1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 70 #include <asm/cacheflush.h> 71 72 #include "fec.h" 73 74 static void set_multicast_list(struct net_device *ndev); 75 static void fec_enet_itr_coal_init(struct net_device *ndev); 76 77 #define DRIVER_NAME "fec" 78 79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 80 81 /* Pause frame feild and FIFO threshold */ 82 #define FEC_ENET_FCE (1 << 5) 83 #define FEC_ENET_RSEM_V 0x84 84 #define FEC_ENET_RSFL_V 16 85 #define FEC_ENET_RAEM_V 0x8 86 #define FEC_ENET_RAFL_V 0x8 87 #define FEC_ENET_OPD_V 0xFFF0 88 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 89 90 struct fec_devinfo { 91 u32 quirks; 92 }; 93 94 static const struct fec_devinfo fec_imx25_info = { 95 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 96 FEC_QUIRK_HAS_FRREG, 97 }; 98 99 static const struct fec_devinfo fec_imx27_info = { 100 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 101 }; 102 103 static const struct fec_devinfo fec_imx28_info = { 104 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 105 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 107 FEC_QUIRK_NO_HARD_RESET, 108 }; 109 110 static const struct fec_devinfo fec_imx6q_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 114 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII, 115 }; 116 117 static const struct fec_devinfo fec_mvf600_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 119 }; 120 121 static const struct fec_devinfo fec_imx6x_info = { 122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 125 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 126 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 127 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 128 }; 129 130 static const struct fec_devinfo fec_imx6ul_info = { 131 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 132 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 133 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 134 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 135 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 136 }; 137 138 static const struct fec_devinfo fec_imx8mq_info = { 139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 142 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 143 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 144 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 145 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 146 }; 147 148 static const struct fec_devinfo fec_imx8qm_info = { 149 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 150 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 151 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 152 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 153 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 154 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 155 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 156 }; 157 158 static struct platform_device_id fec_devtype[] = { 159 { 160 /* keep it for coldfire */ 161 .name = DRIVER_NAME, 162 .driver_data = 0, 163 }, { 164 .name = "imx25-fec", 165 .driver_data = (kernel_ulong_t)&fec_imx25_info, 166 }, { 167 .name = "imx27-fec", 168 .driver_data = (kernel_ulong_t)&fec_imx27_info, 169 }, { 170 .name = "imx28-fec", 171 .driver_data = (kernel_ulong_t)&fec_imx28_info, 172 }, { 173 .name = "imx6q-fec", 174 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 175 }, { 176 .name = "mvf600-fec", 177 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 178 }, { 179 .name = "imx6sx-fec", 180 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 181 }, { 182 .name = "imx6ul-fec", 183 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 184 }, { 185 .name = "imx8mq-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 187 }, { 188 .name = "imx8qm-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 190 }, { 191 /* sentinel */ 192 } 193 }; 194 MODULE_DEVICE_TABLE(platform, fec_devtype); 195 196 enum imx_fec_type { 197 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 198 IMX27_FEC, /* runs on i.mx27/35/51 */ 199 IMX28_FEC, 200 IMX6Q_FEC, 201 MVF600_FEC, 202 IMX6SX_FEC, 203 IMX6UL_FEC, 204 IMX8MQ_FEC, 205 IMX8QM_FEC, 206 }; 207 208 static const struct of_device_id fec_dt_ids[] = { 209 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 210 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 211 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 212 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 213 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 214 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 215 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 216 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 217 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 218 { /* sentinel */ } 219 }; 220 MODULE_DEVICE_TABLE(of, fec_dt_ids); 221 222 static unsigned char macaddr[ETH_ALEN]; 223 module_param_array(macaddr, byte, NULL, 0); 224 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 225 226 #if defined(CONFIG_M5272) 227 /* 228 * Some hardware gets it MAC address out of local flash memory. 229 * if this is non-zero then assume it is the address to get MAC from. 230 */ 231 #if defined(CONFIG_NETtel) 232 #define FEC_FLASHMAC 0xf0006006 233 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 234 #define FEC_FLASHMAC 0xf0006000 235 #elif defined(CONFIG_CANCam) 236 #define FEC_FLASHMAC 0xf0020000 237 #elif defined (CONFIG_M5272C3) 238 #define FEC_FLASHMAC (0xffe04000 + 4) 239 #elif defined(CONFIG_MOD5272) 240 #define FEC_FLASHMAC 0xffc0406b 241 #else 242 #define FEC_FLASHMAC 0 243 #endif 244 #endif /* CONFIG_M5272 */ 245 246 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 247 * 248 * 2048 byte skbufs are allocated. However, alignment requirements 249 * varies between FEC variants. Worst case is 64, so round down by 64. 250 */ 251 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 252 #define PKT_MINBUF_SIZE 64 253 254 /* FEC receive acceleration */ 255 #define FEC_RACC_IPDIS (1 << 1) 256 #define FEC_RACC_PRODIS (1 << 2) 257 #define FEC_RACC_SHIFT16 BIT(7) 258 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 259 260 /* MIB Control Register */ 261 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 262 263 /* 264 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 265 * size bits. Other FEC hardware does not, so we need to take that into 266 * account when setting it. 267 */ 268 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 269 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 270 defined(CONFIG_ARM64) 271 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 272 #else 273 #define OPT_FRAME_SIZE 0 274 #endif 275 276 /* FEC MII MMFR bits definition */ 277 #define FEC_MMFR_ST (1 << 30) 278 #define FEC_MMFR_ST_C45 (0) 279 #define FEC_MMFR_OP_READ (2 << 28) 280 #define FEC_MMFR_OP_READ_C45 (3 << 28) 281 #define FEC_MMFR_OP_WRITE (1 << 28) 282 #define FEC_MMFR_OP_ADDR_WRITE (0) 283 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 284 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 285 #define FEC_MMFR_TA (2 << 16) 286 #define FEC_MMFR_DATA(v) (v & 0xffff) 287 /* FEC ECR bits definition */ 288 #define FEC_ECR_RESET BIT(0) 289 #define FEC_ECR_ETHEREN BIT(1) 290 #define FEC_ECR_MAGICEN BIT(2) 291 #define FEC_ECR_SLEEP BIT(3) 292 #define FEC_ECR_EN1588 BIT(4) 293 294 #define FEC_MII_TIMEOUT 30000 /* us */ 295 296 /* Transmitter timeout */ 297 #define TX_TIMEOUT (2 * HZ) 298 299 #define FEC_PAUSE_FLAG_AUTONEG 0x1 300 #define FEC_PAUSE_FLAG_ENABLE 0x2 301 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 302 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 303 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 304 305 #define COPYBREAK_DEFAULT 256 306 307 /* Max number of allowed TCP segments for software TSO */ 308 #define FEC_MAX_TSO_SEGS 100 309 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 310 311 #define IS_TSO_HEADER(txq, addr) \ 312 ((addr >= txq->tso_hdrs_dma) && \ 313 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 314 315 static int mii_cnt; 316 317 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 318 struct bufdesc_prop *bd) 319 { 320 return (bdp >= bd->last) ? bd->base 321 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 322 } 323 324 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 325 struct bufdesc_prop *bd) 326 { 327 return (bdp <= bd->base) ? bd->last 328 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 329 } 330 331 static int fec_enet_get_bd_index(struct bufdesc *bdp, 332 struct bufdesc_prop *bd) 333 { 334 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 335 } 336 337 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 338 { 339 int entries; 340 341 entries = (((const char *)txq->dirty_tx - 342 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 343 344 return entries >= 0 ? entries : entries + txq->bd.ring_size; 345 } 346 347 static void swap_buffer(void *bufaddr, int len) 348 { 349 int i; 350 unsigned int *buf = bufaddr; 351 352 for (i = 0; i < len; i += 4, buf++) 353 swab32s(buf); 354 } 355 356 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 357 { 358 int i; 359 unsigned int *src = src_buf; 360 unsigned int *dst = dst_buf; 361 362 for (i = 0; i < len; i += 4, src++, dst++) 363 *dst = swab32p(src); 364 } 365 366 static void fec_dump(struct net_device *ndev) 367 { 368 struct fec_enet_private *fep = netdev_priv(ndev); 369 struct bufdesc *bdp; 370 struct fec_enet_priv_tx_q *txq; 371 int index = 0; 372 373 netdev_info(ndev, "TX ring dump\n"); 374 pr_info("Nr SC addr len SKB\n"); 375 376 txq = fep->tx_queue[0]; 377 bdp = txq->bd.base; 378 379 do { 380 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 381 index, 382 bdp == txq->bd.cur ? 'S' : ' ', 383 bdp == txq->dirty_tx ? 'H' : ' ', 384 fec16_to_cpu(bdp->cbd_sc), 385 fec32_to_cpu(bdp->cbd_bufaddr), 386 fec16_to_cpu(bdp->cbd_datlen), 387 txq->tx_skbuff[index]); 388 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 389 index++; 390 } while (bdp != txq->bd.base); 391 } 392 393 static inline bool is_ipv4_pkt(struct sk_buff *skb) 394 { 395 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 396 } 397 398 static int 399 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 400 { 401 /* Only run for packets requiring a checksum. */ 402 if (skb->ip_summed != CHECKSUM_PARTIAL) 403 return 0; 404 405 if (unlikely(skb_cow_head(skb, 0))) 406 return -1; 407 408 if (is_ipv4_pkt(skb)) 409 ip_hdr(skb)->check = 0; 410 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 411 412 return 0; 413 } 414 415 static struct bufdesc * 416 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 417 struct sk_buff *skb, 418 struct net_device *ndev) 419 { 420 struct fec_enet_private *fep = netdev_priv(ndev); 421 struct bufdesc *bdp = txq->bd.cur; 422 struct bufdesc_ex *ebdp; 423 int nr_frags = skb_shinfo(skb)->nr_frags; 424 int frag, frag_len; 425 unsigned short status; 426 unsigned int estatus = 0; 427 skb_frag_t *this_frag; 428 unsigned int index; 429 void *bufaddr; 430 dma_addr_t addr; 431 int i; 432 433 for (frag = 0; frag < nr_frags; frag++) { 434 this_frag = &skb_shinfo(skb)->frags[frag]; 435 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 436 ebdp = (struct bufdesc_ex *)bdp; 437 438 status = fec16_to_cpu(bdp->cbd_sc); 439 status &= ~BD_ENET_TX_STATS; 440 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 441 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 442 443 /* Handle the last BD specially */ 444 if (frag == nr_frags - 1) { 445 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 446 if (fep->bufdesc_ex) { 447 estatus |= BD_ENET_TX_INT; 448 if (unlikely(skb_shinfo(skb)->tx_flags & 449 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 450 estatus |= BD_ENET_TX_TS; 451 } 452 } 453 454 if (fep->bufdesc_ex) { 455 if (fep->quirks & FEC_QUIRK_HAS_AVB) 456 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 457 if (skb->ip_summed == CHECKSUM_PARTIAL) 458 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 459 460 ebdp->cbd_bdu = 0; 461 ebdp->cbd_esc = cpu_to_fec32(estatus); 462 } 463 464 bufaddr = skb_frag_address(this_frag); 465 466 index = fec_enet_get_bd_index(bdp, &txq->bd); 467 if (((unsigned long) bufaddr) & fep->tx_align || 468 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 469 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 470 bufaddr = txq->tx_bounce[index]; 471 472 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 473 swap_buffer(bufaddr, frag_len); 474 } 475 476 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 477 DMA_TO_DEVICE); 478 if (dma_mapping_error(&fep->pdev->dev, addr)) { 479 if (net_ratelimit()) 480 netdev_err(ndev, "Tx DMA memory map failed\n"); 481 goto dma_mapping_error; 482 } 483 484 bdp->cbd_bufaddr = cpu_to_fec32(addr); 485 bdp->cbd_datlen = cpu_to_fec16(frag_len); 486 /* Make sure the updates to rest of the descriptor are 487 * performed before transferring ownership. 488 */ 489 wmb(); 490 bdp->cbd_sc = cpu_to_fec16(status); 491 } 492 493 return bdp; 494 dma_mapping_error: 495 bdp = txq->bd.cur; 496 for (i = 0; i < frag; i++) { 497 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 498 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 499 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 500 } 501 return ERR_PTR(-ENOMEM); 502 } 503 504 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 505 struct sk_buff *skb, struct net_device *ndev) 506 { 507 struct fec_enet_private *fep = netdev_priv(ndev); 508 int nr_frags = skb_shinfo(skb)->nr_frags; 509 struct bufdesc *bdp, *last_bdp; 510 void *bufaddr; 511 dma_addr_t addr; 512 unsigned short status; 513 unsigned short buflen; 514 unsigned int estatus = 0; 515 unsigned int index; 516 int entries_free; 517 518 entries_free = fec_enet_get_free_txdesc_num(txq); 519 if (entries_free < MAX_SKB_FRAGS + 1) { 520 dev_kfree_skb_any(skb); 521 if (net_ratelimit()) 522 netdev_err(ndev, "NOT enough BD for SG!\n"); 523 return NETDEV_TX_OK; 524 } 525 526 /* Protocol checksum off-load for TCP and UDP. */ 527 if (fec_enet_clear_csum(skb, ndev)) { 528 dev_kfree_skb_any(skb); 529 return NETDEV_TX_OK; 530 } 531 532 /* Fill in a Tx ring entry */ 533 bdp = txq->bd.cur; 534 last_bdp = bdp; 535 status = fec16_to_cpu(bdp->cbd_sc); 536 status &= ~BD_ENET_TX_STATS; 537 538 /* Set buffer length and buffer pointer */ 539 bufaddr = skb->data; 540 buflen = skb_headlen(skb); 541 542 index = fec_enet_get_bd_index(bdp, &txq->bd); 543 if (((unsigned long) bufaddr) & fep->tx_align || 544 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 545 memcpy(txq->tx_bounce[index], skb->data, buflen); 546 bufaddr = txq->tx_bounce[index]; 547 548 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 549 swap_buffer(bufaddr, buflen); 550 } 551 552 /* Push the data cache so the CPM does not get stale memory data. */ 553 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 554 if (dma_mapping_error(&fep->pdev->dev, addr)) { 555 dev_kfree_skb_any(skb); 556 if (net_ratelimit()) 557 netdev_err(ndev, "Tx DMA memory map failed\n"); 558 return NETDEV_TX_OK; 559 } 560 561 if (nr_frags) { 562 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 563 if (IS_ERR(last_bdp)) { 564 dma_unmap_single(&fep->pdev->dev, addr, 565 buflen, DMA_TO_DEVICE); 566 dev_kfree_skb_any(skb); 567 return NETDEV_TX_OK; 568 } 569 } else { 570 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 571 if (fep->bufdesc_ex) { 572 estatus = BD_ENET_TX_INT; 573 if (unlikely(skb_shinfo(skb)->tx_flags & 574 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 575 estatus |= BD_ENET_TX_TS; 576 } 577 } 578 bdp->cbd_bufaddr = cpu_to_fec32(addr); 579 bdp->cbd_datlen = cpu_to_fec16(buflen); 580 581 if (fep->bufdesc_ex) { 582 583 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 584 585 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 586 fep->hwts_tx_en)) 587 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 588 589 if (fep->quirks & FEC_QUIRK_HAS_AVB) 590 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 591 592 if (skb->ip_summed == CHECKSUM_PARTIAL) 593 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 594 595 ebdp->cbd_bdu = 0; 596 ebdp->cbd_esc = cpu_to_fec32(estatus); 597 } 598 599 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 600 /* Save skb pointer */ 601 txq->tx_skbuff[index] = skb; 602 603 /* Make sure the updates to rest of the descriptor are performed before 604 * transferring ownership. 605 */ 606 wmb(); 607 608 /* Send it on its way. Tell FEC it's ready, interrupt when done, 609 * it's the last BD of the frame, and to put the CRC on the end. 610 */ 611 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 612 bdp->cbd_sc = cpu_to_fec16(status); 613 614 /* If this was the last BD in the ring, start at the beginning again. */ 615 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 616 617 skb_tx_timestamp(skb); 618 619 /* Make sure the update to bdp and tx_skbuff are performed before 620 * txq->bd.cur. 621 */ 622 wmb(); 623 txq->bd.cur = bdp; 624 625 /* Trigger transmission start */ 626 writel(0, txq->bd.reg_desc_active); 627 628 return 0; 629 } 630 631 static int 632 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 633 struct net_device *ndev, 634 struct bufdesc *bdp, int index, char *data, 635 int size, bool last_tcp, bool is_last) 636 { 637 struct fec_enet_private *fep = netdev_priv(ndev); 638 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 639 unsigned short status; 640 unsigned int estatus = 0; 641 dma_addr_t addr; 642 643 status = fec16_to_cpu(bdp->cbd_sc); 644 status &= ~BD_ENET_TX_STATS; 645 646 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 647 648 if (((unsigned long) data) & fep->tx_align || 649 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 650 memcpy(txq->tx_bounce[index], data, size); 651 data = txq->tx_bounce[index]; 652 653 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 654 swap_buffer(data, size); 655 } 656 657 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 658 if (dma_mapping_error(&fep->pdev->dev, addr)) { 659 dev_kfree_skb_any(skb); 660 if (net_ratelimit()) 661 netdev_err(ndev, "Tx DMA memory map failed\n"); 662 return NETDEV_TX_BUSY; 663 } 664 665 bdp->cbd_datlen = cpu_to_fec16(size); 666 bdp->cbd_bufaddr = cpu_to_fec32(addr); 667 668 if (fep->bufdesc_ex) { 669 if (fep->quirks & FEC_QUIRK_HAS_AVB) 670 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 671 if (skb->ip_summed == CHECKSUM_PARTIAL) 672 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 673 ebdp->cbd_bdu = 0; 674 ebdp->cbd_esc = cpu_to_fec32(estatus); 675 } 676 677 /* Handle the last BD specially */ 678 if (last_tcp) 679 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 680 if (is_last) { 681 status |= BD_ENET_TX_INTR; 682 if (fep->bufdesc_ex) 683 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 684 } 685 686 bdp->cbd_sc = cpu_to_fec16(status); 687 688 return 0; 689 } 690 691 static int 692 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 693 struct sk_buff *skb, struct net_device *ndev, 694 struct bufdesc *bdp, int index) 695 { 696 struct fec_enet_private *fep = netdev_priv(ndev); 697 int hdr_len = skb_tcp_all_headers(skb); 698 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 699 void *bufaddr; 700 unsigned long dmabuf; 701 unsigned short status; 702 unsigned int estatus = 0; 703 704 status = fec16_to_cpu(bdp->cbd_sc); 705 status &= ~BD_ENET_TX_STATS; 706 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 707 708 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 709 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 710 if (((unsigned long)bufaddr) & fep->tx_align || 711 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 712 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 713 bufaddr = txq->tx_bounce[index]; 714 715 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 716 swap_buffer(bufaddr, hdr_len); 717 718 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 719 hdr_len, DMA_TO_DEVICE); 720 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 721 dev_kfree_skb_any(skb); 722 if (net_ratelimit()) 723 netdev_err(ndev, "Tx DMA memory map failed\n"); 724 return NETDEV_TX_BUSY; 725 } 726 } 727 728 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 729 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 730 731 if (fep->bufdesc_ex) { 732 if (fep->quirks & FEC_QUIRK_HAS_AVB) 733 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 734 if (skb->ip_summed == CHECKSUM_PARTIAL) 735 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 736 ebdp->cbd_bdu = 0; 737 ebdp->cbd_esc = cpu_to_fec32(estatus); 738 } 739 740 bdp->cbd_sc = cpu_to_fec16(status); 741 742 return 0; 743 } 744 745 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 746 struct sk_buff *skb, 747 struct net_device *ndev) 748 { 749 struct fec_enet_private *fep = netdev_priv(ndev); 750 int hdr_len, total_len, data_left; 751 struct bufdesc *bdp = txq->bd.cur; 752 struct tso_t tso; 753 unsigned int index = 0; 754 int ret; 755 756 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 757 dev_kfree_skb_any(skb); 758 if (net_ratelimit()) 759 netdev_err(ndev, "NOT enough BD for TSO!\n"); 760 return NETDEV_TX_OK; 761 } 762 763 /* Protocol checksum off-load for TCP and UDP. */ 764 if (fec_enet_clear_csum(skb, ndev)) { 765 dev_kfree_skb_any(skb); 766 return NETDEV_TX_OK; 767 } 768 769 /* Initialize the TSO handler, and prepare the first payload */ 770 hdr_len = tso_start(skb, &tso); 771 772 total_len = skb->len - hdr_len; 773 while (total_len > 0) { 774 char *hdr; 775 776 index = fec_enet_get_bd_index(bdp, &txq->bd); 777 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 778 total_len -= data_left; 779 780 /* prepare packet headers: MAC + IP + TCP */ 781 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 782 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 783 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 784 if (ret) 785 goto err_release; 786 787 while (data_left > 0) { 788 int size; 789 790 size = min_t(int, tso.size, data_left); 791 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 792 index = fec_enet_get_bd_index(bdp, &txq->bd); 793 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 794 bdp, index, 795 tso.data, size, 796 size == data_left, 797 total_len == 0); 798 if (ret) 799 goto err_release; 800 801 data_left -= size; 802 tso_build_data(skb, &tso, size); 803 } 804 805 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 806 } 807 808 /* Save skb pointer */ 809 txq->tx_skbuff[index] = skb; 810 811 skb_tx_timestamp(skb); 812 txq->bd.cur = bdp; 813 814 /* Trigger transmission start */ 815 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 816 !readl(txq->bd.reg_desc_active) || 817 !readl(txq->bd.reg_desc_active) || 818 !readl(txq->bd.reg_desc_active) || 819 !readl(txq->bd.reg_desc_active)) 820 writel(0, txq->bd.reg_desc_active); 821 822 return 0; 823 824 err_release: 825 /* TODO: Release all used data descriptors for TSO */ 826 return ret; 827 } 828 829 static netdev_tx_t 830 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 831 { 832 struct fec_enet_private *fep = netdev_priv(ndev); 833 int entries_free; 834 unsigned short queue; 835 struct fec_enet_priv_tx_q *txq; 836 struct netdev_queue *nq; 837 int ret; 838 839 queue = skb_get_queue_mapping(skb); 840 txq = fep->tx_queue[queue]; 841 nq = netdev_get_tx_queue(ndev, queue); 842 843 if (skb_is_gso(skb)) 844 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 845 else 846 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 847 if (ret) 848 return ret; 849 850 entries_free = fec_enet_get_free_txdesc_num(txq); 851 if (entries_free <= txq->tx_stop_threshold) 852 netif_tx_stop_queue(nq); 853 854 return NETDEV_TX_OK; 855 } 856 857 /* Init RX & TX buffer descriptors 858 */ 859 static void fec_enet_bd_init(struct net_device *dev) 860 { 861 struct fec_enet_private *fep = netdev_priv(dev); 862 struct fec_enet_priv_tx_q *txq; 863 struct fec_enet_priv_rx_q *rxq; 864 struct bufdesc *bdp; 865 unsigned int i; 866 unsigned int q; 867 868 for (q = 0; q < fep->num_rx_queues; q++) { 869 /* Initialize the receive buffer descriptors. */ 870 rxq = fep->rx_queue[q]; 871 bdp = rxq->bd.base; 872 873 for (i = 0; i < rxq->bd.ring_size; i++) { 874 875 /* Initialize the BD for every fragment in the page. */ 876 if (bdp->cbd_bufaddr) 877 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 878 else 879 bdp->cbd_sc = cpu_to_fec16(0); 880 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 881 } 882 883 /* Set the last buffer to wrap */ 884 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 885 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 886 887 rxq->bd.cur = rxq->bd.base; 888 } 889 890 for (q = 0; q < fep->num_tx_queues; q++) { 891 /* ...and the same for transmit */ 892 txq = fep->tx_queue[q]; 893 bdp = txq->bd.base; 894 txq->bd.cur = bdp; 895 896 for (i = 0; i < txq->bd.ring_size; i++) { 897 /* Initialize the BD for every fragment in the page. */ 898 bdp->cbd_sc = cpu_to_fec16(0); 899 if (bdp->cbd_bufaddr && 900 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 901 dma_unmap_single(&fep->pdev->dev, 902 fec32_to_cpu(bdp->cbd_bufaddr), 903 fec16_to_cpu(bdp->cbd_datlen), 904 DMA_TO_DEVICE); 905 if (txq->tx_skbuff[i]) { 906 dev_kfree_skb_any(txq->tx_skbuff[i]); 907 txq->tx_skbuff[i] = NULL; 908 } 909 bdp->cbd_bufaddr = cpu_to_fec32(0); 910 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 911 } 912 913 /* Set the last buffer to wrap */ 914 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 915 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 916 txq->dirty_tx = bdp; 917 } 918 } 919 920 static void fec_enet_active_rxring(struct net_device *ndev) 921 { 922 struct fec_enet_private *fep = netdev_priv(ndev); 923 int i; 924 925 for (i = 0; i < fep->num_rx_queues; i++) 926 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 927 } 928 929 static void fec_enet_enable_ring(struct net_device *ndev) 930 { 931 struct fec_enet_private *fep = netdev_priv(ndev); 932 struct fec_enet_priv_tx_q *txq; 933 struct fec_enet_priv_rx_q *rxq; 934 int i; 935 936 for (i = 0; i < fep->num_rx_queues; i++) { 937 rxq = fep->rx_queue[i]; 938 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 939 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 940 941 /* enable DMA1/2 */ 942 if (i) 943 writel(RCMR_MATCHEN | RCMR_CMP(i), 944 fep->hwp + FEC_RCMR(i)); 945 } 946 947 for (i = 0; i < fep->num_tx_queues; i++) { 948 txq = fep->tx_queue[i]; 949 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 950 951 /* enable DMA1/2 */ 952 if (i) 953 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 954 fep->hwp + FEC_DMA_CFG(i)); 955 } 956 } 957 958 static void fec_enet_reset_skb(struct net_device *ndev) 959 { 960 struct fec_enet_private *fep = netdev_priv(ndev); 961 struct fec_enet_priv_tx_q *txq; 962 int i, j; 963 964 for (i = 0; i < fep->num_tx_queues; i++) { 965 txq = fep->tx_queue[i]; 966 967 for (j = 0; j < txq->bd.ring_size; j++) { 968 if (txq->tx_skbuff[j]) { 969 dev_kfree_skb_any(txq->tx_skbuff[j]); 970 txq->tx_skbuff[j] = NULL; 971 } 972 } 973 } 974 } 975 976 /* 977 * This function is called to start or restart the FEC during a link 978 * change, transmit timeout, or to reconfigure the FEC. The network 979 * packet processing for this device must be stopped before this call. 980 */ 981 static void 982 fec_restart(struct net_device *ndev) 983 { 984 struct fec_enet_private *fep = netdev_priv(ndev); 985 u32 temp_mac[2]; 986 u32 rcntl = OPT_FRAME_SIZE | 0x04; 987 u32 ecntl = 0x2; /* ETHEREN */ 988 struct ptp_clock_request ptp_rq = { .type = PTP_CLK_REQ_PPS }; 989 990 fec_ptp_save_state(fep); 991 992 /* Whack a reset. We should wait for this. 993 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 994 * instead of reset MAC itself. 995 */ 996 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 997 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 998 writel(0, fep->hwp + FEC_ECNTRL); 999 } else { 1000 writel(1, fep->hwp + FEC_ECNTRL); 1001 udelay(10); 1002 } 1003 1004 /* 1005 * enet-mac reset will reset mac address registers too, 1006 * so need to reconfigure it. 1007 */ 1008 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1009 writel((__force u32)cpu_to_be32(temp_mac[0]), 1010 fep->hwp + FEC_ADDR_LOW); 1011 writel((__force u32)cpu_to_be32(temp_mac[1]), 1012 fep->hwp + FEC_ADDR_HIGH); 1013 1014 /* Clear any outstanding interrupt, except MDIO. */ 1015 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1016 1017 fec_enet_bd_init(ndev); 1018 1019 fec_enet_enable_ring(ndev); 1020 1021 /* Reset tx SKB buffers. */ 1022 fec_enet_reset_skb(ndev); 1023 1024 /* Enable MII mode */ 1025 if (fep->full_duplex == DUPLEX_FULL) { 1026 /* FD enable */ 1027 writel(0x04, fep->hwp + FEC_X_CNTRL); 1028 } else { 1029 /* No Rcv on Xmit */ 1030 rcntl |= 0x02; 1031 writel(0x0, fep->hwp + FEC_X_CNTRL); 1032 } 1033 1034 /* Set MII speed */ 1035 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1036 1037 #if !defined(CONFIG_M5272) 1038 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1039 u32 val = readl(fep->hwp + FEC_RACC); 1040 1041 /* align IP header */ 1042 val |= FEC_RACC_SHIFT16; 1043 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1044 /* set RX checksum */ 1045 val |= FEC_RACC_OPTIONS; 1046 else 1047 val &= ~FEC_RACC_OPTIONS; 1048 writel(val, fep->hwp + FEC_RACC); 1049 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1050 } 1051 #endif 1052 1053 /* 1054 * The phy interface and speed need to get configured 1055 * differently on enet-mac. 1056 */ 1057 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1058 /* Enable flow control and length check */ 1059 rcntl |= 0x40000000 | 0x00000020; 1060 1061 /* RGMII, RMII or MII */ 1062 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1063 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1064 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1065 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1066 rcntl |= (1 << 6); 1067 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1068 rcntl |= (1 << 8); 1069 else 1070 rcntl &= ~(1 << 8); 1071 1072 /* 1G, 100M or 10M */ 1073 if (ndev->phydev) { 1074 if (ndev->phydev->speed == SPEED_1000) 1075 ecntl |= (1 << 5); 1076 else if (ndev->phydev->speed == SPEED_100) 1077 rcntl &= ~(1 << 9); 1078 else 1079 rcntl |= (1 << 9); 1080 } 1081 } else { 1082 #ifdef FEC_MIIGSK_ENR 1083 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1084 u32 cfgr; 1085 /* disable the gasket and wait */ 1086 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1087 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1088 udelay(1); 1089 1090 /* 1091 * configure the gasket: 1092 * RMII, 50 MHz, no loopback, no echo 1093 * MII, 25 MHz, no loopback, no echo 1094 */ 1095 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1096 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1097 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1098 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1099 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1100 1101 /* re-enable the gasket */ 1102 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1103 } 1104 #endif 1105 } 1106 1107 #if !defined(CONFIG_M5272) 1108 /* enable pause frame*/ 1109 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1110 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1111 ndev->phydev && ndev->phydev->pause)) { 1112 rcntl |= FEC_ENET_FCE; 1113 1114 /* set FIFO threshold parameter to reduce overrun */ 1115 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1116 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1117 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1118 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1119 1120 /* OPD */ 1121 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1122 } else { 1123 rcntl &= ~FEC_ENET_FCE; 1124 } 1125 #endif /* !defined(CONFIG_M5272) */ 1126 1127 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1128 1129 /* Setup multicast filter. */ 1130 set_multicast_list(ndev); 1131 #ifndef CONFIG_M5272 1132 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1133 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1134 #endif 1135 1136 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1137 /* enable ENET endian swap */ 1138 ecntl |= (1 << 8); 1139 /* enable ENET store and forward mode */ 1140 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1141 } 1142 1143 if (fep->bufdesc_ex) 1144 ecntl |= FEC_ECR_EN1588; 1145 1146 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1147 fep->rgmii_txc_dly) 1148 ecntl |= FEC_ENET_TXC_DLY; 1149 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1150 fep->rgmii_rxc_dly) 1151 ecntl |= FEC_ENET_RXC_DLY; 1152 1153 #ifndef CONFIG_M5272 1154 /* Enable the MIB statistic event counters */ 1155 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1156 #endif 1157 1158 /* And last, enable the transmit and receive processing */ 1159 writel(ecntl, fep->hwp + FEC_ECNTRL); 1160 fec_enet_active_rxring(ndev); 1161 1162 if (fep->bufdesc_ex) 1163 fec_ptp_start_cyclecounter(ndev); 1164 1165 /* Restart PPS if needed */ 1166 if (fep->pps_enable) { 1167 /* Clear flag so fec_ptp_enable_pps() doesn't return immediately */ 1168 fep->pps_enable = 0; 1169 fec_ptp_restore_state(fep); 1170 fep->ptp_caps.enable(&fep->ptp_caps, &ptp_rq, 1); 1171 } 1172 1173 /* Enable interrupts we wish to service */ 1174 if (fep->link) 1175 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1176 else 1177 writel(0, fep->hwp + FEC_IMASK); 1178 1179 /* Init the interrupt coalescing */ 1180 fec_enet_itr_coal_init(ndev); 1181 1182 } 1183 1184 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1185 { 1186 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1187 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1188 1189 if (stop_gpr->gpr) { 1190 if (enabled) 1191 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1192 BIT(stop_gpr->bit), 1193 BIT(stop_gpr->bit)); 1194 else 1195 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1196 BIT(stop_gpr->bit), 0); 1197 } else if (pdata && pdata->sleep_mode_enable) { 1198 pdata->sleep_mode_enable(enabled); 1199 } 1200 } 1201 1202 static void fec_irqs_disable(struct net_device *ndev) 1203 { 1204 struct fec_enet_private *fep = netdev_priv(ndev); 1205 1206 writel(0, fep->hwp + FEC_IMASK); 1207 } 1208 1209 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1210 { 1211 struct fec_enet_private *fep = netdev_priv(ndev); 1212 1213 writel(0, fep->hwp + FEC_IMASK); 1214 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1215 } 1216 1217 static void 1218 fec_stop(struct net_device *ndev) 1219 { 1220 struct fec_enet_private *fep = netdev_priv(ndev); 1221 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1222 u32 val; 1223 struct ptp_clock_request ptp_rq = { .type = PTP_CLK_REQ_PPS }; 1224 u32 ecntl = 0; 1225 1226 /* We cannot expect a graceful transmit stop without link !!! */ 1227 if (fep->link) { 1228 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1229 udelay(10); 1230 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1231 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1232 } 1233 1234 fec_ptp_save_state(fep); 1235 1236 /* Whack a reset. We should wait for this. 1237 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1238 * instead of reset MAC itself. 1239 */ 1240 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1241 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1242 writel(0, fep->hwp + FEC_ECNTRL); 1243 } else { 1244 writel(1, fep->hwp + FEC_ECNTRL); 1245 udelay(10); 1246 } 1247 } else { 1248 val = readl(fep->hwp + FEC_ECNTRL); 1249 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1250 writel(val, fep->hwp + FEC_ECNTRL); 1251 } 1252 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1253 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1254 1255 if (fep->bufdesc_ex) 1256 ecntl |= FEC_ECR_EN1588; 1257 1258 /* We have to keep ENET enabled to have MII interrupt stay working */ 1259 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1260 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1261 ecntl |= FEC_ECR_ETHEREN; 1262 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1263 } 1264 1265 writel(ecntl, fep->hwp + FEC_ECNTRL); 1266 1267 if (fep->bufdesc_ex) 1268 fec_ptp_start_cyclecounter(ndev); 1269 1270 /* Restart PPS if needed */ 1271 if (fep->pps_enable) { 1272 /* Clear flag so fec_ptp_enable_pps() doesn't return immediately */ 1273 fep->pps_enable = 0; 1274 fec_ptp_restore_state(fep); 1275 fep->ptp_caps.enable(&fep->ptp_caps, &ptp_rq, 1); 1276 } 1277 } 1278 1279 1280 static void 1281 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1282 { 1283 struct fec_enet_private *fep = netdev_priv(ndev); 1284 1285 fec_dump(ndev); 1286 1287 ndev->stats.tx_errors++; 1288 1289 schedule_work(&fep->tx_timeout_work); 1290 } 1291 1292 static void fec_enet_timeout_work(struct work_struct *work) 1293 { 1294 struct fec_enet_private *fep = 1295 container_of(work, struct fec_enet_private, tx_timeout_work); 1296 struct net_device *ndev = fep->netdev; 1297 1298 rtnl_lock(); 1299 if (netif_device_present(ndev) || netif_running(ndev)) { 1300 napi_disable(&fep->napi); 1301 netif_tx_lock_bh(ndev); 1302 fec_restart(ndev); 1303 netif_tx_wake_all_queues(ndev); 1304 netif_tx_unlock_bh(ndev); 1305 napi_enable(&fep->napi); 1306 } 1307 rtnl_unlock(); 1308 } 1309 1310 static void 1311 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1312 struct skb_shared_hwtstamps *hwtstamps) 1313 { 1314 unsigned long flags; 1315 u64 ns; 1316 1317 spin_lock_irqsave(&fep->tmreg_lock, flags); 1318 ns = timecounter_cyc2time(&fep->tc, ts); 1319 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1320 1321 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1322 hwtstamps->hwtstamp = ns_to_ktime(ns); 1323 } 1324 1325 static void 1326 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1327 { 1328 struct fec_enet_private *fep; 1329 struct bufdesc *bdp; 1330 unsigned short status; 1331 struct sk_buff *skb; 1332 struct fec_enet_priv_tx_q *txq; 1333 struct netdev_queue *nq; 1334 int index = 0; 1335 int entries_free; 1336 1337 fep = netdev_priv(ndev); 1338 1339 txq = fep->tx_queue[queue_id]; 1340 /* get next bdp of dirty_tx */ 1341 nq = netdev_get_tx_queue(ndev, queue_id); 1342 bdp = txq->dirty_tx; 1343 1344 /* get next bdp of dirty_tx */ 1345 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1346 1347 while (bdp != READ_ONCE(txq->bd.cur)) { 1348 /* Order the load of bd.cur and cbd_sc */ 1349 rmb(); 1350 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1351 if (status & BD_ENET_TX_READY) 1352 break; 1353 1354 index = fec_enet_get_bd_index(bdp, &txq->bd); 1355 1356 skb = txq->tx_skbuff[index]; 1357 txq->tx_skbuff[index] = NULL; 1358 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1359 dma_unmap_single(&fep->pdev->dev, 1360 fec32_to_cpu(bdp->cbd_bufaddr), 1361 fec16_to_cpu(bdp->cbd_datlen), 1362 DMA_TO_DEVICE); 1363 bdp->cbd_bufaddr = cpu_to_fec32(0); 1364 if (!skb) 1365 goto skb_done; 1366 1367 /* Check for errors. */ 1368 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1369 BD_ENET_TX_RL | BD_ENET_TX_UN | 1370 BD_ENET_TX_CSL)) { 1371 ndev->stats.tx_errors++; 1372 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1373 ndev->stats.tx_heartbeat_errors++; 1374 if (status & BD_ENET_TX_LC) /* Late collision */ 1375 ndev->stats.tx_window_errors++; 1376 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1377 ndev->stats.tx_aborted_errors++; 1378 if (status & BD_ENET_TX_UN) /* Underrun */ 1379 ndev->stats.tx_fifo_errors++; 1380 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1381 ndev->stats.tx_carrier_errors++; 1382 } else { 1383 ndev->stats.tx_packets++; 1384 ndev->stats.tx_bytes += skb->len; 1385 } 1386 1387 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1388 * are to time stamp the packet, so we still need to check time 1389 * stamping enabled flag. 1390 */ 1391 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1392 fep->hwts_tx_en) && 1393 fep->bufdesc_ex) { 1394 struct skb_shared_hwtstamps shhwtstamps; 1395 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1396 1397 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1398 skb_tstamp_tx(skb, &shhwtstamps); 1399 } 1400 1401 /* Deferred means some collisions occurred during transmit, 1402 * but we eventually sent the packet OK. 1403 */ 1404 if (status & BD_ENET_TX_DEF) 1405 ndev->stats.collisions++; 1406 1407 /* Free the sk buffer associated with this last transmit */ 1408 dev_kfree_skb_any(skb); 1409 skb_done: 1410 /* Make sure the update to bdp and tx_skbuff are performed 1411 * before dirty_tx 1412 */ 1413 wmb(); 1414 txq->dirty_tx = bdp; 1415 1416 /* Update pointer to next buffer descriptor to be transmitted */ 1417 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1418 1419 /* Since we have freed up a buffer, the ring is no longer full 1420 */ 1421 if (netif_tx_queue_stopped(nq)) { 1422 entries_free = fec_enet_get_free_txdesc_num(txq); 1423 if (entries_free >= txq->tx_wake_threshold) 1424 netif_tx_wake_queue(nq); 1425 } 1426 } 1427 1428 /* ERR006358: Keep the transmitter going */ 1429 if (bdp != txq->bd.cur && 1430 readl(txq->bd.reg_desc_active) == 0) 1431 writel(0, txq->bd.reg_desc_active); 1432 } 1433 1434 static void fec_enet_tx(struct net_device *ndev) 1435 { 1436 struct fec_enet_private *fep = netdev_priv(ndev); 1437 int i; 1438 1439 /* Make sure that AVB queues are processed first. */ 1440 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1441 fec_enet_tx_queue(ndev, i); 1442 } 1443 1444 static int 1445 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1446 { 1447 struct fec_enet_private *fep = netdev_priv(ndev); 1448 int off; 1449 1450 off = ((unsigned long)skb->data) & fep->rx_align; 1451 if (off) 1452 skb_reserve(skb, fep->rx_align + 1 - off); 1453 1454 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1455 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1456 if (net_ratelimit()) 1457 netdev_err(ndev, "Rx DMA memory map failed\n"); 1458 return -ENOMEM; 1459 } 1460 1461 return 0; 1462 } 1463 1464 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1465 struct bufdesc *bdp, u32 length, bool swap) 1466 { 1467 struct fec_enet_private *fep = netdev_priv(ndev); 1468 struct sk_buff *new_skb; 1469 1470 if (length > fep->rx_copybreak) 1471 return false; 1472 1473 new_skb = netdev_alloc_skb(ndev, length); 1474 if (!new_skb) 1475 return false; 1476 1477 dma_sync_single_for_cpu(&fep->pdev->dev, 1478 fec32_to_cpu(bdp->cbd_bufaddr), 1479 FEC_ENET_RX_FRSIZE - fep->rx_align, 1480 DMA_FROM_DEVICE); 1481 if (!swap) 1482 memcpy(new_skb->data, (*skb)->data, length); 1483 else 1484 swap_buffer2(new_skb->data, (*skb)->data, length); 1485 *skb = new_skb; 1486 1487 return true; 1488 } 1489 1490 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1491 * When we update through the ring, if the next incoming buffer has 1492 * not been given to the system, we just set the empty indicator, 1493 * effectively tossing the packet. 1494 */ 1495 static int 1496 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1497 { 1498 struct fec_enet_private *fep = netdev_priv(ndev); 1499 struct fec_enet_priv_rx_q *rxq; 1500 struct bufdesc *bdp; 1501 unsigned short status; 1502 struct sk_buff *skb_new = NULL; 1503 struct sk_buff *skb; 1504 ushort pkt_len; 1505 __u8 *data; 1506 int pkt_received = 0; 1507 struct bufdesc_ex *ebdp = NULL; 1508 bool vlan_packet_rcvd = false; 1509 u16 vlan_tag; 1510 int index = 0; 1511 bool is_copybreak; 1512 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1513 1514 #ifdef CONFIG_M532x 1515 flush_cache_all(); 1516 #endif 1517 rxq = fep->rx_queue[queue_id]; 1518 1519 /* First, grab all of the stats for the incoming packet. 1520 * These get messed up if we get called due to a busy condition. 1521 */ 1522 bdp = rxq->bd.cur; 1523 1524 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1525 1526 if (pkt_received >= budget) 1527 break; 1528 pkt_received++; 1529 1530 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1531 1532 /* Check for errors. */ 1533 status ^= BD_ENET_RX_LAST; 1534 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1535 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1536 BD_ENET_RX_CL)) { 1537 ndev->stats.rx_errors++; 1538 if (status & BD_ENET_RX_OV) { 1539 /* FIFO overrun */ 1540 ndev->stats.rx_fifo_errors++; 1541 goto rx_processing_done; 1542 } 1543 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1544 | BD_ENET_RX_LAST)) { 1545 /* Frame too long or too short. */ 1546 ndev->stats.rx_length_errors++; 1547 if (status & BD_ENET_RX_LAST) 1548 netdev_err(ndev, "rcv is not +last\n"); 1549 } 1550 if (status & BD_ENET_RX_CR) /* CRC Error */ 1551 ndev->stats.rx_crc_errors++; 1552 /* Report late collisions as a frame error. */ 1553 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1554 ndev->stats.rx_frame_errors++; 1555 goto rx_processing_done; 1556 } 1557 1558 /* Process the incoming frame. */ 1559 ndev->stats.rx_packets++; 1560 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1561 ndev->stats.rx_bytes += pkt_len; 1562 1563 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1564 skb = rxq->rx_skbuff[index]; 1565 1566 /* The packet length includes FCS, but we don't want to 1567 * include that when passing upstream as it messes up 1568 * bridging applications. 1569 */ 1570 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1571 need_swap); 1572 if (!is_copybreak) { 1573 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1574 if (unlikely(!skb_new)) { 1575 ndev->stats.rx_dropped++; 1576 goto rx_processing_done; 1577 } 1578 dma_unmap_single(&fep->pdev->dev, 1579 fec32_to_cpu(bdp->cbd_bufaddr), 1580 FEC_ENET_RX_FRSIZE - fep->rx_align, 1581 DMA_FROM_DEVICE); 1582 } 1583 1584 prefetch(skb->data - NET_IP_ALIGN); 1585 skb_put(skb, pkt_len - 4); 1586 data = skb->data; 1587 1588 if (!is_copybreak && need_swap) 1589 swap_buffer(data, pkt_len); 1590 1591 #if !defined(CONFIG_M5272) 1592 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1593 data = skb_pull_inline(skb, 2); 1594 #endif 1595 1596 /* Extract the enhanced buffer descriptor */ 1597 ebdp = NULL; 1598 if (fep->bufdesc_ex) 1599 ebdp = (struct bufdesc_ex *)bdp; 1600 1601 /* If this is a VLAN packet remove the VLAN Tag */ 1602 vlan_packet_rcvd = false; 1603 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1604 fep->bufdesc_ex && 1605 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1606 /* Push and remove the vlan tag */ 1607 struct vlan_hdr *vlan_header = 1608 (struct vlan_hdr *) (data + ETH_HLEN); 1609 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1610 1611 vlan_packet_rcvd = true; 1612 1613 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1614 skb_pull(skb, VLAN_HLEN); 1615 } 1616 1617 skb->protocol = eth_type_trans(skb, ndev); 1618 1619 /* Get receive timestamp from the skb */ 1620 if (fep->hwts_rx_en && fep->bufdesc_ex) 1621 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1622 skb_hwtstamps(skb)); 1623 1624 if (fep->bufdesc_ex && 1625 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1626 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1627 /* don't check it */ 1628 skb->ip_summed = CHECKSUM_UNNECESSARY; 1629 } else { 1630 skb_checksum_none_assert(skb); 1631 } 1632 } 1633 1634 /* Handle received VLAN packets */ 1635 if (vlan_packet_rcvd) 1636 __vlan_hwaccel_put_tag(skb, 1637 htons(ETH_P_8021Q), 1638 vlan_tag); 1639 1640 skb_record_rx_queue(skb, queue_id); 1641 napi_gro_receive(&fep->napi, skb); 1642 1643 if (is_copybreak) { 1644 dma_sync_single_for_device(&fep->pdev->dev, 1645 fec32_to_cpu(bdp->cbd_bufaddr), 1646 FEC_ENET_RX_FRSIZE - fep->rx_align, 1647 DMA_FROM_DEVICE); 1648 } else { 1649 rxq->rx_skbuff[index] = skb_new; 1650 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1651 } 1652 1653 rx_processing_done: 1654 /* Clear the status flags for this buffer */ 1655 status &= ~BD_ENET_RX_STATS; 1656 1657 /* Mark the buffer empty */ 1658 status |= BD_ENET_RX_EMPTY; 1659 1660 if (fep->bufdesc_ex) { 1661 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1662 1663 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1664 ebdp->cbd_prot = 0; 1665 ebdp->cbd_bdu = 0; 1666 } 1667 /* Make sure the updates to rest of the descriptor are 1668 * performed before transferring ownership. 1669 */ 1670 wmb(); 1671 bdp->cbd_sc = cpu_to_fec16(status); 1672 1673 /* Update BD pointer to next entry */ 1674 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1675 1676 /* Doing this here will keep the FEC running while we process 1677 * incoming frames. On a heavily loaded network, we should be 1678 * able to keep up at the expense of system resources. 1679 */ 1680 writel(0, rxq->bd.reg_desc_active); 1681 } 1682 rxq->bd.cur = bdp; 1683 return pkt_received; 1684 } 1685 1686 static int fec_enet_rx(struct net_device *ndev, int budget) 1687 { 1688 struct fec_enet_private *fep = netdev_priv(ndev); 1689 int i, done = 0; 1690 1691 /* Make sure that AVB queues are processed first. */ 1692 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1693 done += fec_enet_rx_queue(ndev, budget - done, i); 1694 1695 return done; 1696 } 1697 1698 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1699 { 1700 uint int_events; 1701 1702 int_events = readl(fep->hwp + FEC_IEVENT); 1703 1704 /* Don't clear MDIO events, we poll for those */ 1705 int_events &= ~FEC_ENET_MII; 1706 1707 writel(int_events, fep->hwp + FEC_IEVENT); 1708 1709 return int_events != 0; 1710 } 1711 1712 static irqreturn_t 1713 fec_enet_interrupt(int irq, void *dev_id) 1714 { 1715 struct net_device *ndev = dev_id; 1716 struct fec_enet_private *fep = netdev_priv(ndev); 1717 irqreturn_t ret = IRQ_NONE; 1718 1719 if (fec_enet_collect_events(fep) && fep->link) { 1720 ret = IRQ_HANDLED; 1721 1722 if (napi_schedule_prep(&fep->napi)) { 1723 /* Disable interrupts */ 1724 writel(0, fep->hwp + FEC_IMASK); 1725 __napi_schedule(&fep->napi); 1726 } 1727 } 1728 1729 return ret; 1730 } 1731 1732 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1733 { 1734 struct net_device *ndev = napi->dev; 1735 struct fec_enet_private *fep = netdev_priv(ndev); 1736 int done = 0; 1737 1738 do { 1739 done += fec_enet_rx(ndev, budget - done); 1740 fec_enet_tx(ndev); 1741 } while ((done < budget) && fec_enet_collect_events(fep)); 1742 1743 if (done < budget) { 1744 napi_complete_done(napi, done); 1745 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1746 } 1747 1748 return done; 1749 } 1750 1751 /* ------------------------------------------------------------------------- */ 1752 static int fec_get_mac(struct net_device *ndev) 1753 { 1754 struct fec_enet_private *fep = netdev_priv(ndev); 1755 unsigned char *iap, tmpaddr[ETH_ALEN]; 1756 int ret; 1757 1758 /* 1759 * try to get mac address in following order: 1760 * 1761 * 1) module parameter via kernel command line in form 1762 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1763 */ 1764 iap = macaddr; 1765 1766 /* 1767 * 2) from device tree data 1768 */ 1769 if (!is_valid_ether_addr(iap)) { 1770 struct device_node *np = fep->pdev->dev.of_node; 1771 if (np) { 1772 ret = of_get_mac_address(np, tmpaddr); 1773 if (!ret) 1774 iap = tmpaddr; 1775 else if (ret == -EPROBE_DEFER) 1776 return ret; 1777 } 1778 } 1779 1780 /* 1781 * 3) from flash or fuse (via platform data) 1782 */ 1783 if (!is_valid_ether_addr(iap)) { 1784 #ifdef CONFIG_M5272 1785 if (FEC_FLASHMAC) 1786 iap = (unsigned char *)FEC_FLASHMAC; 1787 #else 1788 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1789 1790 if (pdata) 1791 iap = (unsigned char *)&pdata->mac; 1792 #endif 1793 } 1794 1795 /* 1796 * 4) FEC mac registers set by bootloader 1797 */ 1798 if (!is_valid_ether_addr(iap)) { 1799 *((__be32 *) &tmpaddr[0]) = 1800 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1801 *((__be16 *) &tmpaddr[4]) = 1802 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1803 iap = &tmpaddr[0]; 1804 } 1805 1806 /* 1807 * 5) random mac address 1808 */ 1809 if (!is_valid_ether_addr(iap)) { 1810 /* Report it and use a random ethernet address instead */ 1811 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1812 eth_hw_addr_random(ndev); 1813 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1814 ndev->dev_addr); 1815 return 0; 1816 } 1817 1818 /* Adjust MAC if using macaddr */ 1819 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1820 1821 return 0; 1822 } 1823 1824 /* ------------------------------------------------------------------------- */ 1825 1826 /* 1827 * Phy section 1828 */ 1829 static void fec_enet_adjust_link(struct net_device *ndev) 1830 { 1831 struct fec_enet_private *fep = netdev_priv(ndev); 1832 struct phy_device *phy_dev = ndev->phydev; 1833 int status_change = 0; 1834 1835 /* 1836 * If the netdev is down, or is going down, we're not interested 1837 * in link state events, so just mark our idea of the link as down 1838 * and ignore the event. 1839 */ 1840 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1841 fep->link = 0; 1842 } else if (phy_dev->link) { 1843 if (!fep->link) { 1844 fep->link = phy_dev->link; 1845 status_change = 1; 1846 } 1847 1848 if (fep->full_duplex != phy_dev->duplex) { 1849 fep->full_duplex = phy_dev->duplex; 1850 status_change = 1; 1851 } 1852 1853 if (phy_dev->speed != fep->speed) { 1854 fep->speed = phy_dev->speed; 1855 status_change = 1; 1856 } 1857 1858 /* if any of the above changed restart the FEC */ 1859 if (status_change) { 1860 napi_disable(&fep->napi); 1861 netif_tx_lock_bh(ndev); 1862 fec_restart(ndev); 1863 netif_tx_wake_all_queues(ndev); 1864 netif_tx_unlock_bh(ndev); 1865 napi_enable(&fep->napi); 1866 } 1867 } else { 1868 if (fep->link) { 1869 napi_disable(&fep->napi); 1870 netif_tx_lock_bh(ndev); 1871 fec_stop(ndev); 1872 netif_tx_unlock_bh(ndev); 1873 napi_enable(&fep->napi); 1874 fep->link = phy_dev->link; 1875 status_change = 1; 1876 } 1877 } 1878 1879 if (status_change) 1880 phy_print_status(phy_dev); 1881 } 1882 1883 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1884 { 1885 uint ievent; 1886 int ret; 1887 1888 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1889 ievent & FEC_ENET_MII, 2, 30000); 1890 1891 if (!ret) 1892 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1893 1894 return ret; 1895 } 1896 1897 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1898 { 1899 struct fec_enet_private *fep = bus->priv; 1900 struct device *dev = &fep->pdev->dev; 1901 int ret = 0, frame_start, frame_addr, frame_op; 1902 bool is_c45 = !!(regnum & MII_ADDR_C45); 1903 1904 ret = pm_runtime_resume_and_get(dev); 1905 if (ret < 0) 1906 return ret; 1907 1908 if (is_c45) { 1909 frame_start = FEC_MMFR_ST_C45; 1910 1911 /* write address */ 1912 frame_addr = (regnum >> 16); 1913 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1914 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1915 FEC_MMFR_TA | (regnum & 0xFFFF), 1916 fep->hwp + FEC_MII_DATA); 1917 1918 /* wait for end of transfer */ 1919 ret = fec_enet_mdio_wait(fep); 1920 if (ret) { 1921 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1922 goto out; 1923 } 1924 1925 frame_op = FEC_MMFR_OP_READ_C45; 1926 1927 } else { 1928 /* C22 read */ 1929 frame_op = FEC_MMFR_OP_READ; 1930 frame_start = FEC_MMFR_ST; 1931 frame_addr = regnum; 1932 } 1933 1934 /* start a read op */ 1935 writel(frame_start | frame_op | 1936 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1937 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1938 1939 /* wait for end of transfer */ 1940 ret = fec_enet_mdio_wait(fep); 1941 if (ret) { 1942 netdev_err(fep->netdev, "MDIO read timeout\n"); 1943 goto out; 1944 } 1945 1946 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1947 1948 out: 1949 pm_runtime_mark_last_busy(dev); 1950 pm_runtime_put_autosuspend(dev); 1951 1952 return ret; 1953 } 1954 1955 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1956 u16 value) 1957 { 1958 struct fec_enet_private *fep = bus->priv; 1959 struct device *dev = &fep->pdev->dev; 1960 int ret, frame_start, frame_addr; 1961 bool is_c45 = !!(regnum & MII_ADDR_C45); 1962 1963 ret = pm_runtime_resume_and_get(dev); 1964 if (ret < 0) 1965 return ret; 1966 1967 if (is_c45) { 1968 frame_start = FEC_MMFR_ST_C45; 1969 1970 /* write address */ 1971 frame_addr = (regnum >> 16); 1972 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1973 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1974 FEC_MMFR_TA | (regnum & 0xFFFF), 1975 fep->hwp + FEC_MII_DATA); 1976 1977 /* wait for end of transfer */ 1978 ret = fec_enet_mdio_wait(fep); 1979 if (ret) { 1980 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1981 goto out; 1982 } 1983 } else { 1984 /* C22 write */ 1985 frame_start = FEC_MMFR_ST; 1986 frame_addr = regnum; 1987 } 1988 1989 /* start a write op */ 1990 writel(frame_start | FEC_MMFR_OP_WRITE | 1991 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1992 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1993 fep->hwp + FEC_MII_DATA); 1994 1995 /* wait for end of transfer */ 1996 ret = fec_enet_mdio_wait(fep); 1997 if (ret) 1998 netdev_err(fep->netdev, "MDIO write timeout\n"); 1999 2000 out: 2001 pm_runtime_mark_last_busy(dev); 2002 pm_runtime_put_autosuspend(dev); 2003 2004 return ret; 2005 } 2006 2007 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2008 { 2009 struct fec_enet_private *fep = netdev_priv(ndev); 2010 struct phy_device *phy_dev = ndev->phydev; 2011 2012 if (phy_dev) { 2013 phy_reset_after_clk_enable(phy_dev); 2014 } else if (fep->phy_node) { 2015 /* 2016 * If the PHY still is not bound to the MAC, but there is 2017 * OF PHY node and a matching PHY device instance already, 2018 * use the OF PHY node to obtain the PHY device instance, 2019 * and then use that PHY device instance when triggering 2020 * the PHY reset. 2021 */ 2022 phy_dev = of_phy_find_device(fep->phy_node); 2023 phy_reset_after_clk_enable(phy_dev); 2024 put_device(&phy_dev->mdio.dev); 2025 } 2026 } 2027 2028 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2029 { 2030 struct fec_enet_private *fep = netdev_priv(ndev); 2031 int ret; 2032 2033 if (enable) { 2034 ret = clk_prepare_enable(fep->clk_enet_out); 2035 if (ret) 2036 return ret; 2037 2038 if (fep->clk_ptp) { 2039 mutex_lock(&fep->ptp_clk_mutex); 2040 ret = clk_prepare_enable(fep->clk_ptp); 2041 if (ret) { 2042 mutex_unlock(&fep->ptp_clk_mutex); 2043 goto failed_clk_ptp; 2044 } else { 2045 fep->ptp_clk_on = true; 2046 } 2047 mutex_unlock(&fep->ptp_clk_mutex); 2048 } 2049 2050 ret = clk_prepare_enable(fep->clk_ref); 2051 if (ret) 2052 goto failed_clk_ref; 2053 2054 ret = clk_prepare_enable(fep->clk_2x_txclk); 2055 if (ret) 2056 goto failed_clk_2x_txclk; 2057 2058 fec_enet_phy_reset_after_clk_enable(ndev); 2059 } else { 2060 clk_disable_unprepare(fep->clk_enet_out); 2061 if (fep->clk_ptp) { 2062 mutex_lock(&fep->ptp_clk_mutex); 2063 clk_disable_unprepare(fep->clk_ptp); 2064 fep->ptp_clk_on = false; 2065 mutex_unlock(&fep->ptp_clk_mutex); 2066 } 2067 clk_disable_unprepare(fep->clk_ref); 2068 clk_disable_unprepare(fep->clk_2x_txclk); 2069 } 2070 2071 return 0; 2072 2073 failed_clk_2x_txclk: 2074 if (fep->clk_ref) 2075 clk_disable_unprepare(fep->clk_ref); 2076 failed_clk_ref: 2077 if (fep->clk_ptp) { 2078 mutex_lock(&fep->ptp_clk_mutex); 2079 clk_disable_unprepare(fep->clk_ptp); 2080 fep->ptp_clk_on = false; 2081 mutex_unlock(&fep->ptp_clk_mutex); 2082 } 2083 failed_clk_ptp: 2084 clk_disable_unprepare(fep->clk_enet_out); 2085 2086 return ret; 2087 } 2088 2089 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2090 struct device_node *np) 2091 { 2092 u32 rgmii_tx_delay, rgmii_rx_delay; 2093 2094 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2095 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2096 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2097 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2098 return -EINVAL; 2099 } else if (rgmii_tx_delay == 2000) { 2100 fep->rgmii_txc_dly = true; 2101 } 2102 } 2103 2104 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2105 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2106 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2107 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2108 return -EINVAL; 2109 } else if (rgmii_rx_delay == 2000) { 2110 fep->rgmii_rxc_dly = true; 2111 } 2112 } 2113 2114 return 0; 2115 } 2116 2117 static int fec_enet_mii_probe(struct net_device *ndev) 2118 { 2119 struct fec_enet_private *fep = netdev_priv(ndev); 2120 struct phy_device *phy_dev = NULL; 2121 char mdio_bus_id[MII_BUS_ID_SIZE]; 2122 char phy_name[MII_BUS_ID_SIZE + 3]; 2123 int phy_id; 2124 int dev_id = fep->dev_id; 2125 2126 if (fep->phy_node) { 2127 phy_dev = of_phy_connect(ndev, fep->phy_node, 2128 &fec_enet_adjust_link, 0, 2129 fep->phy_interface); 2130 if (!phy_dev) { 2131 netdev_err(ndev, "Unable to connect to phy\n"); 2132 return -ENODEV; 2133 } 2134 } else { 2135 /* check for attached phy */ 2136 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2137 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2138 continue; 2139 if (dev_id--) 2140 continue; 2141 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2142 break; 2143 } 2144 2145 if (phy_id >= PHY_MAX_ADDR) { 2146 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2147 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2148 phy_id = 0; 2149 } 2150 2151 snprintf(phy_name, sizeof(phy_name), 2152 PHY_ID_FMT, mdio_bus_id, phy_id); 2153 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2154 fep->phy_interface); 2155 } 2156 2157 if (IS_ERR(phy_dev)) { 2158 netdev_err(ndev, "could not attach to PHY\n"); 2159 return PTR_ERR(phy_dev); 2160 } 2161 2162 /* mask with MAC supported features */ 2163 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2164 phy_set_max_speed(phy_dev, 1000); 2165 phy_remove_link_mode(phy_dev, 2166 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2167 #if !defined(CONFIG_M5272) 2168 phy_support_sym_pause(phy_dev); 2169 #endif 2170 } 2171 else 2172 phy_set_max_speed(phy_dev, 100); 2173 2174 fep->link = 0; 2175 fep->full_duplex = 0; 2176 2177 phy_dev->mac_managed_pm = 1; 2178 2179 phy_attached_info(phy_dev); 2180 2181 return 0; 2182 } 2183 2184 static int fec_enet_mii_init(struct platform_device *pdev) 2185 { 2186 static struct mii_bus *fec0_mii_bus; 2187 struct net_device *ndev = platform_get_drvdata(pdev); 2188 struct fec_enet_private *fep = netdev_priv(ndev); 2189 bool suppress_preamble = false; 2190 struct device_node *node; 2191 int err = -ENXIO; 2192 u32 mii_speed, holdtime; 2193 u32 bus_freq; 2194 2195 /* 2196 * The i.MX28 dual fec interfaces are not equal. 2197 * Here are the differences: 2198 * 2199 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2200 * - fec0 acts as the 1588 time master while fec1 is slave 2201 * - external phys can only be configured by fec0 2202 * 2203 * That is to say fec1 can not work independently. It only works 2204 * when fec0 is working. The reason behind this design is that the 2205 * second interface is added primarily for Switch mode. 2206 * 2207 * Because of the last point above, both phys are attached on fec0 2208 * mdio interface in board design, and need to be configured by 2209 * fec0 mii_bus. 2210 */ 2211 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2212 /* fec1 uses fec0 mii_bus */ 2213 if (mii_cnt && fec0_mii_bus) { 2214 fep->mii_bus = fec0_mii_bus; 2215 mii_cnt++; 2216 return 0; 2217 } 2218 return -ENOENT; 2219 } 2220 2221 bus_freq = 2500000; /* 2.5MHz by default */ 2222 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2223 if (node) { 2224 of_property_read_u32(node, "clock-frequency", &bus_freq); 2225 suppress_preamble = of_property_read_bool(node, 2226 "suppress-preamble"); 2227 } 2228 2229 /* 2230 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2231 * 2232 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2233 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2234 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2235 * document. 2236 */ 2237 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2238 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2239 mii_speed--; 2240 if (mii_speed > 63) { 2241 dev_err(&pdev->dev, 2242 "fec clock (%lu) too fast to get right mii speed\n", 2243 clk_get_rate(fep->clk_ipg)); 2244 err = -EINVAL; 2245 goto err_out; 2246 } 2247 2248 /* 2249 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2250 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2251 * versions are RAZ there, so just ignore the difference and write the 2252 * register always. 2253 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2254 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2255 * output. 2256 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2257 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2258 * holdtime cannot result in a value greater than 3. 2259 */ 2260 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2261 2262 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2263 2264 if (suppress_preamble) 2265 fep->phy_speed |= BIT(7); 2266 2267 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2268 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2269 * MII event generation condition: 2270 * - writing MSCR: 2271 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2272 * mscr_reg_data_in[7:0] != 0 2273 * - writing MMFR: 2274 * - mscr[7:0]_not_zero 2275 */ 2276 writel(0, fep->hwp + FEC_MII_DATA); 2277 } 2278 2279 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2280 2281 /* Clear any pending transaction complete indication */ 2282 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2283 2284 fep->mii_bus = mdiobus_alloc(); 2285 if (fep->mii_bus == NULL) { 2286 err = -ENOMEM; 2287 goto err_out; 2288 } 2289 2290 fep->mii_bus->name = "fec_enet_mii_bus"; 2291 fep->mii_bus->read = fec_enet_mdio_read; 2292 fep->mii_bus->write = fec_enet_mdio_write; 2293 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2294 pdev->name, fep->dev_id + 1); 2295 fep->mii_bus->priv = fep; 2296 fep->mii_bus->parent = &pdev->dev; 2297 2298 err = of_mdiobus_register(fep->mii_bus, node); 2299 if (err) 2300 goto err_out_free_mdiobus; 2301 of_node_put(node); 2302 2303 mii_cnt++; 2304 2305 /* save fec0 mii_bus */ 2306 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2307 fec0_mii_bus = fep->mii_bus; 2308 2309 return 0; 2310 2311 err_out_free_mdiobus: 2312 mdiobus_free(fep->mii_bus); 2313 err_out: 2314 of_node_put(node); 2315 return err; 2316 } 2317 2318 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2319 { 2320 if (--mii_cnt == 0) { 2321 mdiobus_unregister(fep->mii_bus); 2322 mdiobus_free(fep->mii_bus); 2323 } 2324 } 2325 2326 static void fec_enet_get_drvinfo(struct net_device *ndev, 2327 struct ethtool_drvinfo *info) 2328 { 2329 struct fec_enet_private *fep = netdev_priv(ndev); 2330 2331 strlcpy(info->driver, fep->pdev->dev.driver->name, 2332 sizeof(info->driver)); 2333 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2334 } 2335 2336 static int fec_enet_get_regs_len(struct net_device *ndev) 2337 { 2338 struct fec_enet_private *fep = netdev_priv(ndev); 2339 struct resource *r; 2340 int s = 0; 2341 2342 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2343 if (r) 2344 s = resource_size(r); 2345 2346 return s; 2347 } 2348 2349 /* List of registers that can be safety be read to dump them with ethtool */ 2350 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2351 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2352 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2353 static __u32 fec_enet_register_version = 2; 2354 static u32 fec_enet_register_offset[] = { 2355 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2356 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2357 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2358 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2359 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2360 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2361 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2362 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2363 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2364 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2365 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2366 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2367 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2368 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2369 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2370 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2371 RMON_T_P_GTE2048, RMON_T_OCTETS, 2372 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2373 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2374 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2375 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2376 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2377 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2378 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2379 RMON_R_P_GTE2048, RMON_R_OCTETS, 2380 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2381 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2382 }; 2383 #else 2384 static __u32 fec_enet_register_version = 1; 2385 static u32 fec_enet_register_offset[] = { 2386 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2387 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2388 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2389 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2390 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2391 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2392 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2393 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2394 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2395 }; 2396 #endif 2397 2398 static void fec_enet_get_regs(struct net_device *ndev, 2399 struct ethtool_regs *regs, void *regbuf) 2400 { 2401 struct fec_enet_private *fep = netdev_priv(ndev); 2402 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2403 struct device *dev = &fep->pdev->dev; 2404 u32 *buf = (u32 *)regbuf; 2405 u32 i, off; 2406 int ret; 2407 2408 ret = pm_runtime_resume_and_get(dev); 2409 if (ret < 0) 2410 return; 2411 2412 regs->version = fec_enet_register_version; 2413 2414 memset(buf, 0, regs->len); 2415 2416 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2417 off = fec_enet_register_offset[i]; 2418 2419 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2420 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2421 continue; 2422 2423 off >>= 2; 2424 buf[off] = readl(&theregs[off]); 2425 } 2426 2427 pm_runtime_mark_last_busy(dev); 2428 pm_runtime_put_autosuspend(dev); 2429 } 2430 2431 static int fec_enet_get_ts_info(struct net_device *ndev, 2432 struct ethtool_ts_info *info) 2433 { 2434 struct fec_enet_private *fep = netdev_priv(ndev); 2435 2436 if (fep->bufdesc_ex) { 2437 2438 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2439 SOF_TIMESTAMPING_RX_SOFTWARE | 2440 SOF_TIMESTAMPING_SOFTWARE | 2441 SOF_TIMESTAMPING_TX_HARDWARE | 2442 SOF_TIMESTAMPING_RX_HARDWARE | 2443 SOF_TIMESTAMPING_RAW_HARDWARE; 2444 if (fep->ptp_clock) 2445 info->phc_index = ptp_clock_index(fep->ptp_clock); 2446 else 2447 info->phc_index = -1; 2448 2449 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2450 (1 << HWTSTAMP_TX_ON); 2451 2452 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2453 (1 << HWTSTAMP_FILTER_ALL); 2454 return 0; 2455 } else { 2456 return ethtool_op_get_ts_info(ndev, info); 2457 } 2458 } 2459 2460 #if !defined(CONFIG_M5272) 2461 2462 static void fec_enet_get_pauseparam(struct net_device *ndev, 2463 struct ethtool_pauseparam *pause) 2464 { 2465 struct fec_enet_private *fep = netdev_priv(ndev); 2466 2467 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2468 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2469 pause->rx_pause = pause->tx_pause; 2470 } 2471 2472 static int fec_enet_set_pauseparam(struct net_device *ndev, 2473 struct ethtool_pauseparam *pause) 2474 { 2475 struct fec_enet_private *fep = netdev_priv(ndev); 2476 2477 if (!ndev->phydev) 2478 return -ENODEV; 2479 2480 if (pause->tx_pause != pause->rx_pause) { 2481 netdev_info(ndev, 2482 "hardware only support enable/disable both tx and rx"); 2483 return -EINVAL; 2484 } 2485 2486 fep->pause_flag = 0; 2487 2488 /* tx pause must be same as rx pause */ 2489 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2490 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2491 2492 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2493 pause->autoneg); 2494 2495 if (pause->autoneg) { 2496 if (netif_running(ndev)) 2497 fec_stop(ndev); 2498 phy_start_aneg(ndev->phydev); 2499 } 2500 if (netif_running(ndev)) { 2501 napi_disable(&fep->napi); 2502 netif_tx_lock_bh(ndev); 2503 fec_restart(ndev); 2504 netif_tx_wake_all_queues(ndev); 2505 netif_tx_unlock_bh(ndev); 2506 napi_enable(&fep->napi); 2507 } 2508 2509 return 0; 2510 } 2511 2512 static const struct fec_stat { 2513 char name[ETH_GSTRING_LEN]; 2514 u16 offset; 2515 } fec_stats[] = { 2516 /* RMON TX */ 2517 { "tx_dropped", RMON_T_DROP }, 2518 { "tx_packets", RMON_T_PACKETS }, 2519 { "tx_broadcast", RMON_T_BC_PKT }, 2520 { "tx_multicast", RMON_T_MC_PKT }, 2521 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2522 { "tx_undersize", RMON_T_UNDERSIZE }, 2523 { "tx_oversize", RMON_T_OVERSIZE }, 2524 { "tx_fragment", RMON_T_FRAG }, 2525 { "tx_jabber", RMON_T_JAB }, 2526 { "tx_collision", RMON_T_COL }, 2527 { "tx_64byte", RMON_T_P64 }, 2528 { "tx_65to127byte", RMON_T_P65TO127 }, 2529 { "tx_128to255byte", RMON_T_P128TO255 }, 2530 { "tx_256to511byte", RMON_T_P256TO511 }, 2531 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2532 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2533 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2534 { "tx_octets", RMON_T_OCTETS }, 2535 2536 /* IEEE TX */ 2537 { "IEEE_tx_drop", IEEE_T_DROP }, 2538 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2539 { "IEEE_tx_1col", IEEE_T_1COL }, 2540 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2541 { "IEEE_tx_def", IEEE_T_DEF }, 2542 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2543 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2544 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2545 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2546 { "IEEE_tx_sqe", IEEE_T_SQE }, 2547 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2548 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2549 2550 /* RMON RX */ 2551 { "rx_packets", RMON_R_PACKETS }, 2552 { "rx_broadcast", RMON_R_BC_PKT }, 2553 { "rx_multicast", RMON_R_MC_PKT }, 2554 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2555 { "rx_undersize", RMON_R_UNDERSIZE }, 2556 { "rx_oversize", RMON_R_OVERSIZE }, 2557 { "rx_fragment", RMON_R_FRAG }, 2558 { "rx_jabber", RMON_R_JAB }, 2559 { "rx_64byte", RMON_R_P64 }, 2560 { "rx_65to127byte", RMON_R_P65TO127 }, 2561 { "rx_128to255byte", RMON_R_P128TO255 }, 2562 { "rx_256to511byte", RMON_R_P256TO511 }, 2563 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2564 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2565 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2566 { "rx_octets", RMON_R_OCTETS }, 2567 2568 /* IEEE RX */ 2569 { "IEEE_rx_drop", IEEE_R_DROP }, 2570 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2571 { "IEEE_rx_crc", IEEE_R_CRC }, 2572 { "IEEE_rx_align", IEEE_R_ALIGN }, 2573 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2574 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2575 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2576 }; 2577 2578 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2579 2580 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2581 { 2582 struct fec_enet_private *fep = netdev_priv(dev); 2583 int i; 2584 2585 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2586 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2587 } 2588 2589 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2590 struct ethtool_stats *stats, u64 *data) 2591 { 2592 struct fec_enet_private *fep = netdev_priv(dev); 2593 2594 if (netif_running(dev)) 2595 fec_enet_update_ethtool_stats(dev); 2596 2597 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2598 } 2599 2600 static void fec_enet_get_strings(struct net_device *netdev, 2601 u32 stringset, u8 *data) 2602 { 2603 int i; 2604 switch (stringset) { 2605 case ETH_SS_STATS: 2606 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2607 memcpy(data + i * ETH_GSTRING_LEN, 2608 fec_stats[i].name, ETH_GSTRING_LEN); 2609 break; 2610 case ETH_SS_TEST: 2611 net_selftest_get_strings(data); 2612 break; 2613 } 2614 } 2615 2616 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2617 { 2618 switch (sset) { 2619 case ETH_SS_STATS: 2620 return ARRAY_SIZE(fec_stats); 2621 case ETH_SS_TEST: 2622 return net_selftest_get_count(); 2623 default: 2624 return -EOPNOTSUPP; 2625 } 2626 } 2627 2628 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2629 { 2630 struct fec_enet_private *fep = netdev_priv(dev); 2631 int i; 2632 2633 /* Disable MIB statistics counters */ 2634 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2635 2636 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2637 writel(0, fep->hwp + fec_stats[i].offset); 2638 2639 /* Don't disable MIB statistics counters */ 2640 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2641 } 2642 2643 #else /* !defined(CONFIG_M5272) */ 2644 #define FEC_STATS_SIZE 0 2645 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2646 { 2647 } 2648 2649 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2650 { 2651 } 2652 #endif /* !defined(CONFIG_M5272) */ 2653 2654 /* ITR clock source is enet system clock (clk_ahb). 2655 * TCTT unit is cycle_ns * 64 cycle 2656 * So, the ICTT value = X us / (cycle_ns * 64) 2657 */ 2658 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2659 { 2660 struct fec_enet_private *fep = netdev_priv(ndev); 2661 2662 return us * (fep->itr_clk_rate / 64000) / 1000; 2663 } 2664 2665 /* Set threshold for interrupt coalescing */ 2666 static void fec_enet_itr_coal_set(struct net_device *ndev) 2667 { 2668 struct fec_enet_private *fep = netdev_priv(ndev); 2669 int rx_itr, tx_itr; 2670 2671 /* Must be greater than zero to avoid unpredictable behavior */ 2672 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2673 !fep->tx_time_itr || !fep->tx_pkts_itr) 2674 return; 2675 2676 /* Select enet system clock as Interrupt Coalescing 2677 * timer Clock Source 2678 */ 2679 rx_itr = FEC_ITR_CLK_SEL; 2680 tx_itr = FEC_ITR_CLK_SEL; 2681 2682 /* set ICFT and ICTT */ 2683 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2684 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2685 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2686 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2687 2688 rx_itr |= FEC_ITR_EN; 2689 tx_itr |= FEC_ITR_EN; 2690 2691 writel(tx_itr, fep->hwp + FEC_TXIC0); 2692 writel(rx_itr, fep->hwp + FEC_RXIC0); 2693 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2694 writel(tx_itr, fep->hwp + FEC_TXIC1); 2695 writel(rx_itr, fep->hwp + FEC_RXIC1); 2696 writel(tx_itr, fep->hwp + FEC_TXIC2); 2697 writel(rx_itr, fep->hwp + FEC_RXIC2); 2698 } 2699 } 2700 2701 static int fec_enet_get_coalesce(struct net_device *ndev, 2702 struct ethtool_coalesce *ec, 2703 struct kernel_ethtool_coalesce *kernel_coal, 2704 struct netlink_ext_ack *extack) 2705 { 2706 struct fec_enet_private *fep = netdev_priv(ndev); 2707 2708 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2709 return -EOPNOTSUPP; 2710 2711 ec->rx_coalesce_usecs = fep->rx_time_itr; 2712 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2713 2714 ec->tx_coalesce_usecs = fep->tx_time_itr; 2715 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2716 2717 return 0; 2718 } 2719 2720 static int fec_enet_set_coalesce(struct net_device *ndev, 2721 struct ethtool_coalesce *ec, 2722 struct kernel_ethtool_coalesce *kernel_coal, 2723 struct netlink_ext_ack *extack) 2724 { 2725 struct fec_enet_private *fep = netdev_priv(ndev); 2726 struct device *dev = &fep->pdev->dev; 2727 unsigned int cycle; 2728 2729 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2730 return -EOPNOTSUPP; 2731 2732 if (ec->rx_max_coalesced_frames > 255) { 2733 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2734 return -EINVAL; 2735 } 2736 2737 if (ec->tx_max_coalesced_frames > 255) { 2738 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2739 return -EINVAL; 2740 } 2741 2742 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2743 if (cycle > 0xFFFF) { 2744 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2745 return -EINVAL; 2746 } 2747 2748 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2749 if (cycle > 0xFFFF) { 2750 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2751 return -EINVAL; 2752 } 2753 2754 fep->rx_time_itr = ec->rx_coalesce_usecs; 2755 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2756 2757 fep->tx_time_itr = ec->tx_coalesce_usecs; 2758 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2759 2760 fec_enet_itr_coal_set(ndev); 2761 2762 return 0; 2763 } 2764 2765 static void fec_enet_itr_coal_init(struct net_device *ndev) 2766 { 2767 struct ethtool_coalesce ec; 2768 2769 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2770 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2771 2772 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2773 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2774 2775 fec_enet_set_coalesce(ndev, &ec, NULL, NULL); 2776 } 2777 2778 static int fec_enet_get_tunable(struct net_device *netdev, 2779 const struct ethtool_tunable *tuna, 2780 void *data) 2781 { 2782 struct fec_enet_private *fep = netdev_priv(netdev); 2783 int ret = 0; 2784 2785 switch (tuna->id) { 2786 case ETHTOOL_RX_COPYBREAK: 2787 *(u32 *)data = fep->rx_copybreak; 2788 break; 2789 default: 2790 ret = -EINVAL; 2791 break; 2792 } 2793 2794 return ret; 2795 } 2796 2797 static int fec_enet_set_tunable(struct net_device *netdev, 2798 const struct ethtool_tunable *tuna, 2799 const void *data) 2800 { 2801 struct fec_enet_private *fep = netdev_priv(netdev); 2802 int ret = 0; 2803 2804 switch (tuna->id) { 2805 case ETHTOOL_RX_COPYBREAK: 2806 fep->rx_copybreak = *(u32 *)data; 2807 break; 2808 default: 2809 ret = -EINVAL; 2810 break; 2811 } 2812 2813 return ret; 2814 } 2815 2816 /* LPI Sleep Ts count base on tx clk (clk_ref). 2817 * The lpi sleep cnt value = X us / (cycle_ns). 2818 */ 2819 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 2820 { 2821 struct fec_enet_private *fep = netdev_priv(ndev); 2822 2823 return us * (fep->clk_ref_rate / 1000) / 1000; 2824 } 2825 2826 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 2827 { 2828 struct fec_enet_private *fep = netdev_priv(ndev); 2829 struct ethtool_eee *p = &fep->eee; 2830 unsigned int sleep_cycle, wake_cycle; 2831 int ret = 0; 2832 2833 if (enable) { 2834 ret = phy_init_eee(ndev->phydev, false); 2835 if (ret) 2836 return ret; 2837 2838 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 2839 wake_cycle = sleep_cycle; 2840 } else { 2841 sleep_cycle = 0; 2842 wake_cycle = 0; 2843 } 2844 2845 p->tx_lpi_enabled = enable; 2846 p->eee_enabled = enable; 2847 p->eee_active = enable; 2848 2849 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 2850 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 2851 2852 return 0; 2853 } 2854 2855 static int 2856 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2857 { 2858 struct fec_enet_private *fep = netdev_priv(ndev); 2859 struct ethtool_eee *p = &fep->eee; 2860 2861 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2862 return -EOPNOTSUPP; 2863 2864 if (!netif_running(ndev)) 2865 return -ENETDOWN; 2866 2867 edata->eee_enabled = p->eee_enabled; 2868 edata->eee_active = p->eee_active; 2869 edata->tx_lpi_timer = p->tx_lpi_timer; 2870 edata->tx_lpi_enabled = p->tx_lpi_enabled; 2871 2872 return phy_ethtool_get_eee(ndev->phydev, edata); 2873 } 2874 2875 static int 2876 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2877 { 2878 struct fec_enet_private *fep = netdev_priv(ndev); 2879 struct ethtool_eee *p = &fep->eee; 2880 int ret = 0; 2881 2882 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2883 return -EOPNOTSUPP; 2884 2885 if (!netif_running(ndev)) 2886 return -ENETDOWN; 2887 2888 p->tx_lpi_timer = edata->tx_lpi_timer; 2889 2890 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 2891 !edata->tx_lpi_timer) 2892 ret = fec_enet_eee_mode_set(ndev, false); 2893 else 2894 ret = fec_enet_eee_mode_set(ndev, true); 2895 2896 if (ret) 2897 return ret; 2898 2899 return phy_ethtool_set_eee(ndev->phydev, edata); 2900 } 2901 2902 static void 2903 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2904 { 2905 struct fec_enet_private *fep = netdev_priv(ndev); 2906 2907 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2908 wol->supported = WAKE_MAGIC; 2909 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2910 } else { 2911 wol->supported = wol->wolopts = 0; 2912 } 2913 } 2914 2915 static int 2916 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2917 { 2918 struct fec_enet_private *fep = netdev_priv(ndev); 2919 2920 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2921 return -EINVAL; 2922 2923 if (wol->wolopts & ~WAKE_MAGIC) 2924 return -EINVAL; 2925 2926 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2927 if (device_may_wakeup(&ndev->dev)) 2928 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2929 else 2930 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2931 2932 return 0; 2933 } 2934 2935 static const struct ethtool_ops fec_enet_ethtool_ops = { 2936 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2937 ETHTOOL_COALESCE_MAX_FRAMES, 2938 .get_drvinfo = fec_enet_get_drvinfo, 2939 .get_regs_len = fec_enet_get_regs_len, 2940 .get_regs = fec_enet_get_regs, 2941 .nway_reset = phy_ethtool_nway_reset, 2942 .get_link = ethtool_op_get_link, 2943 .get_coalesce = fec_enet_get_coalesce, 2944 .set_coalesce = fec_enet_set_coalesce, 2945 #ifndef CONFIG_M5272 2946 .get_pauseparam = fec_enet_get_pauseparam, 2947 .set_pauseparam = fec_enet_set_pauseparam, 2948 .get_strings = fec_enet_get_strings, 2949 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2950 .get_sset_count = fec_enet_get_sset_count, 2951 #endif 2952 .get_ts_info = fec_enet_get_ts_info, 2953 .get_tunable = fec_enet_get_tunable, 2954 .set_tunable = fec_enet_set_tunable, 2955 .get_wol = fec_enet_get_wol, 2956 .set_wol = fec_enet_set_wol, 2957 .get_eee = fec_enet_get_eee, 2958 .set_eee = fec_enet_set_eee, 2959 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2960 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2961 .self_test = net_selftest, 2962 }; 2963 2964 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2965 { 2966 struct fec_enet_private *fep = netdev_priv(ndev); 2967 struct phy_device *phydev = ndev->phydev; 2968 2969 if (!netif_running(ndev)) 2970 return -EINVAL; 2971 2972 if (!phydev) 2973 return -ENODEV; 2974 2975 if (fep->bufdesc_ex) { 2976 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2977 2978 if (cmd == SIOCSHWTSTAMP) { 2979 if (use_fec_hwts) 2980 return fec_ptp_set(ndev, rq); 2981 fec_ptp_disable_hwts(ndev); 2982 } else if (cmd == SIOCGHWTSTAMP) { 2983 if (use_fec_hwts) 2984 return fec_ptp_get(ndev, rq); 2985 } 2986 } 2987 2988 return phy_mii_ioctl(phydev, rq, cmd); 2989 } 2990 2991 static void fec_enet_free_buffers(struct net_device *ndev) 2992 { 2993 struct fec_enet_private *fep = netdev_priv(ndev); 2994 unsigned int i; 2995 struct sk_buff *skb; 2996 struct bufdesc *bdp; 2997 struct fec_enet_priv_tx_q *txq; 2998 struct fec_enet_priv_rx_q *rxq; 2999 unsigned int q; 3000 3001 for (q = 0; q < fep->num_rx_queues; q++) { 3002 rxq = fep->rx_queue[q]; 3003 bdp = rxq->bd.base; 3004 for (i = 0; i < rxq->bd.ring_size; i++) { 3005 skb = rxq->rx_skbuff[i]; 3006 rxq->rx_skbuff[i] = NULL; 3007 if (skb) { 3008 dma_unmap_single(&fep->pdev->dev, 3009 fec32_to_cpu(bdp->cbd_bufaddr), 3010 FEC_ENET_RX_FRSIZE - fep->rx_align, 3011 DMA_FROM_DEVICE); 3012 dev_kfree_skb(skb); 3013 } 3014 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3015 } 3016 } 3017 3018 for (q = 0; q < fep->num_tx_queues; q++) { 3019 txq = fep->tx_queue[q]; 3020 for (i = 0; i < txq->bd.ring_size; i++) { 3021 kfree(txq->tx_bounce[i]); 3022 txq->tx_bounce[i] = NULL; 3023 skb = txq->tx_skbuff[i]; 3024 txq->tx_skbuff[i] = NULL; 3025 dev_kfree_skb(skb); 3026 } 3027 } 3028 } 3029 3030 static void fec_enet_free_queue(struct net_device *ndev) 3031 { 3032 struct fec_enet_private *fep = netdev_priv(ndev); 3033 int i; 3034 struct fec_enet_priv_tx_q *txq; 3035 3036 for (i = 0; i < fep->num_tx_queues; i++) 3037 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3038 txq = fep->tx_queue[i]; 3039 dma_free_coherent(&fep->pdev->dev, 3040 txq->bd.ring_size * TSO_HEADER_SIZE, 3041 txq->tso_hdrs, 3042 txq->tso_hdrs_dma); 3043 } 3044 3045 for (i = 0; i < fep->num_rx_queues; i++) 3046 kfree(fep->rx_queue[i]); 3047 for (i = 0; i < fep->num_tx_queues; i++) 3048 kfree(fep->tx_queue[i]); 3049 } 3050 3051 static int fec_enet_alloc_queue(struct net_device *ndev) 3052 { 3053 struct fec_enet_private *fep = netdev_priv(ndev); 3054 int i; 3055 int ret = 0; 3056 struct fec_enet_priv_tx_q *txq; 3057 3058 for (i = 0; i < fep->num_tx_queues; i++) { 3059 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3060 if (!txq) { 3061 ret = -ENOMEM; 3062 goto alloc_failed; 3063 } 3064 3065 fep->tx_queue[i] = txq; 3066 txq->bd.ring_size = TX_RING_SIZE; 3067 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3068 3069 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3070 txq->tx_wake_threshold = 3071 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3072 3073 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3074 txq->bd.ring_size * TSO_HEADER_SIZE, 3075 &txq->tso_hdrs_dma, 3076 GFP_KERNEL); 3077 if (!txq->tso_hdrs) { 3078 ret = -ENOMEM; 3079 goto alloc_failed; 3080 } 3081 } 3082 3083 for (i = 0; i < fep->num_rx_queues; i++) { 3084 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3085 GFP_KERNEL); 3086 if (!fep->rx_queue[i]) { 3087 ret = -ENOMEM; 3088 goto alloc_failed; 3089 } 3090 3091 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3092 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3093 } 3094 return ret; 3095 3096 alloc_failed: 3097 fec_enet_free_queue(ndev); 3098 return ret; 3099 } 3100 3101 static int 3102 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3103 { 3104 struct fec_enet_private *fep = netdev_priv(ndev); 3105 unsigned int i; 3106 struct sk_buff *skb; 3107 struct bufdesc *bdp; 3108 struct fec_enet_priv_rx_q *rxq; 3109 3110 rxq = fep->rx_queue[queue]; 3111 bdp = rxq->bd.base; 3112 for (i = 0; i < rxq->bd.ring_size; i++) { 3113 skb = __netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE, GFP_KERNEL); 3114 if (!skb) 3115 goto err_alloc; 3116 3117 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 3118 dev_kfree_skb(skb); 3119 goto err_alloc; 3120 } 3121 3122 rxq->rx_skbuff[i] = skb; 3123 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3124 3125 if (fep->bufdesc_ex) { 3126 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3127 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3128 } 3129 3130 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3131 } 3132 3133 /* Set the last buffer to wrap. */ 3134 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3135 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3136 return 0; 3137 3138 err_alloc: 3139 fec_enet_free_buffers(ndev); 3140 return -ENOMEM; 3141 } 3142 3143 static int 3144 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3145 { 3146 struct fec_enet_private *fep = netdev_priv(ndev); 3147 unsigned int i; 3148 struct bufdesc *bdp; 3149 struct fec_enet_priv_tx_q *txq; 3150 3151 txq = fep->tx_queue[queue]; 3152 bdp = txq->bd.base; 3153 for (i = 0; i < txq->bd.ring_size; i++) { 3154 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3155 if (!txq->tx_bounce[i]) 3156 goto err_alloc; 3157 3158 bdp->cbd_sc = cpu_to_fec16(0); 3159 bdp->cbd_bufaddr = cpu_to_fec32(0); 3160 3161 if (fep->bufdesc_ex) { 3162 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3163 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3164 } 3165 3166 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3167 } 3168 3169 /* Set the last buffer to wrap. */ 3170 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3171 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3172 3173 return 0; 3174 3175 err_alloc: 3176 fec_enet_free_buffers(ndev); 3177 return -ENOMEM; 3178 } 3179 3180 static int fec_enet_alloc_buffers(struct net_device *ndev) 3181 { 3182 struct fec_enet_private *fep = netdev_priv(ndev); 3183 unsigned int i; 3184 3185 for (i = 0; i < fep->num_rx_queues; i++) 3186 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3187 return -ENOMEM; 3188 3189 for (i = 0; i < fep->num_tx_queues; i++) 3190 if (fec_enet_alloc_txq_buffers(ndev, i)) 3191 return -ENOMEM; 3192 return 0; 3193 } 3194 3195 static int 3196 fec_enet_open(struct net_device *ndev) 3197 { 3198 struct fec_enet_private *fep = netdev_priv(ndev); 3199 int ret; 3200 bool reset_again; 3201 3202 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3203 if (ret < 0) 3204 return ret; 3205 3206 pinctrl_pm_select_default_state(&fep->pdev->dev); 3207 ret = fec_enet_clk_enable(ndev, true); 3208 if (ret) 3209 goto clk_enable; 3210 3211 /* During the first fec_enet_open call the PHY isn't probed at this 3212 * point. Therefore the phy_reset_after_clk_enable() call within 3213 * fec_enet_clk_enable() fails. As we need this reset in order to be 3214 * sure the PHY is working correctly we check if we need to reset again 3215 * later when the PHY is probed 3216 */ 3217 if (ndev->phydev && ndev->phydev->drv) 3218 reset_again = false; 3219 else 3220 reset_again = true; 3221 3222 /* I should reset the ring buffers here, but I don't yet know 3223 * a simple way to do that. 3224 */ 3225 3226 ret = fec_enet_alloc_buffers(ndev); 3227 if (ret) 3228 goto err_enet_alloc; 3229 3230 /* Init MAC prior to mii bus probe */ 3231 fec_restart(ndev); 3232 3233 /* Call phy_reset_after_clk_enable() again if it failed during 3234 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3235 */ 3236 if (reset_again) 3237 fec_enet_phy_reset_after_clk_enable(ndev); 3238 3239 /* Probe and connect to PHY when open the interface */ 3240 ret = fec_enet_mii_probe(ndev); 3241 if (ret) 3242 goto err_enet_mii_probe; 3243 3244 if (fep->quirks & FEC_QUIRK_ERR006687) 3245 imx6q_cpuidle_fec_irqs_used(); 3246 3247 napi_enable(&fep->napi); 3248 phy_start(ndev->phydev); 3249 netif_tx_start_all_queues(ndev); 3250 3251 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3252 FEC_WOL_FLAG_ENABLE); 3253 3254 return 0; 3255 3256 err_enet_mii_probe: 3257 fec_enet_free_buffers(ndev); 3258 err_enet_alloc: 3259 fec_enet_clk_enable(ndev, false); 3260 clk_enable: 3261 pm_runtime_mark_last_busy(&fep->pdev->dev); 3262 pm_runtime_put_autosuspend(&fep->pdev->dev); 3263 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3264 return ret; 3265 } 3266 3267 static int 3268 fec_enet_close(struct net_device *ndev) 3269 { 3270 struct fec_enet_private *fep = netdev_priv(ndev); 3271 3272 phy_stop(ndev->phydev); 3273 3274 if (netif_device_present(ndev)) { 3275 napi_disable(&fep->napi); 3276 netif_tx_disable(ndev); 3277 fec_stop(ndev); 3278 } 3279 3280 phy_disconnect(ndev->phydev); 3281 3282 if (fep->quirks & FEC_QUIRK_ERR006687) 3283 imx6q_cpuidle_fec_irqs_unused(); 3284 3285 fec_enet_update_ethtool_stats(ndev); 3286 3287 fec_enet_clk_enable(ndev, false); 3288 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3289 pm_runtime_mark_last_busy(&fep->pdev->dev); 3290 pm_runtime_put_autosuspend(&fep->pdev->dev); 3291 3292 fec_enet_free_buffers(ndev); 3293 3294 return 0; 3295 } 3296 3297 /* Set or clear the multicast filter for this adaptor. 3298 * Skeleton taken from sunlance driver. 3299 * The CPM Ethernet implementation allows Multicast as well as individual 3300 * MAC address filtering. Some of the drivers check to make sure it is 3301 * a group multicast address, and discard those that are not. I guess I 3302 * will do the same for now, but just remove the test if you want 3303 * individual filtering as well (do the upper net layers want or support 3304 * this kind of feature?). 3305 */ 3306 3307 #define FEC_HASH_BITS 6 /* #bits in hash */ 3308 3309 static void set_multicast_list(struct net_device *ndev) 3310 { 3311 struct fec_enet_private *fep = netdev_priv(ndev); 3312 struct netdev_hw_addr *ha; 3313 unsigned int crc, tmp; 3314 unsigned char hash; 3315 unsigned int hash_high = 0, hash_low = 0; 3316 3317 if (ndev->flags & IFF_PROMISC) { 3318 tmp = readl(fep->hwp + FEC_R_CNTRL); 3319 tmp |= 0x8; 3320 writel(tmp, fep->hwp + FEC_R_CNTRL); 3321 return; 3322 } 3323 3324 tmp = readl(fep->hwp + FEC_R_CNTRL); 3325 tmp &= ~0x8; 3326 writel(tmp, fep->hwp + FEC_R_CNTRL); 3327 3328 if (ndev->flags & IFF_ALLMULTI) { 3329 /* Catch all multicast addresses, so set the 3330 * filter to all 1's 3331 */ 3332 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3333 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3334 3335 return; 3336 } 3337 3338 /* Add the addresses in hash register */ 3339 netdev_for_each_mc_addr(ha, ndev) { 3340 /* calculate crc32 value of mac address */ 3341 crc = ether_crc_le(ndev->addr_len, ha->addr); 3342 3343 /* only upper 6 bits (FEC_HASH_BITS) are used 3344 * which point to specific bit in the hash registers 3345 */ 3346 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3347 3348 if (hash > 31) 3349 hash_high |= 1 << (hash - 32); 3350 else 3351 hash_low |= 1 << hash; 3352 } 3353 3354 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3355 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3356 } 3357 3358 /* Set a MAC change in hardware. */ 3359 static int 3360 fec_set_mac_address(struct net_device *ndev, void *p) 3361 { 3362 struct fec_enet_private *fep = netdev_priv(ndev); 3363 struct sockaddr *addr = p; 3364 3365 if (addr) { 3366 if (!is_valid_ether_addr(addr->sa_data)) 3367 return -EADDRNOTAVAIL; 3368 eth_hw_addr_set(ndev, addr->sa_data); 3369 } 3370 3371 /* Add netif status check here to avoid system hang in below case: 3372 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3373 * After ethx down, fec all clocks are gated off and then register 3374 * access causes system hang. 3375 */ 3376 if (!netif_running(ndev)) 3377 return 0; 3378 3379 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3380 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3381 fep->hwp + FEC_ADDR_LOW); 3382 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3383 fep->hwp + FEC_ADDR_HIGH); 3384 return 0; 3385 } 3386 3387 #ifdef CONFIG_NET_POLL_CONTROLLER 3388 /** 3389 * fec_poll_controller - FEC Poll controller function 3390 * @dev: The FEC network adapter 3391 * 3392 * Polled functionality used by netconsole and others in non interrupt mode 3393 * 3394 */ 3395 static void fec_poll_controller(struct net_device *dev) 3396 { 3397 int i; 3398 struct fec_enet_private *fep = netdev_priv(dev); 3399 3400 for (i = 0; i < FEC_IRQ_NUM; i++) { 3401 if (fep->irq[i] > 0) { 3402 disable_irq(fep->irq[i]); 3403 fec_enet_interrupt(fep->irq[i], dev); 3404 enable_irq(fep->irq[i]); 3405 } 3406 } 3407 } 3408 #endif 3409 3410 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3411 netdev_features_t features) 3412 { 3413 struct fec_enet_private *fep = netdev_priv(netdev); 3414 netdev_features_t changed = features ^ netdev->features; 3415 3416 netdev->features = features; 3417 3418 /* Receive checksum has been changed */ 3419 if (changed & NETIF_F_RXCSUM) { 3420 if (features & NETIF_F_RXCSUM) 3421 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3422 else 3423 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3424 } 3425 } 3426 3427 static int fec_set_features(struct net_device *netdev, 3428 netdev_features_t features) 3429 { 3430 struct fec_enet_private *fep = netdev_priv(netdev); 3431 netdev_features_t changed = features ^ netdev->features; 3432 3433 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3434 napi_disable(&fep->napi); 3435 netif_tx_lock_bh(netdev); 3436 fec_stop(netdev); 3437 fec_enet_set_netdev_features(netdev, features); 3438 fec_restart(netdev); 3439 netif_tx_wake_all_queues(netdev); 3440 netif_tx_unlock_bh(netdev); 3441 napi_enable(&fep->napi); 3442 } else { 3443 fec_enet_set_netdev_features(netdev, features); 3444 } 3445 3446 return 0; 3447 } 3448 3449 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3450 { 3451 struct vlan_ethhdr *vhdr; 3452 unsigned short vlan_TCI = 0; 3453 3454 if (skb->protocol == htons(ETH_P_ALL)) { 3455 vhdr = (struct vlan_ethhdr *)(skb->data); 3456 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3457 } 3458 3459 return vlan_TCI; 3460 } 3461 3462 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3463 struct net_device *sb_dev) 3464 { 3465 struct fec_enet_private *fep = netdev_priv(ndev); 3466 u16 vlan_tag; 3467 3468 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3469 return netdev_pick_tx(ndev, skb, NULL); 3470 3471 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3472 if (!vlan_tag) 3473 return vlan_tag; 3474 3475 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3476 } 3477 3478 static const struct net_device_ops fec_netdev_ops = { 3479 .ndo_open = fec_enet_open, 3480 .ndo_stop = fec_enet_close, 3481 .ndo_start_xmit = fec_enet_start_xmit, 3482 .ndo_select_queue = fec_enet_select_queue, 3483 .ndo_set_rx_mode = set_multicast_list, 3484 .ndo_validate_addr = eth_validate_addr, 3485 .ndo_tx_timeout = fec_timeout, 3486 .ndo_set_mac_address = fec_set_mac_address, 3487 .ndo_eth_ioctl = fec_enet_ioctl, 3488 #ifdef CONFIG_NET_POLL_CONTROLLER 3489 .ndo_poll_controller = fec_poll_controller, 3490 #endif 3491 .ndo_set_features = fec_set_features, 3492 }; 3493 3494 static const unsigned short offset_des_active_rxq[] = { 3495 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3496 }; 3497 3498 static const unsigned short offset_des_active_txq[] = { 3499 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3500 }; 3501 3502 /* 3503 * XXX: We need to clean up on failure exits here. 3504 * 3505 */ 3506 static int fec_enet_init(struct net_device *ndev) 3507 { 3508 struct fec_enet_private *fep = netdev_priv(ndev); 3509 struct bufdesc *cbd_base; 3510 dma_addr_t bd_dma; 3511 int bd_size; 3512 unsigned int i; 3513 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3514 sizeof(struct bufdesc); 3515 unsigned dsize_log2 = __fls(dsize); 3516 int ret; 3517 3518 WARN_ON(dsize != (1 << dsize_log2)); 3519 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3520 fep->rx_align = 0xf; 3521 fep->tx_align = 0xf; 3522 #else 3523 fep->rx_align = 0x3; 3524 fep->tx_align = 0x3; 3525 #endif 3526 3527 /* Check mask of the streaming and coherent API */ 3528 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3529 if (ret < 0) { 3530 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3531 return ret; 3532 } 3533 3534 ret = fec_enet_alloc_queue(ndev); 3535 if (ret) 3536 return ret; 3537 3538 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3539 3540 /* Allocate memory for buffer descriptors. */ 3541 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3542 GFP_KERNEL); 3543 if (!cbd_base) { 3544 ret = -ENOMEM; 3545 goto free_queue_mem; 3546 } 3547 3548 /* Get the Ethernet address */ 3549 ret = fec_get_mac(ndev); 3550 if (ret) 3551 goto free_queue_mem; 3552 3553 /* make sure MAC we just acquired is programmed into the hw */ 3554 fec_set_mac_address(ndev, NULL); 3555 3556 /* Set receive and transmit descriptor base. */ 3557 for (i = 0; i < fep->num_rx_queues; i++) { 3558 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3559 unsigned size = dsize * rxq->bd.ring_size; 3560 3561 rxq->bd.qid = i; 3562 rxq->bd.base = cbd_base; 3563 rxq->bd.cur = cbd_base; 3564 rxq->bd.dma = bd_dma; 3565 rxq->bd.dsize = dsize; 3566 rxq->bd.dsize_log2 = dsize_log2; 3567 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3568 bd_dma += size; 3569 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3570 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3571 } 3572 3573 for (i = 0; i < fep->num_tx_queues; i++) { 3574 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3575 unsigned size = dsize * txq->bd.ring_size; 3576 3577 txq->bd.qid = i; 3578 txq->bd.base = cbd_base; 3579 txq->bd.cur = cbd_base; 3580 txq->bd.dma = bd_dma; 3581 txq->bd.dsize = dsize; 3582 txq->bd.dsize_log2 = dsize_log2; 3583 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3584 bd_dma += size; 3585 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3586 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3587 } 3588 3589 3590 /* The FEC Ethernet specific entries in the device structure */ 3591 ndev->watchdog_timeo = TX_TIMEOUT; 3592 ndev->netdev_ops = &fec_netdev_ops; 3593 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3594 3595 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3596 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3597 3598 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3599 /* enable hw VLAN support */ 3600 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3601 3602 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3603 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 3604 3605 /* enable hw accelerator */ 3606 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3607 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3608 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3609 } 3610 3611 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3612 fep->tx_align = 0; 3613 fep->rx_align = 0x3f; 3614 } 3615 3616 ndev->hw_features = ndev->features; 3617 3618 fec_restart(ndev); 3619 3620 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3621 fec_enet_clear_ethtool_stats(ndev); 3622 else 3623 fec_enet_update_ethtool_stats(ndev); 3624 3625 return 0; 3626 3627 free_queue_mem: 3628 fec_enet_free_queue(ndev); 3629 return ret; 3630 } 3631 3632 #ifdef CONFIG_OF 3633 static int fec_reset_phy(struct platform_device *pdev) 3634 { 3635 int err, phy_reset; 3636 bool active_high = false; 3637 int msec = 1, phy_post_delay = 0; 3638 struct device_node *np = pdev->dev.of_node; 3639 3640 if (!np) 3641 return 0; 3642 3643 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3644 /* A sane reset duration should not be longer than 1s */ 3645 if (!err && msec > 1000) 3646 msec = 1; 3647 3648 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3649 if (phy_reset == -EPROBE_DEFER) 3650 return phy_reset; 3651 else if (!gpio_is_valid(phy_reset)) 3652 return 0; 3653 3654 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3655 /* valid reset duration should be less than 1s */ 3656 if (!err && phy_post_delay > 1000) 3657 return -EINVAL; 3658 3659 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3660 3661 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3662 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3663 "phy-reset"); 3664 if (err) { 3665 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3666 return err; 3667 } 3668 3669 if (msec > 20) 3670 msleep(msec); 3671 else 3672 usleep_range(msec * 1000, msec * 1000 + 1000); 3673 3674 gpio_set_value_cansleep(phy_reset, !active_high); 3675 3676 if (!phy_post_delay) 3677 return 0; 3678 3679 if (phy_post_delay > 20) 3680 msleep(phy_post_delay); 3681 else 3682 usleep_range(phy_post_delay * 1000, 3683 phy_post_delay * 1000 + 1000); 3684 3685 return 0; 3686 } 3687 #else /* CONFIG_OF */ 3688 static int fec_reset_phy(struct platform_device *pdev) 3689 { 3690 /* 3691 * In case of platform probe, the reset has been done 3692 * by machine code. 3693 */ 3694 return 0; 3695 } 3696 #endif /* CONFIG_OF */ 3697 3698 static void 3699 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3700 { 3701 struct device_node *np = pdev->dev.of_node; 3702 3703 *num_tx = *num_rx = 1; 3704 3705 if (!np || !of_device_is_available(np)) 3706 return; 3707 3708 /* parse the num of tx and rx queues */ 3709 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3710 3711 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3712 3713 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3714 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3715 *num_tx); 3716 *num_tx = 1; 3717 return; 3718 } 3719 3720 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3721 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3722 *num_rx); 3723 *num_rx = 1; 3724 return; 3725 } 3726 3727 } 3728 3729 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3730 { 3731 int irq_cnt = platform_irq_count(pdev); 3732 3733 if (irq_cnt > FEC_IRQ_NUM) 3734 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3735 else if (irq_cnt == 2) 3736 irq_cnt = 1; /* last for pps */ 3737 else if (irq_cnt <= 0) 3738 irq_cnt = 1; /* At least 1 irq is needed */ 3739 return irq_cnt; 3740 } 3741 3742 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 3743 { 3744 struct net_device *ndev = platform_get_drvdata(pdev); 3745 struct fec_enet_private *fep = netdev_priv(ndev); 3746 3747 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 3748 fep->wake_irq = fep->irq[2]; 3749 else 3750 fep->wake_irq = fep->irq[0]; 3751 } 3752 3753 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3754 struct device_node *np) 3755 { 3756 struct device_node *gpr_np; 3757 u32 out_val[3]; 3758 int ret = 0; 3759 3760 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3761 if (!gpr_np) 3762 return 0; 3763 3764 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3765 ARRAY_SIZE(out_val)); 3766 if (ret) { 3767 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3768 goto out; 3769 } 3770 3771 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3772 if (IS_ERR(fep->stop_gpr.gpr)) { 3773 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3774 ret = PTR_ERR(fep->stop_gpr.gpr); 3775 fep->stop_gpr.gpr = NULL; 3776 goto out; 3777 } 3778 3779 fep->stop_gpr.reg = out_val[1]; 3780 fep->stop_gpr.bit = out_val[2]; 3781 3782 out: 3783 of_node_put(gpr_np); 3784 3785 return ret; 3786 } 3787 3788 static int 3789 fec_probe(struct platform_device *pdev) 3790 { 3791 struct fec_enet_private *fep; 3792 struct fec_platform_data *pdata; 3793 phy_interface_t interface; 3794 struct net_device *ndev; 3795 int i, irq, ret = 0; 3796 const struct of_device_id *of_id; 3797 static int dev_id; 3798 struct device_node *np = pdev->dev.of_node, *phy_node; 3799 int num_tx_qs; 3800 int num_rx_qs; 3801 char irq_name[8]; 3802 int irq_cnt; 3803 struct fec_devinfo *dev_info; 3804 3805 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3806 3807 /* Init network device */ 3808 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3809 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3810 if (!ndev) 3811 return -ENOMEM; 3812 3813 SET_NETDEV_DEV(ndev, &pdev->dev); 3814 3815 /* setup board info structure */ 3816 fep = netdev_priv(ndev); 3817 3818 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3819 if (of_id) 3820 pdev->id_entry = of_id->data; 3821 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3822 if (dev_info) 3823 fep->quirks = dev_info->quirks; 3824 3825 fep->netdev = ndev; 3826 fep->num_rx_queues = num_rx_qs; 3827 fep->num_tx_queues = num_tx_qs; 3828 3829 #if !defined(CONFIG_M5272) 3830 /* default enable pause frame auto negotiation */ 3831 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3832 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3833 #endif 3834 3835 /* Select default pin state */ 3836 pinctrl_pm_select_default_state(&pdev->dev); 3837 3838 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3839 if (IS_ERR(fep->hwp)) { 3840 ret = PTR_ERR(fep->hwp); 3841 goto failed_ioremap; 3842 } 3843 3844 fep->pdev = pdev; 3845 fep->dev_id = dev_id++; 3846 3847 platform_set_drvdata(pdev, ndev); 3848 3849 if ((of_machine_is_compatible("fsl,imx6q") || 3850 of_machine_is_compatible("fsl,imx6dl")) && 3851 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3852 fep->quirks |= FEC_QUIRK_ERR006687; 3853 3854 if (of_get_property(np, "fsl,magic-packet", NULL)) 3855 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3856 3857 ret = fec_enet_init_stop_mode(fep, np); 3858 if (ret) 3859 goto failed_stop_mode; 3860 3861 phy_node = of_parse_phandle(np, "phy-handle", 0); 3862 if (!phy_node && of_phy_is_fixed_link(np)) { 3863 ret = of_phy_register_fixed_link(np); 3864 if (ret < 0) { 3865 dev_err(&pdev->dev, 3866 "broken fixed-link specification\n"); 3867 goto failed_phy; 3868 } 3869 phy_node = of_node_get(np); 3870 } 3871 fep->phy_node = phy_node; 3872 3873 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3874 if (ret) { 3875 pdata = dev_get_platdata(&pdev->dev); 3876 if (pdata) 3877 fep->phy_interface = pdata->phy; 3878 else 3879 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3880 } else { 3881 fep->phy_interface = interface; 3882 } 3883 3884 ret = fec_enet_parse_rgmii_delay(fep, np); 3885 if (ret) 3886 goto failed_rgmii_delay; 3887 3888 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3889 if (IS_ERR(fep->clk_ipg)) { 3890 ret = PTR_ERR(fep->clk_ipg); 3891 goto failed_clk; 3892 } 3893 3894 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3895 if (IS_ERR(fep->clk_ahb)) { 3896 ret = PTR_ERR(fep->clk_ahb); 3897 goto failed_clk; 3898 } 3899 3900 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3901 3902 /* enet_out is optional, depends on board */ 3903 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 3904 if (IS_ERR(fep->clk_enet_out)) { 3905 ret = PTR_ERR(fep->clk_enet_out); 3906 goto failed_clk; 3907 } 3908 3909 fep->ptp_clk_on = false; 3910 mutex_init(&fep->ptp_clk_mutex); 3911 3912 /* clk_ref is optional, depends on board */ 3913 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 3914 if (IS_ERR(fep->clk_ref)) { 3915 ret = PTR_ERR(fep->clk_ref); 3916 goto failed_clk; 3917 } 3918 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 3919 3920 /* clk_2x_txclk is optional, depends on board */ 3921 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 3922 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 3923 if (IS_ERR(fep->clk_2x_txclk)) 3924 fep->clk_2x_txclk = NULL; 3925 } 3926 3927 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3928 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3929 if (IS_ERR(fep->clk_ptp)) { 3930 fep->clk_ptp = NULL; 3931 fep->bufdesc_ex = false; 3932 } 3933 3934 ret = fec_enet_clk_enable(ndev, true); 3935 if (ret) 3936 goto failed_clk; 3937 3938 ret = clk_prepare_enable(fep->clk_ipg); 3939 if (ret) 3940 goto failed_clk_ipg; 3941 ret = clk_prepare_enable(fep->clk_ahb); 3942 if (ret) 3943 goto failed_clk_ahb; 3944 3945 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3946 if (!IS_ERR(fep->reg_phy)) { 3947 ret = regulator_enable(fep->reg_phy); 3948 if (ret) { 3949 dev_err(&pdev->dev, 3950 "Failed to enable phy regulator: %d\n", ret); 3951 goto failed_regulator; 3952 } 3953 } else { 3954 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3955 ret = -EPROBE_DEFER; 3956 goto failed_regulator; 3957 } 3958 fep->reg_phy = NULL; 3959 } 3960 3961 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3962 pm_runtime_use_autosuspend(&pdev->dev); 3963 pm_runtime_get_noresume(&pdev->dev); 3964 pm_runtime_set_active(&pdev->dev); 3965 pm_runtime_enable(&pdev->dev); 3966 3967 ret = fec_reset_phy(pdev); 3968 if (ret) 3969 goto failed_reset; 3970 3971 irq_cnt = fec_enet_get_irq_cnt(pdev); 3972 if (fep->bufdesc_ex) 3973 fec_ptp_init(pdev, irq_cnt); 3974 3975 ret = fec_enet_init(ndev); 3976 if (ret) 3977 goto failed_init; 3978 3979 for (i = 0; i < irq_cnt; i++) { 3980 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3981 irq = platform_get_irq_byname_optional(pdev, irq_name); 3982 if (irq < 0) 3983 irq = platform_get_irq(pdev, i); 3984 if (irq < 0) { 3985 ret = irq; 3986 goto failed_irq; 3987 } 3988 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3989 0, pdev->name, ndev); 3990 if (ret) 3991 goto failed_irq; 3992 3993 fep->irq[i] = irq; 3994 } 3995 3996 /* Decide which interrupt line is wakeup capable */ 3997 fec_enet_get_wakeup_irq(pdev); 3998 3999 ret = fec_enet_mii_init(pdev); 4000 if (ret) 4001 goto failed_mii_init; 4002 4003 /* Carrier starts down, phylib will bring it up */ 4004 netif_carrier_off(ndev); 4005 fec_enet_clk_enable(ndev, false); 4006 pinctrl_pm_select_sleep_state(&pdev->dev); 4007 4008 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4009 4010 ret = register_netdev(ndev); 4011 if (ret) 4012 goto failed_register; 4013 4014 device_init_wakeup(&ndev->dev, fep->wol_flag & 4015 FEC_WOL_HAS_MAGIC_PACKET); 4016 4017 if (fep->bufdesc_ex && fep->ptp_clock) 4018 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4019 4020 fep->rx_copybreak = COPYBREAK_DEFAULT; 4021 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4022 4023 pm_runtime_mark_last_busy(&pdev->dev); 4024 pm_runtime_put_autosuspend(&pdev->dev); 4025 4026 return 0; 4027 4028 failed_register: 4029 fec_enet_mii_remove(fep); 4030 failed_mii_init: 4031 failed_irq: 4032 failed_init: 4033 fec_ptp_stop(pdev); 4034 failed_reset: 4035 pm_runtime_put_noidle(&pdev->dev); 4036 pm_runtime_disable(&pdev->dev); 4037 if (fep->reg_phy) 4038 regulator_disable(fep->reg_phy); 4039 failed_regulator: 4040 clk_disable_unprepare(fep->clk_ahb); 4041 failed_clk_ahb: 4042 clk_disable_unprepare(fep->clk_ipg); 4043 failed_clk_ipg: 4044 fec_enet_clk_enable(ndev, false); 4045 failed_clk: 4046 failed_rgmii_delay: 4047 if (of_phy_is_fixed_link(np)) 4048 of_phy_deregister_fixed_link(np); 4049 of_node_put(phy_node); 4050 failed_stop_mode: 4051 failed_phy: 4052 dev_id--; 4053 failed_ioremap: 4054 free_netdev(ndev); 4055 4056 return ret; 4057 } 4058 4059 static int 4060 fec_drv_remove(struct platform_device *pdev) 4061 { 4062 struct net_device *ndev = platform_get_drvdata(pdev); 4063 struct fec_enet_private *fep = netdev_priv(ndev); 4064 struct device_node *np = pdev->dev.of_node; 4065 int ret; 4066 4067 ret = pm_runtime_resume_and_get(&pdev->dev); 4068 if (ret < 0) 4069 return ret; 4070 4071 cancel_work_sync(&fep->tx_timeout_work); 4072 fec_ptp_stop(pdev); 4073 unregister_netdev(ndev); 4074 fec_enet_mii_remove(fep); 4075 if (fep->reg_phy) 4076 regulator_disable(fep->reg_phy); 4077 4078 if (of_phy_is_fixed_link(np)) 4079 of_phy_deregister_fixed_link(np); 4080 of_node_put(fep->phy_node); 4081 4082 clk_disable_unprepare(fep->clk_ahb); 4083 clk_disable_unprepare(fep->clk_ipg); 4084 pm_runtime_put_noidle(&pdev->dev); 4085 pm_runtime_disable(&pdev->dev); 4086 4087 free_netdev(ndev); 4088 return 0; 4089 } 4090 4091 static int __maybe_unused fec_suspend(struct device *dev) 4092 { 4093 struct net_device *ndev = dev_get_drvdata(dev); 4094 struct fec_enet_private *fep = netdev_priv(ndev); 4095 4096 rtnl_lock(); 4097 if (netif_running(ndev)) { 4098 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4099 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4100 phy_stop(ndev->phydev); 4101 napi_disable(&fep->napi); 4102 netif_tx_lock_bh(ndev); 4103 netif_device_detach(ndev); 4104 netif_tx_unlock_bh(ndev); 4105 fec_stop(ndev); 4106 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4107 fec_irqs_disable(ndev); 4108 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4109 } else { 4110 fec_irqs_disable_except_wakeup(ndev); 4111 if (fep->wake_irq > 0) { 4112 disable_irq(fep->wake_irq); 4113 enable_irq_wake(fep->wake_irq); 4114 } 4115 fec_enet_stop_mode(fep, true); 4116 } 4117 /* It's safe to disable clocks since interrupts are masked */ 4118 fec_enet_clk_enable(ndev, false); 4119 } 4120 rtnl_unlock(); 4121 4122 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4123 regulator_disable(fep->reg_phy); 4124 4125 /* SOC supply clock to phy, when clock is disabled, phy link down 4126 * SOC control phy regulator, when regulator is disabled, phy link down 4127 */ 4128 if (fep->clk_enet_out || fep->reg_phy) 4129 fep->link = 0; 4130 4131 return 0; 4132 } 4133 4134 static int __maybe_unused fec_resume(struct device *dev) 4135 { 4136 struct net_device *ndev = dev_get_drvdata(dev); 4137 struct fec_enet_private *fep = netdev_priv(ndev); 4138 int ret; 4139 int val; 4140 4141 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4142 ret = regulator_enable(fep->reg_phy); 4143 if (ret) 4144 return ret; 4145 } 4146 4147 rtnl_lock(); 4148 if (netif_running(ndev)) { 4149 ret = fec_enet_clk_enable(ndev, true); 4150 if (ret) { 4151 rtnl_unlock(); 4152 goto failed_clk; 4153 } 4154 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4155 fec_enet_stop_mode(fep, false); 4156 if (fep->wake_irq) { 4157 disable_irq_wake(fep->wake_irq); 4158 enable_irq(fep->wake_irq); 4159 } 4160 4161 val = readl(fep->hwp + FEC_ECNTRL); 4162 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4163 writel(val, fep->hwp + FEC_ECNTRL); 4164 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4165 } else { 4166 pinctrl_pm_select_default_state(&fep->pdev->dev); 4167 } 4168 fec_restart(ndev); 4169 netif_tx_lock_bh(ndev); 4170 netif_device_attach(ndev); 4171 netif_tx_unlock_bh(ndev); 4172 napi_enable(&fep->napi); 4173 phy_init_hw(ndev->phydev); 4174 phy_start(ndev->phydev); 4175 } 4176 rtnl_unlock(); 4177 4178 return 0; 4179 4180 failed_clk: 4181 if (fep->reg_phy) 4182 regulator_disable(fep->reg_phy); 4183 return ret; 4184 } 4185 4186 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4187 { 4188 struct net_device *ndev = dev_get_drvdata(dev); 4189 struct fec_enet_private *fep = netdev_priv(ndev); 4190 4191 clk_disable_unprepare(fep->clk_ahb); 4192 clk_disable_unprepare(fep->clk_ipg); 4193 4194 return 0; 4195 } 4196 4197 static int __maybe_unused fec_runtime_resume(struct device *dev) 4198 { 4199 struct net_device *ndev = dev_get_drvdata(dev); 4200 struct fec_enet_private *fep = netdev_priv(ndev); 4201 int ret; 4202 4203 ret = clk_prepare_enable(fep->clk_ahb); 4204 if (ret) 4205 return ret; 4206 ret = clk_prepare_enable(fep->clk_ipg); 4207 if (ret) 4208 goto failed_clk_ipg; 4209 4210 return 0; 4211 4212 failed_clk_ipg: 4213 clk_disable_unprepare(fep->clk_ahb); 4214 return ret; 4215 } 4216 4217 static const struct dev_pm_ops fec_pm_ops = { 4218 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4219 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4220 }; 4221 4222 static struct platform_driver fec_driver = { 4223 .driver = { 4224 .name = DRIVER_NAME, 4225 .pm = &fec_pm_ops, 4226 .of_match_table = fec_dt_ids, 4227 .suppress_bind_attrs = true, 4228 }, 4229 .id_table = fec_devtype, 4230 .probe = fec_probe, 4231 .remove = fec_drv_remove, 4232 }; 4233 4234 module_platform_driver(fec_driver); 4235 4236 MODULE_LICENSE("GPL"); 4237