netif_running(ndev)) {
2300 		fec_stop(ndev);
2301 		netif_device_detach(ndev);
2302 	}
2303 	if (fep->clk_ptp)
2304 		clk_disable_unprepare(fep->clk_ptp);
2305 	if (fep->clk_enet_out)
2306 		clk_disable_unprepare(fep->clk_enet_out);
2307 	clk_disable_unprepare(fep->clk_ipg);
2308 	clk_disable_unprepare(fep->clk_ahb);
2309 
2310 	if (fep->reg_phy)
2311 		regulator_disable(fep->reg_phy);
2312 
2313 	return 0;
2314 }
2315 
2316 static int
2317 fec_resume(struct device *dev)
2318 {
2319 	struct net_device *ndev = dev_get_drvdata(dev);
2320 	struct fec_enet_private *fep = netdev_priv(ndev);
2321 	int ret;
2322 
2323 	if (fep->reg_phy) {
2324 		ret = regulator_enable(fep->reg_phy);
2325 		if (ret)
2326 			return ret;
2327 	}
2328 
2329 	ret = clk_prepare_enable(fep->clk_ahb);
2330 	if (ret)
2331 		goto failed_clk_ahb;
2332 
2333 	ret = clk_prepare_enable(fep->clk_ipg);
2334 	if (ret)
2335 		goto failed_clk_ipg;
2336 
2337 	if (fep->clk_enet_out) {
2338 		ret = clk_prepare_enable(fep->clk_enet_out);
2339 		if (ret)
2340 			goto failed_clk_enet_out;
2341 	}
2342 
2343 	if (fep->clk_ptp) {
2344 		ret = clk_prepare_enable(fep->clk_ptp);
2345 		if (ret)
2346 			goto failed_clk_ptp;
2347 	}
2348 
2349 	if (netif_running(ndev)) {
2350 		fec_restart(ndev, fep->full_duplex);
2351 		netif_device_attach(ndev);
2352 	}
2353 
2354 	return 0;
2355 
2356 failed_clk_ptp:
2357 	if (fep->clk_enet_out)
2358 		clk_disable_unprepare(fep->clk_enet_out);
2359 failed_clk_enet_out:
2360 	clk_disable_unprepare(fep->clk_ipg);
2361 failed_clk_ipg:
2362 	clk_disable_unprepare(fep->clk_ahb);
2363 failed_clk_ahb:
2364 	if (fep->reg_phy)
2365 		regulator_disable(fep->reg_phy);
2366 	return ret;
2367 }
2368 #endif /* CONFIG_PM_SLEEP */
2369 
2370 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2371 
2372 static struct platform_driver fec_driver = {
2373 	.driver	= {
2374 		.name	= DRIVER_NAME,
2375 		.owner	= THIS_MODULE,
2376 		.pm	= &fec_pm_ops,
2377 		.of_match_table = fec_dt_ids,
2378 	},
2379 	.id_table = fec_devtype,
2380 	.probe	= fec_probe,
2381 	.remove	= fec_drv_remove,
2382 };
2383 
2384 module_platform_driver(fec_driver);
2385 
2386 MODULE_ALIAS("platform:"DRIVER_NAME);
2387 MODULE_LICENSE("GPL");
2388