1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 /* Pause frame feild and FIFO threshold */
79 #define FEC_ENET_FCE	(1 << 5)
80 #define FEC_ENET_RSEM_V	0x84
81 #define FEC_ENET_RSFL_V	16
82 #define FEC_ENET_RAEM_V	0x8
83 #define FEC_ENET_RAFL_V	0x8
84 #define FEC_ENET_OPD_V	0xFFF0
85 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
86 
87 struct fec_devinfo {
88 	u32 quirks;
89 };
90 
91 static const struct fec_devinfo fec_imx25_info = {
92 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
93 		  FEC_QUIRK_HAS_FRREG,
94 };
95 
96 static const struct fec_devinfo fec_imx27_info = {
97 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx28_info = {
101 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
102 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
103 		  FEC_QUIRK_HAS_FRREG,
104 };
105 
106 static const struct fec_devinfo fec_imx6q_info = {
107 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
108 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
109 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
110 		  FEC_QUIRK_HAS_RACC,
111 };
112 
113 static const struct fec_devinfo fec_mvf600_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
115 };
116 
117 static const struct fec_devinfo fec_imx6x_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
121 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
123 };
124 
125 static const struct fec_devinfo fec_imx6ul_info = {
126 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
127 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
128 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
129 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_COALESCE,
131 };
132 
133 static struct platform_device_id fec_devtype[] = {
134 	{
135 		/* keep it for coldfire */
136 		.name = DRIVER_NAME,
137 		.driver_data = 0,
138 	}, {
139 		.name = "imx25-fec",
140 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
141 	}, {
142 		.name = "imx27-fec",
143 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
144 	}, {
145 		.name = "imx28-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
147 	}, {
148 		.name = "imx6q-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
150 	}, {
151 		.name = "mvf600-fec",
152 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
153 	}, {
154 		.name = "imx6sx-fec",
155 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
156 	}, {
157 		.name = "imx6ul-fec",
158 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
159 	}, {
160 		/* sentinel */
161 	}
162 };
163 MODULE_DEVICE_TABLE(platform, fec_devtype);
164 
165 enum imx_fec_type {
166 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
167 	IMX27_FEC,	/* runs on i.mx27/35/51 */
168 	IMX28_FEC,
169 	IMX6Q_FEC,
170 	MVF600_FEC,
171 	IMX6SX_FEC,
172 	IMX6UL_FEC,
173 };
174 
175 static const struct of_device_id fec_dt_ids[] = {
176 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
177 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
178 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
179 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
180 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
181 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
182 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
183 	{ /* sentinel */ }
184 };
185 MODULE_DEVICE_TABLE(of, fec_dt_ids);
186 
187 static unsigned char macaddr[ETH_ALEN];
188 module_param_array(macaddr, byte, NULL, 0);
189 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
190 
191 #if defined(CONFIG_M5272)
192 /*
193  * Some hardware gets it MAC address out of local flash memory.
194  * if this is non-zero then assume it is the address to get MAC from.
195  */
196 #if defined(CONFIG_NETtel)
197 #define	FEC_FLASHMAC	0xf0006006
198 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
199 #define	FEC_FLASHMAC	0xf0006000
200 #elif defined(CONFIG_CANCam)
201 #define	FEC_FLASHMAC	0xf0020000
202 #elif defined (CONFIG_M5272C3)
203 #define	FEC_FLASHMAC	(0xffe04000 + 4)
204 #elif defined(CONFIG_MOD5272)
205 #define FEC_FLASHMAC	0xffc0406b
206 #else
207 #define	FEC_FLASHMAC	0
208 #endif
209 #endif /* CONFIG_M5272 */
210 
211 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
212  *
213  * 2048 byte skbufs are allocated. However, alignment requirements
214  * varies between FEC variants. Worst case is 64, so round down by 64.
215  */
216 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
217 #define PKT_MINBUF_SIZE		64
218 
219 /* FEC receive acceleration */
220 #define FEC_RACC_IPDIS		(1 << 1)
221 #define FEC_RACC_PRODIS		(1 << 2)
222 #define FEC_RACC_SHIFT16	BIT(7)
223 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
224 
225 /* MIB Control Register */
226 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
227 
228 /*
229  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
230  * size bits. Other FEC hardware does not, so we need to take that into
231  * account when setting it.
232  */
233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
234     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
235     defined(CONFIG_ARM64)
236 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
237 #else
238 #define	OPT_FRAME_SIZE	0
239 #endif
240 
241 /* FEC MII MMFR bits definition */
242 #define FEC_MMFR_ST		(1 << 30)
243 #define FEC_MMFR_ST_C45		(0)
244 #define FEC_MMFR_OP_READ	(2 << 28)
245 #define FEC_MMFR_OP_READ_C45	(3 << 28)
246 #define FEC_MMFR_OP_WRITE	(1 << 28)
247 #define FEC_MMFR_OP_ADDR_WRITE	(0)
248 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
249 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
250 #define FEC_MMFR_TA		(2 << 16)
251 #define FEC_MMFR_DATA(v)	(v & 0xffff)
252 /* FEC ECR bits definition */
253 #define FEC_ECR_MAGICEN		(1 << 2)
254 #define FEC_ECR_SLEEP		(1 << 3)
255 
256 #define FEC_MII_TIMEOUT		30000 /* us */
257 
258 /* Transmitter timeout */
259 #define TX_TIMEOUT (2 * HZ)
260 
261 #define FEC_PAUSE_FLAG_AUTONEG	0x1
262 #define FEC_PAUSE_FLAG_ENABLE	0x2
263 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
264 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
265 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
266 
267 #define COPYBREAK_DEFAULT	256
268 
269 /* Max number of allowed TCP segments for software TSO */
270 #define FEC_MAX_TSO_SEGS	100
271 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
272 
273 #define IS_TSO_HEADER(txq, addr) \
274 	((addr >= txq->tso_hdrs_dma) && \
275 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
276 
277 static int mii_cnt;
278 
279 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
280 					     struct bufdesc_prop *bd)
281 {
282 	return (bdp >= bd->last) ? bd->base
283 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
284 }
285 
286 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
287 					     struct bufdesc_prop *bd)
288 {
289 	return (bdp <= bd->base) ? bd->last
290 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
291 }
292 
293 static int fec_enet_get_bd_index(struct bufdesc *bdp,
294 				 struct bufdesc_prop *bd)
295 {
296 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
297 }
298 
299 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
300 {
301 	int entries;
302 
303 	entries = (((const char *)txq->dirty_tx -
304 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
305 
306 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
307 }
308 
309 static void swap_buffer(void *bufaddr, int len)
310 {
311 	int i;
312 	unsigned int *buf = bufaddr;
313 
314 	for (i = 0; i < len; i += 4, buf++)
315 		swab32s(buf);
316 }
317 
318 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
319 {
320 	int i;
321 	unsigned int *src = src_buf;
322 	unsigned int *dst = dst_buf;
323 
324 	for (i = 0; i < len; i += 4, src++, dst++)
325 		*dst = swab32p(src);
326 }
327 
328 static void fec_dump(struct net_device *ndev)
329 {
330 	struct fec_enet_private *fep = netdev_priv(ndev);
331 	struct bufdesc *bdp;
332 	struct fec_enet_priv_tx_q *txq;
333 	int index = 0;
334 
335 	netdev_info(ndev, "TX ring dump\n");
336 	pr_info("Nr     SC     addr       len  SKB\n");
337 
338 	txq = fep->tx_queue[0];
339 	bdp = txq->bd.base;
340 
341 	do {
342 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
343 			index,
344 			bdp == txq->bd.cur ? 'S' : ' ',
345 			bdp == txq->dirty_tx ? 'H' : ' ',
346 			fec16_to_cpu(bdp->cbd_sc),
347 			fec32_to_cpu(bdp->cbd_bufaddr),
348 			fec16_to_cpu(bdp->cbd_datlen),
349 			txq->tx_skbuff[index]);
350 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
351 		index++;
352 	} while (bdp != txq->bd.base);
353 }
354 
355 static inline bool is_ipv4_pkt(struct sk_buff *skb)
356 {
357 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
358 }
359 
360 static int
361 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
362 {
363 	/* Only run for packets requiring a checksum. */
364 	if (skb->ip_summed != CHECKSUM_PARTIAL)
365 		return 0;
366 
367 	if (unlikely(skb_cow_head(skb, 0)))
368 		return -1;
369 
370 	if (is_ipv4_pkt(skb))
371 		ip_hdr(skb)->check = 0;
372 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
373 
374 	return 0;
375 }
376 
377 static struct bufdesc *
378 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
379 			     struct sk_buff *skb,
380 			     struct net_device *ndev)
381 {
382 	struct fec_enet_private *fep = netdev_priv(ndev);
383 	struct bufdesc *bdp = txq->bd.cur;
384 	struct bufdesc_ex *ebdp;
385 	int nr_frags = skb_shinfo(skb)->nr_frags;
386 	int frag, frag_len;
387 	unsigned short status;
388 	unsigned int estatus = 0;
389 	skb_frag_t *this_frag;
390 	unsigned int index;
391 	void *bufaddr;
392 	dma_addr_t addr;
393 	int i;
394 
395 	for (frag = 0; frag < nr_frags; frag++) {
396 		this_frag = &skb_shinfo(skb)->frags[frag];
397 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
398 		ebdp = (struct bufdesc_ex *)bdp;
399 
400 		status = fec16_to_cpu(bdp->cbd_sc);
401 		status &= ~BD_ENET_TX_STATS;
402 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
403 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
404 
405 		/* Handle the last BD specially */
406 		if (frag == nr_frags - 1) {
407 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
408 			if (fep->bufdesc_ex) {
409 				estatus |= BD_ENET_TX_INT;
410 				if (unlikely(skb_shinfo(skb)->tx_flags &
411 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
412 					estatus |= BD_ENET_TX_TS;
413 			}
414 		}
415 
416 		if (fep->bufdesc_ex) {
417 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
418 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
419 			if (skb->ip_summed == CHECKSUM_PARTIAL)
420 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
421 			ebdp->cbd_bdu = 0;
422 			ebdp->cbd_esc = cpu_to_fec32(estatus);
423 		}
424 
425 		bufaddr = skb_frag_address(this_frag);
426 
427 		index = fec_enet_get_bd_index(bdp, &txq->bd);
428 		if (((unsigned long) bufaddr) & fep->tx_align ||
429 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
430 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
431 			bufaddr = txq->tx_bounce[index];
432 
433 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
434 				swap_buffer(bufaddr, frag_len);
435 		}
436 
437 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
438 				      DMA_TO_DEVICE);
439 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
440 			if (net_ratelimit())
441 				netdev_err(ndev, "Tx DMA memory map failed\n");
442 			goto dma_mapping_error;
443 		}
444 
445 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
446 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
447 		/* Make sure the updates to rest of the descriptor are
448 		 * performed before transferring ownership.
449 		 */
450 		wmb();
451 		bdp->cbd_sc = cpu_to_fec16(status);
452 	}
453 
454 	return bdp;
455 dma_mapping_error:
456 	bdp = txq->bd.cur;
457 	for (i = 0; i < frag; i++) {
458 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
459 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
460 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
461 	}
462 	return ERR_PTR(-ENOMEM);
463 }
464 
465 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
466 				   struct sk_buff *skb, struct net_device *ndev)
467 {
468 	struct fec_enet_private *fep = netdev_priv(ndev);
469 	int nr_frags = skb_shinfo(skb)->nr_frags;
470 	struct bufdesc *bdp, *last_bdp;
471 	void *bufaddr;
472 	dma_addr_t addr;
473 	unsigned short status;
474 	unsigned short buflen;
475 	unsigned int estatus = 0;
476 	unsigned int index;
477 	int entries_free;
478 
479 	entries_free = fec_enet_get_free_txdesc_num(txq);
480 	if (entries_free < MAX_SKB_FRAGS + 1) {
481 		dev_kfree_skb_any(skb);
482 		if (net_ratelimit())
483 			netdev_err(ndev, "NOT enough BD for SG!\n");
484 		return NETDEV_TX_OK;
485 	}
486 
487 	/* Protocol checksum off-load for TCP and UDP. */
488 	if (fec_enet_clear_csum(skb, ndev)) {
489 		dev_kfree_skb_any(skb);
490 		return NETDEV_TX_OK;
491 	}
492 
493 	/* Fill in a Tx ring entry */
494 	bdp = txq->bd.cur;
495 	last_bdp = bdp;
496 	status = fec16_to_cpu(bdp->cbd_sc);
497 	status &= ~BD_ENET_TX_STATS;
498 
499 	/* Set buffer length and buffer pointer */
500 	bufaddr = skb->data;
501 	buflen = skb_headlen(skb);
502 
503 	index = fec_enet_get_bd_index(bdp, &txq->bd);
504 	if (((unsigned long) bufaddr) & fep->tx_align ||
505 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
506 		memcpy(txq->tx_bounce[index], skb->data, buflen);
507 		bufaddr = txq->tx_bounce[index];
508 
509 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
510 			swap_buffer(bufaddr, buflen);
511 	}
512 
513 	/* Push the data cache so the CPM does not get stale memory data. */
514 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
515 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
516 		dev_kfree_skb_any(skb);
517 		if (net_ratelimit())
518 			netdev_err(ndev, "Tx DMA memory map failed\n");
519 		return NETDEV_TX_OK;
520 	}
521 
522 	if (nr_frags) {
523 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
524 		if (IS_ERR(last_bdp)) {
525 			dma_unmap_single(&fep->pdev->dev, addr,
526 					 buflen, DMA_TO_DEVICE);
527 			dev_kfree_skb_any(skb);
528 			return NETDEV_TX_OK;
529 		}
530 	} else {
531 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
532 		if (fep->bufdesc_ex) {
533 			estatus = BD_ENET_TX_INT;
534 			if (unlikely(skb_shinfo(skb)->tx_flags &
535 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
536 				estatus |= BD_ENET_TX_TS;
537 		}
538 	}
539 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
540 	bdp->cbd_datlen = cpu_to_fec16(buflen);
541 
542 	if (fep->bufdesc_ex) {
543 
544 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
545 
546 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
547 			fep->hwts_tx_en))
548 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
549 
550 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
551 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
552 
553 		if (skb->ip_summed == CHECKSUM_PARTIAL)
554 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
555 
556 		ebdp->cbd_bdu = 0;
557 		ebdp->cbd_esc = cpu_to_fec32(estatus);
558 	}
559 
560 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
561 	/* Save skb pointer */
562 	txq->tx_skbuff[index] = skb;
563 
564 	/* Make sure the updates to rest of the descriptor are performed before
565 	 * transferring ownership.
566 	 */
567 	wmb();
568 
569 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
570 	 * it's the last BD of the frame, and to put the CRC on the end.
571 	 */
572 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
573 	bdp->cbd_sc = cpu_to_fec16(status);
574 
575 	/* If this was the last BD in the ring, start at the beginning again. */
576 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
577 
578 	skb_tx_timestamp(skb);
579 
580 	/* Make sure the update to bdp and tx_skbuff are performed before
581 	 * txq->bd.cur.
582 	 */
583 	wmb();
584 	txq->bd.cur = bdp;
585 
586 	/* Trigger transmission start */
587 	writel(0, txq->bd.reg_desc_active);
588 
589 	return 0;
590 }
591 
592 static int
593 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
594 			  struct net_device *ndev,
595 			  struct bufdesc *bdp, int index, char *data,
596 			  int size, bool last_tcp, bool is_last)
597 {
598 	struct fec_enet_private *fep = netdev_priv(ndev);
599 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
600 	unsigned short status;
601 	unsigned int estatus = 0;
602 	dma_addr_t addr;
603 
604 	status = fec16_to_cpu(bdp->cbd_sc);
605 	status &= ~BD_ENET_TX_STATS;
606 
607 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
608 
609 	if (((unsigned long) data) & fep->tx_align ||
610 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
611 		memcpy(txq->tx_bounce[index], data, size);
612 		data = txq->tx_bounce[index];
613 
614 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
615 			swap_buffer(data, size);
616 	}
617 
618 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
619 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
620 		dev_kfree_skb_any(skb);
621 		if (net_ratelimit())
622 			netdev_err(ndev, "Tx DMA memory map failed\n");
623 		return NETDEV_TX_BUSY;
624 	}
625 
626 	bdp->cbd_datlen = cpu_to_fec16(size);
627 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
628 
629 	if (fep->bufdesc_ex) {
630 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
631 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
632 		if (skb->ip_summed == CHECKSUM_PARTIAL)
633 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
634 		ebdp->cbd_bdu = 0;
635 		ebdp->cbd_esc = cpu_to_fec32(estatus);
636 	}
637 
638 	/* Handle the last BD specially */
639 	if (last_tcp)
640 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
641 	if (is_last) {
642 		status |= BD_ENET_TX_INTR;
643 		if (fep->bufdesc_ex)
644 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
645 	}
646 
647 	bdp->cbd_sc = cpu_to_fec16(status);
648 
649 	return 0;
650 }
651 
652 static int
653 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
654 			 struct sk_buff *skb, struct net_device *ndev,
655 			 struct bufdesc *bdp, int index)
656 {
657 	struct fec_enet_private *fep = netdev_priv(ndev);
658 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
659 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
660 	void *bufaddr;
661 	unsigned long dmabuf;
662 	unsigned short status;
663 	unsigned int estatus = 0;
664 
665 	status = fec16_to_cpu(bdp->cbd_sc);
666 	status &= ~BD_ENET_TX_STATS;
667 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
668 
669 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
670 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
671 	if (((unsigned long)bufaddr) & fep->tx_align ||
672 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
673 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
674 		bufaddr = txq->tx_bounce[index];
675 
676 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
677 			swap_buffer(bufaddr, hdr_len);
678 
679 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
680 					hdr_len, DMA_TO_DEVICE);
681 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
682 			dev_kfree_skb_any(skb);
683 			if (net_ratelimit())
684 				netdev_err(ndev, "Tx DMA memory map failed\n");
685 			return NETDEV_TX_BUSY;
686 		}
687 	}
688 
689 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
690 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
691 
692 	if (fep->bufdesc_ex) {
693 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
694 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
695 		if (skb->ip_summed == CHECKSUM_PARTIAL)
696 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
697 		ebdp->cbd_bdu = 0;
698 		ebdp->cbd_esc = cpu_to_fec32(estatus);
699 	}
700 
701 	bdp->cbd_sc = cpu_to_fec16(status);
702 
703 	return 0;
704 }
705 
706 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
707 				   struct sk_buff *skb,
708 				   struct net_device *ndev)
709 {
710 	struct fec_enet_private *fep = netdev_priv(ndev);
711 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
712 	int total_len, data_left;
713 	struct bufdesc *bdp = txq->bd.cur;
714 	struct tso_t tso;
715 	unsigned int index = 0;
716 	int ret;
717 
718 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
719 		dev_kfree_skb_any(skb);
720 		if (net_ratelimit())
721 			netdev_err(ndev, "NOT enough BD for TSO!\n");
722 		return NETDEV_TX_OK;
723 	}
724 
725 	/* Protocol checksum off-load for TCP and UDP. */
726 	if (fec_enet_clear_csum(skb, ndev)) {
727 		dev_kfree_skb_any(skb);
728 		return NETDEV_TX_OK;
729 	}
730 
731 	/* Initialize the TSO handler, and prepare the first payload */
732 	tso_start(skb, &tso);
733 
734 	total_len = skb->len - hdr_len;
735 	while (total_len > 0) {
736 		char *hdr;
737 
738 		index = fec_enet_get_bd_index(bdp, &txq->bd);
739 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
740 		total_len -= data_left;
741 
742 		/* prepare packet headers: MAC + IP + TCP */
743 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
744 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
745 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
746 		if (ret)
747 			goto err_release;
748 
749 		while (data_left > 0) {
750 			int size;
751 
752 			size = min_t(int, tso.size, data_left);
753 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
754 			index = fec_enet_get_bd_index(bdp, &txq->bd);
755 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
756 							bdp, index,
757 							tso.data, size,
758 							size == data_left,
759 							total_len == 0);
760 			if (ret)
761 				goto err_release;
762 
763 			data_left -= size;
764 			tso_build_data(skb, &tso, size);
765 		}
766 
767 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
768 	}
769 
770 	/* Save skb pointer */
771 	txq->tx_skbuff[index] = skb;
772 
773 	skb_tx_timestamp(skb);
774 	txq->bd.cur = bdp;
775 
776 	/* Trigger transmission start */
777 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
778 	    !readl(txq->bd.reg_desc_active) ||
779 	    !readl(txq->bd.reg_desc_active) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active))
782 		writel(0, txq->bd.reg_desc_active);
783 
784 	return 0;
785 
786 err_release:
787 	/* TODO: Release all used data descriptors for TSO */
788 	return ret;
789 }
790 
791 static netdev_tx_t
792 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
793 {
794 	struct fec_enet_private *fep = netdev_priv(ndev);
795 	int entries_free;
796 	unsigned short queue;
797 	struct fec_enet_priv_tx_q *txq;
798 	struct netdev_queue *nq;
799 	int ret;
800 
801 	queue = skb_get_queue_mapping(skb);
802 	txq = fep->tx_queue[queue];
803 	nq = netdev_get_tx_queue(ndev, queue);
804 
805 	if (skb_is_gso(skb))
806 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
807 	else
808 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
809 	if (ret)
810 		return ret;
811 
812 	entries_free = fec_enet_get_free_txdesc_num(txq);
813 	if (entries_free <= txq->tx_stop_threshold)
814 		netif_tx_stop_queue(nq);
815 
816 	return NETDEV_TX_OK;
817 }
818 
819 /* Init RX & TX buffer descriptors
820  */
821 static void fec_enet_bd_init(struct net_device *dev)
822 {
823 	struct fec_enet_private *fep = netdev_priv(dev);
824 	struct fec_enet_priv_tx_q *txq;
825 	struct fec_enet_priv_rx_q *rxq;
826 	struct bufdesc *bdp;
827 	unsigned int i;
828 	unsigned int q;
829 
830 	for (q = 0; q < fep->num_rx_queues; q++) {
831 		/* Initialize the receive buffer descriptors. */
832 		rxq = fep->rx_queue[q];
833 		bdp = rxq->bd.base;
834 
835 		for (i = 0; i < rxq->bd.ring_size; i++) {
836 
837 			/* Initialize the BD for every fragment in the page. */
838 			if (bdp->cbd_bufaddr)
839 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
840 			else
841 				bdp->cbd_sc = cpu_to_fec16(0);
842 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
843 		}
844 
845 		/* Set the last buffer to wrap */
846 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
847 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
848 
849 		rxq->bd.cur = rxq->bd.base;
850 	}
851 
852 	for (q = 0; q < fep->num_tx_queues; q++) {
853 		/* ...and the same for transmit */
854 		txq = fep->tx_queue[q];
855 		bdp = txq->bd.base;
856 		txq->bd.cur = bdp;
857 
858 		for (i = 0; i < txq->bd.ring_size; i++) {
859 			/* Initialize the BD for every fragment in the page. */
860 			bdp->cbd_sc = cpu_to_fec16(0);
861 			if (bdp->cbd_bufaddr &&
862 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
863 				dma_unmap_single(&fep->pdev->dev,
864 						 fec32_to_cpu(bdp->cbd_bufaddr),
865 						 fec16_to_cpu(bdp->cbd_datlen),
866 						 DMA_TO_DEVICE);
867 			if (txq->tx_skbuff[i]) {
868 				dev_kfree_skb_any(txq->tx_skbuff[i]);
869 				txq->tx_skbuff[i] = NULL;
870 			}
871 			bdp->cbd_bufaddr = cpu_to_fec32(0);
872 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
873 		}
874 
875 		/* Set the last buffer to wrap */
876 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
877 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
878 		txq->dirty_tx = bdp;
879 	}
880 }
881 
882 static void fec_enet_active_rxring(struct net_device *ndev)
883 {
884 	struct fec_enet_private *fep = netdev_priv(ndev);
885 	int i;
886 
887 	for (i = 0; i < fep->num_rx_queues; i++)
888 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
889 }
890 
891 static void fec_enet_enable_ring(struct net_device *ndev)
892 {
893 	struct fec_enet_private *fep = netdev_priv(ndev);
894 	struct fec_enet_priv_tx_q *txq;
895 	struct fec_enet_priv_rx_q *rxq;
896 	int i;
897 
898 	for (i = 0; i < fep->num_rx_queues; i++) {
899 		rxq = fep->rx_queue[i];
900 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
901 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
902 
903 		/* enable DMA1/2 */
904 		if (i)
905 			writel(RCMR_MATCHEN | RCMR_CMP(i),
906 			       fep->hwp + FEC_RCMR(i));
907 	}
908 
909 	for (i = 0; i < fep->num_tx_queues; i++) {
910 		txq = fep->tx_queue[i];
911 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
912 
913 		/* enable DMA1/2 */
914 		if (i)
915 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
916 			       fep->hwp + FEC_DMA_CFG(i));
917 	}
918 }
919 
920 static void fec_enet_reset_skb(struct net_device *ndev)
921 {
922 	struct fec_enet_private *fep = netdev_priv(ndev);
923 	struct fec_enet_priv_tx_q *txq;
924 	int i, j;
925 
926 	for (i = 0; i < fep->num_tx_queues; i++) {
927 		txq = fep->tx_queue[i];
928 
929 		for (j = 0; j < txq->bd.ring_size; j++) {
930 			if (txq->tx_skbuff[j]) {
931 				dev_kfree_skb_any(txq->tx_skbuff[j]);
932 				txq->tx_skbuff[j] = NULL;
933 			}
934 		}
935 	}
936 }
937 
938 /*
939  * This function is called to start or restart the FEC during a link
940  * change, transmit timeout, or to reconfigure the FEC.  The network
941  * packet processing for this device must be stopped before this call.
942  */
943 static void
944 fec_restart(struct net_device *ndev)
945 {
946 	struct fec_enet_private *fep = netdev_priv(ndev);
947 	u32 val;
948 	u32 temp_mac[2];
949 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
950 	u32 ecntl = 0x2; /* ETHEREN */
951 
952 	/* Whack a reset.  We should wait for this.
953 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
954 	 * instead of reset MAC itself.
955 	 */
956 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
957 		writel(0, fep->hwp + FEC_ECNTRL);
958 	} else {
959 		writel(1, fep->hwp + FEC_ECNTRL);
960 		udelay(10);
961 	}
962 
963 	/*
964 	 * enet-mac reset will reset mac address registers too,
965 	 * so need to reconfigure it.
966 	 */
967 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
968 	writel((__force u32)cpu_to_be32(temp_mac[0]),
969 	       fep->hwp + FEC_ADDR_LOW);
970 	writel((__force u32)cpu_to_be32(temp_mac[1]),
971 	       fep->hwp + FEC_ADDR_HIGH);
972 
973 	/* Clear any outstanding interrupt, except MDIO. */
974 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
975 
976 	fec_enet_bd_init(ndev);
977 
978 	fec_enet_enable_ring(ndev);
979 
980 	/* Reset tx SKB buffers. */
981 	fec_enet_reset_skb(ndev);
982 
983 	/* Enable MII mode */
984 	if (fep->full_duplex == DUPLEX_FULL) {
985 		/* FD enable */
986 		writel(0x04, fep->hwp + FEC_X_CNTRL);
987 	} else {
988 		/* No Rcv on Xmit */
989 		rcntl |= 0x02;
990 		writel(0x0, fep->hwp + FEC_X_CNTRL);
991 	}
992 
993 	/* Set MII speed */
994 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
995 
996 #if !defined(CONFIG_M5272)
997 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
998 		val = readl(fep->hwp + FEC_RACC);
999 		/* align IP header */
1000 		val |= FEC_RACC_SHIFT16;
1001 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1002 			/* set RX checksum */
1003 			val |= FEC_RACC_OPTIONS;
1004 		else
1005 			val &= ~FEC_RACC_OPTIONS;
1006 		writel(val, fep->hwp + FEC_RACC);
1007 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1008 	}
1009 #endif
1010 
1011 	/*
1012 	 * The phy interface and speed need to get configured
1013 	 * differently on enet-mac.
1014 	 */
1015 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1016 		/* Enable flow control and length check */
1017 		rcntl |= 0x40000000 | 0x00000020;
1018 
1019 		/* RGMII, RMII or MII */
1020 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1021 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1022 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1024 			rcntl |= (1 << 6);
1025 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1026 			rcntl |= (1 << 8);
1027 		else
1028 			rcntl &= ~(1 << 8);
1029 
1030 		/* 1G, 100M or 10M */
1031 		if (ndev->phydev) {
1032 			if (ndev->phydev->speed == SPEED_1000)
1033 				ecntl |= (1 << 5);
1034 			else if (ndev->phydev->speed == SPEED_100)
1035 				rcntl &= ~(1 << 9);
1036 			else
1037 				rcntl |= (1 << 9);
1038 		}
1039 	} else {
1040 #ifdef FEC_MIIGSK_ENR
1041 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1042 			u32 cfgr;
1043 			/* disable the gasket and wait */
1044 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1045 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1046 				udelay(1);
1047 
1048 			/*
1049 			 * configure the gasket:
1050 			 *   RMII, 50 MHz, no loopback, no echo
1051 			 *   MII, 25 MHz, no loopback, no echo
1052 			 */
1053 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1054 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1055 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1056 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1057 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1058 
1059 			/* re-enable the gasket */
1060 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1061 		}
1062 #endif
1063 	}
1064 
1065 #if !defined(CONFIG_M5272)
1066 	/* enable pause frame*/
1067 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1068 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1069 	     ndev->phydev && ndev->phydev->pause)) {
1070 		rcntl |= FEC_ENET_FCE;
1071 
1072 		/* set FIFO threshold parameter to reduce overrun */
1073 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1074 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1075 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1076 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1077 
1078 		/* OPD */
1079 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1080 	} else {
1081 		rcntl &= ~FEC_ENET_FCE;
1082 	}
1083 #endif /* !defined(CONFIG_M5272) */
1084 
1085 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1086 
1087 	/* Setup multicast filter. */
1088 	set_multicast_list(ndev);
1089 #ifndef CONFIG_M5272
1090 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1091 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1092 #endif
1093 
1094 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1095 		/* enable ENET endian swap */
1096 		ecntl |= (1 << 8);
1097 		/* enable ENET store and forward mode */
1098 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1099 	}
1100 
1101 	if (fep->bufdesc_ex)
1102 		ecntl |= (1 << 4);
1103 
1104 #ifndef CONFIG_M5272
1105 	/* Enable the MIB statistic event counters */
1106 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1107 #endif
1108 
1109 	/* And last, enable the transmit and receive processing */
1110 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1111 	fec_enet_active_rxring(ndev);
1112 
1113 	if (fep->bufdesc_ex)
1114 		fec_ptp_start_cyclecounter(ndev);
1115 
1116 	/* Enable interrupts we wish to service */
1117 	if (fep->link)
1118 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1119 	else
1120 		writel(0, fep->hwp + FEC_IMASK);
1121 
1122 	/* Init the interrupt coalescing */
1123 	fec_enet_itr_coal_init(ndev);
1124 
1125 }
1126 
1127 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1128 {
1129 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1130 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1131 
1132 	if (stop_gpr->gpr) {
1133 		if (enabled)
1134 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1135 					   BIT(stop_gpr->bit),
1136 					   BIT(stop_gpr->bit));
1137 		else
1138 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1139 					   BIT(stop_gpr->bit), 0);
1140 	} else if (pdata && pdata->sleep_mode_enable) {
1141 		pdata->sleep_mode_enable(enabled);
1142 	}
1143 }
1144 
1145 static void
1146 fec_stop(struct net_device *ndev)
1147 {
1148 	struct fec_enet_private *fep = netdev_priv(ndev);
1149 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1150 	u32 val;
1151 
1152 	/* We cannot expect a graceful transmit stop without link !!! */
1153 	if (fep->link) {
1154 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1155 		udelay(10);
1156 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1157 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1158 	}
1159 
1160 	/* Whack a reset.  We should wait for this.
1161 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1162 	 * instead of reset MAC itself.
1163 	 */
1164 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1165 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1166 			writel(0, fep->hwp + FEC_ECNTRL);
1167 		} else {
1168 			writel(1, fep->hwp + FEC_ECNTRL);
1169 			udelay(10);
1170 		}
1171 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1172 	} else {
1173 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1174 		val = readl(fep->hwp + FEC_ECNTRL);
1175 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1176 		writel(val, fep->hwp + FEC_ECNTRL);
1177 		fec_enet_stop_mode(fep, true);
1178 	}
1179 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1180 
1181 	/* We have to keep ENET enabled to have MII interrupt stay working */
1182 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1183 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1184 		writel(2, fep->hwp + FEC_ECNTRL);
1185 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1186 	}
1187 }
1188 
1189 
1190 static void
1191 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1192 {
1193 	struct fec_enet_private *fep = netdev_priv(ndev);
1194 
1195 	fec_dump(ndev);
1196 
1197 	ndev->stats.tx_errors++;
1198 
1199 	schedule_work(&fep->tx_timeout_work);
1200 }
1201 
1202 static void fec_enet_timeout_work(struct work_struct *work)
1203 {
1204 	struct fec_enet_private *fep =
1205 		container_of(work, struct fec_enet_private, tx_timeout_work);
1206 	struct net_device *ndev = fep->netdev;
1207 
1208 	rtnl_lock();
1209 	if (netif_device_present(ndev) || netif_running(ndev)) {
1210 		napi_disable(&fep->napi);
1211 		netif_tx_lock_bh(ndev);
1212 		fec_restart(ndev);
1213 		netif_tx_wake_all_queues(ndev);
1214 		netif_tx_unlock_bh(ndev);
1215 		napi_enable(&fep->napi);
1216 	}
1217 	rtnl_unlock();
1218 }
1219 
1220 static void
1221 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1222 	struct skb_shared_hwtstamps *hwtstamps)
1223 {
1224 	unsigned long flags;
1225 	u64 ns;
1226 
1227 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1228 	ns = timecounter_cyc2time(&fep->tc, ts);
1229 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1230 
1231 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1232 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1233 }
1234 
1235 static void
1236 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1237 {
1238 	struct	fec_enet_private *fep;
1239 	struct bufdesc *bdp;
1240 	unsigned short status;
1241 	struct	sk_buff	*skb;
1242 	struct fec_enet_priv_tx_q *txq;
1243 	struct netdev_queue *nq;
1244 	int	index = 0;
1245 	int	entries_free;
1246 
1247 	fep = netdev_priv(ndev);
1248 
1249 	txq = fep->tx_queue[queue_id];
1250 	/* get next bdp of dirty_tx */
1251 	nq = netdev_get_tx_queue(ndev, queue_id);
1252 	bdp = txq->dirty_tx;
1253 
1254 	/* get next bdp of dirty_tx */
1255 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1256 
1257 	while (bdp != READ_ONCE(txq->bd.cur)) {
1258 		/* Order the load of bd.cur and cbd_sc */
1259 		rmb();
1260 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1261 		if (status & BD_ENET_TX_READY)
1262 			break;
1263 
1264 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1265 
1266 		skb = txq->tx_skbuff[index];
1267 		txq->tx_skbuff[index] = NULL;
1268 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1269 			dma_unmap_single(&fep->pdev->dev,
1270 					 fec32_to_cpu(bdp->cbd_bufaddr),
1271 					 fec16_to_cpu(bdp->cbd_datlen),
1272 					 DMA_TO_DEVICE);
1273 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1274 		if (!skb)
1275 			goto skb_done;
1276 
1277 		/* Check for errors. */
1278 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1279 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1280 				   BD_ENET_TX_CSL)) {
1281 			ndev->stats.tx_errors++;
1282 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1283 				ndev->stats.tx_heartbeat_errors++;
1284 			if (status & BD_ENET_TX_LC)  /* Late collision */
1285 				ndev->stats.tx_window_errors++;
1286 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1287 				ndev->stats.tx_aborted_errors++;
1288 			if (status & BD_ENET_TX_UN)  /* Underrun */
1289 				ndev->stats.tx_fifo_errors++;
1290 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1291 				ndev->stats.tx_carrier_errors++;
1292 		} else {
1293 			ndev->stats.tx_packets++;
1294 			ndev->stats.tx_bytes += skb->len;
1295 		}
1296 
1297 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1298 		 * are to time stamp the packet, so we still need to check time
1299 		 * stamping enabled flag.
1300 		 */
1301 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1302 			     fep->hwts_tx_en) &&
1303 		    fep->bufdesc_ex) {
1304 			struct skb_shared_hwtstamps shhwtstamps;
1305 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1306 
1307 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1308 			skb_tstamp_tx(skb, &shhwtstamps);
1309 		}
1310 
1311 		/* Deferred means some collisions occurred during transmit,
1312 		 * but we eventually sent the packet OK.
1313 		 */
1314 		if (status & BD_ENET_TX_DEF)
1315 			ndev->stats.collisions++;
1316 
1317 		/* Free the sk buffer associated with this last transmit */
1318 		dev_kfree_skb_any(skb);
1319 skb_done:
1320 		/* Make sure the update to bdp and tx_skbuff are performed
1321 		 * before dirty_tx
1322 		 */
1323 		wmb();
1324 		txq->dirty_tx = bdp;
1325 
1326 		/* Update pointer to next buffer descriptor to be transmitted */
1327 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1328 
1329 		/* Since we have freed up a buffer, the ring is no longer full
1330 		 */
1331 		if (netif_tx_queue_stopped(nq)) {
1332 			entries_free = fec_enet_get_free_txdesc_num(txq);
1333 			if (entries_free >= txq->tx_wake_threshold)
1334 				netif_tx_wake_queue(nq);
1335 		}
1336 	}
1337 
1338 	/* ERR006358: Keep the transmitter going */
1339 	if (bdp != txq->bd.cur &&
1340 	    readl(txq->bd.reg_desc_active) == 0)
1341 		writel(0, txq->bd.reg_desc_active);
1342 }
1343 
1344 static void fec_enet_tx(struct net_device *ndev)
1345 {
1346 	struct fec_enet_private *fep = netdev_priv(ndev);
1347 	int i;
1348 
1349 	/* Make sure that AVB queues are processed first. */
1350 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1351 		fec_enet_tx_queue(ndev, i);
1352 }
1353 
1354 static int
1355 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1356 {
1357 	struct  fec_enet_private *fep = netdev_priv(ndev);
1358 	int off;
1359 
1360 	off = ((unsigned long)skb->data) & fep->rx_align;
1361 	if (off)
1362 		skb_reserve(skb, fep->rx_align + 1 - off);
1363 
1364 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1365 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1366 		if (net_ratelimit())
1367 			netdev_err(ndev, "Rx DMA memory map failed\n");
1368 		return -ENOMEM;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1375 			       struct bufdesc *bdp, u32 length, bool swap)
1376 {
1377 	struct  fec_enet_private *fep = netdev_priv(ndev);
1378 	struct sk_buff *new_skb;
1379 
1380 	if (length > fep->rx_copybreak)
1381 		return false;
1382 
1383 	new_skb = netdev_alloc_skb(ndev, length);
1384 	if (!new_skb)
1385 		return false;
1386 
1387 	dma_sync_single_for_cpu(&fep->pdev->dev,
1388 				fec32_to_cpu(bdp->cbd_bufaddr),
1389 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1390 				DMA_FROM_DEVICE);
1391 	if (!swap)
1392 		memcpy(new_skb->data, (*skb)->data, length);
1393 	else
1394 		swap_buffer2(new_skb->data, (*skb)->data, length);
1395 	*skb = new_skb;
1396 
1397 	return true;
1398 }
1399 
1400 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1401  * When we update through the ring, if the next incoming buffer has
1402  * not been given to the system, we just set the empty indicator,
1403  * effectively tossing the packet.
1404  */
1405 static int
1406 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1407 {
1408 	struct fec_enet_private *fep = netdev_priv(ndev);
1409 	struct fec_enet_priv_rx_q *rxq;
1410 	struct bufdesc *bdp;
1411 	unsigned short status;
1412 	struct  sk_buff *skb_new = NULL;
1413 	struct  sk_buff *skb;
1414 	ushort	pkt_len;
1415 	__u8 *data;
1416 	int	pkt_received = 0;
1417 	struct	bufdesc_ex *ebdp = NULL;
1418 	bool	vlan_packet_rcvd = false;
1419 	u16	vlan_tag;
1420 	int	index = 0;
1421 	bool	is_copybreak;
1422 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1423 
1424 #ifdef CONFIG_M532x
1425 	flush_cache_all();
1426 #endif
1427 	rxq = fep->rx_queue[queue_id];
1428 
1429 	/* First, grab all of the stats for the incoming packet.
1430 	 * These get messed up if we get called due to a busy condition.
1431 	 */
1432 	bdp = rxq->bd.cur;
1433 
1434 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1435 
1436 		if (pkt_received >= budget)
1437 			break;
1438 		pkt_received++;
1439 
1440 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1441 
1442 		/* Check for errors. */
1443 		status ^= BD_ENET_RX_LAST;
1444 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1445 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1446 			   BD_ENET_RX_CL)) {
1447 			ndev->stats.rx_errors++;
1448 			if (status & BD_ENET_RX_OV) {
1449 				/* FIFO overrun */
1450 				ndev->stats.rx_fifo_errors++;
1451 				goto rx_processing_done;
1452 			}
1453 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1454 						| BD_ENET_RX_LAST)) {
1455 				/* Frame too long or too short. */
1456 				ndev->stats.rx_length_errors++;
1457 				if (status & BD_ENET_RX_LAST)
1458 					netdev_err(ndev, "rcv is not +last\n");
1459 			}
1460 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1461 				ndev->stats.rx_crc_errors++;
1462 			/* Report late collisions as a frame error. */
1463 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1464 				ndev->stats.rx_frame_errors++;
1465 			goto rx_processing_done;
1466 		}
1467 
1468 		/* Process the incoming frame. */
1469 		ndev->stats.rx_packets++;
1470 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1471 		ndev->stats.rx_bytes += pkt_len;
1472 
1473 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1474 		skb = rxq->rx_skbuff[index];
1475 
1476 		/* The packet length includes FCS, but we don't want to
1477 		 * include that when passing upstream as it messes up
1478 		 * bridging applications.
1479 		 */
1480 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1481 						  need_swap);
1482 		if (!is_copybreak) {
1483 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1484 			if (unlikely(!skb_new)) {
1485 				ndev->stats.rx_dropped++;
1486 				goto rx_processing_done;
1487 			}
1488 			dma_unmap_single(&fep->pdev->dev,
1489 					 fec32_to_cpu(bdp->cbd_bufaddr),
1490 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1491 					 DMA_FROM_DEVICE);
1492 		}
1493 
1494 		prefetch(skb->data - NET_IP_ALIGN);
1495 		skb_put(skb, pkt_len - 4);
1496 		data = skb->data;
1497 
1498 		if (!is_copybreak && need_swap)
1499 			swap_buffer(data, pkt_len);
1500 
1501 #if !defined(CONFIG_M5272)
1502 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1503 			data = skb_pull_inline(skb, 2);
1504 #endif
1505 
1506 		/* Extract the enhanced buffer descriptor */
1507 		ebdp = NULL;
1508 		if (fep->bufdesc_ex)
1509 			ebdp = (struct bufdesc_ex *)bdp;
1510 
1511 		/* If this is a VLAN packet remove the VLAN Tag */
1512 		vlan_packet_rcvd = false;
1513 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1514 		    fep->bufdesc_ex &&
1515 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1516 			/* Push and remove the vlan tag */
1517 			struct vlan_hdr *vlan_header =
1518 					(struct vlan_hdr *) (data + ETH_HLEN);
1519 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1520 
1521 			vlan_packet_rcvd = true;
1522 
1523 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1524 			skb_pull(skb, VLAN_HLEN);
1525 		}
1526 
1527 		skb->protocol = eth_type_trans(skb, ndev);
1528 
1529 		/* Get receive timestamp from the skb */
1530 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1531 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1532 					  skb_hwtstamps(skb));
1533 
1534 		if (fep->bufdesc_ex &&
1535 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1536 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1537 				/* don't check it */
1538 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1539 			} else {
1540 				skb_checksum_none_assert(skb);
1541 			}
1542 		}
1543 
1544 		/* Handle received VLAN packets */
1545 		if (vlan_packet_rcvd)
1546 			__vlan_hwaccel_put_tag(skb,
1547 					       htons(ETH_P_8021Q),
1548 					       vlan_tag);
1549 
1550 		skb_record_rx_queue(skb, queue_id);
1551 		napi_gro_receive(&fep->napi, skb);
1552 
1553 		if (is_copybreak) {
1554 			dma_sync_single_for_device(&fep->pdev->dev,
1555 						   fec32_to_cpu(bdp->cbd_bufaddr),
1556 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1557 						   DMA_FROM_DEVICE);
1558 		} else {
1559 			rxq->rx_skbuff[index] = skb_new;
1560 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1561 		}
1562 
1563 rx_processing_done:
1564 		/* Clear the status flags for this buffer */
1565 		status &= ~BD_ENET_RX_STATS;
1566 
1567 		/* Mark the buffer empty */
1568 		status |= BD_ENET_RX_EMPTY;
1569 
1570 		if (fep->bufdesc_ex) {
1571 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1572 
1573 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1574 			ebdp->cbd_prot = 0;
1575 			ebdp->cbd_bdu = 0;
1576 		}
1577 		/* Make sure the updates to rest of the descriptor are
1578 		 * performed before transferring ownership.
1579 		 */
1580 		wmb();
1581 		bdp->cbd_sc = cpu_to_fec16(status);
1582 
1583 		/* Update BD pointer to next entry */
1584 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1585 
1586 		/* Doing this here will keep the FEC running while we process
1587 		 * incoming frames.  On a heavily loaded network, we should be
1588 		 * able to keep up at the expense of system resources.
1589 		 */
1590 		writel(0, rxq->bd.reg_desc_active);
1591 	}
1592 	rxq->bd.cur = bdp;
1593 	return pkt_received;
1594 }
1595 
1596 static int fec_enet_rx(struct net_device *ndev, int budget)
1597 {
1598 	struct fec_enet_private *fep = netdev_priv(ndev);
1599 	int i, done = 0;
1600 
1601 	/* Make sure that AVB queues are processed first. */
1602 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1603 		done += fec_enet_rx_queue(ndev, budget - done, i);
1604 
1605 	return done;
1606 }
1607 
1608 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1609 {
1610 	uint int_events;
1611 
1612 	int_events = readl(fep->hwp + FEC_IEVENT);
1613 
1614 	/* Don't clear MDIO events, we poll for those */
1615 	int_events &= ~FEC_ENET_MII;
1616 
1617 	writel(int_events, fep->hwp + FEC_IEVENT);
1618 
1619 	return int_events != 0;
1620 }
1621 
1622 static irqreturn_t
1623 fec_enet_interrupt(int irq, void *dev_id)
1624 {
1625 	struct net_device *ndev = dev_id;
1626 	struct fec_enet_private *fep = netdev_priv(ndev);
1627 	irqreturn_t ret = IRQ_NONE;
1628 
1629 	if (fec_enet_collect_events(fep) && fep->link) {
1630 		ret = IRQ_HANDLED;
1631 
1632 		if (napi_schedule_prep(&fep->napi)) {
1633 			/* Disable interrupts */
1634 			writel(0, fep->hwp + FEC_IMASK);
1635 			__napi_schedule(&fep->napi);
1636 		}
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1643 {
1644 	struct net_device *ndev = napi->dev;
1645 	struct fec_enet_private *fep = netdev_priv(ndev);
1646 	int done = 0;
1647 
1648 	do {
1649 		done += fec_enet_rx(ndev, budget - done);
1650 		fec_enet_tx(ndev);
1651 	} while ((done < budget) && fec_enet_collect_events(fep));
1652 
1653 	if (done < budget) {
1654 		napi_complete_done(napi, done);
1655 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1656 	}
1657 
1658 	return done;
1659 }
1660 
1661 /* ------------------------------------------------------------------------- */
1662 static void fec_get_mac(struct net_device *ndev)
1663 {
1664 	struct fec_enet_private *fep = netdev_priv(ndev);
1665 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1666 	unsigned char *iap, tmpaddr[ETH_ALEN];
1667 
1668 	/*
1669 	 * try to get mac address in following order:
1670 	 *
1671 	 * 1) module parameter via kernel command line in form
1672 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1673 	 */
1674 	iap = macaddr;
1675 
1676 	/*
1677 	 * 2) from device tree data
1678 	 */
1679 	if (!is_valid_ether_addr(iap)) {
1680 		struct device_node *np = fep->pdev->dev.of_node;
1681 		if (np) {
1682 			const char *mac = of_get_mac_address(np);
1683 			if (!IS_ERR(mac))
1684 				iap = (unsigned char *) mac;
1685 		}
1686 	}
1687 
1688 	/*
1689 	 * 3) from flash or fuse (via platform data)
1690 	 */
1691 	if (!is_valid_ether_addr(iap)) {
1692 #ifdef CONFIG_M5272
1693 		if (FEC_FLASHMAC)
1694 			iap = (unsigned char *)FEC_FLASHMAC;
1695 #else
1696 		if (pdata)
1697 			iap = (unsigned char *)&pdata->mac;
1698 #endif
1699 	}
1700 
1701 	/*
1702 	 * 4) FEC mac registers set by bootloader
1703 	 */
1704 	if (!is_valid_ether_addr(iap)) {
1705 		*((__be32 *) &tmpaddr[0]) =
1706 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1707 		*((__be16 *) &tmpaddr[4]) =
1708 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1709 		iap = &tmpaddr[0];
1710 	}
1711 
1712 	/*
1713 	 * 5) random mac address
1714 	 */
1715 	if (!is_valid_ether_addr(iap)) {
1716 		/* Report it and use a random ethernet address instead */
1717 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1718 		eth_hw_addr_random(ndev);
1719 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1720 			 ndev->dev_addr);
1721 		return;
1722 	}
1723 
1724 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1725 
1726 	/* Adjust MAC if using macaddr */
1727 	if (iap == macaddr)
1728 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1729 }
1730 
1731 /* ------------------------------------------------------------------------- */
1732 
1733 /*
1734  * Phy section
1735  */
1736 static void fec_enet_adjust_link(struct net_device *ndev)
1737 {
1738 	struct fec_enet_private *fep = netdev_priv(ndev);
1739 	struct phy_device *phy_dev = ndev->phydev;
1740 	int status_change = 0;
1741 
1742 	/*
1743 	 * If the netdev is down, or is going down, we're not interested
1744 	 * in link state events, so just mark our idea of the link as down
1745 	 * and ignore the event.
1746 	 */
1747 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1748 		fep->link = 0;
1749 	} else if (phy_dev->link) {
1750 		if (!fep->link) {
1751 			fep->link = phy_dev->link;
1752 			status_change = 1;
1753 		}
1754 
1755 		if (fep->full_duplex != phy_dev->duplex) {
1756 			fep->full_duplex = phy_dev->duplex;
1757 			status_change = 1;
1758 		}
1759 
1760 		if (phy_dev->speed != fep->speed) {
1761 			fep->speed = phy_dev->speed;
1762 			status_change = 1;
1763 		}
1764 
1765 		/* if any of the above changed restart the FEC */
1766 		if (status_change) {
1767 			napi_disable(&fep->napi);
1768 			netif_tx_lock_bh(ndev);
1769 			fec_restart(ndev);
1770 			netif_tx_wake_all_queues(ndev);
1771 			netif_tx_unlock_bh(ndev);
1772 			napi_enable(&fep->napi);
1773 		}
1774 	} else {
1775 		if (fep->link) {
1776 			napi_disable(&fep->napi);
1777 			netif_tx_lock_bh(ndev);
1778 			fec_stop(ndev);
1779 			netif_tx_unlock_bh(ndev);
1780 			napi_enable(&fep->napi);
1781 			fep->link = phy_dev->link;
1782 			status_change = 1;
1783 		}
1784 	}
1785 
1786 	if (status_change)
1787 		phy_print_status(phy_dev);
1788 }
1789 
1790 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1791 {
1792 	uint ievent;
1793 	int ret;
1794 
1795 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1796 					ievent & FEC_ENET_MII, 2, 30000);
1797 
1798 	if (!ret)
1799 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1800 
1801 	return ret;
1802 }
1803 
1804 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1805 {
1806 	struct fec_enet_private *fep = bus->priv;
1807 	struct device *dev = &fep->pdev->dev;
1808 	int ret = 0, frame_start, frame_addr, frame_op;
1809 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1810 
1811 	ret = pm_runtime_get_sync(dev);
1812 	if (ret < 0)
1813 		return ret;
1814 
1815 	if (is_c45) {
1816 		frame_start = FEC_MMFR_ST_C45;
1817 
1818 		/* write address */
1819 		frame_addr = (regnum >> 16);
1820 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1821 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1822 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1823 		       fep->hwp + FEC_MII_DATA);
1824 
1825 		/* wait for end of transfer */
1826 		ret = fec_enet_mdio_wait(fep);
1827 		if (ret) {
1828 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1829 			goto out;
1830 		}
1831 
1832 		frame_op = FEC_MMFR_OP_READ_C45;
1833 
1834 	} else {
1835 		/* C22 read */
1836 		frame_op = FEC_MMFR_OP_READ;
1837 		frame_start = FEC_MMFR_ST;
1838 		frame_addr = regnum;
1839 	}
1840 
1841 	/* start a read op */
1842 	writel(frame_start | frame_op |
1843 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1844 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1845 
1846 	/* wait for end of transfer */
1847 	ret = fec_enet_mdio_wait(fep);
1848 	if (ret) {
1849 		netdev_err(fep->netdev, "MDIO read timeout\n");
1850 		goto out;
1851 	}
1852 
1853 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1854 
1855 out:
1856 	pm_runtime_mark_last_busy(dev);
1857 	pm_runtime_put_autosuspend(dev);
1858 
1859 	return ret;
1860 }
1861 
1862 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1863 			   u16 value)
1864 {
1865 	struct fec_enet_private *fep = bus->priv;
1866 	struct device *dev = &fep->pdev->dev;
1867 	int ret, frame_start, frame_addr;
1868 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1869 
1870 	ret = pm_runtime_get_sync(dev);
1871 	if (ret < 0)
1872 		return ret;
1873 	else
1874 		ret = 0;
1875 
1876 	if (is_c45) {
1877 		frame_start = FEC_MMFR_ST_C45;
1878 
1879 		/* write address */
1880 		frame_addr = (regnum >> 16);
1881 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1882 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1883 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1884 		       fep->hwp + FEC_MII_DATA);
1885 
1886 		/* wait for end of transfer */
1887 		ret = fec_enet_mdio_wait(fep);
1888 		if (ret) {
1889 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1890 			goto out;
1891 		}
1892 	} else {
1893 		/* C22 write */
1894 		frame_start = FEC_MMFR_ST;
1895 		frame_addr = regnum;
1896 	}
1897 
1898 	/* start a write op */
1899 	writel(frame_start | FEC_MMFR_OP_WRITE |
1900 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1901 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1902 		fep->hwp + FEC_MII_DATA);
1903 
1904 	/* wait for end of transfer */
1905 	ret = fec_enet_mdio_wait(fep);
1906 	if (ret)
1907 		netdev_err(fep->netdev, "MDIO write timeout\n");
1908 
1909 out:
1910 	pm_runtime_mark_last_busy(dev);
1911 	pm_runtime_put_autosuspend(dev);
1912 
1913 	return ret;
1914 }
1915 
1916 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1917 {
1918 	struct fec_enet_private *fep = netdev_priv(ndev);
1919 	int ret;
1920 
1921 	if (enable) {
1922 		ret = clk_prepare_enable(fep->clk_enet_out);
1923 		if (ret)
1924 			return ret;
1925 
1926 		if (fep->clk_ptp) {
1927 			mutex_lock(&fep->ptp_clk_mutex);
1928 			ret = clk_prepare_enable(fep->clk_ptp);
1929 			if (ret) {
1930 				mutex_unlock(&fep->ptp_clk_mutex);
1931 				goto failed_clk_ptp;
1932 			} else {
1933 				fep->ptp_clk_on = true;
1934 			}
1935 			mutex_unlock(&fep->ptp_clk_mutex);
1936 		}
1937 
1938 		ret = clk_prepare_enable(fep->clk_ref);
1939 		if (ret)
1940 			goto failed_clk_ref;
1941 
1942 		phy_reset_after_clk_enable(ndev->phydev);
1943 	} else {
1944 		clk_disable_unprepare(fep->clk_enet_out);
1945 		if (fep->clk_ptp) {
1946 			mutex_lock(&fep->ptp_clk_mutex);
1947 			clk_disable_unprepare(fep->clk_ptp);
1948 			fep->ptp_clk_on = false;
1949 			mutex_unlock(&fep->ptp_clk_mutex);
1950 		}
1951 		clk_disable_unprepare(fep->clk_ref);
1952 	}
1953 
1954 	return 0;
1955 
1956 failed_clk_ref:
1957 	if (fep->clk_ptp) {
1958 		mutex_lock(&fep->ptp_clk_mutex);
1959 		clk_disable_unprepare(fep->clk_ptp);
1960 		fep->ptp_clk_on = false;
1961 		mutex_unlock(&fep->ptp_clk_mutex);
1962 	}
1963 failed_clk_ptp:
1964 	if (fep->clk_enet_out)
1965 		clk_disable_unprepare(fep->clk_enet_out);
1966 
1967 	return ret;
1968 }
1969 
1970 static int fec_enet_mii_probe(struct net_device *ndev)
1971 {
1972 	struct fec_enet_private *fep = netdev_priv(ndev);
1973 	struct phy_device *phy_dev = NULL;
1974 	char mdio_bus_id[MII_BUS_ID_SIZE];
1975 	char phy_name[MII_BUS_ID_SIZE + 3];
1976 	int phy_id;
1977 	int dev_id = fep->dev_id;
1978 
1979 	if (fep->phy_node) {
1980 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1981 					 &fec_enet_adjust_link, 0,
1982 					 fep->phy_interface);
1983 		if (!phy_dev) {
1984 			netdev_err(ndev, "Unable to connect to phy\n");
1985 			return -ENODEV;
1986 		}
1987 	} else {
1988 		/* check for attached phy */
1989 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1990 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1991 				continue;
1992 			if (dev_id--)
1993 				continue;
1994 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1995 			break;
1996 		}
1997 
1998 		if (phy_id >= PHY_MAX_ADDR) {
1999 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2000 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2001 			phy_id = 0;
2002 		}
2003 
2004 		snprintf(phy_name, sizeof(phy_name),
2005 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2006 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2007 				      fep->phy_interface);
2008 	}
2009 
2010 	if (IS_ERR(phy_dev)) {
2011 		netdev_err(ndev, "could not attach to PHY\n");
2012 		return PTR_ERR(phy_dev);
2013 	}
2014 
2015 	/* mask with MAC supported features */
2016 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2017 		phy_set_max_speed(phy_dev, 1000);
2018 		phy_remove_link_mode(phy_dev,
2019 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2020 #if !defined(CONFIG_M5272)
2021 		phy_support_sym_pause(phy_dev);
2022 #endif
2023 	}
2024 	else
2025 		phy_set_max_speed(phy_dev, 100);
2026 
2027 	fep->link = 0;
2028 	fep->full_duplex = 0;
2029 
2030 	phy_attached_info(phy_dev);
2031 
2032 	return 0;
2033 }
2034 
2035 static int fec_enet_mii_init(struct platform_device *pdev)
2036 {
2037 	static struct mii_bus *fec0_mii_bus;
2038 	struct net_device *ndev = platform_get_drvdata(pdev);
2039 	struct fec_enet_private *fep = netdev_priv(ndev);
2040 	bool suppress_preamble = false;
2041 	struct device_node *node;
2042 	int err = -ENXIO;
2043 	u32 mii_speed, holdtime;
2044 	u32 bus_freq;
2045 
2046 	/*
2047 	 * The i.MX28 dual fec interfaces are not equal.
2048 	 * Here are the differences:
2049 	 *
2050 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2051 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2052 	 *  - external phys can only be configured by fec0
2053 	 *
2054 	 * That is to say fec1 can not work independently. It only works
2055 	 * when fec0 is working. The reason behind this design is that the
2056 	 * second interface is added primarily for Switch mode.
2057 	 *
2058 	 * Because of the last point above, both phys are attached on fec0
2059 	 * mdio interface in board design, and need to be configured by
2060 	 * fec0 mii_bus.
2061 	 */
2062 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2063 		/* fec1 uses fec0 mii_bus */
2064 		if (mii_cnt && fec0_mii_bus) {
2065 			fep->mii_bus = fec0_mii_bus;
2066 			mii_cnt++;
2067 			return 0;
2068 		}
2069 		return -ENOENT;
2070 	}
2071 
2072 	bus_freq = 2500000; /* 2.5MHz by default */
2073 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2074 	if (node) {
2075 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2076 		suppress_preamble = of_property_read_bool(node,
2077 							  "suppress-preamble");
2078 	}
2079 
2080 	/*
2081 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2082 	 *
2083 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2084 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2085 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2086 	 * document.
2087 	 */
2088 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2089 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2090 		mii_speed--;
2091 	if (mii_speed > 63) {
2092 		dev_err(&pdev->dev,
2093 			"fec clock (%lu) too fast to get right mii speed\n",
2094 			clk_get_rate(fep->clk_ipg));
2095 		err = -EINVAL;
2096 		goto err_out;
2097 	}
2098 
2099 	/*
2100 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2101 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2102 	 * versions are RAZ there, so just ignore the difference and write the
2103 	 * register always.
2104 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2105 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2106 	 * output.
2107 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2108 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2109 	 * holdtime cannot result in a value greater than 3.
2110 	 */
2111 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2112 
2113 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2114 
2115 	if (suppress_preamble)
2116 		fep->phy_speed |= BIT(7);
2117 
2118 	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2119 	 * MII event generation condition:
2120 	 * - writing MSCR:
2121 	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2122 	 *	  mscr_reg_data_in[7:0] != 0
2123 	 * - writing MMFR:
2124 	 *	- mscr[7:0]_not_zero
2125 	 */
2126 	writel(0, fep->hwp + FEC_MII_DATA);
2127 
2128 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2129 
2130 	/* Clear any pending transaction complete indication */
2131 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2132 
2133 	fep->mii_bus = mdiobus_alloc();
2134 	if (fep->mii_bus == NULL) {
2135 		err = -ENOMEM;
2136 		goto err_out;
2137 	}
2138 
2139 	fep->mii_bus->name = "fec_enet_mii_bus";
2140 	fep->mii_bus->read = fec_enet_mdio_read;
2141 	fep->mii_bus->write = fec_enet_mdio_write;
2142 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2143 		pdev->name, fep->dev_id + 1);
2144 	fep->mii_bus->priv = fep;
2145 	fep->mii_bus->parent = &pdev->dev;
2146 
2147 	err = of_mdiobus_register(fep->mii_bus, node);
2148 	of_node_put(node);
2149 	if (err)
2150 		goto err_out_free_mdiobus;
2151 
2152 	mii_cnt++;
2153 
2154 	/* save fec0 mii_bus */
2155 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2156 		fec0_mii_bus = fep->mii_bus;
2157 
2158 	return 0;
2159 
2160 err_out_free_mdiobus:
2161 	mdiobus_free(fep->mii_bus);
2162 err_out:
2163 	return err;
2164 }
2165 
2166 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2167 {
2168 	if (--mii_cnt == 0) {
2169 		mdiobus_unregister(fep->mii_bus);
2170 		mdiobus_free(fep->mii_bus);
2171 	}
2172 }
2173 
2174 static void fec_enet_get_drvinfo(struct net_device *ndev,
2175 				 struct ethtool_drvinfo *info)
2176 {
2177 	struct fec_enet_private *fep = netdev_priv(ndev);
2178 
2179 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2180 		sizeof(info->driver));
2181 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2182 }
2183 
2184 static int fec_enet_get_regs_len(struct net_device *ndev)
2185 {
2186 	struct fec_enet_private *fep = netdev_priv(ndev);
2187 	struct resource *r;
2188 	int s = 0;
2189 
2190 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2191 	if (r)
2192 		s = resource_size(r);
2193 
2194 	return s;
2195 }
2196 
2197 /* List of registers that can be safety be read to dump them with ethtool */
2198 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2199 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2200 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2201 static __u32 fec_enet_register_version = 2;
2202 static u32 fec_enet_register_offset[] = {
2203 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2204 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2205 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2206 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2207 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2208 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2209 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2210 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2211 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2212 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2213 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2214 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2215 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2216 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2217 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2218 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2219 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2220 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2221 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2222 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2223 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2224 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2225 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2226 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2227 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2228 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2229 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2230 };
2231 #else
2232 static __u32 fec_enet_register_version = 1;
2233 static u32 fec_enet_register_offset[] = {
2234 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2235 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2236 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2237 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2238 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2239 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2240 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2241 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2242 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2243 };
2244 #endif
2245 
2246 static void fec_enet_get_regs(struct net_device *ndev,
2247 			      struct ethtool_regs *regs, void *regbuf)
2248 {
2249 	struct fec_enet_private *fep = netdev_priv(ndev);
2250 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2251 	struct device *dev = &fep->pdev->dev;
2252 	u32 *buf = (u32 *)regbuf;
2253 	u32 i, off;
2254 	int ret;
2255 
2256 	ret = pm_runtime_get_sync(dev);
2257 	if (ret < 0)
2258 		return;
2259 
2260 	regs->version = fec_enet_register_version;
2261 
2262 	memset(buf, 0, regs->len);
2263 
2264 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2265 		off = fec_enet_register_offset[i];
2266 
2267 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2268 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2269 			continue;
2270 
2271 		off >>= 2;
2272 		buf[off] = readl(&theregs[off]);
2273 	}
2274 
2275 	pm_runtime_mark_last_busy(dev);
2276 	pm_runtime_put_autosuspend(dev);
2277 }
2278 
2279 static int fec_enet_get_ts_info(struct net_device *ndev,
2280 				struct ethtool_ts_info *info)
2281 {
2282 	struct fec_enet_private *fep = netdev_priv(ndev);
2283 
2284 	if (fep->bufdesc_ex) {
2285 
2286 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2287 					SOF_TIMESTAMPING_RX_SOFTWARE |
2288 					SOF_TIMESTAMPING_SOFTWARE |
2289 					SOF_TIMESTAMPING_TX_HARDWARE |
2290 					SOF_TIMESTAMPING_RX_HARDWARE |
2291 					SOF_TIMESTAMPING_RAW_HARDWARE;
2292 		if (fep->ptp_clock)
2293 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2294 		else
2295 			info->phc_index = -1;
2296 
2297 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2298 				 (1 << HWTSTAMP_TX_ON);
2299 
2300 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2301 				   (1 << HWTSTAMP_FILTER_ALL);
2302 		return 0;
2303 	} else {
2304 		return ethtool_op_get_ts_info(ndev, info);
2305 	}
2306 }
2307 
2308 #if !defined(CONFIG_M5272)
2309 
2310 static void fec_enet_get_pauseparam(struct net_device *ndev,
2311 				    struct ethtool_pauseparam *pause)
2312 {
2313 	struct fec_enet_private *fep = netdev_priv(ndev);
2314 
2315 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2316 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2317 	pause->rx_pause = pause->tx_pause;
2318 }
2319 
2320 static int fec_enet_set_pauseparam(struct net_device *ndev,
2321 				   struct ethtool_pauseparam *pause)
2322 {
2323 	struct fec_enet_private *fep = netdev_priv(ndev);
2324 
2325 	if (!ndev->phydev)
2326 		return -ENODEV;
2327 
2328 	if (pause->tx_pause != pause->rx_pause) {
2329 		netdev_info(ndev,
2330 			"hardware only support enable/disable both tx and rx");
2331 		return -EINVAL;
2332 	}
2333 
2334 	fep->pause_flag = 0;
2335 
2336 	/* tx pause must be same as rx pause */
2337 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2338 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2339 
2340 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2341 			  pause->autoneg);
2342 
2343 	if (pause->autoneg) {
2344 		if (netif_running(ndev))
2345 			fec_stop(ndev);
2346 		phy_start_aneg(ndev->phydev);
2347 	}
2348 	if (netif_running(ndev)) {
2349 		napi_disable(&fep->napi);
2350 		netif_tx_lock_bh(ndev);
2351 		fec_restart(ndev);
2352 		netif_tx_wake_all_queues(ndev);
2353 		netif_tx_unlock_bh(ndev);
2354 		napi_enable(&fep->napi);
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 static const struct fec_stat {
2361 	char name[ETH_GSTRING_LEN];
2362 	u16 offset;
2363 } fec_stats[] = {
2364 	/* RMON TX */
2365 	{ "tx_dropped", RMON_T_DROP },
2366 	{ "tx_packets", RMON_T_PACKETS },
2367 	{ "tx_broadcast", RMON_T_BC_PKT },
2368 	{ "tx_multicast", RMON_T_MC_PKT },
2369 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2370 	{ "tx_undersize", RMON_T_UNDERSIZE },
2371 	{ "tx_oversize", RMON_T_OVERSIZE },
2372 	{ "tx_fragment", RMON_T_FRAG },
2373 	{ "tx_jabber", RMON_T_JAB },
2374 	{ "tx_collision", RMON_T_COL },
2375 	{ "tx_64byte", RMON_T_P64 },
2376 	{ "tx_65to127byte", RMON_T_P65TO127 },
2377 	{ "tx_128to255byte", RMON_T_P128TO255 },
2378 	{ "tx_256to511byte", RMON_T_P256TO511 },
2379 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2380 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2381 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2382 	{ "tx_octets", RMON_T_OCTETS },
2383 
2384 	/* IEEE TX */
2385 	{ "IEEE_tx_drop", IEEE_T_DROP },
2386 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2387 	{ "IEEE_tx_1col", IEEE_T_1COL },
2388 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2389 	{ "IEEE_tx_def", IEEE_T_DEF },
2390 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2391 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2392 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2393 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2394 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2395 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2396 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2397 
2398 	/* RMON RX */
2399 	{ "rx_packets", RMON_R_PACKETS },
2400 	{ "rx_broadcast", RMON_R_BC_PKT },
2401 	{ "rx_multicast", RMON_R_MC_PKT },
2402 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2403 	{ "rx_undersize", RMON_R_UNDERSIZE },
2404 	{ "rx_oversize", RMON_R_OVERSIZE },
2405 	{ "rx_fragment", RMON_R_FRAG },
2406 	{ "rx_jabber", RMON_R_JAB },
2407 	{ "rx_64byte", RMON_R_P64 },
2408 	{ "rx_65to127byte", RMON_R_P65TO127 },
2409 	{ "rx_128to255byte", RMON_R_P128TO255 },
2410 	{ "rx_256to511byte", RMON_R_P256TO511 },
2411 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2412 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2413 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2414 	{ "rx_octets", RMON_R_OCTETS },
2415 
2416 	/* IEEE RX */
2417 	{ "IEEE_rx_drop", IEEE_R_DROP },
2418 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2419 	{ "IEEE_rx_crc", IEEE_R_CRC },
2420 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2421 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2422 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2423 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2424 };
2425 
2426 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2427 
2428 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2429 {
2430 	struct fec_enet_private *fep = netdev_priv(dev);
2431 	int i;
2432 
2433 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2434 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2435 }
2436 
2437 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2438 				       struct ethtool_stats *stats, u64 *data)
2439 {
2440 	struct fec_enet_private *fep = netdev_priv(dev);
2441 
2442 	if (netif_running(dev))
2443 		fec_enet_update_ethtool_stats(dev);
2444 
2445 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2446 }
2447 
2448 static void fec_enet_get_strings(struct net_device *netdev,
2449 	u32 stringset, u8 *data)
2450 {
2451 	int i;
2452 	switch (stringset) {
2453 	case ETH_SS_STATS:
2454 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2455 			memcpy(data + i * ETH_GSTRING_LEN,
2456 				fec_stats[i].name, ETH_GSTRING_LEN);
2457 		break;
2458 	}
2459 }
2460 
2461 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2462 {
2463 	switch (sset) {
2464 	case ETH_SS_STATS:
2465 		return ARRAY_SIZE(fec_stats);
2466 	default:
2467 		return -EOPNOTSUPP;
2468 	}
2469 }
2470 
2471 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2472 {
2473 	struct fec_enet_private *fep = netdev_priv(dev);
2474 	int i;
2475 
2476 	/* Disable MIB statistics counters */
2477 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2478 
2479 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2480 		writel(0, fep->hwp + fec_stats[i].offset);
2481 
2482 	/* Don't disable MIB statistics counters */
2483 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2484 }
2485 
2486 #else	/* !defined(CONFIG_M5272) */
2487 #define FEC_STATS_SIZE	0
2488 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2489 {
2490 }
2491 
2492 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2493 {
2494 }
2495 #endif /* !defined(CONFIG_M5272) */
2496 
2497 /* ITR clock source is enet system clock (clk_ahb).
2498  * TCTT unit is cycle_ns * 64 cycle
2499  * So, the ICTT value = X us / (cycle_ns * 64)
2500  */
2501 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2502 {
2503 	struct fec_enet_private *fep = netdev_priv(ndev);
2504 
2505 	return us * (fep->itr_clk_rate / 64000) / 1000;
2506 }
2507 
2508 /* Set threshold for interrupt coalescing */
2509 static void fec_enet_itr_coal_set(struct net_device *ndev)
2510 {
2511 	struct fec_enet_private *fep = netdev_priv(ndev);
2512 	int rx_itr, tx_itr;
2513 
2514 	/* Must be greater than zero to avoid unpredictable behavior */
2515 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2516 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2517 		return;
2518 
2519 	/* Select enet system clock as Interrupt Coalescing
2520 	 * timer Clock Source
2521 	 */
2522 	rx_itr = FEC_ITR_CLK_SEL;
2523 	tx_itr = FEC_ITR_CLK_SEL;
2524 
2525 	/* set ICFT and ICTT */
2526 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2527 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2528 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2529 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2530 
2531 	rx_itr |= FEC_ITR_EN;
2532 	tx_itr |= FEC_ITR_EN;
2533 
2534 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2535 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2536 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2537 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2538 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2539 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2540 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2541 	}
2542 }
2543 
2544 static int
2545 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2546 {
2547 	struct fec_enet_private *fep = netdev_priv(ndev);
2548 
2549 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2550 		return -EOPNOTSUPP;
2551 
2552 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2553 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2554 
2555 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2556 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2557 
2558 	return 0;
2559 }
2560 
2561 static int
2562 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2563 {
2564 	struct fec_enet_private *fep = netdev_priv(ndev);
2565 	struct device *dev = &fep->pdev->dev;
2566 	unsigned int cycle;
2567 
2568 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2569 		return -EOPNOTSUPP;
2570 
2571 	if (ec->rx_max_coalesced_frames > 255) {
2572 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2573 		return -EINVAL;
2574 	}
2575 
2576 	if (ec->tx_max_coalesced_frames > 255) {
2577 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2578 		return -EINVAL;
2579 	}
2580 
2581 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2582 	if (cycle > 0xFFFF) {
2583 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2584 		return -EINVAL;
2585 	}
2586 
2587 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2588 	if (cycle > 0xFFFF) {
2589 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2590 		return -EINVAL;
2591 	}
2592 
2593 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2594 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2595 
2596 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2597 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2598 
2599 	fec_enet_itr_coal_set(ndev);
2600 
2601 	return 0;
2602 }
2603 
2604 static void fec_enet_itr_coal_init(struct net_device *ndev)
2605 {
2606 	struct ethtool_coalesce ec;
2607 
2608 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2609 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2610 
2611 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2612 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2613 
2614 	fec_enet_set_coalesce(ndev, &ec);
2615 }
2616 
2617 static int fec_enet_get_tunable(struct net_device *netdev,
2618 				const struct ethtool_tunable *tuna,
2619 				void *data)
2620 {
2621 	struct fec_enet_private *fep = netdev_priv(netdev);
2622 	int ret = 0;
2623 
2624 	switch (tuna->id) {
2625 	case ETHTOOL_RX_COPYBREAK:
2626 		*(u32 *)data = fep->rx_copybreak;
2627 		break;
2628 	default:
2629 		ret = -EINVAL;
2630 		break;
2631 	}
2632 
2633 	return ret;
2634 }
2635 
2636 static int fec_enet_set_tunable(struct net_device *netdev,
2637 				const struct ethtool_tunable *tuna,
2638 				const void *data)
2639 {
2640 	struct fec_enet_private *fep = netdev_priv(netdev);
2641 	int ret = 0;
2642 
2643 	switch (tuna->id) {
2644 	case ETHTOOL_RX_COPYBREAK:
2645 		fep->rx_copybreak = *(u32 *)data;
2646 		break;
2647 	default:
2648 		ret = -EINVAL;
2649 		break;
2650 	}
2651 
2652 	return ret;
2653 }
2654 
2655 static void
2656 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2657 {
2658 	struct fec_enet_private *fep = netdev_priv(ndev);
2659 
2660 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2661 		wol->supported = WAKE_MAGIC;
2662 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2663 	} else {
2664 		wol->supported = wol->wolopts = 0;
2665 	}
2666 }
2667 
2668 static int
2669 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2670 {
2671 	struct fec_enet_private *fep = netdev_priv(ndev);
2672 
2673 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2674 		return -EINVAL;
2675 
2676 	if (wol->wolopts & ~WAKE_MAGIC)
2677 		return -EINVAL;
2678 
2679 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2680 	if (device_may_wakeup(&ndev->dev)) {
2681 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2682 		if (fep->irq[0] > 0)
2683 			enable_irq_wake(fep->irq[0]);
2684 	} else {
2685 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2686 		if (fep->irq[0] > 0)
2687 			disable_irq_wake(fep->irq[0]);
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 static const struct ethtool_ops fec_enet_ethtool_ops = {
2694 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2695 				     ETHTOOL_COALESCE_MAX_FRAMES,
2696 	.get_drvinfo		= fec_enet_get_drvinfo,
2697 	.get_regs_len		= fec_enet_get_regs_len,
2698 	.get_regs		= fec_enet_get_regs,
2699 	.nway_reset		= phy_ethtool_nway_reset,
2700 	.get_link		= ethtool_op_get_link,
2701 	.get_coalesce		= fec_enet_get_coalesce,
2702 	.set_coalesce		= fec_enet_set_coalesce,
2703 #ifndef CONFIG_M5272
2704 	.get_pauseparam		= fec_enet_get_pauseparam,
2705 	.set_pauseparam		= fec_enet_set_pauseparam,
2706 	.get_strings		= fec_enet_get_strings,
2707 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2708 	.get_sset_count		= fec_enet_get_sset_count,
2709 #endif
2710 	.get_ts_info		= fec_enet_get_ts_info,
2711 	.get_tunable		= fec_enet_get_tunable,
2712 	.set_tunable		= fec_enet_set_tunable,
2713 	.get_wol		= fec_enet_get_wol,
2714 	.set_wol		= fec_enet_set_wol,
2715 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2716 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2717 };
2718 
2719 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2720 {
2721 	struct fec_enet_private *fep = netdev_priv(ndev);
2722 	struct phy_device *phydev = ndev->phydev;
2723 
2724 	if (!netif_running(ndev))
2725 		return -EINVAL;
2726 
2727 	if (!phydev)
2728 		return -ENODEV;
2729 
2730 	if (fep->bufdesc_ex) {
2731 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2732 
2733 		if (cmd == SIOCSHWTSTAMP) {
2734 			if (use_fec_hwts)
2735 				return fec_ptp_set(ndev, rq);
2736 			fec_ptp_disable_hwts(ndev);
2737 		} else if (cmd == SIOCGHWTSTAMP) {
2738 			if (use_fec_hwts)
2739 				return fec_ptp_get(ndev, rq);
2740 		}
2741 	}
2742 
2743 	return phy_mii_ioctl(phydev, rq, cmd);
2744 }
2745 
2746 static void fec_enet_free_buffers(struct net_device *ndev)
2747 {
2748 	struct fec_enet_private *fep = netdev_priv(ndev);
2749 	unsigned int i;
2750 	struct sk_buff *skb;
2751 	struct bufdesc	*bdp;
2752 	struct fec_enet_priv_tx_q *txq;
2753 	struct fec_enet_priv_rx_q *rxq;
2754 	unsigned int q;
2755 
2756 	for (q = 0; q < fep->num_rx_queues; q++) {
2757 		rxq = fep->rx_queue[q];
2758 		bdp = rxq->bd.base;
2759 		for (i = 0; i < rxq->bd.ring_size; i++) {
2760 			skb = rxq->rx_skbuff[i];
2761 			rxq->rx_skbuff[i] = NULL;
2762 			if (skb) {
2763 				dma_unmap_single(&fep->pdev->dev,
2764 						 fec32_to_cpu(bdp->cbd_bufaddr),
2765 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2766 						 DMA_FROM_DEVICE);
2767 				dev_kfree_skb(skb);
2768 			}
2769 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2770 		}
2771 	}
2772 
2773 	for (q = 0; q < fep->num_tx_queues; q++) {
2774 		txq = fep->tx_queue[q];
2775 		for (i = 0; i < txq->bd.ring_size; i++) {
2776 			kfree(txq->tx_bounce[i]);
2777 			txq->tx_bounce[i] = NULL;
2778 			skb = txq->tx_skbuff[i];
2779 			txq->tx_skbuff[i] = NULL;
2780 			dev_kfree_skb(skb);
2781 		}
2782 	}
2783 }
2784 
2785 static void fec_enet_free_queue(struct net_device *ndev)
2786 {
2787 	struct fec_enet_private *fep = netdev_priv(ndev);
2788 	int i;
2789 	struct fec_enet_priv_tx_q *txq;
2790 
2791 	for (i = 0; i < fep->num_tx_queues; i++)
2792 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2793 			txq = fep->tx_queue[i];
2794 			dma_free_coherent(&fep->pdev->dev,
2795 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2796 					  txq->tso_hdrs,
2797 					  txq->tso_hdrs_dma);
2798 		}
2799 
2800 	for (i = 0; i < fep->num_rx_queues; i++)
2801 		kfree(fep->rx_queue[i]);
2802 	for (i = 0; i < fep->num_tx_queues; i++)
2803 		kfree(fep->tx_queue[i]);
2804 }
2805 
2806 static int fec_enet_alloc_queue(struct net_device *ndev)
2807 {
2808 	struct fec_enet_private *fep = netdev_priv(ndev);
2809 	int i;
2810 	int ret = 0;
2811 	struct fec_enet_priv_tx_q *txq;
2812 
2813 	for (i = 0; i < fep->num_tx_queues; i++) {
2814 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2815 		if (!txq) {
2816 			ret = -ENOMEM;
2817 			goto alloc_failed;
2818 		}
2819 
2820 		fep->tx_queue[i] = txq;
2821 		txq->bd.ring_size = TX_RING_SIZE;
2822 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2823 
2824 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2825 		txq->tx_wake_threshold =
2826 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2827 
2828 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2829 					txq->bd.ring_size * TSO_HEADER_SIZE,
2830 					&txq->tso_hdrs_dma,
2831 					GFP_KERNEL);
2832 		if (!txq->tso_hdrs) {
2833 			ret = -ENOMEM;
2834 			goto alloc_failed;
2835 		}
2836 	}
2837 
2838 	for (i = 0; i < fep->num_rx_queues; i++) {
2839 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2840 					   GFP_KERNEL);
2841 		if (!fep->rx_queue[i]) {
2842 			ret = -ENOMEM;
2843 			goto alloc_failed;
2844 		}
2845 
2846 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2847 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2848 	}
2849 	return ret;
2850 
2851 alloc_failed:
2852 	fec_enet_free_queue(ndev);
2853 	return ret;
2854 }
2855 
2856 static int
2857 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2858 {
2859 	struct fec_enet_private *fep = netdev_priv(ndev);
2860 	unsigned int i;
2861 	struct sk_buff *skb;
2862 	struct bufdesc	*bdp;
2863 	struct fec_enet_priv_rx_q *rxq;
2864 
2865 	rxq = fep->rx_queue[queue];
2866 	bdp = rxq->bd.base;
2867 	for (i = 0; i < rxq->bd.ring_size; i++) {
2868 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2869 		if (!skb)
2870 			goto err_alloc;
2871 
2872 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2873 			dev_kfree_skb(skb);
2874 			goto err_alloc;
2875 		}
2876 
2877 		rxq->rx_skbuff[i] = skb;
2878 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2879 
2880 		if (fep->bufdesc_ex) {
2881 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2882 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2883 		}
2884 
2885 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2886 	}
2887 
2888 	/* Set the last buffer to wrap. */
2889 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2890 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2891 	return 0;
2892 
2893  err_alloc:
2894 	fec_enet_free_buffers(ndev);
2895 	return -ENOMEM;
2896 }
2897 
2898 static int
2899 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2900 {
2901 	struct fec_enet_private *fep = netdev_priv(ndev);
2902 	unsigned int i;
2903 	struct bufdesc  *bdp;
2904 	struct fec_enet_priv_tx_q *txq;
2905 
2906 	txq = fep->tx_queue[queue];
2907 	bdp = txq->bd.base;
2908 	for (i = 0; i < txq->bd.ring_size; i++) {
2909 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2910 		if (!txq->tx_bounce[i])
2911 			goto err_alloc;
2912 
2913 		bdp->cbd_sc = cpu_to_fec16(0);
2914 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2915 
2916 		if (fep->bufdesc_ex) {
2917 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2918 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2919 		}
2920 
2921 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2922 	}
2923 
2924 	/* Set the last buffer to wrap. */
2925 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2926 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2927 
2928 	return 0;
2929 
2930  err_alloc:
2931 	fec_enet_free_buffers(ndev);
2932 	return -ENOMEM;
2933 }
2934 
2935 static int fec_enet_alloc_buffers(struct net_device *ndev)
2936 {
2937 	struct fec_enet_private *fep = netdev_priv(ndev);
2938 	unsigned int i;
2939 
2940 	for (i = 0; i < fep->num_rx_queues; i++)
2941 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2942 			return -ENOMEM;
2943 
2944 	for (i = 0; i < fep->num_tx_queues; i++)
2945 		if (fec_enet_alloc_txq_buffers(ndev, i))
2946 			return -ENOMEM;
2947 	return 0;
2948 }
2949 
2950 static int
2951 fec_enet_open(struct net_device *ndev)
2952 {
2953 	struct fec_enet_private *fep = netdev_priv(ndev);
2954 	int ret;
2955 	bool reset_again;
2956 
2957 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2958 	if (ret < 0)
2959 		return ret;
2960 
2961 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2962 	ret = fec_enet_clk_enable(ndev, true);
2963 	if (ret)
2964 		goto clk_enable;
2965 
2966 	/* During the first fec_enet_open call the PHY isn't probed at this
2967 	 * point. Therefore the phy_reset_after_clk_enable() call within
2968 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2969 	 * sure the PHY is working correctly we check if we need to reset again
2970 	 * later when the PHY is probed
2971 	 */
2972 	if (ndev->phydev && ndev->phydev->drv)
2973 		reset_again = false;
2974 	else
2975 		reset_again = true;
2976 
2977 	/* I should reset the ring buffers here, but I don't yet know
2978 	 * a simple way to do that.
2979 	 */
2980 
2981 	ret = fec_enet_alloc_buffers(ndev);
2982 	if (ret)
2983 		goto err_enet_alloc;
2984 
2985 	/* Init MAC prior to mii bus probe */
2986 	fec_restart(ndev);
2987 
2988 	/* Probe and connect to PHY when open the interface */
2989 	ret = fec_enet_mii_probe(ndev);
2990 	if (ret)
2991 		goto err_enet_mii_probe;
2992 
2993 	/* Call phy_reset_after_clk_enable() again if it failed during
2994 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2995 	 */
2996 	if (reset_again)
2997 		phy_reset_after_clk_enable(ndev->phydev);
2998 
2999 	if (fep->quirks & FEC_QUIRK_ERR006687)
3000 		imx6q_cpuidle_fec_irqs_used();
3001 
3002 	napi_enable(&fep->napi);
3003 	phy_start(ndev->phydev);
3004 	netif_tx_start_all_queues(ndev);
3005 
3006 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3007 				 FEC_WOL_FLAG_ENABLE);
3008 
3009 	return 0;
3010 
3011 err_enet_mii_probe:
3012 	fec_enet_free_buffers(ndev);
3013 err_enet_alloc:
3014 	fec_enet_clk_enable(ndev, false);
3015 clk_enable:
3016 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3017 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3018 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3019 	return ret;
3020 }
3021 
3022 static int
3023 fec_enet_close(struct net_device *ndev)
3024 {
3025 	struct fec_enet_private *fep = netdev_priv(ndev);
3026 
3027 	phy_stop(ndev->phydev);
3028 
3029 	if (netif_device_present(ndev)) {
3030 		napi_disable(&fep->napi);
3031 		netif_tx_disable(ndev);
3032 		fec_stop(ndev);
3033 	}
3034 
3035 	phy_disconnect(ndev->phydev);
3036 
3037 	if (fep->quirks & FEC_QUIRK_ERR006687)
3038 		imx6q_cpuidle_fec_irqs_unused();
3039 
3040 	fec_enet_update_ethtool_stats(ndev);
3041 
3042 	fec_enet_clk_enable(ndev, false);
3043 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3044 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3045 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3046 
3047 	fec_enet_free_buffers(ndev);
3048 
3049 	return 0;
3050 }
3051 
3052 /* Set or clear the multicast filter for this adaptor.
3053  * Skeleton taken from sunlance driver.
3054  * The CPM Ethernet implementation allows Multicast as well as individual
3055  * MAC address filtering.  Some of the drivers check to make sure it is
3056  * a group multicast address, and discard those that are not.  I guess I
3057  * will do the same for now, but just remove the test if you want
3058  * individual filtering as well (do the upper net layers want or support
3059  * this kind of feature?).
3060  */
3061 
3062 #define FEC_HASH_BITS	6		/* #bits in hash */
3063 
3064 static void set_multicast_list(struct net_device *ndev)
3065 {
3066 	struct fec_enet_private *fep = netdev_priv(ndev);
3067 	struct netdev_hw_addr *ha;
3068 	unsigned int crc, tmp;
3069 	unsigned char hash;
3070 	unsigned int hash_high = 0, hash_low = 0;
3071 
3072 	if (ndev->flags & IFF_PROMISC) {
3073 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3074 		tmp |= 0x8;
3075 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3076 		return;
3077 	}
3078 
3079 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3080 	tmp &= ~0x8;
3081 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3082 
3083 	if (ndev->flags & IFF_ALLMULTI) {
3084 		/* Catch all multicast addresses, so set the
3085 		 * filter to all 1's
3086 		 */
3087 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3088 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3089 
3090 		return;
3091 	}
3092 
3093 	/* Add the addresses in hash register */
3094 	netdev_for_each_mc_addr(ha, ndev) {
3095 		/* calculate crc32 value of mac address */
3096 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3097 
3098 		/* only upper 6 bits (FEC_HASH_BITS) are used
3099 		 * which point to specific bit in the hash registers
3100 		 */
3101 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3102 
3103 		if (hash > 31)
3104 			hash_high |= 1 << (hash - 32);
3105 		else
3106 			hash_low |= 1 << hash;
3107 	}
3108 
3109 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3110 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3111 }
3112 
3113 /* Set a MAC change in hardware. */
3114 static int
3115 fec_set_mac_address(struct net_device *ndev, void *p)
3116 {
3117 	struct fec_enet_private *fep = netdev_priv(ndev);
3118 	struct sockaddr *addr = p;
3119 
3120 	if (addr) {
3121 		if (!is_valid_ether_addr(addr->sa_data))
3122 			return -EADDRNOTAVAIL;
3123 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3124 	}
3125 
3126 	/* Add netif status check here to avoid system hang in below case:
3127 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3128 	 * After ethx down, fec all clocks are gated off and then register
3129 	 * access causes system hang.
3130 	 */
3131 	if (!netif_running(ndev))
3132 		return 0;
3133 
3134 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3135 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3136 		fep->hwp + FEC_ADDR_LOW);
3137 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3138 		fep->hwp + FEC_ADDR_HIGH);
3139 	return 0;
3140 }
3141 
3142 #ifdef CONFIG_NET_POLL_CONTROLLER
3143 /**
3144  * fec_poll_controller - FEC Poll controller function
3145  * @dev: The FEC network adapter
3146  *
3147  * Polled functionality used by netconsole and others in non interrupt mode
3148  *
3149  */
3150 static void fec_poll_controller(struct net_device *dev)
3151 {
3152 	int i;
3153 	struct fec_enet_private *fep = netdev_priv(dev);
3154 
3155 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3156 		if (fep->irq[i] > 0) {
3157 			disable_irq(fep->irq[i]);
3158 			fec_enet_interrupt(fep->irq[i], dev);
3159 			enable_irq(fep->irq[i]);
3160 		}
3161 	}
3162 }
3163 #endif
3164 
3165 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3166 	netdev_features_t features)
3167 {
3168 	struct fec_enet_private *fep = netdev_priv(netdev);
3169 	netdev_features_t changed = features ^ netdev->features;
3170 
3171 	netdev->features = features;
3172 
3173 	/* Receive checksum has been changed */
3174 	if (changed & NETIF_F_RXCSUM) {
3175 		if (features & NETIF_F_RXCSUM)
3176 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3177 		else
3178 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3179 	}
3180 }
3181 
3182 static int fec_set_features(struct net_device *netdev,
3183 	netdev_features_t features)
3184 {
3185 	struct fec_enet_private *fep = netdev_priv(netdev);
3186 	netdev_features_t changed = features ^ netdev->features;
3187 
3188 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3189 		napi_disable(&fep->napi);
3190 		netif_tx_lock_bh(netdev);
3191 		fec_stop(netdev);
3192 		fec_enet_set_netdev_features(netdev, features);
3193 		fec_restart(netdev);
3194 		netif_tx_wake_all_queues(netdev);
3195 		netif_tx_unlock_bh(netdev);
3196 		napi_enable(&fep->napi);
3197 	} else {
3198 		fec_enet_set_netdev_features(netdev, features);
3199 	}
3200 
3201 	return 0;
3202 }
3203 
3204 static const struct net_device_ops fec_netdev_ops = {
3205 	.ndo_open		= fec_enet_open,
3206 	.ndo_stop		= fec_enet_close,
3207 	.ndo_start_xmit		= fec_enet_start_xmit,
3208 	.ndo_set_rx_mode	= set_multicast_list,
3209 	.ndo_validate_addr	= eth_validate_addr,
3210 	.ndo_tx_timeout		= fec_timeout,
3211 	.ndo_set_mac_address	= fec_set_mac_address,
3212 	.ndo_do_ioctl		= fec_enet_ioctl,
3213 #ifdef CONFIG_NET_POLL_CONTROLLER
3214 	.ndo_poll_controller	= fec_poll_controller,
3215 #endif
3216 	.ndo_set_features	= fec_set_features,
3217 };
3218 
3219 static const unsigned short offset_des_active_rxq[] = {
3220 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3221 };
3222 
3223 static const unsigned short offset_des_active_txq[] = {
3224 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3225 };
3226 
3227  /*
3228   * XXX:  We need to clean up on failure exits here.
3229   *
3230   */
3231 static int fec_enet_init(struct net_device *ndev)
3232 {
3233 	struct fec_enet_private *fep = netdev_priv(ndev);
3234 	struct bufdesc *cbd_base;
3235 	dma_addr_t bd_dma;
3236 	int bd_size;
3237 	unsigned int i;
3238 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3239 			sizeof(struct bufdesc);
3240 	unsigned dsize_log2 = __fls(dsize);
3241 	int ret;
3242 
3243 	WARN_ON(dsize != (1 << dsize_log2));
3244 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3245 	fep->rx_align = 0xf;
3246 	fep->tx_align = 0xf;
3247 #else
3248 	fep->rx_align = 0x3;
3249 	fep->tx_align = 0x3;
3250 #endif
3251 
3252 	/* Check mask of the streaming and coherent API */
3253 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3254 	if (ret < 0) {
3255 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3256 		return ret;
3257 	}
3258 
3259 	fec_enet_alloc_queue(ndev);
3260 
3261 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3262 
3263 	/* Allocate memory for buffer descriptors. */
3264 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3265 				       GFP_KERNEL);
3266 	if (!cbd_base) {
3267 		return -ENOMEM;
3268 	}
3269 
3270 	/* Get the Ethernet address */
3271 	fec_get_mac(ndev);
3272 	/* make sure MAC we just acquired is programmed into the hw */
3273 	fec_set_mac_address(ndev, NULL);
3274 
3275 	/* Set receive and transmit descriptor base. */
3276 	for (i = 0; i < fep->num_rx_queues; i++) {
3277 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3278 		unsigned size = dsize * rxq->bd.ring_size;
3279 
3280 		rxq->bd.qid = i;
3281 		rxq->bd.base = cbd_base;
3282 		rxq->bd.cur = cbd_base;
3283 		rxq->bd.dma = bd_dma;
3284 		rxq->bd.dsize = dsize;
3285 		rxq->bd.dsize_log2 = dsize_log2;
3286 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3287 		bd_dma += size;
3288 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3289 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3290 	}
3291 
3292 	for (i = 0; i < fep->num_tx_queues; i++) {
3293 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3294 		unsigned size = dsize * txq->bd.ring_size;
3295 
3296 		txq->bd.qid = i;
3297 		txq->bd.base = cbd_base;
3298 		txq->bd.cur = cbd_base;
3299 		txq->bd.dma = bd_dma;
3300 		txq->bd.dsize = dsize;
3301 		txq->bd.dsize_log2 = dsize_log2;
3302 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3303 		bd_dma += size;
3304 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3305 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3306 	}
3307 
3308 
3309 	/* The FEC Ethernet specific entries in the device structure */
3310 	ndev->watchdog_timeo = TX_TIMEOUT;
3311 	ndev->netdev_ops = &fec_netdev_ops;
3312 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3313 
3314 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3315 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3316 
3317 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3318 		/* enable hw VLAN support */
3319 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3320 
3321 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3322 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3323 
3324 		/* enable hw accelerator */
3325 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3326 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3327 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3328 	}
3329 
3330 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3331 		fep->tx_align = 0;
3332 		fep->rx_align = 0x3f;
3333 	}
3334 
3335 	ndev->hw_features = ndev->features;
3336 
3337 	fec_restart(ndev);
3338 
3339 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3340 		fec_enet_clear_ethtool_stats(ndev);
3341 	else
3342 		fec_enet_update_ethtool_stats(ndev);
3343 
3344 	return 0;
3345 }
3346 
3347 #ifdef CONFIG_OF
3348 static int fec_reset_phy(struct platform_device *pdev)
3349 {
3350 	int err, phy_reset;
3351 	bool active_high = false;
3352 	int msec = 1, phy_post_delay = 0;
3353 	struct device_node *np = pdev->dev.of_node;
3354 
3355 	if (!np)
3356 		return 0;
3357 
3358 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3359 	/* A sane reset duration should not be longer than 1s */
3360 	if (!err && msec > 1000)
3361 		msec = 1;
3362 
3363 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3364 	if (phy_reset == -EPROBE_DEFER)
3365 		return phy_reset;
3366 	else if (!gpio_is_valid(phy_reset))
3367 		return 0;
3368 
3369 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3370 	/* valid reset duration should be less than 1s */
3371 	if (!err && phy_post_delay > 1000)
3372 		return -EINVAL;
3373 
3374 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3375 
3376 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3377 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3378 			"phy-reset");
3379 	if (err) {
3380 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3381 		return err;
3382 	}
3383 
3384 	if (msec > 20)
3385 		msleep(msec);
3386 	else
3387 		usleep_range(msec * 1000, msec * 1000 + 1000);
3388 
3389 	gpio_set_value_cansleep(phy_reset, !active_high);
3390 
3391 	if (!phy_post_delay)
3392 		return 0;
3393 
3394 	if (phy_post_delay > 20)
3395 		msleep(phy_post_delay);
3396 	else
3397 		usleep_range(phy_post_delay * 1000,
3398 			     phy_post_delay * 1000 + 1000);
3399 
3400 	return 0;
3401 }
3402 #else /* CONFIG_OF */
3403 static int fec_reset_phy(struct platform_device *pdev)
3404 {
3405 	/*
3406 	 * In case of platform probe, the reset has been done
3407 	 * by machine code.
3408 	 */
3409 	return 0;
3410 }
3411 #endif /* CONFIG_OF */
3412 
3413 static void
3414 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3415 {
3416 	struct device_node *np = pdev->dev.of_node;
3417 
3418 	*num_tx = *num_rx = 1;
3419 
3420 	if (!np || !of_device_is_available(np))
3421 		return;
3422 
3423 	/* parse the num of tx and rx queues */
3424 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3425 
3426 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3427 
3428 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3429 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3430 			 *num_tx);
3431 		*num_tx = 1;
3432 		return;
3433 	}
3434 
3435 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3436 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3437 			 *num_rx);
3438 		*num_rx = 1;
3439 		return;
3440 	}
3441 
3442 }
3443 
3444 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3445 {
3446 	int irq_cnt = platform_irq_count(pdev);
3447 
3448 	if (irq_cnt > FEC_IRQ_NUM)
3449 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3450 	else if (irq_cnt == 2)
3451 		irq_cnt = 1;	/* last for pps */
3452 	else if (irq_cnt <= 0)
3453 		irq_cnt = 1;	/* At least 1 irq is needed */
3454 	return irq_cnt;
3455 }
3456 
3457 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3458 				   struct device_node *np)
3459 {
3460 	struct device_node *gpr_np;
3461 	u32 out_val[3];
3462 	int ret = 0;
3463 
3464 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3465 	if (!gpr_np)
3466 		return 0;
3467 
3468 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3469 					 ARRAY_SIZE(out_val));
3470 	if (ret) {
3471 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3472 		return ret;
3473 	}
3474 
3475 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3476 	if (IS_ERR(fep->stop_gpr.gpr)) {
3477 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3478 		ret = PTR_ERR(fep->stop_gpr.gpr);
3479 		fep->stop_gpr.gpr = NULL;
3480 		goto out;
3481 	}
3482 
3483 	fep->stop_gpr.reg = out_val[1];
3484 	fep->stop_gpr.bit = out_val[2];
3485 
3486 out:
3487 	of_node_put(gpr_np);
3488 
3489 	return ret;
3490 }
3491 
3492 static int
3493 fec_probe(struct platform_device *pdev)
3494 {
3495 	struct fec_enet_private *fep;
3496 	struct fec_platform_data *pdata;
3497 	phy_interface_t interface;
3498 	struct net_device *ndev;
3499 	int i, irq, ret = 0;
3500 	const struct of_device_id *of_id;
3501 	static int dev_id;
3502 	struct device_node *np = pdev->dev.of_node, *phy_node;
3503 	int num_tx_qs;
3504 	int num_rx_qs;
3505 	char irq_name[8];
3506 	int irq_cnt;
3507 	struct fec_devinfo *dev_info;
3508 
3509 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3510 
3511 	/* Init network device */
3512 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3513 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3514 	if (!ndev)
3515 		return -ENOMEM;
3516 
3517 	SET_NETDEV_DEV(ndev, &pdev->dev);
3518 
3519 	/* setup board info structure */
3520 	fep = netdev_priv(ndev);
3521 
3522 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3523 	if (of_id)
3524 		pdev->id_entry = of_id->data;
3525 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3526 	if (dev_info)
3527 		fep->quirks = dev_info->quirks;
3528 
3529 	fep->netdev = ndev;
3530 	fep->num_rx_queues = num_rx_qs;
3531 	fep->num_tx_queues = num_tx_qs;
3532 
3533 #if !defined(CONFIG_M5272)
3534 	/* default enable pause frame auto negotiation */
3535 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3536 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3537 #endif
3538 
3539 	/* Select default pin state */
3540 	pinctrl_pm_select_default_state(&pdev->dev);
3541 
3542 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3543 	if (IS_ERR(fep->hwp)) {
3544 		ret = PTR_ERR(fep->hwp);
3545 		goto failed_ioremap;
3546 	}
3547 
3548 	fep->pdev = pdev;
3549 	fep->dev_id = dev_id++;
3550 
3551 	platform_set_drvdata(pdev, ndev);
3552 
3553 	if ((of_machine_is_compatible("fsl,imx6q") ||
3554 	     of_machine_is_compatible("fsl,imx6dl")) &&
3555 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3556 		fep->quirks |= FEC_QUIRK_ERR006687;
3557 
3558 	if (of_get_property(np, "fsl,magic-packet", NULL))
3559 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3560 
3561 	ret = fec_enet_init_stop_mode(fep, np);
3562 	if (ret)
3563 		goto failed_stop_mode;
3564 
3565 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3566 	if (!phy_node && of_phy_is_fixed_link(np)) {
3567 		ret = of_phy_register_fixed_link(np);
3568 		if (ret < 0) {
3569 			dev_err(&pdev->dev,
3570 				"broken fixed-link specification\n");
3571 			goto failed_phy;
3572 		}
3573 		phy_node = of_node_get(np);
3574 	}
3575 	fep->phy_node = phy_node;
3576 
3577 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3578 	if (ret) {
3579 		pdata = dev_get_platdata(&pdev->dev);
3580 		if (pdata)
3581 			fep->phy_interface = pdata->phy;
3582 		else
3583 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3584 	} else {
3585 		fep->phy_interface = interface;
3586 	}
3587 
3588 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3589 	if (IS_ERR(fep->clk_ipg)) {
3590 		ret = PTR_ERR(fep->clk_ipg);
3591 		goto failed_clk;
3592 	}
3593 
3594 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3595 	if (IS_ERR(fep->clk_ahb)) {
3596 		ret = PTR_ERR(fep->clk_ahb);
3597 		goto failed_clk;
3598 	}
3599 
3600 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3601 
3602 	/* enet_out is optional, depends on board */
3603 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3604 	if (IS_ERR(fep->clk_enet_out))
3605 		fep->clk_enet_out = NULL;
3606 
3607 	fep->ptp_clk_on = false;
3608 	mutex_init(&fep->ptp_clk_mutex);
3609 
3610 	/* clk_ref is optional, depends on board */
3611 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3612 	if (IS_ERR(fep->clk_ref))
3613 		fep->clk_ref = NULL;
3614 
3615 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3616 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3617 	if (IS_ERR(fep->clk_ptp)) {
3618 		fep->clk_ptp = NULL;
3619 		fep->bufdesc_ex = false;
3620 	}
3621 
3622 	ret = fec_enet_clk_enable(ndev, true);
3623 	if (ret)
3624 		goto failed_clk;
3625 
3626 	ret = clk_prepare_enable(fep->clk_ipg);
3627 	if (ret)
3628 		goto failed_clk_ipg;
3629 	ret = clk_prepare_enable(fep->clk_ahb);
3630 	if (ret)
3631 		goto failed_clk_ahb;
3632 
3633 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3634 	if (!IS_ERR(fep->reg_phy)) {
3635 		ret = regulator_enable(fep->reg_phy);
3636 		if (ret) {
3637 			dev_err(&pdev->dev,
3638 				"Failed to enable phy regulator: %d\n", ret);
3639 			goto failed_regulator;
3640 		}
3641 	} else {
3642 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3643 			ret = -EPROBE_DEFER;
3644 			goto failed_regulator;
3645 		}
3646 		fep->reg_phy = NULL;
3647 	}
3648 
3649 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3650 	pm_runtime_use_autosuspend(&pdev->dev);
3651 	pm_runtime_get_noresume(&pdev->dev);
3652 	pm_runtime_set_active(&pdev->dev);
3653 	pm_runtime_enable(&pdev->dev);
3654 
3655 	ret = fec_reset_phy(pdev);
3656 	if (ret)
3657 		goto failed_reset;
3658 
3659 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3660 	if (fep->bufdesc_ex)
3661 		fec_ptp_init(pdev, irq_cnt);
3662 
3663 	ret = fec_enet_init(ndev);
3664 	if (ret)
3665 		goto failed_init;
3666 
3667 	for (i = 0; i < irq_cnt; i++) {
3668 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3669 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3670 		if (irq < 0)
3671 			irq = platform_get_irq(pdev, i);
3672 		if (irq < 0) {
3673 			ret = irq;
3674 			goto failed_irq;
3675 		}
3676 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3677 				       0, pdev->name, ndev);
3678 		if (ret)
3679 			goto failed_irq;
3680 
3681 		fep->irq[i] = irq;
3682 	}
3683 
3684 	ret = fec_enet_mii_init(pdev);
3685 	if (ret)
3686 		goto failed_mii_init;
3687 
3688 	/* Carrier starts down, phylib will bring it up */
3689 	netif_carrier_off(ndev);
3690 	fec_enet_clk_enable(ndev, false);
3691 	pinctrl_pm_select_sleep_state(&pdev->dev);
3692 
3693 	ret = register_netdev(ndev);
3694 	if (ret)
3695 		goto failed_register;
3696 
3697 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3698 			   FEC_WOL_HAS_MAGIC_PACKET);
3699 
3700 	if (fep->bufdesc_ex && fep->ptp_clock)
3701 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3702 
3703 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3704 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3705 
3706 	pm_runtime_mark_last_busy(&pdev->dev);
3707 	pm_runtime_put_autosuspend(&pdev->dev);
3708 
3709 	return 0;
3710 
3711 failed_register:
3712 	fec_enet_mii_remove(fep);
3713 failed_mii_init:
3714 failed_irq:
3715 failed_init:
3716 	fec_ptp_stop(pdev);
3717 	if (fep->reg_phy)
3718 		regulator_disable(fep->reg_phy);
3719 failed_reset:
3720 	pm_runtime_put_noidle(&pdev->dev);
3721 	pm_runtime_disable(&pdev->dev);
3722 failed_regulator:
3723 	clk_disable_unprepare(fep->clk_ahb);
3724 failed_clk_ahb:
3725 	clk_disable_unprepare(fep->clk_ipg);
3726 failed_clk_ipg:
3727 	fec_enet_clk_enable(ndev, false);
3728 failed_clk:
3729 	if (of_phy_is_fixed_link(np))
3730 		of_phy_deregister_fixed_link(np);
3731 	of_node_put(phy_node);
3732 failed_stop_mode:
3733 failed_phy:
3734 	dev_id--;
3735 failed_ioremap:
3736 	free_netdev(ndev);
3737 
3738 	return ret;
3739 }
3740 
3741 static int
3742 fec_drv_remove(struct platform_device *pdev)
3743 {
3744 	struct net_device *ndev = platform_get_drvdata(pdev);
3745 	struct fec_enet_private *fep = netdev_priv(ndev);
3746 	struct device_node *np = pdev->dev.of_node;
3747 	int ret;
3748 
3749 	ret = pm_runtime_get_sync(&pdev->dev);
3750 	if (ret < 0)
3751 		return ret;
3752 
3753 	cancel_work_sync(&fep->tx_timeout_work);
3754 	fec_ptp_stop(pdev);
3755 	unregister_netdev(ndev);
3756 	fec_enet_mii_remove(fep);
3757 	if (fep->reg_phy)
3758 		regulator_disable(fep->reg_phy);
3759 
3760 	if (of_phy_is_fixed_link(np))
3761 		of_phy_deregister_fixed_link(np);
3762 	of_node_put(fep->phy_node);
3763 	free_netdev(ndev);
3764 
3765 	clk_disable_unprepare(fep->clk_ahb);
3766 	clk_disable_unprepare(fep->clk_ipg);
3767 	pm_runtime_put_noidle(&pdev->dev);
3768 	pm_runtime_disable(&pdev->dev);
3769 
3770 	return 0;
3771 }
3772 
3773 static int __maybe_unused fec_suspend(struct device *dev)
3774 {
3775 	struct net_device *ndev = dev_get_drvdata(dev);
3776 	struct fec_enet_private *fep = netdev_priv(ndev);
3777 
3778 	rtnl_lock();
3779 	if (netif_running(ndev)) {
3780 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3781 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3782 		phy_stop(ndev->phydev);
3783 		napi_disable(&fep->napi);
3784 		netif_tx_lock_bh(ndev);
3785 		netif_device_detach(ndev);
3786 		netif_tx_unlock_bh(ndev);
3787 		fec_stop(ndev);
3788 		fec_enet_clk_enable(ndev, false);
3789 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3790 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3791 	}
3792 	rtnl_unlock();
3793 
3794 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3795 		regulator_disable(fep->reg_phy);
3796 
3797 	/* SOC supply clock to phy, when clock is disabled, phy link down
3798 	 * SOC control phy regulator, when regulator is disabled, phy link down
3799 	 */
3800 	if (fep->clk_enet_out || fep->reg_phy)
3801 		fep->link = 0;
3802 
3803 	return 0;
3804 }
3805 
3806 static int __maybe_unused fec_resume(struct device *dev)
3807 {
3808 	struct net_device *ndev = dev_get_drvdata(dev);
3809 	struct fec_enet_private *fep = netdev_priv(ndev);
3810 	int ret;
3811 	int val;
3812 
3813 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3814 		ret = regulator_enable(fep->reg_phy);
3815 		if (ret)
3816 			return ret;
3817 	}
3818 
3819 	rtnl_lock();
3820 	if (netif_running(ndev)) {
3821 		ret = fec_enet_clk_enable(ndev, true);
3822 		if (ret) {
3823 			rtnl_unlock();
3824 			goto failed_clk;
3825 		}
3826 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3827 			fec_enet_stop_mode(fep, false);
3828 
3829 			val = readl(fep->hwp + FEC_ECNTRL);
3830 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3831 			writel(val, fep->hwp + FEC_ECNTRL);
3832 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3833 		} else {
3834 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3835 		}
3836 		fec_restart(ndev);
3837 		netif_tx_lock_bh(ndev);
3838 		netif_device_attach(ndev);
3839 		netif_tx_unlock_bh(ndev);
3840 		napi_enable(&fep->napi);
3841 		phy_start(ndev->phydev);
3842 	}
3843 	rtnl_unlock();
3844 
3845 	return 0;
3846 
3847 failed_clk:
3848 	if (fep->reg_phy)
3849 		regulator_disable(fep->reg_phy);
3850 	return ret;
3851 }
3852 
3853 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3854 {
3855 	struct net_device *ndev = dev_get_drvdata(dev);
3856 	struct fec_enet_private *fep = netdev_priv(ndev);
3857 
3858 	clk_disable_unprepare(fep->clk_ahb);
3859 	clk_disable_unprepare(fep->clk_ipg);
3860 
3861 	return 0;
3862 }
3863 
3864 static int __maybe_unused fec_runtime_resume(struct device *dev)
3865 {
3866 	struct net_device *ndev = dev_get_drvdata(dev);
3867 	struct fec_enet_private *fep = netdev_priv(ndev);
3868 	int ret;
3869 
3870 	ret = clk_prepare_enable(fep->clk_ahb);
3871 	if (ret)
3872 		return ret;
3873 	ret = clk_prepare_enable(fep->clk_ipg);
3874 	if (ret)
3875 		goto failed_clk_ipg;
3876 
3877 	return 0;
3878 
3879 failed_clk_ipg:
3880 	clk_disable_unprepare(fep->clk_ahb);
3881 	return ret;
3882 }
3883 
3884 static const struct dev_pm_ops fec_pm_ops = {
3885 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3886 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3887 };
3888 
3889 static struct platform_driver fec_driver = {
3890 	.driver	= {
3891 		.name	= DRIVER_NAME,
3892 		.pm	= &fec_pm_ops,
3893 		.of_match_table = fec_dt_ids,
3894 		.suppress_bind_attrs = true,
3895 	},
3896 	.id_table = fec_devtype,
3897 	.probe	= fec_probe,
3898 	.remove	= fec_drv_remove,
3899 };
3900 
3901 module_platform_driver(fec_driver);
3902 
3903 MODULE_ALIAS("platform:"DRIVER_NAME);
3904 MODULE_LICENSE("GPL");
3905