1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95 				FEC_QUIRK_SINGLE_MDIO,
96 	}, {
97 		.name = "imx6q-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101 	}, {
102 		.name = "mvf600-fec",
103 		.driver_data = FEC_QUIRK_ENET_MAC,
104 	}, {
105 		.name = "imx6sx-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110 	}, {
111 		/* sentinel */
112 	}
113 };
114 MODULE_DEVICE_TABLE(platform, fec_devtype);
115 
116 enum imx_fec_type {
117 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
118 	IMX27_FEC,	/* runs on i.mx27/35/51 */
119 	IMX28_FEC,
120 	IMX6Q_FEC,
121 	MVF600_FEC,
122 	IMX6SX_FEC,
123 };
124 
125 static const struct of_device_id fec_dt_ids[] = {
126 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132 	{ /* sentinel */ }
133 };
134 MODULE_DEVICE_TABLE(of, fec_dt_ids);
135 
136 static unsigned char macaddr[ETH_ALEN];
137 module_param_array(macaddr, byte, NULL, 0);
138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139 
140 #if defined(CONFIG_M5272)
141 /*
142  * Some hardware gets it MAC address out of local flash memory.
143  * if this is non-zero then assume it is the address to get MAC from.
144  */
145 #if defined(CONFIG_NETtel)
146 #define	FEC_FLASHMAC	0xf0006006
147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148 #define	FEC_FLASHMAC	0xf0006000
149 #elif defined(CONFIG_CANCam)
150 #define	FEC_FLASHMAC	0xf0020000
151 #elif defined (CONFIG_M5272C3)
152 #define	FEC_FLASHMAC	(0xffe04000 + 4)
153 #elif defined(CONFIG_MOD5272)
154 #define FEC_FLASHMAC	0xffc0406b
155 #else
156 #define	FEC_FLASHMAC	0
157 #endif
158 #endif /* CONFIG_M5272 */
159 
160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161  */
162 #define PKT_MAXBUF_SIZE		1522
163 #define PKT_MINBUF_SIZE		64
164 #define PKT_MAXBLR_SIZE		1536
165 
166 /* FEC receive acceleration */
167 #define FEC_RACC_IPDIS		(1 << 1)
168 #define FEC_RACC_PRODIS		(1 << 2)
169 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170 
171 /*
172  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173  * size bits. Other FEC hardware does not, so we need to take that into
174  * account when setting it.
175  */
176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
179 #else
180 #define	OPT_FRAME_SIZE	0
181 #endif
182 
183 /* FEC MII MMFR bits definition */
184 #define FEC_MMFR_ST		(1 << 30)
185 #define FEC_MMFR_OP_READ	(2 << 28)
186 #define FEC_MMFR_OP_WRITE	(1 << 28)
187 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
188 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
189 #define FEC_MMFR_TA		(2 << 16)
190 #define FEC_MMFR_DATA(v)	(v & 0xffff)
191 /* FEC ECR bits definition */
192 #define FEC_ECR_MAGICEN		(1 << 2)
193 #define FEC_ECR_SLEEP		(1 << 3)
194 
195 #define FEC_MII_TIMEOUT		30000 /* us */
196 
197 /* Transmitter timeout */
198 #define TX_TIMEOUT (2 * HZ)
199 
200 #define FEC_PAUSE_FLAG_AUTONEG	0x1
201 #define FEC_PAUSE_FLAG_ENABLE	0x2
202 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
203 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
204 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
205 
206 #define COPYBREAK_DEFAULT	256
207 
208 #define TSO_HEADER_SIZE		128
209 /* Max number of allowed TCP segments for software TSO */
210 #define FEC_MAX_TSO_SEGS	100
211 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
212 
213 #define IS_TSO_HEADER(txq, addr) \
214 	((addr >= txq->tso_hdrs_dma) && \
215 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
216 
217 static int mii_cnt;
218 
219 static inline
220 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
221 				      struct fec_enet_private *fep,
222 				      int queue_id)
223 {
224 	struct bufdesc *new_bd = bdp + 1;
225 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
226 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
227 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
228 	struct bufdesc_ex *ex_base;
229 	struct bufdesc *base;
230 	int ring_size;
231 
232 	if (bdp >= txq->tx_bd_base) {
233 		base = txq->tx_bd_base;
234 		ring_size = txq->tx_ring_size;
235 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
236 	} else {
237 		base = rxq->rx_bd_base;
238 		ring_size = rxq->rx_ring_size;
239 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
240 	}
241 
242 	if (fep->bufdesc_ex)
243 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
244 			ex_base : ex_new_bd);
245 	else
246 		return (new_bd >= (base + ring_size)) ?
247 			base : new_bd;
248 }
249 
250 static inline
251 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
252 				      struct fec_enet_private *fep,
253 				      int queue_id)
254 {
255 	struct bufdesc *new_bd = bdp - 1;
256 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
257 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
258 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
259 	struct bufdesc_ex *ex_base;
260 	struct bufdesc *base;
261 	int ring_size;
262 
263 	if (bdp >= txq->tx_bd_base) {
264 		base = txq->tx_bd_base;
265 		ring_size = txq->tx_ring_size;
266 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
267 	} else {
268 		base = rxq->rx_bd_base;
269 		ring_size = rxq->rx_ring_size;
270 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
271 	}
272 
273 	if (fep->bufdesc_ex)
274 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
275 			(ex_new_bd + ring_size) : ex_new_bd);
276 	else
277 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
278 }
279 
280 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
281 				struct fec_enet_private *fep)
282 {
283 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
284 }
285 
286 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
287 					struct fec_enet_priv_tx_q *txq)
288 {
289 	int entries;
290 
291 	entries = ((const char *)txq->dirty_tx -
292 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
293 
294 	return entries > 0 ? entries : entries + txq->tx_ring_size;
295 }
296 
297 static void swap_buffer(void *bufaddr, int len)
298 {
299 	int i;
300 	unsigned int *buf = bufaddr;
301 
302 	for (i = 0; i < len; i += 4, buf++)
303 		swab32s(buf);
304 }
305 
306 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
307 {
308 	int i;
309 	unsigned int *src = src_buf;
310 	unsigned int *dst = dst_buf;
311 
312 	for (i = 0; i < len; i += 4, src++, dst++)
313 		*dst = swab32p(src);
314 }
315 
316 static void fec_dump(struct net_device *ndev)
317 {
318 	struct fec_enet_private *fep = netdev_priv(ndev);
319 	struct bufdesc *bdp;
320 	struct fec_enet_priv_tx_q *txq;
321 	int index = 0;
322 
323 	netdev_info(ndev, "TX ring dump\n");
324 	pr_info("Nr     SC     addr       len  SKB\n");
325 
326 	txq = fep->tx_queue[0];
327 	bdp = txq->tx_bd_base;
328 
329 	do {
330 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
331 			index,
332 			bdp == txq->cur_tx ? 'S' : ' ',
333 			bdp == txq->dirty_tx ? 'H' : ' ',
334 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
335 			txq->tx_skbuff[index]);
336 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
337 		index++;
338 	} while (bdp != txq->tx_bd_base);
339 }
340 
341 static inline bool is_ipv4_pkt(struct sk_buff *skb)
342 {
343 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
344 }
345 
346 static int
347 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
348 {
349 	/* Only run for packets requiring a checksum. */
350 	if (skb->ip_summed != CHECKSUM_PARTIAL)
351 		return 0;
352 
353 	if (unlikely(skb_cow_head(skb, 0)))
354 		return -1;
355 
356 	if (is_ipv4_pkt(skb))
357 		ip_hdr(skb)->check = 0;
358 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
359 
360 	return 0;
361 }
362 
363 static int
364 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
365 			     struct sk_buff *skb,
366 			     struct net_device *ndev)
367 {
368 	struct fec_enet_private *fep = netdev_priv(ndev);
369 	struct bufdesc *bdp = txq->cur_tx;
370 	struct bufdesc_ex *ebdp;
371 	int nr_frags = skb_shinfo(skb)->nr_frags;
372 	unsigned short queue = skb_get_queue_mapping(skb);
373 	int frag, frag_len;
374 	unsigned short status;
375 	unsigned int estatus = 0;
376 	skb_frag_t *this_frag;
377 	unsigned int index;
378 	void *bufaddr;
379 	dma_addr_t addr;
380 	int i;
381 
382 	for (frag = 0; frag < nr_frags; frag++) {
383 		this_frag = &skb_shinfo(skb)->frags[frag];
384 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
385 		ebdp = (struct bufdesc_ex *)bdp;
386 
387 		status = bdp->cbd_sc;
388 		status &= ~BD_ENET_TX_STATS;
389 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
390 		frag_len = skb_shinfo(skb)->frags[frag].size;
391 
392 		/* Handle the last BD specially */
393 		if (frag == nr_frags - 1) {
394 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
395 			if (fep->bufdesc_ex) {
396 				estatus |= BD_ENET_TX_INT;
397 				if (unlikely(skb_shinfo(skb)->tx_flags &
398 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
399 					estatus |= BD_ENET_TX_TS;
400 			}
401 		}
402 
403 		if (fep->bufdesc_ex) {
404 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
405 				estatus |= FEC_TX_BD_FTYPE(queue);
406 			if (skb->ip_summed == CHECKSUM_PARTIAL)
407 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
408 			ebdp->cbd_bdu = 0;
409 			ebdp->cbd_esc = estatus;
410 		}
411 
412 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
413 
414 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
415 		if (((unsigned long) bufaddr) & fep->tx_align ||
416 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
417 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
418 			bufaddr = txq->tx_bounce[index];
419 
420 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
421 				swap_buffer(bufaddr, frag_len);
422 		}
423 
424 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
425 				      DMA_TO_DEVICE);
426 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
427 			dev_kfree_skb_any(skb);
428 			if (net_ratelimit())
429 				netdev_err(ndev, "Tx DMA memory map failed\n");
430 			goto dma_mapping_error;
431 		}
432 
433 		bdp->cbd_bufaddr = addr;
434 		bdp->cbd_datlen = frag_len;
435 		bdp->cbd_sc = status;
436 	}
437 
438 	txq->cur_tx = bdp;
439 
440 	return 0;
441 
442 dma_mapping_error:
443 	bdp = txq->cur_tx;
444 	for (i = 0; i < frag; i++) {
445 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
446 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
447 				bdp->cbd_datlen, DMA_TO_DEVICE);
448 	}
449 	return NETDEV_TX_OK;
450 }
451 
452 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
453 				   struct sk_buff *skb, struct net_device *ndev)
454 {
455 	struct fec_enet_private *fep = netdev_priv(ndev);
456 	int nr_frags = skb_shinfo(skb)->nr_frags;
457 	struct bufdesc *bdp, *last_bdp;
458 	void *bufaddr;
459 	dma_addr_t addr;
460 	unsigned short status;
461 	unsigned short buflen;
462 	unsigned short queue;
463 	unsigned int estatus = 0;
464 	unsigned int index;
465 	int entries_free;
466 	int ret;
467 
468 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 	if (entries_free < MAX_SKB_FRAGS + 1) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "NOT enough BD for SG!\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Protocol checksum off-load for TCP and UDP. */
477 	if (fec_enet_clear_csum(skb, ndev)) {
478 		dev_kfree_skb_any(skb);
479 		return NETDEV_TX_OK;
480 	}
481 
482 	/* Fill in a Tx ring entry */
483 	bdp = txq->cur_tx;
484 	status = bdp->cbd_sc;
485 	status &= ~BD_ENET_TX_STATS;
486 
487 	/* Set buffer length and buffer pointer */
488 	bufaddr = skb->data;
489 	buflen = skb_headlen(skb);
490 
491 	queue = skb_get_queue_mapping(skb);
492 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
493 	if (((unsigned long) bufaddr) & fep->tx_align ||
494 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
495 		memcpy(txq->tx_bounce[index], skb->data, buflen);
496 		bufaddr = txq->tx_bounce[index];
497 
498 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
499 			swap_buffer(bufaddr, buflen);
500 	}
501 
502 	/* Push the data cache so the CPM does not get stale memory data. */
503 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
505 		dev_kfree_skb_any(skb);
506 		if (net_ratelimit())
507 			netdev_err(ndev, "Tx DMA memory map failed\n");
508 		return NETDEV_TX_OK;
509 	}
510 
511 	if (nr_frags) {
512 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
513 		if (ret)
514 			return ret;
515 	} else {
516 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517 		if (fep->bufdesc_ex) {
518 			estatus = BD_ENET_TX_INT;
519 			if (unlikely(skb_shinfo(skb)->tx_flags &
520 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521 				estatus |= BD_ENET_TX_TS;
522 		}
523 	}
524 
525 	if (fep->bufdesc_ex) {
526 
527 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528 
529 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530 			fep->hwts_tx_en))
531 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532 
533 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
534 			estatus |= FEC_TX_BD_FTYPE(queue);
535 
536 		if (skb->ip_summed == CHECKSUM_PARTIAL)
537 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
538 
539 		ebdp->cbd_bdu = 0;
540 		ebdp->cbd_esc = estatus;
541 	}
542 
543 	last_bdp = txq->cur_tx;
544 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 	/* Save skb pointer */
546 	txq->tx_skbuff[index] = skb;
547 
548 	bdp->cbd_datlen = buflen;
549 	bdp->cbd_bufaddr = addr;
550 
551 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
552 	 * it's the last BD of the frame, and to put the CRC on the end.
553 	 */
554 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 	bdp->cbd_sc = status;
556 
557 	/* If this was the last BD in the ring, start at the beginning again. */
558 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559 
560 	skb_tx_timestamp(skb);
561 
562 	txq->cur_tx = bdp;
563 
564 	/* Trigger transmission start */
565 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
566 
567 	return 0;
568 }
569 
570 static int
571 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
572 			  struct net_device *ndev,
573 			  struct bufdesc *bdp, int index, char *data,
574 			  int size, bool last_tcp, bool is_last)
575 {
576 	struct fec_enet_private *fep = netdev_priv(ndev);
577 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
578 	unsigned short queue = skb_get_queue_mapping(skb);
579 	unsigned short status;
580 	unsigned int estatus = 0;
581 	dma_addr_t addr;
582 
583 	status = bdp->cbd_sc;
584 	status &= ~BD_ENET_TX_STATS;
585 
586 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
587 
588 	if (((unsigned long) data) & fep->tx_align ||
589 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
590 		memcpy(txq->tx_bounce[index], data, size);
591 		data = txq->tx_bounce[index];
592 
593 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
594 			swap_buffer(data, size);
595 	}
596 
597 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
598 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
599 		dev_kfree_skb_any(skb);
600 		if (net_ratelimit())
601 			netdev_err(ndev, "Tx DMA memory map failed\n");
602 		return NETDEV_TX_BUSY;
603 	}
604 
605 	bdp->cbd_datlen = size;
606 	bdp->cbd_bufaddr = addr;
607 
608 	if (fep->bufdesc_ex) {
609 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
610 			estatus |= FEC_TX_BD_FTYPE(queue);
611 		if (skb->ip_summed == CHECKSUM_PARTIAL)
612 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
613 		ebdp->cbd_bdu = 0;
614 		ebdp->cbd_esc = estatus;
615 	}
616 
617 	/* Handle the last BD specially */
618 	if (last_tcp)
619 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
620 	if (is_last) {
621 		status |= BD_ENET_TX_INTR;
622 		if (fep->bufdesc_ex)
623 			ebdp->cbd_esc |= BD_ENET_TX_INT;
624 	}
625 
626 	bdp->cbd_sc = status;
627 
628 	return 0;
629 }
630 
631 static int
632 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
633 			 struct sk_buff *skb, struct net_device *ndev,
634 			 struct bufdesc *bdp, int index)
635 {
636 	struct fec_enet_private *fep = netdev_priv(ndev);
637 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
638 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
639 	unsigned short queue = skb_get_queue_mapping(skb);
640 	void *bufaddr;
641 	unsigned long dmabuf;
642 	unsigned short status;
643 	unsigned int estatus = 0;
644 
645 	status = bdp->cbd_sc;
646 	status &= ~BD_ENET_TX_STATS;
647 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
648 
649 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
650 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
651 	if (((unsigned long)bufaddr) & fep->tx_align ||
652 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
653 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
654 		bufaddr = txq->tx_bounce[index];
655 
656 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
657 			swap_buffer(bufaddr, hdr_len);
658 
659 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
660 					hdr_len, DMA_TO_DEVICE);
661 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
662 			dev_kfree_skb_any(skb);
663 			if (net_ratelimit())
664 				netdev_err(ndev, "Tx DMA memory map failed\n");
665 			return NETDEV_TX_BUSY;
666 		}
667 	}
668 
669 	bdp->cbd_bufaddr = dmabuf;
670 	bdp->cbd_datlen = hdr_len;
671 
672 	if (fep->bufdesc_ex) {
673 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
674 			estatus |= FEC_TX_BD_FTYPE(queue);
675 		if (skb->ip_summed == CHECKSUM_PARTIAL)
676 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
677 		ebdp->cbd_bdu = 0;
678 		ebdp->cbd_esc = estatus;
679 	}
680 
681 	bdp->cbd_sc = status;
682 
683 	return 0;
684 }
685 
686 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
687 				   struct sk_buff *skb,
688 				   struct net_device *ndev)
689 {
690 	struct fec_enet_private *fep = netdev_priv(ndev);
691 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
692 	int total_len, data_left;
693 	struct bufdesc *bdp = txq->cur_tx;
694 	unsigned short queue = skb_get_queue_mapping(skb);
695 	struct tso_t tso;
696 	unsigned int index = 0;
697 	int ret;
698 
699 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
700 		dev_kfree_skb_any(skb);
701 		if (net_ratelimit())
702 			netdev_err(ndev, "NOT enough BD for TSO!\n");
703 		return NETDEV_TX_OK;
704 	}
705 
706 	/* Protocol checksum off-load for TCP and UDP. */
707 	if (fec_enet_clear_csum(skb, ndev)) {
708 		dev_kfree_skb_any(skb);
709 		return NETDEV_TX_OK;
710 	}
711 
712 	/* Initialize the TSO handler, and prepare the first payload */
713 	tso_start(skb, &tso);
714 
715 	total_len = skb->len - hdr_len;
716 	while (total_len > 0) {
717 		char *hdr;
718 
719 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
720 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
721 		total_len -= data_left;
722 
723 		/* prepare packet headers: MAC + IP + TCP */
724 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
725 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
726 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
727 		if (ret)
728 			goto err_release;
729 
730 		while (data_left > 0) {
731 			int size;
732 
733 			size = min_t(int, tso.size, data_left);
734 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
735 			index = fec_enet_get_bd_index(txq->tx_bd_base,
736 						      bdp, fep);
737 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
738 							bdp, index,
739 							tso.data, size,
740 							size == data_left,
741 							total_len == 0);
742 			if (ret)
743 				goto err_release;
744 
745 			data_left -= size;
746 			tso_build_data(skb, &tso, size);
747 		}
748 
749 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
750 	}
751 
752 	/* Save skb pointer */
753 	txq->tx_skbuff[index] = skb;
754 
755 	skb_tx_timestamp(skb);
756 	txq->cur_tx = bdp;
757 
758 	/* Trigger transmission start */
759 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
760 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
761 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
762 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
763 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
764 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
765 
766 	return 0;
767 
768 err_release:
769 	/* TODO: Release all used data descriptors for TSO */
770 	return ret;
771 }
772 
773 static netdev_tx_t
774 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
775 {
776 	struct fec_enet_private *fep = netdev_priv(ndev);
777 	int entries_free;
778 	unsigned short queue;
779 	struct fec_enet_priv_tx_q *txq;
780 	struct netdev_queue *nq;
781 	int ret;
782 
783 	queue = skb_get_queue_mapping(skb);
784 	txq = fep->tx_queue[queue];
785 	nq = netdev_get_tx_queue(ndev, queue);
786 
787 	if (skb_is_gso(skb))
788 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
789 	else
790 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
791 	if (ret)
792 		return ret;
793 
794 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
795 	if (entries_free <= txq->tx_stop_threshold)
796 		netif_tx_stop_queue(nq);
797 
798 	return NETDEV_TX_OK;
799 }
800 
801 /* Init RX & TX buffer descriptors
802  */
803 static void fec_enet_bd_init(struct net_device *dev)
804 {
805 	struct fec_enet_private *fep = netdev_priv(dev);
806 	struct fec_enet_priv_tx_q *txq;
807 	struct fec_enet_priv_rx_q *rxq;
808 	struct bufdesc *bdp;
809 	unsigned int i;
810 	unsigned int q;
811 
812 	for (q = 0; q < fep->num_rx_queues; q++) {
813 		/* Initialize the receive buffer descriptors. */
814 		rxq = fep->rx_queue[q];
815 		bdp = rxq->rx_bd_base;
816 
817 		for (i = 0; i < rxq->rx_ring_size; i++) {
818 
819 			/* Initialize the BD for every fragment in the page. */
820 			if (bdp->cbd_bufaddr)
821 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
822 			else
823 				bdp->cbd_sc = 0;
824 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
825 		}
826 
827 		/* Set the last buffer to wrap */
828 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
829 		bdp->cbd_sc |= BD_SC_WRAP;
830 
831 		rxq->cur_rx = rxq->rx_bd_base;
832 	}
833 
834 	for (q = 0; q < fep->num_tx_queues; q++) {
835 		/* ...and the same for transmit */
836 		txq = fep->tx_queue[q];
837 		bdp = txq->tx_bd_base;
838 		txq->cur_tx = bdp;
839 
840 		for (i = 0; i < txq->tx_ring_size; i++) {
841 			/* Initialize the BD for every fragment in the page. */
842 			bdp->cbd_sc = 0;
843 			if (txq->tx_skbuff[i]) {
844 				dev_kfree_skb_any(txq->tx_skbuff[i]);
845 				txq->tx_skbuff[i] = NULL;
846 			}
847 			bdp->cbd_bufaddr = 0;
848 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
849 		}
850 
851 		/* Set the last buffer to wrap */
852 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
853 		bdp->cbd_sc |= BD_SC_WRAP;
854 		txq->dirty_tx = bdp;
855 	}
856 }
857 
858 static void fec_enet_active_rxring(struct net_device *ndev)
859 {
860 	struct fec_enet_private *fep = netdev_priv(ndev);
861 	int i;
862 
863 	for (i = 0; i < fep->num_rx_queues; i++)
864 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
865 }
866 
867 static void fec_enet_enable_ring(struct net_device *ndev)
868 {
869 	struct fec_enet_private *fep = netdev_priv(ndev);
870 	struct fec_enet_priv_tx_q *txq;
871 	struct fec_enet_priv_rx_q *rxq;
872 	int i;
873 
874 	for (i = 0; i < fep->num_rx_queues; i++) {
875 		rxq = fep->rx_queue[i];
876 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
877 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
878 
879 		/* enable DMA1/2 */
880 		if (i)
881 			writel(RCMR_MATCHEN | RCMR_CMP(i),
882 			       fep->hwp + FEC_RCMR(i));
883 	}
884 
885 	for (i = 0; i < fep->num_tx_queues; i++) {
886 		txq = fep->tx_queue[i];
887 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
888 
889 		/* enable DMA1/2 */
890 		if (i)
891 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
892 			       fep->hwp + FEC_DMA_CFG(i));
893 	}
894 }
895 
896 static void fec_enet_reset_skb(struct net_device *ndev)
897 {
898 	struct fec_enet_private *fep = netdev_priv(ndev);
899 	struct fec_enet_priv_tx_q *txq;
900 	int i, j;
901 
902 	for (i = 0; i < fep->num_tx_queues; i++) {
903 		txq = fep->tx_queue[i];
904 
905 		for (j = 0; j < txq->tx_ring_size; j++) {
906 			if (txq->tx_skbuff[j]) {
907 				dev_kfree_skb_any(txq->tx_skbuff[j]);
908 				txq->tx_skbuff[j] = NULL;
909 			}
910 		}
911 	}
912 }
913 
914 /*
915  * This function is called to start or restart the FEC during a link
916  * change, transmit timeout, or to reconfigure the FEC.  The network
917  * packet processing for this device must be stopped before this call.
918  */
919 static void
920 fec_restart(struct net_device *ndev)
921 {
922 	struct fec_enet_private *fep = netdev_priv(ndev);
923 	u32 val;
924 	u32 temp_mac[2];
925 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
926 	u32 ecntl = 0x2; /* ETHEREN */
927 
928 	/* Whack a reset.  We should wait for this.
929 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
930 	 * instead of reset MAC itself.
931 	 */
932 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
933 		writel(0, fep->hwp + FEC_ECNTRL);
934 	} else {
935 		writel(1, fep->hwp + FEC_ECNTRL);
936 		udelay(10);
937 	}
938 
939 	/*
940 	 * enet-mac reset will reset mac address registers too,
941 	 * so need to reconfigure it.
942 	 */
943 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
944 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
945 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
946 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
947 	}
948 
949 	/* Clear any outstanding interrupt. */
950 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
951 
952 	fec_enet_bd_init(ndev);
953 
954 	fec_enet_enable_ring(ndev);
955 
956 	/* Reset tx SKB buffers. */
957 	fec_enet_reset_skb(ndev);
958 
959 	/* Enable MII mode */
960 	if (fep->full_duplex == DUPLEX_FULL) {
961 		/* FD enable */
962 		writel(0x04, fep->hwp + FEC_X_CNTRL);
963 	} else {
964 		/* No Rcv on Xmit */
965 		rcntl |= 0x02;
966 		writel(0x0, fep->hwp + FEC_X_CNTRL);
967 	}
968 
969 	/* Set MII speed */
970 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
971 
972 #if !defined(CONFIG_M5272)
973 	/* set RX checksum */
974 	val = readl(fep->hwp + FEC_RACC);
975 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
976 		val |= FEC_RACC_OPTIONS;
977 	else
978 		val &= ~FEC_RACC_OPTIONS;
979 	writel(val, fep->hwp + FEC_RACC);
980 #endif
981 
982 	/*
983 	 * The phy interface and speed need to get configured
984 	 * differently on enet-mac.
985 	 */
986 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
987 		/* Enable flow control and length check */
988 		rcntl |= 0x40000000 | 0x00000020;
989 
990 		/* RGMII, RMII or MII */
991 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
992 			rcntl |= (1 << 6);
993 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
994 			rcntl |= (1 << 8);
995 		else
996 			rcntl &= ~(1 << 8);
997 
998 		/* 1G, 100M or 10M */
999 		if (fep->phy_dev) {
1000 			if (fep->phy_dev->speed == SPEED_1000)
1001 				ecntl |= (1 << 5);
1002 			else if (fep->phy_dev->speed == SPEED_100)
1003 				rcntl &= ~(1 << 9);
1004 			else
1005 				rcntl |= (1 << 9);
1006 		}
1007 	} else {
1008 #ifdef FEC_MIIGSK_ENR
1009 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1010 			u32 cfgr;
1011 			/* disable the gasket and wait */
1012 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1013 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1014 				udelay(1);
1015 
1016 			/*
1017 			 * configure the gasket:
1018 			 *   RMII, 50 MHz, no loopback, no echo
1019 			 *   MII, 25 MHz, no loopback, no echo
1020 			 */
1021 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1022 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1023 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1024 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1025 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1026 
1027 			/* re-enable the gasket */
1028 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1029 		}
1030 #endif
1031 	}
1032 
1033 #if !defined(CONFIG_M5272)
1034 	/* enable pause frame*/
1035 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1036 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1037 	     fep->phy_dev && fep->phy_dev->pause)) {
1038 		rcntl |= FEC_ENET_FCE;
1039 
1040 		/* set FIFO threshold parameter to reduce overrun */
1041 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1042 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1043 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1044 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1045 
1046 		/* OPD */
1047 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1048 	} else {
1049 		rcntl &= ~FEC_ENET_FCE;
1050 	}
1051 #endif /* !defined(CONFIG_M5272) */
1052 
1053 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1054 
1055 	/* Setup multicast filter. */
1056 	set_multicast_list(ndev);
1057 #ifndef CONFIG_M5272
1058 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1059 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1060 #endif
1061 
1062 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1063 		/* enable ENET endian swap */
1064 		ecntl |= (1 << 8);
1065 		/* enable ENET store and forward mode */
1066 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1067 	}
1068 
1069 	if (fep->bufdesc_ex)
1070 		ecntl |= (1 << 4);
1071 
1072 #ifndef CONFIG_M5272
1073 	/* Enable the MIB statistic event counters */
1074 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1075 #endif
1076 
1077 	/* And last, enable the transmit and receive processing */
1078 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1079 	fec_enet_active_rxring(ndev);
1080 
1081 	if (fep->bufdesc_ex)
1082 		fec_ptp_start_cyclecounter(ndev);
1083 
1084 	/* Enable interrupts we wish to service */
1085 	if (fep->link)
1086 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1087 	else
1088 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1089 
1090 	/* Init the interrupt coalescing */
1091 	fec_enet_itr_coal_init(ndev);
1092 
1093 }
1094 
1095 static void
1096 fec_stop(struct net_device *ndev)
1097 {
1098 	struct fec_enet_private *fep = netdev_priv(ndev);
1099 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1100 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1101 	u32 val;
1102 
1103 	/* We cannot expect a graceful transmit stop without link !!! */
1104 	if (fep->link) {
1105 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1106 		udelay(10);
1107 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1108 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1109 	}
1110 
1111 	/* Whack a reset.  We should wait for this.
1112 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1113 	 * instead of reset MAC itself.
1114 	 */
1115 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1117 			writel(0, fep->hwp + FEC_ECNTRL);
1118 		} else {
1119 			writel(1, fep->hwp + FEC_ECNTRL);
1120 			udelay(10);
1121 		}
1122 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1123 	} else {
1124 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1125 		val = readl(fep->hwp + FEC_ECNTRL);
1126 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1127 		writel(val, fep->hwp + FEC_ECNTRL);
1128 
1129 		if (pdata && pdata->sleep_mode_enable)
1130 			pdata->sleep_mode_enable(true);
1131 	}
1132 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1133 
1134 	/* We have to keep ENET enabled to have MII interrupt stay working */
1135 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1136 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1137 		writel(2, fep->hwp + FEC_ECNTRL);
1138 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1139 	}
1140 }
1141 
1142 
1143 static void
1144 fec_timeout(struct net_device *ndev)
1145 {
1146 	struct fec_enet_private *fep = netdev_priv(ndev);
1147 
1148 	fec_dump(ndev);
1149 
1150 	ndev->stats.tx_errors++;
1151 
1152 	schedule_work(&fep->tx_timeout_work);
1153 }
1154 
1155 static void fec_enet_timeout_work(struct work_struct *work)
1156 {
1157 	struct fec_enet_private *fep =
1158 		container_of(work, struct fec_enet_private, tx_timeout_work);
1159 	struct net_device *ndev = fep->netdev;
1160 
1161 	rtnl_lock();
1162 	if (netif_device_present(ndev) || netif_running(ndev)) {
1163 		napi_disable(&fep->napi);
1164 		netif_tx_lock_bh(ndev);
1165 		fec_restart(ndev);
1166 		netif_wake_queue(ndev);
1167 		netif_tx_unlock_bh(ndev);
1168 		napi_enable(&fep->napi);
1169 	}
1170 	rtnl_unlock();
1171 }
1172 
1173 static void
1174 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1175 	struct skb_shared_hwtstamps *hwtstamps)
1176 {
1177 	unsigned long flags;
1178 	u64 ns;
1179 
1180 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1181 	ns = timecounter_cyc2time(&fep->tc, ts);
1182 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1183 
1184 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1185 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1186 }
1187 
1188 static void
1189 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1190 {
1191 	struct	fec_enet_private *fep;
1192 	struct bufdesc *bdp;
1193 	unsigned short status;
1194 	struct	sk_buff	*skb;
1195 	struct fec_enet_priv_tx_q *txq;
1196 	struct netdev_queue *nq;
1197 	int	index = 0;
1198 	int	entries_free;
1199 
1200 	fep = netdev_priv(ndev);
1201 
1202 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1203 
1204 	txq = fep->tx_queue[queue_id];
1205 	/* get next bdp of dirty_tx */
1206 	nq = netdev_get_tx_queue(ndev, queue_id);
1207 	bdp = txq->dirty_tx;
1208 
1209 	/* get next bdp of dirty_tx */
1210 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1211 
1212 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1213 
1214 		/* current queue is empty */
1215 		if (bdp == txq->cur_tx)
1216 			break;
1217 
1218 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1219 
1220 		skb = txq->tx_skbuff[index];
1221 		txq->tx_skbuff[index] = NULL;
1222 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1223 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1224 					bdp->cbd_datlen, DMA_TO_DEVICE);
1225 		bdp->cbd_bufaddr = 0;
1226 		if (!skb) {
1227 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1228 			continue;
1229 		}
1230 
1231 		/* Check for errors. */
1232 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1233 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1234 				   BD_ENET_TX_CSL)) {
1235 			ndev->stats.tx_errors++;
1236 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1237 				ndev->stats.tx_heartbeat_errors++;
1238 			if (status & BD_ENET_TX_LC)  /* Late collision */
1239 				ndev->stats.tx_window_errors++;
1240 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1241 				ndev->stats.tx_aborted_errors++;
1242 			if (status & BD_ENET_TX_UN)  /* Underrun */
1243 				ndev->stats.tx_fifo_errors++;
1244 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1245 				ndev->stats.tx_carrier_errors++;
1246 		} else {
1247 			ndev->stats.tx_packets++;
1248 			ndev->stats.tx_bytes += skb->len;
1249 		}
1250 
1251 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1252 			fep->bufdesc_ex) {
1253 			struct skb_shared_hwtstamps shhwtstamps;
1254 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1255 
1256 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1257 			skb_tstamp_tx(skb, &shhwtstamps);
1258 		}
1259 
1260 		/* Deferred means some collisions occurred during transmit,
1261 		 * but we eventually sent the packet OK.
1262 		 */
1263 		if (status & BD_ENET_TX_DEF)
1264 			ndev->stats.collisions++;
1265 
1266 		/* Free the sk buffer associated with this last transmit */
1267 		dev_kfree_skb_any(skb);
1268 
1269 		txq->dirty_tx = bdp;
1270 
1271 		/* Update pointer to next buffer descriptor to be transmitted */
1272 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1273 
1274 		/* Since we have freed up a buffer, the ring is no longer full
1275 		 */
1276 		if (netif_queue_stopped(ndev)) {
1277 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1278 			if (entries_free >= txq->tx_wake_threshold)
1279 				netif_tx_wake_queue(nq);
1280 		}
1281 	}
1282 
1283 	/* ERR006538: Keep the transmitter going */
1284 	if (bdp != txq->cur_tx &&
1285 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1286 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1287 }
1288 
1289 static void
1290 fec_enet_tx(struct net_device *ndev)
1291 {
1292 	struct fec_enet_private *fep = netdev_priv(ndev);
1293 	u16 queue_id;
1294 	/* First process class A queue, then Class B and Best Effort queue */
1295 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1296 		clear_bit(queue_id, &fep->work_tx);
1297 		fec_enet_tx_queue(ndev, queue_id);
1298 	}
1299 	return;
1300 }
1301 
1302 static int
1303 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1304 {
1305 	struct  fec_enet_private *fep = netdev_priv(ndev);
1306 	int off;
1307 
1308 	off = ((unsigned long)skb->data) & fep->rx_align;
1309 	if (off)
1310 		skb_reserve(skb, fep->rx_align + 1 - off);
1311 
1312 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1313 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1314 					  DMA_FROM_DEVICE);
1315 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1316 		if (net_ratelimit())
1317 			netdev_err(ndev, "Rx DMA memory map failed\n");
1318 		return -ENOMEM;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1325 			       struct bufdesc *bdp, u32 length, bool swap)
1326 {
1327 	struct  fec_enet_private *fep = netdev_priv(ndev);
1328 	struct sk_buff *new_skb;
1329 
1330 	if (length > fep->rx_copybreak)
1331 		return false;
1332 
1333 	new_skb = netdev_alloc_skb(ndev, length);
1334 	if (!new_skb)
1335 		return false;
1336 
1337 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1338 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1339 				DMA_FROM_DEVICE);
1340 	if (!swap)
1341 		memcpy(new_skb->data, (*skb)->data, length);
1342 	else
1343 		swap_buffer2(new_skb->data, (*skb)->data, length);
1344 	*skb = new_skb;
1345 
1346 	return true;
1347 }
1348 
1349 /* During a receive, the cur_rx points to the current incoming buffer.
1350  * When we update through the ring, if the next incoming buffer has
1351  * not been given to the system, we just set the empty indicator,
1352  * effectively tossing the packet.
1353  */
1354 static int
1355 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1356 {
1357 	struct fec_enet_private *fep = netdev_priv(ndev);
1358 	struct fec_enet_priv_rx_q *rxq;
1359 	struct bufdesc *bdp;
1360 	unsigned short status;
1361 	struct  sk_buff *skb_new = NULL;
1362 	struct  sk_buff *skb;
1363 	ushort	pkt_len;
1364 	__u8 *data;
1365 	int	pkt_received = 0;
1366 	struct	bufdesc_ex *ebdp = NULL;
1367 	bool	vlan_packet_rcvd = false;
1368 	u16	vlan_tag;
1369 	int	index = 0;
1370 	bool	is_copybreak;
1371 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1372 
1373 #ifdef CONFIG_M532x
1374 	flush_cache_all();
1375 #endif
1376 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1377 	rxq = fep->rx_queue[queue_id];
1378 
1379 	/* First, grab all of the stats for the incoming packet.
1380 	 * These get messed up if we get called due to a busy condition.
1381 	 */
1382 	bdp = rxq->cur_rx;
1383 
1384 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1385 
1386 		if (pkt_received >= budget)
1387 			break;
1388 		pkt_received++;
1389 
1390 		/* Since we have allocated space to hold a complete frame,
1391 		 * the last indicator should be set.
1392 		 */
1393 		if ((status & BD_ENET_RX_LAST) == 0)
1394 			netdev_err(ndev, "rcv is not +last\n");
1395 
1396 
1397 		/* Check for errors. */
1398 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1399 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1400 			ndev->stats.rx_errors++;
1401 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1402 				/* Frame too long or too short. */
1403 				ndev->stats.rx_length_errors++;
1404 			}
1405 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1406 				ndev->stats.rx_frame_errors++;
1407 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1408 				ndev->stats.rx_crc_errors++;
1409 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1410 				ndev->stats.rx_fifo_errors++;
1411 		}
1412 
1413 		/* Report late collisions as a frame error.
1414 		 * On this error, the BD is closed, but we don't know what we
1415 		 * have in the buffer.  So, just drop this frame on the floor.
1416 		 */
1417 		if (status & BD_ENET_RX_CL) {
1418 			ndev->stats.rx_errors++;
1419 			ndev->stats.rx_frame_errors++;
1420 			goto rx_processing_done;
1421 		}
1422 
1423 		/* Process the incoming frame. */
1424 		ndev->stats.rx_packets++;
1425 		pkt_len = bdp->cbd_datlen;
1426 		ndev->stats.rx_bytes += pkt_len;
1427 
1428 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1429 		skb = rxq->rx_skbuff[index];
1430 
1431 		/* The packet length includes FCS, but we don't want to
1432 		 * include that when passing upstream as it messes up
1433 		 * bridging applications.
1434 		 */
1435 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1436 						  need_swap);
1437 		if (!is_copybreak) {
1438 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1439 			if (unlikely(!skb_new)) {
1440 				ndev->stats.rx_dropped++;
1441 				goto rx_processing_done;
1442 			}
1443 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1444 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1445 					 DMA_FROM_DEVICE);
1446 		}
1447 
1448 		prefetch(skb->data - NET_IP_ALIGN);
1449 		skb_put(skb, pkt_len - 4);
1450 		data = skb->data;
1451 		if (!is_copybreak && need_swap)
1452 			swap_buffer(data, pkt_len);
1453 
1454 		/* Extract the enhanced buffer descriptor */
1455 		ebdp = NULL;
1456 		if (fep->bufdesc_ex)
1457 			ebdp = (struct bufdesc_ex *)bdp;
1458 
1459 		/* If this is a VLAN packet remove the VLAN Tag */
1460 		vlan_packet_rcvd = false;
1461 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1463 			/* Push and remove the vlan tag */
1464 			struct vlan_hdr *vlan_header =
1465 					(struct vlan_hdr *) (data + ETH_HLEN);
1466 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1467 
1468 			vlan_packet_rcvd = true;
1469 
1470 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1471 			skb_pull(skb, VLAN_HLEN);
1472 		}
1473 
1474 		skb->protocol = eth_type_trans(skb, ndev);
1475 
1476 		/* Get receive timestamp from the skb */
1477 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1478 			fec_enet_hwtstamp(fep, ebdp->ts,
1479 					  skb_hwtstamps(skb));
1480 
1481 		if (fep->bufdesc_ex &&
1482 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1483 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1484 				/* don't check it */
1485 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1486 			} else {
1487 				skb_checksum_none_assert(skb);
1488 			}
1489 		}
1490 
1491 		/* Handle received VLAN packets */
1492 		if (vlan_packet_rcvd)
1493 			__vlan_hwaccel_put_tag(skb,
1494 					       htons(ETH_P_8021Q),
1495 					       vlan_tag);
1496 
1497 		napi_gro_receive(&fep->napi, skb);
1498 
1499 		if (is_copybreak) {
1500 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1501 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1502 						   DMA_FROM_DEVICE);
1503 		} else {
1504 			rxq->rx_skbuff[index] = skb_new;
1505 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1506 		}
1507 
1508 rx_processing_done:
1509 		/* Clear the status flags for this buffer */
1510 		status &= ~BD_ENET_RX_STATS;
1511 
1512 		/* Mark the buffer empty */
1513 		status |= BD_ENET_RX_EMPTY;
1514 		bdp->cbd_sc = status;
1515 
1516 		if (fep->bufdesc_ex) {
1517 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1518 
1519 			ebdp->cbd_esc = BD_ENET_RX_INT;
1520 			ebdp->cbd_prot = 0;
1521 			ebdp->cbd_bdu = 0;
1522 		}
1523 
1524 		/* Update BD pointer to next entry */
1525 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1526 
1527 		/* Doing this here will keep the FEC running while we process
1528 		 * incoming frames.  On a heavily loaded network, we should be
1529 		 * able to keep up at the expense of system resources.
1530 		 */
1531 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1532 	}
1533 	rxq->cur_rx = bdp;
1534 	return pkt_received;
1535 }
1536 
1537 static int
1538 fec_enet_rx(struct net_device *ndev, int budget)
1539 {
1540 	int     pkt_received = 0;
1541 	u16	queue_id;
1542 	struct fec_enet_private *fep = netdev_priv(ndev);
1543 
1544 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1545 		clear_bit(queue_id, &fep->work_rx);
1546 		pkt_received += fec_enet_rx_queue(ndev,
1547 					budget - pkt_received, queue_id);
1548 	}
1549 	return pkt_received;
1550 }
1551 
1552 static bool
1553 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1554 {
1555 	if (int_events == 0)
1556 		return false;
1557 
1558 	if (int_events & FEC_ENET_RXF)
1559 		fep->work_rx |= (1 << 2);
1560 	if (int_events & FEC_ENET_RXF_1)
1561 		fep->work_rx |= (1 << 0);
1562 	if (int_events & FEC_ENET_RXF_2)
1563 		fep->work_rx |= (1 << 1);
1564 
1565 	if (int_events & FEC_ENET_TXF)
1566 		fep->work_tx |= (1 << 2);
1567 	if (int_events & FEC_ENET_TXF_1)
1568 		fep->work_tx |= (1 << 0);
1569 	if (int_events & FEC_ENET_TXF_2)
1570 		fep->work_tx |= (1 << 1);
1571 
1572 	return true;
1573 }
1574 
1575 static irqreturn_t
1576 fec_enet_interrupt(int irq, void *dev_id)
1577 {
1578 	struct net_device *ndev = dev_id;
1579 	struct fec_enet_private *fep = netdev_priv(ndev);
1580 	uint int_events;
1581 	irqreturn_t ret = IRQ_NONE;
1582 
1583 	int_events = readl(fep->hwp + FEC_IEVENT);
1584 	writel(int_events, fep->hwp + FEC_IEVENT);
1585 	fec_enet_collect_events(fep, int_events);
1586 
1587 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1588 		ret = IRQ_HANDLED;
1589 
1590 		if (napi_schedule_prep(&fep->napi)) {
1591 			/* Disable the NAPI interrupts */
1592 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1593 			__napi_schedule(&fep->napi);
1594 		}
1595 	}
1596 
1597 	if (int_events & FEC_ENET_MII) {
1598 		ret = IRQ_HANDLED;
1599 		complete(&fep->mdio_done);
1600 	}
1601 
1602 	if (fep->ptp_clock)
1603 		fec_ptp_check_pps_event(fep);
1604 
1605 	return ret;
1606 }
1607 
1608 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1609 {
1610 	struct net_device *ndev = napi->dev;
1611 	struct fec_enet_private *fep = netdev_priv(ndev);
1612 	int pkts;
1613 
1614 	pkts = fec_enet_rx(ndev, budget);
1615 
1616 	fec_enet_tx(ndev);
1617 
1618 	if (pkts < budget) {
1619 		napi_complete(napi);
1620 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1621 	}
1622 	return pkts;
1623 }
1624 
1625 /* ------------------------------------------------------------------------- */
1626 static void fec_get_mac(struct net_device *ndev)
1627 {
1628 	struct fec_enet_private *fep = netdev_priv(ndev);
1629 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1630 	unsigned char *iap, tmpaddr[ETH_ALEN];
1631 
1632 	/*
1633 	 * try to get mac address in following order:
1634 	 *
1635 	 * 1) module parameter via kernel command line in form
1636 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1637 	 */
1638 	iap = macaddr;
1639 
1640 	/*
1641 	 * 2) from device tree data
1642 	 */
1643 	if (!is_valid_ether_addr(iap)) {
1644 		struct device_node *np = fep->pdev->dev.of_node;
1645 		if (np) {
1646 			const char *mac = of_get_mac_address(np);
1647 			if (mac)
1648 				iap = (unsigned char *) mac;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * 3) from flash or fuse (via platform data)
1654 	 */
1655 	if (!is_valid_ether_addr(iap)) {
1656 #ifdef CONFIG_M5272
1657 		if (FEC_FLASHMAC)
1658 			iap = (unsigned char *)FEC_FLASHMAC;
1659 #else
1660 		if (pdata)
1661 			iap = (unsigned char *)&pdata->mac;
1662 #endif
1663 	}
1664 
1665 	/*
1666 	 * 4) FEC mac registers set by bootloader
1667 	 */
1668 	if (!is_valid_ether_addr(iap)) {
1669 		*((__be32 *) &tmpaddr[0]) =
1670 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1671 		*((__be16 *) &tmpaddr[4]) =
1672 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1673 		iap = &tmpaddr[0];
1674 	}
1675 
1676 	/*
1677 	 * 5) random mac address
1678 	 */
1679 	if (!is_valid_ether_addr(iap)) {
1680 		/* Report it and use a random ethernet address instead */
1681 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1682 		eth_hw_addr_random(ndev);
1683 		netdev_info(ndev, "Using random MAC address: %pM\n",
1684 			    ndev->dev_addr);
1685 		return;
1686 	}
1687 
1688 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1689 
1690 	/* Adjust MAC if using macaddr */
1691 	if (iap == macaddr)
1692 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1693 }
1694 
1695 /* ------------------------------------------------------------------------- */
1696 
1697 /*
1698  * Phy section
1699  */
1700 static void fec_enet_adjust_link(struct net_device *ndev)
1701 {
1702 	struct fec_enet_private *fep = netdev_priv(ndev);
1703 	struct phy_device *phy_dev = fep->phy_dev;
1704 	int status_change = 0;
1705 
1706 	/* Prevent a state halted on mii error */
1707 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1708 		phy_dev->state = PHY_RESUMING;
1709 		return;
1710 	}
1711 
1712 	/*
1713 	 * If the netdev is down, or is going down, we're not interested
1714 	 * in link state events, so just mark our idea of the link as down
1715 	 * and ignore the event.
1716 	 */
1717 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1718 		fep->link = 0;
1719 	} else if (phy_dev->link) {
1720 		if (!fep->link) {
1721 			fep->link = phy_dev->link;
1722 			status_change = 1;
1723 		}
1724 
1725 		if (fep->full_duplex != phy_dev->duplex) {
1726 			fep->full_duplex = phy_dev->duplex;
1727 			status_change = 1;
1728 		}
1729 
1730 		if (phy_dev->speed != fep->speed) {
1731 			fep->speed = phy_dev->speed;
1732 			status_change = 1;
1733 		}
1734 
1735 		/* if any of the above changed restart the FEC */
1736 		if (status_change) {
1737 			napi_disable(&fep->napi);
1738 			netif_tx_lock_bh(ndev);
1739 			fec_restart(ndev);
1740 			netif_wake_queue(ndev);
1741 			netif_tx_unlock_bh(ndev);
1742 			napi_enable(&fep->napi);
1743 		}
1744 	} else {
1745 		if (fep->link) {
1746 			napi_disable(&fep->napi);
1747 			netif_tx_lock_bh(ndev);
1748 			fec_stop(ndev);
1749 			netif_tx_unlock_bh(ndev);
1750 			napi_enable(&fep->napi);
1751 			fep->link = phy_dev->link;
1752 			status_change = 1;
1753 		}
1754 	}
1755 
1756 	if (status_change)
1757 		phy_print_status(phy_dev);
1758 }
1759 
1760 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1761 {
1762 	struct fec_enet_private *fep = bus->priv;
1763 	unsigned long time_left;
1764 
1765 	fep->mii_timeout = 0;
1766 	init_completion(&fep->mdio_done);
1767 
1768 	/* start a read op */
1769 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1770 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1771 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1772 
1773 	/* wait for end of transfer */
1774 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1775 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1776 	if (time_left == 0) {
1777 		fep->mii_timeout = 1;
1778 		netdev_err(fep->netdev, "MDIO read timeout\n");
1779 		return -ETIMEDOUT;
1780 	}
1781 
1782 	/* return value */
1783 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1784 }
1785 
1786 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1787 			   u16 value)
1788 {
1789 	struct fec_enet_private *fep = bus->priv;
1790 	unsigned long time_left;
1791 
1792 	fep->mii_timeout = 0;
1793 	init_completion(&fep->mdio_done);
1794 
1795 	/* start a write op */
1796 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1797 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1798 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1799 		fep->hwp + FEC_MII_DATA);
1800 
1801 	/* wait for end of transfer */
1802 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1803 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1804 	if (time_left == 0) {
1805 		fep->mii_timeout = 1;
1806 		netdev_err(fep->netdev, "MDIO write timeout\n");
1807 		return -ETIMEDOUT;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1814 {
1815 	struct fec_enet_private *fep = netdev_priv(ndev);
1816 	int ret;
1817 
1818 	if (enable) {
1819 		ret = clk_prepare_enable(fep->clk_ahb);
1820 		if (ret)
1821 			return ret;
1822 		ret = clk_prepare_enable(fep->clk_ipg);
1823 		if (ret)
1824 			goto failed_clk_ipg;
1825 		if (fep->clk_enet_out) {
1826 			ret = clk_prepare_enable(fep->clk_enet_out);
1827 			if (ret)
1828 				goto failed_clk_enet_out;
1829 		}
1830 		if (fep->clk_ptp) {
1831 			mutex_lock(&fep->ptp_clk_mutex);
1832 			ret = clk_prepare_enable(fep->clk_ptp);
1833 			if (ret) {
1834 				mutex_unlock(&fep->ptp_clk_mutex);
1835 				goto failed_clk_ptp;
1836 			} else {
1837 				fep->ptp_clk_on = true;
1838 			}
1839 			mutex_unlock(&fep->ptp_clk_mutex);
1840 		}
1841 		if (fep->clk_ref) {
1842 			ret = clk_prepare_enable(fep->clk_ref);
1843 			if (ret)
1844 				goto failed_clk_ref;
1845 		}
1846 	} else {
1847 		clk_disable_unprepare(fep->clk_ahb);
1848 		clk_disable_unprepare(fep->clk_ipg);
1849 		if (fep->clk_enet_out)
1850 			clk_disable_unprepare(fep->clk_enet_out);
1851 		if (fep->clk_ptp) {
1852 			mutex_lock(&fep->ptp_clk_mutex);
1853 			clk_disable_unprepare(fep->clk_ptp);
1854 			fep->ptp_clk_on = false;
1855 			mutex_unlock(&fep->ptp_clk_mutex);
1856 		}
1857 		if (fep->clk_ref)
1858 			clk_disable_unprepare(fep->clk_ref);
1859 	}
1860 
1861 	return 0;
1862 
1863 failed_clk_ref:
1864 	if (fep->clk_ref)
1865 		clk_disable_unprepare(fep->clk_ref);
1866 failed_clk_ptp:
1867 	if (fep->clk_enet_out)
1868 		clk_disable_unprepare(fep->clk_enet_out);
1869 failed_clk_enet_out:
1870 		clk_disable_unprepare(fep->clk_ipg);
1871 failed_clk_ipg:
1872 		clk_disable_unprepare(fep->clk_ahb);
1873 
1874 	return ret;
1875 }
1876 
1877 static int fec_enet_mii_probe(struct net_device *ndev)
1878 {
1879 	struct fec_enet_private *fep = netdev_priv(ndev);
1880 	struct phy_device *phy_dev = NULL;
1881 	char mdio_bus_id[MII_BUS_ID_SIZE];
1882 	char phy_name[MII_BUS_ID_SIZE + 3];
1883 	int phy_id;
1884 	int dev_id = fep->dev_id;
1885 
1886 	fep->phy_dev = NULL;
1887 
1888 	if (fep->phy_node) {
1889 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1890 					 &fec_enet_adjust_link, 0,
1891 					 fep->phy_interface);
1892 		if (!phy_dev)
1893 			return -ENODEV;
1894 	} else {
1895 		/* check for attached phy */
1896 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1897 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1898 				continue;
1899 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1900 				continue;
1901 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1902 				continue;
1903 			if (dev_id--)
1904 				continue;
1905 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1906 			break;
1907 		}
1908 
1909 		if (phy_id >= PHY_MAX_ADDR) {
1910 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1911 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1912 			phy_id = 0;
1913 		}
1914 
1915 		snprintf(phy_name, sizeof(phy_name),
1916 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1917 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1918 				      fep->phy_interface);
1919 	}
1920 
1921 	if (IS_ERR(phy_dev)) {
1922 		netdev_err(ndev, "could not attach to PHY\n");
1923 		return PTR_ERR(phy_dev);
1924 	}
1925 
1926 	/* mask with MAC supported features */
1927 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1928 		phy_dev->supported &= PHY_GBIT_FEATURES;
1929 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1930 #if !defined(CONFIG_M5272)
1931 		phy_dev->supported |= SUPPORTED_Pause;
1932 #endif
1933 	}
1934 	else
1935 		phy_dev->supported &= PHY_BASIC_FEATURES;
1936 
1937 	phy_dev->advertising = phy_dev->supported;
1938 
1939 	fep->phy_dev = phy_dev;
1940 	fep->link = 0;
1941 	fep->full_duplex = 0;
1942 
1943 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1944 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1945 		    fep->phy_dev->irq);
1946 
1947 	return 0;
1948 }
1949 
1950 static int fec_enet_mii_init(struct platform_device *pdev)
1951 {
1952 	static struct mii_bus *fec0_mii_bus;
1953 	struct net_device *ndev = platform_get_drvdata(pdev);
1954 	struct fec_enet_private *fep = netdev_priv(ndev);
1955 	struct device_node *node;
1956 	int err = -ENXIO, i;
1957 	u32 mii_speed, holdtime;
1958 
1959 	/*
1960 	 * The i.MX28 dual fec interfaces are not equal.
1961 	 * Here are the differences:
1962 	 *
1963 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1964 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1965 	 *  - external phys can only be configured by fec0
1966 	 *
1967 	 * That is to say fec1 can not work independently. It only works
1968 	 * when fec0 is working. The reason behind this design is that the
1969 	 * second interface is added primarily for Switch mode.
1970 	 *
1971 	 * Because of the last point above, both phys are attached on fec0
1972 	 * mdio interface in board design, and need to be configured by
1973 	 * fec0 mii_bus.
1974 	 */
1975 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1976 		/* fec1 uses fec0 mii_bus */
1977 		if (mii_cnt && fec0_mii_bus) {
1978 			fep->mii_bus = fec0_mii_bus;
1979 			mii_cnt++;
1980 			return 0;
1981 		}
1982 		return -ENOENT;
1983 	}
1984 
1985 	fep->mii_timeout = 0;
1986 
1987 	/*
1988 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1989 	 *
1990 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1991 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1992 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1993 	 * document.
1994 	 */
1995 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1996 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1997 		mii_speed--;
1998 	if (mii_speed > 63) {
1999 		dev_err(&pdev->dev,
2000 			"fec clock (%lu) to fast to get right mii speed\n",
2001 			clk_get_rate(fep->clk_ipg));
2002 		err = -EINVAL;
2003 		goto err_out;
2004 	}
2005 
2006 	/*
2007 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2008 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2009 	 * versions are RAZ there, so just ignore the difference and write the
2010 	 * register always.
2011 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2012 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2013 	 * output.
2014 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2015 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2016 	 * holdtime cannot result in a value greater than 3.
2017 	 */
2018 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2019 
2020 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2021 
2022 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2023 
2024 	fep->mii_bus = mdiobus_alloc();
2025 	if (fep->mii_bus == NULL) {
2026 		err = -ENOMEM;
2027 		goto err_out;
2028 	}
2029 
2030 	fep->mii_bus->name = "fec_enet_mii_bus";
2031 	fep->mii_bus->read = fec_enet_mdio_read;
2032 	fep->mii_bus->write = fec_enet_mdio_write;
2033 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2034 		pdev->name, fep->dev_id + 1);
2035 	fep->mii_bus->priv = fep;
2036 	fep->mii_bus->parent = &pdev->dev;
2037 
2038 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2039 	if (!fep->mii_bus->irq) {
2040 		err = -ENOMEM;
2041 		goto err_out_free_mdiobus;
2042 	}
2043 
2044 	for (i = 0; i < PHY_MAX_ADDR; i++)
2045 		fep->mii_bus->irq[i] = PHY_POLL;
2046 
2047 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2048 	if (node) {
2049 		err = of_mdiobus_register(fep->mii_bus, node);
2050 		of_node_put(node);
2051 	} else {
2052 		err = mdiobus_register(fep->mii_bus);
2053 	}
2054 
2055 	if (err)
2056 		goto err_out_free_mdio_irq;
2057 
2058 	mii_cnt++;
2059 
2060 	/* save fec0 mii_bus */
2061 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2062 		fec0_mii_bus = fep->mii_bus;
2063 
2064 	return 0;
2065 
2066 err_out_free_mdio_irq:
2067 	kfree(fep->mii_bus->irq);
2068 err_out_free_mdiobus:
2069 	mdiobus_free(fep->mii_bus);
2070 err_out:
2071 	return err;
2072 }
2073 
2074 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2075 {
2076 	if (--mii_cnt == 0) {
2077 		mdiobus_unregister(fep->mii_bus);
2078 		kfree(fep->mii_bus->irq);
2079 		mdiobus_free(fep->mii_bus);
2080 	}
2081 }
2082 
2083 static int fec_enet_get_settings(struct net_device *ndev,
2084 				  struct ethtool_cmd *cmd)
2085 {
2086 	struct fec_enet_private *fep = netdev_priv(ndev);
2087 	struct phy_device *phydev = fep->phy_dev;
2088 
2089 	if (!phydev)
2090 		return -ENODEV;
2091 
2092 	return phy_ethtool_gset(phydev, cmd);
2093 }
2094 
2095 static int fec_enet_set_settings(struct net_device *ndev,
2096 				 struct ethtool_cmd *cmd)
2097 {
2098 	struct fec_enet_private *fep = netdev_priv(ndev);
2099 	struct phy_device *phydev = fep->phy_dev;
2100 
2101 	if (!phydev)
2102 		return -ENODEV;
2103 
2104 	return phy_ethtool_sset(phydev, cmd);
2105 }
2106 
2107 static void fec_enet_get_drvinfo(struct net_device *ndev,
2108 				 struct ethtool_drvinfo *info)
2109 {
2110 	struct fec_enet_private *fep = netdev_priv(ndev);
2111 
2112 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2113 		sizeof(info->driver));
2114 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2115 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2116 }
2117 
2118 static int fec_enet_get_ts_info(struct net_device *ndev,
2119 				struct ethtool_ts_info *info)
2120 {
2121 	struct fec_enet_private *fep = netdev_priv(ndev);
2122 
2123 	if (fep->bufdesc_ex) {
2124 
2125 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2126 					SOF_TIMESTAMPING_RX_SOFTWARE |
2127 					SOF_TIMESTAMPING_SOFTWARE |
2128 					SOF_TIMESTAMPING_TX_HARDWARE |
2129 					SOF_TIMESTAMPING_RX_HARDWARE |
2130 					SOF_TIMESTAMPING_RAW_HARDWARE;
2131 		if (fep->ptp_clock)
2132 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2133 		else
2134 			info->phc_index = -1;
2135 
2136 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2137 				 (1 << HWTSTAMP_TX_ON);
2138 
2139 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2140 				   (1 << HWTSTAMP_FILTER_ALL);
2141 		return 0;
2142 	} else {
2143 		return ethtool_op_get_ts_info(ndev, info);
2144 	}
2145 }
2146 
2147 #if !defined(CONFIG_M5272)
2148 
2149 static void fec_enet_get_pauseparam(struct net_device *ndev,
2150 				    struct ethtool_pauseparam *pause)
2151 {
2152 	struct fec_enet_private *fep = netdev_priv(ndev);
2153 
2154 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2155 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2156 	pause->rx_pause = pause->tx_pause;
2157 }
2158 
2159 static int fec_enet_set_pauseparam(struct net_device *ndev,
2160 				   struct ethtool_pauseparam *pause)
2161 {
2162 	struct fec_enet_private *fep = netdev_priv(ndev);
2163 
2164 	if (!fep->phy_dev)
2165 		return -ENODEV;
2166 
2167 	if (pause->tx_pause != pause->rx_pause) {
2168 		netdev_info(ndev,
2169 			"hardware only support enable/disable both tx and rx");
2170 		return -EINVAL;
2171 	}
2172 
2173 	fep->pause_flag = 0;
2174 
2175 	/* tx pause must be same as rx pause */
2176 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2177 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2178 
2179 	if (pause->rx_pause || pause->autoneg) {
2180 		fep->phy_dev->supported |= ADVERTISED_Pause;
2181 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2182 	} else {
2183 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2184 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2185 	}
2186 
2187 	if (pause->autoneg) {
2188 		if (netif_running(ndev))
2189 			fec_stop(ndev);
2190 		phy_start_aneg(fep->phy_dev);
2191 	}
2192 	if (netif_running(ndev)) {
2193 		napi_disable(&fep->napi);
2194 		netif_tx_lock_bh(ndev);
2195 		fec_restart(ndev);
2196 		netif_wake_queue(ndev);
2197 		netif_tx_unlock_bh(ndev);
2198 		napi_enable(&fep->napi);
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static const struct fec_stat {
2205 	char name[ETH_GSTRING_LEN];
2206 	u16 offset;
2207 } fec_stats[] = {
2208 	/* RMON TX */
2209 	{ "tx_dropped", RMON_T_DROP },
2210 	{ "tx_packets", RMON_T_PACKETS },
2211 	{ "tx_broadcast", RMON_T_BC_PKT },
2212 	{ "tx_multicast", RMON_T_MC_PKT },
2213 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2214 	{ "tx_undersize", RMON_T_UNDERSIZE },
2215 	{ "tx_oversize", RMON_T_OVERSIZE },
2216 	{ "tx_fragment", RMON_T_FRAG },
2217 	{ "tx_jabber", RMON_T_JAB },
2218 	{ "tx_collision", RMON_T_COL },
2219 	{ "tx_64byte", RMON_T_P64 },
2220 	{ "tx_65to127byte", RMON_T_P65TO127 },
2221 	{ "tx_128to255byte", RMON_T_P128TO255 },
2222 	{ "tx_256to511byte", RMON_T_P256TO511 },
2223 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2224 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2225 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2226 	{ "tx_octets", RMON_T_OCTETS },
2227 
2228 	/* IEEE TX */
2229 	{ "IEEE_tx_drop", IEEE_T_DROP },
2230 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2231 	{ "IEEE_tx_1col", IEEE_T_1COL },
2232 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2233 	{ "IEEE_tx_def", IEEE_T_DEF },
2234 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2235 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2236 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2237 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2238 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2239 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2240 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2241 
2242 	/* RMON RX */
2243 	{ "rx_packets", RMON_R_PACKETS },
2244 	{ "rx_broadcast", RMON_R_BC_PKT },
2245 	{ "rx_multicast", RMON_R_MC_PKT },
2246 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2247 	{ "rx_undersize", RMON_R_UNDERSIZE },
2248 	{ "rx_oversize", RMON_R_OVERSIZE },
2249 	{ "rx_fragment", RMON_R_FRAG },
2250 	{ "rx_jabber", RMON_R_JAB },
2251 	{ "rx_64byte", RMON_R_P64 },
2252 	{ "rx_65to127byte", RMON_R_P65TO127 },
2253 	{ "rx_128to255byte", RMON_R_P128TO255 },
2254 	{ "rx_256to511byte", RMON_R_P256TO511 },
2255 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2256 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2257 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2258 	{ "rx_octets", RMON_R_OCTETS },
2259 
2260 	/* IEEE RX */
2261 	{ "IEEE_rx_drop", IEEE_R_DROP },
2262 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2263 	{ "IEEE_rx_crc", IEEE_R_CRC },
2264 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2265 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2266 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2267 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2268 };
2269 
2270 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2271 	struct ethtool_stats *stats, u64 *data)
2272 {
2273 	struct fec_enet_private *fep = netdev_priv(dev);
2274 	int i;
2275 
2276 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2277 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2278 }
2279 
2280 static void fec_enet_get_strings(struct net_device *netdev,
2281 	u32 stringset, u8 *data)
2282 {
2283 	int i;
2284 	switch (stringset) {
2285 	case ETH_SS_STATS:
2286 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2287 			memcpy(data + i * ETH_GSTRING_LEN,
2288 				fec_stats[i].name, ETH_GSTRING_LEN);
2289 		break;
2290 	}
2291 }
2292 
2293 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2294 {
2295 	switch (sset) {
2296 	case ETH_SS_STATS:
2297 		return ARRAY_SIZE(fec_stats);
2298 	default:
2299 		return -EOPNOTSUPP;
2300 	}
2301 }
2302 #endif /* !defined(CONFIG_M5272) */
2303 
2304 static int fec_enet_nway_reset(struct net_device *dev)
2305 {
2306 	struct fec_enet_private *fep = netdev_priv(dev);
2307 	struct phy_device *phydev = fep->phy_dev;
2308 
2309 	if (!phydev)
2310 		return -ENODEV;
2311 
2312 	return genphy_restart_aneg(phydev);
2313 }
2314 
2315 /* ITR clock source is enet system clock (clk_ahb).
2316  * TCTT unit is cycle_ns * 64 cycle
2317  * So, the ICTT value = X us / (cycle_ns * 64)
2318  */
2319 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2320 {
2321 	struct fec_enet_private *fep = netdev_priv(ndev);
2322 
2323 	return us * (fep->itr_clk_rate / 64000) / 1000;
2324 }
2325 
2326 /* Set threshold for interrupt coalescing */
2327 static void fec_enet_itr_coal_set(struct net_device *ndev)
2328 {
2329 	struct fec_enet_private *fep = netdev_priv(ndev);
2330 	int rx_itr, tx_itr;
2331 
2332 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2333 		return;
2334 
2335 	/* Must be greater than zero to avoid unpredictable behavior */
2336 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2337 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2338 		return;
2339 
2340 	/* Select enet system clock as Interrupt Coalescing
2341 	 * timer Clock Source
2342 	 */
2343 	rx_itr = FEC_ITR_CLK_SEL;
2344 	tx_itr = FEC_ITR_CLK_SEL;
2345 
2346 	/* set ICFT and ICTT */
2347 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2348 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2349 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2350 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2351 
2352 	rx_itr |= FEC_ITR_EN;
2353 	tx_itr |= FEC_ITR_EN;
2354 
2355 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2356 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2357 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2358 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2359 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2360 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2361 }
2362 
2363 static int
2364 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2365 {
2366 	struct fec_enet_private *fep = netdev_priv(ndev);
2367 
2368 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2369 		return -EOPNOTSUPP;
2370 
2371 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2372 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2373 
2374 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2375 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2376 
2377 	return 0;
2378 }
2379 
2380 static int
2381 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2382 {
2383 	struct fec_enet_private *fep = netdev_priv(ndev);
2384 	unsigned int cycle;
2385 
2386 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2387 		return -EOPNOTSUPP;
2388 
2389 	if (ec->rx_max_coalesced_frames > 255) {
2390 		pr_err("Rx coalesced frames exceed hardware limiation");
2391 		return -EINVAL;
2392 	}
2393 
2394 	if (ec->tx_max_coalesced_frames > 255) {
2395 		pr_err("Tx coalesced frame exceed hardware limiation");
2396 		return -EINVAL;
2397 	}
2398 
2399 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2400 	if (cycle > 0xFFFF) {
2401 		pr_err("Rx coalesed usec exceeed hardware limiation");
2402 		return -EINVAL;
2403 	}
2404 
2405 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2406 	if (cycle > 0xFFFF) {
2407 		pr_err("Rx coalesed usec exceeed hardware limiation");
2408 		return -EINVAL;
2409 	}
2410 
2411 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2412 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2413 
2414 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2415 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2416 
2417 	fec_enet_itr_coal_set(ndev);
2418 
2419 	return 0;
2420 }
2421 
2422 static void fec_enet_itr_coal_init(struct net_device *ndev)
2423 {
2424 	struct ethtool_coalesce ec;
2425 
2426 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2427 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2428 
2429 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2430 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2431 
2432 	fec_enet_set_coalesce(ndev, &ec);
2433 }
2434 
2435 static int fec_enet_get_tunable(struct net_device *netdev,
2436 				const struct ethtool_tunable *tuna,
2437 				void *data)
2438 {
2439 	struct fec_enet_private *fep = netdev_priv(netdev);
2440 	int ret = 0;
2441 
2442 	switch (tuna->id) {
2443 	case ETHTOOL_RX_COPYBREAK:
2444 		*(u32 *)data = fep->rx_copybreak;
2445 		break;
2446 	default:
2447 		ret = -EINVAL;
2448 		break;
2449 	}
2450 
2451 	return ret;
2452 }
2453 
2454 static int fec_enet_set_tunable(struct net_device *netdev,
2455 				const struct ethtool_tunable *tuna,
2456 				const void *data)
2457 {
2458 	struct fec_enet_private *fep = netdev_priv(netdev);
2459 	int ret = 0;
2460 
2461 	switch (tuna->id) {
2462 	case ETHTOOL_RX_COPYBREAK:
2463 		fep->rx_copybreak = *(u32 *)data;
2464 		break;
2465 	default:
2466 		ret = -EINVAL;
2467 		break;
2468 	}
2469 
2470 	return ret;
2471 }
2472 
2473 static void
2474 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2475 {
2476 	struct fec_enet_private *fep = netdev_priv(ndev);
2477 
2478 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2479 		wol->supported = WAKE_MAGIC;
2480 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2481 	} else {
2482 		wol->supported = wol->wolopts = 0;
2483 	}
2484 }
2485 
2486 static int
2487 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2488 {
2489 	struct fec_enet_private *fep = netdev_priv(ndev);
2490 
2491 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2492 		return -EINVAL;
2493 
2494 	if (wol->wolopts & ~WAKE_MAGIC)
2495 		return -EINVAL;
2496 
2497 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2498 	if (device_may_wakeup(&ndev->dev)) {
2499 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2500 		if (fep->irq[0] > 0)
2501 			enable_irq_wake(fep->irq[0]);
2502 	} else {
2503 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2504 		if (fep->irq[0] > 0)
2505 			disable_irq_wake(fep->irq[0]);
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static const struct ethtool_ops fec_enet_ethtool_ops = {
2512 	.get_settings		= fec_enet_get_settings,
2513 	.set_settings		= fec_enet_set_settings,
2514 	.get_drvinfo		= fec_enet_get_drvinfo,
2515 	.nway_reset		= fec_enet_nway_reset,
2516 	.get_link		= ethtool_op_get_link,
2517 	.get_coalesce		= fec_enet_get_coalesce,
2518 	.set_coalesce		= fec_enet_set_coalesce,
2519 #ifndef CONFIG_M5272
2520 	.get_pauseparam		= fec_enet_get_pauseparam,
2521 	.set_pauseparam		= fec_enet_set_pauseparam,
2522 	.get_strings		= fec_enet_get_strings,
2523 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2524 	.get_sset_count		= fec_enet_get_sset_count,
2525 #endif
2526 	.get_ts_info		= fec_enet_get_ts_info,
2527 	.get_tunable		= fec_enet_get_tunable,
2528 	.set_tunable		= fec_enet_set_tunable,
2529 	.get_wol		= fec_enet_get_wol,
2530 	.set_wol		= fec_enet_set_wol,
2531 };
2532 
2533 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2534 {
2535 	struct fec_enet_private *fep = netdev_priv(ndev);
2536 	struct phy_device *phydev = fep->phy_dev;
2537 
2538 	if (!netif_running(ndev))
2539 		return -EINVAL;
2540 
2541 	if (!phydev)
2542 		return -ENODEV;
2543 
2544 	if (fep->bufdesc_ex) {
2545 		if (cmd == SIOCSHWTSTAMP)
2546 			return fec_ptp_set(ndev, rq);
2547 		if (cmd == SIOCGHWTSTAMP)
2548 			return fec_ptp_get(ndev, rq);
2549 	}
2550 
2551 	return phy_mii_ioctl(phydev, rq, cmd);
2552 }
2553 
2554 static void fec_enet_free_buffers(struct net_device *ndev)
2555 {
2556 	struct fec_enet_private *fep = netdev_priv(ndev);
2557 	unsigned int i;
2558 	struct sk_buff *skb;
2559 	struct bufdesc	*bdp;
2560 	struct fec_enet_priv_tx_q *txq;
2561 	struct fec_enet_priv_rx_q *rxq;
2562 	unsigned int q;
2563 
2564 	for (q = 0; q < fep->num_rx_queues; q++) {
2565 		rxq = fep->rx_queue[q];
2566 		bdp = rxq->rx_bd_base;
2567 		for (i = 0; i < rxq->rx_ring_size; i++) {
2568 			skb = rxq->rx_skbuff[i];
2569 			rxq->rx_skbuff[i] = NULL;
2570 			if (skb) {
2571 				dma_unmap_single(&fep->pdev->dev,
2572 						 bdp->cbd_bufaddr,
2573 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2574 						 DMA_FROM_DEVICE);
2575 				dev_kfree_skb(skb);
2576 			}
2577 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2578 		}
2579 	}
2580 
2581 	for (q = 0; q < fep->num_tx_queues; q++) {
2582 		txq = fep->tx_queue[q];
2583 		bdp = txq->tx_bd_base;
2584 		for (i = 0; i < txq->tx_ring_size; i++) {
2585 			kfree(txq->tx_bounce[i]);
2586 			txq->tx_bounce[i] = NULL;
2587 			skb = txq->tx_skbuff[i];
2588 			txq->tx_skbuff[i] = NULL;
2589 			dev_kfree_skb(skb);
2590 		}
2591 	}
2592 }
2593 
2594 static void fec_enet_free_queue(struct net_device *ndev)
2595 {
2596 	struct fec_enet_private *fep = netdev_priv(ndev);
2597 	int i;
2598 	struct fec_enet_priv_tx_q *txq;
2599 
2600 	for (i = 0; i < fep->num_tx_queues; i++)
2601 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2602 			txq = fep->tx_queue[i];
2603 			dma_free_coherent(NULL,
2604 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2605 					  txq->tso_hdrs,
2606 					  txq->tso_hdrs_dma);
2607 		}
2608 
2609 	for (i = 0; i < fep->num_rx_queues; i++)
2610 		kfree(fep->rx_queue[i]);
2611 	for (i = 0; i < fep->num_tx_queues; i++)
2612 		kfree(fep->tx_queue[i]);
2613 }
2614 
2615 static int fec_enet_alloc_queue(struct net_device *ndev)
2616 {
2617 	struct fec_enet_private *fep = netdev_priv(ndev);
2618 	int i;
2619 	int ret = 0;
2620 	struct fec_enet_priv_tx_q *txq;
2621 
2622 	for (i = 0; i < fep->num_tx_queues; i++) {
2623 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2624 		if (!txq) {
2625 			ret = -ENOMEM;
2626 			goto alloc_failed;
2627 		}
2628 
2629 		fep->tx_queue[i] = txq;
2630 		txq->tx_ring_size = TX_RING_SIZE;
2631 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2632 
2633 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2634 		txq->tx_wake_threshold =
2635 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2636 
2637 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2638 					txq->tx_ring_size * TSO_HEADER_SIZE,
2639 					&txq->tso_hdrs_dma,
2640 					GFP_KERNEL);
2641 		if (!txq->tso_hdrs) {
2642 			ret = -ENOMEM;
2643 			goto alloc_failed;
2644 		}
2645 	}
2646 
2647 	for (i = 0; i < fep->num_rx_queues; i++) {
2648 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2649 					   GFP_KERNEL);
2650 		if (!fep->rx_queue[i]) {
2651 			ret = -ENOMEM;
2652 			goto alloc_failed;
2653 		}
2654 
2655 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2656 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2657 	}
2658 	return ret;
2659 
2660 alloc_failed:
2661 	fec_enet_free_queue(ndev);
2662 	return ret;
2663 }
2664 
2665 static int
2666 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2667 {
2668 	struct fec_enet_private *fep = netdev_priv(ndev);
2669 	unsigned int i;
2670 	struct sk_buff *skb;
2671 	struct bufdesc	*bdp;
2672 	struct fec_enet_priv_rx_q *rxq;
2673 
2674 	rxq = fep->rx_queue[queue];
2675 	bdp = rxq->rx_bd_base;
2676 	for (i = 0; i < rxq->rx_ring_size; i++) {
2677 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2678 		if (!skb)
2679 			goto err_alloc;
2680 
2681 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2682 			dev_kfree_skb(skb);
2683 			goto err_alloc;
2684 		}
2685 
2686 		rxq->rx_skbuff[i] = skb;
2687 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2688 
2689 		if (fep->bufdesc_ex) {
2690 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2691 			ebdp->cbd_esc = BD_ENET_RX_INT;
2692 		}
2693 
2694 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2695 	}
2696 
2697 	/* Set the last buffer to wrap. */
2698 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2699 	bdp->cbd_sc |= BD_SC_WRAP;
2700 	return 0;
2701 
2702  err_alloc:
2703 	fec_enet_free_buffers(ndev);
2704 	return -ENOMEM;
2705 }
2706 
2707 static int
2708 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2709 {
2710 	struct fec_enet_private *fep = netdev_priv(ndev);
2711 	unsigned int i;
2712 	struct bufdesc  *bdp;
2713 	struct fec_enet_priv_tx_q *txq;
2714 
2715 	txq = fep->tx_queue[queue];
2716 	bdp = txq->tx_bd_base;
2717 	for (i = 0; i < txq->tx_ring_size; i++) {
2718 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2719 		if (!txq->tx_bounce[i])
2720 			goto err_alloc;
2721 
2722 		bdp->cbd_sc = 0;
2723 		bdp->cbd_bufaddr = 0;
2724 
2725 		if (fep->bufdesc_ex) {
2726 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2727 			ebdp->cbd_esc = BD_ENET_TX_INT;
2728 		}
2729 
2730 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2731 	}
2732 
2733 	/* Set the last buffer to wrap. */
2734 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2735 	bdp->cbd_sc |= BD_SC_WRAP;
2736 
2737 	return 0;
2738 
2739  err_alloc:
2740 	fec_enet_free_buffers(ndev);
2741 	return -ENOMEM;
2742 }
2743 
2744 static int fec_enet_alloc_buffers(struct net_device *ndev)
2745 {
2746 	struct fec_enet_private *fep = netdev_priv(ndev);
2747 	unsigned int i;
2748 
2749 	for (i = 0; i < fep->num_rx_queues; i++)
2750 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2751 			return -ENOMEM;
2752 
2753 	for (i = 0; i < fep->num_tx_queues; i++)
2754 		if (fec_enet_alloc_txq_buffers(ndev, i))
2755 			return -ENOMEM;
2756 	return 0;
2757 }
2758 
2759 static int
2760 fec_enet_open(struct net_device *ndev)
2761 {
2762 	struct fec_enet_private *fep = netdev_priv(ndev);
2763 	int ret;
2764 
2765 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2766 	ret = fec_enet_clk_enable(ndev, true);
2767 	if (ret)
2768 		return ret;
2769 
2770 	/* I should reset the ring buffers here, but I don't yet know
2771 	 * a simple way to do that.
2772 	 */
2773 
2774 	ret = fec_enet_alloc_buffers(ndev);
2775 	if (ret)
2776 		goto err_enet_alloc;
2777 
2778 	/* Probe and connect to PHY when open the interface */
2779 	ret = fec_enet_mii_probe(ndev);
2780 	if (ret)
2781 		goto err_enet_mii_probe;
2782 
2783 	fec_restart(ndev);
2784 	napi_enable(&fep->napi);
2785 	phy_start(fep->phy_dev);
2786 	netif_tx_start_all_queues(ndev);
2787 
2788 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2789 				 FEC_WOL_FLAG_ENABLE);
2790 
2791 	return 0;
2792 
2793 err_enet_mii_probe:
2794 	fec_enet_free_buffers(ndev);
2795 err_enet_alloc:
2796 	fec_enet_clk_enable(ndev, false);
2797 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2798 	return ret;
2799 }
2800 
2801 static int
2802 fec_enet_close(struct net_device *ndev)
2803 {
2804 	struct fec_enet_private *fep = netdev_priv(ndev);
2805 
2806 	phy_stop(fep->phy_dev);
2807 
2808 	if (netif_device_present(ndev)) {
2809 		napi_disable(&fep->napi);
2810 		netif_tx_disable(ndev);
2811 		fec_stop(ndev);
2812 	}
2813 
2814 	phy_disconnect(fep->phy_dev);
2815 	fep->phy_dev = NULL;
2816 
2817 	fec_enet_clk_enable(ndev, false);
2818 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2819 	fec_enet_free_buffers(ndev);
2820 
2821 	return 0;
2822 }
2823 
2824 /* Set or clear the multicast filter for this adaptor.
2825  * Skeleton taken from sunlance driver.
2826  * The CPM Ethernet implementation allows Multicast as well as individual
2827  * MAC address filtering.  Some of the drivers check to make sure it is
2828  * a group multicast address, and discard those that are not.  I guess I
2829  * will do the same for now, but just remove the test if you want
2830  * individual filtering as well (do the upper net layers want or support
2831  * this kind of feature?).
2832  */
2833 
2834 #define HASH_BITS	6		/* #bits in hash */
2835 #define CRC32_POLY	0xEDB88320
2836 
2837 static void set_multicast_list(struct net_device *ndev)
2838 {
2839 	struct fec_enet_private *fep = netdev_priv(ndev);
2840 	struct netdev_hw_addr *ha;
2841 	unsigned int i, bit, data, crc, tmp;
2842 	unsigned char hash;
2843 
2844 	if (ndev->flags & IFF_PROMISC) {
2845 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2846 		tmp |= 0x8;
2847 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2848 		return;
2849 	}
2850 
2851 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2852 	tmp &= ~0x8;
2853 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2854 
2855 	if (ndev->flags & IFF_ALLMULTI) {
2856 		/* Catch all multicast addresses, so set the
2857 		 * filter to all 1's
2858 		 */
2859 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2860 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2861 
2862 		return;
2863 	}
2864 
2865 	/* Clear filter and add the addresses in hash register
2866 	 */
2867 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2868 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2869 
2870 	netdev_for_each_mc_addr(ha, ndev) {
2871 		/* calculate crc32 value of mac address */
2872 		crc = 0xffffffff;
2873 
2874 		for (i = 0; i < ndev->addr_len; i++) {
2875 			data = ha->addr[i];
2876 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2877 				crc = (crc >> 1) ^
2878 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2879 			}
2880 		}
2881 
2882 		/* only upper 6 bits (HASH_BITS) are used
2883 		 * which point to specific bit in he hash registers
2884 		 */
2885 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2886 
2887 		if (hash > 31) {
2888 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2889 			tmp |= 1 << (hash - 32);
2890 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2891 		} else {
2892 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2893 			tmp |= 1 << hash;
2894 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2895 		}
2896 	}
2897 }
2898 
2899 /* Set a MAC change in hardware. */
2900 static int
2901 fec_set_mac_address(struct net_device *ndev, void *p)
2902 {
2903 	struct fec_enet_private *fep = netdev_priv(ndev);
2904 	struct sockaddr *addr = p;
2905 
2906 	if (addr) {
2907 		if (!is_valid_ether_addr(addr->sa_data))
2908 			return -EADDRNOTAVAIL;
2909 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2910 	}
2911 
2912 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2913 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2914 		fep->hwp + FEC_ADDR_LOW);
2915 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2916 		fep->hwp + FEC_ADDR_HIGH);
2917 	return 0;
2918 }
2919 
2920 #ifdef CONFIG_NET_POLL_CONTROLLER
2921 /**
2922  * fec_poll_controller - FEC Poll controller function
2923  * @dev: The FEC network adapter
2924  *
2925  * Polled functionality used by netconsole and others in non interrupt mode
2926  *
2927  */
2928 static void fec_poll_controller(struct net_device *dev)
2929 {
2930 	int i;
2931 	struct fec_enet_private *fep = netdev_priv(dev);
2932 
2933 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2934 		if (fep->irq[i] > 0) {
2935 			disable_irq(fep->irq[i]);
2936 			fec_enet_interrupt(fep->irq[i], dev);
2937 			enable_irq(fep->irq[i]);
2938 		}
2939 	}
2940 }
2941 #endif
2942 
2943 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2944 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2945 	netdev_features_t features)
2946 {
2947 	struct fec_enet_private *fep = netdev_priv(netdev);
2948 	netdev_features_t changed = features ^ netdev->features;
2949 
2950 	netdev->features = features;
2951 
2952 	/* Receive checksum has been changed */
2953 	if (changed & NETIF_F_RXCSUM) {
2954 		if (features & NETIF_F_RXCSUM)
2955 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2956 		else
2957 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2958 	}
2959 }
2960 
2961 static int fec_set_features(struct net_device *netdev,
2962 	netdev_features_t features)
2963 {
2964 	struct fec_enet_private *fep = netdev_priv(netdev);
2965 	netdev_features_t changed = features ^ netdev->features;
2966 
2967 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2968 		napi_disable(&fep->napi);
2969 		netif_tx_lock_bh(netdev);
2970 		fec_stop(netdev);
2971 		fec_enet_set_netdev_features(netdev, features);
2972 		fec_restart(netdev);
2973 		netif_tx_wake_all_queues(netdev);
2974 		netif_tx_unlock_bh(netdev);
2975 		napi_enable(&fep->napi);
2976 	} else {
2977 		fec_enet_set_netdev_features(netdev, features);
2978 	}
2979 
2980 	return 0;
2981 }
2982 
2983 static const struct net_device_ops fec_netdev_ops = {
2984 	.ndo_open		= fec_enet_open,
2985 	.ndo_stop		= fec_enet_close,
2986 	.ndo_start_xmit		= fec_enet_start_xmit,
2987 	.ndo_set_rx_mode	= set_multicast_list,
2988 	.ndo_change_mtu		= eth_change_mtu,
2989 	.ndo_validate_addr	= eth_validate_addr,
2990 	.ndo_tx_timeout		= fec_timeout,
2991 	.ndo_set_mac_address	= fec_set_mac_address,
2992 	.ndo_do_ioctl		= fec_enet_ioctl,
2993 #ifdef CONFIG_NET_POLL_CONTROLLER
2994 	.ndo_poll_controller	= fec_poll_controller,
2995 #endif
2996 	.ndo_set_features	= fec_set_features,
2997 };
2998 
2999  /*
3000   * XXX:  We need to clean up on failure exits here.
3001   *
3002   */
3003 static int fec_enet_init(struct net_device *ndev)
3004 {
3005 	struct fec_enet_private *fep = netdev_priv(ndev);
3006 	struct fec_enet_priv_tx_q *txq;
3007 	struct fec_enet_priv_rx_q *rxq;
3008 	struct bufdesc *cbd_base;
3009 	dma_addr_t bd_dma;
3010 	int bd_size;
3011 	unsigned int i;
3012 
3013 #if defined(CONFIG_ARM)
3014 	fep->rx_align = 0xf;
3015 	fep->tx_align = 0xf;
3016 #else
3017 	fep->rx_align = 0x3;
3018 	fep->tx_align = 0x3;
3019 #endif
3020 
3021 	fec_enet_alloc_queue(ndev);
3022 
3023 	if (fep->bufdesc_ex)
3024 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3025 	else
3026 		fep->bufdesc_size = sizeof(struct bufdesc);
3027 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3028 			fep->bufdesc_size;
3029 
3030 	/* Allocate memory for buffer descriptors. */
3031 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3032 				      GFP_KERNEL);
3033 	if (!cbd_base) {
3034 		return -ENOMEM;
3035 	}
3036 
3037 	memset(cbd_base, 0, bd_size);
3038 
3039 	/* Get the Ethernet address */
3040 	fec_get_mac(ndev);
3041 	/* make sure MAC we just acquired is programmed into the hw */
3042 	fec_set_mac_address(ndev, NULL);
3043 
3044 	/* Set receive and transmit descriptor base. */
3045 	for (i = 0; i < fep->num_rx_queues; i++) {
3046 		rxq = fep->rx_queue[i];
3047 		rxq->index = i;
3048 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3049 		rxq->bd_dma = bd_dma;
3050 		if (fep->bufdesc_ex) {
3051 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3052 			cbd_base = (struct bufdesc *)
3053 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3054 		} else {
3055 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3056 			cbd_base += rxq->rx_ring_size;
3057 		}
3058 	}
3059 
3060 	for (i = 0; i < fep->num_tx_queues; i++) {
3061 		txq = fep->tx_queue[i];
3062 		txq->index = i;
3063 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3064 		txq->bd_dma = bd_dma;
3065 		if (fep->bufdesc_ex) {
3066 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3067 			cbd_base = (struct bufdesc *)
3068 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3069 		} else {
3070 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3071 			cbd_base += txq->tx_ring_size;
3072 		}
3073 	}
3074 
3075 
3076 	/* The FEC Ethernet specific entries in the device structure */
3077 	ndev->watchdog_timeo = TX_TIMEOUT;
3078 	ndev->netdev_ops = &fec_netdev_ops;
3079 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3080 
3081 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3082 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3083 
3084 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3085 		/* enable hw VLAN support */
3086 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3087 
3088 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3089 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3090 
3091 		/* enable hw accelerator */
3092 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3093 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3094 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3095 	}
3096 
3097 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3098 		fep->tx_align = 0;
3099 		fep->rx_align = 0x3f;
3100 	}
3101 
3102 	ndev->hw_features = ndev->features;
3103 
3104 	fec_restart(ndev);
3105 
3106 	return 0;
3107 }
3108 
3109 #ifdef CONFIG_OF
3110 static void fec_reset_phy(struct platform_device *pdev)
3111 {
3112 	int err, phy_reset;
3113 	int msec = 1;
3114 	struct device_node *np = pdev->dev.of_node;
3115 
3116 	if (!np)
3117 		return;
3118 
3119 	of_property_read_u32(np, "phy-reset-duration", &msec);
3120 	/* A sane reset duration should not be longer than 1s */
3121 	if (msec > 1000)
3122 		msec = 1;
3123 
3124 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3125 	if (!gpio_is_valid(phy_reset))
3126 		return;
3127 
3128 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3129 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3130 	if (err) {
3131 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3132 		return;
3133 	}
3134 	msleep(msec);
3135 	gpio_set_value(phy_reset, 1);
3136 }
3137 #else /* CONFIG_OF */
3138 static void fec_reset_phy(struct platform_device *pdev)
3139 {
3140 	/*
3141 	 * In case of platform probe, the reset has been done
3142 	 * by machine code.
3143 	 */
3144 }
3145 #endif /* CONFIG_OF */
3146 
3147 static void
3148 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3149 {
3150 	struct device_node *np = pdev->dev.of_node;
3151 	int err;
3152 
3153 	*num_tx = *num_rx = 1;
3154 
3155 	if (!np || !of_device_is_available(np))
3156 		return;
3157 
3158 	/* parse the num of tx and rx queues */
3159 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3160 	if (err)
3161 		*num_tx = 1;
3162 
3163 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3164 	if (err)
3165 		*num_rx = 1;
3166 
3167 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3168 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3169 			 *num_tx);
3170 		*num_tx = 1;
3171 		return;
3172 	}
3173 
3174 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3175 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3176 			 *num_rx);
3177 		*num_rx = 1;
3178 		return;
3179 	}
3180 
3181 }
3182 
3183 static int
3184 fec_probe(struct platform_device *pdev)
3185 {
3186 	struct fec_enet_private *fep;
3187 	struct fec_platform_data *pdata;
3188 	struct net_device *ndev;
3189 	int i, irq, ret = 0;
3190 	struct resource *r;
3191 	const struct of_device_id *of_id;
3192 	static int dev_id;
3193 	struct device_node *np = pdev->dev.of_node, *phy_node;
3194 	int num_tx_qs;
3195 	int num_rx_qs;
3196 
3197 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3198 
3199 	/* Init network device */
3200 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3201 				  num_tx_qs, num_rx_qs);
3202 	if (!ndev)
3203 		return -ENOMEM;
3204 
3205 	SET_NETDEV_DEV(ndev, &pdev->dev);
3206 
3207 	/* setup board info structure */
3208 	fep = netdev_priv(ndev);
3209 
3210 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3211 	if (of_id)
3212 		pdev->id_entry = of_id->data;
3213 	fep->quirks = pdev->id_entry->driver_data;
3214 
3215 	fep->netdev = ndev;
3216 	fep->num_rx_queues = num_rx_qs;
3217 	fep->num_tx_queues = num_tx_qs;
3218 
3219 #if !defined(CONFIG_M5272)
3220 	/* default enable pause frame auto negotiation */
3221 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3222 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3223 #endif
3224 
3225 	/* Select default pin state */
3226 	pinctrl_pm_select_default_state(&pdev->dev);
3227 
3228 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3229 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3230 	if (IS_ERR(fep->hwp)) {
3231 		ret = PTR_ERR(fep->hwp);
3232 		goto failed_ioremap;
3233 	}
3234 
3235 	fep->pdev = pdev;
3236 	fep->dev_id = dev_id++;
3237 
3238 	platform_set_drvdata(pdev, ndev);
3239 
3240 	if (of_get_property(np, "fsl,magic-packet", NULL))
3241 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3242 
3243 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3244 	if (!phy_node && of_phy_is_fixed_link(np)) {
3245 		ret = of_phy_register_fixed_link(np);
3246 		if (ret < 0) {
3247 			dev_err(&pdev->dev,
3248 				"broken fixed-link specification\n");
3249 			goto failed_phy;
3250 		}
3251 		phy_node = of_node_get(np);
3252 	}
3253 	fep->phy_node = phy_node;
3254 
3255 	ret = of_get_phy_mode(pdev->dev.of_node);
3256 	if (ret < 0) {
3257 		pdata = dev_get_platdata(&pdev->dev);
3258 		if (pdata)
3259 			fep->phy_interface = pdata->phy;
3260 		else
3261 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3262 	} else {
3263 		fep->phy_interface = ret;
3264 	}
3265 
3266 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3267 	if (IS_ERR(fep->clk_ipg)) {
3268 		ret = PTR_ERR(fep->clk_ipg);
3269 		goto failed_clk;
3270 	}
3271 
3272 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3273 	if (IS_ERR(fep->clk_ahb)) {
3274 		ret = PTR_ERR(fep->clk_ahb);
3275 		goto failed_clk;
3276 	}
3277 
3278 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3279 
3280 	/* enet_out is optional, depends on board */
3281 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3282 	if (IS_ERR(fep->clk_enet_out))
3283 		fep->clk_enet_out = NULL;
3284 
3285 	fep->ptp_clk_on = false;
3286 	mutex_init(&fep->ptp_clk_mutex);
3287 
3288 	/* clk_ref is optional, depends on board */
3289 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3290 	if (IS_ERR(fep->clk_ref))
3291 		fep->clk_ref = NULL;
3292 
3293 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3294 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3295 	if (IS_ERR(fep->clk_ptp)) {
3296 		fep->clk_ptp = NULL;
3297 		fep->bufdesc_ex = false;
3298 	}
3299 
3300 	ret = fec_enet_clk_enable(ndev, true);
3301 	if (ret)
3302 		goto failed_clk;
3303 
3304 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3305 	if (!IS_ERR(fep->reg_phy)) {
3306 		ret = regulator_enable(fep->reg_phy);
3307 		if (ret) {
3308 			dev_err(&pdev->dev,
3309 				"Failed to enable phy regulator: %d\n", ret);
3310 			goto failed_regulator;
3311 		}
3312 	} else {
3313 		fep->reg_phy = NULL;
3314 	}
3315 
3316 	fec_reset_phy(pdev);
3317 
3318 	if (fep->bufdesc_ex)
3319 		fec_ptp_init(pdev);
3320 
3321 	ret = fec_enet_init(ndev);
3322 	if (ret)
3323 		goto failed_init;
3324 
3325 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3326 		irq = platform_get_irq(pdev, i);
3327 		if (irq < 0) {
3328 			if (i)
3329 				break;
3330 			ret = irq;
3331 			goto failed_irq;
3332 		}
3333 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3334 				       0, pdev->name, ndev);
3335 		if (ret)
3336 			goto failed_irq;
3337 
3338 		fep->irq[i] = irq;
3339 	}
3340 
3341 	init_completion(&fep->mdio_done);
3342 	ret = fec_enet_mii_init(pdev);
3343 	if (ret)
3344 		goto failed_mii_init;
3345 
3346 	/* Carrier starts down, phylib will bring it up */
3347 	netif_carrier_off(ndev);
3348 	fec_enet_clk_enable(ndev, false);
3349 	pinctrl_pm_select_sleep_state(&pdev->dev);
3350 
3351 	ret = register_netdev(ndev);
3352 	if (ret)
3353 		goto failed_register;
3354 
3355 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3356 			   FEC_WOL_HAS_MAGIC_PACKET);
3357 
3358 	if (fep->bufdesc_ex && fep->ptp_clock)
3359 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3360 
3361 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3362 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3363 	return 0;
3364 
3365 failed_register:
3366 	fec_enet_mii_remove(fep);
3367 failed_mii_init:
3368 failed_irq:
3369 failed_init:
3370 	if (fep->reg_phy)
3371 		regulator_disable(fep->reg_phy);
3372 failed_regulator:
3373 	fec_enet_clk_enable(ndev, false);
3374 failed_clk:
3375 failed_phy:
3376 	of_node_put(phy_node);
3377 failed_ioremap:
3378 	free_netdev(ndev);
3379 
3380 	return ret;
3381 }
3382 
3383 static int
3384 fec_drv_remove(struct platform_device *pdev)
3385 {
3386 	struct net_device *ndev = platform_get_drvdata(pdev);
3387 	struct fec_enet_private *fep = netdev_priv(ndev);
3388 
3389 	cancel_delayed_work_sync(&fep->time_keep);
3390 	cancel_work_sync(&fep->tx_timeout_work);
3391 	unregister_netdev(ndev);
3392 	fec_enet_mii_remove(fep);
3393 	if (fep->reg_phy)
3394 		regulator_disable(fep->reg_phy);
3395 	if (fep->ptp_clock)
3396 		ptp_clock_unregister(fep->ptp_clock);
3397 	of_node_put(fep->phy_node);
3398 	free_netdev(ndev);
3399 
3400 	return 0;
3401 }
3402 
3403 static int __maybe_unused fec_suspend(struct device *dev)
3404 {
3405 	struct net_device *ndev = dev_get_drvdata(dev);
3406 	struct fec_enet_private *fep = netdev_priv(ndev);
3407 
3408 	rtnl_lock();
3409 	if (netif_running(ndev)) {
3410 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3411 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3412 		phy_stop(fep->phy_dev);
3413 		napi_disable(&fep->napi);
3414 		netif_tx_lock_bh(ndev);
3415 		netif_device_detach(ndev);
3416 		netif_tx_unlock_bh(ndev);
3417 		fec_stop(ndev);
3418 		fec_enet_clk_enable(ndev, false);
3419 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3420 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3421 	}
3422 	rtnl_unlock();
3423 
3424 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3425 		regulator_disable(fep->reg_phy);
3426 
3427 	/* SOC supply clock to phy, when clock is disabled, phy link down
3428 	 * SOC control phy regulator, when regulator is disabled, phy link down
3429 	 */
3430 	if (fep->clk_enet_out || fep->reg_phy)
3431 		fep->link = 0;
3432 
3433 	return 0;
3434 }
3435 
3436 static int __maybe_unused fec_resume(struct device *dev)
3437 {
3438 	struct net_device *ndev = dev_get_drvdata(dev);
3439 	struct fec_enet_private *fep = netdev_priv(ndev);
3440 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3441 	int ret;
3442 	int val;
3443 
3444 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3445 		ret = regulator_enable(fep->reg_phy);
3446 		if (ret)
3447 			return ret;
3448 	}
3449 
3450 	rtnl_lock();
3451 	if (netif_running(ndev)) {
3452 		ret = fec_enet_clk_enable(ndev, true);
3453 		if (ret) {
3454 			rtnl_unlock();
3455 			goto failed_clk;
3456 		}
3457 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3458 			if (pdata && pdata->sleep_mode_enable)
3459 				pdata->sleep_mode_enable(false);
3460 			val = readl(fep->hwp + FEC_ECNTRL);
3461 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3462 			writel(val, fep->hwp + FEC_ECNTRL);
3463 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3464 		} else {
3465 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3466 		}
3467 		fec_restart(ndev);
3468 		netif_tx_lock_bh(ndev);
3469 		netif_device_attach(ndev);
3470 		netif_tx_unlock_bh(ndev);
3471 		napi_enable(&fep->napi);
3472 		phy_start(fep->phy_dev);
3473 	}
3474 	rtnl_unlock();
3475 
3476 	return 0;
3477 
3478 failed_clk:
3479 	if (fep->reg_phy)
3480 		regulator_disable(fep->reg_phy);
3481 	return ret;
3482 }
3483 
3484 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3485 
3486 static struct platform_driver fec_driver = {
3487 	.driver	= {
3488 		.name	= DRIVER_NAME,
3489 		.pm	= &fec_pm_ops,
3490 		.of_match_table = fec_dt_ids,
3491 	},
3492 	.id_table = fec_devtype,
3493 	.probe	= fec_probe,
3494 	.remove	= fec_drv_remove,
3495 };
3496 
3497 module_platform_driver(fec_driver);
3498 
3499 MODULE_ALIAS("platform:"DRIVER_NAME);
3500 MODULE_LICENSE("GPL");
3501